Datasets:
metadata
task_categories:
- graph-ml
license: mit
tags:
- multi-agent-systems
- benchmark
- llms
dataset_info:
features:
- name: 'Unnamed: 0'
dtype: int64
- name: graph_generator
dtype: string
- name: num_nodes
dtype: int64
- name: index
dtype: int64
- name: graph
dtype: string
splits:
- name: train
num_bytes: 517975
num_examples: 117
download_size: 127270
dataset_size: 517975
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
AgentsNet
This repository contains the graph instances used in the AgentsNet: Coordination and Collaborative Reasoning in Multi-Agent LLMs paper.
AgentsNet is a new benchmark for multi-agent reasoning, designed to measure the ability of multi-agent systems to collaboratively form strategies for problem-solving, self-organization, and effective communication given a network topology. It draws inspiration from classical problems in distributed systems and graph theory.
- Paper: AgentsNet: Coordination and Collaborative Reasoning in Multi-Agent LLMs
- Project Page: https://agentsnet.graphben.ch
- GitHub Repository: https://github.com/ashleve/lightning-hydra-template
Dataset
The dataset consists of synthetic graphs generated using various random graph models. It serves as the input for all experiments in the benchmark.
Citation
If you use this dataset, please cite the associated paper:
@misc{grötschla2025agentsnetcoordinationcollaborativereasoning,
title={AgentsNet: Coordination and Collaborative Reasoning in Multi-Agent LLMs},
author={Florian Grötschla and Luis Müller and Jan Tönshoff and Mikhail Galkin and Bryan Perozzi},
year={2025},
eprint={2507.08616},
archivePrefix={arXiv},
primaryClass={cs.MA},
url={https://arxiv.org/abs/2507.08616},
}