Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code: DatasetGenerationCastError Exception: DatasetGenerationCastError Message: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 13 new columns ({'2009', 'STATE', '2007', 'ANNUAL % GR', '2013', '2015', '2010', '2012', 'ANNUAL G.R', '2014', '2016', '2008', '2011'}) and 12 missing columns ({'POPULATION (2015)', 'POPULATION (2009)', 'AGE GROUP', 'POPULATION (2008)', 'proportion', 'POPULATION (2014)', 'POPULATION (2011)', 'POPULATION (2010)', 'POPULATION (2016)', 'POPULATION (2012)', 'POPULATION (2013)', 'POPULATION (2007)'}). This happened while the csv dataset builder was generating data using hf://datasets/electricsheepafrica/Nigeria-Population-and-Projections-by-state-2006-2016/population_projection.csv (at revision 8ad9577bfd100acb8dc00b92e3a05d65bcdd388b) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations) Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1831, in _prepare_split_single writer.write_table(table) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 644, in write_table pa_table = table_cast(pa_table, self._schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2272, in table_cast return cast_table_to_schema(table, schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2218, in cast_table_to_schema raise CastError( datasets.table.CastError: Couldn't cast STATE: string POPULATION (2006): int64 ANNUAL % GR: double ANNUAL G.R: double 2007: int64 2008: int64 2009: int64 2010: int64 2011: int64 2012: int64 2013: int64 2014: int64 2015: int64 2016: int64 -- schema metadata -- pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 1795 to {'AGE GROUP': Value('string'), 'POPULATION (2006)': Value('int64'), 'proportion': Value('float64'), 'POPULATION (2007)': Value('int64'), 'POPULATION (2008)': Value('int64'), 'POPULATION (2009)': Value('int64'), 'POPULATION (2010)': Value('int64'), 'POPULATION (2011)': Value('int64'), 'POPULATION (2012)': Value('int64'), 'POPULATION (2013)': Value('int64'), 'POPULATION (2014)': Value('int64'), 'POPULATION (2015)': Value('int64'), 'POPULATION (2016)': Value('int64')} because column names don't match During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1456, in compute_config_parquet_and_info_response parquet_operations = convert_to_parquet(builder) File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1055, in convert_to_parquet builder.download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 894, in download_and_prepare self._download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 970, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1702, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1833, in _prepare_split_single raise DatasetGenerationCastError.from_cast_error( datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 13 new columns ({'2009', 'STATE', '2007', 'ANNUAL % GR', '2013', '2015', '2010', '2012', 'ANNUAL G.R', '2014', '2016', '2008', '2011'}) and 12 missing columns ({'POPULATION (2015)', 'POPULATION (2009)', 'AGE GROUP', 'POPULATION (2008)', 'proportion', 'POPULATION (2014)', 'POPULATION (2011)', 'POPULATION (2010)', 'POPULATION (2016)', 'POPULATION (2012)', 'POPULATION (2013)', 'POPULATION (2007)'}). This happened while the csv dataset builder was generating data using hf://datasets/electricsheepafrica/Nigeria-Population-and-Projections-by-state-2006-2016/population_projection.csv (at revision 8ad9577bfd100acb8dc00b92e3a05d65bcdd388b) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
AGE GROUP
string | POPULATION (2006)
int64 | proportion
float64 | POPULATION (2007)
int64 | POPULATION (2008)
int64 | POPULATION (2009)
int64 | POPULATION (2010)
int64 | POPULATION (2011)
int64 | POPULATION (2012)
int64 | POPULATION (2013)
int64 | POPULATION (2014)
int64 | POPULATION (2015)
int64 | POPULATION (2016)
int64 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0-4 | 22,594,967 | 0 | 23,329,699 | 24,088,323 | 24,871,615 | 25,680,378 | 26,515,439 | 27,377,655 | 28,267,908 | 29,187,110 | 30,136,202 | 31,116,156 |
5-9 | 20,005,380 | 0 | 20,655,905 | 21,327,584 | 22,021,103 | 22,737,175 | 23,476,531 | 24,239,929 | 25,028,151 | 25,842,004 | 26,682,322 | 27,549,964 |
10-14 | 16,135,950 | 0 | 16,660,651 | 17,202,414 | 17,761,793 | 18,339,362 | 18,935,713 | 19,551,455 | 20,187,219 | 20,843,657 | 21,521,441 | 22,221,265 |
15-19 | 14,899,419 | 0 | 15,383,911 | 15,884,157 | 16,400,671 | 16,933,979 | 17,484,630 | 18,053,187 | 18,640,231 | 19,246,365 | 19,872,209 | 20,518,404 |
20-24 | 13,435,079 | 0 | 13,871,954 | 14,323,036 | 14,788,785 | 15,269,679 | 15,766,211 | 16,278,889 | 16,808,238 | 17,354,800 | 17,919,135 | 18,501,820 |
25-29 | 12,211,426 | 0 | 12,608,511 | 13,018,508 | 13,441,838 | 13,878,933 | 14,330,241 | 14,796,225 | 15,277,361 | 15,774,143 | 16,287,079 | 16,816,694 |
30-34 | 9,467,538 | 0 | 9,775,399 | 10,093,270 | 10,421,478 | 10,760,359 | 11,110,259 | 11,471,537 | 11,844,562 | 12,229,718 | 12,627,398 | 13,038,009 |
35-39 | 7,331,755 | 0 | 7,570,165 | 7,816,328 | 8,070,496 | 8,332,928 | 8,603,894 | 8,883,671 | 9,172,546 | 9,470,815 | 9,778,782 | 10,096,763 |
40-44 | 6,456,470 | 0 | 6,666,418 | 6,883,194 | 7,107,018 | 7,338,120 | 7,576,738 | 7,823,114 | 8,077,503 | 8,340,163 | 8,611,364 | 8,891,384 |
45-49 | 4,591,293 | 0 | 4,740,590 | 4,894,743 | 5,053,907 | 5,218,248 | 5,387,932 | 5,563,134 | 5,744,034 | 5,930,815 | 6,123,671 | 6,322,797 |
50-54 | 4,249,219 | 0 | 4,387,393 | 4,530,060 | 4,677,366 | 4,829,463 | 4,986,505 | 5,148,653 | 5,316,075 | 5,488,940 | 5,667,427 | 5,851,717 |
55-59 | 2,066,247 | 0 | 2,133,436 | 2,202,810 | 2,274,440 | 2,348,399 | 2,424,763 | 2,503,611 | 2,585,022 | 2,669,080 | 2,755,872 | 2,845,486 |
60-64 | 2,450,286 | 0 | 2,529,963 | 2,612,231 | 2,697,175 | 2,784,880 | 2,875,437 | 2,968,939 | 3,065,482 | 3,165,164 | 3,268,087 | 3,374,357 |
65-69 | 1,151,048 | 0 | 1,188,477 | 1,227,124 | 1,267,027 | 1,308,227 | 1,350,767 | 1,394,691 | 1,440,043 | 1,486,869 | 1,535,219 | 1,585,140 |
70-74 | 1,330,597 | 0 | 1,373,865 | 1,418,539 | 1,464,667 | 1,512,294 | 1,561,470 | 1,612,245 | 1,664,671 | 1,718,802 | 1,774,693 | 1,832,402 |
75-79 | 579,838 | 0 | 598,693 | 618,161 | 638,262 | 659,017 | 680,446 | 702,573 | 725,419 | 749,007 | 773,363 | 798,511 |
80-84 | 760,053 | 0 | 784,768 | 810,287 | 836,635 | 863,841 | 891,930 | 920,934 | 950,880 | 981,801 | 1,013,726 | 1,046,690 |
85+ | 715,225 | 0 | 738,482 | 762,496 | 787,290 | 812,891 | 839,324 | 866,617 | 894,797 | 923,894 | 953,937 | 984,956 |
TOTAL | 140,431,790 | null | 144,998,281 | 149,713,264 | 154,581,566 | 159,608,173 | 164,798,232 | 170,157,060 | 175,690,143 | 181,403,148 | 187,301,926 | 193,392,517 |
null | 2,845,380 | null | null | null | null | null | null | null | null | null | null | null |
null | 3,178,950 | null | null | null | null | null | null | null | null | null | null | null |
null | 3,902,051 | null | null | null | null | null | null | null | null | null | null | null |
null | 4,177,828 | null | null | null | null | null | null | null | null | null | null | null |
null | 4,653,066 | null | null | null | null | null | null | null | null | null | null | null |
null | 1,704,515 | null | null | null | null | null | null | null | null | null | null | null |
null | 4,253,641 | null | null | null | null | null | null | null | null | null | null | null |
null | 4,171,104 | null | null | null | null | null | null | null | null | null | null | null |
null | 2,892,988 | null | null | null | null | null | null | null | null | null | null | null |
null | 4,112,445 | null | null | null | null | null | null | null | null | null | null | null |
null | 2,176,947 | null | null | null | null | null | null | null | null | null | null | null |
null | 3,233,366 | null | null | null | null | null | null | null | null | null | null | null |
null | 2,398,957 | null | null | null | null | null | null | null | null | null | null | null |
null | 3,267,837 | null | null | null | null | null | null | null | null | null | null | null |
null | 2,365,040 | null | null | null | null | null | null | null | null | null | null | null |
null | 3,927,563 | null | null | null | null | null | null | null | null | null | null | null |
null | 4,361,002 | null | null | null | null | null | null | null | null | null | null | null |
null | 6,113,503 | null | null | null | null | null | null | null | null | null | null | null |
null | 9,401,288 | null | null | null | null | null | null | null | null | null | null | null |
null | 5,801,584 | null | null | null | null | null | null | null | null | null | null | null |
null | 3,256,541 | null | null | null | null | null | null | null | null | null | null | null |
null | 3,314,043 | null | null | null | null | null | null | null | null | null | null | null |
null | 2,365,353 | null | null | null | null | null | null | null | null | null | null | null |
null | 9,113,605 | null | null | null | null | null | null | null | null | null | null | null |
null | 1,869,377 | null | null | null | null | null | null | null | null | null | null | null |
null | 3,954,772 | null | null | null | null | null | null | null | null | null | null | null |
null | 3,751,140 | null | null | null | null | null | null | null | null | null | null | null |
null | 3,460,877 | null | null | null | null | null | null | null | null | null | null | null |
null | 3,416,959 | null | null | null | null | null | null | null | null | null | null | null |
null | 5,580,894 | null | null | null | null | null | null | null | null | null | null | null |
null | 3,206,531 | null | null | null | null | null | null | null | null | null | null | null |
null | 5,198,716 | null | null | null | null | null | null | null | null | null | null | null |
null | 3,702,676 | null | null | null | null | null | null | null | null | null | null | null |
null | 2,294,800 | null | null | null | null | null | null | null | null | null | null | null |
null | 2,321,339 | null | null | null | null | null | null | null | null | null | null | null |
null | 3,278,873 | null | null | null | null | null | null | null | null | null | null | null |
null | 1,406,239 | null | null | null | null | null | null | null | null | null | null | null |
null | 140,431,790 | null | null | null | null | null | null | null | null | null | null | null |
null | null | null | null | null | null | null | null | null | null | null | null | null |
null | null | null | null | null | null | null | null | null | null | null | null | null |
null | null | null | null | null | null | null | null | null | null | null | null | null |
null | null | null | null | null | null | null | null | null | null | null | null | null |
null | null | null | null | null | null | null | null | null | null | null | null | null |
null | null | null | null | null | null | null | null | null | null | null | null | null |
null | null | null | null | null | null | null | null | null | null | null | null | null |
null | null | null | null | null | null | null | null | null | null | null | null | null |
null | null | null | null | null | null | null | null | null | null | null | null | null |
null | null | null | null | null | null | null | null | null | null | null | null | null |
null | null | null | null | null | null | null | null | null | null | null | null | null |
null | null | null | null | null | null | null | null | null | null | null | null | null |
null | null | null | null | null | null | null | null | null | null | null | null | null |
null | null | null | null | null | null | null | null | null | null | null | null | null |
null | null | null | null | null | null | null | null | null | null | null | null | null |
null | null | null | null | null | null | null | null | null | null | null | null | null |
null | null | null | null | null | null | null | null | null | null | null | null | null |
null | null | null | null | null | null | null | null | null | null | null | null | null |
null | null | null | null | null | null | null | null | null | null | null | null | null |
null | null | null | null | null | null | null | null | null | null | null | null | null |
null | null | null | null | null | null | null | null | null | null | null | null | null |
null | null | null | null | null | null | null | null | null | null | null | null | null |
null | null | null | null | null | null | null | null | null | null | null | null | null |
null | null | null | null | null | null | null | null | null | null | null | null | null |
null | null | null | null | null | null | null | null | null | null | null | null | null |
null | null | null | null | null | null | null | null | null | null | null | null | null |
null | null | null | null | null | null | null | null | null | null | null | null | null |
null | null | null | null | null | null | null | null | null | null | null | null | null |
null | null | null | null | null | null | null | null | null | null | null | null | null |
null | null | null | null | null | null | null | null | null | null | null | null | null |
null | null | null | null | null | null | null | null | null | null | null | null | null |
null | null | null | null | null | null | null | null | null | null | null | null | null |
null | null | null | null | null | null | null | null | null | null | null | null | null |
null | null | null | null | null | null | null | null | null | null | null | null | null |
null | null | null | null | null | null | null | null | null | null | null | null | null |
null | null | null | null | null | null | null | null | null | null | null | null | null |
null | null | null | null | null | null | null | null | null | null | null | null | null |
null | null | null | null | null | null | null | null | null | null | null | null | null |
Datacard: Nigeria Population and Projections (2006-2016)
Dataset Description
This collection consists of three cleaned datasets detailing Nigeria's population statistics from 2006 to 2016. The data is broken down by state and includes population projections, age group distributions, and sex ratios.
Source
Nigerian Bureau of Statistics (NBS)
Cleaned Datasets
1. population_projection.csv
- Description: Contains the base population in 2006 and annual projections for each state up to 2016.
- Columns:
STATE
,POPULATION (2006)
,ANNUAL % GR
,ANNUAL G.R
,2007
,2008
, ...,2016
2. age_group.csv
- Description: Provides population counts broken down by age group for each state.
- Columns:
AGE GROUP
,TOTAL
,MALE
,FEMALE
,RURAL
,URBAN
3. sex_ratio.csv
- Description: Details the male, female, and total population counts for each state from 2007 to 2016.
- Columns:
STATE
,2007_MALE
,2007_FEMALE
,2007_TOTAL
, ...,2016_MALE
,2016_FEMALE
,2016_TOTAL
Intended Use
These datasets are cleaned and structured for use in data analysis, visualization, and machine learning tasks. The clear formatting and consistent data types make them easy to load and work with in standard data science libraries like Pandas, Scikit-learn, and TensorFlow.
- Downloads last month
- 8