Datasets:
metadata
viewer: false
license: cc-by-4.0
tags:
- chemistry
- biology
- molecular dynamics
- neural network potential
pretty_name: 'mdCATH: A Large-Scale MD Dataset for Data-Driven Computational Biophysics'
citation:
bibtex: |
@misc{mdcath2024,
author = {Mirarchi, Antonio and Giorgino, Toni and De Fabritiis, Gianni},
title = {mdcath: A large-scale md dataset for data-driven computational biophysics},
year = 2024,
url = {https://huggingface.co/datasets/compsciencelab/mdCATH},
doi = {10.57967/hf/2738},
publisher = {Hugging Face}
}
mdCATH: A Large-Scale MD Dataset for Data-Driven Computational Biophysics
This dataset comprises all-atom systems for 5,398 CATH domains, modeled with a state-of-the-art classical force field, and simulated in five replicates each at five temperatures from 320 K to 450 K.
Availability
Citing The Dataset
Please cite this manuscript for papers that use the mdCATH dataset:
Antonio Mirarchi, Toni Giorgino, Gianni De Fabritiis. "mdCATH: A Large-Scale MD Dataset for Data-Driven Computational Biophysics" (arXiv:2407.14794)
Dataset Size
Description | Value |
---|---|
Domains | 5,398 |
Trajectories | 134,950 |
Total sampled time | 62.6 ms |
Total atoms | 11,671,592 |
Total amino acids | 740,813 |
Avg. traj. length | 464 ns |
Avg. system size | 2,162 atoms |
Avg. domain length | 137 AAs |
Total file size | 3.3 TB |