Kenneth Enevoldsen
NCC tests now pass
1546256 unverified
raw
history blame
1.12 kB
import logging
from pathlib import Path
import pandas as pd
import plotnine as pn
from datasets import Dataset
logger = logging.getLogger(__name__)
def create_descriptive_statistics_plots(
dataset: Dataset,
save_dir: Path,
) -> tuple[Path, pn.ggplot]:
logger.info("creating descriptive statistics plot to readme.")
lengths = dataset["token_count"]
df = pd.DataFrame({"lengths": lengths, "Source": dataset["source"]})
plot = (
pn.ggplot(df, pn.aes(x="lengths", y=pn.after_stat("count")))
+ pn.geom_histogram(bins=100)
+ pn.labs(
x="Document Length (Tokens)",
y="Count",
title="Distribution of Document Lengths",
)
+ pn.theme_minimal()
+ pn.facet_wrap("Source", scales="free", ncol=3)
)
img_path = save_dir / "images"
img_path.mkdir(parents=False, exist_ok=True)
save_path = img_path / "dist_document_length.png"
pn.ggsave(
plot,
save_path,
dpi=500,
width=10,
height=10,
units="in",
verbose=False,
)
return save_path, plot