Dataset Viewer
Auto-converted to Parquet
Search is not available for this dataset
image
imagewidth (px)
480
3.84k
label
class label
46 classes
61aa633b683174280b243e0a9a7ad9171
61aa633b683174280b243e0a9a7ad9171
61aa633b683174280b243e0a9a7ad9171
61aa633b683174280b243e0a9a7ad9171
61aa633b683174280b243e0a9a7ad9171
61aa633b683174280b243e0a9a7ad9171
61aa633b683174280b243e0a9a7ad9171
61aa633b683174280b243e0a9a7ad9171
61aa633b683174280b243e0a9a7ad9171
61aa633b683174280b243e0a9a7ad9171
61aa633b683174280b243e0a9a7ad9171
61aa633b683174280b243e0a9a7ad9171
61aa633b683174280b243e0a9a7ad9171
61aa633b683174280b243e0a9a7ad9171
61aa633b683174280b243e0a9a7ad9171
61aa633b683174280b243e0a9a7ad9171
61aa633b683174280b243e0a9a7ad9171
61aa633b683174280b243e0a9a7ad9171
61aa633b683174280b243e0a9a7ad9171
61aa633b683174280b243e0a9a7ad9171
61aa633b683174280b243e0a9a7ad9171
61aa633b683174280b243e0a9a7ad9171
61aa633b683174280b243e0a9a7ad9171
61aa633b683174280b243e0a9a7ad9171
61aa633b683174280b243e0a9a7ad9171
61aa633b683174280b243e0a9a7ad9171
61aa633b683174280b243e0a9a7ad9171
61aa633b683174280b243e0a9a7ad9171
61aa633b683174280b243e0a9a7ad9171
61aa633b683174280b243e0a9a7ad9171
61aa633b683174280b243e0a9a7ad9171
61aa633b683174280b243e0a9a7ad9171
61aa633b683174280b243e0a9a7ad9171
61aa633b683174280b243e0a9a7ad9171
61aa633b683174280b243e0a9a7ad9171
61aa633b683174280b243e0a9a7ad9171
61aa633b683174280b243e0a9a7ad9171
61aa633b683174280b243e0a9a7ad9171
9265f002f02d447ad9074813292eef75e
9265f002f02d447ad9074813292eef75e
9265f002f02d447ad9074813292eef75e
9265f002f02d447ad9074813292eef75e
9265f002f02d447ad9074813292eef75e
9265f002f02d447ad9074813292eef75e
9265f002f02d447ad9074813292eef75e
9265f002f02d447ad9074813292eef75e
9265f002f02d447ad9074813292eef75e
9265f002f02d447ad9074813292eef75e
9265f002f02d447ad9074813292eef75e
9265f002f02d447ad9074813292eef75e
9265f002f02d447ad9074813292eef75e
9265f002f02d447ad9074813292eef75e
9265f002f02d447ad9074813292eef75e
9265f002f02d447ad9074813292eef75e
9265f002f02d447ad9074813292eef75e
9265f002f02d447ad9074813292eef75e
9265f002f02d447ad9074813292eef75e
9265f002f02d447ad9074813292eef75e
9265f002f02d447ad9074813292eef75e
9265f002f02d447ad9074813292eef75e
9265f002f02d447ad9074813292eef75e
9265f002f02d447ad9074813292eef75e
9265f002f02d447ad9074813292eef75e
9265f002f02d447ad9074813292eef75e
9265f002f02d447ad9074813292eef75e
9265f002f02d447ad9074813292eef75e
9265f002f02d447ad9074813292eef75e
9265f002f02d447ad9074813292eef75e
9265f002f02d447ad9074813292eef75e
9265f002f02d447ad9074813292eef75e
9265f002f02d447ad9074813292eef75e
9265f002f02d447ad9074813292eef75e
9265f002f02d447ad9074813292eef75e
9265f002f02d447ad9074813292eef75e
9265f002f02d447ad9074813292eef75e
9265f002f02d447ad9074813292eef75e
9265f002f02d447ad9074813292eef75e
19905cfed4f0fc46679e8df8890cca4141 2
19905cfed4f0fc46679e8df8890cca4141 2
19905cfed4f0fc46679e8df8890cca4141 2
19905cfed4f0fc46679e8df8890cca4141 2
19905cfed4f0fc46679e8df8890cca4141 2
19905cfed4f0fc46679e8df8890cca4141 2
19905cfed4f0fc46679e8df8890cca4141 2
19905cfed4f0fc46679e8df8890cca4141 2
19905cfed4f0fc46679e8df8890cca4141 2
19905cfed4f0fc46679e8df8890cca4141 2
19905cfed4f0fc46679e8df8890cca4141 2
19905cfed4f0fc46679e8df8890cca4141 2
19905cfed4f0fc46679e8df8890cca4141 2
19905cfed4f0fc46679e8df8890cca4141 2
19905cfed4f0fc46679e8df8890cca4141 2
19905cfed4f0fc46679e8df8890cca4141 2
19905cfed4f0fc46679e8df8890cca4141 2
19905cfed4f0fc46679e8df8890cca4141 2
19905cfed4f0fc46679e8df8890cca4141 2
19905cfed4f0fc46679e8df8890cca4141 2
19905cfed4f0fc46679e8df8890cca4141 2
19905cfed4f0fc46679e8df8890cca4141 2
19905cfed4f0fc46679e8df8890cca4141 2
End of preview. Expand in Data Studio

VPoS-Bench: Video Pointing and Segmentation Benchmark

VPoS-Bench is a challenging out-of-distribution benchmark designed to evaluate the spatio-temporal pointing and reasoning capabilities of video-language models. It covers a diverse set of five real-world application domains, with fine-grained point-level and segmentation annotations that enable robust evaluation of multimodal models under realistic, temporally complex scenarios.

Webpage: VideoMolmo

Paper: VideoMolmo: Spatio-Temporal Grounding meets Pointing

Model: VideoMolmo on Hugging Face

Code: VideoMolmo on Github


🌍 Benchmark Overview

VPoS-Bench tests the generalization of models in five diverse real-world scenarios:

  1. Cell Tracking
    Track the trajectory of biological entities (e.g., nuclei or cells) across microscopy video frames.

    Applications: developmental biology, disease modeling

  2. Egocentric Vision
    Identify and follow objects or hands in first-person camera footage.

    Applications: activity recognition, assistive tech

  3. Autonomous Driving
    Point to traffic participants (pedestrians, vehicles, lights) under varying conditions.

    Applications: self-driving systems, urban scene understanding

  4. Video-GUI Interaction
    Follow on-screen elements (e.g., cursors, buttons) across software interface recordings.

    Applications: AI-assisted UI navigation, screen agents

  5. Robotics
    Track manipulable objects or robotic end-effectors as they interact in structured environments.

    Applications: robot learning, manipulation planning


πŸ“ Dataset Structure

The dataset is organized by domain. Each domain folder contains three subdirectories:

  • frames/ – Extracted video frames.
  • masks/ – Segmentation masks corresponding to frames.
  • annotations/ – JSON files containing text descriptions and point-level annotations.
vpos-bench/
β”œβ”€β”€ cell-tracking/
β”‚   β”œβ”€β”€ frames/             # Extracted video frames (e.g., frame_0001.jpg, ...)
β”‚   β”œβ”€β”€ masks/              # Segmentation masks per frame (optional)
β”‚   └── annotations/        # Point coordinates + caption in JSON format
β”‚
β”œβ”€β”€ autonomous-driving/
...
---
β”œβ”€β”€

πŸ“ Annotation Format

Each annotation is keyed by a unique video ID and consists of:

{
  "video_id": {
    "caption": "natural language instruction here",
    "frames": [
      {
        "frame_path": "domain/frames/video_id/frame_00001.jpg",
        "mask_path": "domain/masks/video_id/0.png",
        "points": [[x, y], ...]
      },
      {
        "frame_path": "domain/frames/video_id/frame_00002.jpg",
        "mask_path": "domain/masks/video_id/1.png",
        "points": [[x, y], ...]
      }
    ]
  }
}
Downloads last month
196