Dataset Viewer
Auto-converted to Parquet
chemical_formula_hill
string
chemical_formula_reduced
string
chemical_formula_anonymous
string
atomic_numbers
sequence
elements
sequence
elements_ratios
sequence
nelements
int32
nsites
int32
cell
sequence
positions
sequence
pbc
sequence
dimension_types
sequence
nperiodic_dimensions
int32
structure_hash
string
multiplicity
int32
software
string
method
string
adsorption_energy
float64
atomic_forces
sequence
atomization_energy
float64
cauchy_stress
sequence
cauchy_stress_volume_normalized
bool
electronic_band_gap
float64
electronic_band_gap_type
string
energy
float64
formation_energy
float64
max_force_norm
float64
mean_force_norm
float64
property_object_metadata
string
property_object_metadata_id
string
property_object_last_modified
timestamp[ns]
property_object_hash
string
property_object_id
string
configuration_metadata
string
configuration_metadata_id
string
configuration_labels
sequence
configuration_names
sequence
configuration_dataset_ids
sequence
configuration_last_modified
timestamp[ns]
configuration_hash
string
configuration_id
string
dataset_name
string
dataset_authors
sequence
dataset_description
string
dataset_elements
sequence
dataset_nelements
int32
dataset_nproperty_objects
int64
dataset_nconfigurations
int32
dataset_nsites
int64
dataset_adsorption_energy_count
int64
dataset_atomic_forces_count
int64
dataset_atomization_energy_count
int64
dataset_cauchy_stress_count
int64
dataset_electronic_band_gap_count
int64
dataset_energy_count
int64
dataset_energy_mean
float64
dataset_energy_variance
float64
dataset_formation_energy_count
int64
dataset_last_modified
timestamp[ns]
dataset_dimension_types
sequence
dataset_nperiodic_dimensions
sequence
dataset_publication_year
string
dataset_total_elements_ratios
sequence
dataset_license
string
dataset_links
string
dataset_doi
string
dataset_hash
string
dataset_id
string
dataset_extended_id
string
Si64
Si
A
[ 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14 ]
[ "Si" ]
[ 1 ]
1
64
[ [ 10.93699157, 0, 0 ], [ 0, 10.93699157, 0 ], [ 0, 0, 10.93699157 ] ]
[ [ 0.121890015070776, 0.34360588219794, 0.176733863751201 ], [ 0.109306884195323, 0.353207288005632, 0.658167066611399 ], [ 0.125600965650869, 0.857392160760175, 0.154319834216838 ], [ 0.107196161584341, 0.856977056881332, 0.666734143818058 ], [ 0.603715308540234, 0.342297655731574, 0.157634957143313 ], [ 0.619475566987326, 0.362308649097365, 0.668371220882386 ], [ 0.624005706866527, 0.867387973934614, 0.16520385025398 ], [ 0.615205878391779, 0.856210472669561, 0.655152996147629 ], [ 0.989377667751524, 0.972875948577352, 0.288819950354651 ], [ 0.993820432558312, 0.968253331154759, 0.798055698194897 ], [ 0.993984567686299, 0.477017613222046, 0.299007339451109 ], [ 0.97639756813489, 0.490381141510324, 0.813230393377932 ], [ 0.488722800881049, 0.987129745590326, 0.289488656969026 ], [ 0.498525866500853, 0.975643338474029, 0.776924218762933 ], [ 0.490290649516943, 0.457131292785683, 0.28812158998771 ], [ 0.477417858130135, 0.473465489362629, 0.80038551503249 ], [ 0.131752556398191, 0.091737174338812, 0.395978959713272 ], [ 0.114459874112277, 0.090917600463384, 0.931503672393661 ], [ 0.126705369424239, 0.584873685119898, 0.420401356365845 ], [ 0.143141398651671, 0.593315214312019, 0.908502829610788 ], [ 0.619657867797167, 0.092692230454779, 0.422819663322088 ], [ 0.642773054951236, 0.090546378286275, 0.913557500901638 ], [ 0.642985711927793, 0.591235932265272, 0.407820587944974 ], [ 0.641620992357872, 0.576828084927516, 0.911484677825002 ], [ 0.00296983735929, 0.235099000306059, 0.039265135232333 ], [ 0.993077900152731, 0.216505731920876, 0.516035163536945 ], [ 0.018206756669061, 0.71388620651688, 0.0438368572897 ], [ 0.999262138613995, 0.738745476998933, 0.527126446784147 ], [ 0.506492215662829, 0.213241323542615, 0.022857670209873 ], [ 0.502004913817687, 0.243731247324795, 0.552977875108921 ], [ 0.509858318198657, 0.729261669269549, 0.03799138472533 ], [ 0.506722323255365, 0.713120468435063, 0.533853132315158 ], [ 0.355690985512437, 0.341516764401353, 0.414825450248659 ], [ 0.354158493520401, 0.34892305475163, 0.902896612212157 ], [ 0.376534766829081, 0.8252520435003, 0.413179644197126 ], [ 0.36477058784448, 0.848005155764604, 0.912094919729774 ], [ 0.855533220975533, 0.349144738392482, 0.412640907890715 ], [ 0.859468449110412, 0.360941215451574, 0.933020259388769 ], [ 0.85206543748096, 0.851463080545898, 0.405162829643908 ], [ 0.859336371327398, 0.834924360922519, 0.921349213805549 ], [ 0.261039181672439, 0.975743670537068, 0.046408554416641 ], [ 0.248477648793394, 0.989915395149196, 0.53928829684352 ], [ 0.252032584409439, 0.467213232538655, 0.05759535565997 ], [ 0.242216427083625, 0.47662112031571, 0.56602727877497 ], [ 0.770531978579003, 0.980366016412367, 0.037919262955393 ], [ 0.757527999163135, 0.978708296685311, 0.541486464630271 ], [ 0.735831624542213, 0.471502686711591, 0.067382024553581 ], [ 0.769970150794672, 0.487009418408735, 0.564721853060675 ], [ 0.374142921216962, 0.113653430517978, 0.169578915731349 ], [ 0.397289441112431, 0.116301663173958, 0.678676465097848 ], [ 0.380346740397718, 0.622215616580361, 0.160524806170304 ], [ 0.369244951126738, 0.614918268932263, 0.663669735290842 ], [ 0.880826059035598, 0.113825122411981, 0.159284747177685 ], [ 0.877124965661418, 0.102887366646557, 0.674862374434606 ], [ 0.889596084163442, 0.606415472069964, 0.170356305704684 ], [ 0.884992848843452, 0.627078568918416, 0.679690138786645 ], [ 0.237102041979695, 0.223693467478629, 0.28390904734008 ], [ 0.228337237101794, 0.222824235609713, 0.781083609437356 ], [ 0.240737940679344, 0.718223537368415, 0.28892250108627 ], [ 0.245745726418394, 0.71618690644224, 0.788493816857506 ], [ 0.721089687108573, 0.21798531287299, 0.2964726100653 ], [ 0.742779434594826, 0.23846498860544, 0.800912755131439 ], [ 0.747704939340279, 0.717105570906069, 0.290925960946051 ], [ 0.734702209261602, 0.722539488143136, 0.800410993558191 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
237152200760054138948289929773055876034849149440598630671825848063190805927389592143254565074983384020539073079712312487263701861549285260719884942078153
1
PWmat
DFT-PBE
null
[ [ 1.375712573022611, -2.136396726043418, 1.000526119901869 ], [ 1.868034799500645, 0.811507941771928, -1.034762177492849 ], [ 0.336236691515082, 0.6240217920244, -1.698903936217844 ], [ -2.037500105510091, 0.152321498832407, 0.644262858407678 ], [ -0.179637944576204, 0.912723992366919, -0.864697114280866 ], [ -0.743570139477515, -1.16378934753626, -1.207934892668922 ], [ -0.376741549201313, 0.558193703470538, 0.09446833167071 ], [ -0.983203026025581, 1.134918862379174, -0.068869705388109 ], [ -0.201831663739536, 0.001535265403593, 0.968448726618126 ], [ 1.16708617527098, -0.22280412205725, -0.904653837182341 ], [ 0.209931330584608, 1.343140055516118, 0.055352481622291 ], [ -1.701968824248163, 0.598961631217499, 1.173807756954308 ], [ -0.207008548100531, 1.775154685723806, -0.942848627262119 ], [ -0.485345461473018, 0.861862062669422, -2.557704674808459 ], [ 0.363553303689228, -2.083126566532899, -0.439631330191738 ], [ -1.550972656484216, -1.200559551181991, 1.341752404951563 ], [ 1.403552493188197, 0.51765960444523, -1.284771847815686 ], [ -0.982721934218432, -0.17953310640533, 1.306879927479822 ], [ 0.132555239479738, -1.254263142274491, -0.392205304727844 ], [ 1.592963056332803, 1.641200909820754, -1.98140481883748 ], [ 0.895850010539266, -0.329726570909048, -0.986649548617761 ], [ 1.144745805110436, 0.379000802750963, 0.790516736187732 ], [ 1.548372998207701, 1.926829797488429, -1.490734723776487 ], [ 2.332402777037456, -0.33971946996107, -0.877358501793177 ], [ 0.345654703425731, -0.192819453626742, 0.189771761121583 ], [ -0.31506720022045, -0.352825487231709, -1.078194065168668 ], [ 0.640903362494351, -0.717010767953603, 1.645950207305604 ], [ 0.235794377445426, 0.66274077653633, 0.038685604652704 ], [ 1.443154474950839, -0.482791799894952, 0.246046434108791 ], [ 0.298146448305744, 1.161982524138706, 2.382176119737501 ], [ -0.463660026435325, -0.484943063713179, 1.240751272944647 ], [ -0.500186395907459, -0.134032140065879, 0.356430974457384 ], [ -0.641215384161077, -0.874189541279706, -1.336305871950829 ], [ 0.174615465221237, 1.28006243534077, -1.757434289051417 ], [ 0.777644591236388, -2.388344924463259, 0.085667085968328 ], [ -1.393559128597116, 0.123336296747925, 0.382205753718029 ], [ -0.213031403159768, -0.093223677775832, -0.309556183536693 ], [ -0.256307858372381, 0.444789070588755, -0.052848150154124 ], [ -1.870629866172635, -0.096670238271607, -0.725700242132825 ], [ -2.223904956262569, 0.052301049642056, -0.136255533065363 ], [ 0.416691199380688, -0.646781550208087, 0.186225971723729 ], [ -1.333593806616994, 1.444327588709744, -0.988687730551858 ], [ -0.740476514254852, -0.809234288622633, 0.834558181184306 ], [ -0.907440469113317, 0.019866485870991, 1.988280117548082 ], [ 0.984213060973414, 0.316156402598102, -1.170942701912018 ], [ 0.8370572199416, -0.01353017673132, -0.836717215830358 ], [ -1.812768834685255, -0.894453571390173, 0.300694011965778 ], [ 0.959383449503814, 0.483210528250562, 1.123309674404782 ], [ -0.479088829904037, 0.174744232503944, 1.253601867620711 ], [ 3.135694998608701, -0.597306761020466, 1.206673453515237 ], [ 0.267501765785901, 2.375465887354495, -0.875320705705305 ], [ -1.367237975261604, 1.392526494946327, -0.187528390415383 ], [ 0.747610378862397, 0.137370664879084, -1.589924854310503 ], [ -0.040013811200809, -0.732103114644801, 0.424879464067349 ], [ 1.242067208574896, 0.484570921459914, -0.080497212024492 ], [ 0.335399440390879, 0.00221794734041, 0.482195660628825 ], [ -1.555285263418188, 0.293427059940502, -0.648060491760555 ], [ -0.326949292938846, 0.527745556580485, -0.634638977323214 ], [ 0.186692246461664, -0.492628704053716, 0.207482014088318 ], [ 0.452238075862839, -2.83094894072884, 0.741357787482698 ], [ -1.637425744617198, -1.007018907914633, 1.512430886140531 ], [ -0.45831144711397, 0.388139271732782, 1.10648492783939 ], [ 0.119890596358205, -1.370230850743768, 2.062732975686081 ], [ 0.014278302970416, -0.88345512513238, 1.763500836484344 ] ]
null
[ [ -0.005501293126838992, 0.006354599176355984, -0.0019667268904685706 ], [ 0.006354599176355984, -0.00372424080638465, -0.0034591032774521427 ], [ -0.0019667268904685706, -0.0034591032774521427, -0.005829960657249864 ] ]
false
null
null
-6,836.55151
null
1.722332
3.412539
{"input": {"AVE_TEMP(K)": 1298.4, "DESIRED_TEMP(K)": 1300.0, "METHOD(1-VV,2-NH,3-LV,4-LVPR,5-NHRP)": 2, "TEMP(K)": 1580.8, "TIME(fs)": 442.0, "TIME_INTERVAL(fs)": 200.0, "TOT_TEMP(K)": 287100.0}, "property_keys": {"energy": "eTot", "forces": "Force", "stress": "Pressure Internal"}, "hash": "5035703956848864287936013061244247686098497353989614177502192599985792254418183456045010183242427091846653468670417021192150539908784262312021023349728624", "id": "MD_5035703956848864287936013"}
MD_5035703956848864287936013
2024-10-15T15:49:02
8885918381420378371349324210051317594283791819605766664671039569852080517204341346670728059897459439625734961368466590906557362649324797935947717591182175
PO_8885918381420378371349324
null
null
[ "temperature:1300", "frame:220" ]
[ "Si_4600images__1300k__MOVEMENT__220" ]
[ "DS_cgjdk1e2txjy_0" ]
2024-10-15T19:56:30
1000879849038922546
CO_1000879849038922546
PWMLFF_feature_comparison_NPJ2023
[ "Ting Han", "Jie Li", "Liping Liu", "Fengyu Li", "Lin-Wang Wang" ]
Partial dataset for "Accuracy evaluation of different machine learning force field features". The included data is limited to that hosted directly on the repository at the related GitHub link. From publication abstract: Predicting energies and forces using machine learning force field (MLFF) depends on accurate descriptions (features) of chemical environment. Despite the numerous features proposed, there is a lack of controlled comparison among them for their universality and accuracy. In this work, we compared several commonly used feature types for their ability to describe physical systems. These different feature types include cosine feature, Gaussian feature, moment tensor potential (MTP) feature, spectral neighbor analysis potential feature, simplified smooth deep potential with Chebyshev polynomials feature and Gaussian polynomials feature, and atomic cluster expansion feature. We evaluated the training root mean square error (RMSE) for the atomic group energy, total energy, and force using linear regression model regarding to the density functional theory results. We applied these MLFF models to an amorphous sulfur system and carbon systems, and the fitting results show that MTP feature can yield the smallest RMSE results compared with other feature types for either sulfur system or carbon system in the disordered atomic configurations. Moreover, as an extending test of other systems, the MTP feature combined with linear regression model can also reproduce similar quantities along the ab initio molecular dynamics trajectory as represented by Cu systems. Our results are helpful in selecting the proper features for the MLFF development.
[ "C", "H", "Mg", "Ni", "O", "Si" ]
6
17,255
17,255
918,240
0
17,255
0
17,255
0
17,255
-94,982.575812
28,080,747,868.058937
0
2024-10-15T15:57:14
[ [ 1, 1, 1 ] ]
[ 3 ]
2024
[ 0.13830806760759715, 0.027225997560550618, 0.15290120230005227, 0.35931782540512286, 0.001633559853633037, 0.3206133472730441 ]
CC-BY-4.0
{'source-publication': 'https://www.doi.org/10.1088/1367-2630/acf2bb', 'source-data': 'https://github.com/LonxunQuantum/PWMLFF_library/tree/main', 'other': None}
null
3416353886768184069498309577448540463118046042128164727481437935635525348649148828592205659488310261220439788024414920747258168148334049671414505074802036
DS_cgjdk1e2txjy_0
PWMLFF_feature_comparison_NPJ2023__Han-Li-Liu-Li-Wang__DS_cgjdk1e2txjy_0
Si64
Si
A
[ 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14 ]
[ "Si" ]
[ 1 ]
1
64
[ [ 10.93699157, 0, 0 ], [ 0, 10.93699157, 0 ], [ 0, 0, 10.93699157 ] ]
[ [ 0.133659492709312, 0.333699063421913, 0.166904458740297 ], [ 0.140343814414818, 0.325897635015379, 0.664822669994524 ], [ 0.124672368615279, 0.838833844076848, 0.16090749472083 ], [ 0.12452759818559, 0.84374765390782, 0.666279078176417 ], [ 0.630572111850757, 0.34707704508984, 0.177605498029697 ], [ 0.641528979195743, 0.344136547466613, 0.666152059189708 ], [ 0.626179953527669, 0.831714445689223, 0.179501940822517 ], [ 0.620880808679171, 0.841017562669714, 0.656603661652256 ], [ 0.996921856903071, 0.980794798235802, 0.281004686275478 ], [ 0.012319266454481, 0.989914783598442, 0.79079839090803 ], [ 0.001537826871251, 0.483431393945421, 0.281832853540691 ], [ 0.006698300595661, 0.461400988221882, 0.786020575228893 ], [ 0.488389524054596, 0.964509521188365, 0.290783809178341 ], [ 0.508921047006987, 0.980261346396052, 0.793472816390159 ], [ 0.517579310685336, 0.483045417075769, 0.289619311927398 ], [ 0.498099848006434, 0.477185463028505, 0.795484647569534 ], [ 0.110394455210129, 0.096138797004315, 0.421658081632827 ], [ 0.115127665833309, 0.11568834901143, 0.924254948650761 ], [ 0.106375522067483, 0.605920900771947, 0.429088837847594 ], [ 0.101602795548477, 0.603774689337895, 0.915630022408415 ], [ 0.612364461589215, 0.103098507589768, 0.425988221241418 ], [ 0.620437609790843, 0.11420427355867, 0.935015340826064 ], [ 0.609193920406577, 0.606002239978213, 0.429357453363879 ], [ 0.604198649346146, 0.588817773189107, 0.919348317261769 ], [ 0.990474708868329, 0.229873759080903, 0.038847410715441 ], [ 0.996759351154036, 0.237283829635855, 0.538411304164261 ], [ 0.985176829151845, 0.716172927993627, 0.060143299531883 ], [ 0.997543412909186, 0.727236352686244, 0.558893049282417 ], [ 0.495309430108812, 0.231678576759047, 0.037555061867814 ], [ 0.49128843609106, 0.236554494918547, 0.557647424802306 ], [ 0.507193263151586, 0.735468409818349, 0.050182511312023 ], [ 0.49382939888261, 0.729714322252553, 0.545310659772558 ], [ 0.393461619785524, 0.356450128501121, 0.406391635919022 ], [ 0.369916378567061, 0.367897822695648, 0.911020282181108 ], [ 0.37398738835706, 0.851713276806445, 0.411410315384987 ], [ 0.385746184379994, 0.872612128557679, 0.93690229100599 ], [ 0.881418339769923, 0.352150970721571, 0.405652029641695 ], [ 0.878802368247116, 0.352272720201817, 0.909249160863457 ], [ 0.868625939401847, 0.857190046406736, 0.414001420503002 ], [ 0.871003247480404, 0.856958267572238, 0.922929242736108 ], [ 0.233922854488003, 0.976868125778677, 0.039208966318384 ], [ 0.250587560115647, 0.977265972345051, 0.541138351863875 ], [ 0.235272905383018, 0.476932027407524, 0.050843781419413 ], [ 0.246541573566686, 0.461782281279677, 0.536092321707922 ], [ 0.750000094178576, 0.977334631082206, 0.062167491489205 ], [ 0.750011724414116, 0.959901026192849, 0.54872822571554 ], [ 0.735627917157344, 0.472587429752199, 0.019099082901229 ], [ 0.739015378179135, 0.473955864557087, 0.535548225304252 ], [ 0.36272632010947, 0.097553479833889, 0.15875555107328 ], [ 0.353797344841825, 0.09129211912698, 0.667517011590569 ], [ 0.381420915961224, 0.604950263005648, 0.157245048440828 ], [ 0.366256388216173, 0.599917201086872, 0.655218498217501 ], [ 0.860069461288976, 0.114651251129744, 0.168493767839671 ], [ 0.872325741145483, 0.090661380865317, 0.654116558651614 ], [ 0.863382784661545, 0.597216166571463, 0.158353623360141 ], [ 0.861890565542507, 0.586325217559573, 0.663303444523347 ], [ 0.251767390524444, 0.216764603830628, 0.298757201123295 ], [ 0.25275316017032, 0.220662857668694, 0.80105283895319 ], [ 0.250874705762657, 0.719781994728549, 0.294117442953256 ], [ 0.257825798611825, 0.727366334633808, 0.801745299028011 ], [ 0.747082605831468, 0.213868780035293, 0.315392687293508 ], [ 0.763409575826529, 0.211863220255513, 0.798879205272641 ], [ 0.745022862216265, 0.706223236010828, 0.305410215565697 ], [ 0.732834043216269, 0.721199074719376, 0.800754378032043 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9170131773059272073363899987342854842088469043388123721940023766297407452028761552239224709031497393267996971875130058323806627542183224417125636101784641
1
PWmat
DFT-PBE
null
[ [ 1.026891248371209, -0.994669810545168, -0.547979970965617 ], [ 0.963937855853935, -1.63643753407294, -0.027968741746745 ], [ 0.197524552066803, -0.513853170149496, -1.047598017830373 ], [ -1.576740354788814, -1.3336204035139, -1.546931589408381 ], [ -0.387081250813537, 0.538528655784428, 1.104022955448732 ], [ 1.064179150716263, 0.177782598705867, -1.650953604542541 ], [ -1.057536187229787, -1.848733529962604, -0.941591697466419 ], [ -0.333705802704672, -0.591710409005496, -2.598900808233519 ], [ 0.231045117019479, 0.518768988060677, 0.054595396193305 ], [ 1.269726122295207, 1.491826890932299, 0.545358413238061 ], [ -0.112199715610768, 0.863011562289198, 0.165350237632408 ], [ 0.032738004843256, -0.707175057509731, 1.153675991298997 ], [ -1.563073057501513, -1.739528106251955, 1.165539663245421 ], [ 0.488483492284196, -0.340039050299001, 0.350826706179507 ], [ 1.351693717391535, -0.26940036601103, 0.807733464926731 ], [ 0.334909747915889, 0.651976518234961, 3.258544255986498 ], [ -0.946305876562, -0.412732782908291, 0.219055904570109 ], [ -0.756776158820118, 1.047262397164296, 0.47355993864718 ], [ -1.562298400729662, 0.88182635972119, 0.956674603901706 ], [ -1.433927925729482, 0.153405634226932, -0.463222332607021 ], [ 0.714420580778306, 1.51503720330722, -0.98250667854951 ], [ -1.585639950889911, 2.038068847123599, 1.569967773544783 ], [ -0.981047964411281, 0.68886887881421, 0.17470923724248 ], [ -0.522652751961356, -2.8851579176633, -0.458226024503373 ], [ 0.429412562709934, -0.685434055342757, -1.439925410946048 ], [ 0.341726403378998, 1.483249767079185, -0.253632422863766 ], [ -0.850612315003834, -2.009537533110394, 2.673865342734094 ], [ 2.149455269652069, 0.196425886111682, 1.111850771495181 ], [ 1.456862991444889, -1.399732528524591, -1.639123006339303 ], [ -0.033065498572131, 1.023483053146322, 0.602922867494857 ], [ 1.140207530248593, 1.007292291493512, 1.376071337755112 ], [ 1.605079276600635, 0.00539164337636, 0.630028819697184 ], [ 1.464889502186127, 0.438776519012351, -0.560476199686568 ], [ 0.620363876287563, 1.173074808357687, -1.189424034777037 ], [ 1.046492898578244, 0.575983955425734, -1.247124793723054 ], [ 0.312726529928977, 1.186739301207862, 1.657258856447367 ], [ 0.844902985786641, -1.080777383105024, -0.497719294192121 ], [ 0.4517968237141, 0.021982127674815, -0.093531958095911 ], [ -1.102996721714224, 1.320502753479354, 0.358904272933365 ], [ -0.211193868503569, 0.011172129653125, 0.141595935086163 ], [ -0.024141732303567, -0.235633870236991, -0.123181590675567 ], [ 1.795109748315442, 1.636367030703858, 1.30636697422136 ], [ -0.73683410922423, -0.620444514242934, 1.349493008721258 ], [ -0.123413304121684, -0.829221495498138, 0.628452546575175 ], [ 1.267922514252656, 0.670231747033712, 1.267714227958862 ], [ 1.07327522843284, -1.383446903593079, 1.328698986060399 ], [ -1.428413115444533, 1.009085757682388, -2.231804623630941 ], [ -0.906874096011339, 0.364393807840639, 0.750274241329442 ], [ -0.718818983696036, 0.096955730582427, -0.471196764668316 ], [ -2.787840387920201, -1.255552718692829, -1.445216021526925 ], [ 0.828619198156242, 0.748463281007056, -1.128273155243542 ], [ -0.086039282355078, 0.463355568281914, -1.436358031576149 ], [ -1.323898956682085, 0.623098642379244, -0.466482949609968 ], [ -0.937131733957294, -0.928594365324971, -1.149670957933639 ], [ 1.64314914552376, 1.866680691204152, -1.179617836656219 ], [ -0.75411583387494, -0.986223912042498, -1.263345431767729 ], [ -0.443017448744284, -0.039530962182239, -0.453545780690822 ], [ -0.421843184659448, 0.0578868802718, -0.561564770679614 ], [ 0.364011750524388, 0.265892622107837, -0.19215279900676 ], [ 0.464087780358346, -0.043746425279674, -0.169896578012221 ], [ -0.142497527160203, -1.25025583356476, 1.195216673825293 ], [ 0.773175625911821, -0.195490049550009, 0.504623302685162 ], [ -0.879006565300525, -0.981540055576094, 0.209534644156362 ], [ -1.019243459669956, 0.385367979665689, 0.366941329361713 ] ]
null
[ [ -0.0029900033376019756, 0.007881771530192903, -0.0005580085391599743 ], [ 0.007881771530192903, -0.004086874964873328, 0.003957913760360525 ], [ -0.0005580085391599743, 0.003957913760360525, -0.003852783176746463 ] ]
false
null
null
-6,844.307671
null
1.687567
3.451281
{"input": {"AVE_TEMP(K)": 891.97, "DESIRED_TEMP(K)": 900.0, "METHOD(1-VV,2-NH,3-LV,4-LVPR,5-NHRP)": 2, "TEMP(K)": 773.58, "TIME(fs)": 570.0, "TIME_INTERVAL(fs)": 200.0, "TOT_TEMP(K)": 255770.0}, "property_keys": {"energy": "eTot", "forces": "Force", "stress": "Pressure Internal"}, "hash": "3747320956759582302895978332621059338617649216125125190232400667887636391953587452857733877438810471052006358688778813677354983957252752988731069478112520", "id": "MD_3747320956759582302895978"}
MD_3747320956759582302895978
2024-10-15T15:49:04
892811135790730330207578067037969698425286404499303413840173169639132813815436027419452420796369332109776779683592026846526674820735119769938137124305465
PO_8928111357907303302075780
null
null
[ "temperature:900", "frame:284" ]
[ "Si_4600images__900k__MOVEMENT__284" ]
[ "DS_cgjdk1e2txjy_0" ]
2024-10-15T19:56:30
1000910203604432536
CO_1000910203604432536
PWMLFF_feature_comparison_NPJ2023
[ "Ting Han", "Jie Li", "Liping Liu", "Fengyu Li", "Lin-Wang Wang" ]
Partial dataset for "Accuracy evaluation of different machine learning force field features". The included data is limited to that hosted directly on the repository at the related GitHub link. From publication abstract: Predicting energies and forces using machine learning force field (MLFF) depends on accurate descriptions (features) of chemical environment. Despite the numerous features proposed, there is a lack of controlled comparison among them for their universality and accuracy. In this work, we compared several commonly used feature types for their ability to describe physical systems. These different feature types include cosine feature, Gaussian feature, moment tensor potential (MTP) feature, spectral neighbor analysis potential feature, simplified smooth deep potential with Chebyshev polynomials feature and Gaussian polynomials feature, and atomic cluster expansion feature. We evaluated the training root mean square error (RMSE) for the atomic group energy, total energy, and force using linear regression model regarding to the density functional theory results. We applied these MLFF models to an amorphous sulfur system and carbon systems, and the fitting results show that MTP feature can yield the smallest RMSE results compared with other feature types for either sulfur system or carbon system in the disordered atomic configurations. Moreover, as an extending test of other systems, the MTP feature combined with linear regression model can also reproduce similar quantities along the ab initio molecular dynamics trajectory as represented by Cu systems. Our results are helpful in selecting the proper features for the MLFF development.
[ "C", "H", "Mg", "Ni", "O", "Si" ]
6
17,255
17,255
918,240
0
17,255
0
17,255
0
17,255
-94,982.575812
28,080,747,868.058937
0
2024-10-15T15:57:14
[ [ 1, 1, 1 ] ]
[ 3 ]
2024
[ 0.13830806760759715, 0.027225997560550618, 0.15290120230005227, 0.35931782540512286, 0.001633559853633037, 0.3206133472730441 ]
CC-BY-4.0
{'source-publication': 'https://www.doi.org/10.1088/1367-2630/acf2bb', 'source-data': 'https://github.com/LonxunQuantum/PWMLFF_library/tree/main', 'other': None}
null
3416353886768184069498309577448540463118046042128164727481437935635525348649148828592205659488310261220439788024414920747258168148334049671414505074802036
DS_cgjdk1e2txjy_0
PWMLFF_feature_comparison_NPJ2023__Han-Li-Liu-Li-Wang__DS_cgjdk1e2txjy_0
CH4
CH4
A4B
[ 6, 1, 1, 1, 1 ]
[ "C", "H" ]
[ 0.2, 0.8 ]
2
5
[ [ 10, 0, 0 ], [ 0, 10, 0 ], [ 0, 0, 10 ] ]
[ [ 0.885609702521312, 0.358860815514129, 0.845399661613143 ], [ 0.823432623187257, 0.394676239891496, 0.772665713489322 ], [ 0.962491262850588, 0.290449585719907, 0.817601059513965 ], [ 0.920214251830111, 0.410287410895021, 0.942980653465084 ], [ 0.829211841076125, 0.280327956867802, 0.88666624976141 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
523387817134680034726469613763450271223273479849836623762415379378628637949537225664887044599977634111088355301535154303780615582653470647402895321019135
1
PWmat
DFT-PBE
null
[ [ -1.939301285830107, 1.050211800888608, -4.000223356465163 ], [ 0.97851960835943, -1.859530640738854, 1.919412194514673 ], [ -1.366576620434975, -0.202444664271933, 1.168986670917208 ], [ 0.627490564366221, -0.172219725329936, 1.972678261050087 ], [ 1.702376578982812, 1.187711203069454, -1.055434111033888 ] ]
null
[ [ 0.002114611730520474, -0.0002680599028855817, -0.0010498976746062198 ], [ -0.0002680599028855817, 0.0012625757121425523, -0.0016502253690534902 ], [ -0.0010498976746062198, -0.0016502253690534902, -0.00004535366811602077 ] ]
false
null
null
-218.679246
null
2.72589
4.56789
{"input": {"AVE_TEMP(K)": 992.23, "DESIRED_TEMP(K)": 1000.0, "METHOD(1-VV,2-NH,3-LV,4-LVPR,5-NHRP)": 2, "TEMP(K)": 771.29, "TIME(fs)": 639.0, "TIME_INTERVAL(fs)": 100.0, "TOT_TEMP(K)": 638230.0}, "property_keys": {"energy": "eTot", "forces": "Force", "stress": "Pressure Internal"}, "hash": "4082455644921501412015841953360554545964419700399407436478378834425388497955699697938977331183118214717843670180569654210678623538260851758115510806829384", "id": "MD_4082455644921501412015841"}
MD_4082455644921501412015841
2024-10-15T15:45:17
721682911933394605100263193185672640266430547622663417472062349672333573242079365451269796980332486717104217386120740212560506063271903474676429594975982
PO_7216829119333946051002631
null
null
[ "frame:638" ]
[ "CH4__CH4__2-1000__MOVEMENT__638" ]
[ "DS_cgjdk1e2txjy_0" ]
2024-10-15T19:54:03
1001125620532144375
CO_1001125620532144375
PWMLFF_feature_comparison_NPJ2023
[ "Ting Han", "Jie Li", "Liping Liu", "Fengyu Li", "Lin-Wang Wang" ]
Partial dataset for "Accuracy evaluation of different machine learning force field features". The included data is limited to that hosted directly on the repository at the related GitHub link. From publication abstract: Predicting energies and forces using machine learning force field (MLFF) depends on accurate descriptions (features) of chemical environment. Despite the numerous features proposed, there is a lack of controlled comparison among them for their universality and accuracy. In this work, we compared several commonly used feature types for their ability to describe physical systems. These different feature types include cosine feature, Gaussian feature, moment tensor potential (MTP) feature, spectral neighbor analysis potential feature, simplified smooth deep potential with Chebyshev polynomials feature and Gaussian polynomials feature, and atomic cluster expansion feature. We evaluated the training root mean square error (RMSE) for the atomic group energy, total energy, and force using linear regression model regarding to the density functional theory results. We applied these MLFF models to an amorphous sulfur system and carbon systems, and the fitting results show that MTP feature can yield the smallest RMSE results compared with other feature types for either sulfur system or carbon system in the disordered atomic configurations. Moreover, as an extending test of other systems, the MTP feature combined with linear regression model can also reproduce similar quantities along the ab initio molecular dynamics trajectory as represented by Cu systems. Our results are helpful in selecting the proper features for the MLFF development.
[ "C", "H", "Mg", "Ni", "O", "Si" ]
6
17,255
17,255
918,240
0
17,255
0
17,255
0
17,255
-94,982.575812
28,080,747,868.058937
0
2024-10-15T15:57:14
[ [ 1, 1, 1 ] ]
[ 3 ]
2024
[ 0.13830806760759715, 0.027225997560550618, 0.15290120230005227, 0.35931782540512286, 0.001633559853633037, 0.3206133472730441 ]
CC-BY-4.0
{'source-publication': 'https://www.doi.org/10.1088/1367-2630/acf2bb', 'source-data': 'https://github.com/LonxunQuantum/PWMLFF_library/tree/main', 'other': None}
null
3416353886768184069498309577448540463118046042128164727481437935635525348649148828592205659488310261220439788024414920747258168148334049671414505074802036
DS_cgjdk1e2txjy_0
PWMLFF_feature_comparison_NPJ2023__Han-Li-Liu-Li-Wang__DS_cgjdk1e2txjy_0
Ni108
Ni
A
[ 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28 ]
[ "Ni" ]
[ 1 ]
1
108
[ [ 10.55556, 0, 0 ], [ 0, 10.55556, 0 ], [ 0, 0, 10.55556 ] ]
[ [ 0.991468307310644, 0.962264618998077, 0.073469286995177 ], [ 0.00409104003928, 0.963106845272898, 0.407247546884535 ], [ 0.999459627187478, 0.961376851685839, 0.727312088545534 ], [ 0.007292979364831, 0.307907623768821, 0.059332391368059 ], [ 0.021438939891824, 0.301748192403273, 0.415469128925166 ], [ 0.005937979377681, 0.30040694719429, 0.726932980059656 ], [ 0.98158360449936, 0.618265573148634, 0.05966668825935 ], [ 0.015393096929295, 0.622023785933887, 0.403521542757105 ], [ 0.991955351438049, 0.657461180861155, 0.718454404578382 ], [ 0.329353338110186, 0.964377950116733, 0.037351693709947 ], [ 0.327614332323852, 0.967504982467298, 0.393166576857966 ], [ 0.321927012456398, 0.946671711722875, 0.752116614688308 ], [ 0.32796855284026, 0.287913000240949, 0.056982279405665 ], [ 0.342108286949192, 0.275229561875713, 0.39993055068043 ], [ 0.333968138488224, 0.278267763290592, 0.710799736134846 ], [ 0.341952509764991, 0.624200557158095, 0.059587306078783 ], [ 0.333735458742033, 0.633213498152889, 0.365856278127279 ], [ 0.345463655025635, 0.618309229416517, 0.71615669462224 ], [ 0.654225670881318, 0.959056286345907, 0.072468901226338 ], [ 0.659811004400102, 0.949105564085551, 0.381795147329942 ], [ 0.662730785360024, 0.955335187062154, 0.722974992511482 ], [ 0.649352505292352, 0.279335151686544, 0.077315778238969 ], [ 0.683415901954316, 0.287151386793395, 0.416179459909435 ], [ 0.675084709228, 0.274163415172041, 0.751088885001147 ], [ 0.671235241234625, 0.606535135278331, 0.079198697543779 ], [ 0.655406414645463, 0.643248762469933, 0.364190768993664 ], [ 0.671098042295636, 0.649509188527751, 0.725146703737192 ], [ 0.00363292110785, 0.118948185001319, 0.242176649423016 ], [ 0.989586739457085, 0.125349223156003, 0.558538168598523 ], [ 0.992078071979389, 0.128902786630679, 0.895500931738326 ], [ 0.000352177998679, 0.442271926171488, 0.24277416281146 ], [ 0.995375321133876, 0.477361008286894, 0.560772823690658 ], [ 0.974963937307862, 0.455240256768274, 0.872401117351221 ], [ 0.99371780419817, 0.79462927254581, 0.229230694921263 ], [ 0.017487558231671, 0.79801492693769, 0.562310148303815 ], [ 0.975468200355741, 0.791883457574837, 0.896660827005387 ], [ 0.320738017522971, 0.114709296404857, 0.221203963064472 ], [ 0.335899943165647, 0.127344014543703, 0.544732204533632 ], [ 0.33451191409513, 0.137793295107863, 0.870315450848945 ], [ 0.322069430412954, 0.438436815459671, 0.231883382187205 ], [ 0.339701691258778, 0.467921925308462, 0.53380234608508 ], [ 0.340556369514827, 0.459572413188985, 0.850729374158399 ], [ 0.319652826628678, 0.802185252605259, 0.208906547370838 ], [ 0.339576467888736, 0.774610970382876, 0.566361992531476 ], [ 0.331863940875258, 0.774756112918492, 0.876983015734342 ], [ 0.651299646622017, 0.109651525020837, 0.238136585250524 ], [ 0.655454363930878, 0.128227262200571, 0.551260636878979 ], [ 0.651527610939904, 0.117761019380035, 0.895876852498489 ], [ 0.674803831960373, 0.442679801452075, 0.219854909444841 ], [ 0.667215702023181, 0.483576963142175, 0.551160737940039 ], [ 0.66670259480321, 0.445632146875404, 0.904541306795108 ], [ 0.648283993884803, 0.784370891308548, 0.221452592481556 ], [ 0.668345693440393, 0.79949734623399, 0.527797142101375 ], [ 0.658087893663465, 0.784958965105845, 0.928134994954193 ], [ 0.158745558621991, 0.959762987289638, 0.231097338146519 ], [ 0.182493597201246, 0.957331602417776, 0.558573266840345 ], [ 0.156715061243571, 0.969770956778556, 0.89101390693948 ], [ 0.165046729169938, 0.283369992710099, 0.220382738457409 ], [ 0.172030947427325, 0.276832961996378, 0.563826631416471 ], [ 0.164521326823524, 0.330220749494589, 0.892860116013225 ], [ 0.175235165949283, 0.616274508713151, 0.237012935764208 ], [ 0.165152117049593, 0.631459881099977, 0.569343469056933 ], [ 0.158005308479676, 0.59379141375259, 0.898890511516739 ], [ 0.480842739973069, 0.958054754609257, 0.218299138037253 ], [ 0.495289764392494, 0.948354115565881, 0.557230371544775 ], [ 0.48882126072109, 0.966209538825313, 0.886343447493385 ], [ 0.505550122033518, 0.269547826349722, 0.239524540464756 ], [ 0.502631761786221, 0.31534319256198, 0.566612770547678 ], [ 0.502324878024341, 0.289646957997058, 0.888451290882636 ], [ 0.487472283394074, 0.610508946095462, 0.225706704778565 ], [ 0.518184830004689, 0.651927143375222, 0.549010381945322 ], [ 0.52397465724538, 0.607016640457728, 0.91456938856915 ], [ 0.832688779056892, 0.967199327446149, 0.240660981544691 ], [ 0.822276235146728, 0.951153076087291, 0.541351541771427 ], [ 0.826712652277822, 0.953697945758504, 0.885828988618884 ], [ 0.824562598194003, 0.29763408720069, 0.247128626878049 ], [ 0.825402177172962, 0.298736406805932, 0.583059346337826 ], [ 0.8408805890769, 0.279023672563945, 0.897703252074204 ], [ 0.830188663960495, 0.597301850187051, 0.242916849139441 ], [ 0.829945799536572, 0.632990260758381, 0.546089705694107 ], [ 0.809462021423664, 0.622353354350129, 0.903253845531761 ], [ 0.157008491983998, 0.149984223967766, 0.035460440591174 ], [ 0.163324829068345, 0.122269410759731, 0.401603783325409 ], [ 0.180145019165007, 0.130803485140677, 0.706703387988421 ], [ 0.171618655227405, 0.458703427151095, 0.056732711185645 ], [ 0.161764385964006, 0.453999120756779, 0.382328608707136 ], [ 0.178939709946631, 0.468717618874747, 0.705852877578412 ], [ 0.177493153274734, 0.767647893491137, 0.043677882142054 ], [ 0.177205707886304, 0.799519896686381, 0.395547031649365 ], [ 0.162360016358353, 0.812248673446495, 0.744293420283547 ], [ 0.477094751319617, 0.114067250737814, 0.06518759625598 ], [ 0.510440264776502, 0.11057946030397, 0.390150735657794 ], [ 0.502962536351626, 0.109707367490352, 0.710080455181974 ], [ 0.478263379361615, 0.439488018964206, 0.062842177365529 ], [ 0.507989532266395, 0.458708743806929, 0.381233033980458 ], [ 0.519061328333249, 0.471906383559276, 0.703792265470192 ], [ 0.497849752572933, 0.794820002729608, 0.071717849900095 ], [ 0.486201059189259, 0.793455967560471, 0.356691764293014 ], [ 0.495089037506363, 0.794796738508287, 0.743620441648509 ], [ 0.849052067933458, 0.144093668710011, 0.079241200397574 ], [ 0.847306055527136, 0.134391216759924, 0.402129511270379 ], [ 0.832984030494644, 0.134981435109852, 0.740439790529195 ], [ 0.827161775433378, 0.44291593696392, 0.070443140652016 ], [ 0.846704951492483, 0.46688900563361, 0.397692158413869 ], [ 0.830900105941452, 0.494927168012059, 0.719311495466406 ], [ 0.825475309502104, 0.801048451376717, 0.095341799677451 ], [ 0.837669234437042, 0.79186655798833, 0.384655419337766 ], [ 0.832448628976274, 0.796814752219313, 0.708605637322471 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
11325118665734344749871564494490619084473945795056926005010728015552288546729094283358382807718547484463854640924312064651995645064452109134822789787576356
1
PWmat
DFT-PBE
null
[ [ -0.455116405844739, 0.108593874193794, 1.121311531811747 ], [ 0.044778412218185, 0.948929629406721, 0.781015907303985 ], [ 0.558872912006922, -0.529911717128597, 0.421738255521788 ], [ 0.931692639750996, 0.426618425607517, -0.022825953718878 ], [ 2.379427442036694, 1.258077170548987, 0.778034414642236 ], [ 0.139721051083723, 0.572998068002703, 0.77634502392095 ], [ -0.675273848099422, 0.061419693565998, -0.349722643755343 ], [ 0.673790312211674, -1.364595589887934, 1.293090100663697 ], [ -0.770796976616248, 2.340527406791399, -1.188094852786319 ], [ 1.586153514335425, 0.899453352609243, -0.562175201259818 ], [ -0.702512668830666, 1.11967514641231, 0.546022377828142 ], [ -1.118098684183586, -1.500697912291663, 2.643184324293977 ], [ -0.062301494015287, 0.23677756955743, 0.371803710124838 ], [ 0.378477435190835, -1.452194142467782, 1.277914833516283 ], [ -1.036847621174743, -2.128255089247361, -0.100631116372048 ], [ 0.538911491100357, 0.911580696218001, 0.496688631098748 ], [ -0.0878712964887, 0.496014447662496, -2.787070494832485 ], [ -0.047847918695348, -0.809720843757267, 0.190832114099714 ], [ -0.916468197642449, -0.63228789481908, 0.739459413500067 ], [ 0.002381234618838, -0.408358712019044, 0.098542403599752 ], [ -0.410234838895113, 0.308941844531683, 0.133583144708005 ], [ -0.955922868132736, 0.554223911373851, 1.46299463912636 ], [ 1.418424200730855, -1.316156171259691, 1.375954584612637 ], [ 1.23350154177276, -1.916844897484977, 1.932133702913163 ], [ 0.468030783505854, -0.779762267627435, 0.228450716569716 ], [ -0.634054008119604, 2.330118939908119, -2.359417809412762 ], [ 0.82647924957899, 0.318207832532447, -0.032783707201602 ], [ -0.103506545712697, -1.352184650422318, 0.698940731361731 ], [ -0.885053084761719, -0.099412027795522, -1.701043349370428 ], [ -0.861803595227262, 0.440579186308448, 0.385003218049808 ], [ -0.138436653790158, -0.997474751542988, 1.667207165095287 ], [ -0.649738191076792, 1.233240166653105, -1.300681463273058 ], [ -0.859869675409988, -1.331497367405824, -1.515498677225842 ], [ -1.562247216279288, 0.717250032560427, -0.300500063916436 ], [ 0.985116606482467, -0.717986611900109, 0.911983600282784 ], [ -0.922289133943738, 0.081193631474408, -0.76813963331717 ], [ 0.243036140402408, -0.873566518987827, -0.207953845741242 ], [ -1.254857387799783, 1.274494753553869, -1.608952867746581 ], [ 0.408461537034677, 0.446957927228736, -1.718740033564984 ], [ -1.302538241459313, -0.46225708931004, 0.155983715520436 ], [ 0.28732449714943, -0.140130229118697, -0.703076868921233 ], [ -1.077832384408409, 0.671626147670439, -2.604261207080476 ], [ 0.222742462730017, 0.391709286362942, -0.418406401895971 ], [ 0.494900163233741, -1.716901638085007, 0.652263703645082 ], [ -0.041078044960138, 0.662386919183352, -2.400534724007117 ], [ -2.204397872105842, -1.097606794587125, 1.272088479524389 ], [ -1.204336804829191, 1.010743773620183, -1.323297687729779 ], [ -0.868142020865501, 0.363918874941043, -0.963604222792581 ], [ 2.276736794489416, -0.388021301960139, -1.876197413615239 ], [ -0.721616544445492, 0.804853702148327, 0.567040734651457 ], [ -0.443070299116938, 0.303888037153238, 0.353384944481171 ], [ -1.575972697679144, -1.486966317218757, 0.818832471779016 ], [ 0.26040295078014, 0.583942462668246, -2.042762865498956 ], [ -0.718697798452153, -0.863701631529313, 1.577972817222702 ], [ -0.17797002173264, 0.187979323602831, 0.840699346633649 ], [ 0.619373957765396, 0.124974057177594, -0.878573746398931 ], [ 0.543563648003094, -0.095373347917864, -1.134458998892623 ], [ 0.073460210715728, 0.202849475333019, -0.856553965054216 ], [ 0.151891389961856, -2.503817410080533, 0.938074146603179 ], [ -0.17200789576874, 1.926699903648669, 1.6510078993318 ], [ 1.8315263322388, -0.798219134779782, 2.274852880819959 ], [ -0.878724073074849, -0.396466332752721, 1.007730223391037 ], [ 0.008541070915485, -1.781094218552415, 1.510530332121724 ], [ -0.294195453237379, -0.436314310951535, -0.334009066102974 ], [ 0.198268874592447, 0.359021092083858, 0.241010933812329 ], [ -1.20900298272722, 0.806069925250906, -0.912684549992482 ], [ 1.161483340981868, -1.450037567357565, 0.213743439362935 ], [ -0.725408083238295, 1.970719806360346, 1.05500154132973 ], [ 0.72794619544153, 0.003356729167462, 0.022428408723614 ], [ -0.754855124162669, 0.093064243662515, 1.772521518803583 ], [ 1.20760291882972, 1.347470077660229, 0.133949128909561 ], [ 1.588521526185648, -0.837138825455448, 1.336531076689603 ], [ -0.024814742149238, -0.229561829883754, 0.277660943474593 ], [ -0.805134434928168, -1.242809827589264, -1.200306103200161 ], [ 0.41028952159735, -0.450541700711809, -1.077419206558724 ], [ -1.392872489559862, 1.405962650596818, 0.49752239206763 ], [ -0.734983038027298, -0.41164906388243, 0.601189688151298 ], [ 1.204878178063766, -1.434884026722892, -0.786859387124345 ], [ -1.145114661890375, -2.557145710781674, 1.699899786686262 ], [ -0.196118478338499, -1.094919492637011, 0.167438681883593 ], [ -1.114330687575126, -0.45585438036865, -0.023733011893277 ], [ -0.661517933435868, 1.774305148284264, -1.062102400731783 ], [ -0.095661395463516, -0.293548313554184, 0.632156277652787 ], [ 1.859152305234424, 1.724887292817754, -2.107443000895431 ], [ 0.060606189084625, -0.469857256596625, -1.938437874536314 ], [ -1.723912218221519, -0.246533626862991, -1.883552685217547 ], [ 1.179590498845665, 1.093090999325276, -0.284737677727854 ], [ 1.81824168067479, -1.219001178391849, -0.199301498299023 ], [ 0.547696770764219, 0.69590945504056, 0.28650853131012 ], [ 0.757466741931577, 2.524297694064562, 1.028036159641978 ], [ -1.556851235170137, -1.553506716714421, 0.968715930407947 ], [ 1.905279146760285, -0.554433266906343, -1.184607366279013 ], [ 0.711996421688969, -1.219141474616623, -0.702033459737872 ], [ -1.324438904748536, -0.510819403783335, -0.166208390711554 ], [ 0.142665386158146, 0.510988817037494, -0.559057048089657 ], [ 0.384636874253216, -0.263618749464638, -2.072575356453792 ], [ 1.340021075152583, 0.647146636814368, 1.401379649939782 ], [ 0.534066255741703, -0.32337727358849, -2.672253653339139 ], [ -1.232664311033602, 0.518910135682783, 1.214991975472859 ], [ 1.319234450404319, 0.97650386213536, 0.323400288013783 ], [ 1.391492892807378, 0.271915198067779, 0.369718147734091 ], [ -0.24081453939128, 2.112033834023463, 1.500230920949008 ], [ -0.879004694685342, 0.042942324283083, 1.08382887133954 ], [ 1.222522173849813, 1.72273392910823, -1.458453866157626 ], [ 0.830693195590838, 1.66146501502537, 0.046757557133433 ], [ -0.016493168640205, 0.992431757229651, 1.939720574092342 ], [ -0.175444081345527, 0.451620763078109, 0.289249146461889 ], [ 0.710953828887234, -0.841036504282256, -0.712125735169356 ] ]
null
[ [ 0.03511208532782449, -0.0015233819653688637, -0.001388441665915102 ], [ -0.0015233819653688637, 0.033789759287955176, -0.009742041326907919 ], [ -0.001388441665915102, -0.009742041326907919, 0.03383702727547454 ] ]
false
null
null
-451,666.5874
null
1.73463
3.376141
{"input": {"AVE_TEMP(K)": 1111.7, "DESIRED_TEMP(K)": 1100.0, "METHOD(1-VV,2-NH,3-LV,4-LVPR,5-NHRP)": 2, "TEMP(K)": 1115.4, "TIME(fs)": 850.0, "TIME_INTERVAL(fs)": 200.0, "TOT_TEMP(K)": 468540.0}, "property_keys": {"energy": "eTot", "forces": "Force", "stress": "Pressure Internal"}, "hash": "1820078414368772547204569130263405965569780017327247008045911105981301723260708909037129326273662277762147072134920734075787546902720919071327905082003165", "id": "MD_1820078414368772547204569"}
MD_1820078414368772547204569
2024-10-15T15:49:00
7770099461022562859396334793086413883477723207859570635429528610431189220524057184185364616076019223077438605485218087743415008124385073333805381642083062
PO_7770099461022562859396334
null
null
[ "temperature:1100", "frame:955" ]
[ "Ni__1100k__MOVEMENT__955" ]
[ "DS_cgjdk1e2txjy_0" ]
2024-10-15T19:55:37
1001385718573989161
CO_1001385718573989161
PWMLFF_feature_comparison_NPJ2023
[ "Ting Han", "Jie Li", "Liping Liu", "Fengyu Li", "Lin-Wang Wang" ]
Partial dataset for "Accuracy evaluation of different machine learning force field features". The included data is limited to that hosted directly on the repository at the related GitHub link. From publication abstract: Predicting energies and forces using machine learning force field (MLFF) depends on accurate descriptions (features) of chemical environment. Despite the numerous features proposed, there is a lack of controlled comparison among them for their universality and accuracy. In this work, we compared several commonly used feature types for their ability to describe physical systems. These different feature types include cosine feature, Gaussian feature, moment tensor potential (MTP) feature, spectral neighbor analysis potential feature, simplified smooth deep potential with Chebyshev polynomials feature and Gaussian polynomials feature, and atomic cluster expansion feature. We evaluated the training root mean square error (RMSE) for the atomic group energy, total energy, and force using linear regression model regarding to the density functional theory results. We applied these MLFF models to an amorphous sulfur system and carbon systems, and the fitting results show that MTP feature can yield the smallest RMSE results compared with other feature types for either sulfur system or carbon system in the disordered atomic configurations. Moreover, as an extending test of other systems, the MTP feature combined with linear regression model can also reproduce similar quantities along the ab initio molecular dynamics trajectory as represented by Cu systems. Our results are helpful in selecting the proper features for the MLFF development.
[ "C", "H", "Mg", "Ni", "O", "Si" ]
6
17,255
17,255
918,240
0
17,255
0
17,255
0
17,255
-94,982.575812
28,080,747,868.058937
0
2024-10-15T15:57:14
[ [ 1, 1, 1 ] ]
[ 3 ]
2024
[ 0.13830806760759715, 0.027225997560550618, 0.15290120230005227, 0.35931782540512286, 0.001633559853633037, 0.3206133472730441 ]
CC-BY-4.0
{'source-publication': 'https://www.doi.org/10.1088/1367-2630/acf2bb', 'source-data': 'https://github.com/LonxunQuantum/PWMLFF_library/tree/main', 'other': None}
null
3416353886768184069498309577448540463118046042128164727481437935635525348649148828592205659488310261220439788024414920747258168148334049671414505074802036
DS_cgjdk1e2txjy_0
PWMLFF_feature_comparison_NPJ2023__Han-Li-Liu-Li-Wang__DS_cgjdk1e2txjy_0
CH4
CH4
A4B
[ 6, 1, 1, 1, 1 ]
[ "C", "H" ]
[ 0.2, 0.8 ]
2
5
[ [ 10, 0, 0 ], [ 0, 10, 0 ], [ 0, 0, 10 ] ]
[ [ 0.853509392351989, 0.347509852321062, 0.86619632446483 ], [ 0.779471647056209, 0.404397600197081, 0.814738778971964 ], [ 0.916377148446164, 0.309952694944912, 0.781690774418877 ], [ 0.934792258436619, 0.418256626256294, 0.925307337251763 ], [ 0.818828012049579, 0.267389952014219, 0.924080338602043 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
5816914977900207277780307490620237977077349354893168128676761570663149102275890397736726832737373941414405026120503071925185960121592986930884803172467000
1
PWmat
DFT-PBE
null
[ [ -4.114176778777272, -2.136245969873218, 0.522334135691832 ], [ 0.911990090048691, -0.6825869355833, -0.136631746094567 ], [ 0.272888385099474, 0.217295953962963, -0.520242441710727 ], [ 2.310426589324109, 1.566939272603377, 1.119119308028895 ], [ 0.618086069417076, 1.037957264554102, -0.98023438012486 ] ]
null
[ [ -0.001423607873608038, -0.0015426824080439945, -0.001060329059353299 ], [ -0.0015426824080439945, -0.00007673189675191478, -0.0016331047794240529 ], [ -0.001060329059353299, -0.0016331047794240529, -0.0008725718523065661 ] ]
false
null
null
-218.634511
null
2.200416
4.665065
{"input": {"AVE_TEMP(K)": 999.85, "DESIRED_TEMP(K)": 1000.0, "METHOD(1-VV,2-NH,3-LV,4-LVPR,5-NHRP)": 2, "TEMP(K)": 1333.6, "TIME(fs)": 672.0, "TIME_INTERVAL(fs)": 100.0, "TOT_TEMP(K)": 671970.0}, "property_keys": {"energy": "eTot", "forces": "Force", "stress": "Pressure Internal"}, "hash": "5198098237997834016601898407187307691662952914673350654838940893257911113422008856056265188776904395977593791282879656432377233959349186380479788118322028", "id": "MD_5198098237997834016601898"}
MD_5198098237997834016601898
2024-10-15T15:45:17
1688753455884530191135952886716653747896132592652093592511685850518426033604096697690562685110593301332486686942541926400862875081074827544781948559312146
PO_1688753455884530191135952
null
null
[ "frame:671" ]
[ "CH4__CH4__2-1000__MOVEMENT__671" ]
[ "DS_cgjdk1e2txjy_0" ]
2024-10-15T19:54:03
1001436025596295197
CO_1001436025596295197
PWMLFF_feature_comparison_NPJ2023
[ "Ting Han", "Jie Li", "Liping Liu", "Fengyu Li", "Lin-Wang Wang" ]
Partial dataset for "Accuracy evaluation of different machine learning force field features". The included data is limited to that hosted directly on the repository at the related GitHub link. From publication abstract: Predicting energies and forces using machine learning force field (MLFF) depends on accurate descriptions (features) of chemical environment. Despite the numerous features proposed, there is a lack of controlled comparison among them for their universality and accuracy. In this work, we compared several commonly used feature types for their ability to describe physical systems. These different feature types include cosine feature, Gaussian feature, moment tensor potential (MTP) feature, spectral neighbor analysis potential feature, simplified smooth deep potential with Chebyshev polynomials feature and Gaussian polynomials feature, and atomic cluster expansion feature. We evaluated the training root mean square error (RMSE) for the atomic group energy, total energy, and force using linear regression model regarding to the density functional theory results. We applied these MLFF models to an amorphous sulfur system and carbon systems, and the fitting results show that MTP feature can yield the smallest RMSE results compared with other feature types for either sulfur system or carbon system in the disordered atomic configurations. Moreover, as an extending test of other systems, the MTP feature combined with linear regression model can also reproduce similar quantities along the ab initio molecular dynamics trajectory as represented by Cu systems. Our results are helpful in selecting the proper features for the MLFF development.
[ "C", "H", "Mg", "Ni", "O", "Si" ]
6
17,255
17,255
918,240
0
17,255
0
17,255
0
17,255
-94,982.575812
28,080,747,868.058937
0
2024-10-15T15:57:14
[ [ 1, 1, 1 ] ]
[ 3 ]
2024
[ 0.13830806760759715, 0.027225997560550618, 0.15290120230005227, 0.35931782540512286, 0.001633559853633037, 0.3206133472730441 ]
CC-BY-4.0
{'source-publication': 'https://www.doi.org/10.1088/1367-2630/acf2bb', 'source-data': 'https://github.com/LonxunQuantum/PWMLFF_library/tree/main', 'other': None}
null
3416353886768184069498309577448540463118046042128164727481437935635525348649148828592205659488310261220439788024414920747258168148334049671414505074802036
DS_cgjdk1e2txjy_0
PWMLFF_feature_comparison_NPJ2023__Han-Li-Liu-Li-Wang__DS_cgjdk1e2txjy_0
Mg54
Mg
A
[ 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12 ]
[ "Mg" ]
[ 1 ]
1
54
[ [ 10.71241871, 0, 0 ], [ 0, 10.71241871, 0 ], [ 0, 0, 10.71241871 ] ]
[ [ 0.032219759519164, 0.864983000957354, 0.191491786989961 ], [ 0.017160657085341, 0.841149940849506, 0.456990318732048 ], [ 0.982804797237258, 0.848793514688168, 0.8336800213024 ], [ 0.023627648715259, 0.259771829476037, 0.169882868173407 ], [ 0.058791529961487, 0.256390431904565, 0.525853425686114 ], [ 0.061492431185407, 0.264629233872759, 0.820996823316955 ], [ 0.020741296342688, 0.531656378004987, 0.132171342575025 ], [ 0.068019422324902, 0.537503009940509, 0.489210514756983 ], [ 0.998407275338489, 0.555944586714987, 0.85348806980515 ], [ 0.347826464606536, 0.892543899089141, 0.09983803591615 ], [ 0.346567969953382, 0.891450918891133, 0.504798229006196 ], [ 0.368078006964224, 0.905364493633065, 0.836335439686307 ], [ 0.316063858100006, 0.19176371511027, 0.095235776778791 ], [ 0.348893742042011, 0.224120823481544, 0.524689240346895 ], [ 0.385902219248732, 0.169954575339802, 0.815246974030304 ], [ 0.38300434220711, 0.605427423384758, 0.155033619673655 ], [ 0.364874955660205, 0.54368668714991, 0.434304693925908 ], [ 0.391586834222375, 0.61678898485486, 0.858096767408959 ], [ 0.702861804920309, 0.879794077114888, 0.189791086460587 ], [ 0.740650603062186, 0.923851531034257, 0.467420555973017 ], [ 0.709681395373784, 0.847593497029427, 0.796280127041279 ], [ 0.754664840288656, 0.156609293595317, 0.191420994605604 ], [ 0.709958132246851, 0.230382252800201, 0.501959872435633 ], [ 0.643787273645967, 0.199128700483296, 0.798033659166798 ], [ 0.665008210707734, 0.546867916768848, 0.1913887951495 ], [ 0.683346664788883, 0.538813165977619, 0.489229063969107 ], [ 0.657588443998617, 0.55779242257062, 0.842484972519552 ], [ 0.214342846631102, 0.068466272096027, 0.302089560964993 ], [ 0.202965085813875, 0.031260413023977, 0.700525263554132 ], [ 0.154513732920103, 0.043901776869627, 0.977509728079814 ], [ 0.237017597610024, 0.357733382308726, 0.290546099426074 ], [ 0.237741594893015, 0.430040335003919, 0.703798577509867 ], [ 0.220781430173022, 0.410226886658759, 0.987572285864517 ], [ 0.210888481943817, 0.702846614224001, 0.3011657393813 ], [ 0.199847924759004, 0.720377607835898, 0.675213020917182 ], [ 0.152516139890767, 0.757766058566858, 0.005258056139137 ], [ 0.481519231341973, 0.034645817329978, 0.304711811763827 ], [ 0.558383209172683, 0.025176165938489, 0.624007141471644 ], [ 0.563370821291532, 0.04692717645255, 0.00077430172985 ], [ 0.551611907655565, 0.360057855867546, 0.341491263916149 ], [ 0.522973914180503, 0.41462505741569, 0.647310765028672 ], [ 0.487242911600855, 0.368710263497244, 0.006883695695833 ], [ 0.532183572013602, 0.755562542970453, 0.342376349022703 ], [ 0.497863457432774, 0.727606647673584, 0.644444971116932 ], [ 0.570269883374648, 0.745271248398098, 0.000813273101624 ], [ 0.944524760029866, 0.072703076242397, 0.362573840562392 ], [ 0.861606926334697, 0.064755878069545, 0.688951042668925 ], [ 0.892605937969885, 0.048359311231555, 0.978433894035605 ], [ 0.849899890676869, 0.407275650880623, 0.343881010424879 ], [ 0.849863995298658, 0.37819171404997, 0.69026849336827 ], [ 0.835049697548224, 0.396201723213503, 0.976111496983343 ], [ 0.861031676264135, 0.659512262767577, 0.3199234108987 ], [ 0.821078299876633, 0.681518159740019, 0.655726742113783 ], [ 0.826085660275119, 0.713257136103543, 0.035829463201372 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9195500720433022657907617020371036040534598280808799273387177112579286084052308607347518181494791253380030499337529491634964034566625739725530889552512921
1
PWmat
DFT-PBE
null
[ [ 0.88704986394969, -0.69692112764529, -0.112133881152887 ], [ -0.502001901436716, 0.285261368816808, -0.883097844470845 ], [ -0.057262008612506, 0.135269442060343, 0.680323968741809 ], [ 0.033339218226766, 0.507586155090296, 0.605132073182318 ], [ -0.140399798176801, -0.019615608736795, -0.125593708720792 ], [ 0.20659143623854, 0.457358975736295, -0.304643759734629 ], [ -0.159150102283532, -0.301516311526758, -0.50352810159377 ], [ 0.084120615409852, -0.111784475279436, -0.060329601128607 ], [ -0.493854446651541, -0.415571073015178, 0.405092001774661 ], [ -0.514490770814226, -0.184594352208448, -0.929461411368733 ], [ 0.545219314376159, -0.070341863933642, 0.219951878410878 ], [ -0.758161397993069, 0.90449913546216, 0.040023682806912 ], [ -0.777663270552715, 0.28460553031133, -0.16956616737618 ], [ -0.16742959657248, 0.088436914843368, 0.095782576511476 ], [ 0.259642274308765, -0.929990063934304, -0.289160222595168 ], [ -0.515938390635951, 0.684738596648572, 0.678072255481345 ], [ -0.3260665788582, -0.00035724219504, -0.958459097720886 ], [ 0.700509914151164, 0.457747935585336, -0.336224531439585 ], [ -0.425685345000612, -0.655581395398533, -0.059600687422576 ], [ -0.027654093076853, 0.464888965794637, 0.158548329906026 ], [ 0.554717735286785, -1.057654470982214, -0.698452909809612 ], [ 0.45709798076751, -0.453402371142445, -0.197273147451351 ], [ -0.227405637659269, 0.661815162989096, -0.14321898949467 ], [ -0.773370644176972, -0.732990513000737, -0.288116371401569 ], [ 0.357520837702666, -0.098319170852944, 0.711533299071915 ], [ 0.397181259440707, -0.420361672514601, 0.012536703522945 ], [ -0.334878622944515, 0.218338013096436, 0.110369403574436 ], [ 0.511559614503202, 0.349134802392325, -0.377441879678345 ], [ 1.339232968250219, -0.062906324416214, 1.034903518947679 ], [ 0.2356118394669, 0.298372957061264, 0.248936472726438 ], [ -0.032983233665245, -0.508241753974915, -0.19487138416634 ], [ -0.175306819713709, -0.190953955143463, 0.38531023319962 ], [ 0.173823705463734, -0.346902738611567, -0.014824955255392 ], [ 0.667886676686638, -0.559178308477735, -0.422528701794428 ], [ 0.093492499028439, -0.062311220342273, 0.005793730651236 ], [ -0.444240216291175, 1.247349808774971, 0.779562116972547 ], [ -0.69045518565762, -0.381595109934007, 0.06923950219894 ], [ 0.579408257679995, 0.147143446971835, -0.153257647359338 ], [ -0.048532426324128, 0.234178093410764, -0.26881967810497 ], [ 0.711484274405096, 0.369587822672642, 0.538509797679572 ], [ 0.468865171679132, 0.248411415205699, -0.388990873353427 ], [ -0.763354782307049, -0.312715954241711, 0.161942783853153 ], [ 0.291149771442927, 0.302923790854946, -0.219820113161424 ], [ -0.488945031558332, 0.275972621220124, 0.285024029338934 ], [ 0.619224779757393, -0.386134707453667, -0.384734359039042 ], [ 0.314694762960666, -0.270351745647609, 0.097426977278652 ], [ -0.325765898958359, -0.104570831303401, 0.314136777272008 ], [ 0.892128430172107, -0.204054003655628, -0.257548118765626 ], [ -0.605629634906573, 1.177821384103888, 0.285623771746142 ], [ 0.195739534945498, -0.250754336544889, 0.239080894873692 ], [ 0.383188139179686, 0.691267033014389, -0.482596831715273 ], [ -0.268056788008373, -1.240867807633405, -0.244645040622757 ], [ -1.112782192766922, 0.240906721951867, 0.625520025035906 ], [ -0.801364365143953, 0.33258316389106, 0.621223964449173 ] ]
null
[ [ 0.02917736731621976, 0.0009815603165068002, 0.00023257685146541756 ], [ 0.0009815603165068002, 0.022816648014801915, 0.002095680858062567 ], [ 0.00023257685146541756, 0.002095680858062567, 0.024650112873914512 ] ]
false
null
null
-79,591.5503
null
0.779159
1.693673
{"input": {"AVE_TEMP(K)": 805.46, "DESIRED_TEMP(K)": 800.0, "METHOD(1-VV,2-NH,3-LV,4-LVPR,5-NHRP)": 2, "TEMP(K)": 830.11, "TIME(fs)": 1780.0, "TIME_INTERVAL(fs)": 200.0, "TOT_TEMP(K)": 712460.0}, "property_keys": {"energy": "eTot", "forces": "Force", "stress": "Pressure Internal"}, "hash": "9295391389576865698570865202832957320223197997635058319181134310040428895775463515391105655524053170186623271157486643757204909344428036118486078307084142", "id": "MD_9295391389576865698570865"}
MD_9295391389576865698570865
2024-10-15T15:48:58
9360308466086786823750928238733162050739106001043609581939145989583611634490559417303407248394752362866521366952094724397286415914924510526554650401204310
PO_9360308466086786823750928
null
null
[ "temperature:800", "frame:889" ]
[ "Mg_2600images__800k__MOVEMENT__889" ]
[ "DS_cgjdk1e2txjy_0" ]
2024-10-15T19:54:49
1001895022053885287
CO_1001895022053885287
PWMLFF_feature_comparison_NPJ2023
[ "Ting Han", "Jie Li", "Liping Liu", "Fengyu Li", "Lin-Wang Wang" ]
Partial dataset for "Accuracy evaluation of different machine learning force field features". The included data is limited to that hosted directly on the repository at the related GitHub link. From publication abstract: Predicting energies and forces using machine learning force field (MLFF) depends on accurate descriptions (features) of chemical environment. Despite the numerous features proposed, there is a lack of controlled comparison among them for their universality and accuracy. In this work, we compared several commonly used feature types for their ability to describe physical systems. These different feature types include cosine feature, Gaussian feature, moment tensor potential (MTP) feature, spectral neighbor analysis potential feature, simplified smooth deep potential with Chebyshev polynomials feature and Gaussian polynomials feature, and atomic cluster expansion feature. We evaluated the training root mean square error (RMSE) for the atomic group energy, total energy, and force using linear regression model regarding to the density functional theory results. We applied these MLFF models to an amorphous sulfur system and carbon systems, and the fitting results show that MTP feature can yield the smallest RMSE results compared with other feature types for either sulfur system or carbon system in the disordered atomic configurations. Moreover, as an extending test of other systems, the MTP feature combined with linear regression model can also reproduce similar quantities along the ab initio molecular dynamics trajectory as represented by Cu systems. Our results are helpful in selecting the proper features for the MLFF development.
[ "C", "H", "Mg", "Ni", "O", "Si" ]
6
17,255
17,255
918,240
0
17,255
0
17,255
0
17,255
-94,982.575812
28,080,747,868.058937
0
2024-10-15T15:57:14
[ [ 1, 1, 1 ] ]
[ 3 ]
2024
[ 0.13830806760759715, 0.027225997560550618, 0.15290120230005227, 0.35931782540512286, 0.001633559853633037, 0.3206133472730441 ]
CC-BY-4.0
{'source-publication': 'https://www.doi.org/10.1088/1367-2630/acf2bb', 'source-data': 'https://github.com/LonxunQuantum/PWMLFF_library/tree/main', 'other': None}
null
3416353886768184069498309577448540463118046042128164727481437935635525348649148828592205659488310261220439788024414920747258168148334049671414505074802036
DS_cgjdk1e2txjy_0
PWMLFF_feature_comparison_NPJ2023__Han-Li-Liu-Li-Wang__DS_cgjdk1e2txjy_0
Mg54
Mg
A
[ 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12 ]
[ "Mg" ]
[ 1 ]
1
54
[ [ 10.71241871, 0, 0 ], [ 0, 10.71241871, 0 ], [ 0, 0, 10.71241871 ] ]
[ [ 0.031049982584174, 0.906914015253418, 0.139112863811708 ], [ 0.008780372168919, 0.911152998869995, 0.511398239536524 ], [ 0.054104251666041, 0.932719244140304, 0.773701387529053 ], [ 0.019863615243811, 0.191012363609441, 0.152153681025994 ], [ 0.062406149910796, 0.215407113676368, 0.439981965243093 ], [ 0.053807098582852, 0.195326342133202, 0.852090075671024 ], [ 0.024594214155581, 0.59337240486634, 0.12724810584288 ], [ 0.049453400067169, 0.550506427395559, 0.49969639934818 ], [ 0.998356247610599, 0.548998785715262, 0.831915631259295 ], [ 0.353962763146584, 0.900569980653034, 0.152362459496617 ], [ 0.370051385859504, 0.920015531923591, 0.475747512823827 ], [ 0.376991008977582, 0.898222802736461, 0.788389805587403 ], [ 0.332160698316268, 0.219759238351766, 0.148485368081775 ], [ 0.342873007804178, 0.245158785389516, 0.446477459810081 ], [ 0.376614268228157, 0.261561972362697, 0.819362257804021 ], [ 0.311939914107993, 0.566763784606731, 0.166434097690219 ], [ 0.348293272916966, 0.562249395830363, 0.497949581932475 ], [ 0.373872852271222, 0.557612512328963, 0.787885517548737 ], [ 0.656402899337031, 0.896279155393196, 0.130816629081596 ], [ 0.655332217358282, 0.919064241002599, 0.423090800747954 ], [ 0.743335988867408, 0.942992723033495, 0.775744523378916 ], [ 0.703270582065818, 0.274820032928058, 0.135163180025923 ], [ 0.692381836493489, 0.250561487690263, 0.4535408001615 ], [ 0.757449908124469, 0.202977627015333, 0.808068093783855 ], [ 0.715388137353802, 0.55028564198333, 0.110024904946243 ], [ 0.660750961800942, 0.602807541793703, 0.49385709023859 ], [ 0.695793511994024, 0.492390587409222, 0.856180294438207 ], [ 0.195613830319559, 0.028941487038094, 0.315282905374892 ], [ 0.218606174456152, 0.082307634544067, 0.631222922870645 ], [ 0.221154660242291, 0.054874400033783, 0.99320111528119 ], [ 0.172525223209314, 0.392649012025572, 0.27653431594323 ], [ 0.177073810417104, 0.371121664596408, 0.669160472307214 ], [ 0.170780402429525, 0.403873919240135, 0.989632168851287 ], [ 0.175241856378704, 0.765059195167784, 0.35193226895468 ], [ 0.184099030293944, 0.711548188199962, 0.655917178819327 ], [ 0.20643666769258, 0.719030333271438, 0.953954137703831 ], [ 0.531122167412993, 0.094451022000414, 0.271729685212304 ], [ 0.538687570714464, 0.108181324143741, 0.671047223803585 ], [ 0.520487326396249, 0.113344387763169, 0.968803597713375 ], [ 0.517017912859028, 0.411380453403621, 0.284582960802072 ], [ 0.505189275682427, 0.390086722649977, 0.607479705588986 ], [ 0.491422481519871, 0.404664774639719, 0.021268162596567 ], [ 0.51171067698665, 0.711583135124082, 0.282401446992565 ], [ 0.549670481262557, 0.780113295375642, 0.641558236637132 ], [ 0.538994337529458, 0.709688406677202, 0.944750598071694 ], [ 0.831265698151435, 0.065292473243618, 0.294305375642449 ], [ 0.843507395667899, 0.089332877363375, 0.593073546074113 ], [ 0.844541869090633, 0.046584353371117, 0.984287819410122 ], [ 0.872983225754266, 0.3877879824324, 0.303375274461696 ], [ 0.857645792353332, 0.40131765644127, 0.609383370631551 ], [ 0.884279537922772, 0.351573748190578, 0.994936966619325 ], [ 0.867787423014734, 0.706868526527307, 0.323945445604392 ], [ 0.856693398276241, 0.709390331824898, 0.642318082795985 ], [ 0.861444202735424, 0.765722283327258, 0.00957089012877 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6467163557323230508761265492653915919765244563498742917530010838945731078901960483443833198936494521970957734012645892574329536342242931240149140166939317
1
PWmat
DFT-PBE
null
[ [ -0.42129482284238, 0.187400015941691, -0.359445082887131 ], [ -0.212569570732115, 0.305934808539647, 0.730533709244561 ], [ 0.46320114348857, 0.384643270358343, -0.872959551633723 ], [ -0.568667645617237, 0.021697792027328, -0.004382209999265 ], [ 0.797128709362966, -0.292375043164702, -0.449517125271372 ], [ 0.365918838491093, -0.107350390967351, 0.505398482789885 ], [ -0.014044324066789, 0.292876517396307, -0.21053199645589 ], [ 0.107018408997327, 0.177000085829972, 0.652418190715748 ], [ 0.053398066296725, -0.111335686830345, 0.172741475029786 ], [ -0.496462021012227, 0.562850180143651, 0.108930109756645 ], [ -0.509418873847088, 0.187833182910164, -0.039694781824249 ], [ 0.55529870061763, -0.37472535566218, -0.594471233324528 ], [ 0.01576395470693, -0.445235593911819, -0.280412009916607 ], [ -0.132275383380832, 0.189427539010917, 0.214821590005987 ], [ 0.726851291196506, -0.14075827558771, 0.028998604018703 ], [ -0.415271596687865, -0.718068666387459, 0.325109273830517 ], [ 0.157587389598962, -0.234565373640352, 0.688367996506 ], [ -0.006145336585689, 0.19858142406092, -0.111528010996938 ], [ 0.026964832211022, 0.00399904587766, -0.121657058790587 ], [ -0.26120015786382, 0.452246033472727, -0.499177100616799 ], [ 0.576247321387296, 1.105910300874987, -0.214060524757739 ], [ 0.728273641773559, 0.995879878413654, -0.236696620127371 ], [ 0.641474252024147, 0.025697736491654, 0.257559533175445 ], [ 0.50032059107106, -1.095487978234786, 0.109618392649669 ], [ -0.15477584116831, -0.338272651323509, -0.726982006549336 ], [ -0.044680386069545, 0.914108736293804, 0.64183755759519 ], [ 0.051967410061068, 0.011125303033813, 0.932749877346115 ], [ 0.098674805479168, -0.696193119329441, 0.185153694277081 ], [ -0.076653761365461, -0.334054115651846, -0.273281878690311 ], [ 0.164927521234962, 0.413308854219474, 0.769321829924991 ], [ 0.487983400925219, 0.080339987028825, -0.518757723295825 ], [ -0.122454733007549, -0.270866630902982, 0.177890252238714 ], [ -0.470432144809162, 0.216264064845106, 0.076878635157028 ], [ -0.016552621543778, 0.661979894038443, 0.33387883749222 ], [ 0.057222270203512, -0.464934002823913, -0.214413657323092 ], [ 0.07019342632946, -0.367257961435366, 0.073306723322209 ], [ 0.184280822773569, -0.27437063976809, -0.103575974434989 ], [ 0.056098730062149, 0.391405767443574, 0.559080829540131 ], [ -0.536975278609004, 0.627130905175214, -0.220696121546057 ], [ 0.114849814869815, -0.06148880829781, -0.7989480798984 ], [ -0.697390859651236, 0.222435926355805, -0.42462552002639 ], [ 0.252495230191799, -0.302908596842818, 0.464566058754526 ], [ -0.008184690777988, -0.044743085571576, -0.109396935626649 ], [ -0.054090043541155, 0.224368656394038, -0.243222617826323 ], [ 0.045346821648888, -0.274300605700089, -0.373558010715445 ], [ -0.311631133025342, -0.053242685681609, 0.030436809457744 ], [ -0.464641422418003, -0.406491298744603, 0.364656103333439 ], [ -0.503016916412373, -0.159340924658918, -0.94439851560281 ], [ -0.391565174860357, -0.475723263377505, -0.215349518175557 ], [ 0.016484534357944, 0.18259758274222, -0.316803801951394 ], [ -0.839902859588301, -0.713073912569165, 0.344225166170178 ], [ 0.127711607617231, -0.390919088820951, 0.022986634046559 ], [ -0.157988570038175, -0.203210444492954, -0.183834869034435 ], [ 0.423023099829323, 0.298905476863373, 0.907488195950566 ] ]
null
[ [ 0.022135518361588658, -0.0029225368103743925, 0.0008912470531088121 ], [ -0.0029225368103743925, 0.025404359260809424, -0.0014434967714342163 ], [ 0.0008912470531088121, -0.0014434967714342163, 0.02498087724875549 ] ]
false
null
null
-79,591.74289
null
0.668144
1.265275
{"input": {"AVE_TEMP(K)": 806.2, "DESIRED_TEMP(K)": 800.0, "METHOD(1-VV,2-NH,3-LV,4-LVPR,5-NHRP)": 2, "TEMP(K)": 894.56, "TIME(fs)": 1550.0, "TIME_INTERVAL(fs)": 200.0, "TOT_TEMP(K)": 620560.0}, "property_keys": {"energy": "eTot", "forces": "Force", "stress": "Pressure Internal"}, "hash": "11637299658801904634941919823560113453834297324920812885239214611994805237692537860720877723770411794397645622705509584012505743955957421259749705637711082", "id": "MD_1163729965880190463494191"}
MD_1163729965880190463494191
2024-10-15T15:48:58
12312340509716612686653531694072599081860228715034916745268310791357491542778842637137730518177059356598082633138250760100155047539214477453652918927266892
PO_1231234050971661268665353
null
null
[ "temperature:800", "frame:774" ]
[ "Mg_2600images__800k__MOVEMENT__774" ]
[ "DS_cgjdk1e2txjy_0" ]
2024-10-15T19:54:49
1001941704917984481
CO_1001941704917984481
PWMLFF_feature_comparison_NPJ2023
[ "Ting Han", "Jie Li", "Liping Liu", "Fengyu Li", "Lin-Wang Wang" ]
Partial dataset for "Accuracy evaluation of different machine learning force field features". The included data is limited to that hosted directly on the repository at the related GitHub link. From publication abstract: Predicting energies and forces using machine learning force field (MLFF) depends on accurate descriptions (features) of chemical environment. Despite the numerous features proposed, there is a lack of controlled comparison among them for their universality and accuracy. In this work, we compared several commonly used feature types for their ability to describe physical systems. These different feature types include cosine feature, Gaussian feature, moment tensor potential (MTP) feature, spectral neighbor analysis potential feature, simplified smooth deep potential with Chebyshev polynomials feature and Gaussian polynomials feature, and atomic cluster expansion feature. We evaluated the training root mean square error (RMSE) for the atomic group energy, total energy, and force using linear regression model regarding to the density functional theory results. We applied these MLFF models to an amorphous sulfur system and carbon systems, and the fitting results show that MTP feature can yield the smallest RMSE results compared with other feature types for either sulfur system or carbon system in the disordered atomic configurations. Moreover, as an extending test of other systems, the MTP feature combined with linear regression model can also reproduce similar quantities along the ab initio molecular dynamics trajectory as represented by Cu systems. Our results are helpful in selecting the proper features for the MLFF development.
[ "C", "H", "Mg", "Ni", "O", "Si" ]
6
17,255
17,255
918,240
0
17,255
0
17,255
0
17,255
-94,982.575812
28,080,747,868.058937
0
2024-10-15T15:57:14
[ [ 1, 1, 1 ] ]
[ 3 ]
2024
[ 0.13830806760759715, 0.027225997560550618, 0.15290120230005227, 0.35931782540512286, 0.001633559853633037, 0.3206133472730441 ]
CC-BY-4.0
{'source-publication': 'https://www.doi.org/10.1088/1367-2630/acf2bb', 'source-data': 'https://github.com/LonxunQuantum/PWMLFF_library/tree/main', 'other': None}
null
3416353886768184069498309577448540463118046042128164727481437935635525348649148828592205659488310261220439788024414920747258168148334049671414505074802036
DS_cgjdk1e2txjy_0
PWMLFF_feature_comparison_NPJ2023__Han-Li-Liu-Li-Wang__DS_cgjdk1e2txjy_0
Ni108
Ni
A
[ 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28 ]
[ "Ni" ]
[ 1 ]
1
108
[ [ 10.55556, 0, 0 ], [ 0, 10.55556, 0 ], [ 0, 0, 10.55556 ] ]
[ [ 0.001163656507895, 0.976193302737325, 0.022414555084792 ], [ 0.007765001080222, 0.98344248075034, 0.35628290646896 ], [ 0.99697068574841, 0.975441785735851, 0.689337815101343 ], [ 0.998172042576501, 0.295271689561581, 0.025818610309674 ], [ 0.005977422063033, 0.30489328329006, 0.356131321830922 ], [ 0.997197119608723, 0.31488383180404, 0.699164288297247 ], [ 0.033428304333992, 0.653380010881349, 0.013784689734912 ], [ 0.001713844846496, 0.639861921682577, 0.358955305225733 ], [ 0.000190737992651, 0.651441303216956, 0.691162280250748 ], [ 0.317817122196346, 0.989498102344988, 0.033535867655118 ], [ 0.338998709656501, 0.982763665079681, 0.358431119697618 ], [ 0.317189567100842, 0.980059001973993, 0.708785877462442 ], [ 0.32338499142626, 0.332380622489353, 0.023733233686385 ], [ 0.32437287710372, 0.317330075155124, 0.358093035904279 ], [ 0.335775679652415, 0.311850555718081, 0.683501062297609 ], [ 0.331535240662563, 0.658705309579825, 0.031365812014436 ], [ 0.325879965840324, 0.674030541894191, 0.361707922396836 ], [ 0.321008382582854, 0.644947550459165, 0.693778939232049 ], [ 0.656253906854657, 0.972987425011095, 0.034094562787631 ], [ 0.65638542808676, 0.978773851562323, 0.361269029150823 ], [ 0.659598694889012, 0.97882443268136, 0.693372031357629 ], [ 0.678548452762797, 0.305515371438783, 0.025174788666386 ], [ 0.676596405781658, 0.326054071010871, 0.366152977901391 ], [ 0.658255393587513, 0.321122217849439, 0.686947344935919 ], [ 0.674095862711831, 0.660504966080667, 0.032908112476989 ], [ 0.658018692110907, 0.640586724267097, 0.362683457792527 ], [ 0.684556838156284, 0.646041765922089, 0.698414851367677 ], [ 0.990106074349101, 0.152870300671029, 0.178770052133527 ], [ 0.002449681729416, 0.150021256299178, 0.519956736553128 ], [ 0.002993821126166, 0.162269848538395, 0.843526426558762 ], [ 0.01672502777915, 0.489490292925908, 0.187622988192063 ], [ 0.00127145096109, 0.479792189325319, 0.524813644435975 ], [ 0.007352364510892, 0.472990795414825, 0.864590608906586 ], [ 0.997124211453598, 0.802236091994202, 0.18791580487404 ], [ 0.989303752293884, 0.815393954173295, 0.511963517149953 ], [ 0.010983141205184, 0.82025172401286, 0.844420260354296 ], [ 0.343199472408729, 0.160708131611538, 0.187116863468964 ], [ 0.322095967894989, 0.130988752138675, 0.539375156692335 ], [ 0.323772194299085, 0.143557480533722, 0.85788964979498 ], [ 0.337867637861269, 0.478086211832943, 0.198593681178874 ], [ 0.327530829915083, 0.480456684946026, 0.537794320330194 ], [ 0.336878606126343, 0.492895764850509, 0.872572605463077 ], [ 0.333876189578488, 0.828665649808636, 0.193978253387654 ], [ 0.317187429904444, 0.811096338589842, 0.537520905587475 ], [ 0.350191184024702, 0.803278938617115, 0.872800076145734 ], [ 0.664659654223103, 0.148364462419554, 0.188687149762712 ], [ 0.669921135590423, 0.154048857151639, 0.517483181488386 ], [ 0.663942127742454, 0.142313630269211, 0.845970177817858 ], [ 0.647939128323999, 0.483106328473605, 0.201920234257605 ], [ 0.655958297077637, 0.491803014429642, 0.526168754665035 ], [ 0.658476510133243, 0.480953945065727, 0.848092437910787 ], [ 0.668448386930895, 0.814006748234025, 0.192549567332437 ], [ 0.648204127488956, 0.814195886378166, 0.529715403269233 ], [ 0.683867314079058, 0.81226454420614, 0.855804103823615 ], [ 0.16163900011897, 0.978151381112388, 0.199163792774581 ], [ 0.17085014134965, 0.984707662799275, 0.537742564665126 ], [ 0.153035847698323, 0.989467599080162, 0.872278418964052 ], [ 0.167665373195688, 0.325724486394119, 0.201281189642476 ], [ 0.168773755548553, 0.296942057830896, 0.527218960183532 ], [ 0.190733753607884, 0.32965101547911, 0.851980780506887 ], [ 0.173356859779385, 0.658864234261145, 0.207144586994988 ], [ 0.158951521659624, 0.63959852546406, 0.528611865309279 ], [ 0.173309962653229, 0.668567230778568, 0.850375033686174 ], [ 0.493327491008276, 0.996120868356147, 0.187560711711444 ], [ 0.517555801495371, 0.978329860342285, 0.531845399427955 ], [ 0.486268134269946, 0.977301904876192, 0.860207985781614 ], [ 0.495344043579419, 0.31731532347091, 0.18513809614953 ], [ 0.494097103520501, 0.320239858349882, 0.529496312804187 ], [ 0.492261639131279, 0.305576277018119, 0.861621453353925 ], [ 0.508117484608151, 0.647477625673479, 0.189853641581117 ], [ 0.499732987015328, 0.658781529345642, 0.521389999681691 ], [ 0.501740237669128, 0.646665757445497, 0.857160147352262 ], [ 0.844698090434415, 0.967742363255472, 0.196469763418334 ], [ 0.827692935589001, 0.973700570390057, 0.508927186304211 ], [ 0.839024594939673, 0.973965641116832, 0.854685959967621 ], [ 0.814024550321405, 0.315479275347712, 0.184030519660838 ], [ 0.849814317071339, 0.321101671089705, 0.527078590916989 ], [ 0.835273742611601, 0.309129391968689, 0.862564462570851 ], [ 0.830906670300974, 0.652041354001617, 0.197432510821276 ], [ 0.826604406962702, 0.658500387450785, 0.529317546193524 ], [ 0.845996985322046, 0.650795725541399, 0.857869481080852 ], [ 0.159653428616091, 0.147161336986655, 0.037891399009692 ], [ 0.175647297445677, 0.142958297748222, 0.362921773454632 ], [ 0.166783330589045, 0.133193368459389, 0.700986301870504 ], [ 0.15900213182017, 0.46958651796472, 0.014707607331129 ], [ 0.160657256418796, 0.477427689150312, 0.357876153482131 ], [ 0.167876348857819, 0.487590807919746, 0.697295775540884 ], [ 0.17220368600954, 0.83414501347938, 0.023400277105692 ], [ 0.15963859638565, 0.814467909167828, 0.363416634322633 ], [ 0.163002318398707, 0.808579033416353, 0.685751120938113 ], [ 0.493568765542223, 0.144085445828508, 0.021951689398618 ], [ 0.508801646528521, 0.162388349008169, 0.36450640485837 ], [ 0.494885128863377, 0.151895770714295, 0.691360081682955 ], [ 0.504216319779921, 0.495225998454297, 0.030874655489532 ], [ 0.493598960334394, 0.484677941370513, 0.355391881740953 ], [ 0.491589660412824, 0.481451259372366, 0.684844736187178 ], [ 0.514916038780051, 0.795357076122431, 0.027488300634265 ], [ 0.497501232404177, 0.818760743878683, 0.354702638020783 ], [ 0.484722177223849, 0.806722096266453, 0.701658767196735 ], [ 0.833497382719824, 0.146871594083861, 0.035093580367965 ], [ 0.837855561138053, 0.144854722184236, 0.361184789052113 ], [ 0.831347404464203, 0.149241793534156, 0.701868461597044 ], [ 0.817802884531048, 0.466843615436201, 0.007086788464809 ], [ 0.827938702862497, 0.490381333276192, 0.355266361134345 ], [ 0.839727580173973, 0.46889969940932, 0.695812092527083 ], [ 0.838534106711266, 0.809915626243908, 0.02523776089189 ], [ 0.824786166520986, 0.816093937283567, 0.361105517020063 ], [ 0.842617359760117, 0.823362678897498, 0.674490181777949 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
12003161709835704215138801330754399810460671425539469008596269902606721538379036672396811949411913241997367731251674151768799210507598707635533705749855958
1
PWmat
DFT-PBE
null
[ [ 1.019980717768686, -0.504916271326461, -0.645244372982687 ], [ 0.676900512298032, -0.017897054800285, -0.281553345735127 ], [ -0.298894230098949, -1.230551757715771, 0.632641675384449 ], [ -0.175989075132488, -2.500037127862546, 0.517198440710533 ], [ 0.661927970293577, -0.837858381417072, 0.234520631030663 ], [ -1.218149644259757, -0.281863045809829, 1.144748060141312 ], [ 1.906067781125496, 0.053902305986239, -0.802074580320717 ], [ 0.596742118870954, -0.740772930004676, -0.086702539826866 ], [ 0.36266607389693, 0.646756944841346, 0.225173297521508 ], [ -1.67838800408048, -0.114959822200722, 0.547264279384889 ], [ 0.150653318309751, -0.249659851572399, -0.653548867927096 ], [ -1.391266296330113, 1.338556119806041, 0.378470169498815 ], [ -1.455445325851622, 1.721700294354845, -0.721215046827152 ], [ -1.083137398787362, 0.299958125894807, -0.827126033688536 ], [ 0.512345934407884, 0.062196159765309, -0.974629638202941 ], [ 0.349460285334384, 1.044858982148378, -0.720196070312134 ], [ -0.962568939045454, 2.149792315053527, -0.219639810245359 ], [ -1.535058891718414, -0.238478206900575, 0.22257049154686 ], [ -1.070555944372897, -0.612202524778801, 1.079307728518684 ], [ -0.702844824782001, -0.530424510252964, 1.011196780778278 ], [ -0.788636103018965, 0.096834668777154, -0.251110562061153 ], [ 2.876708912258242, -0.182098764461377, 1.118765808408683 ], [ 0.812264584286884, 0.6290648697325, 0.1774918969968 ], [ -0.678517452241193, 0.586034685179403, -0.170410932391559 ], [ -0.74045492728579, 2.223058027079353, 1.105351961071368 ], [ -0.548542675746459, -1.362866540393263, 0.338669089614138 ], [ 1.310421263060877, -0.319094273231067, 0.347400799483839 ], [ -0.80410676807036, 1.028574273385875, -2.651124714058383 ], [ 0.352730784757573, 0.874775687434742, -0.988069357380251 ], [ -0.030024556257719, 1.648421216982612, -1.974038955413722 ], [ 1.835945638578224, 0.30934635207094, 0.322487001014952 ], [ -0.055540061508001, 0.030838592571372, -0.218032766789539 ], [ 0.885650453023973, -0.564369076551254, 0.619161620607111 ], [ -0.674289125813844, -0.608816138143256, -0.460260458844137 ], [ -1.420719847973023, 0.125010377675813, -0.583826469082638 ], [ 1.144822533299811, 0.481316617316504, -1.352724039746748 ], [ 1.42602846177256, 0.449658642996276, -0.724767955643089 ], [ -2.068259956112527, -1.176584236021397, 0.967136449354368 ], [ -0.537170295119315, -0.71698806092545, -0.85940816863912 ], [ 0.759073357018933, -1.316828406951362, 0.535972533748523 ], [ 0.130267173587885, -0.333518440854069, 1.814744213809131 ], [ -0.227382374129936, -0.155390370349459, 1.234239895971774 ], [ -0.217114814657249, 0.670192489152367, 0.387536076255224 ], [ -1.50167810725605, -0.761543514378119, 0.87390695422183 ], [ 1.633274628100953, -1.441723739713497, 0.504131022257084 ], [ 0.064826704581926, 0.340577442990336, -0.751173216809346 ], [ -0.275289981753957, 0.063114877990913, -1.15605354788081 ], [ 0.18713373185334, -0.152593334340615, -1.482082413793857 ], [ -2.156577328570152, 0.444756415777679, 1.150534318187722 ], [ -0.895767871279205, 0.702784238463716, -0.373739762258041 ], [ -0.243546136146412, 0.267256760506282, -0.761304909072853 ], [ 0.141417710593785, -0.374784238285229, -0.784887604541518 ], [ -1.935698708700669, 0.498048042871098, -0.052298723877594 ], [ 1.144493229867306, -0.144668055573194, 0.041904818053061 ], [ -0.104672807377535, -0.601178827694866, 0.181813629351642 ], [ 1.390695642041493, 1.235987936955315, 1.386120978556551 ], [ -0.944013259237509, 0.170206908947144, 1.421932523761336 ], [ 0.150172132792528, 1.450611061408574, 1.314845309185141 ], [ 0.300036392241576, -1.463833042898046, -0.391895672507937 ], [ 1.815922584834414, 1.78337304929537, 0.309466989384605 ], [ 0.067774325272591, 0.741880979471045, 1.545390393393288 ], [ -0.252344270225164, -0.58894658696609, 0.628879216490974 ], [ 0.103925787886695, 1.596015497480853, -0.998862515616596 ], [ -0.451309596361855, 1.178198326857305, -0.642594234298012 ], [ 2.869129690305366, -0.96391142558592, 0.254173562323819 ], [ -1.162108118497281, -0.177279023519669, -0.333302677526943 ], [ -0.75073770140149, 0.069339606899038, -0.282299162154715 ], [ -0.248051143564015, 0.433803423840371, 0.989552728565161 ], [ -0.319343646436649, -0.962277253344078, 0.072540216589957 ], [ 1.476744957214137, -0.820971908478466, -1.029469985625807 ], [ 1.31222803695039, 0.973900135241607, -0.724833236294127 ], [ -0.737467595047555, 0.346488314880271, 0.080026252985241 ], [ 1.032268431440643, -1.0340650736259, 0.375333397914469 ], [ -0.04336191880882, -1.305242774340427, -1.306594178296657 ], [ 0.317082441739896, -0.786952118746646, -0.420753917306504 ], [ -2.042372718631052, -0.653761340855891, -1.525582434911148 ], [ 1.5627151841059, 0.666323320125205, 0.405230930980468 ], [ 0.596692469704869, 0.181737365653195, 0.793951016551394 ], [ -0.240314935458693, 0.876792396259693, 0.518545084954071 ], [ -0.348086137639198, 1.371430032813545, 0.742971007128255 ], [ 0.057555513838255, 0.48657180855455, -0.284493841793181 ], [ -0.839017775470213, -0.656432901346936, 0.731271859346603 ], [ 0.393476942155135, -0.057409161719353, 0.841730109375406 ], [ 0.79170400739336, -1.90252930198389, 0.543400521660769 ], [ -0.677491396127784, -1.429404836310543, -1.418078468658661 ], [ -0.843193305751992, -0.610009841807719, -0.963329919051695 ], [ 0.539814015212037, 0.742001932149153, 0.133229918994656 ], [ 0.34430549409929, 2.03376427595849, -0.486023214986271 ], [ -0.110676355831957, -0.797960650677383, -0.205120566250551 ], [ 0.270567431196356, -1.070195278090156, -0.164254063229279 ], [ -0.465620955095268, -0.589569564776516, 0.466725246743478 ], [ 0.93752798821189, 0.591730484537409, 0.418191706990839 ], [ -0.229787567650258, 0.810589697953479, 0.133762891944777 ], [ 0.120156980455765, 1.072222696417984, 0.816267782749299 ], [ 0.573810436558278, 0.167445199347545, -1.292123515611396 ], [ -0.39810674224859, -0.675729319305791, -1.114239612201009 ], [ 1.480485582357746, -2.219330707295776, 0.188284509800283 ], [ -0.077219054296149, -0.022922283749819, -0.12979760348913 ], [ -1.221351939893662, -0.604637876810924, 0.881226840992909 ], [ 0.764628165512793, 1.421535619136312, 1.628528053586807 ], [ 0.4749680927034, -0.395641350171066, 0.765070582534126 ], [ 0.0354274470338, 0.32294832569372, 1.715514569460402 ], [ -1.303341656036658, -2.00016868956449, -1.496400387073415 ], [ -0.799534611383834, 0.687455050891704, -0.356960880782081 ], [ 0.468834281243051, -1.349381160658336, 0.028264065974753 ], [ -0.441570313626074, -0.363708627296566, 0.205889229996319 ], [ -0.08543348745511, 0.826039914578414, 0.530249622786952 ], [ 1.300435992088053, 0.552580480183279, -1.492078168198724 ] ]
null
[ [ 0.01845047109701121, 0.0002910698918980307, -0.0005149510203832563 ], [ 0.0002910698918980307, 0.01813894514255979, 0.00019209518732391415 ], [ -0.0005149510203832563, 0.00019209518732391415, 0.020038668330722362 ] ]
false
null
null
-451,673.028
null
1.510471
3.091966
{"input": {"AVE_TEMP(K)": 1094.5, "DESIRED_TEMP(K)": 1100.0, "METHOD(1-VV,2-NH,3-LV,4-LVPR,5-NHRP)": 2, "TEMP(K)": 1098.6, "TIME(fs)": 370.0, "TIME_INTERVAL(fs)": 200.0, "TOT_TEMP(K)": 202990.0}, "property_keys": {"energy": "eTot", "forces": "Force", "stress": "Pressure Internal"}, "hash": "2497905155528005846237655108982888094115379209667586403974664357195560485779576708459380101940436350526479067380693432995433018056194754934271727751815689", "id": "MD_2497905155528005846237655"}
MD_2497905155528005846237655
2024-10-15T15:48:59
9322604277883413288382462897180077497938598989016380170267213349338820236284825712648976028529237513563970855465629325217891128431196324791585626696434155
PO_9322604277883413288382462
null
null
[ "temperature:1100", "frame:184" ]
[ "Ni__1100k__MOVEMENT__184" ]
[ "DS_cgjdk1e2txjy_0" ]
2024-10-15T19:55:37
1001943598167242547
CO_1001943598167242547
PWMLFF_feature_comparison_NPJ2023
[ "Ting Han", "Jie Li", "Liping Liu", "Fengyu Li", "Lin-Wang Wang" ]
Partial dataset for "Accuracy evaluation of different machine learning force field features". The included data is limited to that hosted directly on the repository at the related GitHub link. From publication abstract: Predicting energies and forces using machine learning force field (MLFF) depends on accurate descriptions (features) of chemical environment. Despite the numerous features proposed, there is a lack of controlled comparison among them for their universality and accuracy. In this work, we compared several commonly used feature types for their ability to describe physical systems. These different feature types include cosine feature, Gaussian feature, moment tensor potential (MTP) feature, spectral neighbor analysis potential feature, simplified smooth deep potential with Chebyshev polynomials feature and Gaussian polynomials feature, and atomic cluster expansion feature. We evaluated the training root mean square error (RMSE) for the atomic group energy, total energy, and force using linear regression model regarding to the density functional theory results. We applied these MLFF models to an amorphous sulfur system and carbon systems, and the fitting results show that MTP feature can yield the smallest RMSE results compared with other feature types for either sulfur system or carbon system in the disordered atomic configurations. Moreover, as an extending test of other systems, the MTP feature combined with linear regression model can also reproduce similar quantities along the ab initio molecular dynamics trajectory as represented by Cu systems. Our results are helpful in selecting the proper features for the MLFF development.
[ "C", "H", "Mg", "Ni", "O", "Si" ]
6
17,255
17,255
918,240
0
17,255
0
17,255
0
17,255
-94,982.575812
28,080,747,868.058937
0
2024-10-15T15:57:14
[ [ 1, 1, 1 ] ]
[ 3 ]
2024
[ 0.13830806760759715, 0.027225997560550618, 0.15290120230005227, 0.35931782540512286, 0.001633559853633037, 0.3206133472730441 ]
CC-BY-4.0
{'source-publication': 'https://www.doi.org/10.1088/1367-2630/acf2bb', 'source-data': 'https://github.com/LonxunQuantum/PWMLFF_library/tree/main', 'other': None}
null
3416353886768184069498309577448540463118046042128164727481437935635525348649148828592205659488310261220439788024414920747258168148334049671414505074802036
DS_cgjdk1e2txjy_0
PWMLFF_feature_comparison_NPJ2023__Han-Li-Liu-Li-Wang__DS_cgjdk1e2txjy_0
Si64
Si
A
[ 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14 ]
[ "Si" ]
[ 1 ]
1
64
[ [ 10.93699157, 0, 0 ], [ 0, 10.93699157, 0 ], [ 0, 0, 10.93699157 ] ]
[ [ 0.144325595689365, 0.351945747191376, 0.17608816357899 ], [ 0.116684266469298, 0.35219637511955, 0.643907069558813 ], [ 0.10390182991827, 0.838295546460563, 0.163460180897474 ], [ 0.142394634638507, 0.84776332185496, 0.682225272481198 ], [ 0.62402570555094, 0.33965807613678, 0.157319767279723 ], [ 0.631903618908833, 0.338855820510511, 0.677772655826318 ], [ 0.645572542603813, 0.855404108744679, 0.187683084733128 ], [ 0.617068832732276, 0.844636384025515, 0.675956733354655 ], [ 0.997475814483906, 0.972333463806689, 0.270524187784285 ], [ 0.996665342350693, 0.956838455343275, 0.784662397952561 ], [ 0.004767621780889, 0.473243953093709, 0.269169257762695 ], [ 0.011263748645315, 0.492788636974251, 0.782294443317614 ], [ 0.51105658269402, 0.991842202402172, 0.276463203827173 ], [ 0.510898747744344, 0.975033497881152, 0.787572020504934 ], [ 0.50424894582911, 0.484791887963372, 0.270856836906938 ], [ 0.496464637137143, 0.46379705667683, 0.771907160225213 ], [ 0.122974197592096, 0.091429170864719, 0.404532467765491 ], [ 0.104605584644168, 0.100602614432408, 0.911888253533673 ], [ 0.104508129791282, 0.599817801471186, 0.41176707589172 ], [ 0.141944053026644, 0.614535941908119, 0.90516211843397 ], [ 0.58977564058454, 0.091587334039788, 0.435303981770479 ], [ 0.636353176317066, 0.092881391048887, 0.923903349259735 ], [ 0.627971992437508, 0.592138157361508, 0.432362240628444 ], [ 0.608501482557438, 0.634281727639111, 0.904375884364316 ], [ 0.005614271295738, 0.249548315854739, 0.053305824107148 ], [ 0.984557879651653, 0.212154263105271, 0.523453500936281 ], [ 0.985368788320238, 0.721693915089503, 0.013715893404186 ], [ 0.990181471924879, 0.742252805965775, 0.555953898223184 ], [ 0.484224665335362, 0.224511790131119, 0.042802387554368 ], [ 0.492954496988737, 0.236115869618072, 0.555462953777876 ], [ 0.485721734448224, 0.747236425473214, 0.047226651021371 ], [ 0.468561951944362, 0.720316731609688, 0.539124190970823 ], [ 0.373661560385145, 0.358041551619342, 0.402773195212704 ], [ 0.362387782614451, 0.354744534684426, 0.925890268527262 ], [ 0.353772610543254, 0.850015235561602, 0.404207801361286 ], [ 0.362990277616162, 0.877844444856983, 0.910863471230658 ], [ 0.878038942477842, 0.357225423023109, 0.396619516406559 ], [ 0.878117938325794, 0.361270108957065, 0.91335652699134 ], [ 0.891430743833501, 0.85386726564058, 0.4150759491961 ], [ 0.860546197671095, 0.861415454910891, 0.915063105781187 ], [ 0.226666654646322, 0.985635983603776, 0.048651218615625 ], [ 0.239270296993571, 0.967178733446596, 0.54117747042937 ], [ 0.248521393990228, 0.488430219941683, 0.032974165901051 ], [ 0.245449809114008, 0.478774091751277, 0.516211164968513 ], [ 0.750098730636325, 0.975770652091242, 0.048807277389452 ], [ 0.725193194546379, 0.965166262263477, 0.523084624564312 ], [ 0.723747385478241, 0.47112955067093, 0.034305036175792 ], [ 0.771874180878849, 0.467730763313574, 0.550421263787592 ], [ 0.375919594627026, 0.101208357984942, 0.162202159226156 ], [ 0.397486061000431, 0.111883038691267, 0.681525650017076 ], [ 0.363570133500484, 0.611129670631431, 0.173171534333727 ], [ 0.362253190448476, 0.580399454346482, 0.668628298201962 ], [ 0.874612159626099, 0.108625174760157, 0.166195204312271 ], [ 0.872078878498067, 0.086731304766901, 0.665750957836253 ], [ 0.857502881278777, 0.583283303358818, 0.157649638516781 ], [ 0.87780949293629, 0.600923203146455, 0.677777083300997 ], [ 0.266669652036809, 0.213116965803995, 0.311473363227715 ], [ 0.253930839048318, 0.239239692920227, 0.788928832420262 ], [ 0.232754699420897, 0.713237889914808, 0.297147639217719 ], [ 0.282307167039792, 0.723837586473931, 0.803906688307362 ], [ 0.723192426474759, 0.224518293689135, 0.30297624458433 ], [ 0.754922121532668, 0.214080818790984, 0.794792888920224 ], [ 0.77346248663249, 0.715730709817241, 0.319239313345804 ], [ 0.759024639849652, 0.731918282131001, 0.797312903554611 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
10660369767032678110343959193986358046292387229448451753043175985099964552276982542777596395383541165440057646685286164980626907815657256016135711972351549
1
PWmat
DFT-PBE
null
[ [ -0.872468730000246, 0.417332045838648, 0.518416392798424 ], [ -0.476523776904778, 0.505602058261406, -0.306186613796562 ], [ -1.379822236037941, 1.084713499322057, 1.432309040022389 ], [ 0.344208735173529, 1.323642424612324, 0.487331634904666 ], [ 1.327598336310585, -0.113589397909029, -0.491542302216087 ], [ -1.173438159017909, -0.353423596471557, 1.257177082555 ], [ 0.508867049006712, 1.428957398920381, 0.415236865714454 ], [ -0.47781939567505, 1.454333667194087, 2.371521555031854 ], [ 0.175778829878408, -0.936092460878096, -1.445890936058433 ], [ 0.004871990157689, -1.581819386587114, -0.6249288042926 ], [ 0.712182219048042, -0.412499500663496, -0.685023080182839 ], [ -0.909030283281702, 1.84477115823768, -0.766563757415972 ], [ 1.488277203355713, 1.884265472414405, -0.717759629046931 ], [ 0.19495851651207, -0.94085109938515, -1.681103198682281 ], [ -0.563740837514413, 0.636785524804049, -1.250368463551043 ], [ -0.129893254661236, -0.853097649096557, -2.588303232469845 ], [ 0.603425431031609, 0.355475114156765, -0.924577803806024 ], [ -0.575138697832467, -1.297785325345556, -0.060911043979948 ], [ 0.649025192073746, -0.319696318679903, -0.925866093970257 ], [ 1.802405823383653, 0.432553796250066, -0.444613997357371 ], [ -0.980877695693734, -1.838604126913402, 0.759925460935937 ], [ 1.888341296751442, -0.845595678365986, 0.336095499041177 ], [ 0.474491871622778, -0.34700946774043, 0.2816770590019 ], [ 0.669380357910565, 2.508074643865229, -0.743861811787318 ], [ 0.730275958327746, 1.292635347463651, 0.88562274126641 ], [ -0.570739951932708, -0.622885855987768, -0.430322830736353 ], [ -0.07404006545768, 0.422211363973335, -1.771535375212599 ], [ -1.642971037215829, 1.305242512816999, -0.460093671799688 ], [ -1.429901486238289, -0.192562643026662, 1.232007078630485 ], [ -0.210884885282234, -1.114120447799505, 1.438294504919227 ], [ -0.552512257208816, -0.554125447330497, -0.392012018498341 ], [ -1.640013826510502, 0.067356632996491, -0.441646041221681 ], [ -1.912130407195159, -0.658867055579501, -0.968274223757151 ], [ -1.451219243847072, -0.219517047721239, 1.377473787659098 ], [ -1.323277454304795, -0.397512428937039, -0.001338840585714 ], [ -1.247587944660772, -0.246195124391429, -1.569082837408819 ], [ 0.723641436723375, 1.057931031334252, -0.683086661370768 ], [ 0.07694141154638, -0.332112235448121, 0.078218844066101 ], [ 1.147731533382706, -1.463247658625552, -0.160773715700376 ], [ -1.308881145525118, 0.082596007607594, -0.091263423440392 ], [ -0.223754205469034, 0.582523266552451, 0.352487624820013 ], [ -1.18558975435682, -1.526537146046287, -0.183294794586366 ], [ 0.033661483655006, 0.104101279268788, -1.784955116827781 ], [ 1.115784081923624, 0.263813308283765, -1.279455458760316 ], [ -0.636309987413703, -0.416808307207133, -0.831096737545544 ], [ -1.802247747997192, 0.587828462917717, -1.843617950699501 ], [ -0.794039920844645, -1.080617597806487, 1.426156960101419 ], [ 1.547695589603464, 0.149817885481279, 0.166566902866433 ], [ 1.408837023580887, 0.50517499407294, -0.280532717805622 ], [ 2.868906010337815, 0.777871163750498, 0.372606394290245 ], [ -0.777882338868131, 0.24577745564428, 1.508331337019253 ], [ -0.055783055850728, -0.91037588039871, 1.508241394586267 ], [ 0.836381968349216, -0.877985914519063, -0.159339310305042 ], [ 0.736300851266222, 0.158274493734212, 1.422222062651911 ], [ -0.777629998146955, -1.169916135937017, 0.328760698027276 ], [ 0.651049346819486, -1.275213820422484, 1.077500820077724 ], [ 0.920717742528873, 0.10243527102684, 1.854965323191901 ], [ 1.539521619689918, 1.245612250310286, 0.196379469988158 ], [ 0.522337076564984, -1.481769769799119, 0.681405719805231 ], [ 0.99185408507782, -0.043896595597417, 1.38731756345424 ], [ -1.462896873656838, 0.608645431022923, -0.115241525069787 ], [ -0.948886664413885, -0.213770522507387, -0.692410710804676 ], [ 1.481136593952824, 0.798952673660932, 1.617291811364334 ], [ 1.393154652506435, 0.403611708846813, 1.0229401601407 ] ]
null
[ [ -0.005066031721052864, -0.004277717056843778, -0.0000803166261087539 ], [ -0.004277717056843778, -0.0012192222823482104, -0.0009698832732998053 ], [ -0.0000803166261087539, -0.0009698832732998053, -0.0047635562249416456 ] ]
false
null
null
-6,842.823731
null
1.708422
2.995754
{"input": {"AVE_TEMP(K)": 916.68, "DESIRED_TEMP(K)": 900.0, "METHOD(1-VV,2-NH,3-LV,4-LVPR,5-NHRP)": 2, "TEMP(K)": 677.88, "TIME(fs)": 524.0, "TIME_INTERVAL(fs)": 200.0, "TOT_TEMP(K)": 237440.0}, "property_keys": {"energy": "eTot", "forces": "Force", "stress": "Pressure Internal"}, "hash": "12865399500537976548527375353217477225002203703176849763155363825195888037494969381642171846114104607423856331742242409262262606716992539156291904237383014", "id": "MD_1286539950053797654852737"}
MD_1286539950053797654852737
2024-10-15T15:49:04
757755477687678390764488762528870286689855849252099725733337274923067516250812451623782619040310319452122728702484556149005377419139259780143421975737872
PO_7577554776876783907644887
null
null
[ "temperature:900", "frame:261" ]
[ "Si_4600images__900k__MOVEMENT__261" ]
[ "DS_cgjdk1e2txjy_0" ]
2024-10-15T19:56:30
1002213566330631431
CO_1002213566330631431
PWMLFF_feature_comparison_NPJ2023
[ "Ting Han", "Jie Li", "Liping Liu", "Fengyu Li", "Lin-Wang Wang" ]
Partial dataset for "Accuracy evaluation of different machine learning force field features". The included data is limited to that hosted directly on the repository at the related GitHub link. From publication abstract: Predicting energies and forces using machine learning force field (MLFF) depends on accurate descriptions (features) of chemical environment. Despite the numerous features proposed, there is a lack of controlled comparison among them for their universality and accuracy. In this work, we compared several commonly used feature types for their ability to describe physical systems. These different feature types include cosine feature, Gaussian feature, moment tensor potential (MTP) feature, spectral neighbor analysis potential feature, simplified smooth deep potential with Chebyshev polynomials feature and Gaussian polynomials feature, and atomic cluster expansion feature. We evaluated the training root mean square error (RMSE) for the atomic group energy, total energy, and force using linear regression model regarding to the density functional theory results. We applied these MLFF models to an amorphous sulfur system and carbon systems, and the fitting results show that MTP feature can yield the smallest RMSE results compared with other feature types for either sulfur system or carbon system in the disordered atomic configurations. Moreover, as an extending test of other systems, the MTP feature combined with linear regression model can also reproduce similar quantities along the ab initio molecular dynamics trajectory as represented by Cu systems. Our results are helpful in selecting the proper features for the MLFF development.
[ "C", "H", "Mg", "Ni", "O", "Si" ]
6
17,255
17,255
918,240
0
17,255
0
17,255
0
17,255
-94,982.575812
28,080,747,868.058937
0
2024-10-15T15:57:14
[ [ 1, 1, 1 ] ]
[ 3 ]
2024
[ 0.13830806760759715, 0.027225997560550618, 0.15290120230005227, 0.35931782540512286, 0.001633559853633037, 0.3206133472730441 ]
CC-BY-4.0
{'source-publication': 'https://www.doi.org/10.1088/1367-2630/acf2bb', 'source-data': 'https://github.com/LonxunQuantum/PWMLFF_library/tree/main', 'other': None}
null
3416353886768184069498309577448540463118046042128164727481437935635525348649148828592205659488310261220439788024414920747258168148334049671414505074802036
DS_cgjdk1e2txjy_0
PWMLFF_feature_comparison_NPJ2023__Han-Li-Liu-Li-Wang__DS_cgjdk1e2txjy_0
CH4
CH4
A4B
[ 6, 1, 1, 1, 1 ]
[ "C", "H" ]
[ 0.2, 0.8 ]
2
5
[ [ 10, 0, 0 ], [ 0, 10, 0 ], [ 0, 0, 10 ] ]
[ [ 0.631731386897508, 0.292605408044025, 0.993260616509522 ], [ 0.721178791636042, 0.345677396674681, 0.0382368212542 ], [ 0.605700989757233, 0.230617199284096, 0.083187235958561 ], [ 0.565167914285546, 0.3815845226753, 0.998995242845262 ], [ 0.637608440770951, 0.254159230069556, 0.882088284382961 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
1533622933556296597664376526403419048749992557570244212094548723307768047992148701396192225169687981552796969306611334695733756374137577575251310915882849
1
PWmat
DFT-PBE
null
[ [ -0.399649197878629, -1.393125814805158, -0.505302727123865 ], [ -0.077296189365773, 0.77599354629422, 1.244274451981261 ], [ 0.238548595158588, 0.38940171222286, 1.372711669048761 ], [ 0.353451697184628, 0.599610864558397, 0.410844545480478 ], [ -0.120478654684855, -0.368475738701097, -2.518771583100818 ] ]
null
[ [ 0.0001042097374433072, -0.00016929857958781808, -0.00032675302309738256 ], [ -0.00016929857958781808, -0.001113685700794739, -0.001144498861977548 ], [ -0.00032675302309738256, -0.001144498861977548, -0.004875399806392464 ] ]
false
null
null
-218.665831
null
1.561337
2.548431
{"input": {"AVE_TEMP(K)": 990.43, "DESIRED_TEMP(K)": 1000.0, "METHOD(1-VV,2-NH,3-LV,4-LVPR,5-NHRP)": 2, "TEMP(K)": 1099.6, "TIME(fs)": 922.0, "TIME_INTERVAL(fs)": 100.0, "TOT_TEMP(K)": 921040.0}, "property_keys": {"energy": "eTot", "forces": "Force", "stress": "Pressure Internal"}, "hash": "9676906782586246146565810970912150840382975656809081835026376058467741922672963434534227287323759690465161987520103183032213024434349441640048669112193743", "id": "MD_9676906782586246146565810"}
MD_9676906782586246146565810
2024-10-15T15:45:17
6680737713420919769147370292289154193537196553894597119293818438753313234529048395061845578597868395474418662826492992428043982995485208231231389377833427
PO_6680737713420919769147370
null
null
[ "frame:921" ]
[ "CH4__CH4__2-1000__MOVEMENT__921" ]
[ "DS_cgjdk1e2txjy_0" ]
2024-10-15T19:54:03
1002675158960473157
CO_1002675158960473157
PWMLFF_feature_comparison_NPJ2023
[ "Ting Han", "Jie Li", "Liping Liu", "Fengyu Li", "Lin-Wang Wang" ]
Partial dataset for "Accuracy evaluation of different machine learning force field features". The included data is limited to that hosted directly on the repository at the related GitHub link. From publication abstract: Predicting energies and forces using machine learning force field (MLFF) depends on accurate descriptions (features) of chemical environment. Despite the numerous features proposed, there is a lack of controlled comparison among them for their universality and accuracy. In this work, we compared several commonly used feature types for their ability to describe physical systems. These different feature types include cosine feature, Gaussian feature, moment tensor potential (MTP) feature, spectral neighbor analysis potential feature, simplified smooth deep potential with Chebyshev polynomials feature and Gaussian polynomials feature, and atomic cluster expansion feature. We evaluated the training root mean square error (RMSE) for the atomic group energy, total energy, and force using linear regression model regarding to the density functional theory results. We applied these MLFF models to an amorphous sulfur system and carbon systems, and the fitting results show that MTP feature can yield the smallest RMSE results compared with other feature types for either sulfur system or carbon system in the disordered atomic configurations. Moreover, as an extending test of other systems, the MTP feature combined with linear regression model can also reproduce similar quantities along the ab initio molecular dynamics trajectory as represented by Cu systems. Our results are helpful in selecting the proper features for the MLFF development.
[ "C", "H", "Mg", "Ni", "O", "Si" ]
6
17,255
17,255
918,240
0
17,255
0
17,255
0
17,255
-94,982.575812
28,080,747,868.058937
0
2024-10-15T15:57:14
[ [ 1, 1, 1 ] ]
[ 3 ]
2024
[ 0.13830806760759715, 0.027225997560550618, 0.15290120230005227, 0.35931782540512286, 0.001633559853633037, 0.3206133472730441 ]
CC-BY-4.0
{'source-publication': 'https://www.doi.org/10.1088/1367-2630/acf2bb', 'source-data': 'https://github.com/LonxunQuantum/PWMLFF_library/tree/main', 'other': None}
null
3416353886768184069498309577448540463118046042128164727481437935635525348649148828592205659488310261220439788024414920747258168148334049671414505074802036
DS_cgjdk1e2txjy_0
PWMLFF_feature_comparison_NPJ2023__Han-Li-Liu-Li-Wang__DS_cgjdk1e2txjy_0
Mg54
Mg
A
[ 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12 ]
[ "Mg" ]
[ 1 ]
1
54
[ [ 10.71241871, 0, 0 ], [ 0, 10.71241871, 0 ], [ 0, 0, 10.71241871 ] ]
[ [ 0.023961847948662, 0.961657455961301, 0.093394013359726 ], [ 0.05272978541177, 0.971618703291337, 0.39053094643559 ], [ 0.985646169338561, 0.952267850242961, 0.792785822069299 ], [ 0.009952157079949, 0.248266156686177, 0.071087577217138 ], [ 0.078890334796418, 0.298638254759585, 0.407535969244334 ], [ 0.966388077978827, 0.239926779232532, 0.779622447165812 ], [ 0.016893468904375, 0.61661689403558, 0.05292603574312 ], [ 0.008831216202, 0.565476172770854, 0.436879482440386 ], [ 0.039757712512347, 0.643899585959929, 0.736630451564282 ], [ 0.345813122477225, 0.914994221723734, 0.082954578039605 ], [ 0.360107627906252, 0.955173639350456, 0.43330211688067 ], [ 0.347733141318002, 0.9418852092859, 0.750143509706504 ], [ 0.378505778071924, 0.308581056635642, 0.041920516842841 ], [ 0.365885526521842, 0.250296762155743, 0.461773603965307 ], [ 0.382364876867717, 0.262929870827362, 0.744419812389928 ], [ 0.342935258484692, 0.611952360109548, 0.067753577975042 ], [ 0.298032937206821, 0.576199641825772, 0.440440008795013 ], [ 0.322284190071484, 0.612898577094277, 0.762275805458921 ], [ 0.680784264285407, 0.902110031970007, 0.142273909065258 ], [ 0.663257942420926, 0.904945881638755, 0.408578870914748 ], [ 0.672886910803833, 0.92164952056007, 0.753198689286339 ], [ 0.655634567920321, 0.28439264688756, 0.070859015532283 ], [ 0.673183383655172, 0.274246262366963, 0.434432643180052 ], [ 0.668856345587834, 0.26111228618669, 0.765416774270456 ], [ 0.671327096454573, 0.610005775059698, 0.114054926312035 ], [ 0.7168137355099, 0.604888807668439, 0.441707174514627 ], [ 0.714584760270617, 0.611496691112406, 0.741623026169095 ], [ 0.235861155597971, 0.124485441163184, 0.229776331884188 ], [ 0.181599319582897, 0.117189654136759, 0.626623876585174 ], [ 0.221419378293732, 0.112107478953943, 0.916298460250146 ], [ 0.182502915946825, 0.44618142621123, 0.184860398718443 ], [ 0.179608934539126, 0.397199740113953, 0.648909188266179 ], [ 0.140189009860445, 0.434118657677671, 0.9211520364312 ], [ 0.184529757267717, 0.759048064407536, 0.243658136331073 ], [ 0.16746134084743, 0.800192698520773, 0.572531340640828 ], [ 0.177174266349113, 0.794149533809931, 0.920271285222646 ], [ 0.522218308424781, 0.092073692244993, 0.253030457762314 ], [ 0.544159906642449, 0.082378115791925, 0.588804393917249 ], [ 0.491284520498424, 0.080854016255381, 0.932604254228589 ], [ 0.485016606739184, 0.445669423599543, 0.254285154157098 ], [ 0.511676676781361, 0.451241768242617, 0.612066192672963 ], [ 0.527141370084629, 0.481023233416043, 0.896877094179116 ], [ 0.465715374816598, 0.744139488604113, 0.294282591068081 ], [ 0.505501422744957, 0.75574270733283, 0.598056660189619 ], [ 0.526990319381659, 0.757921913270356, 0.902378225451672 ], [ 0.831324296228859, 0.12416628489842, 0.261904654379663 ], [ 0.8678656415387, 0.082763002606077, 0.558185287219998 ], [ 0.825102970609798, 0.06729760655131, 0.956801840247641 ], [ 0.848905191213783, 0.410388742697417, 0.2277053862183 ], [ 0.871967626401869, 0.39629144385174, 0.610306722654612 ], [ 0.852383666262053, 0.441003705795146, 0.91252078034109 ], [ 0.887608078281805, 0.77075273186791, 0.269400836423871 ], [ 0.869488873456913, 0.787883257650917, 0.571294250102141 ], [ 0.838653115679365, 0.788969360158402, 0.95472435628629 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
6019823848976801331981221818346184686237757959271573307725149557343972150888529592495005305631146527155236309503444994182317763299007707507927255470626377
1
PWmat
DFT-PBE
null
[ [ -0.377298759601091, 0.213793237383964, -0.161048683482307 ], [ -0.115801446414874, -0.172523248244272, 0.095390294824919 ], [ -0.571219552955928, 0.212837485553774, 0.571041717001827 ], [ -0.010606571006637, 0.169042403622218, -0.092885529580976 ], [ 0.222462257361477, 0.438971823422325, 0.036018023564891 ], [ -0.632774876577328, 0.79835110979735, -0.443573958096338 ], [ 0.207222121101692, -0.233280072306119, -0.512089776126772 ], [ -0.339482932533984, -0.327871614588489, 0.022030425111755 ], [ 0.632840958772865, 0.543002767968882, -0.399780744625072 ], [ -0.286742288263917, 0.033850980769486, -0.303163449697171 ], [ 0.470744556284062, -0.032856219361592, -0.053705958076167 ], [ -0.27260760708169, 0.395295388223345, 0.171250574226377 ], [ 0.309802974060351, 0.070900033552522, -0.075458512946006 ], [ 0.044947300679422, -0.161755799846625, 0.382229789006402 ], [ -0.294126256194388, 0.310822797093296, -0.60325593142842 ], [ -0.233708246895048, -0.156974866021347, 0.363452031205628 ], [ 0.056712111604218, 0.243688809530758, -0.172637371227605 ], [ 0.079120868726501, -0.028542839458934, 0.072823091016804 ], [ 0.36535883867751, -0.041620177651091, 0.553827538609527 ], [ -0.356302253322055, 0.019937142173193, -0.369058710000386 ], [ -0.671795324755542, -0.086857985325757, -0.095259429202863 ], [ -0.195414109385916, 0.028141096552916, 0.047247251130291 ], [ 0.092137144533764, -0.267810680227657, 0.054069225565924 ], [ -0.230814885843204, 0.106013810240537, -0.173235142599638 ], [ -0.030566278640538, 0.048257011346454, 0.045238300289026 ], [ 0.40564930898719, 0.315220535781953, 0.250089120623621 ], [ -0.071241105751072, -0.234227849091565, 0.167298221441389 ], [ 0.097216403949178, -0.237841505451399, 0.172594233829841 ], [ 0.468051766682807, 0.308404760925187, 0.351117158222529 ], [ 0.794574650654093, -0.036574820788682, -0.159173164311139 ], [ 0.140195933846197, 0.267774581731363, -0.972594891197063 ], [ 0.455002397054059, -0.339888933692315, 0.46859032239823 ], [ -0.629835915698845, 0.21691235663443, 0.649768603543057 ], [ 0.242855960881662, 0.053111250758504, -0.306161147623436 ], [ -0.19460442853368, -0.129920433208057, 0.077299954504654 ], [ 0.063672441751638, -0.110314786349905, 0.095366576777363 ], [ 0.206911088077362, -0.442662842407222, 0.079671960579 ], [ 0.198350829387825, -0.169843612309426, -0.082889337090433 ], [ -0.932110153973821, -0.036656211743072, -0.019266730396037 ], [ -0.174490303977255, 0.106431515629915, -0.287888156582277 ], [ -0.2306128457503, -0.358311018193103, 0.39838742877519 ], [ -0.237264434950137, 0.2614083909081, -0.029815826746193 ], [ -0.367247984981102, 0.197070594459084, 0.26588938322947 ], [ 0.030835870573128, 0.116581906301902, 0.133527840329295 ], [ 0.18724760167449, -0.135345616529653, -0.27929304960716 ], [ -0.050907952589448, 0.294061678481497, 0.147227469536426 ], [ 0.307179392327332, -0.253162152746104, -0.229888843244614 ], [ 0.909227761975935, -0.628397372220189, -0.145527523679494 ], [ -0.126141401501422, -0.37470828701011, -0.263082492045233 ], [ 0.221293696773373, -0.583622247579825, 0.471207661304819 ], [ 0.367507652685803, -0.146339317957085, -0.26621867849769 ], [ 0.059917808046123, 0.068459670650937, -0.026586761569129 ], [ -0.181279809780813, -0.305378849658078, -0.073896551330281 ], [ 0.177963792851835, 0.192270224677761, 0.454370130196188 ] ]
null
[ [ 0.01764801891634613, -0.001079729469016304, -0.0007960435934151934 ], [ -0.001079729469016304, 0.018576797822521154, -0.0028669440065623776 ], [ -0.0007960435934151934, -0.0028669440065623776, 0.018623529789588953 ] ]
false
null
null
-79,597.40752
null
0.492684
1.11479
{"input": {"AVE_TEMP(K)": 491.76, "DESIRED_TEMP(K)": 500.0, "METHOD(1-VV,2-NH,3-LV,4-LVPR,5-NHRP)": 2, "TEMP(K)": 479.41, "TIME(fs)": 1264.0, "TIME_INTERVAL(fs)": 200.0, "TOT_TEMP(K)": 315220.0}, "property_keys": {"energy": "eTot", "forces": "Force", "stress": "Pressure Internal"}, "hash": "11690359628300669954979003482540573491523183118304708285798555487704438996378887656492903732614066304198026106354038175736688633754104206758038526156634950", "id": "MD_1169035962830066995497900"}
MD_1169035962830066995497900
2024-10-15T15:45:19
1907144136983859206479467142605443633483141483463129751350680282976019495278608672099979421268793977148623543449549192598835820082847112712596801922010779
PO_1907144136983859206479467
null
null
[ "temperature:500", "frame:631" ]
[ "Mg_2600images__500k__MOVEMENT__631" ]
[ "DS_cgjdk1e2txjy_0" ]
2024-10-15T19:54:49
1002974015478556173
CO_1002974015478556173
PWMLFF_feature_comparison_NPJ2023
[ "Ting Han", "Jie Li", "Liping Liu", "Fengyu Li", "Lin-Wang Wang" ]
Partial dataset for "Accuracy evaluation of different machine learning force field features". The included data is limited to that hosted directly on the repository at the related GitHub link. From publication abstract: Predicting energies and forces using machine learning force field (MLFF) depends on accurate descriptions (features) of chemical environment. Despite the numerous features proposed, there is a lack of controlled comparison among them for their universality and accuracy. In this work, we compared several commonly used feature types for their ability to describe physical systems. These different feature types include cosine feature, Gaussian feature, moment tensor potential (MTP) feature, spectral neighbor analysis potential feature, simplified smooth deep potential with Chebyshev polynomials feature and Gaussian polynomials feature, and atomic cluster expansion feature. We evaluated the training root mean square error (RMSE) for the atomic group energy, total energy, and force using linear regression model regarding to the density functional theory results. We applied these MLFF models to an amorphous sulfur system and carbon systems, and the fitting results show that MTP feature can yield the smallest RMSE results compared with other feature types for either sulfur system or carbon system in the disordered atomic configurations. Moreover, as an extending test of other systems, the MTP feature combined with linear regression model can also reproduce similar quantities along the ab initio molecular dynamics trajectory as represented by Cu systems. Our results are helpful in selecting the proper features for the MLFF development.
[ "C", "H", "Mg", "Ni", "O", "Si" ]
6
17,255
17,255
918,240
0
17,255
0
17,255
0
17,255
-94,982.575812
28,080,747,868.058937
0
2024-10-15T15:57:14
[ [ 1, 1, 1 ] ]
[ 3 ]
2024
[ 0.13830806760759715, 0.027225997560550618, 0.15290120230005227, 0.35931782540512286, 0.001633559853633037, 0.3206133472730441 ]
CC-BY-4.0
{'source-publication': 'https://www.doi.org/10.1088/1367-2630/acf2bb', 'source-data': 'https://github.com/LonxunQuantum/PWMLFF_library/tree/main', 'other': None}
null
3416353886768184069498309577448540463118046042128164727481437935635525348649148828592205659488310261220439788024414920747258168148334049671414505074802036
DS_cgjdk1e2txjy_0
PWMLFF_feature_comparison_NPJ2023__Han-Li-Liu-Li-Wang__DS_cgjdk1e2txjy_0
CH4
CH4
A4B
[ 6, 1, 1, 1, 1 ]
[ "C", "H" ]
[ 0.2, 0.8 ]
2
5
[ [ 10, 0, 0 ], [ 0, 10, 0 ], [ 0, 0, 10 ] ]
[ [ 0.155282655515541, 0.430012161647184, 0.679979992664654 ], [ 0.149694175833598, 0.494288755509902, 0.769913649060632 ], [ 0.051500089351775, 0.406351900854238, 0.658168027580053 ], [ 0.219329537289357, 0.474248337008064, 0.601898736096296 ], [ 0.196193232665562, 0.336363916032389, 0.721727654146166 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
2469833145899629988148055520093149582550638469974212015836697824410351314782238023758956667836591169617359421700481936030245231300768155718679192085867531
1
PWmat
DFT-PBE
null
[ [ -0.1945076755833, 0.27057545579457, -1.507039214212101 ], [ -0.194104051127946, -0.22925749973818, 0.411630142623263 ], [ 0.155035255876725, -0.188272398017013, 0.776502780419723 ], [ 0.512373879768469, 0.251229002843423, -0.129653844735511 ], [ -0.28209684685715, -0.097480739930356, 0.454468710965415 ] ]
null
[ [ -0.0003442560731432964, -0.0003297713695015441, 0.00073936631262159 ], [ -0.0003297713695015441, -0.00037834697312809584, 0.0003916585709459008 ], [ 0.00073936631262159, 0.0003916585709459008, -0.0007707235819396702 ] ]
false
null
null
-219.54083
null
0.799167
1.543441
{"input": {"AVE_TEMP(K)": 304.36, "DESIRED_TEMP(K)": 300.0, "METHOD(1-VV,2-NH,3-LV,4-LVPR,5-NHRP)": 2, "TEMP(K)": 328.82, "TIME(fs)": 599.0, "TIME_INTERVAL(fs)": 100.0, "TOT_TEMP(K)": 180150.0}, "property_keys": {"energy": "eTot", "forces": "Force", "stress": "Pressure Internal"}, "hash": "8742606770972922722885722999945567305073604425040732247367544406482770787863818142528580162884280819095838962217419645706380929264998216027186665864571437", "id": "MD_8742606770972922722885722"}
MD_8742606770972922722885722
2024-10-15T15:45:16
6572370253460537599363912594715329263688787392372755045045126822956449146389063428499461181575806506091520995147810096928341032901713605346546731784890092
PO_6572370253460537599363912
null
null
[ "frame:598" ]
[ "CH4__CH4__0-300__MOVEMENT__598" ]
[ "DS_cgjdk1e2txjy_0" ]
2024-10-15T19:54:03
1003247687338028165
CO_1003247687338028165
PWMLFF_feature_comparison_NPJ2023
[ "Ting Han", "Jie Li", "Liping Liu", "Fengyu Li", "Lin-Wang Wang" ]
Partial dataset for "Accuracy evaluation of different machine learning force field features". The included data is limited to that hosted directly on the repository at the related GitHub link. From publication abstract: Predicting energies and forces using machine learning force field (MLFF) depends on accurate descriptions (features) of chemical environment. Despite the numerous features proposed, there is a lack of controlled comparison among them for their universality and accuracy. In this work, we compared several commonly used feature types for their ability to describe physical systems. These different feature types include cosine feature, Gaussian feature, moment tensor potential (MTP) feature, spectral neighbor analysis potential feature, simplified smooth deep potential with Chebyshev polynomials feature and Gaussian polynomials feature, and atomic cluster expansion feature. We evaluated the training root mean square error (RMSE) for the atomic group energy, total energy, and force using linear regression model regarding to the density functional theory results. We applied these MLFF models to an amorphous sulfur system and carbon systems, and the fitting results show that MTP feature can yield the smallest RMSE results compared with other feature types for either sulfur system or carbon system in the disordered atomic configurations. Moreover, as an extending test of other systems, the MTP feature combined with linear regression model can also reproduce similar quantities along the ab initio molecular dynamics trajectory as represented by Cu systems. Our results are helpful in selecting the proper features for the MLFF development.
[ "C", "H", "Mg", "Ni", "O", "Si" ]
6
17,255
17,255
918,240
0
17,255
0
17,255
0
17,255
-94,982.575812
28,080,747,868.058937
0
2024-10-15T15:57:14
[ [ 1, 1, 1 ] ]
[ 3 ]
2024
[ 0.13830806760759715, 0.027225997560550618, 0.15290120230005227, 0.35931782540512286, 0.001633559853633037, 0.3206133472730441 ]
CC-BY-4.0
{'source-publication': 'https://www.doi.org/10.1088/1367-2630/acf2bb', 'source-data': 'https://github.com/LonxunQuantum/PWMLFF_library/tree/main', 'other': None}
null
3416353886768184069498309577448540463118046042128164727481437935635525348649148828592205659488310261220439788024414920747258168148334049671414505074802036
DS_cgjdk1e2txjy_0
PWMLFF_feature_comparison_NPJ2023__Han-Li-Liu-Li-Wang__DS_cgjdk1e2txjy_0
Ni108
Ni
A
[ 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28 ]
[ "Ni" ]
[ 1 ]
1
108
[ [ 10.55556, 0, 0 ], [ 0, 10.55556, 0 ], [ 0, 0, 10.55556 ] ]
[ [ 0.995928820793317, 0.955873182140016, 0.047720262406381 ], [ 0.992839251216417, 0.962516842145823, 0.382439927497113 ], [ 0.006228521394971, 0.995906308958508, 0.677915842307031 ], [ 0.994696429904084, 0.308862579449023, 0.052949249759094 ], [ 0.989901965195692, 0.311936651720277, 0.373308486523266 ], [ 0.000204154423948, 0.299812413957103, 0.721124992131402 ], [ 0.99772407965935, 0.646140995298987, 0.052754586857652 ], [ 0.990173734276707, 0.656297876986706, 0.380506278004834 ], [ 0.01535885491483, 0.626170829137689, 0.70115603028241 ], [ 0.333848975462479, 0.96057627227132, 0.032950557590804 ], [ 0.343415944868469, 0.972443748037453, 0.377705726806911 ], [ 0.326896693480481, 0.966897443502932, 0.690976804952749 ], [ 0.347149800462221, 0.303565754309095, 0.051475467423822 ], [ 0.328722763454853, 0.301941837430787, 0.3617592451179 ], [ 0.319233426292523, 0.29882729094813, 0.722865992640819 ], [ 0.333749426061504, 0.653998021127241, 0.049667358955712 ], [ 0.341592970035877, 0.620623551129765, 0.384946087947158 ], [ 0.313629472579957, 0.640617595463041, 0.698139258816958 ], [ 0.682651557058235, 0.978838155121128, 0.025481117394659 ], [ 0.682129168137815, 0.974165926092266, 0.37392745562066 ], [ 0.669909060061299, 0.979766141062808, 0.678781551988108 ], [ 0.648470484751245, 0.317597000797356, 0.049900309489451 ], [ 0.658397509578896, 0.299628164586141, 0.364432700841999 ], [ 0.662911489600821, 0.309203449503065, 0.711676512182613 ], [ 0.682805870920222, 0.645715048153052, 0.038918293501299 ], [ 0.661044620243432, 0.637339628077254, 0.380304172842884 ], [ 0.661204517910869, 0.627532460519631, 0.708588007127251 ], [ 0.007564263030195, 0.131908504503707, 0.196975257956454 ], [ 0.984723243701269, 0.158662880292933, 0.53073813494907 ], [ 0.000734855109975, 0.139216739636459, 0.879740429828296 ], [ 0.993983108051673, 0.476172743556452, 0.19771941160812 ], [ 0.010433294497366, 0.459303428655811, 0.542637108182225 ], [ 0.995448649676986, 0.485788223287534, 0.86923322987299 ], [ 0.010952270411726, 0.815101414519699, 0.223939177640474 ], [ 0.988249695041805, 0.812048387681434, 0.544605281051753 ], [ 0.008333851823912, 0.81750362883907, 0.869652512005958 ], [ 0.333764245363894, 0.151193176794236, 0.195003401483461 ], [ 0.336540753891022, 0.148217368048949, 0.526439169676003 ], [ 0.354753944078543, 0.134773764252288, 0.885258734728322 ], [ 0.342133958522061, 0.475160236413985, 0.21099348758059 ], [ 0.333430209991827, 0.465415159691434, 0.555495976825869 ], [ 0.326169193470397, 0.460253444703771, 0.876820698581375 ], [ 0.355828243967449, 0.800758182559984, 0.214041602537852 ], [ 0.337758558188746, 0.798481564242591, 0.539413313863129 ], [ 0.333970098772512, 0.795452409397444, 0.868448534382765 ], [ 0.653248927752236, 0.138376742648844, 0.213862736039883 ], [ 0.648049665740437, 0.149922316794172, 0.529871641177493 ], [ 0.66213158608296, 0.147961811112253, 0.871912395105814 ], [ 0.670820890276391, 0.480194809968789, 0.183817851164503 ], [ 0.665893767667218, 0.46160707472285, 0.535315247471148 ], [ 0.647957312788005, 0.464885522943316, 0.880986345145582 ], [ 0.663415170006383, 0.798795792120126, 0.200343842685518 ], [ 0.658510206340423, 0.804506009452278, 0.529765388791926 ], [ 0.669626487726956, 0.799234514741723, 0.862124585375936 ], [ 0.173072031991621, 0.96663658967643, 0.209926643589556 ], [ 0.179909462460137, 0.967594815543301, 0.530659849376715 ], [ 0.17190612255791, 0.984887486909582, 0.879542632140528 ], [ 0.15334738362709, 0.298311005268609, 0.190535480888421 ], [ 0.169519230332315, 0.30585039141024, 0.5272234047822 ], [ 0.15904468320553, 0.304812947978491, 0.904819571454758 ], [ 0.171726429301119, 0.644495758697704, 0.208415807098182 ], [ 0.159227793620122, 0.64523141103031, 0.531986287816465 ], [ 0.151308659747664, 0.644254598279689, 0.874675155199131 ], [ 0.519784044161309, 0.962454895153094, 0.212324105394412 ], [ 0.488572641086, 0.97369513440574, 0.534908321302826 ], [ 0.5081598558515, 0.951113628844233, 0.861304203555578 ], [ 0.513233546029432, 0.315581975675335, 0.210397557941922 ], [ 0.48705956087, 0.325298744448107, 0.542744982917281 ], [ 0.500072149878477, 0.305407166556953, 0.892613450765355 ], [ 0.507439998442136, 0.64075874943897, 0.209997201770513 ], [ 0.496936090572597, 0.632693910181793, 0.532975345946627 ], [ 0.490924737251178, 0.619008650488656, 0.855428331909895 ], [ 0.819667104790217, 0.965202719696559, 0.203885922367258 ], [ 0.829936226319971, 0.992470507595967, 0.534420984334334 ], [ 0.834280394951897, 0.981683097105687, 0.850599376933088 ], [ 0.84267993769202, 0.298127224732894, 0.223814717124017 ], [ 0.821415971256586, 0.312364049664602, 0.530991339136519 ], [ 0.835905730684632, 0.310294172038781, 0.896660160231385 ], [ 0.838786562685565, 0.657964399408774, 0.211616365178577 ], [ 0.822463219671513, 0.622997894597333, 0.53161346088836 ], [ 0.83589352221995, 0.650579814522782, 0.860382704976584 ], [ 0.176348991702294, 0.131752462516706, 0.037997949895628 ], [ 0.154034407691005, 0.136657296206873, 0.360617969174574 ], [ 0.155516586126306, 0.128047817564799, 0.689392227165565 ], [ 0.181155041602251, 0.505313614939326, 0.052733977417023 ], [ 0.171966628780499, 0.46458311821885, 0.378526996745592 ], [ 0.16171968191497, 0.453359187605668, 0.707784577286017 ], [ 0.176613483004774, 0.80301790176243, 0.054004030590228 ], [ 0.162688852428911, 0.801820162583825, 0.382127946007973 ], [ 0.170342622092968, 0.815402925421592, 0.706519497384212 ], [ 0.511071029378964, 0.130435799613362, 0.056827778129144 ], [ 0.498468102028527, 0.144437101838815, 0.366731562630138 ], [ 0.48414996937296, 0.142285928697649, 0.704265865878275 ], [ 0.486769613689626, 0.466081567064925, 0.048385022134865 ], [ 0.506383340145245, 0.46483774172865, 0.379394240646318 ], [ 0.493300120322023, 0.47083616987335, 0.709217329128448 ], [ 0.508806894901054, 0.827124443501541, 0.034082794405923 ], [ 0.493257945789694, 0.812087728462743, 0.377114105781239 ], [ 0.513621642264587, 0.817237256029469, 0.689938828453377 ], [ 0.827594415348418, 0.123639309935661, 0.046890062211709 ], [ 0.832476409401795, 0.141749875441187, 0.37108608608733 ], [ 0.820432201159245, 0.152734113239322, 0.696131461966994 ], [ 0.834381999861721, 0.472802774897294, 0.047190617127943 ], [ 0.831774957927166, 0.472098660611534, 0.361779564466204 ], [ 0.820918827875872, 0.463089166336218, 0.696700098290996 ], [ 0.837535626923541, 0.814258110944965, 0.018550692101389 ], [ 0.810938728880191, 0.803751102088143, 0.372514631264309 ], [ 0.826556156165378, 0.794195115295702, 0.695173093002156 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
9525774231314360341007662939664867572653354042877515363968384725198046403364922185740578354532116284258002392224230295071426964898611419775156828070677565
1
PWmat
DFT-PBE
null
[ [ -0.850714427245936, -1.413577473790064, 0.494871427649055 ], [ -0.181191363406046, -1.342318824945324, 0.518466324502103 ], [ 1.828350848351752, 2.208966472064674, -1.58612339577179 ], [ 0.486492090659287, 0.313311547534132, 1.117985742935279 ], [ -1.630395066034779, 0.031473830031666, 0.369720320200158 ], [ 0.362613018811479, -0.251086029422682, 0.544500057518545 ], [ 0.011036107824546, -0.553480281643649, 1.08651925170609 ], [ -0.363178814274023, 1.593730307360698, 0.335905756077889 ], [ 1.495768787308658, -1.179072690019343, 0.499558563378041 ], [ -0.676336879276473, -0.694182555481109, -0.882580594054694 ], [ 1.211991516894948, -0.370143040941555, 1.521471339813285 ], [ -0.922880712865779, -0.905532115263848, -1.558723818704067 ], [ 1.59439389865371, -0.24934118545188, 0.644781272226944 ], [ -0.218136758991162, -0.4114101573142, -0.151990995772467 ], [ -0.39371593318101, 0.554074647580894, 0.584022031257675 ], [ -1.737235124528782, 0.596762254649609, 1.015093175981312 ], [ 0.903656715923458, -1.15313945900414, 0.986469472702666 ], [ -0.824512162751678, 0.611770343984527, -0.767818900818735 ], [ 1.796620408806588, 1.324153647450158, -0.09584954915208 ], [ 2.266188459438255, -0.436581467003597, -0.252119642382398 ], [ 0.609083936721382, -0.017487410747604, -1.63015191706146 ], [ -2.701705742409951, 1.898014168291469, 0.842399366900885 ], [ -1.208931251294925, -1.095410173777217, -0.880567713135909 ], [ 0.797638511887163, 0.271898171593625, 0.199997706982737 ], [ 1.046188901758611, 0.058848091483957, 0.98098827677626 ], [ 0.035205760104865, 0.500734181515155, 1.234556472002508 ], [ -0.124700811342998, -0.314530549277761, 0.759256047730557 ], [ 1.248323168166354, 0.697152351299231, -0.468425521788337 ], [ -1.233262147609081, 0.490607205109869, -0.278531896788706 ], [ 0.294697512653535, 0.306234697484501, -0.079933741259216 ], [ -0.947135242668483, -0.407338981651287, -1.469037193239098 ], [ 1.336438172929181, -0.81718835725182, 0.276298218322034 ], [ 0.137972794917072, 1.241909671990799, -1.07386521426564 ], [ 1.194539053802972, 0.729052040654349, 1.264008231267426 ], [ -0.364116471051975, 0.543902808197294, -0.068075564256411 ], [ 0.392856280025794, 0.153957795420779, 0.638006420873994 ], [ -0.219507737139497, 1.982317930257918, -1.507094387979892 ], [ 0.665711651036817, 0.279136953620636, -0.722549854241949 ], [ 1.142086835598117, 0.304822477837083, 0.288846773642533 ], [ 0.841912520661427, 0.03662991534025, -0.34455524519219 ], [ 1.338456227430449, -0.699872798491812, 0.930058398240706 ], [ 0.205034804477556, -1.069031371451775, -0.219029448742955 ], [ 1.722498909377449, -0.661764240641007, 0.19985947820867 ], [ 0.479827247131599, -0.032820283933065, 0.262481575466473 ], [ -0.056731668529008, -0.516207480197686, 0.178995145783455 ], [ -2.278538931248344, 0.070909053998176, 0.477146021071429 ], [ -0.495836994745764, 0.019870739977348, -0.710304075560745 ], [ -0.134600356903616, 0.614366035386925, 0.023395429416033 ], [ 0.165478860996259, -0.470383071557458, -2.722543846370615 ], [ 0.655120584992586, -0.781605067343418, -0.187685076861399 ], [ -1.830537454005287, -0.874322577687684, 0.165042215500084 ], [ -0.403381381202141, -0.416232455288082, -0.252021123831325 ], [ -0.654074878937511, 0.003958563249163, -0.673006716867449 ], [ 0.27344784924226, -0.355290618812099, 0.052108120767473 ], [ -0.486985817130279, -0.286045375035935, -0.171172667509776 ], [ 1.154545703869318, -0.545384398705336, 0.45164408626087 ], [ 0.182288810648541, 1.105270012449698, 1.116723131140475 ], [ -1.494081551811512, -1.201290908199789, -1.33455148046669 ], [ 0.141658726445428, 1.069238062240648, -0.985722787998288 ], [ -0.479716428576892, -0.502806459099537, 1.38374637275417 ], [ 0.193231487511516, -0.184081358027619, -2.118216512634181 ], [ -0.374017354122848, 0.935639180838965, -0.585512696419211 ], [ -1.425717688378619, -0.012111782413989, -0.078025227535506 ], [ 1.281306688785806, -0.882227049715177, 0.244233284751162 ], [ -1.29455404949011, -0.778048704854258, -0.084073415690484 ], [ 0.395070757683149, -2.296387770286791, 0.239589175348145 ], [ 2.01500792562291, 0.51354212987992, -0.286010268722415 ], [ -0.805798644184838, 2.589347702907378, -0.159326802807336 ], [ 0.622162743635274, 0.53637456325271, 1.865326898355913 ], [ 0.14550044142898, 0.464021514575954, 0.261752600396414 ], [ -0.480033903203696, -0.046379699875828, -1.497331504795469 ], [ 0.250682617068435, -2.244261955593912, -1.854177716970246 ], [ -1.222261788054554, -0.041109848533655, -0.251219821749557 ], [ -0.182039128880521, 1.289312257251245, -0.248945731544506 ], [ -0.074721069814171, 0.418333875193727, -0.114220593134336 ], [ 1.593287283365099, -0.308429070142489, 2.486312323563259 ], [ -0.496358038916651, 0.541326833923198, -0.142480749902223 ], [ 0.650430250218516, 0.451991334094801, 1.431150121123241 ], [ 0.358769502012398, 1.042933249184996, 0.552096452741726 ], [ -0.894021676766738, -0.800119255136378, -0.869648731882983 ], [ -0.367513432138109, 1.3666811229774, -0.576488343554111 ], [ 0.534275143529044, 0.063723276137286, -0.517053509040139 ], [ -0.900827643522113, -0.135232601232072, -0.848932108680563 ], [ -2.135763363402052, -2.192619336835441, -0.902597894493833 ], [ 1.227989057286252, 2.817965974053452, 1.120888601015097 ], [ 0.562745537830846, -0.941571998435426, 1.136910231088749 ], [ -0.360240278894852, -0.925916293808849, -0.609019276047823 ], [ 0.970414840340055, -0.577724687571229, 1.038175453657157 ], [ -1.23975765330969, -0.449625359895326, 0.560384461221001 ], [ 1.033683444479122, 0.464699474127461, 0.226639730999223 ], [ 0.75949816544254, 0.173402810985689, 1.517453627950556 ], [ 0.744482489540158, 0.454554423539698, -0.180531693954653 ], [ -1.129964742402698, 0.062090410358971, 0.055637148917629 ], [ -0.633767496380793, -2.379197642613374, 0.843377939256024 ], [ 0.449123355469538, -0.691421920325465, 1.127249805716 ], [ 0.030617552699775, 0.90038068951336, 0.329343403233994 ], [ -0.118614686894894, 2.279316266906655, -0.249521015481937 ], [ -1.412349283084902, 1.144660455209042, -0.168131385325684 ], [ 1.167979014230838, 1.705361852064189, -0.809742141997595 ], [ -1.106233542430146, -2.084704642345752, 0.30565538024144 ], [ 0.129903345140557, 0.345062362845356, 0.416920266833808 ], [ -0.615108790729786, 0.014198371795017, -0.723068732331657 ], [ -0.166061414087899, -0.560042113859304, 0.915282583399844 ], [ 0.312976744883665, -0.639305681120026, -0.352879649620376 ], [ -1.285825331544733, -0.495834848295281, -1.391386720730996 ], [ 0.45308609788847, 0.604262759166032, -1.00150420203615 ], [ -1.949170476283603, -0.143744363397819, -0.573847680678528 ], [ -0.283744363162171, -0.954486955904067, 0.171210279192538 ] ]
null
[ [ 0.020884386580131552, 0.0013299407396098364, 0.004297019674818076 ], [ 0.0013299407396098364, 0.02197261794518627, 0.002013333872404493 ], [ 0.004297019674818076, 0.002013333872404493, 0.02435150811020973 ] ]
false
null
null
-451,672.761
null
1.530325
3.407537
{"input": {"AVE_TEMP(K)": 806.66, "DESIRED_TEMP(K)": 800.0, "METHOD(1-VV,2-NH,3-LV,4-LVPR,5-NHRP)": 2, "TEMP(K)": 980.26, "TIME(fs)": 652.0, "TIME_INTERVAL(fs)": 200.0, "TOT_TEMP(K)": 261270.0}, "property_keys": {"energy": "eTot", "forces": "Force", "stress": "Pressure Internal"}, "hash": "8366467386804259668706974165976544038949172698532949506914311789514331123398745703319113110134615881729728436565772482884111992362721278242597276267368299", "id": "MD_8366467386804259668706974"}
MD_8366467386804259668706974
2024-10-15T15:49:01
4275754202974726172534611742565950054920600437727181852348934585827591552346737439879762949445016979605063277068300409914591670102193262219639626113995330
PO_4275754202974726172534611
null
null
[ "temperature:800", "frame:325" ]
[ "Ni__800k__MOVEMENT__325" ]
[ "DS_cgjdk1e2txjy_0" ]
2024-10-15T19:55:37
1003257958909657767
CO_1003257958909657767
PWMLFF_feature_comparison_NPJ2023
[ "Ting Han", "Jie Li", "Liping Liu", "Fengyu Li", "Lin-Wang Wang" ]
Partial dataset for "Accuracy evaluation of different machine learning force field features". The included data is limited to that hosted directly on the repository at the related GitHub link. From publication abstract: Predicting energies and forces using machine learning force field (MLFF) depends on accurate descriptions (features) of chemical environment. Despite the numerous features proposed, there is a lack of controlled comparison among them for their universality and accuracy. In this work, we compared several commonly used feature types for their ability to describe physical systems. These different feature types include cosine feature, Gaussian feature, moment tensor potential (MTP) feature, spectral neighbor analysis potential feature, simplified smooth deep potential with Chebyshev polynomials feature and Gaussian polynomials feature, and atomic cluster expansion feature. We evaluated the training root mean square error (RMSE) for the atomic group energy, total energy, and force using linear regression model regarding to the density functional theory results. We applied these MLFF models to an amorphous sulfur system and carbon systems, and the fitting results show that MTP feature can yield the smallest RMSE results compared with other feature types for either sulfur system or carbon system in the disordered atomic configurations. Moreover, as an extending test of other systems, the MTP feature combined with linear regression model can also reproduce similar quantities along the ab initio molecular dynamics trajectory as represented by Cu systems. Our results are helpful in selecting the proper features for the MLFF development.
[ "C", "H", "Mg", "Ni", "O", "Si" ]
6
17,255
17,255
918,240
0
17,255
0
17,255
0
17,255
-94,982.575812
28,080,747,868.058937
0
2024-10-15T15:57:14
[ [ 1, 1, 1 ] ]
[ 3 ]
2024
[ 0.13830806760759715, 0.027225997560550618, 0.15290120230005227, 0.35931782540512286, 0.001633559853633037, 0.3206133472730441 ]
CC-BY-4.0
{'source-publication': 'https://www.doi.org/10.1088/1367-2630/acf2bb', 'source-data': 'https://github.com/LonxunQuantum/PWMLFF_library/tree/main', 'other': None}
null
3416353886768184069498309577448540463118046042128164727481437935635525348649148828592205659488310261220439788024414920747258168148334049671414505074802036
DS_cgjdk1e2txjy_0
PWMLFF_feature_comparison_NPJ2023__Han-Li-Liu-Li-Wang__DS_cgjdk1e2txjy_0
Ni108
Ni
A
[ 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28 ]
[ "Ni" ]
[ 1 ]
1
108
[ [ 10.55556, 0, 0 ], [ 0, 10.55556, 0 ], [ 0, 0, 10.55556 ] ]
[ [ 0.997564680264274, 0.974112034555564, 0.034348895317486 ], [ 0.995389848256371, 0.961835958016988, 0.367806050241989 ], [ 0.005502113598142, 0.961046905879293, 0.709214660131994 ], [ 0.995223954146837, 0.310232419987024, 0.030904633690122 ], [ 0.000858957294055, 0.306210206328672, 0.378952143077715 ], [ 0.004000150558715, 0.306863500352445, 0.705439774431596 ], [ 0.987820173225594, 0.629234041760601, 0.039925328791661 ], [ 0.995208252362761, 0.628815498521905, 0.377964707896602 ], [ 0.997032450786792, 0.644917103507573, 0.706662033887233 ], [ 0.326582702328061, 0.969487813256547, 0.037204160806816 ], [ 0.320734948206593, 0.973311267210612, 0.368601443263 ], [ 0.324361040607227, 0.970261862107039, 0.702774631099992 ], [ 0.329430801207156, 0.31234890313447, 0.020883833730694 ], [ 0.340291138597687, 0.309171591488256, 0.379997576627646 ], [ 0.332310876019106, 0.299966826923126, 0.711207398000591 ], [ 0.334018396247326, 0.62944288392712, 0.037148014293236 ], [ 0.340262800123136, 0.6372191093398, 0.368431801252624 ], [ 0.325354754080031, 0.648151017406325, 0.707005026308841 ], [ 0.662698212496231, 0.974576468884069, 0.03842155770517 ], [ 0.659494143643153, 0.967542627238437, 0.368227707161222 ], [ 0.66714138481637, 0.95989265107232, 0.713302980066625 ], [ 0.656484795133658, 0.301885162850668, 0.035178433386278 ], [ 0.661893549854215, 0.29151275780486, 0.377858834376948 ], [ 0.666083636972805, 0.296469497659088, 0.70826229996749 ], [ 0.661758132540735, 0.636444329432859, 0.046110131880946 ], [ 0.664454632614695, 0.640513764549816, 0.373084314868462 ], [ 0.666205784471825, 0.646222605092627, 0.7100613823911 ], [ 0.001609856250506, 0.139190081251215, 0.212318074328157 ], [ 0.001004762700657, 0.136424691499289, 0.550711571768215 ], [ 0.002034156071737, 0.138942596404095, 0.867672881202226 ], [ 0.993614039170675, 0.46452125186747, 0.215811827614306 ], [ 0.98958404327119, 0.485265892491244, 0.545399530682991 ], [ 0.000800325584965, 0.470487615096709, 0.871213205833229 ], [ 0.004611982285291, 0.805282010074863, 0.209558912352603 ], [ 0.000023442705204, 0.812820064654018, 0.545117041799278 ], [ 0.997686473061547, 0.805790108400463, 0.888460297902748 ], [ 0.325168712826595, 0.135249382036826, 0.214475155531426 ], [ 0.326109594128438, 0.134397725480208, 0.546886615753057 ], [ 0.332341116166996, 0.138514072181829, 0.87505879344106 ], [ 0.32164564425852, 0.464409170065174, 0.207312495363651 ], [ 0.337530772803549, 0.477932201275171, 0.547221704755544 ], [ 0.342338060483732, 0.473142445023349, 0.870071257041268 ], [ 0.329119311785803, 0.80299152242512, 0.214288549458872 ], [ 0.326634428814993, 0.80443164388396, 0.540230292622942 ], [ 0.326179235207708, 0.801402887002303, 0.882295503111413 ], [ 0.669047404453803, 0.128456537986454, 0.208965338246047 ], [ 0.669368242399764, 0.128606621982641, 0.54287294537274 ], [ 0.667202416410066, 0.128455127641235, 0.879789081700464 ], [ 0.674165627291863, 0.459402222856564, 0.213018611697186 ], [ 0.667034073810594, 0.475347347950784, 0.547749694644257 ], [ 0.678158321295792, 0.472981605799327, 0.883195907349493 ], [ 0.662417705508379, 0.802041035237901, 0.211419789606541 ], [ 0.677519493772305, 0.810797707021471, 0.548787702762445 ], [ 0.659055982451484, 0.802662685782296, 0.898681806592245 ], [ 0.165904819750045, 0.974072386527443, 0.196168608057099 ], [ 0.172584299386611, 0.974748240276763, 0.542561286577586 ], [ 0.165259872404159, 0.973557747612592, 0.879540410613246 ], [ 0.175760370938013, 0.306825746771166, 0.200133528287397 ], [ 0.170357997302445, 0.307807358616248, 0.550578478727032 ], [ 0.164738233355954, 0.311367089469003, 0.864358510980697 ], [ 0.160505190232109, 0.630529532498832, 0.197679121315644 ], [ 0.172184179636323, 0.648483781457197, 0.530436835027812 ], [ 0.166320487775031, 0.624489808523271, 0.873741470710916 ], [ 0.486353573906497, 0.969959631126721, 0.208389298186955 ], [ 0.502134678146034, 0.948160354103659, 0.541537287718071 ], [ 0.489139168657134, 0.971116497857734, 0.877086623341805 ], [ 0.505353794424132, 0.298248693065406, 0.208454239818206 ], [ 0.498963026856448, 0.309379275013889, 0.54623748273381 ], [ 0.509142151626706, 0.299464802887615, 0.870114041061267 ], [ 0.499885395490717, 0.622966568372782, 0.206612187315856 ], [ 0.506359022600414, 0.654053519646547, 0.544610747246157 ], [ 0.499708979026737, 0.640813009686124, 0.867744864752033 ], [ 0.838873170037824, 0.988068804334932, 0.202959854427306 ], [ 0.837226614179868, 0.974434512161083, 0.558872668572912 ], [ 0.838186830116155, 0.96893273290531, 0.885335445151431 ], [ 0.829947437779518, 0.303697244578966, 0.222870848116275 ], [ 0.831776865447354, 0.307661521830565, 0.543739277518904 ], [ 0.830096107705016, 0.304414410464232, 0.872096992221672 ], [ 0.830166898444475, 0.63566438646006, 0.200357489580408 ], [ 0.836272755667027, 0.648750328588845, 0.534926974039438 ], [ 0.835402361805536, 0.632885679867916, 0.876740232752405 ], [ 0.163336274036405, 0.14621716727784, 0.034025311604183 ], [ 0.158821220695114, 0.146258136389786, 0.381993975184059 ], [ 0.163725781985926, 0.134188072182275, 0.709959455634028 ], [ 0.167556429872517, 0.463424078852703, 0.037682523811604 ], [ 0.168950932795289, 0.464708194626329, 0.387586073199114 ], [ 0.169301104772317, 0.479795574591952, 0.698349502181045 ], [ 0.161546110359926, 0.797764816865809, 0.041909723896116 ], [ 0.164494825511815, 0.793262414721898, 0.366696953592766 ], [ 0.156018444061071, 0.803680162056757, 0.715953869202912 ], [ 0.48696035722619, 0.127859022339806, 0.050040729182455 ], [ 0.492224778380969, 0.137216666997025, 0.376003436275174 ], [ 0.497741563986415, 0.134585844429527, 0.712960976617258 ], [ 0.502343452767858, 0.474134940442581, 0.037511304075282 ], [ 0.506369177752961, 0.460133710535223, 0.382907901714969 ], [ 0.505375223516936, 0.471527917241186, 0.706047681597977 ], [ 0.491956713708079, 0.800332498425242, 0.046663994053897 ], [ 0.490481460869554, 0.808268856928295, 0.376817059914262 ], [ 0.498813555714999, 0.80684415241035, 0.725445181218274 ], [ 0.825328513721815, 0.147820389334744, 0.036820702635036 ], [ 0.840495053240196, 0.130327173227296, 0.376884411073403 ], [ 0.829898128715894, 0.129272897375205, 0.715346608755153 ], [ 0.83439712662789, 0.466177266128845, 0.042587272934492 ], [ 0.836439278906103, 0.472556946579118, 0.377843498103305 ], [ 0.837711827296307, 0.474421486542522, 0.699917957870829 ], [ 0.831028871829402, 0.797628317346532, 0.051232975599204 ], [ 0.831112634944872, 0.804313077446677, 0.370217409565383 ], [ 0.839842093249307, 0.797644618760079, 0.716261802489049 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
3366429431752137752705512810600309282680840371084910019083946694321951040144393262600514124546842423595283440028472115951856792764218442037995941814048894
1
PWmat
DFT-PBE
null
[ [ -0.363589866499319, -0.360681897760812, -1.201917663149114 ], [ -0.829295075012178, -0.854291414554155, -0.853099738665193 ], [ 0.481363981544837, -1.130924245035867, -0.798860812871276 ], [ -0.360346014962968, 0.697012485127846, -0.980692899181773 ], [ 0.008015798980831, 0.055420329430709, -0.45647115907651 ], [ 0.67752410325236, -0.109228316679406, -0.020375333122562 ], [ -1.383192874809729, -0.204709770293376, -0.320010967463004 ], [ -0.668889375734282, -1.195421973208193, 0.887226833457251 ], [ -0.553151387771931, 0.568431768125573, -0.321361347984086 ], [ 0.056416058872766, 0.056950193779437, -0.629325242455118 ], [ -0.32880573614321, 0.218069383358597, -0.843848337290394 ], [ -0.790147379971371, 0.439200026498415, -1.077872269128723 ], [ -0.882898407164749, 0.844858824355702, -1.491505030851929 ], [ 0.764516307954972, 0.525232958019027, 0.0470064449165 ], [ -0.433587647389634, -0.540059916626235, 0.165665640510828 ], [ 0.22204164335631, -0.318415498614898, -0.52801716393294 ], [ 0.406824340522386, 0.64235017903481, -0.497968028307412 ], [ -0.778537986085831, 0.42294115485545, -0.123517432680755 ], [ -0.003537484178899, 0.480239485208919, -1.112764027649961 ], [ -0.58874456814485, -0.164910458680506, -0.665940861532741 ], [ 0.076525401576465, -0.595535058176246, -0.740966292991211 ], [ -0.74614548924684, 0.136200780718239, -0.865442284579343 ], [ -0.573440837066905, -0.419681876217614, -0.462840968313928 ], [ -0.356781581840905, -0.463104836124887, 0.04442552194572 ], [ -0.304352030250715, 0.387921837099785, -0.04705287855715 ], [ -0.05663016384131, 0.267285627546026, -0.239479120693963 ], [ -0.465126173117651, 0.421578671791919, -0.296233495141241 ], [ -0.273392538501705, -0.629481109795139, 0.759631204864337 ], [ 0.232822238910366, -0.046147029455341, 0.534957850519488 ], [ 0.456112217204766, -0.095427695080642, -0.408874074016227 ], [ -0.737771681023394, -0.124800218912325, 0.822840043977746 ], [ -1.422411044863657, 1.227137760481301, 0.313487839589392 ], [ 0.358990836804869, -0.086116892122651, 0.426924368080712 ], [ 0.758179201853851, 0.469495385222469, 0.679294143761713 ], [ -0.177088820341228, 0.722273213030381, 0.937696268764712 ], [ -0.085858899466135, 0.758443359087019, 0.809147028944618 ], [ -0.121901770109836, -0.812630963179943, 0.680363573552789 ], [ -0.993191685517643, -0.432535946669437, 0.547057026440248 ], [ 0.213936242464671, 0.107988715789377, 0.284829684061152 ], [ -1.53182617429228, -0.521631578302738, -0.010399493548231 ], [ -0.201410033377873, -0.022004359686105, 0.393892817182547 ], [ 0.437900057960283, -0.013650828695484, 0.686819974312319 ], [ 0.086220702460051, 0.385216777705021, 1.181574926019443 ], [ -0.31831555444169, -0.242117341339643, 0.048522495018868 ], [ 0.056989690933203, -0.027306273173113, 0.591738474422155 ], [ 0.760001153496352, -0.860008961955687, 0.096059568863305 ], [ 0.557561246085779, -0.08658349013695, -0.045652143227244 ], [ 0.59656119009131, -0.410264834942726, 0.703792984737287 ], [ 0.864882323069091, -0.6979444364023, 0.268482669890201 ], [ -0.224196342688299, 0.009629153710915, 0.57892113011286 ], [ 1.121285851206856, 0.06093567045626, 1.262560082170191 ], [ 0.191608987556267, -0.361816906349128, 0.493550534429121 ], [ 0.428719502338564, 0.479672491456244, 0.770601669273594 ], [ -0.76492367775346, -0.165379267864209, 1.738440183758666 ], [ 0.51467888538489, 0.155193475827739, -0.723394297335219 ], [ 1.349690525673209, 0.728076154529172, 0.539451295971557 ], [ 0.037810547781419, 0.352807693459806, 0.347061791323627 ], [ 1.273479835859266, 0.602371885078463, -0.799265014510477 ], [ 0.306892955112433, 0.167556026354089, 0.484559410899347 ], [ -0.092988416770122, 0.300326209329257, -0.182233596184413 ], [ -0.141106669739356, 0.184050160732979, -0.868177572979425 ], [ 0.841767079290188, 0.977154690941522, -1.002441348038522 ], [ 0.277502418369318, -1.037246935226132, -0.301485725087996 ], [ -0.695102448774622, 0.195294416615709, -0.108208202170755 ], [ 0.489581126436895, -2.017067937931083, -0.532153179687078 ], [ -0.448938554322847, 0.10490422839502, -0.189526932894269 ], [ 0.85028383535375, -0.302662503808256, 0.192555590660767 ], [ -0.142919398818996, 1.130719346867921, -0.270429896822214 ], [ 0.799986694316538, -0.361799508573506, -0.190992640044969 ], [ 0.126888749834702, -0.621333868173669, -0.461857915169485 ], [ 0.488657505362645, 0.831059687090342, -0.063484308332798 ], [ 0.013691389776783, 0.603740071077689, -0.959029739367657 ], [ 0.492044419715292, 1.819660865605735, 0.126100478899018 ], [ 0.130934920873326, 0.647486118144955, 1.487882668446528 ], [ 0.763451619928912, 0.195188117787721, 0.721543471466854 ], [ -0.344111457299523, 0.709524515200478, 1.090560206153965 ], [ -0.006718302610574, 0.72772409582272, 0.078722619664903 ], [ -0.175338917592822, 0.046156388881864, 0.395534442153322 ], [ -0.043262424132291, 0.289599488223701, -1.333305624288238 ], [ 0.689600491883081, 0.394218957588981, -0.686945384399609 ], [ 0.400423455852961, -0.466147510605713, 0.018989329712403 ], [ -0.071353734183445, 0.150302198980333, -0.28882582077979 ], [ -0.542017099459575, 0.502574765218577, 0.467088901889515 ], [ -0.261485937596081, -0.319001028426304, -0.048077907653553 ], [ 0.587705465457816, -0.695150772622495, 0.13340823625388 ], [ 0.171843680329348, -0.607641354578698, 0.847520090578469 ], [ 0.329739292412176, 0.16747108097235, -0.425281371062176 ], [ -0.295363181776417, -0.052738776358029, -0.009919125308641 ], [ 0.116826986162296, -1.004904548481652, -0.221463118464501 ], [ -1.061955666290383, 0.151332183529023, 0.235560159288486 ], [ -0.666060555539963, -1.056796156064633, 0.744485736525984 ], [ -0.31227244690783, 0.562813122402854, -0.364989797628377 ], [ -0.239351177478831, 0.502951189932241, 0.750211814422824 ], [ 0.130448845062005, 0.808236538419036, -0.132245234566515 ], [ 0.164881484153457, -1.221316134074296, 0.685545749244794 ], [ 0.078980201309922, -0.355305406791094, -0.421275297335518 ], [ 0.031994085409522, -0.122587091404163, -0.177585840196016 ], [ -0.672618827194236, 0.579556790867203, 0.778592918066085 ], [ 0.228817619451245, -0.085011454668084, 1.219738203004789 ], [ -0.958998548301037, 0.341594749346146, -0.49813900353387 ], [ 0.519211342752584, -0.408380075506066, -0.612205479707184 ], [ -0.334777878566996, -0.677053484799713, 0.098350305711355 ], [ 0.434562282925961, 0.202178727030419, -0.253013035453311 ], [ 1.052180161868105, 0.159344713562925, -0.21754887198581 ], [ 0.850112178934544, -0.064671298529472, -1.089221248472472 ], [ -0.083901434214422, -0.996408670238486, 0.383731504311198 ], [ -0.152709378583252, -0.374887373867557, 0.085772644518339 ], [ 0.693509323838649, -0.84263068909879, -0.223991251803871 ] ]
null
[ [ -0.001167502216933521, 0.00023547416338655353, 0.0010013045663035648 ], [ 0.00023547416338655353, -0.0007045519747185582, 0.00033927991396793687 ], [ 0.0010013045663035648, 0.00033927991396793687, 0.000015776730325881845 ] ]
false
null
null
-451,689.4546
null
0.978839
2.142765
{"input": {"AVE_TEMP(K)": 301.95, "DESIRED_TEMP(K)": 300.0, "METHOD(1-VV,2-NH,3-LV,4-LVPR,5-NHRP)": 2, "TEMP(K)": 411.0, "TIME(fs)": 1160.0, "TIME_INTERVAL(fs)": 200.0, "TOT_TEMP(K)": 174080.0}, "property_keys": {"energy": "eTot", "forces": "Force", "stress": "Pressure Internal"}, "hash": "4572052104303672176809880787898741905316394164752766519365499616117965701037406881860271664998025444232385885768571003978369786412141526776168842628823013", "id": "MD_4572052104303672176809880"}
MD_4572052104303672176809880
2024-10-15T15:49:00
12026204756687398373267957045316552373894707664210402448910348363690076181034787315869579437756632841031791870555633042073070275960939154774022325498073755
PO_1202620475668739837326795
null
null
[ "temperature:500", "frame:579" ]
[ "Ni__500k__MOVEMENT__579" ]
[ "DS_cgjdk1e2txjy_0" ]
2024-10-15T19:55:37
1003313337101191427
CO_1003313337101191427
PWMLFF_feature_comparison_NPJ2023
[ "Ting Han", "Jie Li", "Liping Liu", "Fengyu Li", "Lin-Wang Wang" ]
Partial dataset for "Accuracy evaluation of different machine learning force field features". The included data is limited to that hosted directly on the repository at the related GitHub link. From publication abstract: Predicting energies and forces using machine learning force field (MLFF) depends on accurate descriptions (features) of chemical environment. Despite the numerous features proposed, there is a lack of controlled comparison among them for their universality and accuracy. In this work, we compared several commonly used feature types for their ability to describe physical systems. These different feature types include cosine feature, Gaussian feature, moment tensor potential (MTP) feature, spectral neighbor analysis potential feature, simplified smooth deep potential with Chebyshev polynomials feature and Gaussian polynomials feature, and atomic cluster expansion feature. We evaluated the training root mean square error (RMSE) for the atomic group energy, total energy, and force using linear regression model regarding to the density functional theory results. We applied these MLFF models to an amorphous sulfur system and carbon systems, and the fitting results show that MTP feature can yield the smallest RMSE results compared with other feature types for either sulfur system or carbon system in the disordered atomic configurations. Moreover, as an extending test of other systems, the MTP feature combined with linear regression model can also reproduce similar quantities along the ab initio molecular dynamics trajectory as represented by Cu systems. Our results are helpful in selecting the proper features for the MLFF development.
[ "C", "H", "Mg", "Ni", "O", "Si" ]
6
17,255
17,255
918,240
0
17,255
0
17,255
0
17,255
-94,982.575812
28,080,747,868.058937
0
2024-10-15T15:57:14
[ [ 1, 1, 1 ] ]
[ 3 ]
2024
[ 0.13830806760759715, 0.027225997560550618, 0.15290120230005227, 0.35931782540512286, 0.001633559853633037, 0.3206133472730441 ]
CC-BY-4.0
{'source-publication': 'https://www.doi.org/10.1088/1367-2630/acf2bb', 'source-data': 'https://github.com/LonxunQuantum/PWMLFF_library/tree/main', 'other': None}
null
3416353886768184069498309577448540463118046042128164727481437935635525348649148828592205659488310261220439788024414920747258168148334049671414505074802036
DS_cgjdk1e2txjy_0
PWMLFF_feature_comparison_NPJ2023__Han-Li-Liu-Li-Wang__DS_cgjdk1e2txjy_0
CH4
CH4
A4B
[ 6, 1, 1, 1, 1 ]
[ "C", "H" ]
[ 0.2, 0.8 ]
2
5
[ [ 10, 0, 0 ], [ 0, 10, 0 ], [ 0, 0, 10 ] ]
[ [ 0.850922161979832, 0.342440044286453, 0.869095786928846 ], [ 0.778202102249739, 0.422185804434861, 0.830085323972417 ], [ 0.899426149407037, 0.325041150393597, 0.773614015087998 ], [ 0.906979835344079, 0.424127536176496, 0.911931309302926 ], [ 0.810310905230465, 0.268878274799743, 0.945446086333839 ] ]
[ true, true, true ]
[ 1, 1, 1 ]
3
7895957810346609459139485233005716817252954920911020562910145570938186774772658075455318558203023785500833050918521415281761245553255584387297216148701258
1
PWmat
DFT-PBE
null
[ [ 1.515043440427871, -2.480119028724184, 0.324607859312135 ], [ 0.594353358995916, 1.529579836720008, -0.548772211148814 ], [ -0.348423095666257, 1.397134568157539, -0.116763018720604 ], [ -1.188131076026633, 0.24872081197801, -1.089968299633298 ], [ -0.57880688795637, -0.702515601614459, 1.431494796224605 ] ]
null
[ [ 0.0007575523285626175, 0.000004860316587529633, 0.0008294925607059695 ], [ 0.000004860316587529633, -0.0019713437784013637, 0.0023785464086256815 ], [ 0.0008294925607059695, 0.0023785464086256815, -0.0012318851878115459 ] ]
false
null
null
-218.690517
null
1.885424
2.924332
{"input": {"AVE_TEMP(K)": 998.87, "DESIRED_TEMP(K)": 1000.0, "METHOD(1-VV,2-NH,3-LV,4-LVPR,5-NHRP)": 2, "TEMP(K)": 827.73, "TIME(fs)": 678.0, "TIME_INTERVAL(fs)": 100.0, "TOT_TEMP(K)": 677900.0}, "property_keys": {"energy": "eTot", "forces": "Force", "stress": "Pressure Internal"}, "hash": "11394608820628396381365175110797059247989023281316479011183408390937702044531329928724734669722089861882034290722332351591986258953444794426766458749889464", "id": "MD_1139460882062839638136517"}
MD_1139460882062839638136517
2024-10-15T15:45:17
4174556625210850789298731925333415598068830685659032737289784182574623072511640651447544279325357069722856044694668083392811366397086171687963871855305724
PO_4174556625210850789298731
null
null
[ "frame:677" ]
[ "CH4__CH4__2-1000__MOVEMENT__677" ]
[ "DS_cgjdk1e2txjy_0" ]
2024-10-15T19:54:03
1004462224264435560
CO_1004462224264435560
PWMLFF_feature_comparison_NPJ2023
[ "Ting Han", "Jie Li", "Liping Liu", "Fengyu Li", "Lin-Wang Wang" ]
Partial dataset for "Accuracy evaluation of different machine learning force field features". The included data is limited to that hosted directly on the repository at the related GitHub link. From publication abstract: Predicting energies and forces using machine learning force field (MLFF) depends on accurate descriptions (features) of chemical environment. Despite the numerous features proposed, there is a lack of controlled comparison among them for their universality and accuracy. In this work, we compared several commonly used feature types for their ability to describe physical systems. These different feature types include cosine feature, Gaussian feature, moment tensor potential (MTP) feature, spectral neighbor analysis potential feature, simplified smooth deep potential with Chebyshev polynomials feature and Gaussian polynomials feature, and atomic cluster expansion feature. We evaluated the training root mean square error (RMSE) for the atomic group energy, total energy, and force using linear regression model regarding to the density functional theory results. We applied these MLFF models to an amorphous sulfur system and carbon systems, and the fitting results show that MTP feature can yield the smallest RMSE results compared with other feature types for either sulfur system or carbon system in the disordered atomic configurations. Moreover, as an extending test of other systems, the MTP feature combined with linear regression model can also reproduce similar quantities along the ab initio molecular dynamics trajectory as represented by Cu systems. Our results are helpful in selecting the proper features for the MLFF development.
[ "C", "H", "Mg", "Ni", "O", "Si" ]
6
17,255
17,255
918,240
0
17,255
0
17,255
0
17,255
-94,982.575812
28,080,747,868.058937
0
2024-10-15T15:57:14
[ [ 1, 1, 1 ] ]
[ 3 ]
2024
[ 0.13830806760759715, 0.027225997560550618, 0.15290120230005227, 0.35931782540512286, 0.001633559853633037, 0.3206133472730441 ]
CC-BY-4.0
{'source-publication': 'https://www.doi.org/10.1088/1367-2630/acf2bb', 'source-data': 'https://github.com/LonxunQuantum/PWMLFF_library/tree/main', 'other': None}
null
3416353886768184069498309577448540463118046042128164727481437935635525348649148828592205659488310261220439788024414920747258168148334049671414505074802036
DS_cgjdk1e2txjy_0
PWMLFF_feature_comparison_NPJ2023__Han-Li-Liu-Li-Wang__DS_cgjdk1e2txjy_0
End of preview. Expand in Data Studio

Dataset

PWMLFF feature comparison NPJ2023

Description

Partial dataset for "Accuracy evaluation of different machine learning force field features". The included data is limited to that hosted directly on the repository at the related GitHub link. From publication abstract: Predicting energies and forces using machine learning force field (MLFF) depends on accurate descriptions (features) of chemical environment. Despite the numerous features proposed, there is a lack of controlled comparison among them for their universality and accuracy. In this work, we compared several commonly used feature types for their ability to describe physical systems. These different feature types include cosine feature, Gaussian feature, moment tensor potential (MTP) feature, spectral neighbor analysis potential feature, simplified smooth deep potential with Chebyshev polynomials feature and Gaussian polynomials feature, and atomic cluster expansion feature. We evaluated the training root mean square error (RMSE) for the atomic group energy, total energy, and force using linear regression model regarding to the density functional theory results. We applied these MLFF models to an amorphous sulfur system and carbon systems, and the fitting results show that MTP feature can yield the smallest RMSE results compared with other feature types for either sulfur system or carbon system in the disordered atomic configurations. Moreover, as an extending test of other systems, the MTP feature combined with linear regression model can also reproduce similar quantities along the ab initio molecular dynamics trajectory as represented by Cu systems. Our results are helpful in selecting the proper features for the MLFF development.

Additional details stored in dataset columns prepended with "dataset_".

Dataset authors

Ting Han, Jie Li, Liping Liu, Fengyu Li, Lin-Wang Wang

Publication

https://www.doi.org/10.1088/1367-2630/acf2bb

Original data link

https://github.com/LonxunQuantum/PWMLFF_library/tree/main

License

CC-BY-4.0

Number of unique molecular configurations

17255

Number of atoms

918240

Elements included

C, H, Mg, Ni, O, Si

Properties included

energy, atomic forces, cauchy stress

Cite this dataset

Han, T., Li, J., Liu, L., Li, F., and Wang, L. PWMLFF feature comparison NPJ2023. ColabFit, 2024. https://doi.org/10.60732/209e0c9c

Downloads last month
9