Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 13 new columns ({'2009', 'STATE', '2007', 'ANNUAL % GR', '2013', '2015', '2010', '2012', 'ANNUAL G.R', '2014', '2016', '2008', '2011'}) and 12 missing columns ({'POPULATION (2015)', 'POPULATION (2009)', 'AGE GROUP', 'POPULATION (2008)', 'proportion', 'POPULATION (2014)', 'POPULATION (2011)', 'POPULATION (2010)', 'POPULATION (2016)', 'POPULATION (2012)', 'POPULATION (2013)', 'POPULATION (2007)'}).

This happened while the csv dataset builder was generating data using

hf://datasets/electricsheepafrica/Nigeria-Population-and-Projections-by-state-2006-2016/population_projection.csv (at revision 8ad9577bfd100acb8dc00b92e3a05d65bcdd388b)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1831, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 644, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2272, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2218, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              STATE: string
              POPULATION (2006): int64
              ANNUAL % GR: double
              ANNUAL G.R: double
              2007: int64
              2008: int64
              2009: int64
              2010: int64
              2011: int64
              2012: int64
              2013: int64
              2014: int64
              2015: int64
              2016: int64
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 1795
              to
              {'AGE GROUP': Value('string'), 'POPULATION (2006)': Value('int64'), 'proportion': Value('float64'), 'POPULATION (2007)': Value('int64'), 'POPULATION (2008)': Value('int64'), 'POPULATION (2009)': Value('int64'), 'POPULATION (2010)': Value('int64'), 'POPULATION (2011)': Value('int64'), 'POPULATION (2012)': Value('int64'), 'POPULATION (2013)': Value('int64'), 'POPULATION (2014)': Value('int64'), 'POPULATION (2015)': Value('int64'), 'POPULATION (2016)': Value('int64')}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1456, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1055, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 894, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 970, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1702, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1833, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 13 new columns ({'2009', 'STATE', '2007', 'ANNUAL % GR', '2013', '2015', '2010', '2012', 'ANNUAL G.R', '2014', '2016', '2008', '2011'}) and 12 missing columns ({'POPULATION (2015)', 'POPULATION (2009)', 'AGE GROUP', 'POPULATION (2008)', 'proportion', 'POPULATION (2014)', 'POPULATION (2011)', 'POPULATION (2010)', 'POPULATION (2016)', 'POPULATION (2012)', 'POPULATION (2013)', 'POPULATION (2007)'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/electricsheepafrica/Nigeria-Population-and-Projections-by-state-2006-2016/population_projection.csv (at revision 8ad9577bfd100acb8dc00b92e3a05d65bcdd388b)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

AGE GROUP
string
POPULATION (2006)
int64
proportion
float64
POPULATION (2007)
int64
POPULATION (2008)
int64
POPULATION (2009)
int64
POPULATION (2010)
int64
POPULATION (2011)
int64
POPULATION (2012)
int64
POPULATION (2013)
int64
POPULATION (2014)
int64
POPULATION (2015)
int64
POPULATION (2016)
int64
0-4
22,594,967
0
23,329,699
24,088,323
24,871,615
25,680,378
26,515,439
27,377,655
28,267,908
29,187,110
30,136,202
31,116,156
5-9
20,005,380
0
20,655,905
21,327,584
22,021,103
22,737,175
23,476,531
24,239,929
25,028,151
25,842,004
26,682,322
27,549,964
10-14
16,135,950
0
16,660,651
17,202,414
17,761,793
18,339,362
18,935,713
19,551,455
20,187,219
20,843,657
21,521,441
22,221,265
15-19
14,899,419
0
15,383,911
15,884,157
16,400,671
16,933,979
17,484,630
18,053,187
18,640,231
19,246,365
19,872,209
20,518,404
20-24
13,435,079
0
13,871,954
14,323,036
14,788,785
15,269,679
15,766,211
16,278,889
16,808,238
17,354,800
17,919,135
18,501,820
25-29
12,211,426
0
12,608,511
13,018,508
13,441,838
13,878,933
14,330,241
14,796,225
15,277,361
15,774,143
16,287,079
16,816,694
30-34
9,467,538
0
9,775,399
10,093,270
10,421,478
10,760,359
11,110,259
11,471,537
11,844,562
12,229,718
12,627,398
13,038,009
35-39
7,331,755
0
7,570,165
7,816,328
8,070,496
8,332,928
8,603,894
8,883,671
9,172,546
9,470,815
9,778,782
10,096,763
40-44
6,456,470
0
6,666,418
6,883,194
7,107,018
7,338,120
7,576,738
7,823,114
8,077,503
8,340,163
8,611,364
8,891,384
45-49
4,591,293
0
4,740,590
4,894,743
5,053,907
5,218,248
5,387,932
5,563,134
5,744,034
5,930,815
6,123,671
6,322,797
50-54
4,249,219
0
4,387,393
4,530,060
4,677,366
4,829,463
4,986,505
5,148,653
5,316,075
5,488,940
5,667,427
5,851,717
55-59
2,066,247
0
2,133,436
2,202,810
2,274,440
2,348,399
2,424,763
2,503,611
2,585,022
2,669,080
2,755,872
2,845,486
60-64
2,450,286
0
2,529,963
2,612,231
2,697,175
2,784,880
2,875,437
2,968,939
3,065,482
3,165,164
3,268,087
3,374,357
65-69
1,151,048
0
1,188,477
1,227,124
1,267,027
1,308,227
1,350,767
1,394,691
1,440,043
1,486,869
1,535,219
1,585,140
70-74
1,330,597
0
1,373,865
1,418,539
1,464,667
1,512,294
1,561,470
1,612,245
1,664,671
1,718,802
1,774,693
1,832,402
75-79
579,838
0
598,693
618,161
638,262
659,017
680,446
702,573
725,419
749,007
773,363
798,511
80-84
760,053
0
784,768
810,287
836,635
863,841
891,930
920,934
950,880
981,801
1,013,726
1,046,690
85+
715,225
0
738,482
762,496
787,290
812,891
839,324
866,617
894,797
923,894
953,937
984,956
TOTAL
140,431,790
null
144,998,281
149,713,264
154,581,566
159,608,173
164,798,232
170,157,060
175,690,143
181,403,148
187,301,926
193,392,517
null
2,845,380
null
null
null
null
null
null
null
null
null
null
null
null
3,178,950
null
null
null
null
null
null
null
null
null
null
null
null
3,902,051
null
null
null
null
null
null
null
null
null
null
null
null
4,177,828
null
null
null
null
null
null
null
null
null
null
null
null
4,653,066
null
null
null
null
null
null
null
null
null
null
null
null
1,704,515
null
null
null
null
null
null
null
null
null
null
null
null
4,253,641
null
null
null
null
null
null
null
null
null
null
null
null
4,171,104
null
null
null
null
null
null
null
null
null
null
null
null
2,892,988
null
null
null
null
null
null
null
null
null
null
null
null
4,112,445
null
null
null
null
null
null
null
null
null
null
null
null
2,176,947
null
null
null
null
null
null
null
null
null
null
null
null
3,233,366
null
null
null
null
null
null
null
null
null
null
null
null
2,398,957
null
null
null
null
null
null
null
null
null
null
null
null
3,267,837
null
null
null
null
null
null
null
null
null
null
null
null
2,365,040
null
null
null
null
null
null
null
null
null
null
null
null
3,927,563
null
null
null
null
null
null
null
null
null
null
null
null
4,361,002
null
null
null
null
null
null
null
null
null
null
null
null
6,113,503
null
null
null
null
null
null
null
null
null
null
null
null
9,401,288
null
null
null
null
null
null
null
null
null
null
null
null
5,801,584
null
null
null
null
null
null
null
null
null
null
null
null
3,256,541
null
null
null
null
null
null
null
null
null
null
null
null
3,314,043
null
null
null
null
null
null
null
null
null
null
null
null
2,365,353
null
null
null
null
null
null
null
null
null
null
null
null
9,113,605
null
null
null
null
null
null
null
null
null
null
null
null
1,869,377
null
null
null
null
null
null
null
null
null
null
null
null
3,954,772
null
null
null
null
null
null
null
null
null
null
null
null
3,751,140
null
null
null
null
null
null
null
null
null
null
null
null
3,460,877
null
null
null
null
null
null
null
null
null
null
null
null
3,416,959
null
null
null
null
null
null
null
null
null
null
null
null
5,580,894
null
null
null
null
null
null
null
null
null
null
null
null
3,206,531
null
null
null
null
null
null
null
null
null
null
null
null
5,198,716
null
null
null
null
null
null
null
null
null
null
null
null
3,702,676
null
null
null
null
null
null
null
null
null
null
null
null
2,294,800
null
null
null
null
null
null
null
null
null
null
null
null
2,321,339
null
null
null
null
null
null
null
null
null
null
null
null
3,278,873
null
null
null
null
null
null
null
null
null
null
null
null
1,406,239
null
null
null
null
null
null
null
null
null
null
null
null
140,431,790
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null

Datacard: Nigeria Population and Projections (2006-2016)

Dataset Description

This collection consists of three cleaned datasets detailing Nigeria's population statistics from 2006 to 2016. The data is broken down by state and includes population projections, age group distributions, and sex ratios.

Source

Nigerian Bureau of Statistics (NBS)

Cleaned Datasets

1. population_projection.csv

  • Description: Contains the base population in 2006 and annual projections for each state up to 2016.
  • Columns: STATE, POPULATION (2006), ANNUAL % GR, ANNUAL G.R, 2007, 2008, ..., 2016

2. age_group.csv

  • Description: Provides population counts broken down by age group for each state.
  • Columns: AGE GROUP, TOTAL, MALE, FEMALE, RURAL, URBAN

3. sex_ratio.csv

  • Description: Details the male, female, and total population counts for each state from 2007 to 2016.
  • Columns: STATE, 2007_MALE, 2007_FEMALE, 2007_TOTAL, ..., 2016_MALE, 2016_FEMALE, 2016_TOTAL

Intended Use

These datasets are cleaned and structured for use in data analysis, visualization, and machine learning tasks. The clear formatting and consistent data types make them easy to load and work with in standard data science libraries like Pandas, Scikit-learn, and TensorFlow.

Downloads last month
8