Datasets:
image
imagewidth (px) 480
3.84k
| label
class label 46
classes |
---|---|
61aa633b683174280b243e0a9a7ad9171
|
|
61aa633b683174280b243e0a9a7ad9171
|
|
61aa633b683174280b243e0a9a7ad9171
|
|
61aa633b683174280b243e0a9a7ad9171
|
|
61aa633b683174280b243e0a9a7ad9171
|
|
61aa633b683174280b243e0a9a7ad9171
|
|
61aa633b683174280b243e0a9a7ad9171
|
|
61aa633b683174280b243e0a9a7ad9171
|
|
61aa633b683174280b243e0a9a7ad9171
|
|
61aa633b683174280b243e0a9a7ad9171
|
|
61aa633b683174280b243e0a9a7ad9171
|
|
61aa633b683174280b243e0a9a7ad9171
|
|
61aa633b683174280b243e0a9a7ad9171
|
|
61aa633b683174280b243e0a9a7ad9171
|
|
61aa633b683174280b243e0a9a7ad9171
|
|
61aa633b683174280b243e0a9a7ad9171
|
|
61aa633b683174280b243e0a9a7ad9171
|
|
61aa633b683174280b243e0a9a7ad9171
|
|
61aa633b683174280b243e0a9a7ad9171
|
|
61aa633b683174280b243e0a9a7ad9171
|
|
61aa633b683174280b243e0a9a7ad9171
|
|
61aa633b683174280b243e0a9a7ad9171
|
|
61aa633b683174280b243e0a9a7ad9171
|
|
61aa633b683174280b243e0a9a7ad9171
|
|
61aa633b683174280b243e0a9a7ad9171
|
|
61aa633b683174280b243e0a9a7ad9171
|
|
61aa633b683174280b243e0a9a7ad9171
|
|
61aa633b683174280b243e0a9a7ad9171
|
|
61aa633b683174280b243e0a9a7ad9171
|
|
61aa633b683174280b243e0a9a7ad9171
|
|
61aa633b683174280b243e0a9a7ad9171
|
|
61aa633b683174280b243e0a9a7ad9171
|
|
61aa633b683174280b243e0a9a7ad9171
|
|
61aa633b683174280b243e0a9a7ad9171
|
|
61aa633b683174280b243e0a9a7ad9171
|
|
61aa633b683174280b243e0a9a7ad9171
|
|
61aa633b683174280b243e0a9a7ad9171
|
|
61aa633b683174280b243e0a9a7ad9171
|
|
9265f002f02d447ad9074813292eef75e
|
|
9265f002f02d447ad9074813292eef75e
|
|
9265f002f02d447ad9074813292eef75e
|
|
9265f002f02d447ad9074813292eef75e
|
|
9265f002f02d447ad9074813292eef75e
|
|
9265f002f02d447ad9074813292eef75e
|
|
9265f002f02d447ad9074813292eef75e
|
|
9265f002f02d447ad9074813292eef75e
|
|
9265f002f02d447ad9074813292eef75e
|
|
9265f002f02d447ad9074813292eef75e
|
|
9265f002f02d447ad9074813292eef75e
|
|
9265f002f02d447ad9074813292eef75e
|
|
9265f002f02d447ad9074813292eef75e
|
|
9265f002f02d447ad9074813292eef75e
|
|
9265f002f02d447ad9074813292eef75e
|
|
9265f002f02d447ad9074813292eef75e
|
|
9265f002f02d447ad9074813292eef75e
|
|
9265f002f02d447ad9074813292eef75e
|
|
9265f002f02d447ad9074813292eef75e
|
|
9265f002f02d447ad9074813292eef75e
|
|
9265f002f02d447ad9074813292eef75e
|
|
9265f002f02d447ad9074813292eef75e
|
|
9265f002f02d447ad9074813292eef75e
|
|
9265f002f02d447ad9074813292eef75e
|
|
9265f002f02d447ad9074813292eef75e
|
|
9265f002f02d447ad9074813292eef75e
|
|
9265f002f02d447ad9074813292eef75e
|
|
9265f002f02d447ad9074813292eef75e
|
|
9265f002f02d447ad9074813292eef75e
|
|
9265f002f02d447ad9074813292eef75e
|
|
9265f002f02d447ad9074813292eef75e
|
|
9265f002f02d447ad9074813292eef75e
|
|
9265f002f02d447ad9074813292eef75e
|
|
9265f002f02d447ad9074813292eef75e
|
|
9265f002f02d447ad9074813292eef75e
|
|
9265f002f02d447ad9074813292eef75e
|
|
9265f002f02d447ad9074813292eef75e
|
|
9265f002f02d447ad9074813292eef75e
|
|
9265f002f02d447ad9074813292eef75e
|
|
19905cfed4f0fc46679e8df8890cca4141 2
|
|
19905cfed4f0fc46679e8df8890cca4141 2
|
|
19905cfed4f0fc46679e8df8890cca4141 2
|
|
19905cfed4f0fc46679e8df8890cca4141 2
|
|
19905cfed4f0fc46679e8df8890cca4141 2
|
|
19905cfed4f0fc46679e8df8890cca4141 2
|
|
19905cfed4f0fc46679e8df8890cca4141 2
|
|
19905cfed4f0fc46679e8df8890cca4141 2
|
|
19905cfed4f0fc46679e8df8890cca4141 2
|
|
19905cfed4f0fc46679e8df8890cca4141 2
|
|
19905cfed4f0fc46679e8df8890cca4141 2
|
|
19905cfed4f0fc46679e8df8890cca4141 2
|
|
19905cfed4f0fc46679e8df8890cca4141 2
|
|
19905cfed4f0fc46679e8df8890cca4141 2
|
|
19905cfed4f0fc46679e8df8890cca4141 2
|
|
19905cfed4f0fc46679e8df8890cca4141 2
|
|
19905cfed4f0fc46679e8df8890cca4141 2
|
|
19905cfed4f0fc46679e8df8890cca4141 2
|
|
19905cfed4f0fc46679e8df8890cca4141 2
|
|
19905cfed4f0fc46679e8df8890cca4141 2
|
|
19905cfed4f0fc46679e8df8890cca4141 2
|
|
19905cfed4f0fc46679e8df8890cca4141 2
|
|
19905cfed4f0fc46679e8df8890cca4141 2
|
VPoS-Bench: Video Pointing and Segmentation Benchmark
VPoS-Bench is a challenging out-of-distribution benchmark designed to evaluate the spatio-temporal pointing and reasoning capabilities of video-language models. It covers a diverse set of five real-world application domains, with fine-grained point-level and segmentation annotations that enable robust evaluation of multimodal models under realistic, temporally complex scenarios.
Webpage: VideoMolmo
Model: VideoMolmo on Hugging Face
Code: VideoMolmo on Github
π Benchmark Overview
VPoS-Bench tests the generalization of models in five diverse real-world scenarios:
Cell Tracking
Track the trajectory of biological entities (e.g., nuclei or cells) across microscopy video frames.Applications: developmental biology, disease modeling
Egocentric Vision
Identify and follow objects or hands in first-person camera footage.Applications: activity recognition, assistive tech
Autonomous Driving
Point to traffic participants (pedestrians, vehicles, lights) under varying conditions.Applications: self-driving systems, urban scene understanding
Video-GUI Interaction
Follow on-screen elements (e.g., cursors, buttons) across software interface recordings.Applications: AI-assisted UI navigation, screen agents
Robotics
Track manipulable objects or robotic end-effectors as they interact in structured environments.Applications: robot learning, manipulation planning
π Dataset Structure
The dataset is organized by domain. Each domain folder contains three subdirectories:
frames/
β Extracted video frames.masks/
β Segmentation masks corresponding to frames.annotations/
β JSON files containing text descriptions and point-level annotations.
vpos-bench/
βββ cell-tracking/
β βββ frames/ # Extracted video frames (e.g., frame_0001.jpg, ...)
β βββ masks/ # Segmentation masks per frame (optional)
β βββ annotations/ # Point coordinates + caption in JSON format
β
βββ autonomous-driving/
...
---
βββ
π Annotation Format
Each annotation is keyed by a unique video ID and consists of:
{
"video_id": {
"caption": "natural language instruction here",
"frames": [
{
"frame_path": "domain/frames/video_id/frame_00001.jpg",
"mask_path": "domain/masks/video_id/0.png",
"points": [[x, y], ...]
},
{
"frame_path": "domain/frames/video_id/frame_00002.jpg",
"mask_path": "domain/masks/video_id/1.png",
"points": [[x, y], ...]
}
]
}
}
- Downloads last month
- 196