blob_id
stringlengths
40
40
repo_name
stringlengths
5
119
path
stringlengths
2
424
length_bytes
int64
36
888k
score
float64
3.5
5.22
int_score
int64
4
5
text
stringlengths
27
888k
842a0e1ba6bbd01a986e816b3a1c479d4f59fff5
CreatorGhost/HackerRank
/2D Array DS
1,163
3.96875
4
#!/bin/python3 import math import os import random import re import sys def findIt(u,p,a): #function just to add every single hourglass an=0 #to add every elements for i in range (u,u+3): #this function neds to sole for 3x3 so start and end with 3 for j in range (p,p+3): if i!=u+1: an=a[i][j]+an #add all three when its not the secound row if i==u+1: if j==p+1: an=a[i][j]+an #add only the second element of sceond row return an #retunig the result of added 3x3 matrics def hourglassSum(a): s=[] #list to append all the adition of values for i in range(len(a)-2): #loop will for j in range(len(a)-2): k=findIt(i,j,a) #appending all the possible output s.append(k) return max(s) #returning the max element if __name__ == '__main__': fptr = open(os.environ['OUTPUT_PATH'], 'w') arr = [] for _ in range(6): arr.append(list(map(int, input().rstrip().split()))) result = hourglassSum(arr) fptr.write(str(result) + '\n') fptr.close()
421da4356fe1c641216ff34810950572251f4ada
alisatsar/itstep
/Python/HomeWork/04.04.2017.py
1,723
4.1875
4
"""Напишите программу, запрашивающую у пользователя ввод числа. Если число принадлежит диапазону от -100 до 100, то создается объект одного класса, во всех остальных случаях создается объект другого класса. В обоих классах должен быть метод-конструктор __init__, который в первом классе возводит число в квадрат, а во-втором - умножает на два.""" class UnRange: def __init__ (self, number): self.result = number * 2 print(self.result) class InRange: def __init__ (self, number): self.result = number ** 2 print(self.result) userNumber = int(input("Enter your number: ")) if userNumber >= -100 and userNumber <= 100: userNumber = InRange(userNumber) else: userNumber = UnRange(userNumber) #Напишите программу, высчитывающую площадь оклейки обоями комнаты. Объектами являются: стены, потолки, окна и двери. class Wallpaper: def __init__(self, width, height, length): self.width = width self.height = height self.length = length self.square = 2 * self.height * (self.width + self.length) return s width = int(input("Enter the width of wall your room: ")) height = int(input("Enter the height of wall your room: ")) length = int(input("Enter the length of your room: ")) wallpaper = Wallpaper(width, height, length) squareWithoutDoorsAndWindows =
95d31d2b7728c6977bab65d0f27d02bbd6ed22e6
fy88fy/studyPython
/study_example/2018.01.26/Hanshu.py
467
3.765625
4
#/usr/bin/env python # -*- coding:utf-8 -*- # @time :2018/1/26 21:37 # @Author :FengXiaoqing # @file :Hanshu.py def add(args): total = 0 for i in args: total += i return total def main(): number = list() s = input("Please input some number add (a + b + c ..):") print(s) for num in s.split("+"): number.append(int(num.strip("+"))) print(add(number)) if __name__ == '__main__': main()
01f44499d127d555c84c1411f6486eb95bbbcb8b
m4mayank/ComplexAlgos
/subsets.py
874
3.71875
4
# Given an integer array nums of unique elements, return all possible subsets (the power set). # The solution set must not contain duplicate subsets. Return the solution in any order. # Example 1: # Input: nums = [1,2,3] # Output: [[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3]] # Example 2: # Input: nums = [0] # Output: [[],[0]] # Constraints: # 1 <= nums.length <= 10 # -10 <= nums[i] <= 10 # All the numbers of nums are unique. class Solution: def subset(self, result, nums): length = len(result) subset = [] for i in range(0, length): temp = result.pop() subset.append(temp) subset.append(temp+[nums]) return subset def subsets(self, nums: List[int]) -> List[List[int]]: result = [[]] for i in nums: result = self.subset(result, i) return result
513c3de6fc20fbebbeccca06ca9ca0a77b955a04
SimZhou/algorithm014-algorithm014
/Week_03/98. 验证二叉搜索树.py
1,124
3.921875
4
# https://leetcode-cn.com/problems/validate-binary-search-tree/ # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def isValidBST(self, root: TreeNode) -> bool: # '''递归''' # lb, rb = float("-inf"), float("inf") # def dfs(root, lb, rb): # if not root: return True # left = dfs(root.left, lb, root.val) # right = dfs(root.right, root.val, rb) # # 当前节点是否有效,取决于左右子树是否有效,以及当前节点是否有效 # if left and right and lb < root.val < rb: return True # else: return False # return dfs(root, lb, rb) '''中序遍历''' pre = float("-inf") def inorder(root): nonlocal pre if not root: return True if not inorder(root.left): return False if root.val <= pre: return False pre = root.val return inorder(root.right) return inorder(root)
a3ce138c0a54571d22232429b9283b0d45e92b96
elefert400/Class_Work
/Algorithms/HW2/scc_e330l807.py
3,387
3.53125
4
from __future__ import print_function import fileinput import sys class Graph: def __init__(self,v): self.Vertices = v self.graph = {new_list: [] for new_list in range(self.Vertices)} self.sorted = [[] for x in range(self.Vertices)] self.counter = 0 #adds an edge to the graph def addEdge(self,u,v): self.graph[u].append(v) #DFS that finds all the strongly connected components def DFSSCC(self,v,visited): visited[v] = True self.sorted[self.counter].append(v + 1) for i in self.graph[v]: if visited[i] == False: self.DFSSCC(i, visited) #fill the stack def fillStack(self,v,visited, stack): visited[v] = True for i in self.graph[v]: #print(i) if visited[i] == False: self.fillStack(i, visited, stack) stack = stack.append(v) #get a graph that is the transpose of the graph def getTranspose(self): g = Graph(self.Vertices) for i in self.graph: for j in self.graph[i]: g.addEdge(j, i) return g def SCC(self): #declare the stack and initialize the visited array stack = [] visited = [False] * (self.Vertices) #fill the stack using DFS for i in range(self.Vertices): if visited[i] == False: self.fillStack(i, visited, stack) #get the transpose of the graph and reset up the visited array gr = self.getTranspose() visited = [False] * (self.Vertices) #recursing down the stack that was generated while stack: i = stack.pop() if visited[i] == False: gr.DFSSCC(i, visited) gr.counter += 1 #sort the lists for x in range(len(self.sorted)): gr.sorted[x].sort() gr.sorted.sort() #printing the lists for y in range(len(self.sorted)): for z in range(len(gr.sorted[y])): if(len(gr.sorted[y]) == 0): pass elif gr.sorted[y][z] == gr.sorted[y][-1]: print ("{}".format(gr.sorted[y][z]), end = '') else: print ("{} ".format(gr.sorted[y][z]), end = '') if(len(gr.sorted[y]) == 0): pass elif gr.sorted[y] == gr.sorted[-1]: pass else: print("") def main(): in_file = open(sys.argv[1], "r") #reading the first two lines num_nodes = in_file.readline() num_nodes = num_nodes.strip("\t\n\r") num_nodes = int(num_nodes) empty = in_file.readline() edge_list = in_file.readlines() in_file.close() grap = Graph(num_nodes) #stripping all useless characters helper1 = 0 for x in edge_list: edge_list[helper1] = edge_list[helper1].strip("\t\n\r") helper1 += 1 #add all edges to the graph helper2 = -1 for y in edge_list: helper2 += 1 for chay in y: if chay == ' ': pass else: grap.addEdge(helper2, (int(chay) - 1)) #run algorithm and print grap.SCC() main()
ac19f9a5a561cb3a5fefd54248352fc3bd19f9d0
twhit223/fundraising_simulation
/simulate_dynamic.py
7,578
3.8125
4
from startup import Startup from definitions import STARTUP_STATES from statistics import mean, stdev import pandas as pd import numpy as np import matplotlib.pyplot as plt from wat import wat # This is the main function that runs the simulation of the startup. It takes in an initialized Startup object and performs various operations on it as specified by the model. The updated Startup object will either have raised a Series A or failed. def simulate(startup): # Check if either of the end conditions are met. If so, return the startup. Otherwise, move the startup forward in the simulation. # print('The startup was initialized with control pref {} and quality {}. The initial value is {}. The initial round is {}. The funding history is below. {}'.format(startup.control_pref, startup.quality, startup.value, startup.round, startup.funding_history)) while not (startup.state == 'series_a-success' or startup.state == 'die'): # wat() startup.advance() # print('The startup is in state {}. It has value {}. The current funding round is {} and it has raised a total of {}'.format(startup.state, startup.value, startup.round, startup.amt_raised)) # print('The startup finished in state {}. It has value {}, and it has raised a total of {}. The funding history is below. {}'.format(startup.state, startup.value, startup.amt_raised, startup.funding_history)) return startup # This function creates a matrix of startups and simulates them. For each value of control_preference and quality (as specified by increment), the matrix contains a list of simulated startups (as specified by number_of_startups). It then returns the matrix of simulated startups. def initialize_startup_matrix(increment, number_of_startups): print("Initializing the startup matrix...") # Check that an integer mutliple of the increment equals 1.0 # Create the startup matrix as a list of list of lists. data = [] for quality in np.arange(0.0, 1.0+increment, increment): row = [] for control_preference in np.arange(0.0, 1.0+increment, increment): cell = [] for k in range(number_of_startups): cell.append(Startup(control_preference, quality)) row.append(cell) data.append(row) print("Simulating startups...") # Simulate the startups in the list [[[simulate(s) for s in column] for column in row] for row in data] print("Startups simulated!") return data # This function performs an analysis of the startups that have been simulated and returns a matrix containing a list of tuples for each combination of quality and control preference. The list is structured as follows: [(avg. value, 10th percentile, 90th percentile), (avg. ownership %, 10th percentile, 90th percentile), (avg. time to series A, 10th percentile, 90th percentile), % survived to series a] def simulation_analysis(startup_matrix): analysis = [] for i in range(0, len(startup_matrix)): row = [] for j in range(0, len(startup_matrix[i])): cell =[] # For a certain quality and control pref, get all of the startups that were simulated startups = startup_matrix[i][j] # For those startups, calculate the following value = [s.value if s.state == STARTUP_STATES[8] else 0 for s in startups] ownership = [s.ownership_history[-1] for s in startups] time = [s.age for s in startups] survival = [1 if s.state == STARTUP_STATES[8] else 0 for s in startups] # Create a tuple based on the lists avg_value = (mean(value), stdev(value)) avg_ownership = (mean(ownership), stdev(ownership)) avg_time = (mean(time), stdev(time)) survival_pct = mean(survival) # Append the results to the cell cell.append(avg_value) cell.append(avg_ownership) cell.append(avg_time) cell.append(survival_pct) row.append(cell) analysis.append(row) return analysis def plot_analysis(increment, analysis): fig, axes = plt.subplots(nrows=2, ncols=2, sharex=True) x = np.arange(0.0 ,1.0 + increment, increment) # Get the values and the stdev # The first row of the analysis is quality = 0 # Plot the Value vs. Control Pref ax = axes[0,0] # For each level of quality, get the series to plot for i in range(0, len(x)): row = analysis[i] values = [data[0][0] for data in row] stdevs = [data[0][1] for data in row] ax.errorbar(x = x, y = values, yerr = None, label = "{0:.1f}".format(x[i])) ax.legend(title = 'Quality', loc='upper left', ncol=1) ax.set_title('Avg. Value vs. Control Preference') # Plot the Ownership vs. Control Pref ax = axes[0,1] # For each level of quality, get the series to plot for i in range(0, len(x)): row = analysis[i] values = [data[1][0] for data in row] stdevs = [data[1][1] for data in row] ax.errorbar(x = x, y = values, yerr = None, label = "{0:.1f}".format(x[i])) ax.legend(title = 'Quality', loc='upper left', ncol=1) ax.set_title('Avg. Ownership % vs. Control Preference') # Plot the Time to Series A vs. Control Pref ax = axes[1,0] # For each level of quality, get the series to plot for i in range(0, len(x)): row = analysis[i] values = [data[2][0] for data in row] stdevs = [data[2][1] for data in row] ax.errorbar(x = x, y = values, yerr = None, label = "{0:.1f}".format(x[i])) ax.legend(title = 'Quality', loc='upper left', ncol=1) ax.set_title('Avg. Age vs. Control Preference') # Plot the Probability of Survival to Series A vs. Control Pref ax = axes[1,1] # For each level of quality, get the series to plot for i in range(0, len(x)): row = analysis[i] values = [data[3] for data in row] ax.errorbar(x = x, y = values, yerr = None, label = "{0:.1f}".format(x[i])) ax.legend(title = 'Quality', loc='upper left', ncol=1) ax.set_title('P(Survival to Series A) vs. Control Preference') plt.show() wat() # Split the data up between the four plots we want: value, ownership, time, and prob survival """ How do we conduct actual analysis: --> The output I want from a simulation is a dataframe with control preference on one axes, quality on the other, and at each cell a list that contains N startups that have been simulated with those parameters. --> From this output, I will calculate the following: avg. value, avg. control, avg. time to series age, and probability of reaching series a (all with variances except the probability). This should be inserted into a dataframe with the same structure as the output from the simulation --> Once I have these calculations, the idea will be to plot the following: 1.) X-axis: Control Preference, Y-axis: Avg. Value + error bars, plot a line for each level of quality (e.g. quality = 0.2, quality = 0.4, etc.) 2.) X-axis: Control Preference, Y-axis: Avg. Control + error bars, plot a line for each level of quality (e.g. quality = 0.2, quality = 0.4, etc.) 3.) X-axis: Control Preference, Y-axis: Avg. Time to Series A + error bars, plot a line for each level of quality (e.g. quality = 0.2, quality = 0.4, etc.). 4.) X-axis: Control Preference, Y-axis: Probability of successfully raising series A, plot a line for each level of quality (e.g. quality = 0.2, quality = 0.4, etc.). --> To get to the final output, I need to have a dataframe with """ increment = 0.2 startup_matrix = initialize_startup_matrix(increment, 20) analysis = simulation_analysis(startup_matrix) plot_analysis(increment, analysis) wat() test = Startup(0.8,0.6) simulate(test) test.plot() # wat()
678cfbbc306b5c22f718d7f0378bc8a5b22323c9
kaushal6038/ajax
/admin_test_pro/pro/testfile.py
276
3.546875
4
import datetime seconds = datetime.datetime.now() print(seconds.minute) import time time.sleep(4) # with open("/checkfile.txt", "w") as f: # f.write("Hello World form") file = open("checkfile.txt", "a") file.write("Your text goes here "+ str(seconds)) file.close()
b3b441ce41915714ae067851b2c2aa7b20c8c909
sofiamalpique/fcup-programacao-01
/3.6.py
255
3.546875
4
from turtle import* def triangulo(lado): for i in range(3): forward(lado) left(120) def triforce(lado): triangulo(2*lado) penup() forward(lado) pendown() left(60) triangulo(lado)
833898a98dc90002e36939a5f923b441affa64b0
benscruton/python_fundamentals
/coding_dojo_assignments/fundamentals/make_dictionary.py
962
3.78125
4
def make_dict_orig(list1, list2): new_dict = {} inverted = len(list2) > len(list1) keys = list2 if inverted else list1 values = list1 if inverted else list2 for i in range(len(values)): new_dict[keys[i]] = values[i] return new_dict def make_dict(list1, list2): zipped = zip(list2, list1) if len(list2) > len(list1) else zip(list1, list2) return dict(zipped) name_eq = ["Anna", "Eli", "Pariece", "Brendan", "Amy", "Shane", "Oscar"] favorite_animal_eq = ["horse", "cat", "spider", "giraffe", "ticks", "dolphins", "llamas"] name_longer = ["Anna", "Eli", "Pariece", "Brendan", "Amy", "Shane", "Oksana", "Oscar"] favorite_animal_shorter = ["horse", "cat", "spider", "giraffe", "ticks", "dolphins", "sable"] d1 = make_dict(name_eq, favorite_animal_eq) d2 = make_dict(name_longer, favorite_animal_shorter) d3 = make_dict(favorite_animal_shorter, name_longer) print(d1) print("*"*30) print(d2) print("*"*30) print(d3)
001c8f38937c2676dd7b0c4a9c58ee136e3b1a90
Yaswanthbobbu/IQuestions_Python
/Questions/21. Reverse string.py
162
3.96875
4
str = input("Welcome to programming :") words = str.split() print(words) words.reverse() #words[-1::-1] print(words) outputstr=' '.join(words) print(outputstr)
439dad735e97009088f24b7c657a33c56a66ea6e
huangqiank/Algorithm
/leetcode/two_Pointer/p.py
20,008
3.5
4
def three_sum_smaller(nums, k): nums = sorted(nums) count = 0 for i in range(len(nums)): l = i + 1 r = len(nums) - 1 while l < r: if nums[l] + nums[r] + nums[i] == k: tmp = nums[r] while l < r and tmp == nums[r]: r -= 1 if nums[l] + nums[r] + nums[i] < k: count += r - l l += 1 else: tmp = nums[r] while l < r and tmp == nums[r]: r -= 1 return count def three_sum(nums): nums = sorted(nums) res = [] if not nums or len(nums) < 3: return res for i in range(len(nums)): if nums[i] > 0: return res if i != 0 and nums[i] == nums[i - 1]: continue l = i + 1 r = len(nums) - 1 while l < r: if nums[i] + nums[l] + nums[r] == 0: res.append([i, l, r]) tmp = nums[l] while nums[l] == tmp and l < r: l += 1 tmp = nums[r] while nums[r] == tmp and l < r: r -= 1 continue if nums[i] + nums[l] + nums[r] < 0: tmp = nums[l] while l < r and tmp == nums[l]: l += 1 continue if nums[i] + nums[l] + nums[r] > 0: tmp = nums[r] while l < r and tmp == nums[r]: r -= 1 continue return res def three_sum_smaller(nums, target): nums = sorted(nums) res = [] count = 0 if not nums or len(nums) < 3: return res for i in range(len(nums)): l = i + 1 r = len(nums) - 1 while l < r: if nums[i] + nums[l] + nums[r] < target: count = count + r - l l += 1 continue if nums[i] + nums[l] + nums[r] >= target: tmp = nums[r] while l < r and tmp == nums[r]: r -= 1 continue return count def three_sum_closed(nums, target): nums = sorted(nums) res = [] dif = float("inf") for i in range(len(nums)): l = i + 1 r = len(nums) - 1 while l < r: if nums[i] + nums[l] + nums[r] == target: return [i, l, r] if abs(nums[i] + nums[l] + nums[r] - target) < dif: res = [i, l, r] if nums[i] + nums[l] + nums[r] < target: tmp = nums[l] while l < r and tmp == nums[l]: l += 1 continue if nums[i] + nums[l] + nums[r] > target: tmp = nums[r] while l < r and tmp == nums[r]: r -= 1 continue return res def threeSumClosest(nums, target): dif = float('inf') nums = sorted(nums) n = len(nums) res = [] if not nums or len(nums) < 3: return res for i in range(n): l = i + 1 r = n - 1 while l < r: total = nums[i] + nums[l] + nums[r] if total == target: return [nums[i], nums[l], nums[r]] if total < target: tmp = nums[l] if abs(target - total) < dif: dif = abs(target - total) res = [nums[i], nums[l], nums[r]] while nums[l] == tmp and l < r: l += 1 continue if total > target: tmp = nums[r] if abs(target - total) < dif: dif = abs(target - total) res = [nums[i], nums[l], nums[r]] while nums[r] == tmp and l < r: r -= 1 continue return res ## n -1 , n-2, n-3 def four_sum_target(nums, target): res = [] if not nums or len(nums) < 4: return nums = sorted(nums) n = len(nums) for i in range(0, n - 3): if nums[i] + nums[i + 1] + nums[i + 2] + nums[i + 3] > target: break if nums[i] + nums[n - 3] + nums[n - 2] + nums[n - 1] < target: continue if i > 0 and nums[i] == nums[i - 1]: continue for j in range(i + 1, n - 2): if nums[i] + nums[j] + nums[j + 1] + nums[j + 2] > target: break if nums[i] + nums[j] + nums[n - 1] + nums[n - 2] < target: continue if j > 0 and nums[j] == nums[j - 1]: continue total = nums[i] + nums[j] l = j + 1 r = n - 1 while l < r: if nums[l] + nums[r] + total == target: res.append((i, j, l, r)) tmp = nums[l] while l < r and tmp == nums[l]: l += 1 tmp = nums[r] while l < r and tmp == nums[r]: r -= 1 continue if nums[l] + nums[r] + total < target: tmp = nums[l] while l < r and tmp == nums[l]: l += 1 else: tmp = nums[r] while l < r and tmp == nums[r]: r -= 1 return res def four_sum(nums, target): res = [] if not nums or len(nums) < 4: return res n = len(nums) nums = sorted(nums) for i in range(n - 3): if nums[i] + nums[i + 1] + nums[i + 2] + nums[i + 3] > target: break if nums[i] + nums[n - 1] + nums[n - 2] + nums[n - 3] < target: continue if i > 0 and nums[i] == nums[i - 1]: continue for j in range(i + 1, n - 2): if nums[i] + nums[j] + nums[j + 1] + nums[j + 2] > target: break if nums[i] + nums[j] + nums[n - 1] + nums[n - 2] < target: continue if j - i > 1 and nums[j] == nums[j - 1]: continue l = j + 1 r = n - 1 total = nums[i] + nums[j] while l < r: if total + nums[l] + nums[r] == target: print(l) print(r) print("\n") res.append([nums[i], nums[j], nums[l], nums[r]]) while l < r and nums[l + 1] == nums[l]: l += 1 while l < r and nums[r] == nums[r - 1]: r -= 1 l += 1 r -= 1 elif total + nums[l] + nums[r] < target: l += 1 else: r -= 1 return res ##n-4,n-3,n-2,n-1 def four_sum(nums, target): if not nums or len(nums) < 4: return res = [] n = len(nums) for i in range(0, n - 3): if nums[i] + nums[i + 1] + nums[i + 2] + nums[i + 3] > target: break if nums[i] + nums[n - 3] + nums[n - 2] + nums[n - 1] < target: continue if i > 0 and nums[i] == nums[i - 1]: continue for j in range(i + 1, n - 2): if nums[i] + nums[j] + nums[j + 1] + nums[j + 2] > target: break if nums[i] + nums[j] + nums[n - 2] + nums[n - 1] < target: continue if j > 0 and nums[j] == nums[j - 1]: continue l = j + 1 r = n - 1 while l < r: if nums[i] + nums[j] + nums[l] + nums[r] == target: res.append((nums[i], nums[j], nums[l], nums[r])) tmp1 = nums[l] while tmp1 == nums[l] and l < r: l += 1 tmp2 = nums[r] while l < r and tmp2 == nums[r]: r -= 1 continue if nums[i] + nums[j] + nums[l] + nums[r] < target: tmp1 = nums[l] while tmp1 == nums[l] and l < r: l += 1 continue if nums[i] + nums[j] + nums[l] + nums[r] > target: tmp1 = nums[r] while tmp1 == nums[r] and l < r: r -= 1 continue return res def merge_sorted_array(nums1, m, nums2, n): nums_copy = nums1[:m] i = 0 j = 0 k = 0 while i < m and j < n: if nums_copy[i] <= nums2[j]: nums1[k] = nums_copy[i] i += 1 k += 1 else: nums1[k] = nums2[j] j += 1 k += 1 if i < m: nums1[k:m + n] = nums1[i:m] if j < n: nums1[k:m + n] = nums2[j:n] return nums1 def implement_str(haystack, needle): i = 0 m = len(haystack) n = len(needle) while i < m - n + 1: if haystack[i:i + n] == needle: return i i += 1 return -1 def linked_list_cycle(head): slow = head fast = head if not head: return False while fast != None and fast.next != None and fast.next.next != None: slow = slow.next fast = fast.next.next if slow == fast: return True return False def linked_list_cycle(head): slow = head fast = head if not head: return False while fast != None and fast.next != None and fast.next.next != None: slow = slow.next fast = fast.next.next if slow == fast: break new = head while slow and slow.next: new = new.next slow = slow.next if slow == new: return slow return -1 def backspace_compare(s, t): i = len(s) - 1 j = len(t) - 1 m = 0 n = 0 while i >= 0 and j >= 0: while i >= 0 and (s[i] == "#" or m > 0): if s[i] == "#": m += 1 else: m -= 1 i -= 1 while j >= 0 and (t[j] == "#" or n > 0): if t[i] == "#": n += 1 else: n -= 1 j -= 1 if i < 0 or j < 0: break if s[i] != t[j]: return False i -= 1 j -= 1 while i >= 0 and (s[i] == "#" or m > 0): if s[i] == "#": m += 1 else: m -= 1 i -= 1 if i >= 0 and s[i] != "#": return False while j >= 0 and (t[j] == "#" or n > 0): if t[i] == "#": n += 1 else: n -= 1 j -= 1 if j >= 0 and t[j] != "#": return False return True def max_area(heights): area = 0 tmp = 0 i = 0 if heights is None or len(heights) < 2: return -1 while i < len(heights): if heights[i] <= tmp: i += 1 continue j = i + 1 while j < len(height): height = max(heights[i], heights[j]) width = j - i area = max(area, width * height) j += 1 tmp = heights[i] i += 1 return area def implement_str(haystack, needle): n = len(haystack) m = len(needle) if n < m: return -1 for i in range(n - m + 1): if haystack[i:i + m] == needle: return i return -1 def move_zero(nums): n = len(nums) i = 0 j = 0 while i < n: if nums[i] == 0: i += 1 else: nums[j] = nums[i] i += 1 j += 1 for t in range(j, len(nums)): nums[t] = 0 return nums def k_diff_pairs_in_an_array(nums, k): if not nums: return nums = sorted(nums) n = len(nums) count = 0 for i in range(0, n, 1): if i > 0 and nums[i] == nums[i - 1]: continue j = i + 1 while j < n: if nums[j] - nums[i] == k: count += 1 break if nums[j] - nums[i] < k: j += 1 if nums[j] - nums[i] > k: break return count def find(s, d): d = sorted(d, key=lambda x: (-len(d), x)) for word in d: if check(s, word): return word return -1 def check(s, word): j = 0 for i in range(len(word)): k = s.find(word[i], j) if k == -1: return False j = k + 1 return True def max_consecutive_one(nums): if not nums or len(nums) == 0: return 0 left = 0 right = 0 nums_dict = {0: 0, 1: 0} max_length = 0 n = len(nums) if len(nums) == 1: return 1 while right < n: nums_dict[nums[right]] += 1 right += 1 if nums_dict[0] >= 1: while nums_dict[0] > 0: nums_dict[nums[left]] -= 1 left += 1 max_length = max(max_length, right - left) return max_length # r # [0,0,0,0,1] def length_longest_substring_two_distinct(nums): left = 0 right = 0 max_length = 0 nums_dict = {} n = len(nums) if n < 3: return n while right < n: if nums[right] not in nums_dict: nums_dict[nums[right]] = 1 else: nums_dict[nums[right]] += 1 right += 1 while len(nums_dict) >= 3: nums_dict[nums[left]] -= 1 if nums_dict[nums[left]] == 0: del nums_dict[nums[left]] left += 1 max_length = max(max_length, right - left) return max_length def palindrome_num(num): num = str(num) x = '' for i in range(len(num) - 1, -1, -1): x += num[i] return x == num def k_diff_pairs_in_an_array(nums, k): if not nums or len(nums) < 2: return -1 nums = sorted(nums) n = len(nums) count = 0 for i in range(len(nums)): if i > 0 and nums[i] == nums[i - 1]: continue j = i + 1 while j < n: if nums[j] - nums[i] == k: j += 1 count += 1 continue if nums[j] - nums[i] > k: break if nums[j] - nums[i] < k: j += 1 continue return count def max_consecutive_ones(nums): left = 0 right = 0 n = len(nums) nums_dict = {0: 0, 1: 0} length = 0 while right < n: nums_dict[nums[right]] += 1 right += 1 if nums_dict[0] > 0: while nums_dict[0] > 0: nums_dict[nums[left]] -= 1 left += 1 length = max(length, right - left) return length def length_longest_two_distinct_nums(nums): max_length = 0 left = 0 right = 0 nums_dict = {} n = len(nums) while right < n: if nums[right] not in nums_dict: nums_dict[nums[right]] = 1 else: nums_dict[nums[right]] += 1 right += 1 if len(nums_dict) > 2: while len(nums_dict) > 2: nums_dict[nums[left]] -= 1 if nums_dict[nums[left]] == 0: del nums_dict[nums[left]] left += 1 max_length = max(max_length, right - left) return nums_dict def palindrome_linked_list(head): slow = head fast = head pre = None mid = None while fast and fast.next: mid = slow slow = slow.next fast = fast.next.next mid.next = pre pre = mid if fast != None: slow = slow.next while slow and pre: if slow.value != mid.value: return False slow = slow.next mid = mid.next return True def partition(head, x): if not head: return small = node(0) large = node(2) tmp1 = small tmp2 = large while head: if head.value < x: tmp1.next = head tmp1 = tmp1.next else: tmp2.next = head tmp2 = tmp2.next head = head.next tmp1.next = large.next return small.next def palindrom_num(x): x = str(x) y = "" for i in range(len(x) - 1, -1, -1): y += x[i] return x == y def longest_word_in_dictionary(s, d): d = sorted(d, key=lambda x: (-len(x), x)) for word in d: if check(s, word): return word return def check(s, word): j = 0 for i in range(len(word)): k = s.find(word[i], j) if k == -1: return -1 j = k + 1 return 1 def max_consecutive_one2(nums): if not nums or len(nums) == 0: return nums_dict = {0: 0, 1: 0} left = 0 right = 0 max_length = 0 while right < len(nums): nums_dict[nums[right]] += 1 right += 1 while nums_dict[0] > 1: nums_dict[nums[left]] -= 1 left += 1 max_length = max(max_length, right - left) return max_length def reverse_str(s): i = 0 j = len(s) - 1 mid = int(len(s) / 2) t = 0 while t < mid: s[i], s[j] = s[j], s[i] i += 1 j += 1 t += 1 return s def remove_element(nums, a) i = 0 j = 0 n = len(nums) while j < n: if nums[j] == a: j += 1 else: nums[i] = nums[j] i += 1 j += 1 return i def reverse_vowels_of_a_str(s): s = [s[i] for i in range(len(s))] vowel_set = set() vowel_list = ["a", "e", "i", "o", "u", "A", "E", "I", "O", "U"] for vowel in vowel_list: vowel_set.add(vowel) i = 0 j = len(s) - 1 while i < j: while i < j and s[i] not in vowel_set: i += 1 while i < j and s[j] not in vowel_set: j -= 1 if i < j and s[i] in vowel_set and s[j] in vowel_set: s[i], s[j] = s[j], s[i] i += 1 j -= 1 return s ## # 1->2->3->4 def remove_nth_node(head, n): slow = node(0) fast = node(0) slow.next = head fast.next = head i = 0 j = 0 while fast.next != None: if j < n: fast = fast.next j += 1 else: i += 1 slow = slow.next fast = fast.next slow.next = slow.next.next if i == 0: return head.next return head def is_palindrome(s): s = filter(str.isalnum, s) s = ''.join(list(s)) s = s.lower() i = 0 j = len(s) - 1 n = len(s) - 1 while i <= n and j >= 0: if s[i] != s[j]: return False i += 1 j -= 1 if j != 0 or i != n: return False return True def subarray_product_less_than_k(nums, k): left = 0 prod = 1 ans = 0 if k <= 1: return 0 for right, val in enumerate(nums): prod *= val while prod >= k: prod /= nums[left] left += 1 ans += right - left + 1 return ans def length_two_distinct_characters(s): if not s: return s_dict = {} left = 0 right = 0 max_length = 0 while right < len(s): s_dict[s[right]] += 1 while len(s_dict) >= 3: s_dict[s[left]] -= 1 if s_dict[s[left]] == 0: del s_dict[s[left]] left += 1 max_length = max(max_length, right - left) right += 1 return max_length def remove_duplicated_from_sorted_array(nums): i = 0 j = 0 if not nums or len(nums) < 3: return nums while i < len(nums): tmp = nums[i] if j >= 2 and tmp == nums[j-1] and tmp == nums[j - 2]: k = i while k < len(nums) and nums[k] == tmp: k += 1 i = k if j < len(nums): nums[j] = nums[i] i += 1 j += 1 return j
8715b54a3571ede0e7d088d1f8821a9491abb9ea
the-eric-kwok/Wudao-dict
/wudao-dict/dict/dict_pys/wd.py
15,650
3.5
4
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from __future__ import print_function import re tag_re = re.compile('^[a-z0-9]+$') attribselect_re = re.compile( r'^(?P<tag>\w+)?\[(?P<attribute>[\w-]+)(?P<operator>[=~\|\^\$\*]?)' + r'=?"?(?P<value>[^\]"]*)"?\]$' ) # /^(\w+)\[([\w-]+)([=~\|\^\$\*]?)=?"?([^\]"]*)"?\]$/ # \---/ \---/\-------------/ \-------/ # | | | | # | | | The value # | | ~,|,^,$,* or = # | Attribute # Tag def attribute_checker(operator, attribute, value=''): """ Takes an operator, attribute and optional value; returns a function that will return True for elements that match that combination. """ return { '=': lambda el: el.get(attribute) == value, # attribute includes value as one of a set of space separated tokens '~': lambda el: value in el.get(attribute, '').split(), # attribute starts with value '^': lambda el: el.get(attribute, '').startswith(value), # attribute ends with value '$': lambda el: el.get(attribute, '').endswith(value), # attribute contains value '*': lambda el: value in el.get(attribute, ''), # attribute is either exactly value or starts with value- '|': lambda el: el.get(attribute, '') == value \ or el.get(attribute, '').startswith('%s-' % value), }.get(operator, lambda el: el.has_key(attribute)) def ss(soup, selector): """ soup should be a BeautifulSoup instance; selector is a CSS selector specifying the elements you want to retrieve. """ tokens = selector.split() current_context = [soup] for index, token in enumerate(tokens): if tokens[index - 1] == '>': # already found direct descendants in last step continue m = attribselect_re.match(token) if m: # Attribute selector tag, attribute, operator, value = m.groups() if not tag: tag = True checker = attribute_checker(operator, attribute, value) found = [] for context in current_context: found.extend([el for el in context.findAll(tag) if checker(el)]) current_context = found continue if '#' in token: # ID selector tag, id = token.split('#', 1) if not tag: tag = True el = current_context[0].find(tag, {'id': id}) if not el: return [] # No match current_context = [el] continue if '.' in token: # Class selector tag, klass = token.split('.', 1) if not tag: tag = True classes = set(klass.split('.')) found = [] for context in current_context: found.extend( context.findAll(tag, {'class': lambda attr: attr and classes.issubset(attr.split())} ) ) current_context = found continue if token == '*': # Star selector found = [] for context in current_context: found.extend(context.findAll(True)) current_context = found continue if token == '>': # Child selector tag = tokens[index + 1] if not tag: tag = True found = [] for context in current_context: found.extend(context.findAll(tag, recursive=False)) current_context = found continue # Here we should just have a regular tag if not tag_re.match(token): return [] found = [] for context in current_context: found.extend(context.findAll(token)) current_context = found return current_context def monkeypatch(BeautifulSoupClass=None): """ If you don't explicitly state the class to patch, defaults to the most common import location for BeautifulSoup. """ if not BeautifulSoupClass: from BeautifulSoup import BeautifulSoup as BeautifulSoupClass BeautifulSoupClass.findSelect = ss def unmonkeypatch(BeautifulSoupClass=None): if not BeautifulSoupClass: from BeautifulSoup import BeautifulSoup as BeautifulSoupClass delattr(BeautifulSoupClass, 'findSelect') import bs4 from urllib.request import urlopen from urllib.parse import urlparse from urllib.parse import quote def get_html(x): x = quote(x) url = urlparse('http://dict.youdao.com/search?q=%s' % x) res = urlopen(url.geturl()) xml = res.read().decode('utf-8') return xml def multi_space_to_single(text): cursor = 0 result = "" while cursor < len(text): if text[cursor] in ["\t", " ", "\n", "\r"]: while text[cursor] in ["\t", " ", "\n", "\r"]: cursor += 1 result += " " else: result += text[cursor] cursor += 1 return result # get word info online def get_text(centent, word): #content = get_html(word) word_struct = {"raw_word": word} root = bs4.BeautifulSoup(content, "lxml") for v in root.select('h2 .keyword'): word_struct['word'] = v.text pron = {} pron_fallback = False for pron_item in ss(root, ".pronounce"): pron_lang = None pron_phonetic = None for sub_item in pron_item.children: if isinstance(sub_item, str) and pron_lang is None: pron_lang = sub_item continue if isinstance(sub_item, bs4.Tag) and sub_item.name.lower() == "span" and sub_item.has_attr( "class") and "phonetic" in sub_item.get("class"): pron_phonetic = sub_item continue if pron_phonetic is None: # raise SyntaxError("WHAT THE FUCK?") pron_fallback = True break if pron_lang is None: pron_lang = "" pron_lang = pron_lang.strip() pron_phonetic = pron_phonetic.text pron[pron_lang] = pron_phonetic if pron_fallback: for item in ss(root, ".phonetic"): if item.name.lower() == "span": pron[""] = item.text break word_struct["pronunciation"] = pron # # <-- BASIC DESCRIPTION # nodes = ss(root, "#phrsListTab .trans-container ul") basic_desc = [] if len(nodes) != 0: ul = nodes[0] for li in ul.children: if not (isinstance(li, bs4.Tag) and li.name.lower() == "li"): continue basic_desc.append(li.text.strip()) word_struct["paraphrase"] = basic_desc if not word_struct["paraphrase"]: d = root.select(".wordGroup.def") p = root.select(".wordGroup.pos") ds = "" dp = "" if len(d) > 0: ds = d[0].text.strip() if len(p) > 0: dp = p[0].text.strip() word_struct["paraphrase"] = (dp + " " + ds).strip() # # --> # <-- RANK # rank = "" nodes = ss(root, ".rank") if len(nodes) != 0: rank = nodes[0].text.strip() word_struct["rank"] = rank # # --> # <-- PATTERN # # .collinsToggle .pattern pattern = "" nodes = ss(root, ".collinsToggle .pattern") if len(nodes) != 0: # pattern = nodes[0].text.strip().replace(" ", "").replace("\t", "").replace("\n", "").replace("\r", "") pattern = multi_space_to_single(nodes[0].text.strip()) word_struct["pattern"] = pattern # # --> # <-- VERY COMPLEX # word_struct["sentence"] = [] for child in ss(root, ".collinsToggle .ol li"): p = ss(child, "p") if len(p) == 0: continue p = p[0] desc = "" cx = "" for node in p.children: if isinstance(node, str): desc += node elif isinstance(node, bs4.Tag) and node.name.lower() == "b" and node.children: for x in node.children: if isinstance(x, str): desc += x elif isinstance(node, bs4.Tag) and node.name.lower() == "span": cx = node.text desc = multi_space_to_single(desc.strip()) examples = [] for el in ss(child, ".exampleLists"): examp = [] for p in ss(el, ".examples p"): examp.append(p.text.strip()) examples.append(examp) word_struct["sentence"].append([desc, cx, examples]) # 21 new year if not word_struct["sentence"]: for v in root.select("#bilingual ul li"): p = ss(v, "p") ll = [] for p in ss(v, "p"): if len(p) == 0: continue if 'class' not in p.attrs: ll.append(p.text.strip()) if len(ll) != 0: word_struct["sentence"].append(ll) # --> return word_struct def get_zh_text(word): content = get_html(word) word_struct = {"word": word} root = bs4.BeautifulSoup(content, "lxml") # pronunciation pron = '' for item in ss(root, ".phonetic"): if item.name.lower() == "span": pron = item.text break word_struct["pronunciation"] = pron # <-- BASIC DESCRIPTION nodes = ss(root, "#phrsListTab .trans-container ul p") basic_desc = [] if len(nodes) != 0: for li in nodes: basic_desc.append(li.text.strip().replace('\n', ' ')) word_struct["paraphrase"] = basic_desc # DESC desc = [] for child in ss(root, '#authDictTrans ul li ul li'): single = [] sp = ss(child, 'span') if sp: span = sp[0].text.strip().replace(':', '') if span: single.append(span) ps = [] for p in ss(child, 'p'): ps.append(p.text.strip()) if ps: single.append(ps) desc.append(single) word_struct["desc"] = desc # <-- VERY COMPLEX word_struct["sentence"] = [] # 21 new year for v in root.select("#bilingual ul li"): p = ss(v, "p") ll = [] for p in ss(v, "p"): if len(p) == 0: continue if 'class' not in p.attrs: ll.append(p.text.strip()) if len(ll) != 0: word_struct["sentence"].append(ll) return word_struct def is_alphabet(uchar): if (u'\u0041' <= uchar <= u'\u005a') or \ (u'\u0061' <= uchar <= u'\u007a') or uchar == '\'': return True else: return False RED_PATTERN = '\033[31m%s\033[0m' GREEN_PATTERN = '\033[32m%s\033[0m' BLUE_PATTERN = '\033[34m%s\033[0m' PEP_PATTERN = '\033[36m%s\033[0m' BROWN_PATTERN = '\033[33m%s\033[0m' def draw_text(word, conf): # Word print(RED_PATTERN % word['word']) # pronunciation if word['pronunciation']: uncommit = '' if '英' in word['pronunciation']: uncommit += u'英 ' + PEP_PATTERN % word['pronunciation']['英'] + ' ' if '美' in word['pronunciation']: uncommit += u'美 ' + PEP_PATTERN % word['pronunciation']['美'] if '' in word['pronunciation']: uncommit = u'英/美 ' + PEP_PATTERN % word['pronunciation'][''] print(uncommit) # paraphrase for v in word['paraphrase']: print(BLUE_PATTERN % v) # short desc if word['rank']: print(RED_PATTERN % word['rank'], end=' ') if word['pattern']: print(RED_PATTERN % word['pattern'].strip()) # sentence if conf: count = 1 if word['sentence']: print('') if len(word['sentence'][0]) == 2: collins_flag = False else: collins_flag = True else: return for v in word['sentence']: if collins_flag: # collins dict if len(v) != 3: continue if v[1] == '' or len(v[2]) == 0: continue if v[1].startswith('['): print(str(count) + '. ' + GREEN_PATTERN % (v[1]), end=' ') else: print(str(count) + '. ' + GREEN_PATTERN % ('[' + v[1] + ']'), end=' ') print(v[0]) for sv in v[2]: print(GREEN_PATTERN % u' 例: ' + BROWN_PATTERN % (sv[0] + sv[1])) count += 1 print('') else: # 21 new year dict if len(v) != 2: continue print(str(count) + '. ' + GREEN_PATTERN % '[例]', end=' ') print(v[0], end=' ') print(BROWN_PATTERN % v[1]) count += 1 else: print('') def draw_zh_text(word, conf): # Word print(RED_PATTERN % word['word']) # pronunciation if word['pronunciation']: print(PEP_PATTERN % word['pronunciation']) # paraphrase if word['paraphrase']: for v in word['paraphrase']: v = v.replace(' ; ', ', ') print(BLUE_PATTERN % v) # complex if conf: # description count = 1 if word["desc"]: print('') for v in word['desc']: if not v: continue # sub title print(str(count) + '. ', end='') v[0] = v[0].replace(';', ',') print(GREEN_PATTERN % v[0]) # sub example sub_count = 0 if len(v) == 2: for e in v[1]: if sub_count % 2 == 0: e = e.strip().replace(';', '') print(BROWN_PATTERN % (' ' + e + ' '), end='') else: print(e) sub_count += 1 count += 1 # example if word['sentence']: count = 1 print(RED_PATTERN % '\n例句:') for v in word['sentence']: if len(v) == 2: print('') print(str(count) + '. ' + BROWN_PATTERN % v[0] + ' ' + v[1]) count += 1 def param_parse(param_list, word): if 'h' in param_list or '-help' in param_list: print('Usage: wd [OPTION]... [WORD]') print('Youdao is wudao, A powerful dict.') print('-h, --help display this help and exit') print('-s, --short-desc show description without the sentence') exit(0) # short conf if 's' in param_list or '-short-desc' in param_list: conf = False else: conf = True if not word: print('Usage: wdd [OPTION]... [WORD]') exit(0) return conf import sys if __name__ == '__main__': word = '' param_list = [] for v in sys.argv[1:]: if v.startswith('-'): param_list.append(v[1:]) else: word += ' ' + v word = word.strip() conf = param_parse(param_list, word) xml = get_html(word) if is_alphabet(word): info = get_text(word) draw_text(info, conf) else: info = get_zh_text(word) draw_zh_text(info, conf)
f40f9d9d96754c56f9a159c50cebe59932a50172
HJSang/leetcode
/code/py/bfs/lc_207_Course_Schedule.py
1,985
3.84375
4
# 207. Course Schedule # There are a total of numCourses courses you have to take # labeled from 0 to numCourses-1. # Some courses may have prerequisites # for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1] # Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses? # Example 1: # Input: numCourses = 2, prerequisites = [[1,0]] # Output: true # Explanation: There are a total of 2 courses to take. # To take course 1 you should have finished course 0. So it is possible. # Example 2: # Input: numCourses = 2, prerequisites = [[1,0],[0,1]] # Output: false # Explanation: There are a total of 2 courses to take. # To take course 1 you should have finished course 0, and to take course 0 you should # also have finished course 1. So it is impossible. # Constraints: # The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented. # You may assume that there are no duplicate edges in the input prerequisites. # 1 <= numCourses <= 10^5 class Solution: def canFinish(self, numCourses, prerequirites): graph = [[] for _ in range(numCourses)] visited = [0 for _ in range(numCourses)] # Create graph for x,y in prerequisites: graph[x].append(y) # visit each node for i in range(numCourses): if not self.dfs(graph, visited,i): return False return True def dfs(self,graph, visited,i): # if ith node is marked as being visited, then a cycle is found if visited[i] == -1: return False # if it is visited, then do not visit again if visited[i] == 1: return True # mark as being visited visited[i] = -1 for j in graph[i]: if not self.dfs(graph,visited,j): return False # after visit all the neighbours, mark it as done visited visited[i]=1 return True
7055d2e590c97790eadb061c37e45ac91e9ed57d
OlexandraSydorova/lab_works
/labaratory1/task2.py
389
3.8125
4
"""Обчислення конкретної функції, в залежності від введеного значення х""" from math import sin import re from validators.validators_library import validator from validators.validators_library import re_float x = float(validator(re_float,"Введіть х ")) if x<=3: print( x**2 +3*x+9) else: print(sin(x)/(x**2-9))
6fa8a226cd1cbe56d99e17e1c63cbbc4c7eb8821
zadfab/Backup
/Voodo_Prime.py
566
3.9375
4
user_input = int(input("enter the number :")) def prime(number): for i in range(2,number): if number%i == 0: print("not a prime") break else: print("proceeding...") return True return False if prime(user_input): reciprocal = str(1/user_input) if str(user_input) in reciprocal: print(user_input,"present in ",reciprocal,"this is a Voodo prime number") else: print("Not a voodo prime number") else: print("try with prime number this time")
069750d16a682f72735962d42e5d3d749f5b7cdc
raghubegur/PythonLearning
/0_tkinter/buttons.py
252
3.90625
4
from tkinter import * root = Tk() def myClick(): myLabel = Label(root, text='I clicked a button') myLabel.pack() myButton = Button(root, text='Click Me', command=myClick, fg='blue', bg='white') myButton.pack() root.mainloop()
bed46a8f641a535bc5c1ae71c9bf12a9f8d44a47
yonglin/thinkPy
/Tree.py
1,744
3.515625
4
# -*- coding: utf-8 -*- """ Created on Sun Jan 13 15:37:14 2013 @author: yuege """ class Tree: def __init__(self, cargo, left = None, right = None): self.cargo = cargo self.left = left self.right = right def __str__(self): return str(self.cargo) def printTreePostorder(tree): if tree == None: return printTreePostorder(tree.left) printTreePostorder(tree.right) print tree.cargo, def printTreeInorder(tree): if tree == None: return printTreeInorder(tree.left) print tree.cargo, printTreeInorder(tree.right) def printTreeIndented(tree, level = 0): if tree == None: return printTreeIndented(tree.right, level+1) print ' '*level + str(tree.cargo) printTreeIndented(tree.left,level+1) def getToken(tokenList, expected): if tokenList[0] == expected: del tokenList[0] return True else: return False def getNumber(tokenList): if getToken(tokenList,'('): x = getSum(tokenList) if not getToken(tokenList,')'): raise ValueError, 'missing parenthesis' return x else: x = tokenList[0] if not isinstance(x, int): return None # del tokenList[0] tokenList[:1] = [] return Tree(x, None, None) def getProduct(tokenList): a = getNumber(tokenList) if getToken(tokenList,'*'): b = getProduct(tokenList) return Tree('*',a,b) else: return a def getSum(tokenList): a = getProduct(tokenList) if getToken(tokenList,'+'): b = getSum(tokenList) return Tree('+', a ,b) else: return a
a8fea4642764d65e6e067009d20da63bdc38a24f
adjeri/Data-Structures-And-Algorithms
/Arrays-HashTables/moveZeroes.py
345
3.609375
4
def moveZeroes(nums): i = 0 while i < len(nums) - 1: j = i+1 while j < len(nums): if nums[i] == 0 and nums[j] != 0: swap = nums[i] nums[i] = nums[j] nums[j] = swap i += 1 j+= 1 i += 1 print(nums) moveZeroes([0,1,0,3,12])
2a9aaf0f3116eb0bed882c431d4e3d9f26e3bd34
juan7914/prueba1
/ejercicios clase dos 2/caracteresAa.py
337
3.921875
4
print("programa que calcula la longitud de la cadena de texto y las veces que aparece la letra a") cadena = input("ingresa tu cadena de texto o frace " ) largoCadena = len(cadena) contarA= cadena.upper().count("A") print("la longitud de tu cadena de texto es {}, y aparece la letra A en tu cadena {} veces.".format(largoCadena,contarA))
d0bb52faad6b72afc7c6058ad478fcb814d74e0b
TerryAg/code1161
/Tblock.py
1,005
3.8125
4
import turtle import random # Describe this function... def draw_T(): global x, y turtle.goto(x,y) turtle.pendown() turtle.color('#%06x' % random.randint(0, 2**24 - 1)) draw_base() turtle.right(90) turtle.forward(100) draw_top() turtle.penup() # Describe this function... def draw_base(): turtle.begin_fill() turtle.left(90) turtle.forward(100) turtle.right(90) turtle.forward(10) turtle.right(90) turtle.forward(100) turtle.right(90) turtle.forward(10) turtle.end_fill() # Describe this function... def draw_top(): turtle.begin_fill() turtle.right(90) turtle.forward(75) turtle.left(90) turtle.forward(10) turtle.left(90) turtle.forward(140) turtle.left(90) turtle.forward(10) turtle.left(90) turtle.forward(65) turtle.end_fill() # Describe this function... def move_cursor(): global x, y x = random.randint(-200, 200) y = random.randint(-200, 200) x = 0 y = 0 turtle.speed(10) for count in range(100): draw_T() move_cursor()
914b31cebd8156783ca86e3cefd13f70f387e111
nidiamarquez13/plataforma_digital
/PYTHON/ejercicio008.py
777
4.34375
4
""" STRING y mas! """ esto_es_una_string = "Hola" esto_es_otra_string = "Mundo" #Concatenar print(esto_es_una_string +' '+ esto_es_otra_string) #hola mundo #MAYUS print (esto_es_una_string.upper()) #minus print (esto_es_una_string.lower()) #Primera Mayuscula print (esto_es_una_string.capitalize()) #Poner mayuscula en cada palabra print (esto_es_una_string.title()) #me dice la longitud print(len(esto_es_una_string)) #buscar una caracter y muestra su ubicacion en indice print(esto_es_una_string.find('l')) #Imprimir solo la primera letra SLICE print(esto_es_una_string[0:2]) # ho tu le dices que inicie en cero print(esto_es_una_string[:2]) # ho asume que inicia en cero print(esto_es_una_string[3:4]) # #Radar poner al reves una palabra print(esto_es_una_string[::-1])
6b0dc222dcb6815806c73f592b163f454d48619e
IlyaChebanu/machine-learning
/k-means-1.py
867
3.609375
4
import matplotlib.pyplot as plt from matplotlib import style import numpy as np from sklearn.cluster import KMeans style.use('ggplot') # Some arbitrary points that can be easily formed into groups X = np.array([[1, 2], [1.5, 1.8], [5, 8], [8, 8], [1, 0.6], [9, 11]]) # Define the classifier to use clf = KMeans(n_clusters=2) # Train the classifier clf.fit(X) # Get the coordinates for the centroids centroids = clf.cluster_centers_ # Get the label IDs for colouring labels = clf.labels_ # List of colours colors = ['g.', 'r.', 'c.', 'b.', 'k.'] # For each feature, plot the point and colour it with the label colour for i in range(len(X)): plt.plot(X[i][0], X[i][1], colors[labels[i]], markersize=25) # Plot the centroids with an x plt.scatter(centroids[:,0], centroids[:,1], marker='x', s=150, linewidths=5) # Draw the plot plt.show()
9e6f5fc23518883a28137fd256dd0dd8837b541c
MarcosRibas/Projeto100Exercicios
/Python/ex081.py
649
4.09375
4
''' Ex081 Crie um programa que vai ler vários números e colocar em uma lista. Depois disso mostre: a) Quantos números foram digitados. b) A lista de valores de forma decrescente. c) Se o valor 5 foi digitado e está ou não na lista ''' list = [] while True: n = int(input('Digite um número: ')) list.append(n) next = str(input('Quer continuar?[s/n] ')).lower().strip() if next == 'n': break print(f'Sua lista tem {len(list)} itens') list.sort(reverse=True) print(f'Os númeroas listados em ordem decrescente: {list}') if 5 in list: print('O valor 5 está na lista') else: print('O valor 5 não está na lista')
c24a1055bce8c053b4fb7c249a19d794c554009f
huisai/Learning-Data-Mining-with-Python
/流畅的Python/C2.4+5.py
747
3.671875
4
""" Created on Mon Apr 9 14:46:18 2018 <流畅的Python2.4+5> @author: Ethan """ #1-切片和区间忽略最后一个元素:; # 快速返回元素个数 range(3) # 后一个坐标减去前一个坐标即为切片长度 len = stop - start # 利用任意一个坐标将序列分为两个不相重叠的两部分 my_list[:x] my_list[x:] #2-对切片进行赋值 l = list(range(10)) l[2:5] = [20] del l[5:7] #报出异常,此处仅可以赋值可迭代对象 l[2:5] = 100 l[2:5] = [100] #3-对列表使用+和* #当操作对象的引用时,引起注意,以嵌套列表为例 #正常使用 board=[['_'] * 3 for i in range(3)] board[1][2]='X' #三个列表的最后一个元素均为'X' weird_board = [['_']*3] * 3 weird_board[1][2] = 'X'
a914b1311076bc74f29049639af2e66bbdb8e88f
Eudasio-Rodrigues/Linguagem-de-programacao
/lista aula 07/questao 06.py
298
4.125
4
#Escreva uma função que receba como argumento uma lista e uma tupla #e retorne um set composto pelas duas coleções. lista = [x for x in range(0,11)] tupla = ('eudasio',"mombaca",27) def converte_set(lista,tupla): a = set(lista) b = set(tupla) print(a|b) converte_set(lista,tupla)
315e4b278d7404e489330fc0ff1f401c0e36cc03
DanielXuuuuu/AI_Principle
/hw2/Sudoku_Solver/BT.py
1,035
3.609375
4
# back-tracking (Constraint Satisfaction Problem, CSP) def is_repeat(puzzle, row, col, num): for i in range(9): if puzzle[row][i] == num: return True for i in range(9): if puzzle[i][col] == num: return True block_x = int(row / 3) * 3 block_y = int(col / 3) * 3 for i in range(block_x, block_x + 3): for j in range(block_y, block_y + 3): if puzzle[i][j] == num: return True return False def solve_puzzle(puzzle, row, col): if row > 8: return True if puzzle[row][col] == 0: for i in range(1, 10): if not is_repeat(puzzle, row, col, i): puzzle[row][col] = i if solve_puzzle(puzzle, int(row + (col + 1) / 9), (col + 1) % 9): return True puzzle[row][col] = 0 else: if solve_puzzle(puzzle, int(row + (col + 1) / 9), (col + 1) % 9): return True return False
b1accb3e1d2ec4593f5e1d65c5c403bdb28cb18e
Naysla/Machine_Learning
/1_Python_/Example_Comprehension_dictionary.py
371
3.75
4
#Practice from datacamp course: Phyton Data Science Tollbox # Create a list of strings: fellowship fellowship = ['hi', 'this', 'is', 'an', 'example'] # Create dict comprehension: new_fellowship new_fellowship = {member:len(member) for member in fellowship} # Print the new dictionary print(new_fellowship) #Result #{'hi': 2, 'this': 4, 'is': 2, 'an': 2, 'example': 7}
aabbb164733f55499d87ec9a03804e32b76c15e2
anvarknian/preps
/Arrays/sorting/selection_sort.py
377
3.921875
4
value1 = 5 value2 = 7 array = [1, 2, 3, 4, 5, 6] unsorted_array = [1, 2, 3, 4, 5, 6, 4, 3, 2, 6, 7, 8, 0] def selection_sort(A): for i in range(len(A)): min_idx = i for j in range(i + 1, len(A)): if A[min_idx] > A[j]: min_idx = j A[i], A[min_idx] = A[min_idx], A[i] return A print(selection_sort(unsorted_array))
32cf300e0a5a4459051ba1b052258a07354a6b66
casjunior93/Introdu--o-ao-Python---DIO
/aula4-for.py
258
3.703125
4
#numeros primos #itera de 1 até 101 for num in range(101): #verifica se o número é primo div = 0 for x in range(1, num+1): resto = num % x if resto == 0: div += 1 if div == 2: print('{}'.format(num))
58f33eba851006188bba21a86bbf119d84569a4e
parayc/FaceTrack_UE4
/pythonScripts/knn.py
608
3.578125
4
from sklearn.neighbors import KNeighborsClassifier import numpy as np import pandas as pd import csv as csv def buildKNN(file,PCA=False): df = pd.read_csv(file, header=0) # Store the id column before dropping it id_column =df["id"] # Drop it from th df = df.drop(["id"],axis=1) # Convert to usable format train_data = df.values # Initialize KNN neigh =KNeighborsClassifier() neigh.fit(train_data[0::,1::],train_data[0::,0]) return neigh def buildKNN_PCA(): """ This uses PCA to build KNN, after reading an article explaining the pitfalls that larger values might cause.""" print "done"
11c3081a6050aa729fd9d3d562bb63b423c68b8c
git-1024/Python
/Python/diffPythonHtml01.py
918
3.53125
4
#!/usr/local/env python # -*- coding: utf-8 -*- import difflib import sys try: textfile1=sys.argv[1] textfile2=sys.argv[2] except Exceptions,e: print "Error:"+str(e) print "Usage:diffPythonHtml01.py filename1 filename2" sys.exit() def readfile(filename): try: fileHandle = open(filename,'rb') text=fileHandle.read().splitlines() #读取后以行进行分隔 fileHandle.close() return text except IOError as error: print('Read file Error:'+str(error)) sys.exit() if textfile1=="" or textfile2=="": print "Usage:diffPythonHtml01.py filename1 filename2" sys.exit() text1_lines = readfile(textfile1) #调用readfile函数,获取分隔后的字符串 text2_lines = readfile(textfile2) d = difflib.HtmlDiff() #创建HtmlDiff()类对象 print d.make_file(text1_lines, text2_lines) #通过make_file方法输出html格式对比结果
519abf741da9d46e9c52a718bca6655831de1ad4
DominikaJastrzebska/PyLadies-projects
/Volume of cuboid.py
498
4.03125
4
a = float(input('Enter the side a of the cuboid: ')) b = float(input('Enter the side b of the cuboid: ')) H = float(input('Enter the height H of the cuboid: ')) V = a*b*H if a != b and a != H and b != H: classification = '' if (a == b and a != H) or (a == H and b != H) or (b == H and a != H): classification = 'The base of cuboid is square.' elif a == b and b == H and a == H: classification = 'Cuboid is a cube' print('Volume of cuboid is: ', str(V), classification)
34ba42316d825ba29f164f51d16c02cce47c77b0
jorgeg73/PythonPro
/numeros al azar.py
200
3.625
4
import random #numeros al azar print "Numeros al Azar" print random.random() print "Da el rango:\n" enum= input ("Primer rango\n") enum1 = input ("Segundo Rango\n") print random.randint(enum,enum1)
c15ca359fa54695fd220d37ebba97db2c86ade69
GavinAlison/python-learning
/06/consumer.py
1,179
3.578125
4
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2019/1/2 21:31 # @Author : alison # @File : consumer.py # 协程 # 协程看上去也是子程序,但执行过程中,在子程序内部可中断,然后转而执行别的子程序,在适当的时候再返回来接着执行。 # # 注意,在一个子程序中中断,去执行其他子程序,不是函数调用,有点类似CPU的中断。比如子程序A、B: # # 协程本质 # Python对协程的支持是通过generator实现的。 # 在generator中,我们不但可以通过for循环来迭代,还可以不断调用next()函数获取由yield语句返回的下一个值。 # 但是Python的yield不但可以返回一个值,它还可以接收调用者发出的参数。 def consumer(): r = '' while True: n = yield r if not n: return print('[CONSUMER] Consuming %s...' % n) r = '200 OK' def produce(c): c.send(None) n = 0 while n < 5: n = n + 1 print('[PRODUCER] Producing %s...' % n) r = c.send(n) print('[PRODUCER] Consumer return: %s' % r) c.close() c = consumer() produce(c)
af03b6cc9b6507c3f751a4aa18c8760e31e0ca26
JoaoFiorelli/ExerciciosCV
/Ex003.py
131
3.90625
4
n1 = int(input('Digite um número: ')) n2 = int(input('Digite outro número: ')) n = n1 + n2 print('A soma desses número é ',n)
425b9277016f9297a02943ef3aa1ef9b55025572
karanpathak/SPOJ
/CANDY3.py
147
3.6875
4
t=input() for _ in xrange(t): s=raw_input() n=input() sum=0 for _a in xrange(n): sum+=input() if sum%n==0: print "YES" else: print "NO"
82cc540a4314db5aa0f17a1b664936bb7390410b
Ranxf/laonanhai
/day3/3-11 func_demo2.py
834
3.84375
4
""" 为什么要使用函数:减少重复代码;使程序变得可扩展;使程序变得易维护 日志文件处理(框架搭建必须有的) """ import time def logger(): time_format = '%Y-%m-%d %X' # 年月日,时分秒 time_current = time.strftime(time_format) with open('a.txt', 'a+') as f: f.write('%s end action\n' % time_current) # 类似写日志文件 # 模拟一个功能,并将日志文件写入日志文件 def test1(): """文档描述""" print('in the test1') # 日志追加 logger() # 写入日志 # 模拟另外一个功能 def test2(): print('in the test2') # 日志描述 logger() # 写入日志 # 模拟第三个功能 def test3(): print('in the test3') logger() # 写入日志 # 调用各个功能模块 test1() test2() test3()
b0e1aa14fb4b68f97b7d10ec15d402e985eb884f
dianafa/coding_tasks_python
/karate-chop/binary_search3.py
1,054
3.515625
4
import unittest def search(x, tab): return find(x, tab, 0, len(tab) - 1) def find(x, tab, start, end): if end < start: return -1 if end == start: if tab[end] == x: return end else: return -1 pivot = (start + end) / 2 if x < tab[pivot]: return find(x, tab, start, pivot) if x > tab[pivot]: return find(x, tab, pivot + 1, end) return pivot def test_search(): assert search(3, []) == -1 assert search(3, [1]) == -1 assert search(1, [1]) == 0 assert search(1, [1, 3, 5]) == 0 assert search(3, [1, 3, 5]) == 1 assert search(5, [1, 3, 5]) == 2 assert search(0, [1, 3, 5]) == -1 assert search(2, [1, 3, 5]) == -1 assert search(4, [1, 3, 5]) == -1 assert search(6, [1, 3, 5]) == -1 assert search(1, [1, 3, 5, 7]) == 0 assert search(3, [1, 3, 5, 7]) == 1 assert search(5, [1, 3, 5, 7]) == 2 assert search(7, [1, 3, 5, 7]) == 3 assert search(0, [1, 3, 5, 7]) == -1 assert search(2, [1, 3, 5, 7]) == -1 assert search(4, [1, 3, 5, 7]) == -1 assert search(6, [1, 3, 5, 7]) == -1 assert search(8, [1, 3, 5, 7]) == -1
388c3fadc989725441e616f78054122c34de9d85
sujith1919/TCS-Python
/puzzle.py
771
3.8125
4
#puzzle board=[3,5,4,1,0,2,6,7,8] validmoves={0:(1,3),1:(0,2,4),2:(1,5),3:(0,4,6), 4:(1,3,5,7),5:(4,2,8),6:(3,7),7:(4,6,8),8:(5,7)} def PrintBoard(): print board[0],board[1],board[2] print board[3],board[4],board[5] print board[6],board[7],board[8] def GetMove(): return int(raw_input("\n Enter move : ")) def GetPosition(num): return (board.index(num)) def solved(): if board==[1,2,3,4,5,6,7,8,0]: return True else: return False while True: PrintBoard() Move=GetMove() MovePosition= GetPosition(Move) ZeroPosition= GetPosition(0) #check for valid move if MovePosition in validmoves[ZeroPosition]: #swap positions board[ZeroPosition]=Move board[MovePosition]=0 if solved(): print "Congratulations" break
00b437101a71858975daabd4dad1ac867f1a0265
nguyenphuclan/Sorting-and-Searching
/binarySearch.py
535
3.84375
4
def binary(myItem, mylist): bot = 0 top = len(mylist) - 1 found = False while bot <= top and not found: middle = (bot + top) // 2 if mylist[middle] == myItem: found = True elif mylist[middle] < myItem: bot = middle + 1 else: top = middle -1 return found if __name__ == "__main__": numberList = [2, 5, 7, 9, 34, 76, 91, 186, 868] item = int(input("Hay nhap so ban muon tim: ")) isFound = binary(item, numberList) if isFound: print("So cua ban co trong danh sach") else: print("So cua ban ko co trong ds")
58b80867d306a44d223410adabdbec2ea91b2663
WiPeK/python
/python_challenging/question11.py
193
3.5625
4
#!/usr/bin/env python # -*- coding: utf-8 -*- #podzielne przez 5 inp = [x for x in input().split(",")] res = [] for i in inp: if int(i, 2) % 5 == 0: res.append(str(i)) print (",".join(res))
ebff0801fcd35de67bfe2c78b1718011dc3381ed
namratab94/LeetCode
/reorder_log_files.py
1,198
3.609375
4
''' Problem Number: 937 Difficulty level: Easy Link: https://leetcode.com/problems/reorder-log-files/ Author: namratabilurkar ''' ''' Input: ["a1 9 2 3 1","g1 act car","zo4 4 7","ab1 off key dog","a8 act zoo"] Output: ["g1 act car","a8 act zoo","ab1 off key dog","a1 9 2 3 1","zo4 4 7"] ''' class Solution: def reorderLogFiles(self, logs): """ :type logs: List[str] :rtype: List[str] """ # Objective is to define a custom sorter. ''' GIVEN SOLUTION: def f(log): id_, rest = log.split(" ", 1) return (0, rest, id_) if rest[0].isalpha() else (1,) return sorted(logs, key = f) ''' digits = [] letters = [] # dividing the logs into two parts, one for digits and another for letters for log in logs: if log.split()[1].isdigit(): digits.append(log) else: letters.append(log) letters.sort(key=lambda x: x.split()[0]) # Sort based on the identifier when there is a clash in the letters letters.sort(key=lambda x: x.split()[1:]) result = letters + digits return result
756a094761a5c4bc91feca712e305a5d2051a2bd
mlmldata/raspi_tempProbe
/mug_temp.py
1,319
4.28125
4
''' Write a program that measures and records temperature temperatures using the raspberry pi and the attached temperature sensor. ''' import tempProbe as tp # This is the library for the TempProbe class that we will use import numpy as np # This code will create and initialize an instance of an object called probe from the TempProbe class. probe = tp.TempProbe() # We will use the get_temp() function from the probe object to return a temperature probe.get_temp() # 1. Write a program that prints the current time and temperature together # on one line # # hint: the following command will return the current time: # # np.datetime64('now') # 2. Write a function that writes data to a text file that can be easily # read later with pandas, including column headers. # # hint: the following code creates a text file that contains two lines. # # f = open('testfile.txt','w') # f.write('a\nb') # f.close() # 3. Test the temperature sensor - place the temperature sensor in a cup # of warm water and let it adjust to its surroundings. Then place the # sensor in a cup of cold water. Record the data for a minute or two. # 4. Analyze the data to estimate how long it takes to adjust. This can be # done in a Jupyter Notebook on your own computer. Compare your estimate # with another group.
68db3b7d4610eb3411f59271af19eca1722c74d5
zuobing1995/tiantianguoyuan
/第一阶段/day02/exercise/birthday.py
308
4.03125
4
# 1. 今天是小明的20岁生日, 假设每年有365天, # 计算它过了多少个星期天,余多少天(不要求精确) # print('它过了', 20 * 365 // 7, '个星期天') # print("余", 20 * 365 % 7, '天') days = 20 * 365 print('它过了', days // 7, '个星期天') print("余", days % 7, '天')
1cb4beb79b6a8cac38a4b8677200619d6f543751
Banjiushi/wujiuDict
/wujiuDict.py
1,196
3.75
4
from tkinter import Tk, Button, Entry, Label, Text, END from main import main, getInfo class Application: def __init__(self): # 主窗口 self.window = Tk() self.window.title('无咎词典') self.window.geometry("280x350+500+200") # 输入框 self.entry = Entry(self.window) # pack grid place self.entry.place(x=10, y=10, width=200, height=25) # 查询按钮 self.submit_btn = Button(self.window, text='查询', command=self.submit) self.submit_btn.place(x=220, y=10, width=50, height=25) # 翻译标签 self.label = Label(self.window, text='翻译结果:') self.label.place(x=10, y=40) # 显示框 self.text = Text(self.window, background='#ccc') self.text.place(x=10, y=65, width=260, height=275) def run(self): self.window.mainloop() def submit(self): content = self.entry.get() # 读取输入框中的数据 rs = main(content) self.text.delete(1.0, END) # 清除输出框 self.text.insert(END, rs) # 在输出框中显示数据 if __name__ == '__main__': app = Application() app.run()
12db01a1e965c3d0127dbfea941e2d8e03a8dd6d
abhishekkrsaw/Online-gas-booking-System
/register.py
3,030
3.5
4
from tkinter import * from tkinter import messagebox def back(): window.destroy() import interface def validation(): if v1.get()=='': messagebox.showwarning('Error!!','Please enter your First Name!!') elif v2.get()=='': messagebox.showwarning('Error!!','Please enter your Last Name!!') elif v3.get()=='': messagebox.showwarning('Error!!','Please enter your Mobile Number!!') elif len(v3.get())!=10: messagebox.showwarning('Error!!','Please enter valid Mobile Number!!') elif v4.get()=='': messagebox.showwarning('Error!!','Please enter your Email Id!!') elif '@' not in v4.get() or '.com' not in v4.get(): messagebox.showwarning('Error!!','Please enter valid Email Id!!') else: f=open('data.txt','a') f.write('\n') f.write(v1.get()) f.write(' ') f.write(v2.get()) f.write(' ') f.write(v3.get()) f.write(' ') f.write(v4.get()) f.close() f=open('show.txt','w') f.write('\n') f.write(v1.get()) f.write(' ') f.write(v2.get()) f.write(' ') f.write(v3.get()) f.write(' ') f.write(v4.get()) f.close() messagebox.showinfo('Thank You', 'You are now registered') window.destroy() import interface window=Tk() window['bg']='pink' window.geometry('500x600') frame=Frame(window,bg='pink') frame.pack(pady=20) head=Label(frame,text='New LPG Connection',font=('algerian',20,'underline','bold'),bg='pink',fg='dark blue') head.grid() frame0=Frame(window,bg='pink') frame0.pack() j=PhotoImage(file='LPG.png') j=j.subsample(5) image1=Label(frame0,image=j) image1.grid(row=1) frame1=Frame(window,bg='pink') frame1.pack() l1=Label(frame1,text="First Name",bg='pink',font=('calibri',12,'bold')) l1.grid(row=2,pady=10) v1=StringVar() e1=Entry(frame1,textvariable=v1) e1.grid(row=3,ipadx=20) l2=Label(frame1,text="Last Name",bg='pink',font=('calibri',12,'bold')) l2.grid(row=4,pady=10) v2=StringVar() e2=Entry(frame1,textvariable=v2) e2.grid(row=5,ipadx=20) l3=Label(frame1,text="Mobile Number",bg='pink',font=('calibri',12,'bold')) l3.grid(row=6,pady=10) v3=StringVar() e3=Entry(frame1,textvariable=v3) e3.grid(row=7,ipadx=20) l4=Label(frame1,text="Email",bg='pink',font=('calibri',12,'bold')) l4.grid(row=8,pady=10) v4=StringVar() e4=Entry(frame1,textvariable=v4) e4.grid(row=9,ipadx=20) frame5=Frame(window,bg='pink') frame5.pack(ipady=10) button=Button(frame5,text="Register",font=('arial',16,'bold'),activebackground='red', bg='light blue',command=validation,cursor='hand2') button.grid(row=1,column=2,ipadx=30,ipady=8,pady=50,padx=10) button1=Button(frame5,text="Back",font=('arial',16,'bold'),activebackground='red', bg='light blue',command=back,cursor='hand2') button1.grid(row=1,column=1,ipadx=40,ipady=8,pady=50,padx=30)
d9a85c435ad766b2bccb3e523e0cc4ebae22141e
Tanmay53/cohort_3
/submissions/sm_103_apoorva/week_13/day_4/count_vowels.py
255
3.765625
4
userInput = list(input("Enter values of list with space between: ").split()) print(userInput) vowels = ["A","E","I","O","U","a","e","i","o","u"] count = 0 for i in userInput: for j in i: if j in vowels: count += 1 print(count)
9746c4f6b92251f42c09eb39a72b0ae207be31f7
sunxinzhao/LeetCode_subject
/simple/number/202.py
1,362
4.03125
4
# coding=utf-8 ''' 编写一个算法来判断一个数是不是“快乐数”。 一个“快乐数”定义为:对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和,然后重复这个过程直到这个数变为 1,也可能是无限循环但始终变不到 1。如果可以变为 1,那么这个数就是快乐数。 示例:  输入: 19 输出: true 解释: 12 + 92 = 82 82 + 22 = 68 62 + 82 = 100 12 + 02 + 02 = 1 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/happy-number 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。 ''' class Solution(object): def isHappy(self, n): """ :type n: int :rtype: bool """ list_data = [] while n != 1: num = 0 # 记录当前数按位平方和之后的值 num1 = n # 分解num1求和是的值 while num1: num += (num1 % 10) * (num1 % 10) num1 = num1 / 10 n = num print(n) if n not in list_data: list_data.append(n) else: return False return True if __name__ == '__main__': print(Solution().isHappy(999999999))
755c53f29d56f0cf9645229d3dd2689f81c1cef1
SureshUppelli/Python-Scripts
/test.py
142
4.1875
4
val = input ("Enter String: ") rev = val [::-1] if val == rev: print ("String is palindrome") else: print ("String is not Palindrome")
a756a0ead6ef1dfd8d7c9a11845808faa886e348
suyundukov/LIFAP1
/TD/TD2/Code/Python/5.py
375
3.953125
4
#!/usr/bin/python # Tester si un entier choisi par USER est multiple de 5 ou de 7 print('Donne moi une valeur : ', end='') a = int(input()) if (a % 5 == 0) and (a % 7 == 0): print('C\'est le multiple de 5 et de 7') elif a % 5 == 0: print('C\'est le multiple de 5') elif a % 7 == 0: print('C\'est le multiple de 7') else: print('C\'est ni l\'un ni l\'autre')
6958d64ab507252e7adbedec1dc11089a1b432ef
ShiftingNova/bars
/lab.py
289
3.6875
4
# Jordan Walker CSC110 this code takes an imput and creates a bar thing and puts # on the left side of the bar code = str(input("Enter bar string:\n")) print("+---------+") i = 0 while i<len(code): print("|"+ "#" * int(code[i]) + " " * (9-int(code[i])) + "|") i = i +1 print("+---------+")
ff12a1c6756c31988c8f4d422e96086fc75ee8d2
moneymashi/SVN_fr.class
/pythonexp/a01_start/a15_tuple.py
654
3.65625
4
''' Created on 2017. 7. 19. @author: kitcoop Tuple : 읽기 전용 - 리스트 보다 속도 빠름. ''' t1 = "a", "b", "c","a" t2 = ("a", "b", "c","a") t3 = (1, 2, 3,4) print(t1,t2) print(t1, t1*2, len(t1), t1.count("a"), t1.index("b")) print(t3, t3*2, len(t3)) p =(1,2,3) # p[1]=20 수정 불가 ''' 튜플데이터를 list으로 변경''' q=list(p) print(q) q[1] = 20 print(q) ''' 형변환 ''' p = tuple(q) print(p) from urllib.parse import urlparse a = 'http://www.naver.com:80/index.html' print(a) re = urlparse(a) print(re) print(re.netloc) from urllib.parse import urlunparse re2 = urlunparse(re) print(re2)
ebcaa344f5afd6b1482d8746d37bfc626737c352
harrygraham/DeepLearning-CreditCardFraud
/simple_logistic_regression.py
2,842
3.703125
4
import pandas as pd import matplotlib.pyplot as plt import numpy as np import itertools def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=0) plt.yticks(tick_marks, classes) if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] #print("Normalized confusion matrix") else: 1#print('Confusion matrix, without normalization') #print(cm) thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, cm[i, j], horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') data = pd.read_csv("creditcard.csv") # Examine data # print data.head() # Print a plot of class balance # classes = pd.value_counts(data['Class'], sort=True) # classes.plot(kind = 'bar') # plt.show() # Normalise and reshape the Amount column, so it's values lie between -1 and 1 from sklearn.preprocessing import StandardScaler data['norm_Amount'] = StandardScaler().fit_transform(data['Amount'].reshape(-1,1)) # Drop the old Amount column and also the Time column as we don't want to include this at this stage data = data.drop(['Time', 'Amount'], axis=1) from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split, KFold, cross_val_score from sklearn.metrics import confusion_matrix,precision_recall_curve,auc,roc_auc_score,roc_curve,recall_score,classification_report # Call the logistic regression model with a certain C parameter lr = LogisticRegression(C = 10) # Assign variables x and y corresponding to row data and it's class value X = data.ix[:, data.columns != 'Class'] y = data.ix[:, data.columns == 'Class'] # Whole dataset, training-test data splitting X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = 0.3, random_state = 0) # CROSS VALIDATION scores = cross_val_score(lr, X_train, y_train, scoring='recall', cv=5) print scores print 'Recall mean = ', np.mean(scores) lr.fit(X_train, y_train) y_pred = lr.predict(X_test) cm = confusion_matrix(y_test, y_pred) class_names = [0,1] plt.figure() plot_confusion_matrix(cm, classes=class_names, title='Confusion matrix') plt.show() from sklearn.metrics import classification_report print classification_report(y_test, y_pred)
08a8270831b2b6cf129fb2755338ceb84273eae7
erikanni/physics-calc
/menudict.py
497
3.609375
4
def func_a(): print("func a") def func_b(): print("func b") def func_c(): print("func c") def func_d(): print("func d") def main(): print(''' function a function b function c function d ''') menu_dict = {"a": func_a, "b": func_b, "c": func_c, "d": func_d} answer = input("select function: ").lower()[0] if answer in menu_dict: menu_dict[answer]() else: print("No such function") if __name__ == "__main__": main()
250a38503a3a3d55d4ca5098c1dca6d3d4c5f62b
MagicMoa/Learning-Python
/Dictionaries.py
1,616
4.84375
5
#Lesson 5: Dictionaries #Dictionaries are groups of values that can be defined with key-value pairs country = {'Name': 'Switzerland', 'Size': 'Small', 'Continent': 'Europe', 'Cities': ['Zurich', 'Basel']} print (country) print (country['Size']) #Can access the value for a specified key print (country.get('Name')) #Alternative method, returns "none" for nonexistent key instead of error print (country.get('Climate')) print (country.get('Climate', 'Not Found')) #Specifies what to return for nonexistent key #5.1: Adding and Updating Dictionary Entries country['Climate'] = 'Temperate' country['Name'] = 'Brazil' print (country) #As an alternative, update method allows us to change multiple entries at once country.update({'Size':'Large', 'Continent':'South America', 'Cities':['Rio de Janeiro', 'Brasilia']}) print (country) #5.2 Deleting Dictionary Entries del country['Continent'] #Deletes a specific key print(country) brazilian_cities = country.pop('Cities') #Pops off specific value, which can then be assigned print(brazilian_cities) #5.3: Looping through Keys and Values in Dictionaries country = {'Name': 'Switzerland', 'Size': 'Small', 'Continent': 'Europe', 'Cities': ['Zurich', 'Basel']} print (len(country)) #Prints the dicitonary's length print (country.keys()) #Prints the dictionary's keys print (country.values()) #Prints the dictionary's values print (country.items()) #Prints the dictionary's keys and values for Item in country: print (Item) #Without a method, a for loop will only print a dictionary's keys for key, value in country.items(): print (key, value)
872a18feb16cd8cb315305fdb5aaffeca821d6b2
dr-dos-ok/Code_Jam_Webscraper
/solutions_python/Problem_96/1877.py
1,181
3.71875
4
def should_add(s,p,ts): if(p == 0): return True,s if(ts == 0): return False,s d = int(ts/3) if(ts%3 == 0): if(d >= p): return True,s elif (d+1 >= p) and (s>0): return True,s-1 else: return False,s elif ((ts-1)%3 ==0): if(d+1 >= p): return True,s else: return False,s else: if(d+1 >= p): return True,s elif(d+2>=p) and (s>0): return True,s-1 return False,s def score_calc(n,s,p,ts): sum = 0 for i in range(0,n): flag,s = should_add( s, p, int(ts[i]) ) if(flag):sum=sum+1 return sum file = open("b.txt","r") raw = file.readlines() final_score = '' index = 0 for txt in raw: if index==0: nl = int(txt) index=index+1 else: result = txt.rstrip('\n').split(' ') n = int(result[0]) s = int(result[1]) p = int(result[2]) ts = result[3:] final_score = "Case #"+str(index)+": "+str(score_calc(n,s,p,ts)) print final_score index = index+1
c216c5c95d36cee7842255a7e618d70856781a32
ramson/randomImage
/LineCollection.py
1,008
3.578125
4
from Line import Line from Point import Point from random import randint class LineCollection: def __init__(self, max_lines, max_x, max_y): self.__lines = [] self.__maximum_number_of_lines = max_lines self.__max_x = max_x self.__max_y = max_y def get_lines(self): return self.__lines def add_line(self, point): line = Line(point, self.__max_x, self.__max_y) self.__lines.append(line) def add_point_to_any_line(self): size = len(self.__lines) if size >= self.__maximum_number_of_lines: size = size - 1 random = randint(0, size) if random >= len(self.__lines): # add point in new line self.add_line(self.generate_random_point()) return # add point to existing line self.__lines[random].add_next_point() def generate_random_point(self): return Point.generate_random_point(self.__max_x, self.__max_y)
c5f71bbecb940ba9d2e3769e551877b99cf41e52
VachaArraniry/python_portfolio
/inheritance.py
888
3.84375
4
class Product: def __init__(self, name, price): self.name = name self.price = price def calculate_discount_price(self, discount): return self.price - (self.price * (discount/100)) class Shoes(Product): def __init__(self, name, price, brand, size, color): Product.__init__(self, name, price) self.brand = brand self.size = size self.color = color class Book(Product): def __init__(self, name, price, author, genre): Product.__init__(self, name, price) self.author = author self.genre = genre air_max = Shoes(name="Nike Air Max", price=4000000, brand="Nike", size=43, color="White") python_book = Book(name="Python Book", price=2000, author="John", genre="Computer") print(air_max.price) print(python_book.author) print(air_max.calculate_discount_price(50))
d98a58623db4f6883a06fde2cce02297a93cb650
dahu1/core-scrapy-learning
/t1.py
587
3.59375
4
#!/usr/bin/python #coding=utf-8 #author=dahu import pprint,sys reload(sys) sys.setdefaultencoding('utf-8') b='haha' def file_size(name): if name.endswith('g') or name.endswith("G"): a=1000*1000*1000 elif name.endswith('m') or name.endswith("M"): a=1000*1000 elif name.endswith('k') or name.endswith("K"): a=1000 else:a=10 # b='lele' print b return float(name[:-1])*a if __name__ == '__main__': print file_size("150") a=['hehe','haha'] print sum([len(i) for i in a]) a=['我爱你','hello'] print len("我爱你")
b093cd47bafb1651990639c5f71d521f64ab1fc9
SongGithub/algorithm-data_structures
/tree.py
6,793
4.09375
4
"""implementation of Binary Tree""" class BinaryTreeNode(object): def __init__(self, data, left=None, right=None, parent=None): self.data = data self.left = left self.right = right self.parent = parent def __str__(self): return str(self.data) def get_data(self): return self.data def get_left(self): return self.left def get_right(self): return self.right def get_parent(self): return self.parent def set_left(self, left): self.left = left def set_right(self, right): self.right = right class BinaryTree(object): """implement a binary tree Protocol: any data has value less than value of its parent node will be placed on the left child node. While the ones greater, will be placed to the right child node """ def __init__(self): self.root = None self.tree_depth = int(0) self.node_sum = int(0) self.traverse_result = [] def insert(self, data): new_node = BinaryTreeNode(data) current_node = self.root # print('begin inserting : ' + str(data)) if self.root: # Determine left/right side should be chosen for the new node fulfill_status = False while not fulfill_status: if data >= current_node.get_data(): if current_node.get_right(): # print('move to RIGHT, and dive to next level') current_node = current_node.get_right() else: current_node.right = new_node new_node.set_parent(current_node) fulfill_status = True else: if current_node.get_left(): # print('move to LEFT, and dive to next level') current_node = current_node.get_left() else: # empty node slot found current_node.left = new_node new_node.set_parent(current_node) fulfill_status = True # 3. verify status on the current node # print('Current parent node = ' + str(current_node.get_data())) # print('Child status: ' # + 'left=' + str(current_node.get_left()) # + ' right=' + str(current_node.get_right())) # print('new child\'s parent node is:' + str(new_node.get_parent())) else: # print('Building a new tree now, root = ' + str(data)) self.root = new_node # print('Finishing inserting...' + '#' * 30) def query_recursive(self, node, data): # print ('beginning recursive querying data {}'.format(data)) found_status = False if node: if node.get_left(): self.query_recursive(node.get_left(), data) if data == node.get_data(): found_status = True print('Data Entry: {} is FOUND'.format(data)) if node.get_right(): self.query_recursive(node.get_right(), data) return found_status or True def delete(self, data): """there are 3 possible scenarios: 1. the node has no child delete the node and mark its parent node that 'node.next = None' 2. the node has 1 child. delete the node and re-connect its parent node with its child node 3. the node has 2 children find the Smallest key in the node's Right sub-tree replace the node with the Smallest key """ current_node = self.root print('begin deleting data : {} '.format(data) + '#' * 50) if self.root: # Determine left/right side should be chosen for the new node found_status = False while not found_status: if data == current_node.get_data(): parent_node_data = current_node.get_parent().get_data() print('Parent Node is ' + str(parent_node_data)) current_node = current_node.get_parent() if data >= parent_node_data: current_node.set_right(None) print ('removing RIGHT') else: current_node.set_left(None) print('removing LEFT') found_status = True break elif data > current_node.get_data(): if current_node.get_right(): # print('move to RIGHT, and dive to next level') current_node = current_node.get_right() else: break # no existing node larger than the current node. else: if current_node.get_left(): # print('move to LEFT, and dive to next level') current_node = current_node.get_left() else: break if found_status: print("The data entry: {} found and deleted ".format(str(data)) + '#' * 30) # print('my parent node is ' + str(current_node.get_parent())) else: print("Attention! The data entry: {} is not found ".format(str(data)) + '#' * 30 + '\n') return found_status else: print("Attention! The data entry: {} is not found because the tree doesn't exist ".format(str(data)) + '#' * 30 + '\n') return False def traverse_inOrder(self, node): result = [] def traverse_inOrder_worker(node): """Steps: 1 Go Left 2 Process current node 3 Go right""" if node.get_data(): if node.get_left(): traverse_inOrder_worker(node.get_left()) # result.append(node.get_data()) result.append(node.get_data()) if node.get_right(): traverse_inOrder_worker(node.get_right()) traverse_inOrder_worker(node) print(result) if __name__ == '__main__': INPUT_LIST = [50, 76, 21, 4, 32, 64, 15, 52, 14, 100, 83, 80, 2, 3, 70, 87] b = BinaryTree() for i in INPUT_LIST: b.insert(i) b.traverse_inOrder(b.root) b.delete(3) print(b.query_recursive(b.root, 4)) b.traverse_inOrder(b.root)
1402f9912860e1fbb84f1cde73c4d4283498f3e0
SocioProphet/CodeGraph
/kaggle/python_files/sample851.py
27,669
4.3125
4
#!/usr/bin/env python # coding: utf-8 # ## How Autoencoders work - Understanding the math and implementation # # ### Contents # # <ul> # <li>1. Introduction</li> # <ul> # <li>1.1 What are Autoencoders ? </li> # <li>1.2 How Autoencoders Work ? </li> # </ul> # <li>2. Implementation and UseCases</li> # <ul> # <li>2.1 UseCase 1: Image Reconstruction </li> # <li>2.2 UseCase 2: Noise Removal </li> # <li>2.3 UseCase 3: Sequence to Sequence Prediction </li> # </ul> # </ul> # # <br> # # ## 1. Introduction # ## 1.1 What are Autoencoders # # Autoencoders are a special type of neural network architectures in which the output is same as the input. Autoencoders are trained in an unsupervised manner in order to learn the exteremely low level repersentations of the input data. These low level features are then deformed back to project the actual data. An autoencoder is a regression task where the network is asked to predict its input (in other words, model the identity function). These networks has a tight bottleneck of a few neurons in the middle, forcing them to create effective representations that compress the input into a low-dimensional code that can be used by the decoder to reproduce the original input. # # A typical autoencoder architecture comprises of three main components: # # - **Encoding Architecture :** The encoder architecture comprises of series of layers with decreasing number of nodes and ultimately reduces to a latent view repersentation. # - **Latent View Repersentation :** Latent view repersents the lowest level space in which the inputs are reduced and information is preserved. # - **Decoding Architecture :** The decoding architecture is the mirro image of the encoding architecture but in which number of nodes in every layer increases and ultimately outputs the similar (almost) input. # # ![](https://i.imgur.com/Rrmaise.png) # # A highly fine tuned autoencoder model should be able to reconstruct the same input which was passed in the first layer. In this kernel, I will walk you through the working of autoencoders and their implementation. Autoencoders are widly used with the image data and some of their use cases are: # # - Dimentionality Reduction # - Image Compression # - Image Denoising # - Image Generation # - Feature Extraction # # # # ## 1.2 How Autoencoders work # # Lets understand the mathematics behind autoencoders. The main idea behind autoencoders is to learn a low level repersenation of a high level dimentional data. Lets try to understand the encoding process with an example. Consider a data repersentation space (N dimentional space which is used to repersent the data) and consider the data points repersented by two variables : x1 and x2. Data Manifold is the space inside the data repersentation space in which the true data resides. # In[ ]: from plotly.offline import init_notebook_mode, iplot import plotly.graph_objs as go import numpy as np init_notebook_mode(connected=True) ## generate random data N = 50 random_x = np.linspace(2, 10, N) random_y1 = np.linspace(2, 10, N) random_y2 = np.linspace(2, 10, N) trace1 = go.Scatter(x = random_x, y = random_y1, mode="markers", name="Actual Data") trace2 = go.Scatter(x = random_x, y = random_y2, mode="lines", name="Model") layout = go.Layout(title="2D Data Repersentation Space", xaxis=dict(title="x2", range=(0,12)), yaxis=dict(title="x1", range=(0,12)), height=400, annotations=[dict(x=5, y=5, xref='x', yref='y', text='This 1D line is the Data Manifold (where data resides)', showarrow=True, align='center', arrowhead=2, arrowsize=1, arrowwidth=2, arrowcolor='#636363', ax=-120, ay=-30, bordercolor='#c7c7c7', borderwidth=2, borderpad=4, bgcolor='orange', opacity=0.8)]) figure = go.Figure(data = [trace1], layout = layout) iplot(figure) # To repersent this data, we are currently using 2 dimensions - X and Y. But it is possible to reduce the dimensions of this space into lower dimensions ie. 1D. If we can define following : # # - Reference Point on the line : A # - Angle L with a horizontal axis # # then any other point, say B, on line A can be repersented in terms of Distance "d" from A and angle L. # In[ ]: random_y3 = [2 for i in range(100)] random_y4 = random_y2 + 1 trace4 = go.Scatter(x = random_x[4:24], y = random_y4[4:300], mode="lines") trace3 = go.Scatter(x = random_x, y = random_y3, mode="lines") trace1 = go.Scatter(x = random_x, y = random_y1, mode="markers") trace2 = go.Scatter(x = random_x, y = random_y2, mode="lines") layout = go.Layout(xaxis=dict(title="x1", range=(0,12)), yaxis=dict(title="x2", range=(0,12)), height=400, annotations=[dict(x=2, y=2, xref='x', yref='y', text='A', showarrow=True, align='center', arrowhead=2, arrowsize=1, arrowwidth=2, arrowcolor='#636363', ax=20, ay=-30, bordercolor='#c7c7c7', borderwidth=2, borderpad=4, bgcolor='orange', opacity=0.8), dict(x=6, y=6, xref='x', yref='y', text='B', showarrow=True, align='center', arrowhead=2, arrowsize=1, arrowwidth=2, arrowcolor='#636363', ax=20, ay=-30, bordercolor='#c7c7c7', borderwidth=2, borderpad=4, bgcolor='yellow', opacity=0.8), dict( x=4, y=5, xref='x', yref='y',text='d', ay=-40), dict(x=2, y=2, xref='x', yref='y', text='angle L', ax=80, ay=-10)], title="2D Data Repersentation Space", showlegend=False) data = [trace1, trace2, trace3, trace4] figure = go.Figure(data = data, layout = layout) iplot(figure) ################# random_y3 = [2 for i in range(100)] random_y4 = random_y2 + 1 trace4 = go.Scatter(x = random_x[4:24], y = random_y4[4:300], mode="lines") trace3 = go.Scatter(x = random_x, y = random_y3, mode="lines") trace1 = go.Scatter(x = random_x, y = random_y1, mode="markers") trace2 = go.Scatter(x = random_x, y = random_y2, mode="lines") layout = go.Layout(xaxis=dict(title="u1", range=(1.5,12)), yaxis=dict(title="u2", range=(1.5,12)), height=400, annotations=[dict(x=2, y=2, xref='x', yref='y', text='A', showarrow=True, align='center', arrowhead=2, arrowsize=1, arrowwidth=2, arrowcolor='#636363', ax=20, ay=-30, bordercolor='#c7c7c7', borderwidth=2, borderpad=4, bgcolor='orange', opacity=0.8), dict(x=6, y=6, xref='x', yref='y', text='B', showarrow=True, align='center', arrowhead=2, arrowsize=1, arrowwidth=2, arrowcolor='#636363', ax=20, ay=-30, bordercolor='#c7c7c7', borderwidth=2, borderpad=4, bgcolor='yellow', opacity=0.8), dict( x=4, y=5, xref='x', yref='y',text='d', ay=-40), dict(x=2, y=2, xref='x', yref='y', text='angle L', ax=80, ay=-10)], title="Latent Distance View Space", showlegend=False) data = [trace1, trace2, trace3, trace4] figure = go.Figure(data = data, layout = layout) iplot(figure) # But the key question here is with what logic or rule, point B can be represented in terms of A and angle L. Or in other terms, what is the equation among B, A and L. The answer is straigtforward, there is no fixed equation but a best possible equation is obtained by the unsupervised learning process. In simple terms, the learning process can be defined as a rule / equation which converts B in the form of A and L. Lets understand this process from a autoencoder perspective. # # Consider the autoencoder with no hidden layers, the inputs x1 and x2 are encoded to lower repersentation d which is then further projected into x1 and x2. # # ![](https://i.imgur.com/lfq4eEy.png) # # <br> # **Step1 : Repersent the points in Latent View Space** # # If the coordinates of point A and B in the data representation space are: # # - Point A : (x1A, x2A) # - Point B : (x1B, x2B) # # then their coordinates in the latent view space will be: # # (x1A, x2A) ---> (0, 0) # (x1B, x2B) ---> (u1B, u2B) # # - Point A : (0, 0) # - Point B : (u1B, u2B) # # Where u1B and u2B can be represented in the form of distance between the point and the reference point # # u1B = x1B - x1A # u2B = x2B - x2A # # **Step2 : Represent the points with distance d and angle L ** # # Now, u1B and u2B can represented as a combination of distance d and angle L. And if we rotate this by angle L, towards the horizontal axis, L will become 0. ie. # # **=> (d, L)** # **=> (d, 0)** (after rotation) # # This is the output of the encoding process and repersents our data in low dimensions. If we recall the fundamental equation of a neural network with weights and bias of every layer, then # # **=> (d, 0) = W. (u1B, u2B)** # ==> (encoding) # # where W is the weight matrix of hidden layer. Since, we know that the decoding process is the mirror image of the encoding process. # # **=> (u1B, u2B) = Inverse (W) . (d, 0)** # ==> (decoding) # # The reduced form of data (x1, x2) is (d, 0) in the latent view space which is obtained from the encoding architecture. Similarly, the decoding architecture converts back this representation to original form (u1B, u2B) and then (x1, x2). An important point is that Rules / Learning function / encoding-decoding equation will be different for different types of data. For example, consider the following data in 2dimentional space. # # # ## Different Rules for Different data # # Same rules cannot be applied to all types of data. For example, in the previous example, we projected a linear data manifold in one dimention and eliminated the angle L. But what if the data manifold cannot be projected properly. For example consider the following data manifold view. # In[ ]: import matplotlib.pyplot as plt import numpy as np fs = 100 # sample rate f = 2 # the frequency of the signal x = np.arange(fs) # the points on the x axis for plotting y = [ np.sin(2*np.pi*f * (i/fs)) for i in x] plt.figure(figsize=(15,4)) plt.stem(x,y, 'r', ); plt.plot(x,y); # In this type of data, the key problem will be to obtain the projection of data in single dimention without loosing information. When this type of data is projected in latent space, a lot of information is lost and it is almost impossible to deform and project it to the original shape. No matter how much shifts and rotation are applied, original data cannot be recovered. # # So how does neural networks solves this problem ? The intution is, In the manifold space, deep neural networks has the property to bend the space in order to obtain a linear data fold view. Autoencoder architectures applies this property in their hidden layers which allows them to learn low level representations in the latent view space. # # The following image describes this property: # # ![](https://i.imgur.com/gKCOdiL.png) # # Lets implement an autoencoder using keras that first learns the features from an image, and then tries to project the same image as the output. # # ## 2. Implementation # # ## 2.1 UseCase 1 : Image Reconstruction # # 1. Load the required libraries # # In[ ]: ## load the libraries from keras.layers import Dense, Input, Conv2D, LSTM, MaxPool2D, UpSampling2D from sklearn.model_selection import train_test_split from keras.callbacks import EarlyStopping from keras.utils import to_categorical from numpy import argmax, array_equal import matplotlib.pyplot as plt from keras.models import Model from imgaug import augmenters from random import randint import pandas as pd import numpy as np # ### 2. Dataset Prepration # # Load the dataset, separate predictors and target, normalize the inputs. # In[ ]: ### read dataset train = pd.read_csv("../input/fashion-mnist_train.csv") train_x = train[list(train.columns)[1:]].values train_y = train['label'].values ## normalize and reshape the predictors train_x = train_x / 255 ## create train and validation datasets train_x, val_x, train_y, val_y = train_test_split(train_x, train_y, test_size=0.2) ## reshape the inputs train_x = train_x.reshape(-1, 784) val_x = val_x.reshape(-1, 784) # ### 3. Create Autoencoder architecture # # In this section, lets create an autoencoder architecture. The encoding part comprises of three layers with 2000, 1200, and 500 nodes. Encoding architecture is connected to latent view space comprising of 10 nodes which is then connected to decoding architecture with 500, 1200, and 2000 nodes. The final layer comprises of exact number of nodes as the input layer. # In[ ]: ## input layer input_layer = Input(shape=(784,)) ## encoding architecture encode_layer1 = Dense(1500, activation='relu')(input_layer) encode_layer2 = Dense(1000, activation='relu')(encode_layer1) encode_layer3 = Dense(500, activation='relu')(encode_layer2) ## latent view latent_view = Dense(10, activation='sigmoid')(encode_layer3) ## decoding architecture decode_layer1 = Dense(500, activation='relu')(latent_view) decode_layer2 = Dense(1000, activation='relu')(decode_layer1) decode_layer3 = Dense(1500, activation='relu')(decode_layer2) ## output layer output_layer = Dense(784)(decode_layer3) model = Model(input_layer, output_layer) # Here is the summary of our autoencoder architecture. # In[ ]: model.summary() # Next, we will train the model with early stopping callback. # In[ ]: model.compile(optimizer='adam', loss='mse') early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=10, verbose=1, mode='auto') model.fit(train_x, train_x, epochs=20, batch_size=2048, validation_data=(val_x, val_x), callbacks=[early_stopping]) # Generate the predictions on validation data. # In[ ]: preds = model.predict(val_x) # Lets plot the original and predicted image # # **Inputs: Actual Images** # In[ ]: from PIL import Image f, ax = plt.subplots(1,5) f.set_size_inches(80, 40) for i in range(5): ax[i].imshow(val_x[i].reshape(28, 28)) plt.show() # **Predicted : Autoencoder Output** # In[ ]: f, ax = plt.subplots(1,5) f.set_size_inches(80, 40) for i in range(5): ax[i].imshow(preds[i].reshape(28, 28)) plt.show() # So we can see that an autoencoder trained with 20 epoochs is able to reconstruct the input images very well. Lets look at other use-case of autoencoders - Image denoising or removal of noise from the image. # # ## 2.2 UseCase 2 - Image Denoising # # Autoencoders are pretty useful, lets look at another application of autoencoders - Image denoising. Many a times input images contain noise in the data, autoencoders can be used to get rid of those images. Lets see it in action. First lets prepare the train_x and val_x data contianing the image pixels. # # ![](https://www.learnopencv.com/wp-content/uploads/2017/11/denoising-autoencoder-600x299.jpg) # In[ ]: ## recreate the train_x array and val_x array train_x = train[list(train.columns)[1:]].values train_x, val_x = train_test_split(train_x, test_size=0.2) ## normalize and reshape train_x = train_x/255. val_x = val_x/255. # In this autoencoder network, we will add convolutional layers because convolutional networks works really well with the image inputs. To apply convolutions on image data, we will reshape our inputs in the form of 28 * 28 matrix. For more information related to CNN, refer to my previous [kernel](https://www.kaggle.com/shivamb/a-very-comprehensive-tutorial-nn-cnn). # In[ ]: train_x = train_x.reshape(-1, 28, 28, 1) val_x = val_x.reshape(-1, 28, 28, 1) # ### Noisy Images # # We can intentionally introduce the noise in an image. I am using imaug package which can be used to augment the images with different variations. One such variation can be introduction of noise. Different types of noises can be added to the images. For example: # # - Salt and Pepper Noise # - Gaussian Noise # - Periodic Noise # - Speckle Noise # # Lets introduce salt and pepper noise to our data which is also known as impulse noise. This noise introduces sharp and sudden disturbances in the image signal. It presents itself as sparsely occurring white and black pixels. # # Thanks to @ColinMorris for suggesting the correction in salt and pepper noise. # In[ ]: # Lets add sample noise - Salt and Pepper noise = augmenters.SaltAndPepper(0.1) seq_object = augmenters.Sequential([noise]) train_x_n = seq_object.augment_images(train_x * 255) / 255 val_x_n = seq_object.augment_images(val_x * 255) / 255 # Before adding noise # In[ ]: f, ax = plt.subplots(1,5) f.set_size_inches(80, 40) for i in range(5,10): ax[i-5].imshow(train_x[i].reshape(28, 28)) plt.show() # After adding noise # In[ ]: f, ax = plt.subplots(1,5) f.set_size_inches(80, 40) for i in range(5,10): ax[i-5].imshow(train_x_n[i].reshape(28, 28)) plt.show() # Lets now create the model architecture for the autoencoder. Lets understand what type of network needs to be created for this problem. # # **Encoding Architecture:** # # The encoding architure is composed of 3 Convolutional Layers and 3 Max Pooling Layers stacked one by one. Relu is used as the activation function in the convolution layers and padding is kept as "same". Role of max pooling layer is to downsample the image dimentions. This layer applies a max filter to non-overlapping subregions of the initial representation. # # **Decoding Architecture:** # # Similarly in decoding architecture, the convolution layers will be used having same dimentions (in reverse manner) as the encoding architecture. But instead of 3 maxpooling layers, we will be adding 3 upsampling layers. Again the activation function will be same (relu), and padding in convolution layers will be same as well. Role of upsampling layer is to upsample the dimentions of a input vector to a higher resolution / dimention. The max pooling operation is non-invertible, however an approximate inverse can be obtained by recording the locations of the maxima within each pooling region. Umsampling layers make use of this property to project the reconstructions from a low dimentional feature space. # # # In[ ]: # input layer input_layer = Input(shape=(28, 28, 1)) # encoding architecture encoded_layer1 = Conv2D(64, (3, 3), activation='relu', padding='same')(input_layer) encoded_layer1 = MaxPool2D( (2, 2), padding='same')(encoded_layer1) encoded_layer2 = Conv2D(32, (3, 3), activation='relu', padding='same')(encoded_layer1) encoded_layer2 = MaxPool2D( (2, 2), padding='same')(encoded_layer2) encoded_layer3 = Conv2D(16, (3, 3), activation='relu', padding='same')(encoded_layer2) latent_view = MaxPool2D( (2, 2), padding='same')(encoded_layer3) # decoding architecture decoded_layer1 = Conv2D(16, (3, 3), activation='relu', padding='same')(latent_view) decoded_layer1 = UpSampling2D((2, 2))(decoded_layer1) decoded_layer2 = Conv2D(32, (3, 3), activation='relu', padding='same')(decoded_layer1) decoded_layer2 = UpSampling2D((2, 2))(decoded_layer2) decoded_layer3 = Conv2D(64, (3, 3), activation='relu')(decoded_layer2) decoded_layer3 = UpSampling2D((2, 2))(decoded_layer3) output_layer = Conv2D(1, (3, 3), padding='same')(decoded_layer3) # compile the model model_2 = Model(input_layer, output_layer) model_2.compile(optimizer='adam', loss='mse') # Here is the model summary # In[ ]: model_2.summary() # Train the model with early stopping callback. Increase the number of epochs to a higher number for better results. # In[ ]: early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=10, verbose=5, mode='auto') history = model_2.fit(train_x_n, train_x, epochs=10, batch_size=2048, validation_data=(val_x_n, val_x), callbacks=[early_stopping]) # Lets obtain the predictions of the model # In[ ]: preds = model_2.predict(val_x_n[:10]) f, ax = plt.subplots(1,5) f.set_size_inches(80, 40) for i in range(5,10): ax[i-5].imshow(preds[i].reshape(28, 28)) plt.show() # In this implementation, I have not traiened this network for longer epoochs, but for better predictions, you can train the network for larger number of epoochs say somewhere in the range of 500 - 1000. # # ## 2.3 UseCase 3: Sequence to Sequence Prediction using AutoEncoders # # # Next use case is sequence to sequence prediction. In the previous example we input an image which was a basicaly a 2 dimentional data, in this example we will input a sequence data as the input which will be 1 dimentional. Example of sequence data are time series data and text data. This usecase can be applied in machine translation. Unlike CNNs in image example, in this use-case we will use LSTMs. # # Most of the code of this section is taken from the following reference shared by Jason Brownie in his blog post. Big Credits to him. # - Reference : https://machinelearningmastery.com/develop-encoder-decoder-model-sequence-sequence-prediction-keras/ # # #### Autoencoder Architecture # # The architecuture of this use case will contain an encoder to encode the source sequence and second to decode the encoded source sequence into the target sequence, called the decoder. First lets understand the internal working of LSTMs which will be used in this architecture. # # - The Long Short-Term Memory, or LSTM, is a recurrent neural network that is comprised of internal gates. # - Unlike other recurrent neural networks, the network’s internal gates allow the model to be trained successfully using backpropagation through time, or BPTT, and avoid the vanishing gradients problem. # - We can define the number of LSTM memory units in the LSTM layer, Each unit or cell within the layer has an internal memory / cell state, often abbreviated as “c“, and outputs a hidden state, often abbreviated as “h“. # - By using Keras, we can access both output states of the LSTM layer as well as the current states of the LSTM layers. # # Lets now create an autoencoder architecutre for learning and producing sequences made up of LSTM layers. There are two components: # # - An encoder architecture which takes a sequence as input and returns the current state of LSTM as the output # - A decoder architecture which takes the sequence and encoder LSTM states as input and returns the decoded output sequence # - We are saving and accessing hidden and memory states of LSTM so that we can use them while generating predictions on unseen data. # # Lets first of all, generate a sequence dataset containing random sequences of fixed lengths. We will create a function to generate random sequences. # # - X1 repersents the input sequence containing random numbers # - X2 repersents the padded sequence which is used as the seed to reproduce the other elements of the sequence # - y repersents the target sequence or the actual sequence # # In[ ]: def dataset_preparation(n_in, n_out, n_unique, n_samples): X1, X2, y = [], [], [] for _ in range(n_samples): ## create random numbers sequence - input inp_seq = [randint(1, n_unique-1) for _ in range(n_in)] ## create target sequence target = inp_seq[:n_out] ## create padded sequence / seed sequence target_seq = list(reversed(target)) seed_seq = [0] + target_seq[:-1] # convert the elements to categorical using keras api X1.append(to_categorical([inp_seq], num_classes=n_unique)) X2.append(to_categorical([seed_seq], num_classes=n_unique)) y.append(to_categorical([target_seq], num_classes=n_unique)) # remove unnecessary dimention X1 = np.squeeze(np.array(X1), axis=1) X2 = np.squeeze(np.array(X2), axis=1) y = np.squeeze(np.array(y), axis=1) return X1, X2, y samples = 100000 features = 51 inp_size = 6 out_size = 3 inputs, seeds, outputs = dataset_preparation(inp_size, out_size, features, samples) print("Shapes: ", inputs.shape, seeds.shape, outputs.shape) print ("Here is first categorically encoded input sequence looks like: ", ) inputs[0][0] # Next, lets create the architecture of our model in Keras. # In[ ]: def define_models(n_input, n_output): ## define the encoder architecture ## input : sequence ## output : encoder states encoder_inputs = Input(shape=(None, n_input)) encoder = LSTM(128, return_state=True) encoder_outputs, state_h, state_c = encoder(encoder_inputs) encoder_states = [state_h, state_c] ## define the encoder-decoder architecture ## input : a seed sequence ## output : decoder states, decoded output decoder_inputs = Input(shape=(None, n_output)) decoder_lstm = LSTM(128, return_sequences=True, return_state=True) decoder_outputs, _, _ = decoder_lstm(decoder_inputs, initial_state=encoder_states) decoder_dense = Dense(n_output, activation='softmax') decoder_outputs = decoder_dense(decoder_outputs) model = Model([encoder_inputs, decoder_inputs], decoder_outputs) ## define the decoder model ## input : current states + encoded sequence ## output : decoded sequence encoder_model = Model(encoder_inputs, encoder_states) decoder_state_input_h = Input(shape=(128,)) decoder_state_input_c = Input(shape=(128,)) decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c] decoder_outputs, state_h, state_c = decoder_lstm(decoder_inputs, initial_state=decoder_states_inputs) decoder_states = [state_h, state_c] decoder_outputs = decoder_dense(decoder_outputs) decoder_model = Model([decoder_inputs] + decoder_states_inputs, [decoder_outputs] + decoder_states) return model, encoder_model, decoder_model autoencoder, encoder_model, decoder_model = define_models(features, features) # Lets look at the model summaries # In[ ]: encoder_model.summary() # In[ ]: decoder_model.summary() # In[ ]: autoencoder.summary() # Now, lets train the autoencoder model using Adam optimizer and Categorical Cross Entropy loss function # In[ ]: autoencoder.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['acc']) autoencoder.fit([inputs, seeds], outputs, epochs=1) # Lets write a function to predict the sequence based on input sequence # In[ ]: def reverse_onehot(encoded_seq): return [argmax(vector) for vector in encoded_seq] def predict_sequence(encoder, decoder, sequence): output = [] target_seq = np.array([0.0 for _ in range(features)]) target_seq = target_seq.reshape(1, 1, features) current_state = encoder.predict(sequence) for t in range(out_size): pred, h, c = decoder.predict([target_seq] + current_state) output.append(pred[0, 0, :]) current_state = [h, c] target_seq = pred return np.array(output) # Generate some predictions # In[ ]: for k in range(5): X1, X2, y = dataset_preparation(inp_size, out_size, features, 1) target = predict_sequence(encoder_model, decoder_model, X1) print('\nInput Sequence=%s SeedSequence=%s, PredictedSequence=%s' % (reverse_onehot(X1[0]), reverse_onehot(y[0]), reverse_onehot(target))) # # ### Excellent References # # 1. https://www.analyticsvidhya.com/blog/2018/06/unsupervised-deep-learning-computer-vision/ # 2. https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798 # 3. https://blog.keras.io/building-autoencoders-in-keras.html # 4. https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html # 5. https://machinelearningmastery.com/develop-encoder-decoder-model-sequence-sequence-prediction-keras/ # # # Thanks for viewing the kernel, **please upvote** if you liked it.
ee3e5ca9844fad8882a966777f08b1ba880222ba
mohamed-elsayed/python-scratch
/Iterator-generator.py
7,280
4.53125
5
# ================================================= ################ Iterator/generator ########### # ================================================= # Objectives # Define Iterator and Iterable # Understand the iter() and next() methods # Build our own for loop # Define what generators are and how they can be used # Compare generator functions and generator expressions # Use generators to pause execution of expensive functions # Iterators ? Iterables ? # Iterator - an object that can be iterated upon . # An object which returns data, one element at a time when next() is called on it # Iterable - An object which will return an iterator when iter() is called on it # "Hello" is an iterable , but it is not an iterator. # iter("Hello") returns an iterator. name = "Operah" # next(name) # TypeError: 'str' object is not iterator. iter(name) # return an Iterator it = iter(name) # for char in "Operah" # for loop behind the scene call iter() on the string "Operah" that return an iterator then for loop go through each item in the iterator using the next() # when next() is called on an iterator, the iterator returns the next item. It keeps doing so until it raises a StopIteration error # these are standard protocol applied to any iterator from iteable. # num = [1,2,3] # next(num) # give TyperError as list object is not an iterator # To make It Iterator, call iter(num) and then call next() over the Iterator # custom for loop # def my_for (iterable, func): # iterator = iter(iterable) # while True : # try: # thing = next(iterator) # except StopIteration: # break # else: # func(thing) # def square(x): # print(x*x) # my_for("hello", print) # my_for([1,2,3,4], square) # Define our own Iterable and Iterator # class Counter(object): # def __init__(self, low, high): # self.current = low # self.high = high # def __iter__(self): # return self # def __next__(self): # if self.current < self.high: # num = self.current # self.current += 2 # return num # raise StopIteration # for x in Counter(0, 20): # print(x) from random import shuffle class Card: def __init__(self, suit, value): self.suit = suit self.value = value def __repr__(self): return f"{self.value} of {self.suit}" class Deck: def __init__(self): suits = ['Hearts', 'Diamonds', 'Clubs', 'Spades'] values = ['A', '2', '3', '4', '5', '6', '7', '8', '9', '10', 'J', 'Q', 'K'] self.cards = [Card(suit, value) for suit in suits for value in values] def __repr__(self): return f"Deck of {self.count()} cards." def __iter__(self): return iter(self.cards) # VERSION USING A GENERATOR FUNCTION # (covered in the next video) # def __iter__(self): # for card in self.cards: # yield card def reset(self): suits = ['Hearts', 'Diamonds', 'Clubs', 'Spades'] values = ['A', '2', '3', '4', '5', '6', '7', '8', '9', '10', 'J', 'Q', 'K'] self.cards = [Card(suit, value) for suit in suits for value in values] return self def count(self): return len(self.cards) def _deal(self, num): """ Return a list of cards dealt """ count = self.count() actual = min([num, count]) # make sure we don't try to over-deal if count == 0: raise ValueError("All cards have been dealt") if actual == 1: return [self.cards.pop()] cards = self.cards[-actual:] # slice off the end self.cards = self.cards[:-actual] # adjust cards return cards def shuffle(self): if self.count() < 52: raise ValueError("Only full decks can be shuffled") shuffle(self.cards) return self def deal_card(self): """ Returns a single Card """ return self._deal(1)[0] def deal_hand(self, hand_size): """ Returns a list of Cards """ return self._deal(hand_size) # my_deck = Deck() # my_deck.shuffle() # for card in my_deck: # print(card) # Generators # Generators are iterators # Generators can be created with generator functions # Generator functions are thr yield keyword # Generators can be created with generator expressions # Functions vs Generator Functions # use return use yield # return once can yield multiple times # when invoked, when invoked # returns the returns a generator object # return value # our first generator def count_up_to(max): count =1 while count <= max: yield count count += 1 # count_up_to(5) # return a generator object # counter = count_up_to(5) # print(next(counter)) # we get one thing at a time., not go back # for c in counter: # automatically catch StopIteration Error and break loop # print(c) # print(list(counter)) # generator is returned from a generator function # It is a way for making an iterator quickly # Never have to determine what happen when calling next # We do not define next() or iter() # We never are raising the StopIteration Error # We just define a function call it whatever you want and yield # wherever that yield is, it is going to stop immediately, return the value that we specify # stop execution and just wait. # counter= count_up_to(10) # print(list(counter)) # Infinite generator # let us say we are making a music application, # def current_beat(): # function return 1, 2, 3, 4 or any pattern # How could we have it return a single number. but every time return a different number then repeating. we can return one thing from a function ? # max = 100 # nums = (1,2,3,4) # i =0 # result = [] # while len(result) < max: # if i >= len(nums): i =0 # result.append(nums[i]) # i+=1 # return result # print(current_beat()) def current_beat(): nums = (1,2,3,4) i=0 while True: if i >= len(nums): i =0 yield nums[i] i+=1 # for c in current_beat(): # print(c) # Testing memory usage with generators def fib_gen(max): x=0 y=1 count =0 while count < max: x,y = y,x+y yield x count +=1 def fib_list(max): nums = [] a,b = 0,1 while len(nums) < max: nums.append(b) a,b = b,a+b return nums # print(fib_list(10)) # Cautious following command will hang your PC. Memory eater # for n in fib_list(1000000): # print(n) # for n in fib_gen(1000000): # less memory footprint # print(n) # generator Expressions # look like list comprehesion # use () instead of [] # def nums(): # for num in range(1,10): # yield num # g= (num for num in range(1,10)) # l= [num for num in range(1,10)] # sum([num for num in range (1,10)]) # sum(num for num in range(1,10)) # import time # gen_start_time = time.time() # print(sum(n for n in range(100000000))) # gen_stop = time.time() - gen_start_time # print (gen_stop) # list_start_time = time.time() # print(sum([n for n in range(100000000)])) # list_stop = time.time() - list_start_time # print(list_stop)
6fd24c90d8f11203073a20e92dc57a5d95e75aef
LinChiGong/Reinforcement-Learning-Racetrack-Problem
/src/racetrack.py
5,631
3.90625
4
#!/usr/bin/env python3 ''' This class stores the information about a racetrack on which the race car runs ''' import numpy as np class Racetrack(): def __init__(self, file): self.file = file # Name of the racetrack file # Stores the racetrack in a 2D list and remove the first line self.track = [] for line in open(file): line = line.rstrip() lst = list(line) self.track.append(lst) self.track = self.track[1:] self.start_locations = [] # Stores all start points self.finish_locations = [] # Stores all finish points self.track_locations = [] # Stores all track points self.wall_locations = [] # Stores all wall points for i, row in enumerate(self.track): for j, val in enumerate(row): if val == 'S': self.start_locations.append((i, j)) elif val == 'F': self.finish_locations.append((i, j)) elif val == '.': self.track_locations.append((i, j)) elif val == '#': self.wall_locations.append((i, j)) self.finish_line = self.draw_finish_line() # Position of finish line def get_nearest_track(self, position): ''' This method finds a nearest track point to a point in the racetrack INPUT: position(tuple): Coordinates of a specific point OUTPUT: tuple: Coordinates of the nearest track point ''' position = np.array(position) track_locations = np.array(self.track_locations) distance = np.sum(np.square(track_locations - position), axis=1) nearest = np.argmin(distance) nearest_track = self.track_locations[nearest] return nearest_track def get_nearest_start(self, position): ''' This method finds a nearest start point to a point in the racetrack INPUT: position(tuple): Coordinates of a specific point OUTPUT: tuple: Coordinates of the nearest start point ''' position = np.array(position) start_locations = np.array(self.start_locations) distance = np.sum(np.square(start_locations - position), axis=1) nearest = np.argmin(distance) nearest_start = self.start_locations[nearest] return nearest_start def is_wall(self, position): ''' This method determines whether a point is a wall point or not INPUT: position(tuple): Coordinates of a specific point OUTPUT: boolean: True if the point is a wall point, False otherwise ''' if (position[0] > (len(self.track) - 1) or position[1] > (len(self.track[0]) - 1)): return True elif self.track[position[0]][position[1]] == '#': return True elif position[0] < 0 or position[1] < 0: return True return False def draw_finish_line(self): ''' Find the direction and location of the finish line OUTPUT: boolean: True if the finish line is vertical, False if horizontal tuple: Coordinates of the point on one end of the finish line tuple: Coordinates of the point on the other end of the finish line ''' max_distance = 0 best_end1 = None # Point on one end of the finish line best_end2 = None # Point on the other end of the finish line for i in range(len(self.finish_locations)): end1 = np.array(self.finish_locations[i]) for j in range(len(self.finish_locations)): end2 = np.array(self.finish_locations[j]) distance = np.sum(np.abs(end1 - end2)) if distance > max_distance: best_end1 = end1 best_end2 = end2 max_distance = distance is_vertical = True if (best_end1 - best_end2)[0] == 0: is_vertical = False return (is_vertical, best_end1, best_end2) def check_finish_line(self, position1, position2): ''' This method checks if the car has passed the finish line INPUT: position1(tuple): Coordinates of the car's current position position2(tuple): Coordinates of the car's next position OUTPUT: boolean: True if the car has passed the finish line ''' across_line = False within_ends = False crossed = False position1 = np.array(position1) position2 = np.array(position2) if self.finish_line[0]: # Finish line is vertical line = self.finish_line[1][1] if (line-position1[1]) * (line-position2[1]) <= 0: across_line = True end1 = self.finish_line[1][0] end2 = self.finish_line[2][0] if end1 <= position1[0] <= end2 or end2 <= position1[0] <= end1: within_ends = True if across_line and within_ends: crossed = True else: # Finish line is horizontal line = self.finish_line[1][0] if (line-position1[0]) * (line-position2[0]) <= 0: across_line = True end1 = self.finish_line[1][1] end2 = self.finish_line[2][1] if end1 <= position1[1] <= end2 or end2 <= position1[1] <= end1: within_ends = True if across_line and within_ends: crossed = True return crossed
6d958b209efb49ee3070ce8cca4171c708962a4b
DevYam/Python
/Ex3.py
704
4.0625
4
# Guess the number Game key = 43 count = 10 print("Total guesses left = ", count) while True: guess = input("Enter a number to guess\n") if not guess.isnumeric(): print("Enter a valid number") continue if int(guess) < key and count > 0: print("you need to enter a higher value\n") count = count - 1 print("Total guesses left = ", count) elif int(guess) > key: print("you need to enter a lower value\n") count = count - 1 print("Total guesses left = ", count) elif int(guess) == key: print("Congratulations you guessed it right\n") break elif count == 0: print("Game Over\n") break
c238078f55464429915d9c9f7b8987336966c957
hcs42/hcs-utils
/bin/Catless
2,227
3.703125
4
#!/usr/bin/python # Prints the text from the standard input or the given files using `cat` or # `less` depending on whether the text fits into the terminal import optparse import os.path import subprocess import sys def parse_args(): usage = 'Usage: Catless [options] [FILENAME]...' parser = optparse.OptionParser(usage=usage) (cmdl_options, args) = parser.parse_args() return cmdl_options, args def cmd(args): return subprocess.Popen(args, stdout=subprocess.PIPE).communicate()[0] def main(options, args): terminal_height = int(cmd(["tput", "lines"])) text = [] if len(args) == 0: # Reading stdin while True: line = sys.stdin.readline() if line == '': break text.append(line) else: filenames = args # Checking whether all files exist and are regular all_files_ok = True for filename in filenames: if not os.path.exists(filename): print 'File not found: ', filename all_files_ok=False elif not os.path.isfile(filename): print 'Not a regular file: ', filename all_files_ok=False if not all_files_ok: sys.exit(0) # Reading the content of all files for filename in filenames: f = open(filename, 'r') while True: line = f.readline() if line == '': break text.append(line) f.close() # If the terminal is taller then the text, we print the text just like # `cat` if len(text) < terminal_height: for line in text: sys.stdout.write(line) # Otherwise we use "less" to display it else: process = subprocess.Popen(["less"], stdin=subprocess.PIPE) process.communicate(''.join(text)) if __name__ == '__main__': try: main(*parse_args()) except OSError: # The user probably pressed CTRL-C before `less` could read all data. # This is not an error. pass except KeyboardInterrupt: # The user probably pressed CTRL-C while Catless was running. pass
c24fdf73fee84a9be9b3eee03e9fc3889aec264b
tanx-code/levelup
/design_patterns/state.py
858
4
4
"""状态机模式 允许对象在内部状态改变时改变它的行为,对象 看起来好像改了它的类。 """ class State: def __init__(self, m): self.machine = m class AState(State): def db_a(self): print('do a') self.machine.set_state(self.machine.b_state) class BState(State): def do_b(self): print('do b') class Machine: current_state = None def run(self): self.a_state = AState(self) self.b_state = BState(self) self.current_state = self.a_state def do_a(self): self.current_state.do_a() def do_b(): self.current_state.do_b() def set_state(state): self.current_state = state if __name__ == '__main__': m = Machine() # 对于客户来说,不知道机器内部状态在怎么变化 m.do_a() m.do_b()
a87aaf69c2971b2ae241cae12c4b3c2624005e83
tjatn304905/algorithm
/SWEA/5186_이진수2/sol1.py
411
3.59375
4
import sys sys.stdin = open('sample_input.txt') def change(N): result = '' for i in range(1, 13): if N >= 1 / 2**i: result += '1' N -= 1 / 2**i if N == 0: return result else: result += '0' return 'overflow' T = int(input()) for tc in range(1, T+1): N = float(input()) print('#{} {}'.format(tc, change(N)))
3a1c50c59e5819bf13bfd8b4ab7108fe0c639771
ramaranjanruj/Machine-Learning
/Ridge Regression/Ridge.Regression.py
5,393
3.75
4
import pandas as pd import numpy as np from sklearn import linear_model import math dtype_dict = {'bathrooms':float, 'waterfront':int, 'sqft_above':int, 'sqft_living15':float, 'grade':int, 'yr_renovated':int, 'price':float, 'bedrooms':float, 'zipcode':str, 'long':float, 'sqft_lot15':float, 'sqft_living':float, 'floors':float, 'condition':int, 'lat':float, 'date':str, 'sqft_basement':int, 'yr_built':int, 'id':str, 'sqft_lot':int, 'view':int} # Importing the sales data sales = pd.read_csv('kc_house_data.csv', dtype=dtype_dict) sales = sales.sort(['sqft_living','price']) def polynomial_dataframe(feature, degree): # feature is pandas.Series type """ This function is to create polynomial features from a given column """ # assume that degree >= 1 # initialize the dataframe: poly_dataframe = pd.DataFrame() # and set poly_dataframe['power_1'] equal to the passed feature poly_dataframe['power_1'] = feature # first check if degree > 1 if degree > 1: # then loop over the remaining degrees: for power in range(2, degree+1): # first we'll give the column a name: name = 'power_' + str(power) # assign poly_dataframe[name] to be feature^power; use apply(*) poly_dataframe[name] = poly_dataframe['power_1'].apply(lambda x: math.pow(x, power)) return poly_dataframe poly15_data = polynomial_dataframe(sales['sqft_living'], 15) l2_small_penalty = 1.5e-5 model = linear_model.Ridge(alpha=l2_small_penalty, normalize=True) model.fit(poly15_data, sales['price']) print model.coef_[0] # Prints the coefficient of the column with power =1 """ Reading the other 4 datasets """ set_1 = pd.read_csv('wk3_kc_house_set_1_data.csv', dtype=dtype_dict) set_2 = pd.read_csv('wk3_kc_house_set_2_data.csv', dtype=dtype_dict) set_3 = pd.read_csv('wk3_kc_house_set_3_data.csv', dtype=dtype_dict) set_4 = pd.read_csv('wk3_kc_house_set_4_data.csv', dtype=dtype_dict) def get_ridge_coef(data, deg, l2_penalty): """ This is a fucntion to generate the 1st coefficient of the ridge regression """ poly15 = polynomial_dataframe(data['sqft_living'], deg) model = linear_model.Ridge(alpha=l2_penalty, normalize=True) model.fit(poly15, data['price']) return model.coef_[0] """ Finf the ridge coefficients for the 4 datasets for l2_small_penalty=1e-9 """ l2_small_penalty=1e-9 print get_ridge_coef(set_1, 15, l2_small_penalty) print get_ridge_coef(set_2, 15, l2_small_penalty) print get_ridge_coef(set_3, 15, l2_small_penalty) print get_ridge_coef(set_4, 15, l2_small_penalty) """ Finf the ridge coefficients for the 4 datasets for l2_large_penalty=1.23e2 """ l2_large_penalty=1.23e2 print get_ridge_coef(set_1, 15, l2_large_penalty) print get_ridge_coef(set_2, 15, l2_large_penalty) print get_ridge_coef(set_3, 15, l2_large_penalty) print get_ridge_coef(set_4, 15, l2_large_penalty) train_valid_shuffled = pd.read_csv('wk3_kc_house_train_valid_shuffled.csv', dtype=dtype_dict) test = pd.read_csv('wk3_kc_house_test_data.csv', dtype=dtype_dict) def k_fold_cross_validation(k, l2_penalty, data, output): """ Function to find the best value of lambda in a given k_fold_cross_validation """ n = len(data) total_mse = [] best_mse = None best_lambda = 0 poly_data = polynomial_dataframe(data['sqft_living'], 15) for l2_value in l2_penalty: for i in xrange(k): # Generates the index of the dataframe start = (n*i)/k end = (n*(i+1))/k-1 round_mse = 0 # Splits the dataframe X_test, Y_test = poly_data[start:end+1], output[start:end+1] X_train = pd.concat([poly_data[0:start], poly_data[end+1:n]], axis=0, ignore_index=True) Y_train = pd.concat([pd.Series(output[0:start]), pd.Series(output[end+1:n])], axis=0, ignore_index=True) # Peform a ridge regression of the training and testing sets ridge = linear_model.Ridge(alpha=l2_value, normalize=True) ridge.fit(X_train, Y_train) out = ridge.predict(X_test) round_mse += ((out - Y_test)**2).sum() # Calculate the mse for each value of lambda round_mse = round_mse/k # Get the best value of mse and lambda if best_mse is None or best_mse > round_mse: best_mse = round_mse best_lambda = l2_value total_mse.append(round_mse) return np.mean(total_mse), best_lambda """ Get the best value of lambda and mse on the kfolded training sets """ l2_penalty = np.logspace(3, 9, num=13) kfold_mse, kfold_lambda = k_fold_cross_validation(10, l2_penalty, train_valid_shuffled, train_valid_shuffled['price']) print kfold_mse # 3.13176238516e+13 print kfold_lambda # 1000.0 """ Get the RSS on the testing datasets """ ridge_all = linear_model.Ridge(alpha=1000, normalize=True) ridge_all.fit(polynomial_dataframe(train_valid_shuffled['sqft_living'],15), train_valid_shuffled['price']) predicted = ridge_all.predict(polynomial_dataframe(test['sqft_living'],15)) print ((predicted - test['price'])**2).sum() # 2.83856861224e+14
b9104f7316d95eaa733bbbd4926726472855046e
emma-rose22/practice_problems
/HR_arrays1.py
247
4.125
4
'''You are given a space separated list of nine integers. Your task is to convert this list into a 3x3 NumPy array.''' import numpy as np nums = input().split() nums = [int(i) for i in nums] nums = np.array(nums) nums.shape = (3, 3) print(nums)
34ad6779977c33d824b00a8b63e64d72566b3165
alexandraback/datacollection
/solutions_1674486_0/Python/rfonseca/diamond.py
885
3.5625
4
#!/usr/bin/env python3 import sys def dfs(visited, classes, node): if visited[node]: return True visited[node] = True for child in classes[node]: res = dfs(visited, classes, child) if res: return True return False def diamond(n, classes): for i in range(n): visited = [False for _ in range(n)] exists = dfs(visited, classes, i) if exists: return "Yes" return "No" if __name__ == "__main__": ncases = int(sys.stdin.readline().strip()) for case in range(1, ncases + 1): n = int(sys.stdin.readline().strip()) classes = [] for i in range(n): line = sys.stdin.readline().strip().split(' ') #n = int(line[0]) classes.append([(int(x) - 1) for x in line[1:]]) print("Case #", case, ": ", diamond(n, classes), sep="")
aa0e9bf9680e5b121616348f47a67511b7cbc3fb
LailaBenz/Bioinformatik-sose18
/assignment2/fasterfrequentwords.py
1,691
3.8125
4
def PatternCount(text, pattern): result = 0 for i in range(0, len(text)-len(pattern)+1): if (text[i:i+len(pattern)] == pattern): result += 1 return result def FrequentWords(text, k=4): #Return a list of the most frequent substrings in a given text. # import previosly written programs to get SymbolToNumber, PatternToNumber, NumberToSymbol and NumberToPattern import ba1m import ba1l # Create an array for all patterns, initialize by size 4^k allPatternsWithCount = [0]*(4**k) # A list to store the final result result = [] # Loop over the whole text moving forward one letter at a time for i in range(0, len(text)-k): # pattern is a small part of the text (with length k) pattern = text[i:i+k] # Add one to the counter of this pattern allPatternsWithCount[ba1l.PatternToNumber(pattern)] += 1 # After counting everything, find the maximum value maximum = max(allPatternsWithCount) #Print count of most frequent patterns print(maximum) # Loop over all patters that have been found (evtl geht das nicht bei array) for number, count in enumerate (allPatternsWithCount): # If the count for this pattern is the maximum ... if count == maximum: # Add it to the result result.append((number, count)) print(ba1m.NumberToPattern(number, k),end=' ') return result with open ("input.txt", "r") as myfile: data=myfile.readlines() # For testing text = data[0] #print(FrequentWords(text, int(data[1]))) FrequentWords(text, int(data[1]))
8b43a57e4785d57809eb60a3a30b8590d5981b1c
ieee-saocarlos/desafios-cs
/Esther Bastos/produtos.py
549
3.65625
4
leite = int(input("Número de conjuntos de leite: ")) ovo = int(input("Número de conjuntos de ovo: ")) prendedores = int(input("Número de conjuntos de prendedores: ")) sabão = int(input("Número de conjuntos de sabão: ")) iogurte = int(input("Número de conjuntos de iogurte: ")) leite = 12 * leite ovo = 12 * ovo prendedores = 24 * prendedores sabão = 5 * sabão iogurte = 6 * iogurte print("Há {0} caixas de leite, {1} ovos, {2} prendedores, {3} barras de sabão e {4} copinhos de iogurte".format(leite, ovo, prendedores, sabão, iogurte))
46f1616e0375fee9c7de88544433c5655f22f912
mittal-umang/Analytics
/Assignment-1/MinutesToYears.py
580
4.15625
4
# Chapter 2 Question 7 # Write a program that prompts the user to # enter the minutes (e.g., 1 billion), and displays the number of years and days for # the minutes. For simplicity, assume a year has 365 days. def main(): minutes = eval(input("Enter the number of minutes : ")) days, years = _calculate_(minutes) print(minutes, "minutes is approximately", years, "years and", days, "days.") def _calculate_(minutes): years = minutes / (365 * 24 * 60) days = (years - int(years))*365 return int(days), int(years) if __name__ == "__main__": main()
8980f33232eba85fc9f3532b53aa1cd3075fc066
andrebaboim/data-lake
/src/pipelines/cache.py
1,613
3.625
4
class SourceCache(): singleton = None def __init__(self): """ Class constructor. Returns: (SourceCache): A new instance of SourceCache class. """ self._sources = {} @classmethod def instance(cls): """ Gets or creates the singleton instance of the SourceCache class. Returns: (SourceCache): The SourceCache singleton instance. """ if cls.singleton is None: cls.singleton = cls() return cls.singleton def exists(self, source_name): """ Checks if the given dataframe is already cached. Parameters: source_name (str): The dataframe name. Returns: (bool): True if the dataframe is cached, otherwise returns False. """ return source_name in self._sources def get_source(self, source_name): """ Gets the cached dataframe corresponding the given name. Parameters: source_name (str): The dataframe name. Returns: (DataFrame): The cached dataframe. """ print('Retrieving {} dataframe from cache'.format(source_name)) return self._sources[source_name] def set_source(self, source_name, source_data): """ Caches the given dataframe. Parameters: source_name (str): The dataframe name. source_data (DataFrame): The dataframe itself. """ print('Caching {} dataframe'.format(source_name)) self._sources[source_name] = source_data
de93fb69a0f878335bfb70abeedf1b9ed6d23cea
JBustos22/Physics-and-Mathematical-Programs
/computational derivatives/simpson.py
597
3.859375
4
#! /usr/bin/env python """ This program uses the simpson method of approximating integrals to find the integral of x**4-2*x+1 from 0 to 2. Jorge Bustos Feb 22, 2019 """ from __future__ import division, print_function import numpy as np def f(x): return x**4 - 2*x + 1 N = 1000 #max value in summation a = 0.0 b = 2.0 h = (b-a)/N #width of intervals s = (f(a) + f(b)) #the two lone terms inside the parentheses for k in range(1,int(N/2+1)): #first summation term s += 4*f(a+(2*k-1)*h) for j in range(1,int(N/2)): #second summation term s += 2*f(a+2*j*h) print(1/3*h*s) #multiplying what's outside
0d5212d22101ff756968732a4b5e481d39e18286
patterson-dtaylor/python_work
/Chapter_4/animals.py
246
4.21875
4
# 10/1/19 Exercise 4-2: Using for loops with a list of animals. animals = ['flying squirell', 'gold fish', 'racoon'] for animal in animals: print(f"A {animal} would make a great pet!\n") print("Any of these animals would make a great pet!")
d894857c9d0e6d217782a7cfda00e31123cc0b30
kevinelong/AM_2015_04_06
/Week1/pocket_change_answer.py
530
3.5625
4
pocket_change = { "pennies": 13, "nickels": 3, "dimes": 2, "quarters": 4 } change_values = { "pennies": 1, "nickels": 5, "dimes": 10, "quarters": 25 } def add_up(pocket_change): totals = {} grand = 0 # ... DO YOUR WORK HERE for k in pocket_change.keys(): subtotal = pocket_change[k] * change_values[k] totals[k] = subtotal grand += subtotal totals["all_totaled"] = grand return totals if __name__ == "__main__": print(add_up(pocket_change))
c2898bd7a8bce643f164e03c7260d937283abfa8
yueqiusun/DS1004-Big-Data-HW
/Map-Reduce/task3/map.py
851
3.734375
4
#!/usr/bin/python # map function for matrix multiply #Input file assumed to have lines of the form "A,i,j,x", where i is the row index, j is the column index, and x is the value in row i, column j of A. Entries of A are followed by lines of the form "B,i,j,x" for the matrix B. #It is assumed that the matrix dimensions are such that the product A*B exists. #Input arguments: #m should be set to the number of rows in A, p should be set to the number of columns in B. import sys import string import csv # input comes from STDIN (stream data that goes to the program) for line in sys.stdin: #Remove leading and trailing whitespace entry = list(csv.reader([line], delimiter = ','))[0] if len(entry) != 18: continue key = entry[2] value = entry[12] if len(key) < 2: continue print(str(key) + '\t' + str(value))
2417bafe451e0957bb17ed1930679562bf13f7c6
ShubhAgarwal566/Maze-Solver
/driver.py
4,243
3.859375
4
#global libraries import turtle import Tkinter as tk # user libraries import maze_generator import LHR import RHR import randomMouse import dfs1 import dfs2 import bfs import deadendFilling import aStar #driver function which helps in setting up maze and calling respective algorthim function def start(width, height, lastMaze, speed, algo): maze_color = 'white' bg_color = 'black' def setupMaze(grid): for y in range(len(grid)): # loop through all the elements in the list(maze) for x in range(len(grid[y])): character = grid[y][x] screen_x = -588 + (x * cellWidth) # calculate the position of x coordinate screen_y = 288 - (y * cellWidth) # calculate the position of y coordinate if character == "+": # if wall maze.goto(screen_x, screen_y) # go to location maze.stamp() # put stamp (make wall) walls.append((screen_x, screen_y)) # append in walls list elif character == "e": # if end point (target/goal) maze.goto(screen_x, screen_y) # goto location maze.color('green') # make color green maze.stamp() # put stamp maze.color(maze_color) # switch back to wall color finish.append((screen_x, screen_y)) # append in finish list grid = maze_generator.createMaze(width, height, lastMaze) # generate a maze with given width and height cellWidth = row = int( min( 700.0 / (len(grid)*1.1), 1300.0 / (len(grid[0])*1.05) ) ) # calculate the width of each cell to fit the maze properly on screen window = tk.Tk() # create a tkinter window window.title("Maze-Solver") # put title window.geometry('1300x700') # set dimension window.resizable(False, False) # make it non resizeable wn = turtle.Canvas(window, width=1300, height=700) # take turtle canvas wn.place(x=0, y=0) # pin the canvas on the window maze = turtle.RawTurtle(wn) # create a turtle object for maze wn['bg'] = bg_color # set background color maze.shape('square') # set shape of wall as sqaure maze.penup() # put penup (no trail) maze.color(maze_color) # set wall color maze.speed(0) # fastest # set speed to draw maze as fastest(0) maze.shapesize(cellWidth/24.0) # set the size of each cell maze.hideturtle() # hide the maze turtle walls =[] # list to store walls finish = [] # list to store the end point setupMaze(grid) # create the maze maze.speed(speed) # set the speed given by the user maze.hideturtle() # hide myTurtle = turtle.RawTurtle(wn) # create a turtle object for mover(solver) myTurtle.shape('turtle') # set its shape myTurtle.hideturtle() # hide the turtle myTurtle.color('red') # set its color as red myTurtle.speed(0) # set its speed to fastest(0) myTurtle.penup() # put pen up initially (no trail) myTurtle.shapesize(cellWidth/24.0) # set the size of each cell myTurtle.goto(-588+cellWidth, 288-cellWidth) # move the turtle to the starting position myTurtle.speed(speed) # set the speed to user given speed myTurtle.pendown() # put the pen down (for trail) # call apt function as per the given algo if(algo == 'Left Hand Rule'): LHR.start(myTurtle, walls, finish, cellWidth) elif(algo == 'Right Hand Rule'): RHR.start(myTurtle, walls, finish, cellWidth) elif(algo == 'Random Mouse'): randomMouse.start(myTurtle, walls, finish, cellWidth) elif(algo == 'Depth First Search - 1'): dfs1.start(myTurtle, walls, finish, cellWidth) elif(algo == 'Depth First Search - 2') : dfs2.start(myTurtle, walls, finish, cellWidth, maze) elif(algo == 'Breadth First Search'): bfs.start(myTurtle, walls, finish, cellWidth, maze) elif(algo == 'Dead-End Filling'): deadendFilling.start(myTurtle, walls, finish, cellWidth, maze) elif(algo == 'A* Search'): aStar.start(myTurtle, walls, finish, cellWidth, maze) window.mainloop() # prevents program from quiting # start(10,10,False,5,'A* Search') # used for faster debugging
a5c6fe96d40c81d888fc4d5f6ba0d26b1604e3ec
xilousong/test_git
/00打招呼.py
649
3.859375
4
#!/usr/bin/env python3 class Name(): def __init__(self,name,age): self.__name = name self.__age = age def set_name(self,new_name): self.__name = new_name def set_age(self,new_age): if new_age >0 and new_age <100: self.__age = new_age else: self.__age = 0 def get_name(self): return self.__name def get_age(self): return self.__age def __str__(self): return "我叫%s,今年%d 岁"%(self.get_name(),self.get_age()) p = Name("小明",20) print(p) p.set_name("明明") print(p) p.set_age(30) print(p) p.set_age(300) print(p)
42754928e6000ce6c441e53d45a412d3a7a1cd0c
rado0x54/CTFs
/picoCTF2019/100_caesar/solve.py
315
3.609375
4
#!/usr/bin/env python3 CIPHERTEXT = 'dspttjohuifsvcjdpoabrkttds' # (ord(K) - ord('a')) + {1-25} % 26 = ord(C) def move(c_char, shift): return chr(((ord(c_char) - ord('a')) + shift) % 26 + ord('a')) # test all solutions. only 25 makes sense print(f"picoCTF{{{''.join([move(c, 25) for c in CIPHERTEXT])}}}")
3b01eeb6abd077b89deb8a7e1d2c20d46cb1c844
kaceyabbott/intro-python
/iterations.py
1,489
4
4
""" when working with iterators, generators, etc look at the documentatoin for the itertools module """ from itertools import islice, count, chain from listcomprehensions import prime import statistics def main(): """ test function :return: """ thousandprimes = islice((x for x in count() if prime(x)), 1000) print(thousandprimes,type(thousandprimes)) #print('list of first 1000 prime numbers:', list(thousandprimes)) #if you need to use the object again, you will need to regenerate it thousandprimes = islice((x for x in count() if prime(x)), 1000) print('list of first 1000 prime numbers:',sum((thousandprimes))) #other built ins use with itertools: any(or) or all(and) print(any([False, False, True])) print(all([False, False, True])) print('any primes in range',any(prime(x) for x in range(1328,1363))) names = ['London','New York','Ogden'] print(all(name == name.title() for name in names)) #another builtin: zip() sunday = [2,2,5,7,9,10,9,6,4,4] monday = [12,14,14,15,15,16,15,13,10,9] tuesday = [13,14,15,15,16,17,16,16,12,12] for temps in zip(sunday,monday, tuesday): print('min=',min(temps),'max=',max(temps),'average=',statistics.mean(temps)) # {:6.1f} => chars width, 1 decimal precision floating point #chain alltemps = chain(sunday,monday,tuesday) print('all temps > 0',all(t> 0 for t in alltemps)) if __name__ == '__main__': main() exit(0)
4ab61f9bff0812b77f63df896c80a61612fd03e2
droomkan/AI_ML_weekopdrachten
/week_1/a_star/model.py
5,203
3.5
4
import random import heapq import math import config as cf # global var grid = [[0 for x in range(cf.SIZE)] for y in range(cf.SIZE)] class PriorityQueue: # to be used in the A* algorithm # a wrapper around heapq (aka priority queue), a binary min-heap on top of a list # in a min-heap, the keys of parent nodes are less than or equal to those # of the children and the lowest key is in the root node def __init__(self): # create a min heap (as a list) self.elements = [] def empty(self): return len(self.elements) == 0 # heap elements are tuples (priority, item) def put(self, item, priority): heapq.heappush(self.elements, (priority, item)) # pop returns the smallest item from the heap # i.e. the root element = element (priority, item) with highest priority def get(self): return heapq.heappop(self.elements)[1] def bernoulli_trial(app): return 1 if random.random() < int(app.prob.get())/10 else 0 def get_grid_value(node): # node is a tuple (x, y), grid is a 2D list [x][y] return grid[node[0]][node[1]] def set_grid_value(node, value): # node is a tuple (x, y), grid is a 2D list [x][y] grid[node[0]][node[1]] = value def search(app, start, goal): # plot a sample path for demonstration for i in range(cf.SIZE-1): app.plot_line_segment(i, i, i, i+1, color=cf.FINAL_C) app.plot_line_segment(i, i+1, i+1, i+1, color=cf.FINAL_C) app.pause() # voor de uitwerking van het UCS algoritme is het voorbeeld uit de sheets # van het hoorcollege 1-2 gebruikt. def ucs(app, start, goal): pqueue = PriorityQueue() path = [] visited = {} visited[start] = 0 pqueue.put((start,path+[start]), 0) # loop through possible paths while the queue while not pqueue.empty(): item = pqueue.get() prev_node = item[0] prev_cost = visited[prev_node] path = item[1] current = path[-1] if current == goal: return path for neighbour in neighbours(current): cost = prev_cost + 1 if neighbour not in visited: visited[neighbour] = cost pqueue.put((current, path+[neighbour]), cost) app.plot_node(neighbour, color=cf.PATH_C) app.pause() app.path_not_found_message() return path # TODO: WERKT NIET OPTIMAAl, WE WETEN OOK NIET PRECIES WAAROM. GRAAG DIT OVERLEGGEN IN VRAGENUURTJE def a_star(app, start, goal): pqueue = PriorityQueue() path = [] # keeps being added onto and will eventually return from function as shortest path visited = {} # keeps track of all visited nodes and their priority values pqueue.put((start, path+[start]), 0) visited[start] = 0 # loop through possible paths while the queue is not empty while not pqueue.empty(): item = pqueue.get() parent = item[0] path = item[1] prev_cost = visited[parent] current = path[-1] print("current path {0} with priority {1}".format(current, prev_cost)) if current == goal: return path for neighbour in neighbours(current): g = prev_cost + 1 h = cost(neighbour, goal) # heuristic p = g + h # priority = g + h # or (neighbour in visited and not visited[neighbour] > visited[current]) if neighbour not in visited or g < prev_cost: visited[neighbour] = g # node has now been visited print(" p for neighbour {0} is {1}".format(neighbour, p)) pqueue.put((current, path+[neighbour]), p) # add neighbour to queue app.plot_node(neighbour, color=cf.PATH_C) app.pause() # pause loop according to set delay app.path_not_found_message() return path # calculates cost based on heuristic # source for chosen heuristic: https://www.kdnuggets.com/2017/08/comparing-distance-measurements-python-scipy.html def cost(n1, n2): x1 = n1[0] y1 = n1[1] x2 = n2[0] y2 = n2[1] # Euclidian distance. allows for diagonal measurement of distance return math.sqrt(abs((x2-x1)**2) + abs((y2-y1)**2)) # helper function that checks all possible neighbours for a given node def neighbours(node): x = node[0] y = node[1] # directions: left, right, up, down directions = [(x-1, y), (x+1, y), (x, y-1), (x, y+1)] neighbours = [] for direction in directions: if not out_of_bounds(direction) and not_blocked(direction): neighbours.append(direction) return neighbours # helper function that checks if a node is blocked def not_blocked(node): if get_grid_value(node) == -1: return True else: return False # helper function that checks if a coordinate is out of bounds def out_of_bounds(node): # compare coordinates with size of board or if they are smaller than 0 if node[0] > cf.SIZE-1 or node[1] > cf.SIZE-1 or node[0] < 0 or node[1] < 0: return True else: return False
465ef0a5df387181caa40ea565b69aeb3628129f
jproddy/rosalind
/python_village/ini3.py
623
3.859375
4
''' Strings and Lists http://rosalind.info/problems/ini3/ Given: A string s of length at most 200 letters and four integers a, b, c and d. Return: The slice of this string from indices a through b and c through d (with space in between), inclusively. In other words, we should include elements s[b] and s[d] in our slice. ''' filename = 'rosalind_ini3.txt' def strings(s, a, b, c, d): return [s[a:b+1], s[c:d+1]] def main(): with open(filename) as f: s = f.readline().strip() a, b, c, d = [int(i) for i in f.readline().strip().split()] print(' '.join(strings(s, a, b, c, d))) if __name__ == '__main__': main()
ee09f1aa120c6ab960cc2a0caaa5e74cba1bd9dd
erjan/coding_exercises
/Find Maximum Number of String Pairs.py
1,410
3.75
4
''' You are given a 0-indexed array words consisting of distinct strings. The string words[i] can be paired with the string words[j] if: The string words[i] is equal to the reversed string of words[j]. 0 <= i < j < words.length. Return the maximum number of pairs that can be formed from the array words. Note that each string can belong in at most one pair. ''' class Solution: def maximumNumberOfStringPairs(self, words: List[str]) -> int: res = 0 n = len(words) for i in range(n): temp = list(words[i]) temp.reverse() temp = "".join(temp) for j in range(i+1, n): if words[j] == temp: res+=1 return res ------------------------------------------------------------------------------------------- class Solution: def maximumNumberOfStringPairs(self, words: List[str]) -> int: d = defaultdict(int) for word in words: d[min(word, word[::-1])]+= 1 return sum(map((lambda x: x*(x-1)), d.values()))//2 --------------------------------------------------------------------------------------- class Solution: def maximumNumberOfStringPairs(self, words: List[str]) -> int: count=0 s=set() for ele in words: if ele[::-1] in s: count+=1 s.add(ele) return count
feff1b82513e75dd2b2f9d86d07003c8d5d2ba20
GirishJoshi/interviewcake
/Greedy algorithms/apple_stock.py
2,807
4.09375
4
""" Writing programming interview questions hasn't made me rich yet ... so I might give up and start trading Apple stocks all day instead. First, I wanna know how much money I could have made yesterday if I'd been trading Apple stocks all day. So I grabbed Apple's stock prices from yesterday and put them in a list called stock_prices, where: * The indices are the time (in minutes) past trade opening time, which was 9:30am local time. * The values are the price (in US dollars) of one share of Apple stock at that time. So if the stock cost $500 at 10:30am, that means stock_prices[60] = 500. Write an efficient function that takes stock_prices and returns the best profit I could have made from one purchase and one sale of one share of Apple stock yesterday. For example: stock_prices = [10, 7, 5, 8, 11, 9] get_max_profit(stock_prices) # Returns 6 (buying for $5 and selling for $11) No "shorting"—you need to buy before you can sell. Also, you can't buy and sell in the same time step—at least 1 minute has to pass. """ """ At each iteration, our max_profit is either: the same as the max_profit at the last time step, or the max profit we can get by selling at the current_price How do we know when we have case (2)? The max profit we can get by selling at the current_price is simply the difference between the current_price and the min_price from earlier in the day. If this difference is greater than the current max_profit, we have a new max_profit. So for every price, we’ll need to: keep track of the lowest price we’ve seen so far see if we can get a better profit """ # stock_prices = [10, 7, 5, 8, 11, 9] stock_prices = [10, 9, 7, 3, 1] def get_max_profit_enum(stock_prices): max_profit = min(stock_prices) - max(stock_prices) for i, price in enumerate(stock_prices[:-1]): profit = max(stock_prices[i + 1 :]) - price if profit > max_profit: max_profit = profit return max_profit def get_max_profit(stock_prices): if len(stock_prices) < 2: raise ValueError("Require at least 2 prices to find profit.") # We'll greedily update min_price and max_profit, so we initialize them at first price # and first possible profit min_price = stock_prices[0] max_profit = stock_prices[1] - stock_prices[0] for current_price in stock_prices[1:]: # See what our profit would be if we bought at min_price and sold at current price potential_profit = current_price - min_price # Update max_profit if we can do better max_profit = max(potential_profit, max_profit) # Update the min_price so it's always the lowest price we have seen so far min_price = min(min_price, current_price) return max_profit print(get_max_profit(stock_prices))
b387c6daa15dc9ad3c696b2ff2bbe115c03472f6
webclinic017/TFS
/tfs/utils/charts.py
6,699
3.59375
4
import matplotlib.pyplot as plt import seaborn as sns from matplotlib.ticker import FuncFormatter import pdb class Chart(object): pass class BulletGraph(Chart): """Charts a bullet graph. For examples see: http://pbpython.com/bullet-graph.html """ def draw_graph(self, data=None, labels=None, axis_label=None, title=None, size=(5, 3), formatter=None, target_color="gray", bar_color="black", label_color="gray"): """ Build out a bullet graph image Args: data = List of labels, measures and targets limits = list of range valules labels = list of descriptions of the limit ranges axis_label = string describing x axis title = string title of plot size = tuple for plot size palette = a seaborn palette formatter = matplotlib formatter object for x axis target_color = color string for the target line bar_color = color string for the small bar label_color = color string for the limit label text Returns: a matplotlib figure """ # Must be able to handle one or many data sets via multiple subplots if len(data) == 1: fig, ax = plt.subplots(figsize=size, sharex=True) else: fig, axarr = plt.subplots(len(data), figsize=size, sharex=True) # Add each bullet graph bar to a subplot index = -1 for idx, item in data.iterrows(): index += 1 ticker = item['ticker'] # set limits graph_data, prices = self._normalize_data(item) # Determine the max value for adjusting the bar height # Dividing by 10 seems to work pretty well h = graph_data[-1] / 10 # Reds_r / Blues_r palette = sns.color_palette("Blues_r", len(graph_data) + 2) # Get the axis from the array of axes returned # when the plot is created if len(data) > 1: ax = axarr[index] # Formatting to get rid of extra marking clutter ax.set_aspect('equal') ax.set_yticklabels([ticker]) ax.set_yticks([1]) ax.spines['bottom'].set_visible(False) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['left'].set_visible(False) ax.tick_params( axis='x', # changes apply to the x-axis which='both', # both major and minor ticks are affected bottom=False, # ticks along the bottom edge are off top=False, # ticks along the top edge are off labelbottom=False) prev_limit = 0 n_items = len(graph_data) corr_factor = len(graph_data) / 2 for idx2, lim in enumerate(graph_data): color_index = int(abs( abs(n_items - corr_factor - idx2) - corr_factor)) # Draw the bar ax.barh([1], lim - prev_limit, left=prev_limit, height=h, color=palette[color_index]) prev_limit = lim rects = ax.patches """ prev_limit = limits[0] n_items = len(limits) corr_factor = len(limits) / 2 for idx2, lim in enumerate(limits): color_index = int(abs( abs(n_items - corr_factor - idx2) - corr_factor)) # Draw the bar # pdb.set_trace() ax.barh([1], lim - prev_limit, left=prev_limit, height=h, color=palette[color_index + 2]) # pdb.set_trace() prev_limit = lim rects = ax.patches """ # The last item in the list is the value we're measuring # Draw the value we're measuring # ax.barh([1], item['close'], height=(h / 3), color=bar_color) # Need the ymin and max in order to make sure the target marker # fits ymin, ymax = ax.get_ylim() ax.vlines( prices['close'], ymin * .9, ymax * .9, linewidth=1.5, color=target_color) # Now make some labels if labels is not None: for rect, label in zip(rects, labels): height = rect.get_height() ax.text( rect.get_x() + rect.get_width() / 2, -height * .4, label, ha='center', va='bottom', color=label_color) if formatter: ax.xaxis.set_major_formatter(formatter) if axis_label: ax.set_xlabel(axis_label) if title: fig.suptitle(title, fontsize=14) fig.subplots_adjust(hspace=0) # plt.show() return fig def _normalize_data(self, data): """Normalize data. Scale all data between 0 and 1 and multiply by a fixed value to make sure the graph looks great. :param data: the data that needs to be normalized :return: normalized indicators and prices """ bandwith = 0.1 mult_factor = 100 # normalize indicators graph_data = [data['55DayLow'], data['20DayLow'], data['20DayHigh'], data['55DayHigh']] extra_bandwith = data['55DayHigh'] * bandwith graph_data.insert(0, data['55DayLow'] - extra_bandwith) graph_data.insert( len(graph_data), graph_data[len(graph_data) - 1] + extra_bandwith) scaled_data = [] max_distance = max(graph_data) - graph_data[0] scaled_data.append(0) # numbers = graph_data[1 - len(graph_data):] sum_scaled_values = 0 for i, d in enumerate(graph_data[1:]): sum_scaled_values += (graph_data[i + 1] - graph_data[i]) / max_distance scaled_data.append(sum_scaled_values) scaled_data = [i * mult_factor for i in scaled_data] # normalize prices prices = {} close_price = data['close'] scaled_close_price = (close_price - min(graph_data)) / \ (max(graph_data) - min(graph_data)) prices['close'] = scaled_close_price * mult_factor return scaled_data, prices
823cf9d7be1ebf0db238e037f1936fa00d6c75d3
talhahome/codewars
/Oldi3/Buddy_Pairs.py
1,885
4.1875
4
# You know what divisors of a number are. The divisors of a positive integer n # are said to be proper when you consider only the divisors other than n itself. # In the following description, divisors will mean proper divisors. # For example for 100 they are 1, 2, 4, 5, 10, 20, 25, and 50. # # Let s(n) be the sum of these proper divisors of n. Call buddy two positive integers such that # the sum of the proper divisors of each number is one more than the other number: # # (n, m) are a pair of buddy if s(m) = n + 1 and s(n) = m + 1 # # For example 48 & 75 is such a pair: # Divisors of 48 are: 1, 2, 3, 4, 6, 8, 12, 16, 24 --> sum: 76 = 75 + 1 # Divisors of 75 are: 1, 3, 5, 15, 25 --> sum: 49 = 48 + 1 # # Task # Given two positive integers start and limit, the function buddy(start, limit) should return # the first pair (n m) of buddy pairs such that n (positive integer) is between # start (inclusive) and limit (inclusive); m can be greater than limit and has to be greater than n # # If there is no buddy pair satisfying the conditions, then return "Nothing" or (for Go lang) nil # # Examples # (depending on the languages) # # buddy(10, 50) returns [48, 75] # buddy(48, 50) returns [48, 75] # or # buddy(10, 50) returns "(48 75)" # buddy(48, 50) returns "(48 75)" from functools import reduce def buddy(start, limit): for i in range(start, limit+1): dev = sorted(factors(i))[:-1] bud = sum(dev) - 1 if bud > i: bud_dev = sorted(factors(bud))[:-1] if sum(bud_dev) - 1 == i: print([i, bud]) return [i, bud] print("Nothing") return "Nothing" def factors(n): return set(reduce(list.__add__, ([i, n//i] for i in range(1, int(n**0.5) + 1) if n % i == 0))) #buddy(10, 50) #buddy(57345, 90061) # Ans: [62744, 75495] buddy(1071625, 1103735) # Ans: [1081184, 1331967]
723f26335ada24311601004e1b8c83fa0d0d1d0e
xnth97/Data-Structure-Notes
/DataStructurePython/heap.py
2,151
3.5625
4
class MaxHeap: def __init__(self): self.heap_array = [] def insert(self, key): new_node = self.Node(key) self.heap_array.append(new_node) self.__percolate_up(len(self.heap_array) - 1) def __percolate_up(self, index: int): # save the bottom node bottom = self.heap_array[-1] # find the initial index value of parent parent = int((index - 1) / 2) # while parent's key is smaller than the new key while index > 0 and self.heap_array[parent].key < bottom.key: # parent node comes down self.heap_array[index] = self.heap_array[parent] index = parent # index moves up parent = int((parent - 1) / 2) # finally, insert newly added node into proper position self.heap_array[index] = bottom def remove_max(self) -> int: if not self.heap_array: return root = self.heap_array[0] self.heap_array[0] = self.heap_array[-1] del self.heap_array[-1] if self.heap_array: self.__perculate_down(0) return root.key def __perculate_down(self, index): top = self.heap_array[index] larger_child = -1 # larger child's index while index < int(len(self.heap_array) / 2): left_child = index * 2 + 1 right_child = (index + 1) * 2 # find which one is larger if right_child < len(self.heap_array) and self.heap_array[left_child].key < self.heap_array[right_child].key: larger_child = right_child else: larger_child = left_child # no need to go down any more if self.heap_array[larger_child].key <= top.key: break # move the nodes up self.heap_array[index] = self.heap_array[larger_child] # index goes down toward larger child index = larger_child # put top key into proper location to restore the heap self.heap_array[index] = top # Node class Node: def __init__(self, key): self.key = key
d4eb0130619c7b9110f00211fe47ca8b04279def
nsq974487195/pyldpc
/pyldpc/code.py
7,736
3.515625
4
import numpy as np from scipy.sparse import csr_matrix from . import utils def parity_check_matrix(n, d_v, d_c, seed=None): """ Builds a regular Parity-Check Matrix H (n, d_v, d_c) following Callager's algorithm. Parameters: n: Number of columns (Same as number of coding bits) d_v: number of ones per column (number of parity-check equations including a certain variable) d_c: number of ones per row (number of variables participating in a certain parity-check equation); Errors: The number of ones in the matrix is the same no matter how we calculate it (rows or columns), therefore, if m is the number of rows in the matrix: m*d_c = n*d_v with m < n (because H is a decoding matrix) => Parameters must verify: 0 - all integer parameters 1 - d_v < d_v 2 - d_c divides n --------------------------------------------------------------------------------------- Returns: 2D-array (shape = (m, n)) """ rnd = np.random.RandomState(seed) if n % d_c: raise ValueError("""d_c must divide n. help(coding_matrix) for more info.""") if d_c <= d_v: raise ValueError("""d_c must be greater than d_v. help(coding_matrix) for more info.""") m = (n * d_v) // d_c Set = np.zeros((m//d_v, n), dtype=int) a = m // d_v # Filling the first set with consecutive ones in each row of the set for i in range(a): for j in range(i * d_c, (i+1 * d_c)): Set[i, j] = 1 # Create list of Sets and append the first reference set Sets = [] Sets.append(Set.tolist()) # reate remaining sets by permutations of the first set's columns: i = 1 for i in range(1, d_v): newSet = rnd.permutation(np.transpose(Set)).T.tolist() Sets.append(newSet) # Returns concatenated list of sest: H = np.concatenate(Sets) return H def coding_matrix(X, sparse=True): """ CAUTION: RETURNS tG TRANSPOSED CODING X. Function Applies gaussjordan Algorithm on Columns and rows of X in order to permute Basis Change matrix using Matrix Equivalence. Let A be the treated Matrix. refAref the double row reduced echelon Matrix. refAref has the form: (e.g) : |1 0 0 0 0 0 ... 0 0 0 0| |0 1 0 0 0 0 ... 0 0 0 0| |0 0 0 0 0 0 ... 0 0 0 0| |0 0 0 1 0 0 ... 0 0 0 0| |0 0 0 0 0 0 ... 0 0 0 0| |0 0 0 0 0 0 ... 0 0 0 0| First, let P1 Q1 invertible matrices: P1.A.Q1 = refAref We would like to calculate: P,Q are the square invertible matrices of the appropriate size so that: P.A.Q = J. Where J is the matrix of the form (having X's shape): | I_p O | where p is X's rank and I_p Identity matrix of size p. | 0 0 | Therfore, we perform permuations of rows and columns in refAref (same changes are applied to Q1 in order to get final Q matrix) NOTE: P IS NOT RETURNED BECAUSE WE DO NOT NEED IT TO SOLVE H.G' = 0 P IS INVERTIBLE, WE GET SIMPLY RID OF IT. Then solves: inv(P).J.inv(Q).G' = 0 (1) where inv(P) = P^(-1) and P.H.Q = J. Help(PJQ) for more info. Let Y = inv(Q).G', equation becomes J.Y = 0 (2) whilst: J = | I_p O | where p is H's rank and I_p Identity matrix of size p. | 0 0 | Knowing that G must have full rank, a solution of (2) is Y = | 0 | Where k = n-p. | I-k | Because of rank-nullity theorem. ----------------- parameters: H: Parity check matrix. sparse: (optional, default True): use scipy.sparse format to speed up computation. --------------- returns: tG: Transposed Coding Matrix. """ if type(X) == csr_matrix: X = X.toarray() H = X.copy() m, n = H.shape # DOUBLE GAUSS-JORDAN: Href_colonnes, tQ = utils.gaussjordan(np.transpose(H), 1) Href_diag = utils.gaussjordan(np.transpose(Href_colonnes)) Q = np.transpose(tQ) k = n - sum(Href_diag.reshape(m*n)) Y = np.zeros(shape=(n, k)).astype(int) Y[n-k:, :] = np.identity(k) if sparse: Q = csr_matrix(Q) Y = csr_matrix(Y) tG = utils.binaryproduct(Q, Y) return H, tG def coding_matrix_systematic(X, sparse=True): """ Description: Solves H.G' = 0 and finds the coding matrix G in the systematic form : [I_k A] by applying permutations on X. CAUTION: RETURNS TUPLE (Hp,tGS) WHERE Hp IS A MODIFIED VERSION OF THE GIVEN PARITY CHECK X, tGS THE TRANSPOSED SYSTEMATIC CODING X ASSOCIATED TO Hp. YOU MUST USE THE RETURNED TUPLE IN CODING AND DECODING, RATHER THAN THE UNCHANGED PARITY-CHECK X H. ------------------------------------------------- Parameters: X: 2D-Array. Parity-check matrix. sparse: (optional, default True): use scipy.sparse matrices to speed up computation if n>100. ------------------------------------------------ >>> Returns Tuple of 2D-arrays (Hp,GS): Hp: Modified H: permutation of columns (The code doesn't change) tGS: Transposed Systematic Coding matrix associated to Hp. """ H = X.copy() m, n = H.shape if n > 100 and sparse: sparse = True else: sparse = False P1 = np.identity(n, dtype=int) Hrowreduced = utils.gaussjordan(H) k = n - sum([a.any() for a in Hrowreduced]) # After this loop, Hrowreduced will have the form H_ss : | I_(n-k) A | while(True): zeros = [i for i in range(min(m, n)) if not Hrowreduced[i, i]] indice_colonne_a = min(zeros) list_ones = [j for j in range(indice_colonne_a+1, n) if Hrowreduced[indice_colonne_a, j]] if not len(list_ones): break indice_colonne_b = min(list_ones) aux = Hrowreduced[:, indice_colonne_a].copy() Hrowreduced[:, indice_colonne_a] = Hrowreduced[:, indice_colonne_b] Hrowreduced[:, indice_colonne_b] = aux aux = P1[:, indice_colonne_a].copy() P1[:, indice_colonne_a] = P1[:, indice_colonne_b] P1[:, indice_colonne_b] = aux # NOW, Hrowreduced has the form: | I_(n-k) A | , # the permutation above makes it look like : # |A I_(n-k)| P1 = P1.T identity = list(range(n)) sigma = identity[n-k:] + identity[:n-k] P2 = np.zeros(shape=(n, n), dtype=int) P2[identity, sigma] = np.ones(n) if sparse: P1 = csr_matrix(P1) P2 = csr_matrix(P2) H = csr_matrix(H) P = utils.binaryproduct(P2, P1) if sparse: P = csr_matrix(P) Hp = utils.binaryproduct(H, np.transpose(P)) GS = np.zeros((k, n), dtype=int) GS[:, :k] = np.identity(k) GS[:, k:] = (Hrowreduced[:n-k, n-k:]).T return Hp, GS.T def make_ldpc(n, d_v, d_c, seed=None, systematic=False, sparse=True): """Creates an LDPC coding and decoding matrices H and G. Parameters: ----------- n: Number of columns (same as number of coding bits) d_v: number of ones per column (number of parity-check equations including a certain variable) d_c: number of ones per row (number of variables participating in a certain parity-check equation); systematic: optional, default False. if True, constructs a systematic coding matrix G. Returns: -------- H: (n, m) array with m.d_c = n.d_v with m < n. parity check matrix G: (n, k) array coding matrix.""" H = parity_check_matrix(n, d_v, d_c, seed=seed) if systematic: H, G = coding_matrix_systematic(H, sparse=sparse) else: H, G = coding_matrix(H, sparse=sparse) return H, G
869b7c1209d7863c8052005f2f05488bbb17a9c1
phibzy/InterviewQPractice
/Solutions/MinimumRemoveToMakeValidParentheses/test.py
1,209
3.6875
4
#!/usr/bin/python3 """ Test Cases: - Empty string - All letters - Perfectly balanced string - Starting with closed parentheses - Starting with open - Input of length N, output empty string - Length 1 string, invalid and valid """ import unittest from minRemove import Solution class test(unittest.TestCase): a = Solution() def testBasic(self): self.assertEqual(self.a.minRemoveToMakeValid(""), "") self.assertEqual(self.a.minRemoveToMakeValid("nicegary"), "nicegary") def testBalanced(self): self.assertEqual(self.a.minRemoveToMakeValid("aa(noice(d))n"), "aa(noice(d))n") self.assertEqual(self.a.minRemoveToMakeValid("(((((((())))))))"), "(((((((())))))))") def testInvalid(self): self.assertEqual(self.a.minRemoveToMakeValid(")aa(noice(d))n"), "aa(noice(d))n") self.assertEqual(self.a.minRemoveToMakeValid("(aa(noice(d))n"), "aa(noice(d))n") self.assertEqual(self.a.minRemoveToMakeValid("))))((("), "") self.assertEqual(self.a.minRemoveToMakeValid("aa(noice(d))n)"), "aa(noice(d))n") self.assertEqual(self.a.minRemoveToMakeValid("())()((("), "()()")
ed4920e82c04dfcb5e887b58d450f8fddb2286ad
halysl/code
/python/fibolique.py
209
3.65625
4
def fib(n): count = 0 num1 = 1 num2 = 1 while count < n: result = num1 num1, num2 = num2, num1+num2 count += 1 yield result f = fib(10) for i in f: print(i)
fd888d0d51184570ed83fb5e2cb92ecd5aafef5b
zerghua/leetcode-python
/N888_FairCandySwap.py
2,784
3.703125
4
# # Create by Hua on 5/12/22 # """ Alice and Bob have a different total number of candies. You are given two integer arrays aliceSizes and bobSizes where aliceSizes[i] is the number of candies of the ith box of candy that Alice has and bobSizes[j] is the number of candies of the jth box of candy that Bob has. Since they are friends, they would like to exchange one candy box each so that after the exchange, they both have the same total amount of candy. The total amount of candy a person has is the sum of the number of candies in each box they have. Return an integer array answer where answer[0] is the number of candies in the box that Alice must exchange, and answer[1] is the number of candies in the box that Bob must exchange. If there are multiple answers, you may return any one of them. It is guaranteed that at least one answer exists. Example 1: Input: aliceSizes = [1,1], bobSizes = [2,2] Output: [1,2] Example 2: Input: aliceSizes = [1,2], bobSizes = [2,3] Output: [1,2] Example 3: Input: aliceSizes = [2], bobSizes = [1,3] Output: [2,3] Constraints: 1 <= aliceSizes.length, bobSizes.length <= 104 1 <= aliceSizes[i], bobSizes[j] <= 105 Alice and Bob have a different total number of candies. There will be at least one valid answer for the given input. """ class Solution(object): def fairCandySwap(self, aliceSizes, bobSizes): """ :type aliceSizes: List[int] :type bobSizes: List[int] :rtype: List[int] thought: math, sort list to make solution o(nlogn) rather than o(n^2), key is to find the abs(x-y) == abs(sum(a) - sum(b))/2 TLE, this solution is not truly o(nlogn) second thought: use binary search to make it real o(nlogn) 05/12/2022 11:26 Accepted 551 ms 15.2 MB python easy - medium 20-30 mins. binary search better code use set(below solution assumes a >= b): https://leetcode.com/problems/fair-candy-swap/discuss/161269/C%2B%2BJavaPython-Straight-Forward def fairCandySwap(self, A, B): dif = (sum(A) - sum(B)) / 2 A = set(A) for b in set(B): if dif + b in A: return [dif + b, b] """ import bisect is_alice_larger = False if sum(aliceSizes) >= sum(bobSizes): is_alice_larger = True aliceSizes, bobSizes = bobSizes, aliceSizes diff = (sum(bobSizes) - sum(aliceSizes)) / 2 b = sorted(bobSizes) for i in sorted(aliceSizes): v = diff + i j = bisect.bisect_left(b, v) # j is index if j != len(bobSizes) and b[j] == v: if is_alice_larger: return [v,i] return [i,v] return None
643141e6a3807e3a64619c94a05660f1d4cfb12a
d3athwarrior/LearningPython
/NonSequentialDataTypes.py
1,405
4.625
5
# Dictionaries # Different ways to declare a dictionary dict_way_one = {'One': 1, 'Two': 2} # This requires the key, if a string, to be put in double (double) quotes dict_way_two = dict(One = 1, Two = 2) # This takes in the string as keyword arguments. The part before the = becomes the keys # Printing the dict for k, v in dict_way_one.items(): print(f"Key is {k} and value is {v}") print('Using key in a for loop') for k in dict_way_two: print(f"Key is {k} and value is {dict_way_two[k]}") # Sets # Different ways to declare sets set_way_one = {1, 2, 3, 4, 5, 3, 'T', 'w'} # This will create a set set_way_two = set("Hello! This is way two to declare a set") # This will not work since it will treat the string as a single object rather than multiple characters # In order for the set to be able to contain a string split into its independent characters we need to have it added using # the set() constructor set_way_three = {"Hello! This is a set."} set_way_two_obj_two = set("Hello! This is a third way to declare a set.") print(len(set_way_one)) print(len(set_way_two)) print(len(set_way_three)) # Set operations like union, substraction, print(f"In set a or set b {set_way_two | set_way_two_obj_two}") print(f"In set b but not a {set_way_two_obj_two - set_way_two}") print(f"In either a or b but not both {set_way_two ^ set_way_one}") print(f"In both a & b {set_way_one & set_way_two}")
75fb58b0beb1243b6ad53f936bef8cb98b53352a
egyilmaz/mathQuestions
/questions/src/question/year6/Question113.py
801
3.65625
4
import random from questions.src.question.BaseQuestion import BaseQuestion from questions.src.question.year6.Types import Types, Complexity class Question113(BaseQuestion): def __init__(self): self.type = [Types.Geometry_circle_perimeter, Types.sat_reasoning] self.complexity = Complexity.Moderate diameter = random.choice([40, 50, 90, 100]) self.body = "A car tyre is {0} cm in diameter. what is the area and perimeter of this tyre(Take pi as 3.14)"\ .format(diameter) perimeter = 3.14*diameter area = 3.14*(diameter/2)**2 self.res="Perimeter is 2*pi*r = {0} and Area is pi*r^2 = {1}".format(perimeter, area) def question(self): return self.body def answer(self): return "{res}".format(res=self.res)
b50cf08167a4c1484c3bd482935ad18c950beac7
pengyuhou/git_test1
/leetcode/234. 回文链表.py
452
3.515625
4
# Definition for singly-linked list. class ListNode: def __init__(self, x): self.val = x self.next = None class Solution: def isPalindrome(self, head: ListNode) -> bool: cur = head ret = [] while cur: ret.append(cur.val) cur = cur.next l = len(ret) for i in range(l//2): if ret[i]!=ret[l-1-i]: return False return True
dfec3abe11bdf547f4bbec1f084e6d88d8a6dbc7
ChenQQ96/flask_study
/test12.py
848
3.578125
4
#知道一个函数,怎么去获得这个URL呢:通过 url_for(函数名,查询参数) from flask import Flask,url_for,request app = Flask(__name__) @app.route('/',methods=['POST','GET']) def index(): if request.method=='POST': return 'POST' else: return 'GET' @app.route('/login/') def login(): return 'login' @app.route('/user/<username>/') def user(username): return 'Welcome, {}'.format(username) #url_for这个函数正确运行需要上下文的支持,也就是说要保证url_for这个函数所处的地方必须是一个app里面 #当写在某个响应函数中没有问题,如果在app外面使用url_for的话,可以使用with关键字指定上下文. with app.test_request_context(): print(url_for('index')) print(url_for('login')) print(url_for('user',username='ChenQQ')) app.run()
4d337df370d6ba293ff86cc71cb4f5c79ba3c4c8
FidelNava2002/Actividades-de-python
/condiciones-02.py
398
3.953125
4
"""3. - Escribe un programa que pida dos números y que conteste cuál es el menor y cuál el mayor o que escriba que son iguales.""" n1=int(input("Ingresa el numero 1: ")) n2=int(input("Ingresa el numero 2: ")) if n1>n2: print(n1, "Es el mayor y ",n2,"es el menor") elif n1<n2: print(n2, "Es el mayor y ",n1,"es el menor") elif n1==n2: print("Los numeros son iguales")
7fb91c0d4c32b04dd5fc1b791b5766aae6ec09de
geniousisme/CodingInterview
/leetCode/Python/157-readNCharsGivenRead4.py
1,380
3.5625
4
# Time: O(n) # Space: O(1) # # The API: int read4(char *buf) reads 4 characters at a time from a file. # # The return value is the actual number of characters read. For example, it returns 3 if there is only 3 characters left in the file. # # By using the read4 API, implement the function int read(char *buf, int n) that reads n characters from the file. # # Note: # The read function will only be called once for each test case. # # The read4 API is already defined for you. # @param buf, a list of characters # @return an integer # def read4(buf): def read4(buf): global file_content i = 0 while i < len(file_content) and i < 4: buf[i] = file_content[i] i += 1 if len(file_content) > 4: file_content = file_content[4:] else: file_content = "" return i class Solution: def read(self, buf, n): idx = 0 buf4 = ['', '', '', ''] while True: curr = min(read4(buf4), n - idx) for i in xrange(curr): buf[idx] = buf4[i] idx += 1 if curr != 4 or idx == n: return idx if __name__ == "__main__": global file_content buf = ['' for _ in xrange(100)] file_content = "a" print buf[:Solution().read(buf, 9)] file_content = "abcdefghijklmnop" print buf[:Solution().read(buf, 9)]