text
stringlengths
938
1.05M
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized AND with generic_baseblocks_v2_1_carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_carry_latch_and # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire I, output wire O ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign O = CIN & ~I; end else begin : USE_FPGA wire I_n; assign I_n = ~I; AND2B1L and2b1l_inst ( .O(O), .DI(CIN), .SRI(I_n) ); end endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized AND with generic_baseblocks_v2_1_carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_carry_latch_and # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire I, output wire O ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign O = CIN & ~I; end else begin : USE_FPGA wire I_n; assign I_n = ~I; AND2B1L and2b1l_inst ( .O(O), .DI(CIN), .SRI(I_n) ); end endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized AND with generic_baseblocks_v2_1_carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_carry_latch_and # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire I, output wire O ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign O = CIN & ~I; end else begin : USE_FPGA wire I_n; assign I_n = ~I; AND2B1L and2b1l_inst ( .O(O), .DI(CIN), .SRI(I_n) ); end endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized AND with generic_baseblocks_v2_1_carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_carry_latch_and # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire I, output wire O ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign O = CIN & ~I; end else begin : USE_FPGA wire I_n; assign I_n = ~I; AND2B1L and2b1l_inst ( .O(O), .DI(CIN), .SRI(I_n) ); end endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized AND with generic_baseblocks_v2_1_carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_carry_latch_and # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire I, output wire O ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign O = CIN & ~I; end else begin : USE_FPGA wire I_n; assign I_n = ~I; AND2B1L and2b1l_inst ( .O(O), .DI(CIN), .SRI(I_n) ); end endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized Mux from 2:1 upto 16:1. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_mux # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6 or spartan6. parameter integer C_SEL_WIDTH = 4, // Data width for comparator. parameter integer C_DATA_WIDTH = 2 // Data width for comparator. ) ( input wire [C_SEL_WIDTH-1:0] S, input wire [(2**C_SEL_WIDTH)*C_DATA_WIDTH-1:0] A, output wire [C_DATA_WIDTH-1:0] O ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar bit_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" || C_SEL_WIDTH < 3 ) begin : USE_RTL assign O = A[(S)*C_DATA_WIDTH +: C_DATA_WIDTH]; end else begin : USE_FPGA wire [C_DATA_WIDTH-1:0] C; wire [C_DATA_WIDTH-1:0] D; // Lower half recursively. generic_baseblocks_v2_1_mux # ( .C_FAMILY (C_FAMILY), .C_SEL_WIDTH (C_SEL_WIDTH-1), .C_DATA_WIDTH (C_DATA_WIDTH) ) mux_c_inst ( .S (S[C_SEL_WIDTH-2:0]), .A (A[(2**(C_SEL_WIDTH-1))*C_DATA_WIDTH-1 : 0]), .O (C) ); // Upper half recursively. generic_baseblocks_v2_1_mux # ( .C_FAMILY (C_FAMILY), .C_SEL_WIDTH (C_SEL_WIDTH-1), .C_DATA_WIDTH (C_DATA_WIDTH) ) mux_d_inst ( .S (S[C_SEL_WIDTH-2:0]), .A (A[(2**C_SEL_WIDTH)*C_DATA_WIDTH-1 : (2**(C_SEL_WIDTH-1))*C_DATA_WIDTH]), .O (D) ); // Generate instantiated generic_baseblocks_v2_1_mux components as required. for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : NUM if ( C_SEL_WIDTH == 4 ) begin : USE_F8 MUXF8 muxf8_inst ( .I0 (C[bit_cnt]), .I1 (D[bit_cnt]), .S (S[C_SEL_WIDTH-1]), .O (O[bit_cnt]) ); end else if ( C_SEL_WIDTH == 3 ) begin : USE_F7 MUXF7 muxf7_inst ( .I0 (C[bit_cnt]), .I1 (D[bit_cnt]), .S (S[C_SEL_WIDTH-1]), .O (O[bit_cnt]) ); end // C_SEL_WIDTH end // end for bit_cnt end endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized Mux from 2:1 upto 16:1. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_mux # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6 or spartan6. parameter integer C_SEL_WIDTH = 4, // Data width for comparator. parameter integer C_DATA_WIDTH = 2 // Data width for comparator. ) ( input wire [C_SEL_WIDTH-1:0] S, input wire [(2**C_SEL_WIDTH)*C_DATA_WIDTH-1:0] A, output wire [C_DATA_WIDTH-1:0] O ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar bit_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" || C_SEL_WIDTH < 3 ) begin : USE_RTL assign O = A[(S)*C_DATA_WIDTH +: C_DATA_WIDTH]; end else begin : USE_FPGA wire [C_DATA_WIDTH-1:0] C; wire [C_DATA_WIDTH-1:0] D; // Lower half recursively. generic_baseblocks_v2_1_mux # ( .C_FAMILY (C_FAMILY), .C_SEL_WIDTH (C_SEL_WIDTH-1), .C_DATA_WIDTH (C_DATA_WIDTH) ) mux_c_inst ( .S (S[C_SEL_WIDTH-2:0]), .A (A[(2**(C_SEL_WIDTH-1))*C_DATA_WIDTH-1 : 0]), .O (C) ); // Upper half recursively. generic_baseblocks_v2_1_mux # ( .C_FAMILY (C_FAMILY), .C_SEL_WIDTH (C_SEL_WIDTH-1), .C_DATA_WIDTH (C_DATA_WIDTH) ) mux_d_inst ( .S (S[C_SEL_WIDTH-2:0]), .A (A[(2**C_SEL_WIDTH)*C_DATA_WIDTH-1 : (2**(C_SEL_WIDTH-1))*C_DATA_WIDTH]), .O (D) ); // Generate instantiated generic_baseblocks_v2_1_mux components as required. for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : NUM if ( C_SEL_WIDTH == 4 ) begin : USE_F8 MUXF8 muxf8_inst ( .I0 (C[bit_cnt]), .I1 (D[bit_cnt]), .S (S[C_SEL_WIDTH-1]), .O (O[bit_cnt]) ); end else if ( C_SEL_WIDTH == 3 ) begin : USE_F7 MUXF7 muxf7_inst ( .I0 (C[bit_cnt]), .I1 (D[bit_cnt]), .S (S[C_SEL_WIDTH-1]), .O (O[bit_cnt]) ); end // C_SEL_WIDTH end // end for bit_cnt end endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized COMPARATOR (against constant) with generic_baseblocks_v2_1_carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_comparator_static # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter C_VALUE = 4'b0, // Static value to compare against. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire [C_DATA_WIDTH-1:0] A, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar bit_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 6; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = C_VALUE; end // Instantiate one generic_baseblocks_v2_1_carry and per level. for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[bit_cnt] = ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] == b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ); // Instantiate each LUT level. generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[bit_cnt+1]), .CIN (carry_local[bit_cnt]), .S (sel[bit_cnt]) ); end // end for bit_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized COMPARATOR (against constant) with generic_baseblocks_v2_1_carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_comparator_static # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter C_VALUE = 4'b0, // Static value to compare against. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire [C_DATA_WIDTH-1:0] A, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar bit_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 6; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = C_VALUE; end // Instantiate one generic_baseblocks_v2_1_carry and per level. for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[bit_cnt] = ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] == b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ); // Instantiate each LUT level. generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[bit_cnt+1]), .CIN (carry_local[bit_cnt]), .S (sel[bit_cnt]) ); end // end for bit_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized COMPARATOR (against constant) with generic_baseblocks_v2_1_carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_comparator_static # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter C_VALUE = 4'b0, // Static value to compare against. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire [C_DATA_WIDTH-1:0] A, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar bit_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 6; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = C_VALUE; end // Instantiate one generic_baseblocks_v2_1_carry and per level. for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[bit_cnt] = ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] == b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ); // Instantiate each LUT level. generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[bit_cnt+1]), .CIN (carry_local[bit_cnt]), .S (sel[bit_cnt]) ); end // end for bit_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized COMPARATOR (against constant) with generic_baseblocks_v2_1_carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_comparator_static # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter C_VALUE = 4'b0, // Static value to compare against. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire [C_DATA_WIDTH-1:0] A, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar bit_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 6; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = C_VALUE; end // Instantiate one generic_baseblocks_v2_1_carry and per level. for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[bit_cnt] = ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] == b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ); // Instantiate each LUT level. generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[bit_cnt+1]), .CIN (carry_local[bit_cnt]), .S (sel[bit_cnt]) ); end // end for bit_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
// -- (c) Copyright 2009 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // File name: nto1_mux.v // // Description: N:1 MUX based on either binary-encoded or one-hot select input // One-hot mode does not protect against multiple active SEL_ONEHOT inputs. // Note: All port signals changed to all-upper-case (w.r.t. prior version). // //----------------------------------------------------------------------------- `timescale 1ps/1ps `default_nettype none (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_nto1_mux # ( parameter integer C_RATIO = 1, // Range: >=1 parameter integer C_SEL_WIDTH = 1, // Range: >=1; recommended: ceil_log2(C_RATIO) parameter integer C_DATAOUT_WIDTH = 1, // Range: >=1 parameter integer C_ONEHOT = 0 // Values: 0 = binary-encoded (use SEL); 1 = one-hot (use SEL_ONEHOT) ) ( input wire [C_RATIO-1:0] SEL_ONEHOT, // One-hot generic_baseblocks_v2_1_mux select (only used if C_ONEHOT=1) input wire [C_SEL_WIDTH-1:0] SEL, // Binary-encoded generic_baseblocks_v2_1_mux select (only used if C_ONEHOT=0) input wire [C_RATIO*C_DATAOUT_WIDTH-1:0] IN, // Data input array (num_selections x data_width) output wire [C_DATAOUT_WIDTH-1:0] OUT // Data output vector ); wire [C_DATAOUT_WIDTH*C_RATIO-1:0] carry; genvar i; generate if (C_ONEHOT == 0) begin : gen_encoded assign carry[C_DATAOUT_WIDTH-1:0] = {C_DATAOUT_WIDTH{(SEL==0)?1'b1:1'b0}} & IN[C_DATAOUT_WIDTH-1:0]; for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_enc assign carry[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH] = carry[i*C_DATAOUT_WIDTH-1:(i-1)*C_DATAOUT_WIDTH] | {C_DATAOUT_WIDTH{(SEL==i)?1'b1:1'b0}} & IN[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH]; end end else begin : gen_onehot assign carry[C_DATAOUT_WIDTH-1:0] = {C_DATAOUT_WIDTH{SEL_ONEHOT[0]}} & IN[C_DATAOUT_WIDTH-1:0]; for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_hot assign carry[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH] = carry[i*C_DATAOUT_WIDTH-1:(i-1)*C_DATAOUT_WIDTH] | {C_DATAOUT_WIDTH{SEL_ONEHOT[i]}} & IN[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH]; end end endgenerate assign OUT = carry[C_DATAOUT_WIDTH*C_RATIO-1: C_DATAOUT_WIDTH*(C_RATIO-1)]; endmodule `default_nettype wire
// -- (c) Copyright 2009 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // File name: nto1_mux.v // // Description: N:1 MUX based on either binary-encoded or one-hot select input // One-hot mode does not protect against multiple active SEL_ONEHOT inputs. // Note: All port signals changed to all-upper-case (w.r.t. prior version). // //----------------------------------------------------------------------------- `timescale 1ps/1ps `default_nettype none (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_nto1_mux # ( parameter integer C_RATIO = 1, // Range: >=1 parameter integer C_SEL_WIDTH = 1, // Range: >=1; recommended: ceil_log2(C_RATIO) parameter integer C_DATAOUT_WIDTH = 1, // Range: >=1 parameter integer C_ONEHOT = 0 // Values: 0 = binary-encoded (use SEL); 1 = one-hot (use SEL_ONEHOT) ) ( input wire [C_RATIO-1:0] SEL_ONEHOT, // One-hot generic_baseblocks_v2_1_mux select (only used if C_ONEHOT=1) input wire [C_SEL_WIDTH-1:0] SEL, // Binary-encoded generic_baseblocks_v2_1_mux select (only used if C_ONEHOT=0) input wire [C_RATIO*C_DATAOUT_WIDTH-1:0] IN, // Data input array (num_selections x data_width) output wire [C_DATAOUT_WIDTH-1:0] OUT // Data output vector ); wire [C_DATAOUT_WIDTH*C_RATIO-1:0] carry; genvar i; generate if (C_ONEHOT == 0) begin : gen_encoded assign carry[C_DATAOUT_WIDTH-1:0] = {C_DATAOUT_WIDTH{(SEL==0)?1'b1:1'b0}} & IN[C_DATAOUT_WIDTH-1:0]; for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_enc assign carry[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH] = carry[i*C_DATAOUT_WIDTH-1:(i-1)*C_DATAOUT_WIDTH] | {C_DATAOUT_WIDTH{(SEL==i)?1'b1:1'b0}} & IN[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH]; end end else begin : gen_onehot assign carry[C_DATAOUT_WIDTH-1:0] = {C_DATAOUT_WIDTH{SEL_ONEHOT[0]}} & IN[C_DATAOUT_WIDTH-1:0]; for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_hot assign carry[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH] = carry[i*C_DATAOUT_WIDTH-1:(i-1)*C_DATAOUT_WIDTH] | {C_DATAOUT_WIDTH{SEL_ONEHOT[i]}} & IN[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH]; end end endgenerate assign OUT = carry[C_DATAOUT_WIDTH*C_RATIO-1: C_DATAOUT_WIDTH*(C_RATIO-1)]; endmodule `default_nettype wire
// -- (c) Copyright 2009 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // File name: nto1_mux.v // // Description: N:1 MUX based on either binary-encoded or one-hot select input // One-hot mode does not protect against multiple active SEL_ONEHOT inputs. // Note: All port signals changed to all-upper-case (w.r.t. prior version). // //----------------------------------------------------------------------------- `timescale 1ps/1ps `default_nettype none (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_nto1_mux # ( parameter integer C_RATIO = 1, // Range: >=1 parameter integer C_SEL_WIDTH = 1, // Range: >=1; recommended: ceil_log2(C_RATIO) parameter integer C_DATAOUT_WIDTH = 1, // Range: >=1 parameter integer C_ONEHOT = 0 // Values: 0 = binary-encoded (use SEL); 1 = one-hot (use SEL_ONEHOT) ) ( input wire [C_RATIO-1:0] SEL_ONEHOT, // One-hot generic_baseblocks_v2_1_mux select (only used if C_ONEHOT=1) input wire [C_SEL_WIDTH-1:0] SEL, // Binary-encoded generic_baseblocks_v2_1_mux select (only used if C_ONEHOT=0) input wire [C_RATIO*C_DATAOUT_WIDTH-1:0] IN, // Data input array (num_selections x data_width) output wire [C_DATAOUT_WIDTH-1:0] OUT // Data output vector ); wire [C_DATAOUT_WIDTH*C_RATIO-1:0] carry; genvar i; generate if (C_ONEHOT == 0) begin : gen_encoded assign carry[C_DATAOUT_WIDTH-1:0] = {C_DATAOUT_WIDTH{(SEL==0)?1'b1:1'b0}} & IN[C_DATAOUT_WIDTH-1:0]; for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_enc assign carry[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH] = carry[i*C_DATAOUT_WIDTH-1:(i-1)*C_DATAOUT_WIDTH] | {C_DATAOUT_WIDTH{(SEL==i)?1'b1:1'b0}} & IN[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH]; end end else begin : gen_onehot assign carry[C_DATAOUT_WIDTH-1:0] = {C_DATAOUT_WIDTH{SEL_ONEHOT[0]}} & IN[C_DATAOUT_WIDTH-1:0]; for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_hot assign carry[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH] = carry[i*C_DATAOUT_WIDTH-1:(i-1)*C_DATAOUT_WIDTH] | {C_DATAOUT_WIDTH{SEL_ONEHOT[i]}} & IN[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH]; end end endgenerate assign OUT = carry[C_DATAOUT_WIDTH*C_RATIO-1: C_DATAOUT_WIDTH*(C_RATIO-1)]; endmodule `default_nettype wire
// -- (c) Copyright 2009 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // File name: nto1_mux.v // // Description: N:1 MUX based on either binary-encoded or one-hot select input // One-hot mode does not protect against multiple active SEL_ONEHOT inputs. // Note: All port signals changed to all-upper-case (w.r.t. prior version). // //----------------------------------------------------------------------------- `timescale 1ps/1ps `default_nettype none (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_nto1_mux # ( parameter integer C_RATIO = 1, // Range: >=1 parameter integer C_SEL_WIDTH = 1, // Range: >=1; recommended: ceil_log2(C_RATIO) parameter integer C_DATAOUT_WIDTH = 1, // Range: >=1 parameter integer C_ONEHOT = 0 // Values: 0 = binary-encoded (use SEL); 1 = one-hot (use SEL_ONEHOT) ) ( input wire [C_RATIO-1:0] SEL_ONEHOT, // One-hot generic_baseblocks_v2_1_mux select (only used if C_ONEHOT=1) input wire [C_SEL_WIDTH-1:0] SEL, // Binary-encoded generic_baseblocks_v2_1_mux select (only used if C_ONEHOT=0) input wire [C_RATIO*C_DATAOUT_WIDTH-1:0] IN, // Data input array (num_selections x data_width) output wire [C_DATAOUT_WIDTH-1:0] OUT // Data output vector ); wire [C_DATAOUT_WIDTH*C_RATIO-1:0] carry; genvar i; generate if (C_ONEHOT == 0) begin : gen_encoded assign carry[C_DATAOUT_WIDTH-1:0] = {C_DATAOUT_WIDTH{(SEL==0)?1'b1:1'b0}} & IN[C_DATAOUT_WIDTH-1:0]; for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_enc assign carry[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH] = carry[i*C_DATAOUT_WIDTH-1:(i-1)*C_DATAOUT_WIDTH] | {C_DATAOUT_WIDTH{(SEL==i)?1'b1:1'b0}} & IN[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH]; end end else begin : gen_onehot assign carry[C_DATAOUT_WIDTH-1:0] = {C_DATAOUT_WIDTH{SEL_ONEHOT[0]}} & IN[C_DATAOUT_WIDTH-1:0]; for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_hot assign carry[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH] = carry[i*C_DATAOUT_WIDTH-1:(i-1)*C_DATAOUT_WIDTH] | {C_DATAOUT_WIDTH{SEL_ONEHOT[i]}} & IN[(i+1)*C_DATAOUT_WIDTH-1:i*C_DATAOUT_WIDTH]; end end endgenerate assign OUT = carry[C_DATAOUT_WIDTH*C_RATIO-1: C_DATAOUT_WIDTH*(C_RATIO-1)]; endmodule `default_nettype wire
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized COMPARATOR with generic_baseblocks_v2_1_carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_comparator_mask # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire [C_DATA_WIDTH-1:0] A, input wire [C_DATA_WIDTH-1:0] B, input wire [C_DATA_WIDTH-1:0] M, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar lut_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 2; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_FIX_DATA_WIDTH-1:0] m_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = B; assign m_local = M; end // Instantiate one generic_baseblocks_v2_1_carry and per level. for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[lut_cnt] = ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) == ( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ); // Instantiate each LUT level. generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[lut_cnt+1]), .CIN (carry_local[lut_cnt]), .S (sel[lut_cnt]) ); end // end for lut_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized COMPARATOR with generic_baseblocks_v2_1_carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_comparator_mask # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire [C_DATA_WIDTH-1:0] A, input wire [C_DATA_WIDTH-1:0] B, input wire [C_DATA_WIDTH-1:0] M, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar lut_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 2; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_FIX_DATA_WIDTH-1:0] m_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = B; assign m_local = M; end // Instantiate one generic_baseblocks_v2_1_carry and per level. for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[lut_cnt] = ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) == ( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ); // Instantiate each LUT level. generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[lut_cnt+1]), .CIN (carry_local[lut_cnt]), .S (sel[lut_cnt]) ); end // end for lut_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized COMPARATOR with generic_baseblocks_v2_1_carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_comparator_mask # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire [C_DATA_WIDTH-1:0] A, input wire [C_DATA_WIDTH-1:0] B, input wire [C_DATA_WIDTH-1:0] M, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar lut_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 2; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_FIX_DATA_WIDTH-1:0] m_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = B; assign m_local = M; end // Instantiate one generic_baseblocks_v2_1_carry and per level. for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[lut_cnt] = ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) == ( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ); // Instantiate each LUT level. generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[lut_cnt+1]), .CIN (carry_local[lut_cnt]), .S (sel[lut_cnt]) ); end // end for lut_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized AND with generic_baseblocks_v2_1_carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_carry_and # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire S, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign COUT = CIN & S; end else begin : USE_FPGA MUXCY and_inst ( .O (COUT), .CI (CIN), .DI (1'b0), .S (S) ); end endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized AND with generic_baseblocks_v2_1_carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_carry_and # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire S, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign COUT = CIN & S; end else begin : USE_FPGA MUXCY and_inst ( .O (COUT), .CI (CIN), .DI (1'b0), .S (S) ); end endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized AND with generic_baseblocks_v2_1_carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_carry_and # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire S, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign COUT = CIN & S; end else begin : USE_FPGA MUXCY and_inst ( .O (COUT), .CI (CIN), .DI (1'b0), .S (S) ); end endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized OR with generic_baseblocks_v2_1_carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_carry_or # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire S, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign COUT = CIN | S; end else begin : USE_FPGA wire S_n; assign S_n = ~S; MUXCY and_inst ( .O (COUT), .CI (CIN), .DI (1'b1), .S (S_n) ); end endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized OR with generic_baseblocks_v2_1_carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_carry_or # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire S, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign COUT = CIN | S; end else begin : USE_FPGA wire S_n; assign S_n = ~S; MUXCY and_inst ( .O (COUT), .CI (CIN), .DI (1'b1), .S (S_n) ); end endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized OR with generic_baseblocks_v2_1_carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_carry_or # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire S, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign COUT = CIN | S; end else begin : USE_FPGA wire S_n; assign S_n = ~S; MUXCY and_inst ( .O (COUT), .CI (CIN), .DI (1'b1), .S (S_n) ); end endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized OR with generic_baseblocks_v2_1_carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_carry_or # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire S, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign COUT = CIN | S; end else begin : USE_FPGA wire S_n; assign S_n = ~S; MUXCY and_inst ( .O (COUT), .CI (CIN), .DI (1'b1), .S (S_n) ); end endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized OR with generic_baseblocks_v2_1_carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_carry_latch_or # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire I, output wire O ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign O = CIN | I; end else begin : USE_FPGA OR2L or2l_inst1 ( .O(O), .DI(CIN), .SRI(I) ); end endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_carry # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire S, input wire DI, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign COUT = (CIN & S) | (DI & ~S); end else begin : USE_FPGA MUXCY and_inst ( .O (COUT), .CI (CIN), .DI (DI), .S (S) ); end endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_carry # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire S, input wire DI, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign COUT = (CIN & S) | (DI & ~S); end else begin : USE_FPGA MUXCY and_inst ( .O (COUT), .CI (CIN), .DI (DI), .S (S) ); end endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_carry # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire S, input wire DI, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign COUT = (CIN & S) | (DI & ~S); end else begin : USE_FPGA MUXCY and_inst ( .O (COUT), .CI (CIN), .DI (DI), .S (S) ); end endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_carry # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire S, input wire DI, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign COUT = (CIN & S) | (DI & ~S); end else begin : USE_FPGA MUXCY and_inst ( .O (COUT), .CI (CIN), .DI (DI), .S (S) ); end endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_carry # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire S, input wire DI, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign COUT = (CIN & S) | (DI & ~S); end else begin : USE_FPGA MUXCY and_inst ( .O (COUT), .CI (CIN), .DI (DI), .S (S) ); end endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized COMPARATOR with generic_baseblocks_v2_1_carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_comparator_sel_mask # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire S, input wire [C_DATA_WIDTH-1:0] A, input wire [C_DATA_WIDTH-1:0] B, input wire [C_DATA_WIDTH-1:0] M, input wire [C_DATA_WIDTH-1:0] V, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar lut_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 1; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_FIX_DATA_WIDTH-1:0] m_local; wire [C_FIX_DATA_WIDTH-1:0] v_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign v_local = {V, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = B; assign m_local = M; assign v_local = V; end // Instantiate one generic_baseblocks_v2_1_carry and per level. for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[lut_cnt] = ( ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) == ( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b0 ) ) | ( ( ( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) == ( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b1 ) ); // Instantiate each LUT level. generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[lut_cnt+1]), .CIN (carry_local[lut_cnt]), .S (sel[lut_cnt]) ); end // end for lut_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized COMPARATOR with generic_baseblocks_v2_1_carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_comparator_sel_mask # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire S, input wire [C_DATA_WIDTH-1:0] A, input wire [C_DATA_WIDTH-1:0] B, input wire [C_DATA_WIDTH-1:0] M, input wire [C_DATA_WIDTH-1:0] V, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar lut_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 1; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_FIX_DATA_WIDTH-1:0] m_local; wire [C_FIX_DATA_WIDTH-1:0] v_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign v_local = {V, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = B; assign m_local = M; assign v_local = V; end // Instantiate one generic_baseblocks_v2_1_carry and per level. for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[lut_cnt] = ( ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) == ( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b0 ) ) | ( ( ( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) == ( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b1 ) ); // Instantiate each LUT level. generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[lut_cnt+1]), .CIN (carry_local[lut_cnt]), .S (sel[lut_cnt]) ); end // end for lut_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized COMPARATOR with generic_baseblocks_v2_1_carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_comparator_sel_mask # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire S, input wire [C_DATA_WIDTH-1:0] A, input wire [C_DATA_WIDTH-1:0] B, input wire [C_DATA_WIDTH-1:0] M, input wire [C_DATA_WIDTH-1:0] V, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar lut_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 1; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_FIX_DATA_WIDTH-1:0] m_local; wire [C_FIX_DATA_WIDTH-1:0] v_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign v_local = {V, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = B; assign m_local = M; assign v_local = V; end // Instantiate one generic_baseblocks_v2_1_carry and per level. for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[lut_cnt] = ( ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) == ( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b0 ) ) | ( ( ( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) == ( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b1 ) ); // Instantiate each LUT level. generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[lut_cnt+1]), .CIN (carry_local[lut_cnt]), .S (sel[lut_cnt]) ); end // end for lut_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized COMPARATOR with generic_baseblocks_v2_1_carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_comparator_sel_mask # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire S, input wire [C_DATA_WIDTH-1:0] A, input wire [C_DATA_WIDTH-1:0] B, input wire [C_DATA_WIDTH-1:0] M, input wire [C_DATA_WIDTH-1:0] V, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar lut_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 1; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_FIX_DATA_WIDTH-1:0] m_local; wire [C_FIX_DATA_WIDTH-1:0] v_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign v_local = {V, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = B; assign m_local = M; assign v_local = V; end // Instantiate one generic_baseblocks_v2_1_carry and per level. for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[lut_cnt] = ( ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) == ( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b0 ) ) | ( ( ( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) == ( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b1 ) ); // Instantiate each LUT level. generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[lut_cnt+1]), .CIN (carry_local[lut_cnt]), .S (sel[lut_cnt]) ); end // end for lut_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized COMPARATOR with generic_baseblocks_v2_1_carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_comparator_sel_mask # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire S, input wire [C_DATA_WIDTH-1:0] A, input wire [C_DATA_WIDTH-1:0] B, input wire [C_DATA_WIDTH-1:0] M, input wire [C_DATA_WIDTH-1:0] V, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar lut_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 1; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_FIX_DATA_WIDTH-1:0] m_local; wire [C_FIX_DATA_WIDTH-1:0] v_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign v_local = {V, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = B; assign m_local = M; assign v_local = V; end // Instantiate one generic_baseblocks_v2_1_carry and per level. for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[lut_cnt] = ( ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) == ( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b0 ) ) | ( ( ( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) == ( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b1 ) ); // Instantiate each LUT level. generic_baseblocks_v2_1_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[lut_cnt+1]), .CIN (carry_local[lut_cnt]), .S (sel[lut_cnt]) ); end // end for lut_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // pipeline_registers.v // Created: 4.4.2012 // Modified: 4.4.2012 // // Implements a series of pipeline registers specified by the input // parameters BIT_WIDTH and NUMBER_OF_STAGES. BIT_WIDTH determines the // size of the signal passed through each of the pipeline // registers. NUMBER_OF_STAGES is the number of pipeline registers // generated. This accepts values of 0 (yes, it just passes data from // input to output...) up to however many stages specified. // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module pipeline_registers ( input clk, input reset_n, input [BIT_WIDTH-1:0] pipe_in, output reg [BIT_WIDTH-1:0] pipe_out ); // WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP // LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE // OVERWRITTEN! parameter BIT_WIDTH = 10, NUMBER_OF_STAGES = 5; // Main generate function for conditional hardware instantiation generate genvar i; // Pass-through case for the odd event that no pipeline stages are // specified. if (NUMBER_OF_STAGES == 0) begin always @ * pipe_out = pipe_in; end // Single flop case for a single stage pipeline else if (NUMBER_OF_STAGES == 1) begin always @ (posedge clk or negedge reset_n) pipe_out <= (!reset_n) ? 0 : pipe_in; end // Case for 2 or more pipeline stages else begin // Create the necessary regs reg [BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:0] pipe_gen; // Create logic for the initial and final pipeline registers always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin pipe_gen[BIT_WIDTH-1:0] <= 0; pipe_out <= 0; end else begin pipe_gen[BIT_WIDTH-1:0] <= pipe_in; pipe_out <= pipe_gen[BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:BIT_WIDTH*(NUMBER_OF_STAGES-2)]; end end // Create the intermediate pipeline registers if there are 3 or // more pipeline stages for (i = 1; i < NUMBER_OF_STAGES-1; i = i + 1) begin : pipeline always @ (posedge clk or negedge reset_n) pipe_gen[BIT_WIDTH*(i+1)-1:BIT_WIDTH*i] <= (!reset_n) ? 0 : pipe_gen[BIT_WIDTH*i-1:BIT_WIDTH*(i-1)]; end end endgenerate endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // pipeline_registers.v // Created: 4.4.2012 // Modified: 4.4.2012 // // Implements a series of pipeline registers specified by the input // parameters BIT_WIDTH and NUMBER_OF_STAGES. BIT_WIDTH determines the // size of the signal passed through each of the pipeline // registers. NUMBER_OF_STAGES is the number of pipeline registers // generated. This accepts values of 0 (yes, it just passes data from // input to output...) up to however many stages specified. // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module pipeline_registers ( input clk, input reset_n, input [BIT_WIDTH-1:0] pipe_in, output reg [BIT_WIDTH-1:0] pipe_out ); // WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP // LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE // OVERWRITTEN! parameter BIT_WIDTH = 10, NUMBER_OF_STAGES = 5; // Main generate function for conditional hardware instantiation generate genvar i; // Pass-through case for the odd event that no pipeline stages are // specified. if (NUMBER_OF_STAGES == 0) begin always @ * pipe_out = pipe_in; end // Single flop case for a single stage pipeline else if (NUMBER_OF_STAGES == 1) begin always @ (posedge clk or negedge reset_n) pipe_out <= (!reset_n) ? 0 : pipe_in; end // Case for 2 or more pipeline stages else begin // Create the necessary regs reg [BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:0] pipe_gen; // Create logic for the initial and final pipeline registers always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin pipe_gen[BIT_WIDTH-1:0] <= 0; pipe_out <= 0; end else begin pipe_gen[BIT_WIDTH-1:0] <= pipe_in; pipe_out <= pipe_gen[BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:BIT_WIDTH*(NUMBER_OF_STAGES-2)]; end end // Create the intermediate pipeline registers if there are 3 or // more pipeline stages for (i = 1; i < NUMBER_OF_STAGES-1; i = i + 1) begin : pipeline always @ (posedge clk or negedge reset_n) pipe_gen[BIT_WIDTH*(i+1)-1:BIT_WIDTH*i] <= (!reset_n) ? 0 : pipe_gen[BIT_WIDTH*i-1:BIT_WIDTH*(i-1)]; end end endgenerate endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // pipeline_registers.v // Created: 4.4.2012 // Modified: 4.4.2012 // // Implements a series of pipeline registers specified by the input // parameters BIT_WIDTH and NUMBER_OF_STAGES. BIT_WIDTH determines the // size of the signal passed through each of the pipeline // registers. NUMBER_OF_STAGES is the number of pipeline registers // generated. This accepts values of 0 (yes, it just passes data from // input to output...) up to however many stages specified. // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module pipeline_registers ( input clk, input reset_n, input [BIT_WIDTH-1:0] pipe_in, output reg [BIT_WIDTH-1:0] pipe_out ); // WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP // LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE // OVERWRITTEN! parameter BIT_WIDTH = 10, NUMBER_OF_STAGES = 5; // Main generate function for conditional hardware instantiation generate genvar i; // Pass-through case for the odd event that no pipeline stages are // specified. if (NUMBER_OF_STAGES == 0) begin always @ * pipe_out = pipe_in; end // Single flop case for a single stage pipeline else if (NUMBER_OF_STAGES == 1) begin always @ (posedge clk or negedge reset_n) pipe_out <= (!reset_n) ? 0 : pipe_in; end // Case for 2 or more pipeline stages else begin // Create the necessary regs reg [BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:0] pipe_gen; // Create logic for the initial and final pipeline registers always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin pipe_gen[BIT_WIDTH-1:0] <= 0; pipe_out <= 0; end else begin pipe_gen[BIT_WIDTH-1:0] <= pipe_in; pipe_out <= pipe_gen[BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:BIT_WIDTH*(NUMBER_OF_STAGES-2)]; end end // Create the intermediate pipeline registers if there are 3 or // more pipeline stages for (i = 1; i < NUMBER_OF_STAGES-1; i = i + 1) begin : pipeline always @ (posedge clk or negedge reset_n) pipe_gen[BIT_WIDTH*(i+1)-1:BIT_WIDTH*i] <= (!reset_n) ? 0 : pipe_gen[BIT_WIDTH*i-1:BIT_WIDTH*(i-1)]; end end endgenerate endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // pipeline_registers.v // Created: 4.4.2012 // Modified: 4.4.2012 // // Implements a series of pipeline registers specified by the input // parameters BIT_WIDTH and NUMBER_OF_STAGES. BIT_WIDTH determines the // size of the signal passed through each of the pipeline // registers. NUMBER_OF_STAGES is the number of pipeline registers // generated. This accepts values of 0 (yes, it just passes data from // input to output...) up to however many stages specified. // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module pipeline_registers ( input clk, input reset_n, input [BIT_WIDTH-1:0] pipe_in, output reg [BIT_WIDTH-1:0] pipe_out ); // WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP // LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE // OVERWRITTEN! parameter BIT_WIDTH = 10, NUMBER_OF_STAGES = 5; // Main generate function for conditional hardware instantiation generate genvar i; // Pass-through case for the odd event that no pipeline stages are // specified. if (NUMBER_OF_STAGES == 0) begin always @ * pipe_out = pipe_in; end // Single flop case for a single stage pipeline else if (NUMBER_OF_STAGES == 1) begin always @ (posedge clk or negedge reset_n) pipe_out <= (!reset_n) ? 0 : pipe_in; end // Case for 2 or more pipeline stages else begin // Create the necessary regs reg [BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:0] pipe_gen; // Create logic for the initial and final pipeline registers always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin pipe_gen[BIT_WIDTH-1:0] <= 0; pipe_out <= 0; end else begin pipe_gen[BIT_WIDTH-1:0] <= pipe_in; pipe_out <= pipe_gen[BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:BIT_WIDTH*(NUMBER_OF_STAGES-2)]; end end // Create the intermediate pipeline registers if there are 3 or // more pipeline stages for (i = 1; i < NUMBER_OF_STAGES-1; i = i + 1) begin : pipeline always @ (posedge clk or negedge reset_n) pipe_gen[BIT_WIDTH*(i+1)-1:BIT_WIDTH*i] <= (!reset_n) ? 0 : pipe_gen[BIT_WIDTH*i-1:BIT_WIDTH*(i-1)]; end end endgenerate endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // pipeline_registers.v // Created: 4.4.2012 // Modified: 4.4.2012 // // Implements a series of pipeline registers specified by the input // parameters BIT_WIDTH and NUMBER_OF_STAGES. BIT_WIDTH determines the // size of the signal passed through each of the pipeline // registers. NUMBER_OF_STAGES is the number of pipeline registers // generated. This accepts values of 0 (yes, it just passes data from // input to output...) up to however many stages specified. // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module pipeline_registers ( input clk, input reset_n, input [BIT_WIDTH-1:0] pipe_in, output reg [BIT_WIDTH-1:0] pipe_out ); // WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP // LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE // OVERWRITTEN! parameter BIT_WIDTH = 10, NUMBER_OF_STAGES = 5; // Main generate function for conditional hardware instantiation generate genvar i; // Pass-through case for the odd event that no pipeline stages are // specified. if (NUMBER_OF_STAGES == 0) begin always @ * pipe_out = pipe_in; end // Single flop case for a single stage pipeline else if (NUMBER_OF_STAGES == 1) begin always @ (posedge clk or negedge reset_n) pipe_out <= (!reset_n) ? 0 : pipe_in; end // Case for 2 or more pipeline stages else begin // Create the necessary regs reg [BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:0] pipe_gen; // Create logic for the initial and final pipeline registers always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin pipe_gen[BIT_WIDTH-1:0] <= 0; pipe_out <= 0; end else begin pipe_gen[BIT_WIDTH-1:0] <= pipe_in; pipe_out <= pipe_gen[BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:BIT_WIDTH*(NUMBER_OF_STAGES-2)]; end end // Create the intermediate pipeline registers if there are 3 or // more pipeline stages for (i = 1; i < NUMBER_OF_STAGES-1; i = i + 1) begin : pipeline always @ (posedge clk or negedge reset_n) pipe_gen[BIT_WIDTH*(i+1)-1:BIT_WIDTH*i] <= (!reset_n) ? 0 : pipe_gen[BIT_WIDTH*i-1:BIT_WIDTH*(i-1)]; end end endgenerate endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // pipeline_registers.v // Created: 4.4.2012 // Modified: 4.4.2012 // // Implements a series of pipeline registers specified by the input // parameters BIT_WIDTH and NUMBER_OF_STAGES. BIT_WIDTH determines the // size of the signal passed through each of the pipeline // registers. NUMBER_OF_STAGES is the number of pipeline registers // generated. This accepts values of 0 (yes, it just passes data from // input to output...) up to however many stages specified. // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module pipeline_registers ( input clk, input reset_n, input [BIT_WIDTH-1:0] pipe_in, output reg [BIT_WIDTH-1:0] pipe_out ); // WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP // LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE // OVERWRITTEN! parameter BIT_WIDTH = 10, NUMBER_OF_STAGES = 5; // Main generate function for conditional hardware instantiation generate genvar i; // Pass-through case for the odd event that no pipeline stages are // specified. if (NUMBER_OF_STAGES == 0) begin always @ * pipe_out = pipe_in; end // Single flop case for a single stage pipeline else if (NUMBER_OF_STAGES == 1) begin always @ (posedge clk or negedge reset_n) pipe_out <= (!reset_n) ? 0 : pipe_in; end // Case for 2 or more pipeline stages else begin // Create the necessary regs reg [BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:0] pipe_gen; // Create logic for the initial and final pipeline registers always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin pipe_gen[BIT_WIDTH-1:0] <= 0; pipe_out <= 0; end else begin pipe_gen[BIT_WIDTH-1:0] <= pipe_in; pipe_out <= pipe_gen[BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:BIT_WIDTH*(NUMBER_OF_STAGES-2)]; end end // Create the intermediate pipeline registers if there are 3 or // more pipeline stages for (i = 1; i < NUMBER_OF_STAGES-1; i = i + 1) begin : pipeline always @ (posedge clk or negedge reset_n) pipe_gen[BIT_WIDTH*(i+1)-1:BIT_WIDTH*i] <= (!reset_n) ? 0 : pipe_gen[BIT_WIDTH*i-1:BIT_WIDTH*(i-1)]; end end endgenerate endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // pipeline_registers.v // Created: 4.4.2012 // Modified: 4.4.2012 // // Implements a series of pipeline registers specified by the input // parameters BIT_WIDTH and NUMBER_OF_STAGES. BIT_WIDTH determines the // size of the signal passed through each of the pipeline // registers. NUMBER_OF_STAGES is the number of pipeline registers // generated. This accepts values of 0 (yes, it just passes data from // input to output...) up to however many stages specified. // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module pipeline_registers ( input clk, input reset_n, input [BIT_WIDTH-1:0] pipe_in, output reg [BIT_WIDTH-1:0] pipe_out ); // WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP // LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE // OVERWRITTEN! parameter BIT_WIDTH = 10, NUMBER_OF_STAGES = 5; // Main generate function for conditional hardware instantiation generate genvar i; // Pass-through case for the odd event that no pipeline stages are // specified. if (NUMBER_OF_STAGES == 0) begin always @ * pipe_out = pipe_in; end // Single flop case for a single stage pipeline else if (NUMBER_OF_STAGES == 1) begin always @ (posedge clk or negedge reset_n) pipe_out <= (!reset_n) ? 0 : pipe_in; end // Case for 2 or more pipeline stages else begin // Create the necessary regs reg [BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:0] pipe_gen; // Create logic for the initial and final pipeline registers always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin pipe_gen[BIT_WIDTH-1:0] <= 0; pipe_out <= 0; end else begin pipe_gen[BIT_WIDTH-1:0] <= pipe_in; pipe_out <= pipe_gen[BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:BIT_WIDTH*(NUMBER_OF_STAGES-2)]; end end // Create the intermediate pipeline registers if there are 3 or // more pipeline stages for (i = 1; i < NUMBER_OF_STAGES-1; i = i + 1) begin : pipeline always @ (posedge clk or negedge reset_n) pipe_gen[BIT_WIDTH*(i+1)-1:BIT_WIDTH*i] <= (!reset_n) ? 0 : pipe_gen[BIT_WIDTH*i-1:BIT_WIDTH*(i-1)]; end end endgenerate endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // pipeline_registers.v // Created: 4.4.2012 // Modified: 4.4.2012 // // Implements a series of pipeline registers specified by the input // parameters BIT_WIDTH and NUMBER_OF_STAGES. BIT_WIDTH determines the // size of the signal passed through each of the pipeline // registers. NUMBER_OF_STAGES is the number of pipeline registers // generated. This accepts values of 0 (yes, it just passes data from // input to output...) up to however many stages specified. // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module pipeline_registers ( input clk, input reset_n, input [BIT_WIDTH-1:0] pipe_in, output reg [BIT_WIDTH-1:0] pipe_out ); // WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP // LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE // OVERWRITTEN! parameter BIT_WIDTH = 10, NUMBER_OF_STAGES = 5; // Main generate function for conditional hardware instantiation generate genvar i; // Pass-through case for the odd event that no pipeline stages are // specified. if (NUMBER_OF_STAGES == 0) begin always @ * pipe_out = pipe_in; end // Single flop case for a single stage pipeline else if (NUMBER_OF_STAGES == 1) begin always @ (posedge clk or negedge reset_n) pipe_out <= (!reset_n) ? 0 : pipe_in; end // Case for 2 or more pipeline stages else begin // Create the necessary regs reg [BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:0] pipe_gen; // Create logic for the initial and final pipeline registers always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin pipe_gen[BIT_WIDTH-1:0] <= 0; pipe_out <= 0; end else begin pipe_gen[BIT_WIDTH-1:0] <= pipe_in; pipe_out <= pipe_gen[BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:BIT_WIDTH*(NUMBER_OF_STAGES-2)]; end end // Create the intermediate pipeline registers if there are 3 or // more pipeline stages for (i = 1; i < NUMBER_OF_STAGES-1; i = i + 1) begin : pipeline always @ (posedge clk or negedge reset_n) pipe_gen[BIT_WIDTH*(i+1)-1:BIT_WIDTH*i] <= (!reset_n) ? 0 : pipe_gen[BIT_WIDTH*i-1:BIT_WIDTH*(i-1)]; end end endgenerate endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // pipeline_registers.v // Created: 4.4.2012 // Modified: 4.4.2012 // // Implements a series of pipeline registers specified by the input // parameters BIT_WIDTH and NUMBER_OF_STAGES. BIT_WIDTH determines the // size of the signal passed through each of the pipeline // registers. NUMBER_OF_STAGES is the number of pipeline registers // generated. This accepts values of 0 (yes, it just passes data from // input to output...) up to however many stages specified. // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module pipeline_registers ( input clk, input reset_n, input [BIT_WIDTH-1:0] pipe_in, output reg [BIT_WIDTH-1:0] pipe_out ); // WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP // LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE // OVERWRITTEN! parameter BIT_WIDTH = 10, NUMBER_OF_STAGES = 5; // Main generate function for conditional hardware instantiation generate genvar i; // Pass-through case for the odd event that no pipeline stages are // specified. if (NUMBER_OF_STAGES == 0) begin always @ * pipe_out = pipe_in; end // Single flop case for a single stage pipeline else if (NUMBER_OF_STAGES == 1) begin always @ (posedge clk or negedge reset_n) pipe_out <= (!reset_n) ? 0 : pipe_in; end // Case for 2 or more pipeline stages else begin // Create the necessary regs reg [BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:0] pipe_gen; // Create logic for the initial and final pipeline registers always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin pipe_gen[BIT_WIDTH-1:0] <= 0; pipe_out <= 0; end else begin pipe_gen[BIT_WIDTH-1:0] <= pipe_in; pipe_out <= pipe_gen[BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:BIT_WIDTH*(NUMBER_OF_STAGES-2)]; end end // Create the intermediate pipeline registers if there are 3 or // more pipeline stages for (i = 1; i < NUMBER_OF_STAGES-1; i = i + 1) begin : pipeline always @ (posedge clk or negedge reset_n) pipe_gen[BIT_WIDTH*(i+1)-1:BIT_WIDTH*i] <= (!reset_n) ? 0 : pipe_gen[BIT_WIDTH*i-1:BIT_WIDTH*(i-1)]; end end endgenerate endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // pipeline_registers.v // Created: 4.4.2012 // Modified: 4.4.2012 // // Implements a series of pipeline registers specified by the input // parameters BIT_WIDTH and NUMBER_OF_STAGES. BIT_WIDTH determines the // size of the signal passed through each of the pipeline // registers. NUMBER_OF_STAGES is the number of pipeline registers // generated. This accepts values of 0 (yes, it just passes data from // input to output...) up to however many stages specified. // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module pipeline_registers ( input clk, input reset_n, input [BIT_WIDTH-1:0] pipe_in, output reg [BIT_WIDTH-1:0] pipe_out ); // WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP // LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE // OVERWRITTEN! parameter BIT_WIDTH = 10, NUMBER_OF_STAGES = 5; // Main generate function for conditional hardware instantiation generate genvar i; // Pass-through case for the odd event that no pipeline stages are // specified. if (NUMBER_OF_STAGES == 0) begin always @ * pipe_out = pipe_in; end // Single flop case for a single stage pipeline else if (NUMBER_OF_STAGES == 1) begin always @ (posedge clk or negedge reset_n) pipe_out <= (!reset_n) ? 0 : pipe_in; end // Case for 2 or more pipeline stages else begin // Create the necessary regs reg [BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:0] pipe_gen; // Create logic for the initial and final pipeline registers always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin pipe_gen[BIT_WIDTH-1:0] <= 0; pipe_out <= 0; end else begin pipe_gen[BIT_WIDTH-1:0] <= pipe_in; pipe_out <= pipe_gen[BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:BIT_WIDTH*(NUMBER_OF_STAGES-2)]; end end // Create the intermediate pipeline registers if there are 3 or // more pipeline stages for (i = 1; i < NUMBER_OF_STAGES-1; i = i + 1) begin : pipeline always @ (posedge clk or negedge reset_n) pipe_gen[BIT_WIDTH*(i+1)-1:BIT_WIDTH*i] <= (!reset_n) ? 0 : pipe_gen[BIT_WIDTH*i-1:BIT_WIDTH*(i-1)]; end end endgenerate endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // pipeline_registers.v // Created: 4.4.2012 // Modified: 4.4.2012 // // Implements a series of pipeline registers specified by the input // parameters BIT_WIDTH and NUMBER_OF_STAGES. BIT_WIDTH determines the // size of the signal passed through each of the pipeline // registers. NUMBER_OF_STAGES is the number of pipeline registers // generated. This accepts values of 0 (yes, it just passes data from // input to output...) up to however many stages specified. // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module pipeline_registers ( input clk, input reset_n, input [BIT_WIDTH-1:0] pipe_in, output reg [BIT_WIDTH-1:0] pipe_out ); // WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP // LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE // OVERWRITTEN! parameter BIT_WIDTH = 10, NUMBER_OF_STAGES = 5; // Main generate function for conditional hardware instantiation generate genvar i; // Pass-through case for the odd event that no pipeline stages are // specified. if (NUMBER_OF_STAGES == 0) begin always @ * pipe_out = pipe_in; end // Single flop case for a single stage pipeline else if (NUMBER_OF_STAGES == 1) begin always @ (posedge clk or negedge reset_n) pipe_out <= (!reset_n) ? 0 : pipe_in; end // Case for 2 or more pipeline stages else begin // Create the necessary regs reg [BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:0] pipe_gen; // Create logic for the initial and final pipeline registers always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin pipe_gen[BIT_WIDTH-1:0] <= 0; pipe_out <= 0; end else begin pipe_gen[BIT_WIDTH-1:0] <= pipe_in; pipe_out <= pipe_gen[BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:BIT_WIDTH*(NUMBER_OF_STAGES-2)]; end end // Create the intermediate pipeline registers if there are 3 or // more pipeline stages for (i = 1; i < NUMBER_OF_STAGES-1; i = i + 1) begin : pipeline always @ (posedge clk or negedge reset_n) pipe_gen[BIT_WIDTH*(i+1)-1:BIT_WIDTH*i] <= (!reset_n) ? 0 : pipe_gen[BIT_WIDTH*i-1:BIT_WIDTH*(i-1)]; end end endgenerate endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // pipeline_registers.v // Created: 4.4.2012 // Modified: 4.4.2012 // // Implements a series of pipeline registers specified by the input // parameters BIT_WIDTH and NUMBER_OF_STAGES. BIT_WIDTH determines the // size of the signal passed through each of the pipeline // registers. NUMBER_OF_STAGES is the number of pipeline registers // generated. This accepts values of 0 (yes, it just passes data from // input to output...) up to however many stages specified. // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module pipeline_registers ( input clk, input reset_n, input [BIT_WIDTH-1:0] pipe_in, output reg [BIT_WIDTH-1:0] pipe_out ); // WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP // LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE // OVERWRITTEN! parameter BIT_WIDTH = 10, NUMBER_OF_STAGES = 5; // Main generate function for conditional hardware instantiation generate genvar i; // Pass-through case for the odd event that no pipeline stages are // specified. if (NUMBER_OF_STAGES == 0) begin always @ * pipe_out = pipe_in; end // Single flop case for a single stage pipeline else if (NUMBER_OF_STAGES == 1) begin always @ (posedge clk or negedge reset_n) pipe_out <= (!reset_n) ? 0 : pipe_in; end // Case for 2 or more pipeline stages else begin // Create the necessary regs reg [BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:0] pipe_gen; // Create logic for the initial and final pipeline registers always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin pipe_gen[BIT_WIDTH-1:0] <= 0; pipe_out <= 0; end else begin pipe_gen[BIT_WIDTH-1:0] <= pipe_in; pipe_out <= pipe_gen[BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:BIT_WIDTH*(NUMBER_OF_STAGES-2)]; end end // Create the intermediate pipeline registers if there are 3 or // more pipeline stages for (i = 1; i < NUMBER_OF_STAGES-1; i = i + 1) begin : pipeline always @ (posedge clk or negedge reset_n) pipe_gen[BIT_WIDTH*(i+1)-1:BIT_WIDTH*i] <= (!reset_n) ? 0 : pipe_gen[BIT_WIDTH*i-1:BIT_WIDTH*(i-1)]; end end endgenerate endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // pipeline_registers.v // Created: 4.4.2012 // Modified: 4.4.2012 // // Implements a series of pipeline registers specified by the input // parameters BIT_WIDTH and NUMBER_OF_STAGES. BIT_WIDTH determines the // size of the signal passed through each of the pipeline // registers. NUMBER_OF_STAGES is the number of pipeline registers // generated. This accepts values of 0 (yes, it just passes data from // input to output...) up to however many stages specified. // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module pipeline_registers ( input clk, input reset_n, input [BIT_WIDTH-1:0] pipe_in, output reg [BIT_WIDTH-1:0] pipe_out ); // WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP // LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE // OVERWRITTEN! parameter BIT_WIDTH = 10, NUMBER_OF_STAGES = 5; // Main generate function for conditional hardware instantiation generate genvar i; // Pass-through case for the odd event that no pipeline stages are // specified. if (NUMBER_OF_STAGES == 0) begin always @ * pipe_out = pipe_in; end // Single flop case for a single stage pipeline else if (NUMBER_OF_STAGES == 1) begin always @ (posedge clk or negedge reset_n) pipe_out <= (!reset_n) ? 0 : pipe_in; end // Case for 2 or more pipeline stages else begin // Create the necessary regs reg [BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:0] pipe_gen; // Create logic for the initial and final pipeline registers always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin pipe_gen[BIT_WIDTH-1:0] <= 0; pipe_out <= 0; end else begin pipe_gen[BIT_WIDTH-1:0] <= pipe_in; pipe_out <= pipe_gen[BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:BIT_WIDTH*(NUMBER_OF_STAGES-2)]; end end // Create the intermediate pipeline registers if there are 3 or // more pipeline stages for (i = 1; i < NUMBER_OF_STAGES-1; i = i + 1) begin : pipeline always @ (posedge clk or negedge reset_n) pipe_gen[BIT_WIDTH*(i+1)-1:BIT_WIDTH*i] <= (!reset_n) ? 0 : pipe_gen[BIT_WIDTH*i-1:BIT_WIDTH*(i-1)]; end end endgenerate endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // pipeline_registers.v // Created: 4.4.2012 // Modified: 4.4.2012 // // Implements a series of pipeline registers specified by the input // parameters BIT_WIDTH and NUMBER_OF_STAGES. BIT_WIDTH determines the // size of the signal passed through each of the pipeline // registers. NUMBER_OF_STAGES is the number of pipeline registers // generated. This accepts values of 0 (yes, it just passes data from // input to output...) up to however many stages specified. // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module pipeline_registers ( input clk, input reset_n, input [BIT_WIDTH-1:0] pipe_in, output reg [BIT_WIDTH-1:0] pipe_out ); // WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP // LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE // OVERWRITTEN! parameter BIT_WIDTH = 10, NUMBER_OF_STAGES = 5; // Main generate function for conditional hardware instantiation generate genvar i; // Pass-through case for the odd event that no pipeline stages are // specified. if (NUMBER_OF_STAGES == 0) begin always @ * pipe_out = pipe_in; end // Single flop case for a single stage pipeline else if (NUMBER_OF_STAGES == 1) begin always @ (posedge clk or negedge reset_n) pipe_out <= (!reset_n) ? 0 : pipe_in; end // Case for 2 or more pipeline stages else begin // Create the necessary regs reg [BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:0] pipe_gen; // Create logic for the initial and final pipeline registers always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin pipe_gen[BIT_WIDTH-1:0] <= 0; pipe_out <= 0; end else begin pipe_gen[BIT_WIDTH-1:0] <= pipe_in; pipe_out <= pipe_gen[BIT_WIDTH*(NUMBER_OF_STAGES-1)-1:BIT_WIDTH*(NUMBER_OF_STAGES-2)]; end end // Create the intermediate pipeline registers if there are 3 or // more pipeline stages for (i = 1; i < NUMBER_OF_STAGES-1; i = i + 1) begin : pipeline always @ (posedge clk or negedge reset_n) pipe_gen[BIT_WIDTH*(i+1)-1:BIT_WIDTH*i] <= (!reset_n) ? 0 : pipe_gen[BIT_WIDTH*i-1:BIT_WIDTH*(i-1)]; end end endgenerate endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // div_pipelined.v // Created: 4.3.2012 // Modified: 4.5.2012 // // Testbench for div_pipelined.v // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module t_div_pipelined(); reg clk, start, reset_n; reg [7:0] dividend, divisor; wire data_valid, div_by_zero; wire [7:0] quotient, quotient_correct; parameter BITS = 8; div_pipelined #( .BITS(BITS) ) div_pipelined ( .clk(clk), .reset_n(reset_n), .dividend(dividend), .divisor(divisor), .quotient(quotient), .div_by_zero(div_by_zero), // .quotient_correct(quotient_correct), .start(start), .data_valid(data_valid) ); initial begin #10 reset_n = 0; #50 reset_n = 1; #1 clk = 0; dividend = -1; divisor = 127; #1000 $finish; end // always // #20 dividend = dividend + 1; always begin #10 divisor = divisor - 1; start = 1; #10 start = 0; end always #5 clk = ~clk; endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // div_pipelined.v // Created: 4.3.2012 // Modified: 4.5.2012 // // Testbench for div_pipelined.v // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module t_div_pipelined(); reg clk, start, reset_n; reg [7:0] dividend, divisor; wire data_valid, div_by_zero; wire [7:0] quotient, quotient_correct; parameter BITS = 8; div_pipelined #( .BITS(BITS) ) div_pipelined ( .clk(clk), .reset_n(reset_n), .dividend(dividend), .divisor(divisor), .quotient(quotient), .div_by_zero(div_by_zero), // .quotient_correct(quotient_correct), .start(start), .data_valid(data_valid) ); initial begin #10 reset_n = 0; #50 reset_n = 1; #1 clk = 0; dividend = -1; divisor = 127; #1000 $finish; end // always // #20 dividend = dividend + 1; always begin #10 divisor = divisor - 1; start = 1; #10 start = 0; end always #5 clk = ~clk; endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // div_pipelined.v // Created: 4.3.2012 // Modified: 4.5.2012 // // Testbench for div_pipelined.v // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module t_div_pipelined(); reg clk, start, reset_n; reg [7:0] dividend, divisor; wire data_valid, div_by_zero; wire [7:0] quotient, quotient_correct; parameter BITS = 8; div_pipelined #( .BITS(BITS) ) div_pipelined ( .clk(clk), .reset_n(reset_n), .dividend(dividend), .divisor(divisor), .quotient(quotient), .div_by_zero(div_by_zero), // .quotient_correct(quotient_correct), .start(start), .data_valid(data_valid) ); initial begin #10 reset_n = 0; #50 reset_n = 1; #1 clk = 0; dividend = -1; divisor = 127; #1000 $finish; end // always // #20 dividend = dividend + 1; always begin #10 divisor = divisor - 1; start = 1; #10 start = 0; end always #5 clk = ~clk; endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // div_pipelined.v // Created: 4.3.2012 // Modified: 4.5.2012 // // Testbench for div_pipelined.v // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module t_div_pipelined(); reg clk, start, reset_n; reg [7:0] dividend, divisor; wire data_valid, div_by_zero; wire [7:0] quotient, quotient_correct; parameter BITS = 8; div_pipelined #( .BITS(BITS) ) div_pipelined ( .clk(clk), .reset_n(reset_n), .dividend(dividend), .divisor(divisor), .quotient(quotient), .div_by_zero(div_by_zero), // .quotient_correct(quotient_correct), .start(start), .data_valid(data_valid) ); initial begin #10 reset_n = 0; #50 reset_n = 1; #1 clk = 0; dividend = -1; divisor = 127; #1000 $finish; end // always // #20 dividend = dividend + 1; always begin #10 divisor = divisor - 1; start = 1; #10 start = 0; end always #5 clk = ~clk; endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // div_pipelined.v // Created: 4.3.2012 // Modified: 4.5.2012 // // Testbench for div_pipelined.v // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module t_div_pipelined(); reg clk, start, reset_n; reg [7:0] dividend, divisor; wire data_valid, div_by_zero; wire [7:0] quotient, quotient_correct; parameter BITS = 8; div_pipelined #( .BITS(BITS) ) div_pipelined ( .clk(clk), .reset_n(reset_n), .dividend(dividend), .divisor(divisor), .quotient(quotient), .div_by_zero(div_by_zero), // .quotient_correct(quotient_correct), .start(start), .data_valid(data_valid) ); initial begin #10 reset_n = 0; #50 reset_n = 1; #1 clk = 0; dividend = -1; divisor = 127; #1000 $finish; end // always // #20 dividend = dividend + 1; always begin #10 divisor = divisor - 1; start = 1; #10 start = 0; end always #5 clk = ~clk; endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // div_pipelined.v // Created: 4.3.2012 // Modified: 4.5.2012 // // Testbench for div_pipelined.v // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module t_div_pipelined(); reg clk, start, reset_n; reg [7:0] dividend, divisor; wire data_valid, div_by_zero; wire [7:0] quotient, quotient_correct; parameter BITS = 8; div_pipelined #( .BITS(BITS) ) div_pipelined ( .clk(clk), .reset_n(reset_n), .dividend(dividend), .divisor(divisor), .quotient(quotient), .div_by_zero(div_by_zero), // .quotient_correct(quotient_correct), .start(start), .data_valid(data_valid) ); initial begin #10 reset_n = 0; #50 reset_n = 1; #1 clk = 0; dividend = -1; divisor = 127; #1000 $finish; end // always // #20 dividend = dividend + 1; always begin #10 divisor = divisor - 1; start = 1; #10 start = 0; end always #5 clk = ~clk; endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // div_pipelined.v // Created: 4.3.2012 // Modified: 4.5.2012 // // Testbench for div_pipelined.v // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module t_div_pipelined(); reg clk, start, reset_n; reg [7:0] dividend, divisor; wire data_valid, div_by_zero; wire [7:0] quotient, quotient_correct; parameter BITS = 8; div_pipelined #( .BITS(BITS) ) div_pipelined ( .clk(clk), .reset_n(reset_n), .dividend(dividend), .divisor(divisor), .quotient(quotient), .div_by_zero(div_by_zero), // .quotient_correct(quotient_correct), .start(start), .data_valid(data_valid) ); initial begin #10 reset_n = 0; #50 reset_n = 1; #1 clk = 0; dividend = -1; divisor = 127; #1000 $finish; end // always // #20 dividend = dividend + 1; always begin #10 divisor = divisor - 1; start = 1; #10 start = 0; end always #5 clk = ~clk; endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // div_pipelined.v // Created: 4.3.2012 // Modified: 4.5.2012 // // Testbench for div_pipelined.v // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module t_div_pipelined(); reg clk, start, reset_n; reg [7:0] dividend, divisor; wire data_valid, div_by_zero; wire [7:0] quotient, quotient_correct; parameter BITS = 8; div_pipelined #( .BITS(BITS) ) div_pipelined ( .clk(clk), .reset_n(reset_n), .dividend(dividend), .divisor(divisor), .quotient(quotient), .div_by_zero(div_by_zero), // .quotient_correct(quotient_correct), .start(start), .data_valid(data_valid) ); initial begin #10 reset_n = 0; #50 reset_n = 1; #1 clk = 0; dividend = -1; divisor = 127; #1000 $finish; end // always // #20 dividend = dividend + 1; always begin #10 divisor = divisor - 1; start = 1; #10 start = 0; end always #5 clk = ~clk; endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // div_pipelined.v // Created: 4.3.2012 // Modified: 4.5.2012 // // Testbench for div_pipelined.v // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module t_div_pipelined(); reg clk, start, reset_n; reg [7:0] dividend, divisor; wire data_valid, div_by_zero; wire [7:0] quotient, quotient_correct; parameter BITS = 8; div_pipelined #( .BITS(BITS) ) div_pipelined ( .clk(clk), .reset_n(reset_n), .dividend(dividend), .divisor(divisor), .quotient(quotient), .div_by_zero(div_by_zero), // .quotient_correct(quotient_correct), .start(start), .data_valid(data_valid) ); initial begin #10 reset_n = 0; #50 reset_n = 1; #1 clk = 0; dividend = -1; divisor = 127; #1000 $finish; end // always // #20 dividend = dividend + 1; always begin #10 divisor = divisor - 1; start = 1; #10 start = 0; end always #5 clk = ~clk; endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // div_pipelined.v // Created: 4.3.2012 // Modified: 4.5.2012 // // Testbench for div_pipelined.v // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module t_div_pipelined(); reg clk, start, reset_n; reg [7:0] dividend, divisor; wire data_valid, div_by_zero; wire [7:0] quotient, quotient_correct; parameter BITS = 8; div_pipelined #( .BITS(BITS) ) div_pipelined ( .clk(clk), .reset_n(reset_n), .dividend(dividend), .divisor(divisor), .quotient(quotient), .div_by_zero(div_by_zero), // .quotient_correct(quotient_correct), .start(start), .data_valid(data_valid) ); initial begin #10 reset_n = 0; #50 reset_n = 1; #1 clk = 0; dividend = -1; divisor = 127; #1000 $finish; end // always // #20 dividend = dividend + 1; always begin #10 divisor = divisor - 1; start = 1; #10 start = 0; end always #5 clk = ~clk; endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // div_pipelined.v // Created: 4.3.2012 // Modified: 4.5.2012 // // Testbench for div_pipelined.v // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module t_div_pipelined(); reg clk, start, reset_n; reg [7:0] dividend, divisor; wire data_valid, div_by_zero; wire [7:0] quotient, quotient_correct; parameter BITS = 8; div_pipelined #( .BITS(BITS) ) div_pipelined ( .clk(clk), .reset_n(reset_n), .dividend(dividend), .divisor(divisor), .quotient(quotient), .div_by_zero(div_by_zero), // .quotient_correct(quotient_correct), .start(start), .data_valid(data_valid) ); initial begin #10 reset_n = 0; #50 reset_n = 1; #1 clk = 0; dividend = -1; divisor = 127; #1000 $finish; end // always // #20 dividend = dividend + 1; always begin #10 divisor = divisor - 1; start = 1; #10 start = 0; end always #5 clk = ~clk; endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // div_pipelined.v // Created: 4.3.2012 // Modified: 4.5.2012 // // Testbench for div_pipelined.v // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module t_div_pipelined(); reg clk, start, reset_n; reg [7:0] dividend, divisor; wire data_valid, div_by_zero; wire [7:0] quotient, quotient_correct; parameter BITS = 8; div_pipelined #( .BITS(BITS) ) div_pipelined ( .clk(clk), .reset_n(reset_n), .dividend(dividend), .divisor(divisor), .quotient(quotient), .div_by_zero(div_by_zero), // .quotient_correct(quotient_correct), .start(start), .data_valid(data_valid) ); initial begin #10 reset_n = 0; #50 reset_n = 1; #1 clk = 0; dividend = -1; divisor = 127; #1000 $finish; end // always // #20 dividend = dividend + 1; always begin #10 divisor = divisor - 1; start = 1; #10 start = 0; end always #5 clk = ~clk; endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // div_pipelined.v // Created: 4.3.2012 // Modified: 4.5.2012 // // Testbench for div_pipelined.v // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module t_div_pipelined(); reg clk, start, reset_n; reg [7:0] dividend, divisor; wire data_valid, div_by_zero; wire [7:0] quotient, quotient_correct; parameter BITS = 8; div_pipelined #( .BITS(BITS) ) div_pipelined ( .clk(clk), .reset_n(reset_n), .dividend(dividend), .divisor(divisor), .quotient(quotient), .div_by_zero(div_by_zero), // .quotient_correct(quotient_correct), .start(start), .data_valid(data_valid) ); initial begin #10 reset_n = 0; #50 reset_n = 1; #1 clk = 0; dividend = -1; divisor = 127; #1000 $finish; end // always // #20 dividend = dividend + 1; always begin #10 divisor = divisor - 1; start = 1; #10 start = 0; end always #5 clk = ~clk; endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // div_pipelined.v // Created: 4.3.2012 // Modified: 4.5.2012 // // Testbench for div_pipelined.v // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module t_div_pipelined(); reg clk, start, reset_n; reg [7:0] dividend, divisor; wire data_valid, div_by_zero; wire [7:0] quotient, quotient_correct; parameter BITS = 8; div_pipelined #( .BITS(BITS) ) div_pipelined ( .clk(clk), .reset_n(reset_n), .dividend(dividend), .divisor(divisor), .quotient(quotient), .div_by_zero(div_by_zero), // .quotient_correct(quotient_correct), .start(start), .data_valid(data_valid) ); initial begin #10 reset_n = 0; #50 reset_n = 1; #1 clk = 0; dividend = -1; divisor = 127; #1000 $finish; end // always // #20 dividend = dividend + 1; always begin #10 divisor = divisor - 1; start = 1; #10 start = 0; end always #5 clk = ~clk; endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // div_pipelined.v // Created: 4.3.2012 // Modified: 4.5.2012 // // Testbench for div_pipelined.v // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module t_div_pipelined(); reg clk, start, reset_n; reg [7:0] dividend, divisor; wire data_valid, div_by_zero; wire [7:0] quotient, quotient_correct; parameter BITS = 8; div_pipelined #( .BITS(BITS) ) div_pipelined ( .clk(clk), .reset_n(reset_n), .dividend(dividend), .divisor(divisor), .quotient(quotient), .div_by_zero(div_by_zero), // .quotient_correct(quotient_correct), .start(start), .data_valid(data_valid) ); initial begin #10 reset_n = 0; #50 reset_n = 1; #1 clk = 0; dividend = -1; divisor = 127; #1000 $finish; end // always // #20 dividend = dividend + 1; always begin #10 divisor = divisor - 1; start = 1; #10 start = 0; end always #5 clk = ~clk; endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // div_pipelined.v // Created: 4.3.2012 // Modified: 4.5.2012 // // Testbench for div_pipelined.v // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module t_div_pipelined(); reg clk, start, reset_n; reg [7:0] dividend, divisor; wire data_valid, div_by_zero; wire [7:0] quotient, quotient_correct; parameter BITS = 8; div_pipelined #( .BITS(BITS) ) div_pipelined ( .clk(clk), .reset_n(reset_n), .dividend(dividend), .divisor(divisor), .quotient(quotient), .div_by_zero(div_by_zero), // .quotient_correct(quotient_correct), .start(start), .data_valid(data_valid) ); initial begin #10 reset_n = 0; #50 reset_n = 1; #1 clk = 0; dividend = -1; divisor = 127; #1000 $finish; end // always // #20 dividend = dividend + 1; always begin #10 divisor = divisor - 1; start = 1; #10 start = 0; end always #5 clk = ~clk; endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // button_debounce.v // Created: 10/10/2009 // Modified: 3/20/2012 // // Counter based debounce circuit originally written for EC551 (back // in the day) and then modified (i.e. chagned entirely) into 3 always // block format. This debouncer generates a signal that goes high for // 1 clock cycle after the clock sees an asserted value on the button // line. This action is then disabled until the counter hits a // specified count value that is determined by the clock frequency and // desired debounce frequency. An alternative implementation would not // use a counter, but would use the shift register approach, looking // for repeated matches (say 5) on the button line. // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module button_debounce ( input clk, // clock input reset_n, // asynchronous reset input button, // bouncy button output reg debounce // debounced 1-cycle signal ); parameter CLK_FREQUENCY = 66000000, DEBOUNCE_HZ = 2; // These parameters are specified such that you can choose any power // of 2 frequency for a debouncer between 1 Hz and // CLK_FREQUENCY. Note, that this will throw errors if you choose a // non power of 2 frequency (i.e. count_value evaluates to some // number / 3 which isn't interpreted as a logical right shift). I'm // assuming this will not work for DEBOUNCE_HZ values less than 1, // however, I'm uncertain of the value of a debouncer for fractional // hertz button presses. localparam COUNT_VALUE = CLK_FREQUENCY / DEBOUNCE_HZ, WAIT = 0, FIRE = 1, COUNT = 2; reg [1:0] state, next_state; reg [25:0] count; always @ (posedge clk or negedge reset_n) state <= (!reset_n) ? WAIT : next_state; always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin debounce <= 0; count <= 0; end else begin debounce <= 0; count <= 0; case (state) WAIT: begin end FIRE: begin debounce <= 1; end COUNT: begin count <= count + 1; end endcase end end always @ * begin case (state) WAIT: next_state = (button) ? FIRE : state; FIRE: next_state = COUNT; COUNT: next_state = (count > COUNT_VALUE - 1) ? WAIT : state; default: next_state = WAIT; endcase end endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // button_debounce.v // Created: 10/10/2009 // Modified: 3/20/2012 // // Counter based debounce circuit originally written for EC551 (back // in the day) and then modified (i.e. chagned entirely) into 3 always // block format. This debouncer generates a signal that goes high for // 1 clock cycle after the clock sees an asserted value on the button // line. This action is then disabled until the counter hits a // specified count value that is determined by the clock frequency and // desired debounce frequency. An alternative implementation would not // use a counter, but would use the shift register approach, looking // for repeated matches (say 5) on the button line. // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module button_debounce ( input clk, // clock input reset_n, // asynchronous reset input button, // bouncy button output reg debounce // debounced 1-cycle signal ); parameter CLK_FREQUENCY = 66000000, DEBOUNCE_HZ = 2; // These parameters are specified such that you can choose any power // of 2 frequency for a debouncer between 1 Hz and // CLK_FREQUENCY. Note, that this will throw errors if you choose a // non power of 2 frequency (i.e. count_value evaluates to some // number / 3 which isn't interpreted as a logical right shift). I'm // assuming this will not work for DEBOUNCE_HZ values less than 1, // however, I'm uncertain of the value of a debouncer for fractional // hertz button presses. localparam COUNT_VALUE = CLK_FREQUENCY / DEBOUNCE_HZ, WAIT = 0, FIRE = 1, COUNT = 2; reg [1:0] state, next_state; reg [25:0] count; always @ (posedge clk or negedge reset_n) state <= (!reset_n) ? WAIT : next_state; always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin debounce <= 0; count <= 0; end else begin debounce <= 0; count <= 0; case (state) WAIT: begin end FIRE: begin debounce <= 1; end COUNT: begin count <= count + 1; end endcase end end always @ * begin case (state) WAIT: next_state = (button) ? FIRE : state; FIRE: next_state = COUNT; COUNT: next_state = (count > COUNT_VALUE - 1) ? WAIT : state; default: next_state = WAIT; endcase end endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // button_debounce.v // Created: 10/10/2009 // Modified: 3/20/2012 // // Counter based debounce circuit originally written for EC551 (back // in the day) and then modified (i.e. chagned entirely) into 3 always // block format. This debouncer generates a signal that goes high for // 1 clock cycle after the clock sees an asserted value on the button // line. This action is then disabled until the counter hits a // specified count value that is determined by the clock frequency and // desired debounce frequency. An alternative implementation would not // use a counter, but would use the shift register approach, looking // for repeated matches (say 5) on the button line. // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module button_debounce ( input clk, // clock input reset_n, // asynchronous reset input button, // bouncy button output reg debounce // debounced 1-cycle signal ); parameter CLK_FREQUENCY = 66000000, DEBOUNCE_HZ = 2; // These parameters are specified such that you can choose any power // of 2 frequency for a debouncer between 1 Hz and // CLK_FREQUENCY. Note, that this will throw errors if you choose a // non power of 2 frequency (i.e. count_value evaluates to some // number / 3 which isn't interpreted as a logical right shift). I'm // assuming this will not work for DEBOUNCE_HZ values less than 1, // however, I'm uncertain of the value of a debouncer for fractional // hertz button presses. localparam COUNT_VALUE = CLK_FREQUENCY / DEBOUNCE_HZ, WAIT = 0, FIRE = 1, COUNT = 2; reg [1:0] state, next_state; reg [25:0] count; always @ (posedge clk or negedge reset_n) state <= (!reset_n) ? WAIT : next_state; always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin debounce <= 0; count <= 0; end else begin debounce <= 0; count <= 0; case (state) WAIT: begin end FIRE: begin debounce <= 1; end COUNT: begin count <= count + 1; end endcase end end always @ * begin case (state) WAIT: next_state = (button) ? FIRE : state; FIRE: next_state = COUNT; COUNT: next_state = (count > COUNT_VALUE - 1) ? WAIT : state; default: next_state = WAIT; endcase end endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // button_debounce.v // Created: 10/10/2009 // Modified: 3/20/2012 // // Counter based debounce circuit originally written for EC551 (back // in the day) and then modified (i.e. chagned entirely) into 3 always // block format. This debouncer generates a signal that goes high for // 1 clock cycle after the clock sees an asserted value on the button // line. This action is then disabled until the counter hits a // specified count value that is determined by the clock frequency and // desired debounce frequency. An alternative implementation would not // use a counter, but would use the shift register approach, looking // for repeated matches (say 5) on the button line. // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module button_debounce ( input clk, // clock input reset_n, // asynchronous reset input button, // bouncy button output reg debounce // debounced 1-cycle signal ); parameter CLK_FREQUENCY = 66000000, DEBOUNCE_HZ = 2; // These parameters are specified such that you can choose any power // of 2 frequency for a debouncer between 1 Hz and // CLK_FREQUENCY. Note, that this will throw errors if you choose a // non power of 2 frequency (i.e. count_value evaluates to some // number / 3 which isn't interpreted as a logical right shift). I'm // assuming this will not work for DEBOUNCE_HZ values less than 1, // however, I'm uncertain of the value of a debouncer for fractional // hertz button presses. localparam COUNT_VALUE = CLK_FREQUENCY / DEBOUNCE_HZ, WAIT = 0, FIRE = 1, COUNT = 2; reg [1:0] state, next_state; reg [25:0] count; always @ (posedge clk or negedge reset_n) state <= (!reset_n) ? WAIT : next_state; always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin debounce <= 0; count <= 0; end else begin debounce <= 0; count <= 0; case (state) WAIT: begin end FIRE: begin debounce <= 1; end COUNT: begin count <= count + 1; end endcase end end always @ * begin case (state) WAIT: next_state = (button) ? FIRE : state; FIRE: next_state = COUNT; COUNT: next_state = (count > COUNT_VALUE - 1) ? WAIT : state; default: next_state = WAIT; endcase end endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // button_debounce.v // Created: 10/10/2009 // Modified: 3/20/2012 // // Counter based debounce circuit originally written for EC551 (back // in the day) and then modified (i.e. chagned entirely) into 3 always // block format. This debouncer generates a signal that goes high for // 1 clock cycle after the clock sees an asserted value on the button // line. This action is then disabled until the counter hits a // specified count value that is determined by the clock frequency and // desired debounce frequency. An alternative implementation would not // use a counter, but would use the shift register approach, looking // for repeated matches (say 5) on the button line. // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module button_debounce ( input clk, // clock input reset_n, // asynchronous reset input button, // bouncy button output reg debounce // debounced 1-cycle signal ); parameter CLK_FREQUENCY = 66000000, DEBOUNCE_HZ = 2; // These parameters are specified such that you can choose any power // of 2 frequency for a debouncer between 1 Hz and // CLK_FREQUENCY. Note, that this will throw errors if you choose a // non power of 2 frequency (i.e. count_value evaluates to some // number / 3 which isn't interpreted as a logical right shift). I'm // assuming this will not work for DEBOUNCE_HZ values less than 1, // however, I'm uncertain of the value of a debouncer for fractional // hertz button presses. localparam COUNT_VALUE = CLK_FREQUENCY / DEBOUNCE_HZ, WAIT = 0, FIRE = 1, COUNT = 2; reg [1:0] state, next_state; reg [25:0] count; always @ (posedge clk or negedge reset_n) state <= (!reset_n) ? WAIT : next_state; always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin debounce <= 0; count <= 0; end else begin debounce <= 0; count <= 0; case (state) WAIT: begin end FIRE: begin debounce <= 1; end COUNT: begin count <= count + 1; end endcase end end always @ * begin case (state) WAIT: next_state = (button) ? FIRE : state; FIRE: next_state = COUNT; COUNT: next_state = (count > COUNT_VALUE - 1) ? WAIT : state; default: next_state = WAIT; endcase end endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // button_debounce.v // Created: 10/10/2009 // Modified: 3/20/2012 // // Counter based debounce circuit originally written for EC551 (back // in the day) and then modified (i.e. chagned entirely) into 3 always // block format. This debouncer generates a signal that goes high for // 1 clock cycle after the clock sees an asserted value on the button // line. This action is then disabled until the counter hits a // specified count value that is determined by the clock frequency and // desired debounce frequency. An alternative implementation would not // use a counter, but would use the shift register approach, looking // for repeated matches (say 5) on the button line. // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module button_debounce ( input clk, // clock input reset_n, // asynchronous reset input button, // bouncy button output reg debounce // debounced 1-cycle signal ); parameter CLK_FREQUENCY = 66000000, DEBOUNCE_HZ = 2; // These parameters are specified such that you can choose any power // of 2 frequency for a debouncer between 1 Hz and // CLK_FREQUENCY. Note, that this will throw errors if you choose a // non power of 2 frequency (i.e. count_value evaluates to some // number / 3 which isn't interpreted as a logical right shift). I'm // assuming this will not work for DEBOUNCE_HZ values less than 1, // however, I'm uncertain of the value of a debouncer for fractional // hertz button presses. localparam COUNT_VALUE = CLK_FREQUENCY / DEBOUNCE_HZ, WAIT = 0, FIRE = 1, COUNT = 2; reg [1:0] state, next_state; reg [25:0] count; always @ (posedge clk or negedge reset_n) state <= (!reset_n) ? WAIT : next_state; always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin debounce <= 0; count <= 0; end else begin debounce <= 0; count <= 0; case (state) WAIT: begin end FIRE: begin debounce <= 1; end COUNT: begin count <= count + 1; end endcase end end always @ * begin case (state) WAIT: next_state = (button) ? FIRE : state; FIRE: next_state = COUNT; COUNT: next_state = (count > COUNT_VALUE - 1) ? WAIT : state; default: next_state = WAIT; endcase end endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // button_debounce.v // Created: 10/10/2009 // Modified: 3/20/2012 // // Counter based debounce circuit originally written for EC551 (back // in the day) and then modified (i.e. chagned entirely) into 3 always // block format. This debouncer generates a signal that goes high for // 1 clock cycle after the clock sees an asserted value on the button // line. This action is then disabled until the counter hits a // specified count value that is determined by the clock frequency and // desired debounce frequency. An alternative implementation would not // use a counter, but would use the shift register approach, looking // for repeated matches (say 5) on the button line. // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module button_debounce ( input clk, // clock input reset_n, // asynchronous reset input button, // bouncy button output reg debounce // debounced 1-cycle signal ); parameter CLK_FREQUENCY = 66000000, DEBOUNCE_HZ = 2; // These parameters are specified such that you can choose any power // of 2 frequency for a debouncer between 1 Hz and // CLK_FREQUENCY. Note, that this will throw errors if you choose a // non power of 2 frequency (i.e. count_value evaluates to some // number / 3 which isn't interpreted as a logical right shift). I'm // assuming this will not work for DEBOUNCE_HZ values less than 1, // however, I'm uncertain of the value of a debouncer for fractional // hertz button presses. localparam COUNT_VALUE = CLK_FREQUENCY / DEBOUNCE_HZ, WAIT = 0, FIRE = 1, COUNT = 2; reg [1:0] state, next_state; reg [25:0] count; always @ (posedge clk or negedge reset_n) state <= (!reset_n) ? WAIT : next_state; always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin debounce <= 0; count <= 0; end else begin debounce <= 0; count <= 0; case (state) WAIT: begin end FIRE: begin debounce <= 1; end COUNT: begin count <= count + 1; end endcase end end always @ * begin case (state) WAIT: next_state = (button) ? FIRE : state; FIRE: next_state = COUNT; COUNT: next_state = (count > COUNT_VALUE - 1) ? WAIT : state; default: next_state = WAIT; endcase end endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // sqrt_pipelined.v // Created: 4.2.2012 // Modified: 4.5.2012 // // Implements a fixed-point parameterized pipelined square root // operation on an unsigned input of any bit length. The number of // stages in the pipeline is equal to the number of output bits in the // computation. This pipelien sustains a throughput of one computation // per clock cycle. // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module sqrt_pipelined ( input clk, // clock input reset_n, // asynchronous reset input start, // optional start signal input [INPUT_BITS-1:0] radicand, // unsigned radicand output reg data_valid, // optional data valid signal output reg [OUTPUT_BITS-1:0] root // unsigned root ); // WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP // LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE // OVERWRITTEN! parameter INPUT_BITS = 16; // number of input bits (any integer) localparam OUTPUT_BITS = INPUT_BITS / 2 + INPUT_BITS % 2; // number of output bits reg [OUTPUT_BITS-1:0] start_gen; // valid data propagation reg [OUTPUT_BITS*INPUT_BITS-1:0] root_gen; // root values reg [OUTPUT_BITS*INPUT_BITS-1:0] radicand_gen; // radicand values wire [OUTPUT_BITS*INPUT_BITS-1:0] mask_gen; // mask values // This is the first stage of the pipeline. always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin start_gen[0] <= 0; radicand_gen[INPUT_BITS-1:0] <= 0; root_gen[INPUT_BITS-1:0] <= 0; end else begin start_gen[0] <= start; if ( mask_gen[INPUT_BITS-1:0] <= radicand ) begin radicand_gen[INPUT_BITS-1:0] <= radicand - mask_gen[INPUT_BITS-1:0]; root_gen[INPUT_BITS-1:0] <= mask_gen[INPUT_BITS-1:0]; end else begin radicand_gen[INPUT_BITS-1:0] <= radicand; root_gen[INPUT_BITS-1:0] <= 0; end end end // Main generate loop to create the masks and pipeline stages. generate genvar i; // Generate all the mask values. These are built up in the // following fashion: // LAST MASK: 0x00...001 // 0x00...004 Increasing # OUTPUT_BITS // 0x00...010 | // 0x00...040 v // ... // FIRST MASK: 0x10...000 # masks == # OUTPUT_BITS // // Note that the first mask used can either be of the 0x1... or // 0x4... variety. This is purely determined by the number of // computation stages. However, the last mask used will always be // 0x1 and the second to last mask used will always be 0x4. for (i = 0; i < OUTPUT_BITS; i = i + 1) begin: mask_4 if (i % 2) // i is odd, this is a 4 mask assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 4 << 4 * (i/2); else // i is even, this is a 1 mask assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 1 << 4 * (i/2); end // Generate all the pipeline stages to compute the square root of // the input radicand stream. The general approach is to compare // the current values of the root plus the mask to the // radicand. If root/mask sum is greater than the radicand, // subtract the mask and the root from the radicand and store the // radicand for the next stage. Additionally, the root is // increased by the value of the mask and stored for the next // stage. If this test fails, then the radicand and the root // retain their value through to the next stage. The one weird // thing is that the mask indices appear to be incremented by one // additional position. This is not the case, however, because the // first mask is used in the first stage (always block after the // generate statement). for (i = 0; i < OUTPUT_BITS - 1; i = i + 1) begin: pipeline always @ (posedge clk or negedge reset_n) begin : pipeline_stage if (!reset_n) begin start_gen[i+1] <= 0; radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0; root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0; end else begin start_gen[i+1] <= start_gen[i]; if ((root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] + mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)]) <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]) begin radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] - mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] - root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]; root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= (root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1) + mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)]; end else begin radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]; root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1; end end end end endgenerate // This is the final stage which just implements a rounding // operation. This stage could be tacked on as a combinational logic // stage, but who cares about latency, anyway? This is NOT a true // rounding stage. In order to add convergent rounding, you need to // increase the input bit width by 2 (increase the number of // pipeline stages by 1) and implement rounding in the module that // instantiates this one. always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin data_valid <= 0; root <= 0; end else begin data_valid <= start_gen[OUTPUT_BITS-1]; if (root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] > root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS]) root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] + 1; else root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS]; end end endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // sqrt_pipelined.v // Created: 4.2.2012 // Modified: 4.5.2012 // // Implements a fixed-point parameterized pipelined square root // operation on an unsigned input of any bit length. The number of // stages in the pipeline is equal to the number of output bits in the // computation. This pipelien sustains a throughput of one computation // per clock cycle. // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module sqrt_pipelined ( input clk, // clock input reset_n, // asynchronous reset input start, // optional start signal input [INPUT_BITS-1:0] radicand, // unsigned radicand output reg data_valid, // optional data valid signal output reg [OUTPUT_BITS-1:0] root // unsigned root ); // WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP // LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE // OVERWRITTEN! parameter INPUT_BITS = 16; // number of input bits (any integer) localparam OUTPUT_BITS = INPUT_BITS / 2 + INPUT_BITS % 2; // number of output bits reg [OUTPUT_BITS-1:0] start_gen; // valid data propagation reg [OUTPUT_BITS*INPUT_BITS-1:0] root_gen; // root values reg [OUTPUT_BITS*INPUT_BITS-1:0] radicand_gen; // radicand values wire [OUTPUT_BITS*INPUT_BITS-1:0] mask_gen; // mask values // This is the first stage of the pipeline. always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin start_gen[0] <= 0; radicand_gen[INPUT_BITS-1:0] <= 0; root_gen[INPUT_BITS-1:0] <= 0; end else begin start_gen[0] <= start; if ( mask_gen[INPUT_BITS-1:0] <= radicand ) begin radicand_gen[INPUT_BITS-1:0] <= radicand - mask_gen[INPUT_BITS-1:0]; root_gen[INPUT_BITS-1:0] <= mask_gen[INPUT_BITS-1:0]; end else begin radicand_gen[INPUT_BITS-1:0] <= radicand; root_gen[INPUT_BITS-1:0] <= 0; end end end // Main generate loop to create the masks and pipeline stages. generate genvar i; // Generate all the mask values. These are built up in the // following fashion: // LAST MASK: 0x00...001 // 0x00...004 Increasing # OUTPUT_BITS // 0x00...010 | // 0x00...040 v // ... // FIRST MASK: 0x10...000 # masks == # OUTPUT_BITS // // Note that the first mask used can either be of the 0x1... or // 0x4... variety. This is purely determined by the number of // computation stages. However, the last mask used will always be // 0x1 and the second to last mask used will always be 0x4. for (i = 0; i < OUTPUT_BITS; i = i + 1) begin: mask_4 if (i % 2) // i is odd, this is a 4 mask assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 4 << 4 * (i/2); else // i is even, this is a 1 mask assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 1 << 4 * (i/2); end // Generate all the pipeline stages to compute the square root of // the input radicand stream. The general approach is to compare // the current values of the root plus the mask to the // radicand. If root/mask sum is greater than the radicand, // subtract the mask and the root from the radicand and store the // radicand for the next stage. Additionally, the root is // increased by the value of the mask and stored for the next // stage. If this test fails, then the radicand and the root // retain their value through to the next stage. The one weird // thing is that the mask indices appear to be incremented by one // additional position. This is not the case, however, because the // first mask is used in the first stage (always block after the // generate statement). for (i = 0; i < OUTPUT_BITS - 1; i = i + 1) begin: pipeline always @ (posedge clk or negedge reset_n) begin : pipeline_stage if (!reset_n) begin start_gen[i+1] <= 0; radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0; root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0; end else begin start_gen[i+1] <= start_gen[i]; if ((root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] + mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)]) <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]) begin radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] - mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] - root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]; root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= (root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1) + mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)]; end else begin radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]; root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1; end end end end endgenerate // This is the final stage which just implements a rounding // operation. This stage could be tacked on as a combinational logic // stage, but who cares about latency, anyway? This is NOT a true // rounding stage. In order to add convergent rounding, you need to // increase the input bit width by 2 (increase the number of // pipeline stages by 1) and implement rounding in the module that // instantiates this one. always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin data_valid <= 0; root <= 0; end else begin data_valid <= start_gen[OUTPUT_BITS-1]; if (root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] > root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS]) root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] + 1; else root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS]; end end endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // sqrt_pipelined.v // Created: 4.2.2012 // Modified: 4.5.2012 // // Implements a fixed-point parameterized pipelined square root // operation on an unsigned input of any bit length. The number of // stages in the pipeline is equal to the number of output bits in the // computation. This pipelien sustains a throughput of one computation // per clock cycle. // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module sqrt_pipelined ( input clk, // clock input reset_n, // asynchronous reset input start, // optional start signal input [INPUT_BITS-1:0] radicand, // unsigned radicand output reg data_valid, // optional data valid signal output reg [OUTPUT_BITS-1:0] root // unsigned root ); // WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP // LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE // OVERWRITTEN! parameter INPUT_BITS = 16; // number of input bits (any integer) localparam OUTPUT_BITS = INPUT_BITS / 2 + INPUT_BITS % 2; // number of output bits reg [OUTPUT_BITS-1:0] start_gen; // valid data propagation reg [OUTPUT_BITS*INPUT_BITS-1:0] root_gen; // root values reg [OUTPUT_BITS*INPUT_BITS-1:0] radicand_gen; // radicand values wire [OUTPUT_BITS*INPUT_BITS-1:0] mask_gen; // mask values // This is the first stage of the pipeline. always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin start_gen[0] <= 0; radicand_gen[INPUT_BITS-1:0] <= 0; root_gen[INPUT_BITS-1:0] <= 0; end else begin start_gen[0] <= start; if ( mask_gen[INPUT_BITS-1:0] <= radicand ) begin radicand_gen[INPUT_BITS-1:0] <= radicand - mask_gen[INPUT_BITS-1:0]; root_gen[INPUT_BITS-1:0] <= mask_gen[INPUT_BITS-1:0]; end else begin radicand_gen[INPUT_BITS-1:0] <= radicand; root_gen[INPUT_BITS-1:0] <= 0; end end end // Main generate loop to create the masks and pipeline stages. generate genvar i; // Generate all the mask values. These are built up in the // following fashion: // LAST MASK: 0x00...001 // 0x00...004 Increasing # OUTPUT_BITS // 0x00...010 | // 0x00...040 v // ... // FIRST MASK: 0x10...000 # masks == # OUTPUT_BITS // // Note that the first mask used can either be of the 0x1... or // 0x4... variety. This is purely determined by the number of // computation stages. However, the last mask used will always be // 0x1 and the second to last mask used will always be 0x4. for (i = 0; i < OUTPUT_BITS; i = i + 1) begin: mask_4 if (i % 2) // i is odd, this is a 4 mask assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 4 << 4 * (i/2); else // i is even, this is a 1 mask assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 1 << 4 * (i/2); end // Generate all the pipeline stages to compute the square root of // the input radicand stream. The general approach is to compare // the current values of the root plus the mask to the // radicand. If root/mask sum is greater than the radicand, // subtract the mask and the root from the radicand and store the // radicand for the next stage. Additionally, the root is // increased by the value of the mask and stored for the next // stage. If this test fails, then the radicand and the root // retain their value through to the next stage. The one weird // thing is that the mask indices appear to be incremented by one // additional position. This is not the case, however, because the // first mask is used in the first stage (always block after the // generate statement). for (i = 0; i < OUTPUT_BITS - 1; i = i + 1) begin: pipeline always @ (posedge clk or negedge reset_n) begin : pipeline_stage if (!reset_n) begin start_gen[i+1] <= 0; radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0; root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0; end else begin start_gen[i+1] <= start_gen[i]; if ((root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] + mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)]) <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]) begin radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] - mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] - root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]; root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= (root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1) + mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)]; end else begin radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]; root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1; end end end end endgenerate // This is the final stage which just implements a rounding // operation. This stage could be tacked on as a combinational logic // stage, but who cares about latency, anyway? This is NOT a true // rounding stage. In order to add convergent rounding, you need to // increase the input bit width by 2 (increase the number of // pipeline stages by 1) and implement rounding in the module that // instantiates this one. always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin data_valid <= 0; root <= 0; end else begin data_valid <= start_gen[OUTPUT_BITS-1]; if (root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] > root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS]) root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] + 1; else root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS]; end end endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // sqrt_pipelined.v // Created: 4.2.2012 // Modified: 4.5.2012 // // Implements a fixed-point parameterized pipelined square root // operation on an unsigned input of any bit length. The number of // stages in the pipeline is equal to the number of output bits in the // computation. This pipelien sustains a throughput of one computation // per clock cycle. // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module sqrt_pipelined ( input clk, // clock input reset_n, // asynchronous reset input start, // optional start signal input [INPUT_BITS-1:0] radicand, // unsigned radicand output reg data_valid, // optional data valid signal output reg [OUTPUT_BITS-1:0] root // unsigned root ); // WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP // LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE // OVERWRITTEN! parameter INPUT_BITS = 16; // number of input bits (any integer) localparam OUTPUT_BITS = INPUT_BITS / 2 + INPUT_BITS % 2; // number of output bits reg [OUTPUT_BITS-1:0] start_gen; // valid data propagation reg [OUTPUT_BITS*INPUT_BITS-1:0] root_gen; // root values reg [OUTPUT_BITS*INPUT_BITS-1:0] radicand_gen; // radicand values wire [OUTPUT_BITS*INPUT_BITS-1:0] mask_gen; // mask values // This is the first stage of the pipeline. always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin start_gen[0] <= 0; radicand_gen[INPUT_BITS-1:0] <= 0; root_gen[INPUT_BITS-1:0] <= 0; end else begin start_gen[0] <= start; if ( mask_gen[INPUT_BITS-1:0] <= radicand ) begin radicand_gen[INPUT_BITS-1:0] <= radicand - mask_gen[INPUT_BITS-1:0]; root_gen[INPUT_BITS-1:0] <= mask_gen[INPUT_BITS-1:0]; end else begin radicand_gen[INPUT_BITS-1:0] <= radicand; root_gen[INPUT_BITS-1:0] <= 0; end end end // Main generate loop to create the masks and pipeline stages. generate genvar i; // Generate all the mask values. These are built up in the // following fashion: // LAST MASK: 0x00...001 // 0x00...004 Increasing # OUTPUT_BITS // 0x00...010 | // 0x00...040 v // ... // FIRST MASK: 0x10...000 # masks == # OUTPUT_BITS // // Note that the first mask used can either be of the 0x1... or // 0x4... variety. This is purely determined by the number of // computation stages. However, the last mask used will always be // 0x1 and the second to last mask used will always be 0x4. for (i = 0; i < OUTPUT_BITS; i = i + 1) begin: mask_4 if (i % 2) // i is odd, this is a 4 mask assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 4 << 4 * (i/2); else // i is even, this is a 1 mask assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 1 << 4 * (i/2); end // Generate all the pipeline stages to compute the square root of // the input radicand stream. The general approach is to compare // the current values of the root plus the mask to the // radicand. If root/mask sum is greater than the radicand, // subtract the mask and the root from the radicand and store the // radicand for the next stage. Additionally, the root is // increased by the value of the mask and stored for the next // stage. If this test fails, then the radicand and the root // retain their value through to the next stage. The one weird // thing is that the mask indices appear to be incremented by one // additional position. This is not the case, however, because the // first mask is used in the first stage (always block after the // generate statement). for (i = 0; i < OUTPUT_BITS - 1; i = i + 1) begin: pipeline always @ (posedge clk or negedge reset_n) begin : pipeline_stage if (!reset_n) begin start_gen[i+1] <= 0; radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0; root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0; end else begin start_gen[i+1] <= start_gen[i]; if ((root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] + mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)]) <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]) begin radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] - mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] - root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]; root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= (root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1) + mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)]; end else begin radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]; root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1; end end end end endgenerate // This is the final stage which just implements a rounding // operation. This stage could be tacked on as a combinational logic // stage, but who cares about latency, anyway? This is NOT a true // rounding stage. In order to add convergent rounding, you need to // increase the input bit width by 2 (increase the number of // pipeline stages by 1) and implement rounding in the module that // instantiates this one. always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin data_valid <= 0; root <= 0; end else begin data_valid <= start_gen[OUTPUT_BITS-1]; if (root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] > root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS]) root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] + 1; else root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS]; end end endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // sqrt_pipelined.v // Created: 4.2.2012 // Modified: 4.5.2012 // // Implements a fixed-point parameterized pipelined square root // operation on an unsigned input of any bit length. The number of // stages in the pipeline is equal to the number of output bits in the // computation. This pipelien sustains a throughput of one computation // per clock cycle. // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module sqrt_pipelined ( input clk, // clock input reset_n, // asynchronous reset input start, // optional start signal input [INPUT_BITS-1:0] radicand, // unsigned radicand output reg data_valid, // optional data valid signal output reg [OUTPUT_BITS-1:0] root // unsigned root ); // WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP // LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE // OVERWRITTEN! parameter INPUT_BITS = 16; // number of input bits (any integer) localparam OUTPUT_BITS = INPUT_BITS / 2 + INPUT_BITS % 2; // number of output bits reg [OUTPUT_BITS-1:0] start_gen; // valid data propagation reg [OUTPUT_BITS*INPUT_BITS-1:0] root_gen; // root values reg [OUTPUT_BITS*INPUT_BITS-1:0] radicand_gen; // radicand values wire [OUTPUT_BITS*INPUT_BITS-1:0] mask_gen; // mask values // This is the first stage of the pipeline. always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin start_gen[0] <= 0; radicand_gen[INPUT_BITS-1:0] <= 0; root_gen[INPUT_BITS-1:0] <= 0; end else begin start_gen[0] <= start; if ( mask_gen[INPUT_BITS-1:0] <= radicand ) begin radicand_gen[INPUT_BITS-1:0] <= radicand - mask_gen[INPUT_BITS-1:0]; root_gen[INPUT_BITS-1:0] <= mask_gen[INPUT_BITS-1:0]; end else begin radicand_gen[INPUT_BITS-1:0] <= radicand; root_gen[INPUT_BITS-1:0] <= 0; end end end // Main generate loop to create the masks and pipeline stages. generate genvar i; // Generate all the mask values. These are built up in the // following fashion: // LAST MASK: 0x00...001 // 0x00...004 Increasing # OUTPUT_BITS // 0x00...010 | // 0x00...040 v // ... // FIRST MASK: 0x10...000 # masks == # OUTPUT_BITS // // Note that the first mask used can either be of the 0x1... or // 0x4... variety. This is purely determined by the number of // computation stages. However, the last mask used will always be // 0x1 and the second to last mask used will always be 0x4. for (i = 0; i < OUTPUT_BITS; i = i + 1) begin: mask_4 if (i % 2) // i is odd, this is a 4 mask assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 4 << 4 * (i/2); else // i is even, this is a 1 mask assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 1 << 4 * (i/2); end // Generate all the pipeline stages to compute the square root of // the input radicand stream. The general approach is to compare // the current values of the root plus the mask to the // radicand. If root/mask sum is greater than the radicand, // subtract the mask and the root from the radicand and store the // radicand for the next stage. Additionally, the root is // increased by the value of the mask and stored for the next // stage. If this test fails, then the radicand and the root // retain their value through to the next stage. The one weird // thing is that the mask indices appear to be incremented by one // additional position. This is not the case, however, because the // first mask is used in the first stage (always block after the // generate statement). for (i = 0; i < OUTPUT_BITS - 1; i = i + 1) begin: pipeline always @ (posedge clk or negedge reset_n) begin : pipeline_stage if (!reset_n) begin start_gen[i+1] <= 0; radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0; root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0; end else begin start_gen[i+1] <= start_gen[i]; if ((root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] + mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)]) <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]) begin radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] - mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] - root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]; root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= (root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1) + mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)]; end else begin radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]; root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1; end end end end endgenerate // This is the final stage which just implements a rounding // operation. This stage could be tacked on as a combinational logic // stage, but who cares about latency, anyway? This is NOT a true // rounding stage. In order to add convergent rounding, you need to // increase the input bit width by 2 (increase the number of // pipeline stages by 1) and implement rounding in the module that // instantiates this one. always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin data_valid <= 0; root <= 0; end else begin data_valid <= start_gen[OUTPUT_BITS-1]; if (root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] > root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS]) root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] + 1; else root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS]; end end endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // sqrt_pipelined.v // Created: 4.2.2012 // Modified: 4.5.2012 // // Implements a fixed-point parameterized pipelined square root // operation on an unsigned input of any bit length. The number of // stages in the pipeline is equal to the number of output bits in the // computation. This pipelien sustains a throughput of one computation // per clock cycle. // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module sqrt_pipelined ( input clk, // clock input reset_n, // asynchronous reset input start, // optional start signal input [INPUT_BITS-1:0] radicand, // unsigned radicand output reg data_valid, // optional data valid signal output reg [OUTPUT_BITS-1:0] root // unsigned root ); // WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP // LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE // OVERWRITTEN! parameter INPUT_BITS = 16; // number of input bits (any integer) localparam OUTPUT_BITS = INPUT_BITS / 2 + INPUT_BITS % 2; // number of output bits reg [OUTPUT_BITS-1:0] start_gen; // valid data propagation reg [OUTPUT_BITS*INPUT_BITS-1:0] root_gen; // root values reg [OUTPUT_BITS*INPUT_BITS-1:0] radicand_gen; // radicand values wire [OUTPUT_BITS*INPUT_BITS-1:0] mask_gen; // mask values // This is the first stage of the pipeline. always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin start_gen[0] <= 0; radicand_gen[INPUT_BITS-1:0] <= 0; root_gen[INPUT_BITS-1:0] <= 0; end else begin start_gen[0] <= start; if ( mask_gen[INPUT_BITS-1:0] <= radicand ) begin radicand_gen[INPUT_BITS-1:0] <= radicand - mask_gen[INPUT_BITS-1:0]; root_gen[INPUT_BITS-1:0] <= mask_gen[INPUT_BITS-1:0]; end else begin radicand_gen[INPUT_BITS-1:0] <= radicand; root_gen[INPUT_BITS-1:0] <= 0; end end end // Main generate loop to create the masks and pipeline stages. generate genvar i; // Generate all the mask values. These are built up in the // following fashion: // LAST MASK: 0x00...001 // 0x00...004 Increasing # OUTPUT_BITS // 0x00...010 | // 0x00...040 v // ... // FIRST MASK: 0x10...000 # masks == # OUTPUT_BITS // // Note that the first mask used can either be of the 0x1... or // 0x4... variety. This is purely determined by the number of // computation stages. However, the last mask used will always be // 0x1 and the second to last mask used will always be 0x4. for (i = 0; i < OUTPUT_BITS; i = i + 1) begin: mask_4 if (i % 2) // i is odd, this is a 4 mask assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 4 << 4 * (i/2); else // i is even, this is a 1 mask assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 1 << 4 * (i/2); end // Generate all the pipeline stages to compute the square root of // the input radicand stream. The general approach is to compare // the current values of the root plus the mask to the // radicand. If root/mask sum is greater than the radicand, // subtract the mask and the root from the radicand and store the // radicand for the next stage. Additionally, the root is // increased by the value of the mask and stored for the next // stage. If this test fails, then the radicand and the root // retain their value through to the next stage. The one weird // thing is that the mask indices appear to be incremented by one // additional position. This is not the case, however, because the // first mask is used in the first stage (always block after the // generate statement). for (i = 0; i < OUTPUT_BITS - 1; i = i + 1) begin: pipeline always @ (posedge clk or negedge reset_n) begin : pipeline_stage if (!reset_n) begin start_gen[i+1] <= 0; radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0; root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0; end else begin start_gen[i+1] <= start_gen[i]; if ((root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] + mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)]) <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]) begin radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] - mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] - root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]; root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= (root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1) + mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)]; end else begin radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]; root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1; end end end end endgenerate // This is the final stage which just implements a rounding // operation. This stage could be tacked on as a combinational logic // stage, but who cares about latency, anyway? This is NOT a true // rounding stage. In order to add convergent rounding, you need to // increase the input bit width by 2 (increase the number of // pipeline stages by 1) and implement rounding in the module that // instantiates this one. always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin data_valid <= 0; root <= 0; end else begin data_valid <= start_gen[OUTPUT_BITS-1]; if (root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] > root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS]) root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] + 1; else root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS]; end end endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // sqrt_pipelined.v // Created: 4.2.2012 // Modified: 4.5.2012 // // Implements a fixed-point parameterized pipelined square root // operation on an unsigned input of any bit length. The number of // stages in the pipeline is equal to the number of output bits in the // computation. This pipelien sustains a throughput of one computation // per clock cycle. // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module sqrt_pipelined ( input clk, // clock input reset_n, // asynchronous reset input start, // optional start signal input [INPUT_BITS-1:0] radicand, // unsigned radicand output reg data_valid, // optional data valid signal output reg [OUTPUT_BITS-1:0] root // unsigned root ); // WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP // LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE // OVERWRITTEN! parameter INPUT_BITS = 16; // number of input bits (any integer) localparam OUTPUT_BITS = INPUT_BITS / 2 + INPUT_BITS % 2; // number of output bits reg [OUTPUT_BITS-1:0] start_gen; // valid data propagation reg [OUTPUT_BITS*INPUT_BITS-1:0] root_gen; // root values reg [OUTPUT_BITS*INPUT_BITS-1:0] radicand_gen; // radicand values wire [OUTPUT_BITS*INPUT_BITS-1:0] mask_gen; // mask values // This is the first stage of the pipeline. always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin start_gen[0] <= 0; radicand_gen[INPUT_BITS-1:0] <= 0; root_gen[INPUT_BITS-1:0] <= 0; end else begin start_gen[0] <= start; if ( mask_gen[INPUT_BITS-1:0] <= radicand ) begin radicand_gen[INPUT_BITS-1:0] <= radicand - mask_gen[INPUT_BITS-1:0]; root_gen[INPUT_BITS-1:0] <= mask_gen[INPUT_BITS-1:0]; end else begin radicand_gen[INPUT_BITS-1:0] <= radicand; root_gen[INPUT_BITS-1:0] <= 0; end end end // Main generate loop to create the masks and pipeline stages. generate genvar i; // Generate all the mask values. These are built up in the // following fashion: // LAST MASK: 0x00...001 // 0x00...004 Increasing # OUTPUT_BITS // 0x00...010 | // 0x00...040 v // ... // FIRST MASK: 0x10...000 # masks == # OUTPUT_BITS // // Note that the first mask used can either be of the 0x1... or // 0x4... variety. This is purely determined by the number of // computation stages. However, the last mask used will always be // 0x1 and the second to last mask used will always be 0x4. for (i = 0; i < OUTPUT_BITS; i = i + 1) begin: mask_4 if (i % 2) // i is odd, this is a 4 mask assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 4 << 4 * (i/2); else // i is even, this is a 1 mask assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 1 << 4 * (i/2); end // Generate all the pipeline stages to compute the square root of // the input radicand stream. The general approach is to compare // the current values of the root plus the mask to the // radicand. If root/mask sum is greater than the radicand, // subtract the mask and the root from the radicand and store the // radicand for the next stage. Additionally, the root is // increased by the value of the mask and stored for the next // stage. If this test fails, then the radicand and the root // retain their value through to the next stage. The one weird // thing is that the mask indices appear to be incremented by one // additional position. This is not the case, however, because the // first mask is used in the first stage (always block after the // generate statement). for (i = 0; i < OUTPUT_BITS - 1; i = i + 1) begin: pipeline always @ (posedge clk or negedge reset_n) begin : pipeline_stage if (!reset_n) begin start_gen[i+1] <= 0; radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0; root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0; end else begin start_gen[i+1] <= start_gen[i]; if ((root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] + mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)]) <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]) begin radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] - mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] - root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]; root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= (root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1) + mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)]; end else begin radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]; root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1; end end end end endgenerate // This is the final stage which just implements a rounding // operation. This stage could be tacked on as a combinational logic // stage, but who cares about latency, anyway? This is NOT a true // rounding stage. In order to add convergent rounding, you need to // increase the input bit width by 2 (increase the number of // pipeline stages by 1) and implement rounding in the module that // instantiates this one. always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin data_valid <= 0; root <= 0; end else begin data_valid <= start_gen[OUTPUT_BITS-1]; if (root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] > root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS]) root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] + 1; else root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS]; end end endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // sqrt_pipelined.v // Created: 4.2.2012 // Modified: 4.5.2012 // // Implements a fixed-point parameterized pipelined square root // operation on an unsigned input of any bit length. The number of // stages in the pipeline is equal to the number of output bits in the // computation. This pipelien sustains a throughput of one computation // per clock cycle. // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module sqrt_pipelined ( input clk, // clock input reset_n, // asynchronous reset input start, // optional start signal input [INPUT_BITS-1:0] radicand, // unsigned radicand output reg data_valid, // optional data valid signal output reg [OUTPUT_BITS-1:0] root // unsigned root ); // WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP // LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE // OVERWRITTEN! parameter INPUT_BITS = 16; // number of input bits (any integer) localparam OUTPUT_BITS = INPUT_BITS / 2 + INPUT_BITS % 2; // number of output bits reg [OUTPUT_BITS-1:0] start_gen; // valid data propagation reg [OUTPUT_BITS*INPUT_BITS-1:0] root_gen; // root values reg [OUTPUT_BITS*INPUT_BITS-1:0] radicand_gen; // radicand values wire [OUTPUT_BITS*INPUT_BITS-1:0] mask_gen; // mask values // This is the first stage of the pipeline. always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin start_gen[0] <= 0; radicand_gen[INPUT_BITS-1:0] <= 0; root_gen[INPUT_BITS-1:0] <= 0; end else begin start_gen[0] <= start; if ( mask_gen[INPUT_BITS-1:0] <= radicand ) begin radicand_gen[INPUT_BITS-1:0] <= radicand - mask_gen[INPUT_BITS-1:0]; root_gen[INPUT_BITS-1:0] <= mask_gen[INPUT_BITS-1:0]; end else begin radicand_gen[INPUT_BITS-1:0] <= radicand; root_gen[INPUT_BITS-1:0] <= 0; end end end // Main generate loop to create the masks and pipeline stages. generate genvar i; // Generate all the mask values. These are built up in the // following fashion: // LAST MASK: 0x00...001 // 0x00...004 Increasing # OUTPUT_BITS // 0x00...010 | // 0x00...040 v // ... // FIRST MASK: 0x10...000 # masks == # OUTPUT_BITS // // Note that the first mask used can either be of the 0x1... or // 0x4... variety. This is purely determined by the number of // computation stages. However, the last mask used will always be // 0x1 and the second to last mask used will always be 0x4. for (i = 0; i < OUTPUT_BITS; i = i + 1) begin: mask_4 if (i % 2) // i is odd, this is a 4 mask assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 4 << 4 * (i/2); else // i is even, this is a 1 mask assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 1 << 4 * (i/2); end // Generate all the pipeline stages to compute the square root of // the input radicand stream. The general approach is to compare // the current values of the root plus the mask to the // radicand. If root/mask sum is greater than the radicand, // subtract the mask and the root from the radicand and store the // radicand for the next stage. Additionally, the root is // increased by the value of the mask and stored for the next // stage. If this test fails, then the radicand and the root // retain their value through to the next stage. The one weird // thing is that the mask indices appear to be incremented by one // additional position. This is not the case, however, because the // first mask is used in the first stage (always block after the // generate statement). for (i = 0; i < OUTPUT_BITS - 1; i = i + 1) begin: pipeline always @ (posedge clk or negedge reset_n) begin : pipeline_stage if (!reset_n) begin start_gen[i+1] <= 0; radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0; root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0; end else begin start_gen[i+1] <= start_gen[i]; if ((root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] + mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)]) <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]) begin radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] - mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] - root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]; root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= (root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1) + mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)]; end else begin radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]; root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1; end end end end endgenerate // This is the final stage which just implements a rounding // operation. This stage could be tacked on as a combinational logic // stage, but who cares about latency, anyway? This is NOT a true // rounding stage. In order to add convergent rounding, you need to // increase the input bit width by 2 (increase the number of // pipeline stages by 1) and implement rounding in the module that // instantiates this one. always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin data_valid <= 0; root <= 0; end else begin data_valid <= start_gen[OUTPUT_BITS-1]; if (root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] > root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS]) root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] + 1; else root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS]; end end endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // sqrt_pipelined.v // Created: 4.2.2012 // Modified: 4.5.2012 // // Implements a fixed-point parameterized pipelined square root // operation on an unsigned input of any bit length. The number of // stages in the pipeline is equal to the number of output bits in the // computation. This pipelien sustains a throughput of one computation // per clock cycle. // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module sqrt_pipelined ( input clk, // clock input reset_n, // asynchronous reset input start, // optional start signal input [INPUT_BITS-1:0] radicand, // unsigned radicand output reg data_valid, // optional data valid signal output reg [OUTPUT_BITS-1:0] root // unsigned root ); // WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP // LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE // OVERWRITTEN! parameter INPUT_BITS = 16; // number of input bits (any integer) localparam OUTPUT_BITS = INPUT_BITS / 2 + INPUT_BITS % 2; // number of output bits reg [OUTPUT_BITS-1:0] start_gen; // valid data propagation reg [OUTPUT_BITS*INPUT_BITS-1:0] root_gen; // root values reg [OUTPUT_BITS*INPUT_BITS-1:0] radicand_gen; // radicand values wire [OUTPUT_BITS*INPUT_BITS-1:0] mask_gen; // mask values // This is the first stage of the pipeline. always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin start_gen[0] <= 0; radicand_gen[INPUT_BITS-1:0] <= 0; root_gen[INPUT_BITS-1:0] <= 0; end else begin start_gen[0] <= start; if ( mask_gen[INPUT_BITS-1:0] <= radicand ) begin radicand_gen[INPUT_BITS-1:0] <= radicand - mask_gen[INPUT_BITS-1:0]; root_gen[INPUT_BITS-1:0] <= mask_gen[INPUT_BITS-1:0]; end else begin radicand_gen[INPUT_BITS-1:0] <= radicand; root_gen[INPUT_BITS-1:0] <= 0; end end end // Main generate loop to create the masks and pipeline stages. generate genvar i; // Generate all the mask values. These are built up in the // following fashion: // LAST MASK: 0x00...001 // 0x00...004 Increasing # OUTPUT_BITS // 0x00...010 | // 0x00...040 v // ... // FIRST MASK: 0x10...000 # masks == # OUTPUT_BITS // // Note that the first mask used can either be of the 0x1... or // 0x4... variety. This is purely determined by the number of // computation stages. However, the last mask used will always be // 0x1 and the second to last mask used will always be 0x4. for (i = 0; i < OUTPUT_BITS; i = i + 1) begin: mask_4 if (i % 2) // i is odd, this is a 4 mask assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 4 << 4 * (i/2); else // i is even, this is a 1 mask assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 1 << 4 * (i/2); end // Generate all the pipeline stages to compute the square root of // the input radicand stream. The general approach is to compare // the current values of the root plus the mask to the // radicand. If root/mask sum is greater than the radicand, // subtract the mask and the root from the radicand and store the // radicand for the next stage. Additionally, the root is // increased by the value of the mask and stored for the next // stage. If this test fails, then the radicand and the root // retain their value through to the next stage. The one weird // thing is that the mask indices appear to be incremented by one // additional position. This is not the case, however, because the // first mask is used in the first stage (always block after the // generate statement). for (i = 0; i < OUTPUT_BITS - 1; i = i + 1) begin: pipeline always @ (posedge clk or negedge reset_n) begin : pipeline_stage if (!reset_n) begin start_gen[i+1] <= 0; radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0; root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0; end else begin start_gen[i+1] <= start_gen[i]; if ((root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] + mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)]) <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]) begin radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] - mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] - root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]; root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= (root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1) + mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)]; end else begin radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]; root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1; end end end end endgenerate // This is the final stage which just implements a rounding // operation. This stage could be tacked on as a combinational logic // stage, but who cares about latency, anyway? This is NOT a true // rounding stage. In order to add convergent rounding, you need to // increase the input bit width by 2 (increase the number of // pipeline stages by 1) and implement rounding in the module that // instantiates this one. always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin data_valid <= 0; root <= 0; end else begin data_valid <= start_gen[OUTPUT_BITS-1]; if (root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] > root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS]) root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] + 1; else root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS]; end end endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // sqrt_pipelined.v // Created: 4.2.2012 // Modified: 4.5.2012 // // Implements a fixed-point parameterized pipelined square root // operation on an unsigned input of any bit length. The number of // stages in the pipeline is equal to the number of output bits in the // computation. This pipelien sustains a throughput of one computation // per clock cycle. // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module sqrt_pipelined ( input clk, // clock input reset_n, // asynchronous reset input start, // optional start signal input [INPUT_BITS-1:0] radicand, // unsigned radicand output reg data_valid, // optional data valid signal output reg [OUTPUT_BITS-1:0] root // unsigned root ); // WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP // LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE // OVERWRITTEN! parameter INPUT_BITS = 16; // number of input bits (any integer) localparam OUTPUT_BITS = INPUT_BITS / 2 + INPUT_BITS % 2; // number of output bits reg [OUTPUT_BITS-1:0] start_gen; // valid data propagation reg [OUTPUT_BITS*INPUT_BITS-1:0] root_gen; // root values reg [OUTPUT_BITS*INPUT_BITS-1:0] radicand_gen; // radicand values wire [OUTPUT_BITS*INPUT_BITS-1:0] mask_gen; // mask values // This is the first stage of the pipeline. always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin start_gen[0] <= 0; radicand_gen[INPUT_BITS-1:0] <= 0; root_gen[INPUT_BITS-1:0] <= 0; end else begin start_gen[0] <= start; if ( mask_gen[INPUT_BITS-1:0] <= radicand ) begin radicand_gen[INPUT_BITS-1:0] <= radicand - mask_gen[INPUT_BITS-1:0]; root_gen[INPUT_BITS-1:0] <= mask_gen[INPUT_BITS-1:0]; end else begin radicand_gen[INPUT_BITS-1:0] <= radicand; root_gen[INPUT_BITS-1:0] <= 0; end end end // Main generate loop to create the masks and pipeline stages. generate genvar i; // Generate all the mask values. These are built up in the // following fashion: // LAST MASK: 0x00...001 // 0x00...004 Increasing # OUTPUT_BITS // 0x00...010 | // 0x00...040 v // ... // FIRST MASK: 0x10...000 # masks == # OUTPUT_BITS // // Note that the first mask used can either be of the 0x1... or // 0x4... variety. This is purely determined by the number of // computation stages. However, the last mask used will always be // 0x1 and the second to last mask used will always be 0x4. for (i = 0; i < OUTPUT_BITS; i = i + 1) begin: mask_4 if (i % 2) // i is odd, this is a 4 mask assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 4 << 4 * (i/2); else // i is even, this is a 1 mask assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 1 << 4 * (i/2); end // Generate all the pipeline stages to compute the square root of // the input radicand stream. The general approach is to compare // the current values of the root plus the mask to the // radicand. If root/mask sum is greater than the radicand, // subtract the mask and the root from the radicand and store the // radicand for the next stage. Additionally, the root is // increased by the value of the mask and stored for the next // stage. If this test fails, then the radicand and the root // retain their value through to the next stage. The one weird // thing is that the mask indices appear to be incremented by one // additional position. This is not the case, however, because the // first mask is used in the first stage (always block after the // generate statement). for (i = 0; i < OUTPUT_BITS - 1; i = i + 1) begin: pipeline always @ (posedge clk or negedge reset_n) begin : pipeline_stage if (!reset_n) begin start_gen[i+1] <= 0; radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0; root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0; end else begin start_gen[i+1] <= start_gen[i]; if ((root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] + mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)]) <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]) begin radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] - mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] - root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]; root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= (root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1) + mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)]; end else begin radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]; root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1; end end end end endgenerate // This is the final stage which just implements a rounding // operation. This stage could be tacked on as a combinational logic // stage, but who cares about latency, anyway? This is NOT a true // rounding stage. In order to add convergent rounding, you need to // increase the input bit width by 2 (increase the number of // pipeline stages by 1) and implement rounding in the module that // instantiates this one. always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin data_valid <= 0; root <= 0; end else begin data_valid <= start_gen[OUTPUT_BITS-1]; if (root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] > root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS]) root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] + 1; else root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS]; end end endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // sqrt_pipelined.v // Created: 4.2.2012 // Modified: 4.5.2012 // // Implements a fixed-point parameterized pipelined square root // operation on an unsigned input of any bit length. The number of // stages in the pipeline is equal to the number of output bits in the // computation. This pipelien sustains a throughput of one computation // per clock cycle. // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module sqrt_pipelined ( input clk, // clock input reset_n, // asynchronous reset input start, // optional start signal input [INPUT_BITS-1:0] radicand, // unsigned radicand output reg data_valid, // optional data valid signal output reg [OUTPUT_BITS-1:0] root // unsigned root ); // WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP // LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE // OVERWRITTEN! parameter INPUT_BITS = 16; // number of input bits (any integer) localparam OUTPUT_BITS = INPUT_BITS / 2 + INPUT_BITS % 2; // number of output bits reg [OUTPUT_BITS-1:0] start_gen; // valid data propagation reg [OUTPUT_BITS*INPUT_BITS-1:0] root_gen; // root values reg [OUTPUT_BITS*INPUT_BITS-1:0] radicand_gen; // radicand values wire [OUTPUT_BITS*INPUT_BITS-1:0] mask_gen; // mask values // This is the first stage of the pipeline. always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin start_gen[0] <= 0; radicand_gen[INPUT_BITS-1:0] <= 0; root_gen[INPUT_BITS-1:0] <= 0; end else begin start_gen[0] <= start; if ( mask_gen[INPUT_BITS-1:0] <= radicand ) begin radicand_gen[INPUT_BITS-1:0] <= radicand - mask_gen[INPUT_BITS-1:0]; root_gen[INPUT_BITS-1:0] <= mask_gen[INPUT_BITS-1:0]; end else begin radicand_gen[INPUT_BITS-1:0] <= radicand; root_gen[INPUT_BITS-1:0] <= 0; end end end // Main generate loop to create the masks and pipeline stages. generate genvar i; // Generate all the mask values. These are built up in the // following fashion: // LAST MASK: 0x00...001 // 0x00...004 Increasing # OUTPUT_BITS // 0x00...010 | // 0x00...040 v // ... // FIRST MASK: 0x10...000 # masks == # OUTPUT_BITS // // Note that the first mask used can either be of the 0x1... or // 0x4... variety. This is purely determined by the number of // computation stages. However, the last mask used will always be // 0x1 and the second to last mask used will always be 0x4. for (i = 0; i < OUTPUT_BITS; i = i + 1) begin: mask_4 if (i % 2) // i is odd, this is a 4 mask assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 4 << 4 * (i/2); else // i is even, this is a 1 mask assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 1 << 4 * (i/2); end // Generate all the pipeline stages to compute the square root of // the input radicand stream. The general approach is to compare // the current values of the root plus the mask to the // radicand. If root/mask sum is greater than the radicand, // subtract the mask and the root from the radicand and store the // radicand for the next stage. Additionally, the root is // increased by the value of the mask and stored for the next // stage. If this test fails, then the radicand and the root // retain their value through to the next stage. The one weird // thing is that the mask indices appear to be incremented by one // additional position. This is not the case, however, because the // first mask is used in the first stage (always block after the // generate statement). for (i = 0; i < OUTPUT_BITS - 1; i = i + 1) begin: pipeline always @ (posedge clk or negedge reset_n) begin : pipeline_stage if (!reset_n) begin start_gen[i+1] <= 0; radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0; root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0; end else begin start_gen[i+1] <= start_gen[i]; if ((root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] + mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)]) <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]) begin radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] - mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] - root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]; root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= (root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1) + mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)]; end else begin radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]; root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1; end end end end endgenerate // This is the final stage which just implements a rounding // operation. This stage could be tacked on as a combinational logic // stage, but who cares about latency, anyway? This is NOT a true // rounding stage. In order to add convergent rounding, you need to // increase the input bit width by 2 (increase the number of // pipeline stages by 1) and implement rounding in the module that // instantiates this one. always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin data_valid <= 0; root <= 0; end else begin data_valid <= start_gen[OUTPUT_BITS-1]; if (root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] > root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS]) root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] + 1; else root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS]; end end endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // sqrt_pipelined.v // Created: 4.2.2012 // Modified: 4.5.2012 // // Implements a fixed-point parameterized pipelined square root // operation on an unsigned input of any bit length. The number of // stages in the pipeline is equal to the number of output bits in the // computation. This pipelien sustains a throughput of one computation // per clock cycle. // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module sqrt_pipelined ( input clk, // clock input reset_n, // asynchronous reset input start, // optional start signal input [INPUT_BITS-1:0] radicand, // unsigned radicand output reg data_valid, // optional data valid signal output reg [OUTPUT_BITS-1:0] root // unsigned root ); // WARNING!!! THESE PARAMETERS ARE INTENDED TO BE MODIFIED IN A TOP // LEVEL MODULE. LOCAL CHANGES HERE WILL, MOST LIKELY, BE // OVERWRITTEN! parameter INPUT_BITS = 16; // number of input bits (any integer) localparam OUTPUT_BITS = INPUT_BITS / 2 + INPUT_BITS % 2; // number of output bits reg [OUTPUT_BITS-1:0] start_gen; // valid data propagation reg [OUTPUT_BITS*INPUT_BITS-1:0] root_gen; // root values reg [OUTPUT_BITS*INPUT_BITS-1:0] radicand_gen; // radicand values wire [OUTPUT_BITS*INPUT_BITS-1:0] mask_gen; // mask values // This is the first stage of the pipeline. always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin start_gen[0] <= 0; radicand_gen[INPUT_BITS-1:0] <= 0; root_gen[INPUT_BITS-1:0] <= 0; end else begin start_gen[0] <= start; if ( mask_gen[INPUT_BITS-1:0] <= radicand ) begin radicand_gen[INPUT_BITS-1:0] <= radicand - mask_gen[INPUT_BITS-1:0]; root_gen[INPUT_BITS-1:0] <= mask_gen[INPUT_BITS-1:0]; end else begin radicand_gen[INPUT_BITS-1:0] <= radicand; root_gen[INPUT_BITS-1:0] <= 0; end end end // Main generate loop to create the masks and pipeline stages. generate genvar i; // Generate all the mask values. These are built up in the // following fashion: // LAST MASK: 0x00...001 // 0x00...004 Increasing # OUTPUT_BITS // 0x00...010 | // 0x00...040 v // ... // FIRST MASK: 0x10...000 # masks == # OUTPUT_BITS // // Note that the first mask used can either be of the 0x1... or // 0x4... variety. This is purely determined by the number of // computation stages. However, the last mask used will always be // 0x1 and the second to last mask used will always be 0x4. for (i = 0; i < OUTPUT_BITS; i = i + 1) begin: mask_4 if (i % 2) // i is odd, this is a 4 mask assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 4 << 4 * (i/2); else // i is even, this is a 1 mask assign mask_gen[INPUT_BITS*(OUTPUT_BITS-i)-1:INPUT_BITS*(OUTPUT_BITS-i-1)] = 1 << 4 * (i/2); end // Generate all the pipeline stages to compute the square root of // the input radicand stream. The general approach is to compare // the current values of the root plus the mask to the // radicand. If root/mask sum is greater than the radicand, // subtract the mask and the root from the radicand and store the // radicand for the next stage. Additionally, the root is // increased by the value of the mask and stored for the next // stage. If this test fails, then the radicand and the root // retain their value through to the next stage. The one weird // thing is that the mask indices appear to be incremented by one // additional position. This is not the case, however, because the // first mask is used in the first stage (always block after the // generate statement). for (i = 0; i < OUTPUT_BITS - 1; i = i + 1) begin: pipeline always @ (posedge clk or negedge reset_n) begin : pipeline_stage if (!reset_n) begin start_gen[i+1] <= 0; radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0; root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= 0; end else begin start_gen[i+1] <= start_gen[i]; if ((root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] + mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)]) <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]) begin radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] - mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] - root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]; root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= (root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1) + mask_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)]; end else begin radicand_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= radicand_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i]; root_gen[INPUT_BITS*(i+2)-1:INPUT_BITS*(i+1)] <= root_gen[INPUT_BITS*(i+1)-1:INPUT_BITS*i] >> 1; end end end end endgenerate // This is the final stage which just implements a rounding // operation. This stage could be tacked on as a combinational logic // stage, but who cares about latency, anyway? This is NOT a true // rounding stage. In order to add convergent rounding, you need to // increase the input bit width by 2 (increase the number of // pipeline stages by 1) and implement rounding in the module that // instantiates this one. always @ (posedge clk or negedge reset_n) begin if (!reset_n) begin data_valid <= 0; root <= 0; end else begin data_valid <= start_gen[OUTPUT_BITS-1]; if (root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] > root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS]) root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS] + 1; else root <= root_gen[OUTPUT_BITS*INPUT_BITS-1:OUTPUT_BITS*INPUT_BITS-INPUT_BITS]; end end endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // button_debounce.v // Created: 4.5.2012 // Modified: 4.5.2012 // // Testbench for button_debounce.v. // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module t_button_debounce(); parameter CLK_FREQUENCY = 66000000, DEBOUNCE_HZ = 2; reg clk, reset_n, button; wire debounce; button_debounce #( .CLK_FREQUENCY(CLK_FREQUENCY), .DEBOUNCE_HZ(DEBOUNCE_HZ) ) button_debounce ( .clk(clk), .reset_n(reset_n), .button(button), .debounce(debounce) ); initial begin clk = 1'bx; reset_n = 1'bx; button = 1'bx; #10 reset_n = 1; #10 reset_n = 0; clk = 0; #10 reset_n = 1; #10 button = 0; end always #5 clk = ~clk; always begin #100 button = ~button; #0.1 button = ~button; #0.1 button = ~button; #0.1 button = ~button; #0.1 button = ~button; #0.1 button = ~button; #0.1 button = ~button; #0.1 button = ~button; #0.1 button = ~button; end endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // button_debounce.v // Created: 4.5.2012 // Modified: 4.5.2012 // // Testbench for button_debounce.v. // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module t_button_debounce(); parameter CLK_FREQUENCY = 66000000, DEBOUNCE_HZ = 2; reg clk, reset_n, button; wire debounce; button_debounce #( .CLK_FREQUENCY(CLK_FREQUENCY), .DEBOUNCE_HZ(DEBOUNCE_HZ) ) button_debounce ( .clk(clk), .reset_n(reset_n), .button(button), .debounce(debounce) ); initial begin clk = 1'bx; reset_n = 1'bx; button = 1'bx; #10 reset_n = 1; #10 reset_n = 0; clk = 0; #10 reset_n = 1; #10 button = 0; end always #5 clk = ~clk; always begin #100 button = ~button; #0.1 button = ~button; #0.1 button = ~button; #0.1 button = ~button; #0.1 button = ~button; #0.1 button = ~button; #0.1 button = ~button; #0.1 button = ~button; #0.1 button = ~button; end endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // button_debounce.v // Created: 4.5.2012 // Modified: 4.5.2012 // // Testbench for button_debounce.v. // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module t_button_debounce(); parameter CLK_FREQUENCY = 66000000, DEBOUNCE_HZ = 2; reg clk, reset_n, button; wire debounce; button_debounce #( .CLK_FREQUENCY(CLK_FREQUENCY), .DEBOUNCE_HZ(DEBOUNCE_HZ) ) button_debounce ( .clk(clk), .reset_n(reset_n), .button(button), .debounce(debounce) ); initial begin clk = 1'bx; reset_n = 1'bx; button = 1'bx; #10 reset_n = 1; #10 reset_n = 0; clk = 0; #10 reset_n = 1; #10 button = 0; end always #5 clk = ~clk; always begin #100 button = ~button; #0.1 button = ~button; #0.1 button = ~button; #0.1 button = ~button; #0.1 button = ~button; #0.1 button = ~button; #0.1 button = ~button; #0.1 button = ~button; #0.1 button = ~button; end endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // button_debounce.v // Created: 4.5.2012 // Modified: 4.5.2012 // // Testbench for button_debounce.v. // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module t_button_debounce(); parameter CLK_FREQUENCY = 66000000, DEBOUNCE_HZ = 2; reg clk, reset_n, button; wire debounce; button_debounce #( .CLK_FREQUENCY(CLK_FREQUENCY), .DEBOUNCE_HZ(DEBOUNCE_HZ) ) button_debounce ( .clk(clk), .reset_n(reset_n), .button(button), .debounce(debounce) ); initial begin clk = 1'bx; reset_n = 1'bx; button = 1'bx; #10 reset_n = 1; #10 reset_n = 0; clk = 0; #10 reset_n = 1; #10 button = 0; end always #5 clk = ~clk; always begin #100 button = ~button; #0.1 button = ~button; #0.1 button = ~button; #0.1 button = ~button; #0.1 button = ~button; #0.1 button = ~button; #0.1 button = ~button; #0.1 button = ~button; #0.1 button = ~button; end endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // button_debounce.v // Created: 4.5.2012 // Modified: 4.5.2012 // // Testbench for button_debounce.v. // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module t_button_debounce(); parameter CLK_FREQUENCY = 66000000, DEBOUNCE_HZ = 2; reg clk, reset_n, button; wire debounce; button_debounce #( .CLK_FREQUENCY(CLK_FREQUENCY), .DEBOUNCE_HZ(DEBOUNCE_HZ) ) button_debounce ( .clk(clk), .reset_n(reset_n), .button(button), .debounce(debounce) ); initial begin clk = 1'bx; reset_n = 1'bx; button = 1'bx; #10 reset_n = 1; #10 reset_n = 0; clk = 0; #10 reset_n = 1; #10 button = 0; end always #5 clk = ~clk; always begin #100 button = ~button; #0.1 button = ~button; #0.1 button = ~button; #0.1 button = ~button; #0.1 button = ~button; #0.1 button = ~button; #0.1 button = ~button; #0.1 button = ~button; #0.1 button = ~button; end endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // button_debounce.v // Created: 4.5.2012 // Modified: 4.5.2012 // // Testbench for button_debounce.v. // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module t_button_debounce(); parameter CLK_FREQUENCY = 66000000, DEBOUNCE_HZ = 2; reg clk, reset_n, button; wire debounce; button_debounce #( .CLK_FREQUENCY(CLK_FREQUENCY), .DEBOUNCE_HZ(DEBOUNCE_HZ) ) button_debounce ( .clk(clk), .reset_n(reset_n), .button(button), .debounce(debounce) ); initial begin clk = 1'bx; reset_n = 1'bx; button = 1'bx; #10 reset_n = 1; #10 reset_n = 0; clk = 0; #10 reset_n = 1; #10 button = 0; end always #5 clk = ~clk; always begin #100 button = ~button; #0.1 button = ~button; #0.1 button = ~button; #0.1 button = ~button; #0.1 button = ~button; #0.1 button = ~button; #0.1 button = ~button; #0.1 button = ~button; #0.1 button = ~button; end endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // button_debounce.v // Created: 4.5.2012 // Modified: 4.5.2012 // // Testbench for button_debounce.v. // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module t_button_debounce(); parameter CLK_FREQUENCY = 66000000, DEBOUNCE_HZ = 2; reg clk, reset_n, button; wire debounce; button_debounce #( .CLK_FREQUENCY(CLK_FREQUENCY), .DEBOUNCE_HZ(DEBOUNCE_HZ) ) button_debounce ( .clk(clk), .reset_n(reset_n), .button(button), .debounce(debounce) ); initial begin clk = 1'bx; reset_n = 1'bx; button = 1'bx; #10 reset_n = 1; #10 reset_n = 0; clk = 0; #10 reset_n = 1; #10 button = 0; end always #5 clk = ~clk; always begin #100 button = ~button; #0.1 button = ~button; #0.1 button = ~button; #0.1 button = ~button; #0.1 button = ~button; #0.1 button = ~button; #0.1 button = ~button; #0.1 button = ~button; #0.1 button = ~button; end endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // t_sqrt_pipelined.v // Created: 4.2.2012 // Modified: 4.5.2012 // // Testbench for generic sqrt operation // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module t_sqrt_pipelined(); parameter INPUT_BITS = 4; localparam OUTPUT_BITS = INPUT_BITS / 2 + INPUT_BITS % 2; reg [INPUT_BITS-1:0] radicand; reg clk, start, reset_n; wire [OUTPUT_BITS-1:0] root; wire data_valid; // wire [7:0] root_good; sqrt_pipelined #( .INPUT_BITS(INPUT_BITS) ) sqrt_pipelined ( .clk(clk), .reset_n(reset_n), .start(start), .radicand(radicand), .data_valid(data_valid), .root(root) ); initial begin radicand = 16'bx; clk = 1'bx; start = 1'bx; reset_n = 1'bx;; #10 reset_n = 0; clk = 0; #50 reset_n = 1; radicand = 0; // #40 radicand = 81; start = 1; // #10 radicand = 16'bx; start = 0; #10000 $finish; end always #5 clk = ~clk; always begin #10 radicand = radicand + 1; start = 1; #10 start = 0; end // always begin // #80 start = 1; // #10 start = 0; // end endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // t_sqrt_pipelined.v // Created: 4.2.2012 // Modified: 4.5.2012 // // Testbench for generic sqrt operation // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module t_sqrt_pipelined(); parameter INPUT_BITS = 4; localparam OUTPUT_BITS = INPUT_BITS / 2 + INPUT_BITS % 2; reg [INPUT_BITS-1:0] radicand; reg clk, start, reset_n; wire [OUTPUT_BITS-1:0] root; wire data_valid; // wire [7:0] root_good; sqrt_pipelined #( .INPUT_BITS(INPUT_BITS) ) sqrt_pipelined ( .clk(clk), .reset_n(reset_n), .start(start), .radicand(radicand), .data_valid(data_valid), .root(root) ); initial begin radicand = 16'bx; clk = 1'bx; start = 1'bx; reset_n = 1'bx;; #10 reset_n = 0; clk = 0; #50 reset_n = 1; radicand = 0; // #40 radicand = 81; start = 1; // #10 radicand = 16'bx; start = 0; #10000 $finish; end always #5 clk = ~clk; always begin #10 radicand = radicand + 1; start = 1; #10 start = 0; end // always begin // #80 start = 1; // #10 start = 0; // end endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // t_sqrt_pipelined.v // Created: 4.2.2012 // Modified: 4.5.2012 // // Testbench for generic sqrt operation // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module t_sqrt_pipelined(); parameter INPUT_BITS = 4; localparam OUTPUT_BITS = INPUT_BITS / 2 + INPUT_BITS % 2; reg [INPUT_BITS-1:0] radicand; reg clk, start, reset_n; wire [OUTPUT_BITS-1:0] root; wire data_valid; // wire [7:0] root_good; sqrt_pipelined #( .INPUT_BITS(INPUT_BITS) ) sqrt_pipelined ( .clk(clk), .reset_n(reset_n), .start(start), .radicand(radicand), .data_valid(data_valid), .root(root) ); initial begin radicand = 16'bx; clk = 1'bx; start = 1'bx; reset_n = 1'bx;; #10 reset_n = 0; clk = 0; #50 reset_n = 1; radicand = 0; // #40 radicand = 81; start = 1; // #10 radicand = 16'bx; start = 0; #10000 $finish; end always #5 clk = ~clk; always begin #10 radicand = radicand + 1; start = 1; #10 start = 0; end // always begin // #80 start = 1; // #10 start = 0; // end endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // t_sqrt_pipelined.v // Created: 4.2.2012 // Modified: 4.5.2012 // // Testbench for generic sqrt operation // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module t_sqrt_pipelined(); parameter INPUT_BITS = 4; localparam OUTPUT_BITS = INPUT_BITS / 2 + INPUT_BITS % 2; reg [INPUT_BITS-1:0] radicand; reg clk, start, reset_n; wire [OUTPUT_BITS-1:0] root; wire data_valid; // wire [7:0] root_good; sqrt_pipelined #( .INPUT_BITS(INPUT_BITS) ) sqrt_pipelined ( .clk(clk), .reset_n(reset_n), .start(start), .radicand(radicand), .data_valid(data_valid), .root(root) ); initial begin radicand = 16'bx; clk = 1'bx; start = 1'bx; reset_n = 1'bx;; #10 reset_n = 0; clk = 0; #50 reset_n = 1; radicand = 0; // #40 radicand = 81; start = 1; // #10 radicand = 16'bx; start = 0; #10000 $finish; end always #5 clk = ~clk; always begin #10 radicand = radicand + 1; start = 1; #10 start = 0; end // always begin // #80 start = 1; // #10 start = 0; // end endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // t_sqrt_pipelined.v // Created: 4.2.2012 // Modified: 4.5.2012 // // Testbench for generic sqrt operation // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module t_sqrt_pipelined(); parameter INPUT_BITS = 4; localparam OUTPUT_BITS = INPUT_BITS / 2 + INPUT_BITS % 2; reg [INPUT_BITS-1:0] radicand; reg clk, start, reset_n; wire [OUTPUT_BITS-1:0] root; wire data_valid; // wire [7:0] root_good; sqrt_pipelined #( .INPUT_BITS(INPUT_BITS) ) sqrt_pipelined ( .clk(clk), .reset_n(reset_n), .start(start), .radicand(radicand), .data_valid(data_valid), .root(root) ); initial begin radicand = 16'bx; clk = 1'bx; start = 1'bx; reset_n = 1'bx;; #10 reset_n = 0; clk = 0; #50 reset_n = 1; radicand = 0; // #40 radicand = 81; start = 1; // #10 radicand = 16'bx; start = 0; #10000 $finish; end always #5 clk = ~clk; always begin #10 radicand = radicand + 1; start = 1; #10 start = 0; end // always begin // #80 start = 1; // #10 start = 0; // end endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // t_sqrt_pipelined.v // Created: 4.2.2012 // Modified: 4.5.2012 // // Testbench for generic sqrt operation // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module t_sqrt_pipelined(); parameter INPUT_BITS = 4; localparam OUTPUT_BITS = INPUT_BITS / 2 + INPUT_BITS % 2; reg [INPUT_BITS-1:0] radicand; reg clk, start, reset_n; wire [OUTPUT_BITS-1:0] root; wire data_valid; // wire [7:0] root_good; sqrt_pipelined #( .INPUT_BITS(INPUT_BITS) ) sqrt_pipelined ( .clk(clk), .reset_n(reset_n), .start(start), .radicand(radicand), .data_valid(data_valid), .root(root) ); initial begin radicand = 16'bx; clk = 1'bx; start = 1'bx; reset_n = 1'bx;; #10 reset_n = 0; clk = 0; #50 reset_n = 1; radicand = 0; // #40 radicand = 81; start = 1; // #10 radicand = 16'bx; start = 0; #10000 $finish; end always #5 clk = ~clk; always begin #10 radicand = radicand + 1; start = 1; #10 start = 0; end // always begin // #80 start = 1; // #10 start = 0; // end endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // t_sqrt_pipelined.v // Created: 4.2.2012 // Modified: 4.5.2012 // // Testbench for generic sqrt operation // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module t_sqrt_pipelined(); parameter INPUT_BITS = 4; localparam OUTPUT_BITS = INPUT_BITS / 2 + INPUT_BITS % 2; reg [INPUT_BITS-1:0] radicand; reg clk, start, reset_n; wire [OUTPUT_BITS-1:0] root; wire data_valid; // wire [7:0] root_good; sqrt_pipelined #( .INPUT_BITS(INPUT_BITS) ) sqrt_pipelined ( .clk(clk), .reset_n(reset_n), .start(start), .radicand(radicand), .data_valid(data_valid), .root(root) ); initial begin radicand = 16'bx; clk = 1'bx; start = 1'bx; reset_n = 1'bx;; #10 reset_n = 0; clk = 0; #50 reset_n = 1; radicand = 0; // #40 radicand = 81; start = 1; // #10 radicand = 16'bx; start = 0; #10000 $finish; end always #5 clk = ~clk; always begin #10 radicand = radicand + 1; start = 1; #10 start = 0; end // always begin // #80 start = 1; // #10 start = 0; // end endmodule
//////////////////////////////////////////////////////////////////////////////// // Original Author: Schuyler Eldridge // Contact Point: Schuyler Eldridge ([email protected]) // sign_extender.v // Created: 5.16.2012 // Modified: 5.16.2012 // // Generic sign extension module // // Copyright (C) 2012 Schuyler Eldridge, Boston University // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. //////////////////////////////////////////////////////////////////////////////// `timescale 1ns/1ps module sign_extender #( parameter INPUT_WIDTH = 8, OUTPUT_WIDTH = 16 ) ( input [INPUT_WIDTH-1:0] original, output reg [OUTPUT_WIDTH-1:0] sign_extended_original ); wire [OUTPUT_WIDTH-INPUT_WIDTH-1:0] sign_extend; generate genvar i; for (i = 0; i < OUTPUT_WIDTH-INPUT_WIDTH; i = i + 1) begin : gen_sign_extend assign sign_extend[i] = (original[INPUT_WIDTH-1]) ? 1'b1 : 1'b0; end endgenerate always @ * begin sign_extended_original = {sign_extend,original}; end endmodule