Dataset Viewer
Auto-converted to Parquet
image
imagewidth (px)
26
336
latex
stringlengths
2
482
split
stringclasses
4 values
x = [ x ] { + } f _ { x }
2016
j ( \sum i )
train
\frac { 1 } { n ! }
2019
N Y _ { I }
train
- 2 x
train
\frac { l } { x }
2016
f ^ { \frac { 1 } { 3 } } r \sin \theta
2016
3 0 \times 2 9 x ^ { 2 8 }
train
\frac { M } { \frac { H } { y } }
train
\sin ^ { 2 } u
2019
f ^ { ( n ) }
train
\lim _ { n \rightarrow \infty } \frac { ( n ! ) ^ { \frac { 1 } { n } } } { n } = e
train
x ^ { 2 } + x + 1 = 0
train
( y ^ { 4 } - 1 ) / ( y ^ { 2 } - 1 )
train
a + b + c + d + e
train
[ [ w ] ]
train
6 5 + 2 8 + 1 5 1
train
C _ { 2 } ( j , \frac { 1 } { 2 } , \ldots , \pm \frac { 1 } { 2 } ) = ( j - \frac { 1 } { 2 } ) ( j + 2 n - \frac { 3 } { 2 } ) + \frac { 1 } { 4 } n ( 2 n - 1 )
2019
y ^ { \sigma - I } \int 0 . 4 d n
train
\frac { \pi r ^ { 2 } h } { 3 }
train
t = \frac { t _ { 0 } } { \sqrt { 1 - \frac { v ^ { 2 } } { c ^ { 2 } } } }
train
( S )
train
\log _ { 2 } \frac { 1 } { 2 } + \log _ { 4 } \frac { 2 } { 4 }
train
\sqrt { x } = 1 0 ^ { ( \log x ) / 2 }
train
\frac 1 2 n ( n + 1 ) + n + 1
2016
| z - z _ { 1 } | = | z - z _ { 2 } |
2014
( 1 + 1 + 0 + 0 ) + ( 4 \times 0 ) + ( 4 \times 0 )
2019
\sum _ { P } n _ { P } P
2016
\frac { 2 ^ { 5 } } { 3 + 1 }
train
5 3 , 3 3 0 + 1 6 x 1 0 ^ { 9 }
train
1 + \frac { \sqrt { a ^ { 2 } + 1 + b } } { 3 }
train
\frac { \sin \theta + \cos \theta + \tan \theta } { x + y + z }
train
e ^ { \pm \frac { 1 } { \sqrt { 2 } } x }
2016
\lim _ { n \rightarrow \infty } \frac { n ! } { \sqrt { 2 \pi n } ( \frac { n } { e } ) } = 1
train
f ( y )
train
( x ^ { 3 } - x ^ { 2 } - x ) ( 2 x - 7 )
train
z = \sqrt { \frac { m } { 2 } } ( x + i y )
2016
f ( x ) = f ( y )
train
( - 1 - 1 - 1 0 0 0 ) ( 0 0 0 0 0 0 )
2019
1 4 6 \pm 1 7 8 / ( ( 1 7 0 \times 1 1 3 ) + 1 3 3 )
train
\sin ( 2 \frac { d } { d k } )
2019
a = b \cos C + c \cos B
train
\frac { x _ { 1 } } { \frac { x _ { 2 } } { \frac { x _ { 3 } } { x _ { 4 } } } }
train
N y
train
\phi ( r , \theta )
train
- y < s ( A )
train
( 2 . 4 . 9 ) - ( 2 . 4 . 1 0 )
2019
\frac { b } { a ^ { 2 } - a } - \frac { b } { a - 1 }
train
( i )
train
f ( 0 ) = - \frac { 1 } { 2 }
train
q = - 3 5
train
( 1 2 2 - 1 0 3 + 1 4 1 - 3 3 ) \times ( ( 2 2 \times 9 2 ) - ( 6 5 - 1 1 3 ) ) \leq 2 6 3 1 4 4
train
- k ( k a _ { i , j } + a _ { i , j } ) + k a _ { i , j } + a _ { i , j }
2014
f ( x ) = 1 + C _ { 1 } x + C _ { 2 } x ^ { 2 } + \ldots
2019
6 n ( n - 1 ) + 1
train
1 9 6 + ( 1 5 7 \times 6 7 ) \geq 1 0 7 1 4
train
\sin x + \sin y = 2 \sin ( \frac { x + y } { 2 } ) \cos ( \frac { x - y } { 2 } )
train
- I
train
y ^ { 2 } = x ^ { 3 } - x
train
\sin x - \sin y - \sin ( x - y )
train
- 1 . 7 9 1 9
2019
2 6
train
\sum _ { n = 0 } ^ { \infty } f _ { n } ( x )
train
5 \sum i
train
\frac { \sqrt { 1 + \cos ^ { 2 } ( \theta ) } } { 2 } = \cos ( 2 \theta )
train
\lim _ { x \rightarrow \frac { 1 } { 4 } } \frac { 1 - 4 ^ { x - \frac { 1 } { 4 } } } { 1 - 4 x }
train
\sum _ { n \geq w } j
train
x + y = 1 2
train
f ( x ) = a _ { n } x ^ { n } + a _ { n - 1 } x ^ { n - 1 } + \cdots + a _ { 1 } x + a _ { 0 }
train
\frac { \frac { 1 + \frac { 1 } { 2 } } { 3 } + \frac { 1 } { 4 } } { \frac { 1 } { 3 } + 1 + \frac { 2 } { 4 } }
train
\sin ^ { 2 } \sigma
2016
\frac { 1 } { 3 } \pi r ^ { 2 } h
train
\int \limits _ { 0 } ^ { 1 } \sqrt { x } d x
train
a + x b + y b ^ { \prime }
2016
t g
train
\lim _ { n \rightarrow \infty } f _ { n } ( x ) = 0
2014
\frac { x } { a + \frac { x } { b - \frac { x } { c } } }
train
\sqrt { 1 + \sqrt { 2 + \sqrt { 3 + \sqrt { 4 } } } }
train
\log _ { 2 } \frac { 1 } { 2 } + \log _ { 4 } \frac { 2 } { 4 }
train
\frac { \int \sqrt { s } d u } { \tan ^ { g } q }
train
f ^ { P - 5 }
train
( q _ { k } , p _ { k } )
train
\frac { 2 \tan \alpha } { 1 - \tan ^ { 2 } \alpha }
train
\int 3 \sin x d x
2014
\sqrt { k }
train
1 + 1 3 - 7 = x
train
\frac 1 6 n ( n + 1 ) ( n + 2 )
2016
\tan h
train
v ( a + i b ) = a ^ { 2 } + b ^ { 2 }
train
\int \sqrt { g }
2016
a _ { n } = \sin ( 2 n x )
train
w
train
\cos ( 2 t )
train
C = - i C _ { 0 } + C _ { 2 } + i C _ { 4 } - C _ { 6 } - i C _ { 8 }
2016
1 + 2 + \cdots + n = \frac { n ( n + 1 ) } { 2 }
train
\pi - e
train
x _ { i } - x _ { i + 1 } + x _ { i + 2 }
train
Y = X ^ { 2 }
train
( i i i )
train
3 a ^ { 2 } b ^ { 3 } + 5 a ^ { 3 } b ^ { 2 } - \frac { a ^ { 5 } b ^ { 8 } } { 2 }
train
End of preview. Expand in Data Studio
Downloads last month
66