You need to agree to share your contact information to access this dataset

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this dataset content.

Index for timm models of different size levels

1089 models in total.

For each level, only the top-30 most popular pretrained weight of each architecture will be listed here.

0 - nano

Name Architecture Params Input Size Top-1 Top-5 Num Classes Num Features Downloads Likes
test_efficientnet.r160_in1k test_efficientnet 358.7K 160 46.42% 70.96% 1000 256 1259 0
test_byobnet.r160_in1k test_byobnet 459.2K 160 45.40% 70.61% 1000 256 926 1
test_vit.r160_in1k test_vit 371.2K 160 40.83% 67.21% 1000 64 896 0

1 - tiny

Name Architecture Params Input Size Top-1 Top-5 Num Classes Num Features Downloads Likes
mobilevitv2_075.cvnets_in1k mobilevitv2_075 2.9M 256 75.60% 92.75% 1000 384 6112 0
mobilevit_xs.cvnets_in1k mobilevit_xs 2.3M 256 74.63% 92.35% 1000 384 3136 0
edgenext_x_small.in1k edgenext_x_small 2.3M 256 74.88% 92.30% 1000 192 260 1
semnasnet_075.rmsp_in1k semnasnet_075 2.9M 224 73.01% 91.13% 1000 1280 382 0
lcnet_100.ra2_in1k lcnet_100 3.0M 224 72.13% 90.37% 1000 1280 653 0
edgenext_xx_small.in1k edgenext_xx_small 1.3M 256 71.12% 90.04% 1000 168 956 2
mobilevitv2_050.cvnets_in1k mobilevitv2_050 1.4M 256 70.16% 89.94% 1000 256 6802 1
tinynet_c.in1k tinynet_c 2.5M 184 71.22% 89.75% 1000 1280 234 0
mobilevit_xxs.cvnets_in1k mobilevit_xxs 1.3M 256 68.93% 88.94% 1000 320 14344 1
regnetx_002.pycls_in1k regnetx_002 2.7M 224 68.76% 88.56% 1000 368 3318 0
dla60x_c.in1k dla60x_c 1.3M 224 67.93% 88.43% 1000 256 206 0
lcnet_075.ra2_in1k lcnet_075 2.4M 224 68.78% 88.39% 1000 1280 256 0
repghostnet_058.in1k repghostnet_058 2.6M 224 68.93% 88.39% 1000 1280 99 0
mobilenetv3_small_100.lamb_in1k mobilenetv3_small_100 2.6M 224 67.64% 87.65% 1000 1024 138668605 22
tinynet_d.in1k tinynet_d 2.4M 152 66.97% 87.06% 1000 1280 388 0
dla46x_c.in1k dla46x_c 1.1M 224 66.01% 86.95% 1000 256 328 0
repghostnet_050.in1k repghostnet_050 2.3M 224 66.98% 86.94% 1000 1280 272 0
mnasnet_small.lamb_in1k mnasnet_small 2.0M 224 66.20% 86.47% 1000 1280 299 0
dla46_c.in1k dla46_c 1.3M 224 64.88% 86.33% 1000 256 221 0
mobilenetv2_050.lamb_in1k mobilenetv2_050 2.0M 224 65.93% 86.10% 1000 1280 4719 2
mobilenetv3_small_075.lamb_in1k mobilenetv3_small_075 2.1M 224 65.27% 85.47% 1000 1024 6796 1
efficientvit_m0.r224_in1k efficientvit_m0 2.4M 224 63.29% 85.15% 1000 192 515 0
lcnet_050.ra2_in1k lcnet_050 1.9M 224 63.13% 84.40% 1000 1280 20053 0
tinynet_e.in1k tinynet_e 2.1M 106 59.87% 81.77% 1000 1280 464245 0
mobilenetv3_small_050.lamb_in1k mobilenetv3_small_050 1.6M 224 57.92% 80.14% 1000 1024 7996 0

2 - small

Name Architecture Params Input Size Top-1 Top-5 Num Classes Num Features Downloads Likes
mobilevitv2_100.cvnets_in1k mobilevitv2_100 4.9M 256 78.09% 94.17% 1000 512 2157 1
xcit_nano_12_p8_384.fb_dist_in1k xcit_nano_12_p8_384 3.1M 384 77.82% 94.03% 1000 128 177 0
rexnet_100.nav_in1k rexnet_100 4.8M 224 77.85% 93.88% 1000 1280 19859 0
fastvit_t8.apple_dist_in1k fastvit_t8 4.1M 256 77.17% 93.27% 1000 768 37412 0
xcit_nano_12_p8_224.fb_dist_in1k xcit_nano_12_p8_224 3.1M 224 76.33% 93.07% 1000 128 132 1
convnextv2_atto.fcmae_ft_in1k convnextv2_atto 3.7M 224 76.65% 93.04% 1000 320 7155 0
convnext_atto.d2_in1k convnext_atto 3.7M 224 75.67% 92.91% 1000 320 8260 0
efficientformerv2_s0.snap_dist_in1k efficientformerv2_s0 3.6M 224 76.12% 92.85% 1000 176 749 1
convnext_atto_ols.a2_in1k convnext_atto_ols 3.7M 224 75.90% 92.84% 1000 320 10217 0
mixnet_s.ft_in1k mixnet_s 4.2M 224 76.00% 92.80% 1000 1536 3343 0
mobileone_s1.apple_in1k mobileone_s1 4.9M 224 75.77% 92.79% 1000 1280 573 0
regnety_004.tv2_in1k regnety_004 4.4M 224 75.59% 92.70% 1000 440 413 0
xcit_nano_12_p16_384.fb_dist_in1k xcit_nano_12_p16_384 3.1M 384 75.47% 92.67% 1000 128 271 0
semnasnet_100.rmsp_in1k semnasnet_100 3.9M 224 75.46% 92.61% 1000 1280 303 0
efficientnet_lite0.ra_in1k efficientnet_lite0 4.7M 224 75.49% 92.51% 1000 1280 12932 0
mobilenetv1_100.ra4_e3600_r224_in1k mobilenetv1_100 4.3M 224 75.38% 92.31% 1000 1024 1602 2
tinynet_b.in1k tinynet_b 3.8M 188 74.97% 92.20% 1000 1280 333 0
mobilenetv2_110d.ra_in1k mobilenetv2_110d 4.6M 224 75.05% 92.19% 1000 1280 628 0
repghostnet_111.in1k repghostnet_111 4.6M 224 75.07% 92.18% 1000 1280 105 0
mnasnet_100.rmsp_in1k mnasnet_100 4.4M 224 74.66% 92.11% 1000 1280 23684 0
spnasnet_100.rmsp_in1k spnasnet_100 4.5M 224 74.08% 91.83% 1000 1280 19260 0
repghostnet_100.in1k repghostnet_100 4.1M 224 74.20% 91.55% 1000 1280 178 0
mobilenetv4_conv_small.e2400_r224_in1k mobilenetv4_conv_small 3.8M 224 73.73% 91.43% 1000 960 6077 9
pit_ti_224.in1k pit_ti_224 4.8M 224 72.92% 91.41% 1000 256 530 0
mobilenetv2_100.ra_in1k mobilenetv2_100 3.5M 224 72.94% 91.00% 1000 1280 49189 4
xcit_nano_12_p16_224.fb_dist_in1k xcit_nano_12_p16_224 3.1M 224 72.32% 90.83% 1000 128 129 0
repghostnet_080.in1k repghostnet_080 3.3M 224 72.24% 90.49% 1000 1280 313 0
pvt_v2_b0.in1k pvt_v2_b0 3.7M 224 70.66% 90.21% 1000 256 3454 1
efficientvit_m2.r224_in1k efficientvit_m2 4.2M 224 70.80% 90.16% 1000 224 270 0
regnety_002.pycls_in1k regnety_002 3.2M 224 70.29% 89.53% 1000 368 23390 1

3 - compact

Name Architecture Params Input Size Top-1 Top-5 Num Classes Num Features Downloads Likes
xcit_tiny_12_p8_384.fb_dist_in1k xcit_tiny_12_p8_384 6.7M 384 82.39% 96.21% 1000 192 337 0
tiny_vit_5m_224.dist_in22k_ft_in1k tiny_vit_5m_224 5.4M 224 80.86% 95.67% 1000 320 2878 1
xcit_tiny_12_p8_224.fb_dist_in1k xcit_tiny_12_p8_224 6.7M 224 81.21% 95.62% 1000 192 104 0
repvit_m1_1.dist_450e_in1k repvit_m1_1 8.9M 224 81.30% 95.57% 1000 512 92 0
eva02_tiny_patch14_336.mim_in22k_ft_in1k eva02_tiny_patch14_336 5.8M 336 80.67% 95.53% 1000 192 1100 2
xcit_tiny_12_p16_384.fb_dist_in1k xcit_tiny_12_p16_384 6.7M 384 80.95% 95.43% 1000 192 190 0
edgenext_small.usi_in1k edgenext_small 5.6M 256 81.06% 95.33% 1000 304 511092 4
fastvit_s12.apple_dist_in1k fastvit_s12 9.5M 256 81.07% 95.28% 1000 1024 107 2
efficientnet_b3_pruned.in1k efficientnet_b3_pruned 9.9M 300 80.87% 95.27% 1000 1536 178 0
maxvit_rmlp_pico_rw_256.sw_in1k maxvit_rmlp_pico_rw_256 7.5M 256 80.55% 95.19% 1000 256 198 0
mobilenetv4_conv_medium.e500_r256_in1k mobilenetv4_conv_medium 9.8M 256 79.92% 95.19% 1000 960 3592 1
repvit_m2.dist_in1k repvit_m2 8.9M 224 80.47% 95.17% 1000 512 248 0
rexnet_150.nav_in1k rexnet_150 9.8M 224 80.31% 95.17% 1000 1920 3179 0
efficientnet_b1.ra4_e3600_r240_in1k efficientnet_b1 7.9M 240 80.40% 95.15% 1000 1280 10246 0
convnextv2_pico.fcmae_ft_in1k convnextv2_pico 9.1M 224 80.30% 95.08% 1000 512 5964 0
fastvit_t12.apple_dist_in1k fastvit_t12 7.6M 256 80.36% 95.04% 1000 1024 66 0
mobilenet_edgetpu_v2_m.ra4_e3600_r224_in1k mobilenet_edgetpu_v2_m 8.5M 224 80.13% 95.00% 1000 1344 474 0
regnetz_b16.ra3_in1k regnetz_b16 9.8M 224 79.87% 94.98% 1000 1536 296 1
efficientvit_b1.r288_in1k efficientvit_b1 9.1M 288 80.31% 94.98% 1000 256 809 0
repvit_m1_0.dist_450e_in1k repvit_m1_0 7.4M 224 80.45% 94.92% 1000 448 513 0
mobilenetv4_conv_blur_medium.e500_r224_in1k mobilenetv4_conv_blur_medium 9.8M 224 79.45% 94.92% 1000 960 744 1
mobilevitv2_125.cvnets_in1k mobilevitv2_125 7.5M 256 79.68% 94.84% 1000 640 732 0
efficientnet_b2_pruned.in1k efficientnet_b2_pruned 8.4M 260 79.91% 94.84% 1000 1408 1091 0
efficientnet_em.ra2_in1k efficientnet_em 7.0M 240 79.26% 94.80% 1000 1280 261 0
regnetx_016.tv2_in1k regnetx_016 9.2M 224 79.45% 94.77% 1000 912 787 0
convnext_pico_ols.d1_in1k convnext_pico_ols 9.1M 224 79.54% 94.71% 1000 512 2168 0
efficientformerv2_s1.snap_dist_in1k efficientformerv2_s1 6.3M 224 79.68% 94.69% 1000 224 315 1
rexnet_130.nav_in1k rexnet_130 7.6M 224 79.49% 94.68% 1000 1664 193 0
efficientnet_b2.ra_in1k efficientnet_b2 9.2M 256 79.34% 94.58% 1000 1408 13208 0
convnext_pico.d1_in1k convnext_pico 9.0M 224 79.52% 94.55% 1000 512 7473 0

4 - medium

Name Architecture Params Input Size Top-1 Top-5 Num Classes Num Features Downloads Likes
tiny_vit_21m_512.dist_in22k_ft_in1k tiny_vit_21m_512 21.3M 512 86.45% 97.88% 1000 576 3490 2
tiny_vit_21m_384.dist_in22k_ft_in1k tiny_vit_21m_384 21.2M 384 86.09% 97.71% 1000 576 10762 3
eva02_small_patch14_336.mim_in22k_ft_in1k eva02_small_patch14_336 22.1M 336 85.76% 97.61% 1000 384 4963 3
deit3_small_patch16_384.fb_in22k_ft_in1k deit3_small_patch16_384 22.2M 384 84.84% 97.48% 1000 384 3067 0
tiny_vit_21m_224.dist_in22k_ft_in1k tiny_vit_21m_224 21.2M 224 85.09% 97.36% 1000 576 2294 0
vit_small_patch16_384.augreg_in21k_ft_in1k vit_small_patch16_384 22.2M 384 83.80% 97.11% 1000 384 3639 2
vit_little_patch16_reg1_gap_256.sbb_in12k_ft_in1k vit_little_patch16_reg1_gap_256 22.5M 256 83.80% 96.96% 1000 320 134 0
hgnet_small.ssld_in1k hgnet_small 24.4M 224 83.81% 96.87% 1000 1024 234 0
edgenext_base.in21k_ft_in1k edgenext_base 18.5M 256 83.42% 96.80% 1000 584 154 0
hgnetv2_b4.ssld_stage2_ft_in1k hgnetv2_b4 19.8M 224 83.69% 96.79% 1000 2048 5919 0
deit3_small_patch16_224.fb_in22k_ft_in1k deit3_small_patch16_224 22.1M 224 83.08% 96.78% 1000 384 2315 0
regnetz_d8.ra3_in1k regnetz_d8 23.5M 256 83.55% 96.75% 1000 1792 352 1
convnextv2_nano.fcmae_ft_in22k_in1k_384 convnextv2_nano 15.6M 384 83.36% 96.74% 1000 640 2102 0
xcit_tiny_24_p8_384.fb_dist_in1k xcit_tiny_24_p8_384 12.1M 384 83.78% 96.72% 1000 192 221 0
regnetz_d8_evos.ch_in1k regnetz_d8_evos 23.5M 256 83.39% 96.66% 1000 1792 199 1
repvit_m2_3.dist_450e_in1k repvit_m2_3 23.8M 224 83.74% 96.64% 1000 640 126 0
tiny_vit_11m_224.dist_in22k_ft_in1k tiny_vit_11m_224 11.0M 224 83.23% 96.63% 1000 448 490 0
fastvit_sa24.apple_dist_in1k fastvit_sa24 21.6M 256 83.36% 96.58% 1000 1024 1143 0
mobilevitv2_200.cvnets_in22k_ft_in1k_384 mobilevitv2_200 18.5M 384 83.41% 96.57% 1000 1024 2765 0
mobilenetv4_hybrid_medium.ix_e550_r384_in1k mobilenetv4_hybrid_medium 11.2M 384 82.96% 96.47% 1000 960 1060 4
mobilevitv2_175.cvnets_in22k_ft_in1k_384 mobilevitv2_175 14.3M 384 82.93% 96.45% 1000 896 274 0
rexnetr_200.sw_in12k_ft_in1k rexnetr_200 16.6M 224 82.61% 96.39% 1000 2560 220 0
hgnetv2_b3.ssld_stage2_ft_in1k hgnetv2_b3 16.3M 224 82.91% 96.36% 1000 2048 349 0
maxxvit_rmlp_nano_rw_256.sw_in1k maxxvit_rmlp_nano_rw_256 16.8M 256 83.03% 96.34% 1000 512 230 0
convnext_nano.in12k_ft_in1k convnext_nano 15.6M 224 82.31% 96.34% 1000 640 13058 0
maxxvitv2_nano_rw_256.sw_in1k maxxvitv2_nano_rw_256 23.7M 256 83.10% 96.33% 1000 768 148 0
efficientnetv2_rw_s.ra2_in1k efficientnetv2_rw_s 24.1M 288 82.89% 96.33% 1000 1792 25905 1
mobilevitv2_150.cvnets_in22k_ft_in1k_384 mobilevitv2_150 10.6M 384 82.61% 96.31% 1000 768 474 0
efficientvit_b2.r288_in1k efficientvit_b2 24.4M 288 83.08% 96.30% 1000 384 1096 0
maxvit_rmlp_nano_rw_256.sw_in1k maxvit_rmlp_nano_rw_256 15.5M 256 82.98% 96.27% 1000 512 120 0

5 - large

Name Architecture Params Input Size Top-1 Top-5 Num Classes Num Features Downloads Likes
caformer_s36.sail_in22k_ft_in1k_384 caformer_s36 39.3M 384 86.86% 98.22% 1000 512 986 1
nextvit_base.bd_ssld_6m_in1k_384 nextvit_base 44.9M 384 86.36% 98.04% 1000 1024 24 3
convformer_s36.sail_in22k_ft_in1k_384 convformer_s36 40.0M 384 86.38% 97.98% 1000 512 71 0
nextvit_small.bd_ssld_6m_in1k_384 nextvit_small 31.8M 384 85.96% 97.90% 1000 1024 136 2
efficientnet_b5.sw_in12k_ft_in1k efficientnet_b5 30.6M 448 85.89% 97.74% 1000 2048 38814 2
caformer_s18.sail_in22k_ft_in1k_384 caformer_s18 26.3M 384 85.42% 97.71% 1000 512 721 0
vit_medium_patch16_gap_384.sw_in12k_ft_in1k vit_medium_patch16_gap_384 39.0M 384 85.55% 97.64% 1000 512 482 0
convnext_tiny.in12k_ft_in1k_384 convnext_tiny 28.6M 384 85.15% 97.63% 1000 768 2440 0
convnextv2_tiny.fcmae_ft_in22k_in1k_384 convnextv2_tiny 28.6M 384 85.11% 97.63% 1000 768 9443 2
maxvit_tiny_tf_512.in1k maxvit_tiny_tf_512 31.1M 512 85.66% 97.59% 1000 512 6942 0
convformer_s18.sail_in22k_ft_in1k_384 convformer_s18 26.8M 384 85.03% 97.58% 1000 512 123 0
xcit_small_24_p8_384.fb_dist_in1k xcit_small_24_p8_384 47.7M 384 85.58% 97.57% 1000 384 147 0
vit_medium_patch16_reg4_gap_256.sbb_in12k_ft_in1k vit_medium_patch16_reg4_gap_256 38.9M 256 84.94% 97.39% 1000 512 1416 2
maxvit_tiny_tf_384.in1k maxvit_tiny_tf_384 31.0M 384 85.10% 97.38% 1000 512 664 0
coat_lite_medium_384.in1k coat_lite_medium_384 44.6M 384 84.89% 97.38% 1000 512 217 0
cait_s24_384.fb_dist_in1k cait_s24_384 47.1M 384 85.04% 97.35% 1000 384 179 0
xcit_small_24_p16_384.fb_dist_in1k xcit_small_24_p16_384 47.7M 384 85.10% 97.32% 1000 384 99 0
vit_small_r26_s32_384.augreg_in21k_ft_in1k vit_small_r26_s32_384 36.5M 384 84.07% 97.31% 1000 384 4192 1
hgnetv2_b5.ssld_stage2_ft_in1k hgnetv2_b5 39.7M 224 84.81% 97.30% 1000 2048 393 1
xcit_small_12_p8_384.fb_dist_in1k xcit_small_12_p8_384 26.2M 384 85.07% 97.26% 1000 384 172 0
hiera_small_abswin_256.sbb2_e200_in12k_ft_in1k hiera_small_abswin_256 34.4M 256 84.90% 97.25% 1000 768 141 0
volo_d1_384.sail_in1k volo_d1_384 26.8M 384 85.27% 97.22% 1000 384 308 0
vit_medium_patch16_gap_256.sw_in12k_ft_in1k vit_medium_patch16_gap_256 38.9M 256 84.45% 97.22% 1000 512 232 0
xcit_small_24_p8_224.fb_dist_in1k xcit_small_24_p8_224 47.7M 224 84.88% 97.20% 1000 384 89 0
deit3_medium_patch16_224.fb_in22k_ft_in1k deit3_medium_patch16_224 38.8M 224 84.57% 97.18% 1000 512 333 0
xcit_small_12_p16_384.fb_dist_in1k xcit_small_12_p16_384 26.3M 384 84.74% 97.14% 1000 384 150 0
mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k mobilenetv4_conv_aa_large 32.7M 448 84.67% 97.11% 1000 960 6684 2
fastvit_ma36.apple_dist_in1k fastvit_ma36 44.2M 256 84.61% 97.01% 1000 1216 263 1
rexnetr_300.sw_in12k_ft_in1k rexnetr_300 34.9M 224 84.04% 97.00% 1000 3840 128 0
swin_small_patch4_window7_224.ms_in22k_ft_in1k swin_small_patch4_window7_224 49.9M 224 83.33% 97.00% 1000 768 12773 0

6 - xlarge

Name Architecture Params Input Size Top-1 Top-5 Num Classes Num Features Downloads Likes
eva02_base_patch14_448.mim_in22k_ft_in22k_in1k eva02_base_patch14_448 87.1M 448 88.68% 98.73% 1000 768 7869 5
caformer_b36.sail_in22k_ft_in1k_384 caformer_b36 98.8M 384 88.07% 98.59% 1000 768 1265 0
convformer_b36.sail_in22k_ft_in1k_384 convformer_b36 99.9M 384 87.60% 98.43% 1000 768 36 0
convnextv2_base.fcmae_ft_in22k_in1k_384 convnextv2_base 88.7M 384 87.64% 98.42% 1000 1024 7986 0
caformer_m36.sail_in22k_ft_in1k_384 caformer_m36 56.2M 384 87.47% 98.31% 1000 576 1119 2
coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k coatnet_rmlp_2_rw_384 73.9M 384 87.40% 98.31% 1000 1024 939 1
vit_mediumd_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k vit_mediumd_patch16_reg4_gap_384 64.3M 384 87.44% 98.26% 1000 512 51575 5
convnext_base.fb_in22k_ft_in1k_384 convnext_base 88.6M 384 86.83% 98.24% 1000 1024 8739 0
swinv2_base_window12to24_192to384.ms_in22k_ft_in1k swinv2_base_window12to24_192to384 94.6M 384 87.14% 98.23% 1000 1024 14205 0
vit_base_patch16_clip_384.openai_ft_in12k_in1k vit_base_patch16_clip_384 86.9M 384 87.03% 98.19% 1000 768 103 1
beit_base_patch16_384.in22k_ft_in22k_in1k beit_base_patch16_384 90.7M 384 86.82% 98.14% 1000 768 800 0
nextvit_large.bd_ssld_6m_in1k_384 nextvit_large 58.0M 384 86.54% 98.13% 1000 1024 42 1
convformer_m36.sail_in22k_ft_in1k_384 convformer_m36 57.1M 384 86.87% 98.13% 1000 576 65 0
deit3_base_patch16_384.fb_in22k_ft_in1k deit3_base_patch16_384 86.9M 384 86.74% 98.11% 1000 768 1178 0
seresnextaa101d_32x8d.sw_in12k_ft_in1k_288 seresnextaa101d_32x8d 93.8M 288 86.54% 98.09% 1000 2048 772 2
swin_base_patch4_window12_384.ms_in22k_ft_in1k swin_base_patch4_window12_384 90.8M 384 86.44% 98.07% 1000 1024 12783 0
beitv2_base_patch16_224.in1k_ft_in22k_in1k beitv2_base_patch16_224 87.0M 224 86.49% 98.06% 1000 768 1731 0
regnety_160.swag_ft_in1k regnety_160 83.7M 384 86.02% 98.05% 1000 3024 59 0
vit_betwixt_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k vit_betwixt_patch16_reg4_gap_384 60.6M 384 86.60% 98.02% 1000 640 527 1
vit_base_patch16_384.augreg_in21k_ft_in1k vit_base_patch16_384 86.9M 384 86.01% 98.00% 1000 768 36455 0
vit_mediumd_patch16_reg4_gap_256.sbb2_e200_in12k_ft_in1k vit_mediumd_patch16_reg4_gap_256 64.1M 256 86.60% 97.94% 1000 512 251 1
convnext_small.in12k_ft_in1k_384 convnext_small 50.2M 384 86.19% 97.92% 1000 768 3724 0
swinv2_base_window12to16_192to256.ms_in22k_ft_in1k swinv2_base_window12to16_192to256 89.2M 256 86.28% 97.91% 1000 1024 5457 0
coatnet_2_rw_224.sw_in12k_ft_in1k coatnet_2_rw_224 73.9M 224 86.58% 97.90% 1000 1024 1019 0
coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k coatnet_rmlp_2_rw_224 73.9M 224 86.54% 97.90% 1000 1024 457 0
vit_base_patch8_224.augreg2_in21k_ft_in1k vit_base_patch8_224 86.6M 224 86.23% 97.84% 1000 768 327530 3
hgnetv2_b6.ssld_stage2_ft_in1k hgnetv2_b6 75.4M 224 86.21% 97.81% 1000 2048 170 0
maxvit_small_tf_512.in1k maxvit_small_tf_512 69.2M 512 86.10% 97.76% 1000 768 1182 2
vit_base_patch16_clip_224.laion2b_ft_in12k_in1k vit_base_patch16_clip_224 86.6M 224 86.21% 97.76% 1000 768 4884 2
deit3_base_patch16_224.fb_in22k_ft_in1k deit3_base_patch16_224 86.6M 224 85.73% 97.75% 1000 768 1439 0

7 - xxlarge

Name Architecture Params Input Size Top-1 Top-5 Num Classes Num Features Downloads Likes
maxvit_large_tf_512.in21k_ft_in1k maxvit_large_tf_512 212.5M 512 88.24% 98.61% 1000 1024 276 0
convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384 convnext_large_mlp 200.1M 384 88.33% 98.57% 1000 1536 3565 2
maxvit_large_tf_384.in21k_ft_in1k maxvit_large_tf_384 212.2M 384 88.00% 98.57% 1000 1024 330 0
maxvit_base_tf_512.in21k_ft_in1k maxvit_base_tf_512 120.0M 512 88.21% 98.54% 1000 768 3907 1
maxvit_base_tf_384.in21k_ft_in1k maxvit_base_tf_384 119.8M 384 87.93% 98.54% 1000 768 2254 0
convnextv2_large.fcmae_ft_in22k_in1k_384 convnextv2_large 198.0M 384 88.18% 98.52% 1000 1536 3505 0
convnext_large.fb_in22k_ft_in1k_384 convnext_large 197.8M 384 87.46% 98.38% 1000 1536 16073 0
maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k maxxvitv2_rmlp_base_rw_384 116.1M 384 87.48% 98.37% 1000 1024 416 1
maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k maxvit_rmlp_base_rw_384 116.3M 384 87.81% 98.37% 1000 768 257 0
regnety_320.swag_ft_in1k regnety_320 145.2M 384 86.86% 98.36% 1000 3712 707 0
seresnextaa201d_32x8d.sw_in12k_ft_in1k_384 seresnextaa201d_32x8d 149.8M 384 87.31% 98.33% 1000 2048 234 2
swinv2_large_window12to24_192to384.ms_in22k_ft_in1k swinv2_large_window12to24_192to384 203.4M 384 87.47% 98.26% 1000 1536 1607 0
swin_large_patch4_window12_384.ms_in22k_ft_in1k swin_large_patch4_window12_384 199.6M 384 87.14% 98.23% 1000 1536 8006 0
swinv2_large_window12to16_192to256.ms_in22k_ft_in1k swinv2_large_window12to16_192to256 198.1M 256 86.93% 98.10% 1000 1536 1794 0
maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k maxxvitv2_rmlp_base_rw_224 116.1M 224 86.64% 98.01% 1000 1024 254 2
maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k maxvit_rmlp_base_rw_224 116.3M 224 86.91% 98.00% 1000 768 375 1
swin_large_patch4_window7_224.ms_in22k_ft_in1k swin_large_patch4_window7_224 196.9M 224 86.33% 97.88% 1000 1536 8461 0
volo_d4_448.sail_in1k volo_d4_448 193.4M 448 86.79% 97.88% 1000 768 166 0
xcit_large_24_p8_384.fb_dist_in1k xcit_large_24_p8_384 189.0M 384 86.03% 97.69% 1000 768 169 0
hiera_large_224.mae_in1k_ft_in1k hiera_large_224 213.7M 224 86.04% 97.65% 1000 1152 237 1
efficientvit_l3.r384_in1k efficientvit_l3 246.1M 384 86.40% 97.63% 1000 1024 67 1
xcit_large_24_p16_384.fb_dist_in1k xcit_large_24_p16_384 189.1M 384 85.78% 97.53% 1000 768 149 0
volo_d4_224.sail_in1k volo_d4_224 193.0M 224 85.87% 97.46% 1000 768 187 0
xcit_large_24_p8_224.fb_dist_in1k xcit_large_24_p8_224 189.0M 224 85.40% 97.42% 1000 768 89 0
resnetv2_152x2_bit.goog_in21k_ft_in1k resnetv2_152x2_bit 236.3M 448 84.48% 97.42% 1000 4096 2309 0
mvitv2_large.fb_in1k mvitv2_large 218.0M 224 85.26% 97.19% 1000 1152 225 1
resnext101_32x16d.fb_wsl_ig1b_ft_in1k resnext101_32x16d 194.4M 224 84.16% 97.19% 1000 2048 240 0
ecaresnet269d.ra2_in1k ecaresnet269d 102.3M 320 84.72% 97.18% 1000 2048 299 0
resnetv2_50x3_bit.goog_in21k_ft_in1k resnetv2_50x3_bit 217.3M 448 83.99% 97.13% 1000 6144 1452 1
xcit_large_24_p16_224.fb_dist_in1k xcit_large_24_p16_224 189.1M 224 84.94% 97.13% 1000 768 147 0

8 - huge

Name Architecture Params Input Size Top-1 Top-5 Num Classes Num Features Downloads Likes
eva02_large_patch14_448.mim_m38m_ft_in22k_in1k eva02_large_patch14_448 305.1M 448 90.05% 99.06% 1000 1024 9994 20
eva_large_patch14_336.in22k_ft_in22k_in1k eva_large_patch14_336 304.5M 336 89.25% 98.85% 1000 1024 2067 1
eva_large_patch14_196.in22k_ft_in22k_in1k eva_large_patch14_196 304.1M 196 88.60% 98.66% 1000 1024 23709 2
beit_large_patch16_512.in22k_ft_in22k_in1k beit_large_patch16_512 330.9M 512 88.58% 98.66% 1000 1024 849 0
maxvit_xlarge_tf_512.in21k_ft_in1k maxvit_xlarge_tf_512 476.1M 512 88.54% 98.65% 1000 1536 584 3
beit_large_patch16_384.in22k_ft_in22k_in1k beit_large_patch16_384 313.0M 384 88.38% 98.61% 1000 1024 762 0
beitv2_large_patch16_224.in1k_ft_in22k_in1k beitv2_large_patch16_224 305.4M 224 88.41% 98.60% 1000 1024 1127 2
vit_large_patch14_clip_336.laion2b_ft_in12k_in1k vit_large_patch14_clip_336 304.5M 336 88.19% 98.57% 1000 1024 314 0
convnext_xlarge.fb_in22k_ft_in1k_384 convnext_xlarge 350.2M 384 87.77% 98.55% 1000 2048 4881 0
maxvit_xlarge_tf_384.in21k_ft_in1k maxvit_xlarge_tf_384 475.6M 384 88.30% 98.54% 1000 1536 369 0
vit_large_patch14_clip_224.openai_ft_in12k_in1k vit_large_patch14_clip_224 304.2M 224 88.16% 98.54% 1000 1024 244 38
deit3_large_patch16_384.fb_in22k_ft_in1k deit3_large_patch16_384 304.8M 384 87.73% 98.51% 1000 1024 716 0
beit_large_patch16_224.in22k_ft_in22k_in1k beit_large_patch16_224 305.4M 224 87.49% 98.32% 1000 1024 413 0
vit_large_patch16_384.augreg_in21k_ft_in1k vit_large_patch16_384 304.7M 384 87.09% 98.31% 1000 1024 18224 0
deit3_large_patch16_224.fb_in22k_ft_in1k deit3_large_patch16_224 304.4M 224 86.99% 98.24% 1000 1024 203 1
volo_d5_512.sail_in1k volo_d5_512 296.1M 512 87.07% 97.97% 1000 768 277 0
volo_d5_448.sail_in1k volo_d5_448 295.9M 448 86.98% 97.93% 1000 768 501 0
vit_large_r50_s32_384.augreg_in21k_ft_in1k vit_large_r50_s32_384 329.1M 384 86.18% 97.93% 1000 1024 269 0
vit_large_patch16_224.augreg_in21k_ft_in1k vit_large_patch16_224 304.3M 224 85.85% 97.83% 1000 1024 13120 1
dm_nfnet_f6.dm_in1k dm_nfnet_f6 438.4M 448 86.15% 97.77% 1000 3072 900 0
cait_m48_448.fb_dist_in1k cait_m48_448 356.5M 448 86.48% 97.75% 1000 768 4732 0
cait_m36_384.fb_dist_in1k cait_m36_384 271.2M 384 86.06% 97.73% 1000 768 18886 1
volo_d5_224.sail_in1k volo_d5_224 295.5M 224 86.08% 97.58% 1000 768 450 0
dm_nfnet_f5.dm_in1k dm_nfnet_f5 377.2M 416 85.72% 97.55% 1000 3072 258 0
flexivit_large.1200ep_in1k flexivit_large 304.4M 240 85.64% 97.55% 1000 1024 203 0
dm_nfnet_f4.dm_in1k dm_nfnet_f4 316.1M 384 85.50% 97.49% 1000 3072 409 0
resnext101_32x32d.fb_wsl_ig1b_ft_in1k resnext101_32x32d 469.1M 224 85.10% 97.44% 1000 2048 495 2
dm_nfnet_f3.dm_in1k dm_nfnet_f3 254.9M 320 85.10% 97.39% 1000 3072 10946 0
resnetv2_101x3_bit.goog_in21k_ft_in1k resnetv2_101x3_bit 387.9M 448 84.43% 97.38% 1000 6144 1245 0
vit_large_r50_s32_224.augreg_in21k_ft_in1k vit_large_r50_s32_224 329.0M 224 84.43% 97.15% 1000 1024 210 0

9 - giant

Name Architecture Params Input Size Top-1 Top-5 Num Classes Num Features Downloads Likes
convnextv2_huge.fcmae_ft_in22k_in1k_512 convnextv2_huge 660.3M 512 88.86% 98.74% 1000 2816 2169 2
convnext_xxlarge.clip_laion2b_soup_ft_in1k convnext_xxlarge 846.5M 256 88.62% 98.72% 1000 3072 40384 2
regnety_1280.swag_ft_in1k regnety_1280 645.2M 384 88.22% 98.70% 1000 7392 151 0
vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k vit_huge_patch14_clip_336 632.5M 336 88.63% 98.67% 1000 1280 2225 2
vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k vit_huge_patch14_clip_224 632.0M 224 88.28% 98.55% 1000 1280 1415 2
deit3_huge_patch14_224.fb_in22k_ft_in1k deit3_huge_patch14_224 632.1M 224 87.18% 98.26% 1000 1280 176 0
hiera_huge_224.mae_in1k_ft_in1k hiera_huge_224 672.8M 224 86.83% 98.01% 1000 2048 281 1
resnetv2_152x4_bit.goog_in21k_ft_in1k resnetv2_152x4_bit 936.5M 480 84.92% 97.46% 1000 8192 1261 2

10 - colossal

Name Architecture Params Input Size Top-1 Top-5 Num Classes Num Features Downloads Likes
eva_giant_patch14_560.m30m_ft_in22k_in1k eva_giant_patch14_560 1.0G 560 89.80% 98.99% 1000 1408 7774 3
eva_giant_patch14_336.m30m_ft_in22k_in1k eva_giant_patch14_336 1.0G 336 89.57% 98.95% 1000 1408 49 0
eva_giant_patch14_224.clip_ft_in1k eva_giant_patch14_224 1.0G 224 88.89% 98.68% 1000 1408 399 2
regnety_2560.seer_ft_in1k regnety_2560 1.3G 384 85.15% 97.44% 1000 10444 52 0
Downloads last month
13