File size: 2,674 Bytes
0075ba5 b771cb7 0075ba5 b771cb7 0075ba5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
---
license: mit
language:
- en
tags:
- stockmarket
- trading
pretty_name: sunny thakur
size_categories:
- 100K<n<1M
---
π LLM Trading Instruction Dataset β V2 (2023β2025)
```
Dataset Version: 2
Filename: llm_trading_dataset_20250629_115817.jsonl
Entries: 157k
Period Covered: 2023β2025
Format: JSON Lines (.jsonl)
Task: Instruction Tuning for Financial Signal Classification
Target Models: LLaMA, Mistral, GPT-J, Falcon, Zephyr, DeepSeek, Qwen
```
π§ Overview
This second version of the dataset expands the time horizon and depth of training data for instruction-tuned LLMs by covering real-world market indicators from 2023 through 2025. It enables financial models to learn patterns, sentiment, and timing in Buy/Sell signal generation.
π Dataset Format
Each entry follows the instruction tuning schema:
```
{
"instruction": "Given technical indicators, predict if it's a Buy or Sell signal.",
"input": "AAPL on 2025-03-20 with indicators: EMA20=224.55, EMA50=232.09, BB_upper=254.87, BB_lower=203.31, MACD=-6.81, MACD_signal=-4.88, RSI=33.61, CCI=-85.31, STOCH_K=15.95, STOCH_D=15.7",
"output": "Buy"
}
```
π Fields:
```
instruction β Prompt for LLM task (uniform for all entries)
input β Date, stock symbol, and associated technical indicators
output β Predicted trading signal: "Buy" or "Sell"
```
π Technical Indicators Used
```
Indicator Description
EMA20 / EMA50 Short and medium-term exponential MA
BB_upper/lower Bollinger Bands β price volatility zones
MACD, MACD_sig Momentum crossover indicators
RSI Overbought/Oversold indicator (0β100)
CCI Momentum-based deviation indicator
STOCH_K / D Stochastic oscillator %K/%D lines
```
π§ Example Usage
```
import json
with open("llm_trading_dataset_20250629_115817.jsonl") as f:
for line in f:
ex = json.loads(line)
print("Prompt:", ex["instruction"])
print("Indicators:", ex["input"])
print("Decision:", ex["output"])
```
π§ͺ Use Cases
Finetune instruction-tuned LLMs for trading automation
Evaluate transformer models for financial decision tasks
Build explainable AI advisors using LLM-based logic
Backtest models on realistic multi-year indicators
Create copilot assistants for traders & hedge funds
π Version Info
Version Range Covered Notes
v1 2025 only Initial dataset release
v2 2023β2025 Extended multi-year training set
π License
MIT License β Open for use, distribution, and modification.
Attribution recommended for research and commercial tools.
π€ Contact
π§ [email protected]
π§ AI/Trading Collab: DM for finetuning support or strategy model help |