metadata
dataset_info:
features:
- name: Unique_ID
dtype: string
- name: shape_0_row_0
dtype: string
- name: color_0_row_0
dtype: string
- name: shape_1_row_0
dtype: string
- name: color_1_row_0
dtype: string
- name: shape_2_row_0
dtype: string
- name: color_2_row_0
dtype: string
- name: shape_3_row_0
dtype: string
- name: color_3_row_0
dtype: string
- name: shape_0_row_1
dtype: string
- name: color_0_row_1
dtype: string
- name: shape_1_row_1
dtype: string
- name: color_1_row_1
dtype: string
- name: shape_2_row_1
dtype: string
- name: color_2_row_1
dtype: string
- name: shape_3_row_1
dtype: string
- name: color_3_row_1
dtype: string
- name: shape_0_row_2
dtype: string
- name: color_0_row_2
dtype: string
- name: shape_1_row_2
dtype: string
- name: color_1_row_2
dtype: string
- name: shape_2_row_2
dtype: string
- name: color_2_row_2
dtype: string
- name: shape_3_row_2
dtype: string
- name: color_3_row_2
dtype: string
- name: shape_0_row_3
dtype: string
- name: color_0_row_3
dtype: string
- name: shape_1_row_3
dtype: string
- name: color_1_row_3
dtype: string
- name: shape_2_row_3
dtype: string
- name: color_2_row_3
dtype: string
- name: shape_3_row_3
dtype: string
- name: color_3_row_3
dtype: string
- name: image
dtype: string
splits:
- name: train
num_bytes: 336856
num_examples: 1000
download_size: 39616
dataset_size: 336856
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
license: apache-2.0
from datasets import load_dataset from IPython.display import display from PIL import Image
dataset = load_dataset("gaodrew/gemstone_eval-4by4-256by256px-4shapes-8colors-1k", split='train')
#shapes = ["circle", "triangle", "square", "star"] #colors = ["red", "orange", "yellow", "green", "blue", "purple", "pink", "black"]
print(dataset)
Display the first few images
for i in range(10): image_path = dataset[i]['image'] print(f"Image {i+1}:") display(Image.open(image_path))