Dataset Viewer
Auto-converted to Parquet
tag_string
stringlengths
1
162
tag_type
stringclasses
5 values
tag_count
int64
1
6.37M
__index_level_0__
int64
0
859k
1girl
general
6,366,211
3,435
highres
meta
5,699,837
261,519
solo
general
5,288,872
694,333
long_hair
general
4,630,741
410,272
breasts
general
3,659,372
94,036
looking_at_viewer
general
3,550,389
410,635
commentary_request
meta
3,465,805
130,040
blush
general
3,116,937
88,938
smile
general
3,071,870
690,805
open_mouth
general
2,531,030
552,183
short_hair
general
2,393,957
679,234
shirt
general
1,985,188
676,763
simple_background
general
1,969,413
684,997
absurdres
meta
1,964,049
13,238
blue_eyes
general
1,871,293
88,007
long_sleeves
general
1,695,170
410,341
large_breasts
general
1,679,783
394,622
skirt
general
1,649,578
688,376
blonde_hair
general
1,633,547
87,062
white_background
general
1,627,371
805,469
multiple_girls
general
1,625,340
492,166
black_hair
general
1,613,243
84,985
brown_hair
general
1,573,721
95,385
1boy
general
1,517,819
3,386
hair_ornament
general
1,512,233
239,635
commentary
meta
1,495,339
130,039
holding
general
1,482,314
271,641
gloves
general
1,447,538
223,451
dress
general
1,384,528
163,985
red_eyes
general
1,353,308
603,802
closed_mouth
general
1,289,360
126,339
hat
general
1,276,331
251,182
hair_between_eyes
general
1,256,356
239,568
animal_ears
general
1,253,290
41,917
bow
general
1,251,065
92,708
original
copyright
1,234,446
554,088
thighhighs
general
1,220,364
746,238
navel
general
1,218,050
511,701
bad_id
meta
1,196,015
70,305
jewelry
general
1,146,675
311,689
ribbon
general
1,145,862
611,058
2girls
general
1,087,001
4,791
cleavage
general
1,062,023
125,651
bare_shoulders
general
1,032,415
74,396
jacket
general
1,025,777
306,706
very_long_hair
general
1,019,453
792,201
sitting
general
999,472
687,267
standing
general
965,591
703,885
twintails
general
953,418
771,556
bad_pixiv_id
meta
939,155
70,346
medium_breasts
general
934,656
444,568
white_shirt
general
930,428
805,906
touhou
copyright
922,684
760,433
blue_hair
general
913,239
88,062
green_eyes
general
902,579
230,387
brown_eyes
general
884,601
95,368
full_body
general
875,076
206,654
nipples
general
874,047
525,533
purple_eyes
general
867,352
589,806
tail
general
838,838
724,574
upper_body
general
836,267
780,623
collarbone
general
836,258
128,847
school_uniform
general
832,423
650,879
underwear
general
827,719
778,687
male_focus
general
778,280
427,829
closed_eyes
general
759,419
126,336
multicolored_hair
general
758,817
492,036
white_hair
general
756,517
805,646
pink_hair
general
746,463
574,476
yellow_eyes
general
743,420
827,395
grey_hair
general
731,674
231,240
photoshop_(medium)
meta
706,900
572,099
ahoge
general
695,113
18,263
swimsuit
general
690,491
719,635
purple_hair
general
689,987
589,829
panties
general
673,982
563,356
braid
general
669,953
93,338
monochrome
general
664,359
482,516
short_sleeves
general
663,972
679,260
flower
general
663,400
197,566
sidelocks
general
660,552
682,638
ponytail
general
643,047
581,485
hair_ribbon
general
635,919
239,659
weapon
general
629,399
803,129
heart
general
627,016
254,797
ass
general
622,112
60,096
earrings
general
608,299
167,752
thighs
general
602,617
746,248
cowboy_shot
general
600,918
133,376
translation_request
meta
584,973
762,631
:d
general
583,924
10,332
hetero
general
574,182
259,112
outdoors
general
572,274
558,617
comic
general
567,337
129,632
translated
meta
567,304
762,628
hair_bow
general
564,154
239,576
pantyhose
general
562,295
563,481
sweat
general
559,400
719,145
red_hair
general
557,788
603,863
teeth
general
537,972
737,641
End of preview. Expand in Data Studio

dataproc5/metrics-danbooru2025-alltime-tag-counts

Dataset Overview

tag_count provides aggregated tag usage statistics from the Danbooru2025 dataset. Each entry corresponds to a specific tag's usage count in all time.

import unibox as ub

df = ub.loads("hf://dataproc5/metrics-danbooru2025-monthly-tag-counts").to_pandas()
alltime_tag_counts = df.groupby(["tag_string", "tag_type"], as_index=False)["tag_count"].sum()
alltime_tag_counts = alltime_tag_counts.sort_values("tag_count", ascending=False)
ub.saves(alltime_tag_counts, "hf://dataproc5/metrics-danbooru2025-alltime-tag-counts", private=False)

Usage

Some example use cases of this metrics includes:

  • finding out the top-occuring character / artist tags for targeted finetunes
  • creating tag-balanced datasets
  • use as a weighted random tags generator

Columns

  • tag_string: The text of the tag (e.g., "landscape").

  • tag_count: The total occurrences of the tag in the entire Danbooru dataset

  • tag_type: The category of the tag:

    • "artist": Artist names.
    • "character": Character names.
    • "copyright": Copyrighted works or IPs.
    • "general": General descriptive tags.
    • "meta": Meta information tags.

Source Data

  • Derived from Danbooru2025 image metadata.
  • Tags are extracted from columns: tag_string_artist, tag_string_character, tag_string_copyright, tag_string_general, and tag_string_meta.

Visualization

Danbooru tag counts are highly unbalanced. using df["tag_count"].hist() barely gets anything. Here's a log-scaled vis for reference:

import matplotlib.pyplot as plt

# Plot histogram with log scale on the y-axis
plt.figure(figsize=(10, 6))
plt.hist(alltime_tag_counts["tag_count"], bins=100, log=True, edgecolor='black')
plt.title("Histogram of All-Time Tag Counts (Log Scale)")
plt.xlabel("Tag Count")
plt.ylabel("Log Frequency")
plt.grid(True)
plt.show()

image/png

dataproc5/metrics-danbooru2025-alltime-tag-counts

(Auto-generated summary)

Basic Info:

  • Shape: 859440 rows × 3 columns
  • Total Memory Usage: 137.30 MB
  • Duplicates: 0 (0.00%)

Column Stats:

Error generating stats table.

Column Summaries:

→ tag_string (object)

  • Unique values: 859311

→ tag_type (object)

  • Unique values: 5
    • 'artist': 455654 (53.02%)
    • 'character': 266984 (31.06%)
    • 'general': 89908 (10.46%)
    • 'copyright': 46121 (5.37%)
    • 'meta': 773 (0.09%)

→ tag_count (int64)

  • Min: 1.000, Max: 6366211.000, Mean: 385.081, Std: 19297.383

Sample Rows (first 3):

tag_string tag_type  tag_count
     1girl  general    6366211
   highres     meta    5699837
      solo  general    5288872

Usage Example:

import unibox as ub
df = ub.loads("hf://dataproc5/metrics-danbooru2025-alltime-tag-counts").to_pandas()

Saving to dataset:

import unibox as ub
ub.saves(df, "hf://dataproc5/metrics-danbooru2025-alltime-tag-counts")

(last updated: 2025-04-19 02:23:56.101123)

Downloads last month
97

Collection including dataproc5/metrics-danbooru2025-alltime-tag-counts