File size: 2,322 Bytes
dbc519a
 
 
 
 
 
 
 
 
 
 
 
 
 
6c8fcc3
dbc519a
 
 
 
 
 
6c8fcc3
 
 
dbc519a
 
6c8fcc3
 
 
 
 
 
dbc519a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
license: mit
language:
- en
tags:
- trading
- stock
- market
pretty_name: sunny thakur
size_categories:
- 10K<n<100K
---
LLM Trading Instruction Dataset – 2025 Edition

```
Filename: llm_trading_dataset_20250629_115540.jsonl
Size: 20,306 entries
Format: JSON Lines (.jsonl)
Created: June 29, 2025
Task Type: Instruction Tuning for Financial Signal Prediction
Target Use: Finetuning Instruction-Following LLMs (e.g., LLaMA, Mistral, GPT-NeoX)

```

🧠 Dataset Overview

This dataset is crafted to train and evaluate large language models for predicting Buy/Sell signals based on technical indicators in real-world market conditions. 

Each entry follows a structured instruction format, making it suitable for instruction-tuned or reinforcement-aligned LLMs.



πŸ“ Format

Each line contains a JSON object with the following fields:

```
{
  "instruction": "Given technical indicators, predict if it's a Buy or Sell signal.",
  "input": "AAPL on 2025-03-14 with indicators: EMA20=229.85, EMA50=235.28, BB_upper=257.98, BB_lower=212.55, MACD=-5.63, MACD_signal=-2.33, RSI=30.81, CCI=-176.99, STOCH_K=12.19, STOCH_D=7.04",
  "output": "Buy"
}
```
πŸ” Fields:

    instruction: Standardized prompt for LLMs

    input: Stock ticker, date, and key technical indicators

    output: Target label – "Buy" or "Sell"

πŸ› οΈ Use Cases

    Finetuning instruction-following models for financial forecasting

    Training agents to act as trading advisors

    Simulating AI portfolio decision-making

    Building autonomous trading copilots

    Researching interpretable signal generation

πŸ“‰ Indicators Included

    EMA20, EMA50 (Exponential Moving Averages)

    BB_upper, BB_lower (Bollinger Bands)

    MACD, MACD_signal (Trend Momentum)

    RSI (Relative Strength Index)

    CCI (Commodity Channel Index)

    STOCH_K, STOCH_D (Stochastic Oscillator)
```
import json

with open("llm_trading_dataset_20250629_115540.jsonl") as f:
    for line in f:
        sample = json.loads(line)
        print("Prompt:", sample["instruction"])
        print("Input:", sample["input"])
        print("Target:", sample["output"])
```
πŸ“œ License

MIT License (customizable)
Attribution recommended for academic or commercial use.
🀝 Contact

For collab, model finetuning, or tool integrations:
πŸ“§ [email protected]