Datasets:
ByteDepth Dataset
ByteDepth is a multi-camera depth estimation dataset containing synchronized depth, color, and auxiliary data captured from various 3D cameras. The dataset provides comprehensive depth sensing from multiple cameras in various in-door scenarios, making it ideal for developing and evaluating depth estimation algorithms.
Dataset Overview
- Purpose: Multi-camera depth estimation research and benchmarking
- Total Sessions: 39 recording sessions
- Uncompressed Size: ~2.7TB
- Data Collection System: Multi-Camera Depth Recording System
- License: MIT
Quick Start
Data Extraction
The dataset is provided as split archive files. To extract the complete dataset:
cat recorded_data.tar.part.* | tar -xvf -
This will create a recorded_data
folder containing all 39 recording sessions.
Dataset Structure
Archive Organization
recorded_data_packed/
βββ recorded_data.tar.part.000
βββ recorded_data.tar.part.001
βββ ...
βββ recorded_data.tar.part.136
Extracted Data Structure
After extraction, the data is organized as follows:
recorded_data/
βββ YYYYMMDD_HHMM/ # Timestamp-based session folder (39 sessions total)
βββ camera_realsense_455/ # Intel RealSense D455
β βββ depth_000.png # 16-bit depth images
β βββ color_000.png # 8-bit color images
β βββ ...
βββ camera_realsense_d405/ # Intel RealSense D405
β βββ depth_000.png
β βββ color_000.png
β βββ ...
βββ camera_realsense_d415/ # Intel RealSense D415
β βββ depth_000.png
β βββ color_000.png
β βββ ...
βββ camera_realsense_d435/ # Intel RealSense D435
β βββ depth_000.png
β βββ color_000.png
β βββ ...
βββ camera_realsense_l515/ # Intel RealSense L515
β βββ depth_000.png
β βββ color_000.png
β βββ ...
βββ camera_kinect/ # Microsoft Azure Kinect
β βββ depth_000.png # 16-bit depth images
β βββ color_000.png # 8-bit color images
β βββ ir_000.png # Infrared images
β βββ ...
βββ camera_zed2i_neural/ # Stereolabs ZED2i (Neural mode)
β βββ raw_depth_000.npy # 32-bit float depth arrays
β βββ depth_000.png # 16-bit depth images
β βββ color_000.png # Color images
β βββ pcd_000.npy # Point cloud data (X,Y,Z)
β βββ normal_000.npy # Surface normal vectors
β βββ ...
βββ camera_zed2i_performance/
βββ camera_zed2i_quality/
βββ camera_zed2i_ultra/
βββ ...
Camera Systems and Specifications
The dataset includes data collected by our depth recording toolkit:
Intel RealSense Cameras
- Models: D405, D415, D435, D455, L515
- Output:
depth_xxx.png
(16-bit),color_xxx.png
(8-bit)
Microsoft Azure Kinect
- Depth Resolution: Wide FOV unbinned
- Output:
depth_xxx.png
(16-bit),color_xxx.png
(8-bit),ir_xxx.png
(infrared)
Stereolabs ZED2i
- Depth Resolution: 1280Γ720
- Depth Modes: 4 different modes (neural, performance, quality, ultra)
- Output:
raw_depth_xxx.npy
(32-bit float depth arrays)depth_xxx.png
(16-bit depth images)color_xxx.png
(8-bit color images)pcd_xxx.npy
(point cloud data)normal_xxx.npy
(surface normal vectors)
Data Formats
File Types and Specifications
Data Type | Format | Bit Depth | Description |
---|---|---|---|
Depth Images | PNG | 16-bit | Standard depth maps |
Color Images | PNG | 8-bit RGB | Color/texture images |
Raw Depth | NPY | 32-bit float | High-precision depth (ZED2i only) |
Point Clouds | NPY | 32-bit float | 3D point coordinates (X,Y,Z) |
Surface Normals | NPY | 32-bit float | Surface normal vectors |
Infrared | PNG | 8-bit | IR images (Kinect only) |
Depth Data
The unit of the depth data is 'mm' for most of the cameras, which means that we can obtain the 'm'-scale by dividing the raw depth by 1000. Note that RealSense D405/L515 has different scales, which are 2500 and 10000, respectively. In other words, we should divide the raw depth by 2500 and 10000 to obtain the 'm'-scale depth.
File Naming Convention
- Sequential numbering:
xxx
represents frame index (000, 001, 002, ...) - Synchronized capture: Same frame numbers across cameras represent simultaneous capture
- Camera identification: Folder names clearly identify camera type and model
License
This dataset is released under the MIT License.
- Downloads last month
- 11