Search is not available for this dataset
image
imagewidth (px)
200
200

Description

ICVL is a hyperspectral image dataset, collected by "Sparse Recovery of Hyperspectral Signal from Natural RGB Images"

The database images were acquired using a Specim PS Kappa DX4 hyperspectral camera and a rotary stage for spatial scanning. At this time it contains 200 images and will continue to grow progressively.

Images were collected at 1392 $\times$ 1300 spatial resolution over 519 spectral bands (400-1,000nm at roughly 1.25nm increments). The .raw files contain raw out-of-camera data in ENVI format and .hdr files contain the headers required to decode them. For your convenience, .mat files are provided, downsampled to 31 spectral channels from 400nm to 700nm at 10nm increments.

The original dataset only contains clean images. For hyperspectral image denoising benchmarks, the testing datasets come from "3D Quasi-Recurrent Neural Network for Hyperspectral Image Denoising".

Quick look

4cam_0411-1640-1 4cam_0411-1648 bguCAMP_0514-1659 bguCAMP_0514-1711
4cam_0411-1640-1 4cam_0411-1648 bguCAMP_0514-1659 bguCAMP_0514-1711
bguCAMP_0514-1712 bguCAMP_0514-1718 bguCAMP_0514-1723 bguCAMP_0514-1724
bguCAMP_0514-1712 bguCAMP_0514-1718 bguCAMP_0514-1723 bguCAMP_0514-1724
BGU_0403-1419-1 bgu_0403-1439 bgu_0403-1444 bgu_0403-1459
BGU_0403-1419-1 bgu_0403-1439 bgu_0403-1444 bgu_0403-1459
bgu_0403-1511 bgu_0403-1523 bgu_0403-1525 BGU_0522-1113-1
bgu_0403-1511 bgu_0403-1523 bgu_0403-1525 BGU_0522-1113-1
BGU_0522-1127 BGU_0522-1136 BGU_0522-1201 BGU_0522-1203
BGU_0522-1127 BGU_0522-1136 BGU_0522-1201 BGU_0522-1203
BGU_0522-1211 BGU_0522-1216 BGU_0522-1217 bulb_0822-0903
BGU_0522-1211 BGU_0522-1216 BGU_0522-1217 bulb_0822-0903
bulb_0822-0909 CC_40D_2_1103-0917 eve_0331-1549 eve_0331-1551
bulb_0822-0909 CC_40D_2_1103-0917 eve_0331-1549 eve_0331-1551
eve_0331-1601 eve_0331-1602 eve_0331-1606 eve_0331-1618
eve_0331-1601 eve_0331-1602 eve_0331-1606 eve_0331-1618
eve_0331-1632 eve_0331-1633 eve_0331-1646 eve_0331-1647
eve_0331-1632 eve_0331-1633 eve_0331-1646 eve_0331-1647
eve_0331-1656 eve_0331-1657 eve_0331-1702 eve_0331-1705
eve_0331-1656 eve_0331-1657 eve_0331-1702 eve_0331-1705
Flower_0325-1336 gavyam_0823-0930 gavyam_0823-0933 gavyam_0823-0944
Flower_0325-1336 gavyam_0823-0930 gavyam_0823-0933 gavyam_0823-0944
gavyam_0823-0945 gavyam_0823-0950-1 grf_0328-0949 hill_0325-1219
gavyam_0823-0945 gavyam_0823-0950-1 grf_0328-0949 hill_0325-1219
hill_0325-1228 hill_0325-1235 hill_0325-1242 IDS_COLORCHECK_1020-1215-1
hill_0325-1228 hill_0325-1235 hill_0325-1242 IDS_COLORCHECK_1020-1215-1
IDS_COLORCHECK_1020-1223 Labtest_0910-1502 Labtest_0910-1504 Labtest_0910-1506
IDS_COLORCHECK_1020-1223 Labtest_0910-1502 Labtest_0910-1504 Labtest_0910-1506
Labtest_0910-1509 Labtest_0910-1510 Labtest_0910-1511 Labtest_0910-1513
Labtest_0910-1509 Labtest_0910-1510 Labtest_0910-1511 Labtest_0910-1513
lehavim_0910-1600 lehavim_0910-1602 lehavim_0910-1605 lehavim_0910-1607
lehavim_0910-1600 lehavim_0910-1602 lehavim_0910-1605 lehavim_0910-1607
lehavim_0910-1610 Lehavim_0910-1622 Lehavim_0910-1626 Lehavim_0910-1627
lehavim_0910-1610 Lehavim_0910-1622 Lehavim_0910-1626 Lehavim_0910-1627
Lehavim_0910-1629 Lehavim_0910-1630 Lehavim_0910-1633 Lehavim_0910-1635
Lehavim_0910-1629 Lehavim_0910-1630 Lehavim_0910-1633 Lehavim_0910-1635
Lehavim_0910-1636 Lehavim_0910-1640 Lehavim_0910-1708 Lehavim_0910-1716
Lehavim_0910-1636 Lehavim_0910-1640 Lehavim_0910-1708 Lehavim_0910-1716
Lehavim_0910-1717 Lehavim_0910-1718 Lehavim_0910-1725 lst_0408-0950
Lehavim_0910-1717 Lehavim_0910-1718 Lehavim_0910-1725 lst_0408-0950
lst_0408-1004 lst_0408-1012 Master20150112_f2_colorchecker Master2900k
lst_0408-1004 lst_0408-1012 Master20150112_f2_colorchecker Master2900k
Master5000K Master5000K_2900K Maz0326-1038 maz_0326-1048
Master5000K Master5000K_2900K Maz0326-1038 maz_0326-1048
mor_0328-1209-2 nachal_0823-1038 nachal_0823-1040 nachal_0823-1047
mor_0328-1209-2 nachal_0823-1038 nachal_0823-1040 nachal_0823-1047
nachal_0823-1110 nachal_0823-1117 nachal_0823-1118 nachal_0823-1121
nachal_0823-1110 nachal_0823-1117 nachal_0823-1118 nachal_0823-1121
nachal_0823-1127 nachal_0823-1132 nachal_0823-1144 nachal_0823-1145
nachal_0823-1127 nachal_0823-1132 nachal_0823-1144 nachal_0823-1145
nachal_0823-1147 nachal_0823-1149 nachal_0823-1152 nachal_0823-1210-4
nachal_0823-1147 nachal_0823-1149 nachal_0823-1152 nachal_0823-1210-4
nachal_0823-1213 nachal_0823-1214 nachal_0823-1217 nachal_0823-1220
nachal_0823-1213 nachal_0823-1214 nachal_0823-1217 nachal_0823-1220
nachal_0823-1222 nachal_0823-1223 negev_0823-1003 negev_0823-1005
nachal_0823-1222 nachal_0823-1223 negev_0823-1003 negev_0823-1005
objects_0924-1550 objects_0924-1556 objects_0924-1557 objects_0924-1558
objects_0924-1550 objects_0924-1556 objects_0924-1557 objects_0924-1558
objects_0924-1600 objects_0924-1601 objects_0924-1602 objects_0924-1605
objects_0924-1600 objects_0924-1601 objects_0924-1602 objects_0924-1605
objects_0924-1607 objects_0924-1610 objects_0924-1611 objects_0924-1612
objects_0924-1607 objects_0924-1610 objects_0924-1611 objects_0924-1612
objects_0924-1614 objects_0924-1617 objects_0924-1619 objects_0924-1620
objects_0924-1614 objects_0924-1617 objects_0924-1619 objects_0924-1620
objects_0924-1622 objects_0924-1628 objects_0924-1629 objects_0924-1631
objects_0924-1622 objects_0924-1628 objects_0924-1629 objects_0924-1631
objects_0924-1632 objects_0924-1633 objects_0924-1634 objects_0924-1636
objects_0924-1632 objects_0924-1633 objects_0924-1634 objects_0924-1636
objects_0924-1637 objects_0924-1638 objects_0924-1639 objects_0924-1641
objects_0924-1637 objects_0924-1638 objects_0924-1639 objects_0924-1641
objects_0924-1645 objects_0924-1648 objects_0924-1650 objects_0924-1652
objects_0924-1645 objects_0924-1648 objects_0924-1650 objects_0924-1652
omer_0331-1055 omer_0331-1102 omer_0331-1104 omer_0331-1118
omer_0331-1055 omer_0331-1102 omer_0331-1104 omer_0331-1118
omer_0331-1119 omer_0331-1130 omer_0331-1131 omer_0331-1135
omer_0331-1119 omer_0331-1130 omer_0331-1131 omer_0331-1135
omer_0331-1150 omer_0331-1159 peppers_0503-1308 peppers_0503-1311
omer_0331-1150 omer_0331-1159 peppers_0503-1308 peppers_0503-1311
peppers_0503-1315 peppers_0503-1330 peppers_0503-1332 pepper_0503-1228
peppers_0503-1315 peppers_0503-1330 peppers_0503-1332 pepper_0503-1228
pepper_0503-1229 pepper_0503-1236 plt_0411-1037 plt_0411-1046
pepper_0503-1229 pepper_0503-1236 plt_0411-1037 plt_0411-1046
plt_0411-1116 plt_0411-1155 plt_0411-1200-1 plt_0411-1207
plt_0411-1116 plt_0411-1155 plt_0411-1200-1 plt_0411-1207
plt_0411-1210 plt_0411-1211 plt_0411-1232-1 prk_0328-0945
plt_0411-1210 plt_0411-1211 plt_0411-1232-1 prk_0328-0945
prk_0328-1025 prk_0328-1031 prk_0328-1034 prk_0328-1037
prk_0328-1025 prk_0328-1031 prk_0328-1034 prk_0328-1037
prk_0328-1045 rsh2_0406-1505 rsh_0406-1343 rsh_0406-1356
prk_0328-1045 rsh2_0406-1505 rsh_0406-1343 rsh_0406-1356
rsh_0406-1413 rsh_0406-1427 rsh_0406-1441-1 rsh_0406-1443
rsh_0406-1413 rsh_0406-1427 rsh_0406-1441-1 rsh_0406-1443
sami_0331-1019 sat_0406-1107 sat_0406-1129 sat_0406-1130
sami_0331-1019 sat_0406-1107 sat_0406-1129 sat_0406-1130
sat_0406-1157-1 selfie_0822-0906 strt_0331-1027 tree_0822-0853
sat_0406-1157-1 selfie_0822-0906 strt_0331-1027 tree_0822-0853
ulm_0328-1118
ulm_0328-1118

Credits

Dataset originally collected by ICVL from the webpage: https://icvl.cs.bgu.ac.il/pages/researches/hyperspectral-imaging.html

For questions, comments and technical assistance, please contact [email protected]

When used, fully or partially, please cite:

Arad and Ben-Shahar, Sparse Recovery of Hyperspectral Signal from Natural RGB Images, in the European Conference on Computer Vision, Amsterdam, The Netherlands, October 11–14, 2016

Bibtex:

@inproceedings{arad_and_ben_shahar_2016_ECCV,
  title={Sparse Recovery of Hyperspectral Signal from Natural RGB Images},
  author={Arad, Boaz and Ben-Shahar, Ohad},
  booktitle={European Conference on Computer Vision},
  pages={19--34},
  year={2016},
  organization={Springer}
}
Downloads last month
586
Edit dataset card