
albertvillanova
HF Staff
Convert dataset sizes from base 2 to base 10 in the dataset card (#5)
1cdcf07
language: | |
- ar | |
- bg | |
- de | |
- el | |
- en | |
- es | |
- fr | |
- hi | |
- ru | |
- sw | |
- th | |
- tr | |
- ur | |
- vi | |
- zh | |
paperswithcode_id: xnli | |
pretty_name: Cross-lingual Natural Language Inference | |
dataset_info: | |
- config_name: ar | |
features: | |
- name: premise | |
dtype: string | |
- name: hypothesis | |
dtype: string | |
- name: label | |
dtype: | |
class_label: | |
names: | |
'0': entailment | |
'1': neutral | |
'2': contradiction | |
splits: | |
- name: train | |
num_bytes: 107399934 | |
num_examples: 392702 | |
- name: test | |
num_bytes: 1294561 | |
num_examples: 5010 | |
- name: validation | |
num_bytes: 633009 | |
num_examples: 2490 | |
download_size: 483963712 | |
dataset_size: 109327504 | |
- config_name: bg | |
features: | |
- name: premise | |
dtype: string | |
- name: hypothesis | |
dtype: string | |
- name: label | |
dtype: | |
class_label: | |
names: | |
'0': entailment | |
'1': neutral | |
'2': contradiction | |
splits: | |
- name: train | |
num_bytes: 125973545 | |
num_examples: 392702 | |
- name: test | |
num_bytes: 1573042 | |
num_examples: 5010 | |
- name: validation | |
num_bytes: 774069 | |
num_examples: 2490 | |
download_size: 483963712 | |
dataset_size: 128320656 | |
- config_name: de | |
features: | |
- name: premise | |
dtype: string | |
- name: hypothesis | |
dtype: string | |
- name: label | |
dtype: | |
class_label: | |
names: | |
'0': entailment | |
'1': neutral | |
'2': contradiction | |
splits: | |
- name: train | |
num_bytes: 84684460 | |
num_examples: 392702 | |
- name: test | |
num_bytes: 996496 | |
num_examples: 5010 | |
- name: validation | |
num_bytes: 494612 | |
num_examples: 2490 | |
download_size: 483963712 | |
dataset_size: 86175568 | |
- config_name: el | |
features: | |
- name: premise | |
dtype: string | |
- name: hypothesis | |
dtype: string | |
- name: label | |
dtype: | |
class_label: | |
names: | |
'0': entailment | |
'1': neutral | |
'2': contradiction | |
splits: | |
- name: train | |
num_bytes: 139753678 | |
num_examples: 392702 | |
- name: test | |
num_bytes: 1704793 | |
num_examples: 5010 | |
- name: validation | |
num_bytes: 841234 | |
num_examples: 2490 | |
download_size: 483963712 | |
dataset_size: 142299705 | |
- config_name: en | |
features: | |
- name: premise | |
dtype: string | |
- name: hypothesis | |
dtype: string | |
- name: label | |
dtype: | |
class_label: | |
names: | |
'0': entailment | |
'1': neutral | |
'2': contradiction | |
splits: | |
- name: train | |
num_bytes: 74444346 | |
num_examples: 392702 | |
- name: test | |
num_bytes: 875142 | |
num_examples: 5010 | |
- name: validation | |
num_bytes: 433471 | |
num_examples: 2490 | |
download_size: 483963712 | |
dataset_size: 75752959 | |
- config_name: es | |
features: | |
- name: premise | |
dtype: string | |
- name: hypothesis | |
dtype: string | |
- name: label | |
dtype: | |
class_label: | |
names: | |
'0': entailment | |
'1': neutral | |
'2': contradiction | |
splits: | |
- name: train | |
num_bytes: 81383604 | |
num_examples: 392702 | |
- name: test | |
num_bytes: 969821 | |
num_examples: 5010 | |
- name: validation | |
num_bytes: 478430 | |
num_examples: 2490 | |
download_size: 483963712 | |
dataset_size: 82831855 | |
- config_name: fr | |
features: | |
- name: premise | |
dtype: string | |
- name: hypothesis | |
dtype: string | |
- name: label | |
dtype: | |
class_label: | |
names: | |
'0': entailment | |
'1': neutral | |
'2': contradiction | |
splits: | |
- name: train | |
num_bytes: 85809099 | |
num_examples: 392702 | |
- name: test | |
num_bytes: 1029247 | |
num_examples: 5010 | |
- name: validation | |
num_bytes: 510112 | |
num_examples: 2490 | |
download_size: 483963712 | |
dataset_size: 87348458 | |
- config_name: hi | |
features: | |
- name: premise | |
dtype: string | |
- name: hypothesis | |
dtype: string | |
- name: label | |
dtype: | |
class_label: | |
names: | |
'0': entailment | |
'1': neutral | |
'2': contradiction | |
splits: | |
- name: train | |
num_bytes: 170594284 | |
num_examples: 392702 | |
- name: test | |
num_bytes: 2073081 | |
num_examples: 5010 | |
- name: validation | |
num_bytes: 1023923 | |
num_examples: 2490 | |
download_size: 483963712 | |
dataset_size: 173691288 | |
- config_name: ru | |
features: | |
- name: premise | |
dtype: string | |
- name: hypothesis | |
dtype: string | |
- name: label | |
dtype: | |
class_label: | |
names: | |
'0': entailment | |
'1': neutral | |
'2': contradiction | |
splits: | |
- name: train | |
num_bytes: 129859935 | |
num_examples: 392702 | |
- name: test | |
num_bytes: 1603474 | |
num_examples: 5010 | |
- name: validation | |
num_bytes: 786450 | |
num_examples: 2490 | |
download_size: 483963712 | |
dataset_size: 132249859 | |
- config_name: sw | |
features: | |
- name: premise | |
dtype: string | |
- name: hypothesis | |
dtype: string | |
- name: label | |
dtype: | |
class_label: | |
names: | |
'0': entailment | |
'1': neutral | |
'2': contradiction | |
splits: | |
- name: train | |
num_bytes: 69286045 | |
num_examples: 392702 | |
- name: test | |
num_bytes: 871659 | |
num_examples: 5010 | |
- name: validation | |
num_bytes: 429858 | |
num_examples: 2490 | |
download_size: 483963712 | |
dataset_size: 70587562 | |
- config_name: th | |
features: | |
- name: premise | |
dtype: string | |
- name: hypothesis | |
dtype: string | |
- name: label | |
dtype: | |
class_label: | |
names: | |
'0': entailment | |
'1': neutral | |
'2': contradiction | |
splits: | |
- name: train | |
num_bytes: 176063212 | |
num_examples: 392702 | |
- name: test | |
num_bytes: 2147023 | |
num_examples: 5010 | |
- name: validation | |
num_bytes: 1061168 | |
num_examples: 2490 | |
download_size: 483963712 | |
dataset_size: 179271403 | |
- config_name: tr | |
features: | |
- name: premise | |
dtype: string | |
- name: hypothesis | |
dtype: string | |
- name: label | |
dtype: | |
class_label: | |
names: | |
'0': entailment | |
'1': neutral | |
'2': contradiction | |
splits: | |
- name: train | |
num_bytes: 71637460 | |
num_examples: 392702 | |
- name: test | |
num_bytes: 934942 | |
num_examples: 5010 | |
- name: validation | |
num_bytes: 459316 | |
num_examples: 2490 | |
download_size: 483963712 | |
dataset_size: 73031718 | |
- config_name: ur | |
features: | |
- name: premise | |
dtype: string | |
- name: hypothesis | |
dtype: string | |
- name: label | |
dtype: | |
class_label: | |
names: | |
'0': entailment | |
'1': neutral | |
'2': contradiction | |
splits: | |
- name: train | |
num_bytes: 96441806 | |
num_examples: 392702 | |
- name: test | |
num_bytes: 1416249 | |
num_examples: 5010 | |
- name: validation | |
num_bytes: 699960 | |
num_examples: 2490 | |
download_size: 483963712 | |
dataset_size: 98558015 | |
- config_name: vi | |
features: | |
- name: premise | |
dtype: string | |
- name: hypothesis | |
dtype: string | |
- name: label | |
dtype: | |
class_label: | |
names: | |
'0': entailment | |
'1': neutral | |
'2': contradiction | |
splits: | |
- name: train | |
num_bytes: 101417750 | |
num_examples: 392702 | |
- name: test | |
num_bytes: 1190225 | |
num_examples: 5010 | |
- name: validation | |
num_bytes: 590688 | |
num_examples: 2490 | |
download_size: 483963712 | |
dataset_size: 103198663 | |
- config_name: zh | |
features: | |
- name: premise | |
dtype: string | |
- name: hypothesis | |
dtype: string | |
- name: label | |
dtype: | |
class_label: | |
names: | |
'0': entailment | |
'1': neutral | |
'2': contradiction | |
splits: | |
- name: train | |
num_bytes: 72225161 | |
num_examples: 392702 | |
- name: test | |
num_bytes: 777937 | |
num_examples: 5010 | |
- name: validation | |
num_bytes: 384859 | |
num_examples: 2490 | |
download_size: 483963712 | |
dataset_size: 73387957 | |
- config_name: all_languages | |
features: | |
- name: premise | |
dtype: | |
translation: | |
languages: | |
- ar | |
- bg | |
- de | |
- el | |
- en | |
- es | |
- fr | |
- hi | |
- ru | |
- sw | |
- th | |
- tr | |
- ur | |
- vi | |
- zh | |
- name: hypothesis | |
dtype: | |
translation_variable_languages: | |
languages: | |
- ar | |
- bg | |
- de | |
- el | |
- en | |
- es | |
- fr | |
- hi | |
- ru | |
- sw | |
- th | |
- tr | |
- ur | |
- vi | |
- zh | |
num_languages: 15 | |
- name: label | |
dtype: | |
class_label: | |
names: | |
'0': entailment | |
'1': neutral | |
'2': contradiction | |
splits: | |
- name: train | |
num_bytes: 1581474731 | |
num_examples: 392702 | |
- name: test | |
num_bytes: 19387508 | |
num_examples: 5010 | |
- name: validation | |
num_bytes: 9566255 | |
num_examples: 2490 | |
download_size: 483963712 | |
dataset_size: 1610428494 | |
# Dataset Card for "xnli" | |
## Table of Contents | |
- [Dataset Description](#dataset-description) | |
- [Dataset Summary](#dataset-summary) | |
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) | |
- [Languages](#languages) | |
- [Dataset Structure](#dataset-structure) | |
- [Data Instances](#data-instances) | |
- [Data Fields](#data-fields) | |
- [Data Splits](#data-splits) | |
- [Dataset Creation](#dataset-creation) | |
- [Curation Rationale](#curation-rationale) | |
- [Source Data](#source-data) | |
- [Annotations](#annotations) | |
- [Personal and Sensitive Information](#personal-and-sensitive-information) | |
- [Considerations for Using the Data](#considerations-for-using-the-data) | |
- [Social Impact of Dataset](#social-impact-of-dataset) | |
- [Discussion of Biases](#discussion-of-biases) | |
- [Other Known Limitations](#other-known-limitations) | |
- [Additional Information](#additional-information) | |
- [Dataset Curators](#dataset-curators) | |
- [Licensing Information](#licensing-information) | |
- [Citation Information](#citation-information) | |
- [Contributions](#contributions) | |
## Dataset Description | |
- **Homepage:** [https://www.nyu.edu/projects/bowman/xnli/](https://www.nyu.edu/projects/bowman/xnli/) | |
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
- **Size of downloaded dataset files:** 7.74 GB | |
- **Size of the generated dataset:** 3.23 GB | |
- **Total amount of disk used:** 10.97 GB | |
### Dataset Summary | |
XNLI is a subset of a few thousand examples from MNLI which has been translated | |
into a 14 different languages (some low-ish resource). As with MNLI, the goal is | |
to predict textual entailment (does sentence A imply/contradict/neither sentence | |
B) and is a classification task (given two sentences, predict one of three | |
labels). | |
### Supported Tasks and Leaderboards | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
### Languages | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
## Dataset Structure | |
### Data Instances | |
#### all_languages | |
- **Size of downloaded dataset files:** 483.96 MB | |
- **Size of the generated dataset:** 1.61 GB | |
- **Total amount of disk used:** 2.09 GB | |
An example of 'train' looks as follows. | |
``` | |
This example was too long and was cropped: | |
{ | |
"hypothesis": "{\"language\": [\"ar\", \"bg\", \"de\", \"el\", \"en\", \"es\", \"fr\", \"hi\", \"ru\", \"sw\", \"th\", \"tr\", \"ur\", \"vi\", \"zh\"], \"translation\": [\"احد اع...", | |
"label": 0, | |
"premise": "{\"ar\": \"واحدة من رقابنا ستقوم بتنفيذ تعليماتك كلها بكل دقة\", \"bg\": \"един от нашите номера ще ви даде инструкции .\", \"de\": \"Eine ..." | |
} | |
``` | |
#### ar | |
- **Size of downloaded dataset files:** 483.96 MB | |
- **Size of the generated dataset:** 109.32 MB | |
- **Total amount of disk used:** 593.29 MB | |
An example of 'validation' looks as follows. | |
``` | |
{ | |
"hypothesis": "اتصل بأمه حالما أوصلته حافلة المدرسية.", | |
"label": 1, | |
"premise": "وقال، ماما، لقد عدت للمنزل." | |
} | |
``` | |
#### bg | |
- **Size of downloaded dataset files:** 483.96 MB | |
- **Size of the generated dataset:** 128.32 MB | |
- **Total amount of disk used:** 612.28 MB | |
An example of 'train' looks as follows. | |
``` | |
This example was too long and was cropped: | |
{ | |
"hypothesis": "\"губиш нещата на следното ниво , ако хората си припомнят .\"...", | |
"label": 0, | |
"premise": "\"по време на сезона и предполагам , че на твоето ниво ще ги загубиш на следващото ниво , ако те решат да си припомнят отбора на ..." | |
} | |
``` | |
#### de | |
- **Size of downloaded dataset files:** 483.96 MB | |
- **Size of the generated dataset:** 86.17 MB | |
- **Total amount of disk used:** 570.14 MB | |
An example of 'train' looks as follows. | |
``` | |
This example was too long and was cropped: | |
{ | |
"hypothesis": "Man verliert die Dinge auf die folgende Ebene , wenn sich die Leute erinnern .", | |
"label": 0, | |
"premise": "\"Du weißt , während der Saison und ich schätze , auf deiner Ebene verlierst du sie auf die nächste Ebene , wenn sie sich entschl..." | |
} | |
``` | |
#### el | |
- **Size of downloaded dataset files:** 483.96 MB | |
- **Size of the generated dataset:** 142.30 MB | |
- **Total amount of disk used:** 626.26 MB | |
An example of 'validation' looks as follows. | |
``` | |
This example was too long and was cropped: | |
{ | |
"hypothesis": "\"Τηλεφώνησε στη μαμά του μόλις το σχολικό λεωφορείο τον άφησε.\"...", | |
"label": 1, | |
"premise": "Και είπε, Μαμά, έφτασα στο σπίτι." | |
} | |
``` | |
### Data Fields | |
The data fields are the same among all splits. | |
#### all_languages | |
- `premise`: a multilingual `string` variable, with possible languages including `ar`, `bg`, `de`, `el`, `en`. | |
- `hypothesis`: a multilingual `string` variable, with possible languages including `ar`, `bg`, `de`, `el`, `en`. | |
- `label`: a classification label, with possible values including `entailment` (0), `neutral` (1), `contradiction` (2). | |
#### ar | |
- `premise`: a `string` feature. | |
- `hypothesis`: a `string` feature. | |
- `label`: a classification label, with possible values including `entailment` (0), `neutral` (1), `contradiction` (2). | |
#### bg | |
- `premise`: a `string` feature. | |
- `hypothesis`: a `string` feature. | |
- `label`: a classification label, with possible values including `entailment` (0), `neutral` (1), `contradiction` (2). | |
#### de | |
- `premise`: a `string` feature. | |
- `hypothesis`: a `string` feature. | |
- `label`: a classification label, with possible values including `entailment` (0), `neutral` (1), `contradiction` (2). | |
#### el | |
- `premise`: a `string` feature. | |
- `hypothesis`: a `string` feature. | |
- `label`: a classification label, with possible values including `entailment` (0), `neutral` (1), `contradiction` (2). | |
### Data Splits | |
| name |train |validation|test| | |
|-------------|-----:|---------:|---:| | |
|all_languages|392702| 2490|5010| | |
|ar |392702| 2490|5010| | |
|bg |392702| 2490|5010| | |
|de |392702| 2490|5010| | |
|el |392702| 2490|5010| | |
## Dataset Creation | |
### Curation Rationale | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
### Source Data | |
#### Initial Data Collection and Normalization | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
#### Who are the source language producers? | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
### Annotations | |
#### Annotation process | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
#### Who are the annotators? | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
### Personal and Sensitive Information | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
## Considerations for Using the Data | |
### Social Impact of Dataset | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
### Discussion of Biases | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
### Other Known Limitations | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
## Additional Information | |
### Dataset Curators | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
### Licensing Information | |
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) | |
### Citation Information | |
``` | |
@InProceedings{conneau2018xnli, | |
author = {Conneau, Alexis | |
and Rinott, Ruty | |
and Lample, Guillaume | |
and Williams, Adina | |
and Bowman, Samuel R. | |
and Schwenk, Holger | |
and Stoyanov, Veselin}, | |
title = {XNLI: Evaluating Cross-lingual Sentence Representations}, | |
booktitle = {Proceedings of the 2018 Conference on Empirical Methods | |
in Natural Language Processing}, | |
year = {2018}, | |
publisher = {Association for Computational Linguistics}, | |
location = {Brussels, Belgium}, | |
} | |
``` | |
### Contributions | |
Thanks to [@lewtun](https://github.com/lewtun), [@mariamabarham](https://github.com/mariamabarham), [@thomwolf](https://github.com/thomwolf), [@lhoestq](https://github.com/lhoestq), [@patrickvonplaten](https://github.com/patrickvonplaten) for adding this dataset. |