Dataset Viewer
tokens
sequencelengths 1
6
| freq
uint32 0
332M
| n
uint8 1
6
| tokens_str
stringlengths 1
66
| tok5
int32 -1
50.3k
| tok5_str
stringlengths 0
15
| tok4
int32 -1
50.3k
| tok4_str
stringlengths 0
14
| tok3
int32 -1
50.3k
| tok3_str
stringlengths 0
17
| tok2
int32 -1
50.3k
| tok2_str
stringlengths 0
16
| tok1
int32 -1
50.3k
| tok1_str
stringlengths 0
18
| tok0
int32 0
50.3k
| tok0_str
stringlengths 1
66
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[
0
] | 5,487,308 | 1 |
!
| -1 | -1 | -1 | -1 | -1 | 0 |
!
|
|||||
[
1
] | 13,327,355 | 1 |
"
| -1 | -1 | -1 | -1 | -1 | 1 |
"
|
|||||
[
2
] | 453,372 | 1 |
#
| -1 | -1 | -1 | -1 | -1 | 2 |
#
|
|||||
[
3
] | 519,325 | 1 |
$
| -1 | -1 | -1 | -1 | -1 | 3 |
$
|
|||||
[
4
] | 3,917,074 | 1 |
%
| -1 | -1 | -1 | -1 | -1 | 4 |
%
|
|||||
[
5
] | 668,676 | 1 |
&
| -1 | -1 | -1 | -1 | -1 | 5 |
&
|
|||||
[
6
] | 4,899,625 | 1 |
'
| -1 | -1 | -1 | -1 | -1 | 6 |
'
|
|||||
[
7
] | 2,959,408 | 1 |
(
| -1 | -1 | -1 | -1 | -1 | 7 |
(
|
|||||
[
8
] | 19,473,764 | 1 |
)
| -1 | -1 | -1 | -1 | -1 | 8 |
)
|
|||||
[
9
] | 788,274 | 1 |
*
| -1 | -1 | -1 | -1 | -1 | 9 |
*
|
|||||
[
10
] | 849,945 | 1 |
+
| -1 | -1 | -1 | -1 | -1 | 10 |
+
|
|||||
[
11
] | 331,770,469 | 1 |
,
| -1 | -1 | -1 | -1 | -1 | 11 |
,
|
|||||
[
12
] | 73,115,588 | 1 |
-
| -1 | -1 | -1 | -1 | -1 | 12 |
-
|
|||||
[
13
] | 317,302,752 | 1 |
.
| -1 | -1 | -1 | -1 | -1 | 13 |
.
|
|||||
[
14
] | 12,120,103 | 1 |
/
| -1 | -1 | -1 | -1 | -1 | 14 |
/
|
|||||
[
15
] | 2,955,772 | 1 |
0
| -1 | -1 | -1 | -1 | -1 | 15 |
0
|
|||||
[
16
] | 5,978,432 | 1 |
1
| -1 | -1 | -1 | -1 | -1 | 16 |
1
|
|||||
[
17
] | 5,073,915 | 1 |
2
| -1 | -1 | -1 | -1 | -1 | 17 |
2
|
|||||
[
18
] | 3,895,993 | 1 |
3
| -1 | -1 | -1 | -1 | -1 | 18 |
3
|
|||||
[
19
] | 3,167,346 | 1 |
4
| -1 | -1 | -1 | -1 | -1 | 19 |
4
|
|||||
[
20
] | 3,560,767 | 1 |
5
| -1 | -1 | -1 | -1 | -1 | 20 |
5
|
|||||
[
21
] | 2,358,514 | 1 |
6
| -1 | -1 | -1 | -1 | -1 | 21 |
6
|
|||||
[
22
] | 2,189,522 | 1 |
7
| -1 | -1 | -1 | -1 | -1 | 22 |
7
|
|||||
[
23
] | 2,258,639 | 1 |
8
| -1 | -1 | -1 | -1 | -1 | 23 |
8
|
|||||
[
24
] | 1,938,115 | 1 |
9
| -1 | -1 | -1 | -1 | -1 | 24 |
9
|
|||||
[
25
] | 33,924,449 | 1 |
:
| -1 | -1 | -1 | -1 | -1 | 25 |
:
|
|||||
[
26
] | 7,581,302 | 1 |
;
| -1 | -1 | -1 | -1 | -1 | 26 |
;
|
|||||
[
27
] | 307,115 | 1 |
<
| -1 | -1 | -1 | -1 | -1 | 27 |
<
|
|||||
[
28
] | 956,882 | 1 |
=
| -1 | -1 | -1 | -1 | -1 | 28 |
=
|
|||||
[
29
] | 988,348 | 1 |
>
| -1 | -1 | -1 | -1 | -1 | 29 |
>
|
|||||
[
30
] | 12,128,614 | 1 |
?
| -1 | -1 | -1 | -1 | -1 | 30 |
?
|
|||||
[
31
] | 761,206 | 1 |
@
| -1 | -1 | -1 | -1 | -1 | 31 |
@
|
|||||
[
32
] | 5,493,307 | 1 |
A
| -1 | -1 | -1 | -1 | -1 | 32 |
A
|
|||||
[
33
] | 2,692,962 | 1 |
B
| -1 | -1 | -1 | -1 | -1 | 33 |
B
|
|||||
[
34
] | 3,055,331 | 1 |
C
| -1 | -1 | -1 | -1 | -1 | 34 |
C
|
|||||
[
35
] | 2,874,327 | 1 |
D
| -1 | -1 | -1 | -1 | -1 | 35 |
D
|
|||||
[
36
] | 1,399,952 | 1 |
E
| -1 | -1 | -1 | -1 | -1 | 36 |
E
|
|||||
[
37
] | 2,110,413 | 1 |
F
| -1 | -1 | -1 | -1 | -1 | 37 |
F
|
|||||
[
38
] | 2,001,010 | 1 |
G
| -1 | -1 | -1 | -1 | -1 | 38 |
G
|
|||||
[
39
] | 1,862,554 | 1 |
H
| -1 | -1 | -1 | -1 | -1 | 39 |
H
|
|||||
[
40
] | 8,556,245 | 1 |
I
| -1 | -1 | -1 | -1 | -1 | 40 |
I
|
|||||
[
41
] | 1,311,763 | 1 |
J
| -1 | -1 | -1 | -1 | -1 | 41 |
J
|
|||||
[
42
] | 2,000,100 | 1 |
K
| -1 | -1 | -1 | -1 | -1 | 42 |
K
|
|||||
[
43
] | 1,855,725 | 1 |
L
| -1 | -1 | -1 | -1 | -1 | 43 |
L
|
|||||
[
44
] | 2,451,631 | 1 |
M
| -1 | -1 | -1 | -1 | -1 | 44 |
M
|
|||||
[
45
] | 1,762,596 | 1 |
N
| -1 | -1 | -1 | -1 | -1 | 45 |
N
|
|||||
[
46
] | 1,372,599 | 1 |
O
| -1 | -1 | -1 | -1 | -1 | 46 |
O
|
|||||
[
47
] | 2,107,505 | 1 |
P
| -1 | -1 | -1 | -1 | -1 | 47 |
P
|
|||||
[
48
] | 696,484 | 1 |
Q
| -1 | -1 | -1 | -1 | -1 | 48 |
Q
|
|||||
[
49
] | 2,174,567 | 1 |
R
| -1 | -1 | -1 | -1 | -1 | 49 |
R
|
|||||
[
50
] | 5,586,036 | 1 |
S
| -1 | -1 | -1 | -1 | -1 | 50 |
S
|
|||||
[
51
] | 2,116,146 | 1 |
T
| -1 | -1 | -1 | -1 | -1 | 51 |
T
|
|||||
[
52
] | 1,136,509 | 1 |
U
| -1 | -1 | -1 | -1 | -1 | 52 |
U
|
|||||
[
53
] | 1,401,815 | 1 |
V
| -1 | -1 | -1 | -1 | -1 | 53 |
V
|
|||||
[
54
] | 1,481,801 | 1 |
W
| -1 | -1 | -1 | -1 | -1 | 54 |
W
|
|||||
[
55
] | 884,765 | 1 |
X
| -1 | -1 | -1 | -1 | -1 | 55 |
X
|
|||||
[
56
] | 1,045,843 | 1 |
Y
| -1 | -1 | -1 | -1 | -1 | 56 |
Y
|
|||||
[
57
] | 861,450 | 1 |
Z
| -1 | -1 | -1 | -1 | -1 | 57 |
Z
|
|||||
[
58
] | 1,684,351 | 1 |
[
| -1 | -1 | -1 | -1 | -1 | 58 |
[
|
|||||
[
59
] | 861,769 | 1 |
\
| -1 | -1 | -1 | -1 | -1 | 59 |
\
|
|||||
[
60
] | 8,698,958 | 1 |
]
| -1 | -1 | -1 | -1 | -1 | 60 |
]
|
|||||
[
61
] | 136,885 | 1 |
^
| -1 | -1 | -1 | -1 | -1 | 61 |
^
|
|||||
[
62
] | 4,129,741 | 1 |
_
| -1 | -1 | -1 | -1 | -1 | 62 |
_
|
|||||
[
63
] | 125,031 | 1 |
`
| -1 | -1 | -1 | -1 | -1 | 63 |
`
|
|||||
[
64
] | 5,567,006 | 1 |
a
| -1 | -1 | -1 | -1 | -1 | 64 |
a
|
|||||
[
65
] | 2,184,387 | 1 |
b
| -1 | -1 | -1 | -1 | -1 | 65 |
b
|
|||||
[
66
] | 2,210,917 | 1 |
c
| -1 | -1 | -1 | -1 | -1 | 66 |
c
|
|||||
[
67
] | 3,317,323 | 1 |
d
| -1 | -1 | -1 | -1 | -1 | 67 |
d
|
|||||
[
68
] | 2,643,819 | 1 |
e
| -1 | -1 | -1 | -1 | -1 | 68 |
e
|
|||||
[
69
] | 1,986,830 | 1 |
f
| -1 | -1 | -1 | -1 | -1 | 69 |
f
|
|||||
[
70
] | 1,822,512 | 1 |
g
| -1 | -1 | -1 | -1 | -1 | 70 |
g
|
|||||
[
71
] | 2,085,684 | 1 |
h
| -1 | -1 | -1 | -1 | -1 | 71 |
h
|
|||||
[
72
] | 3,977,354 | 1 |
i
| -1 | -1 | -1 | -1 | -1 | 72 |
i
|
|||||
[
73
] | 1,385,829 | 1 |
j
| -1 | -1 | -1 | -1 | -1 | 73 |
j
|
|||||
[
74
] | 1,975,873 | 1 |
k
| -1 | -1 | -1 | -1 | -1 | 74 |
k
|
|||||
[
75
] | 1,878,104 | 1 |
l
| -1 | -1 | -1 | -1 | -1 | 75 |
l
|
|||||
[
76
] | 5,278,088 | 1 |
m
| -1 | -1 | -1 | -1 | -1 | 76 |
m
|
|||||
[
77
] | 1,990,360 | 1 |
n
| -1 | -1 | -1 | -1 | -1 | 77 |
n
|
|||||
[
78
] | 3,399,287 | 1 |
o
| -1 | -1 | -1 | -1 | -1 | 78 |
o
|
|||||
[
79
] | 1,698,336 | 1 |
p
| -1 | -1 | -1 | -1 | -1 | 79 |
p
|
|||||
[
80
] | 532,952 | 1 |
q
| -1 | -1 | -1 | -1 | -1 | 80 |
q
|
|||||
[
81
] | 1,718,866 | 1 |
r
| -1 | -1 | -1 | -1 | -1 | 81 |
r
|
|||||
[
82
] | 46,501,587 | 1 |
s
| -1 | -1 | -1 | -1 | -1 | 82 |
s
|
|||||
[
83
] | 15,084,616 | 1 |
t
| -1 | -1 | -1 | -1 | -1 | 83 |
t
|
|||||
[
84
] | 1,776,410 | 1 |
u
| -1 | -1 | -1 | -1 | -1 | 84 |
u
|
|||||
[
85
] | 1,492,903 | 1 |
v
| -1 | -1 | -1 | -1 | -1 | 85 |
v
|
|||||
[
86
] | 1,261,040 | 1 |
w
| -1 | -1 | -1 | -1 | -1 | 86 |
w
|
|||||
[
87
] | 1,993,162 | 1 |
x
| -1 | -1 | -1 | -1 | -1 | 87 |
x
|
|||||
[
88
] | 3,326,055 | 1 |
y
| -1 | -1 | -1 | -1 | -1 | 88 |
y
|
|||||
[
89
] | 1,838,137 | 1 |
z
| -1 | -1 | -1 | -1 | -1 | 89 |
z
|
|||||
[
90
] | 261,610 | 1 |
{
| -1 | -1 | -1 | -1 | -1 | 90 |
{
|
|||||
[
91
] | 577,959 | 1 |
|
| -1 | -1 | -1 | -1 | -1 | 91 |
|
|
|||||
[
92
] | 410,243 | 1 |
}
| -1 | -1 | -1 | -1 | -1 | 92 |
}
|
|||||
[
93
] | 112,424 | 1 |
~
| -1 | -1 | -1 | -1 | -1 | 93 |
~
|
|||||
[
94
] | 187,522 | 1 |
�
| -1 | -1 | -1 | -1 | -1 | 94 |
�
|
|||||
[
95
] | 114,158 | 1 |
�
| -1 | -1 | -1 | -1 | -1 | 95 |
�
|
|||||
[
96
] | 137,071 | 1 |
�
| -1 | -1 | -1 | -1 | -1 | 96 |
�
|
|||||
[
97
] | 165,632 | 1 |
�
| -1 | -1 | -1 | -1 | -1 | 97 |
�
|
|||||
[
98
] | 161,228 | 1 |
�
| -1 | -1 | -1 | -1 | -1 | 98 |
�
|
|||||
[
99
] | 93,769 | 1 |
�
| -1 | -1 | -1 | -1 | -1 | 99 |
�
|
End of preview. Expand
in Data Studio
Dataset Card for OpenWebText n-grams
Dataset Summary
This dataset contains 246K of the most common token-based (GPT-2/GPT-3) n-grams (n=1 to n=6), in the OpenWebText (OWT) dataset.
For convenient searching, it provides full tokens/strings, as well as per-position tokens/strings.
Usage
Generally, this dataset allows identifying the most common n-grams in a text corpus.
When researching LLMs tokenized similarly to GPT-2/GPT-3, it allows:
- Constructing intermediate vectors spanning the most common short phrases (n-grams), e.g. for similarity sampling.
- Fast searches for common phrases containing particular tokens or substrings (and in particular sequence positions).
- Showing the effects of training set n-gram frequency.
The authors (Thomas Dooms and Dan Wilhelm) used this dataset to show that sparse auto-encoders are biased toward reconstructing the most common n-grams.
Loading the Dataset
We recommend you convert the dataset to a Pandas DataFrame for easy querying:
from datasets import load_dataset
ngrams = load_dataset('danwil/owt-ngrams')['train'].to_pandas()
Contents
Below, we list the number of n-grams and their count/frequency in the original ~9B-token OWT corpus.
- We include all individual tokens (1-grams).
- Note that if an n-gram occurs >N times, then every contiguous subsequence must also occur >N times.
total | n=1 | n=2 | n=3 | n=4 | n=5 | n=6 | |
---|---|---|---|---|---|---|---|
owt_1-6grams_246k | 245831 | 50257 | 58302 | 44560 | 32831 | 13566 | 12495 |
count in OWT | >= 0 | >= 10000 | >= 10000 | > 5000 | > 5000 | > 2000 |
Point of Contact: Dan Wilhelm
- Downloads last month
- 72