Kossisoroyce's picture
Update README.md
1c626a8 verified
metadata
license: gpl
tags:
  - finance
  - credit
  - banks
size_categories:
  - 1K<n<10K

Africa Domestic Credit to Private Sector by Banks (% of GDP) Dataset

Overview

This dataset contains domestic credit to private sector by banks (% of gdp) data for African countries from the World Bank.

Data Details

  • Indicator Code: FS.AST.DOMS.GD.ZS
  • Description: Domestic Credit to Private Sector by Banks (% of GDP)
  • Geographic Coverage: 14 African countries
  • Time Period: 1965-2024
  • Data Points: 284 observations
  • Coverage: 8.09% of possible country-year combinations

File Formats

Main Dataset (fs_ast_doms_gd_zs_africa.csv)

  • Rows: 54 countries
  • Columns: 65 years (1960-2024)
  • Structure: Countries as rows, years as columns
  • Missing Value Treatment: Interpolation → Forward Fill → Backward Fill
  • Use Case: Cross-sectional analysis, heatmaps, correlation analysis

Data Quality

Coverage Statistics

  • Total Observations: 284
  • Coverage Rate: 8.09%
  • Earliest Data: 1965
  • Latest Data: 2024

Countries with No Data

40 countries have no observations: Burundi, Benin, Burkina Faso, Central African Republic, Cote d'Ivoire, Cameroon, Congo, Dem. Rep., Congo, Rep., Cabo Verde, Djibouti, Algeria, Egypt, Arab Rep., Eritrea, Gabon, Ghana, Guinea, Gambia, The, Guinea-Bissau, Equatorial Guinea, Kenya, Liberia, Libya, Lesotho, Madagascar, Mali, Mozambique, Mauritania, Niger, Nigeria, Sudan, Senegal, Sierra Leone, Somalia, South Sudan, Sao Tome and Principe, Eswatini, Seychelles, Chad, Togo, Tanzania

Usage Examples

Python

import pandas as pd

# Load main dataset
df = pd.read_csv('fs_ast_doms_gd_zs_africa.csv', index_col=[0, 1])

R

# Load main dataset
df <- read.csv('fs_ast_doms_gd_zs_africa.csv', row.names=c(1,2))

Source

World Bank Open Data - Domestic Credit to Private Sector by Banks (% of GDP)

  • Original File: API_FS.AST.DOMS.GD.ZS_DS2_en_excel_v2_21249.xls
  • Processed: 2025-08-18

License

This dataset is derived from World Bank Open Data and is available under the Creative Commons Attribution 4.0 International License.