Dataset Viewer
Auto-converted to Parquet
Search is not available for this dataset
x
float32
y
float32
z
float32
intensity
float32
surf_norm_x
float32
surf_norm_y
float32
surf_norm_z
float32
0.747193
-6.296095
1.117963
0.974529
-0.984502
0.175358
0.002286
0.755331
-6.257037
1.111297
0.974605
-0.826216
0.563349
0.002281
0.793464
-6.255587
1.111883
0.97466
-0.149534
0.988754
0.002296
0.821285
-6.272814
1.115505
0.974625
0.572121
0.820166
0.002286
58.832058
-75.336327
16.854469
0.678301
-0.634382
0.134006
0.761316
56.912025
-72.576347
16.262566
0.687553
-0.139758
0.372052
0.91763
57.124557
-72.546532
16.281588
0.687267
-0.139758
0.372052
0.91763
57.33849
-72.517776
16.300968
0.686978
-0.139758
0.372052
0.91763
57.523705
-72.452057
16.312166
0.686687
-0.139758
0.372052
0.91763
57.872284
-72.292313
16.328468
0.686533
-0.287736
0.334289
0.897474
58.027588
-72.188324
16.331312
0.686561
-0.287736
0.334289
0.897474
58.288338
-71.918457
16.323141
0.686612
-0.287736
0.334289
0.897474
59.43681
-71.846779
16.441662
0.684743
-0.210074
0.387827
0.897474
59.621731
-71.775963
16.452856
0.68458
-0.210074
0.387827
0.897474
59.96162
-71.597412
16.467073
0.684249
-0.210074
0.387827
0.897474
60.156158
-71.537025
16.480967
0.68408
-0.210074
0.387827
0.897474
60.538456
-71.406715
16.506893
0.683757
-0.265862
0.456575
0.849033
59.368958
-69.176918
16.073919
0.690633
-0.416562
0.144972
0.897474
61.780296
-70.5392
16.533957
0.68324
0.050365
0.438183
0.897474
57.604668
-64.713989
15.276661
0.703417
-0.632065
0.003876
0.774906
55.83712
-62.222687
14.741441
0.712099
-0.369878
0.240274
0.897473
56.123035
-61.787262
14.718246
0.712443
-0.278987
0.27662
0.919591
56.355804
-61.544437
14.714272
0.712527
-0.278987
0.27662
0.919591
56.696255
-61.171341
14.706561
0.712639
-0.278987
0.27662
0.919591
56.932831
-60.68811
14.672684
0.713126
-0.253345
0.129827
0.958625
57.318611
-60.609291
14.709195
0.712611
-0.281833
0.339281
0.897473
58.538651
-60.910439
14.896091
0.709521
-0.15212
0.414007
0.897473
58.742714
-60.8773
14.916838
0.709178
-0.197442
0.490062
0.849032
59.143589
-60.801544
14.956429
0.708603
-0.197442
0.490062
0.849032
59.331955
-60.750336
14.973145
0.708313
-0.197442
0.490062
0.849032
59.511948
-60.690014
14.987736
0.70802
-0.197442
0.490062
0.849032
59.720543
-60.65826
15.009522
0.707725
-0.197442
0.490062
0.849032
59.90416
-60.600624
15.025042
0.707429
-0.197442
0.490062
0.849032
60.858387
-61.319016
15.233418
0.704101
-0.447418
0.055975
0.892572
58.425358
-58.395996
14.565528
0.715043
-0.453045
0.112482
0.884363
58.412842
-57.683331
14.475401
0.716456
-0.453045
0.112482
0.884363
58.34235
-57.382507
14.429312
0.717199
-0.598791
0.127169
0.790745
58.388351
-56.738956
14.355784
0.718445
-0.598791
0.127169
0.790745
57.902946
-56.04134
14.208703
0.720797
-0.356925
0.116154
0.926884
55.098408
-51.845119
13.340082
0.735466
-0.684453
0.41978
0.596078
55.390003
-51.909901
13.385378
0.734595
-0.227324
0.727712
0.647116
55.937908
-52.212582
13.492394
0.732786
0.294549
0.746949
0.596078
59.180695
-54.79586
14.221349
0.720694
-0.34408
0.315452
0.884364
59.278149
-54.665077
14.21831
0.720697
-0.34408
0.315452
0.884364
59.366917
-53.869984
14.135237
0.722012
0.022467
0.374676
0.926883
59.950306
-53.961376
14.222363
0.720684
-0.34408
0.315452
0.884364
61.573566
-54.975895
14.554893
0.71525
0.19115
0.621411
0.759809
61.995335
-55.128819
14.628357
0.71389
0.121153
0.682653
0.720629
70.506096
-62.191166
16.577396
0.682566
-0.669243
0.339655
0.660869
70.658119
-61.821819
16.55455
0.682886
-0.669243
0.339655
0.660869
61.839058
-53.450363
14.412514
0.717549
-0.178219
0.304458
0.935705
62.35606
-53.243484
14.45789
0.716766
-0.554612
0.339259
0.759808
61.238201
-52.076519
14.174411
0.721478
-0.562273
-0.177463
0.807686
61.405968
-52.006752
14.189026
0.721188
-0.557931
-0.190673
0.807686
60.547218
-51.070747
13.966835
0.724919
-0.163538
0.268699
0.94924
60.931976
-50.977348
14.008191
0.724196
-0.163538
0.268699
0.94924
61.119808
-50.925957
14.02781
0.723831
-0.163538
0.268699
0.94924
61.342506
-50.902893
14.055403
0.72347
-0.223101
0.341648
0.912964
61.496952
-50.822571
14.067345
0.723211
-0.364338
0.183727
0.912964
61.519817
-50.633678
14.049257
0.723458
-0.285219
0.132645
0.949239
61.569988
-50.467663
14.037518
0.723728
-0.285219
0.132645
0.949239
61.556652
-50.25013
14.011416
0.724151
-0.321795
-0.01697
0.946657
62.661201
-50.942184
14.239483
0.720364
0.034211
0.631149
0.774906
60.13501
-48.288925
13.598963
0.73106
-0.426385
-0.112859
0.897474
59.922138
-47.722988
13.507324
0.732649
-0.437344
0.057198
0.897474
59.841488
-47.266701
13.446181
0.733594
-0.437344
0.057198
0.897474
59.810486
-47.047211
13.417931
0.734061
-0.437344
0.057198
0.897474
59.70797
-46.772606
13.373806
0.734863
-0.387743
-0.087241
0.91763
61.067402
-47.442478
13.635471
0.730497
-0.697689
0.276555
0.660869
59.944725
-45.993179
13.322593
0.735878
0.002122
0.397431
0.91763
60.412697
-46.159538
13.405945
0.73424
-0.149591
0.414926
0.897474
60.6535
-46.150719
13.438776
0.733725
-0.149591
0.414926
0.897474
61.114361
-46.114494
13.499679
0.732686
-0.149591
0.414926
0.897474
61.384102
-46.124645
13.538754
0.732161
-0.149591
0.414926
0.897474
62.230099
-46.56485
13.704664
0.729266
-0.198213
0.571722
0.796144
62.672802
-46.504196
13.760871
0.728391
-0.198213
0.571722
0.796144
80.877609
-54.638149
17.210184
0.672731
-0.38593
0.094939
0.91763
80.861923
-54.155266
17.160366
0.673459
-0.438395
-0.048486
0.897474
80.743393
-53.841042
17.112209
0.674305
-0.438395
-0.048486
0.897474
80.563202
-53.487217
17.051197
0.675146
-0.438395
-0.048486
0.897474
80.434128
-53.168827
17.001217
0.67598
-0.438395
-0.048486
0.897474
80.224007
-51.422298
16.802153
0.67903
-0.433016
0.0839
0.897473
80.254776
-51.214695
16.787006
0.679371
-0.433016
0.0839
0.897473
82.769951
-51.656208
17.203604
0.672818
-0.322896
0.677489
0.660869
83.093399
-50.93412
17.185131
0.67311
-0.704624
0.258375
0.660868
83.173119
-50.753185
17.180475
0.673238
-0.704624
0.258375
0.660868
82.026329
-49.15247
16.861391
0.678078
-0.123876
0.423316
0.897473
85.578468
-48.514221
17.345852
0.670565
-0.011176
0.521817
0.852984
18.4307
2.479087
3.279094
0.927273
-0.823906
-0.566722
0.002283
18.426411
2.516245
3.279226
0.927299
-0.983231
0.182351
0.002283
22.762329
3.763718
4.068109
0.910494
0
-1
0
22.512348
3.768903
4.024779
0.91152
0
-1
0
22.481352
3.903259
4.023371
0.911444
-1
0
0
22.479752
3.949556
4.024498
0.911414
-1
0
0
22.504511
4.000572
4.030365
0.911384
-1
0
0
22.531944
4.098971
4.038194
0.911323
-1
0
0
22.503542
4.140584
4.034588
0.911292
-1
0
0
58.474503
11.856823
10.520459
0.784785
-0.404722
-0.508811
0.75981
58.319752
11.947568
10.496917
0.785223
-0.404722
-0.508811
0.75981
57.865231
12.097097
10.423766
0.786451
-0.427854
-0.48952
0.75981
End of preview. Expand in Data Studio

LiSu: A Dataset for LiDAR Surface Normal Estimation

LiSu provides synthetic LiDAR point clouds, each annotated with surface normal vectors. This dataset is generated using CARLA simulator, ensuring diverse environmental conditions for robust training and evaluation. Below is an example from LiSu, where surface normals are linearly mapped to the RGB color space for intuitive visualization:

Dataset Details

Dataset Description

We generate our dataset using CARLA, a simulation framework based on the Unreal Engine. Specifically, we leverage nine of CARLA's twelve pre-built maps, excluding two reserved for the CARLA Autonomous Driving Challenges and one undecorated map with low geometric detail (i.e. without buildings, sidewalks, etc.). These selected maps represent diverse urban and rural environments, including downtown areas, small towns, and multi-lane highways. For each simulation, we populated the scenes with a large number of dynamic actors, such as vehicles (cars, trucks, buses, vans, motorcycles, bicycles) and pedestrians (adults, children, police) as well as static props (barrels, garbage cans, road barriers, etc.). The dynamic actors exhibited realistic movement patterns, governed by the underlying physics engine and adhered to real-world traffic rules, such as driving on designated roads and obeying traffic signals.

To capture realistic driving scenarios, we employ a virtual LiDAR sensor mounted atop a car operating in autopilot mode. The LiDAR sensor is configured to emit 64 laser beams, a 10° upper and a -30° lower field of view. Such a common sensor configuration strikes a balance between sparsity and density, providing a challenging yet fair evaluation environment. To further mimic real-world conditions, we set the maximum range to 100 meters and introduce Gaussian noise with a standard deviation of 0.02 meters to the LiDAR point cloud. The sensor captures data at a rate of 10Hz.

CARLA's default LiDAR sensor implementation is limited to position and intensity channels. To enable surface normal collection, we extend CARLA's ray tracer to query surface normals at each intersection point between a ray and a mesh object. These surface normals are then transformed into the sensor's coordinate frame and appended to the LiDAR data. This requires modifications to both CARLA's C++ backend and Python frontend, adding three extra channels to store the x, y, and z components of the normal vector for each LiDAR point.

For each map, we conduct eleven randomly initialized and independent simulation runs. A simulation is terminated early if prolonged traffic halts, such as red lights, occur. On average, each simulation lasts approximately 50 seconds, resulting in total of 50045 labeled frames. To ensure rigorous evaluation, we partition our dataset into training, validation, and testing sets. We assign each map to exactly one split, preventing data leakage (i.e. using the same "city" in multiple splits). One map is designated for validation, while the remaining eight maps are divided equally between the training and testing sets. This results in 25053 training, 22167 testing, and 2825 validation frames.

CARLA Pull Request

Citation

@inproceedings{cvpr2025lisu,
  title={{LiSu: A Dataset and Method for LiDAR Surface Normal Estimation}},
  author={Du\v{s}an Mali\'c and Christian Fruhwirth-Reisinger and Samuel Schulter and Horst Possegger},
  booktitle={IEEE/CVF Computer Vision and Pattern Recognition Conference (CVPR)},
  year={2025}
} 
Downloads last month
237