Dataset Viewer
Auto-converted to Parquet
patch_name
stringlengths
18
18
class_percentage
float64
0
91.9
bin
stringclasses
10 values
split
stringclasses
2 values
MASK_1125_2016.tif
0
0-10%
train
MASK_0990_2016.tif
0
0-10%
train
MASK_0617_2016.tif
0
0-10%
train
MASK_1943_2016.tif
0
0-10%
train
MASK_0172_2016.tif
0.38
0-10%
train
MASK_1923_2016.tif
1.03
0-10%
train
MASK_0005_2016.tif
0.52
0-10%
train
MASK_0988_2016.tif
0
0-10%
train
MASK_0545_2016.tif
0.42
0-10%
train
MASK_0243_2016.tif
0
0-10%
train
MASK_0568_2016.tif
3.94
0-10%
train
MASK_1175_2016.tif
1.82
0-10%
train
MASK_1751_2016.tif
0.26
0-10%
train
MASK_0217_2016.tif
0.12
0-10%
train
MASK_2057_2016.tif
8.12
0-10%
train
MASK_0868_2016.tif
0
0-10%
train
MASK_1318_2016.tif
0
0-10%
train
MASK_1865_2016.tif
6.17
0-10%
train
MASK_1046_2016.tif
0
0-10%
train
MASK_0233_2016.tif
0
0-10%
train
MASK_0992_2016.tif
0
0-10%
train
MASK_1395_2016.tif
0
0-10%
train
MASK_0805_2016.tif
0
0-10%
train
MASK_1392_2016.tif
2.89
0-10%
train
MASK_0536_2016.tif
0
0-10%
train
MASK_2135_2016.tif
0
0-10%
train
MASK_0357_2016.tif
5.74
0-10%
train
MASK_1076_2016.tif
0
0-10%
train
MASK_0413_2016.tif
4.44
0-10%
train
MASK_0750_2016.tif
0
0-10%
train
MASK_1044_2016.tif
0
0-10%
train
MASK_1520_2016.tif
0
0-10%
train
MASK_2127_2016.tif
0
0-10%
train
MASK_0367_2016.tif
3.02
0-10%
train
MASK_0206_2016.tif
0.52
0-10%
train
MASK_0264_2016.tif
0
0-10%
train
MASK_1598_2016.tif
1.67
0-10%
train
MASK_0283_2016.tif
0
0-10%
train
MASK_1293_2016.tif
0.28
0-10%
train
MASK_0097_2016.tif
7.21
0-10%
train
MASK_0154_2016.tif
4.69
0-10%
train
MASK_1638_2016.tif
0
0-10%
train
MASK_0600_2016.tif
0.1
0-10%
train
MASK_1838_2016.tif
0
0-10%
train
MASK_1522_2016.tif
1.2
0-10%
train
MASK_1711_2016.tif
3.94
0-10%
train
MASK_0608_2016.tif
0
0-10%
train
MASK_0735_2016.tif
0
0-10%
train
MASK_0166_2016.tif
0
0-10%
train
MASK_1533_2016.tif
1.37
0-10%
train
MASK_0009_2016.tif
0
0-10%
train
MASK_0182_2016.tif
3.3
0-10%
train
MASK_2114_2016.tif
0
0-10%
train
MASK_0717_2016.tif
0
0-10%
train
MASK_1817_2016.tif
2.15
0-10%
train
MASK_1384_2016.tif
0
0-10%
train
MASK_1033_2016.tif
0
0-10%
train
MASK_0028_2016.tif
0.51
0-10%
train
MASK_1223_2016.tif
0
0-10%
train
MASK_0523_2016.tif
0.12
0-10%
train
MASK_1793_2016.tif
0
0-10%
train
MASK_1098_2016.tif
0
0-10%
train
MASK_0846_2016.tif
9.94
0-10%
train
MASK_1846_2016.tif
0
0-10%
train
MASK_0765_2016.tif
0
0-10%
train
MASK_1103_2016.tif
0
0-10%
train
MASK_0297_2016.tif
0
0-10%
train
MASK_1503_2016.tif
0
0-10%
train
MASK_0560_2016.tif
0.95
0-10%
train
MASK_0766_2016.tif
0
0-10%
train
MASK_1123_2016.tif
0
0-10%
train
MASK_0888_2016.tif
0
0-10%
train
MASK_1599_2016.tif
0.99
0-10%
train
MASK_1090_2016.tif
7.23
0-10%
train
MASK_0066_2016.tif
3.24
0-10%
train
MASK_0738_2016.tif
0
0-10%
train
MASK_0922_2016.tif
0
0-10%
train
MASK_0072_2016.tif
0.1
0-10%
train
MASK_1245_2016.tif
0.89
0-10%
train
MASK_1048_2016.tif
0
0-10%
train
MASK_0037_2016.tif
0.05
0-10%
train
MASK_0651_2016.tif
0
0-10%
train
MASK_1092_2016.tif
0
0-10%
train
MASK_2130_2016.tif
0
0-10%
train
MASK_0782_2016.tif
1.51
0-10%
train
MASK_1921_2016.tif
0
0-10%
train
MASK_0255_2016.tif
0
0-10%
train
MASK_0628_2016.tif
7.7
0-10%
train
MASK_0987_2016.tif
0
0-10%
train
MASK_1321_2016.tif
1.5
0-10%
train
MASK_1560_2016.tif
0
0-10%
train
MASK_2036_2016.tif
0
0-10%
train
MASK_0589_2016.tif
0
0-10%
train
MASK_1170_2016.tif
0
0-10%
train
MASK_0650_2016.tif
0
0-10%
train
MASK_0376_2016.tif
0
0-10%
train
MASK_1197_2016.tif
0
0-10%
train
MASK_0042_2016.tif
1.29
0-10%
train
MASK_2005_2016.tif
0
0-10%
train
MASK_1932_2016.tif
0
0-10%
train
End of preview. Expand in Data Studio

SmallMinesDS

The gradual expansion of unregularized artisanal small-scale gold mining (ASGM) fuels environmental degradation and poses risk to miners and mining communities. To enforce sustainable mining, support reclamation initiatives and pave the way for understudying the impacts of mining, we present SmallMinesDS, a benchmark dataset for mapping artisanal small-scale gold mining from multi-sensor satellite images. The initial version of the dataset covers five districts in Southwestern Ghana in two time periods. The first version of SmallMinesDS covers five administrative districts in Southwestern Ghana with a ground area of about 3200 sq.km. SmallMinesDS includes satellite images from optical and radar sensors in the dry season (January) for two years (2016 and 2022). The area covered is ecologically diverse, hosting rich biodiversity and serving as a hub for multiple land-use activities, including crop cultivation, forestry, industrial and small-scale gold mining. This multifaceted landscape underscores the importance of reliable mapping and monitoring of ASGM activities.

area of interest

FOLDER STRUCTURE

Year

  • IMAGE
  • MASK

NAMING CONVENTION

naming convention of patches

INPUT DATA DESCRIPTION

SmallMines contains 13 bands for each image and a binary label. The order of the bands for the images is as follows:

  • Index 0-9 ==> Sentinel-2 L2A [blue, green, red, red edge 1, red edge2, red edge 3, near infrared, red edge 4, swir1, swir2]
  • Index 10-11 ==> Sentinel-1 RTC + speckle filtered [vv, vh]
  • Index 12 ==> Copernicus DEM [dem]

Each patch has an input shape of 13 x 128 x 128 and a corresponding mask of 1 x 128 x 128

In total there are 4270 patches; 2175 each for 2016 and 2022.

sample images

CITATION

If you use the dataset or supporting code in your research, please cite SmallMinesDS as :

@article{sample-preprint,
    author          = {},
    month           = xxxx,
    title           = {{SmallMinesDS: A dataset for mapping artisanal and small-scale gold mines}},
    journal         = {Preprint Available on arxiv:xxxxxx},
    year            = {2025}
}

OUTLOOK

Looking ahead, we plan to expand the dataset to include additional regions in Africa, South America, and Asia where ASGM activities are prevalent. This expansion will enable the representation of cross-regional variations in ASGM practices, reflecting the diverse operational characteristics of mining activities globally

Downloads last month
107