Dataset Viewer
Auto-converted to Parquet
sentence_id
int64
1
108k
sentence
stringlengths
57
190
tokens
listlengths
13
34
bio_labels
listlengths
13
34
int_labels
listlengths
13
34
bleurt_score
float64
-1.85
-0.49
bleurt_class
int64
0
0
bleurt_class_name
stringclasses
1 value
1
The constant typing caused pain in my Cerebellum, and my Neurons also began aching.
[ "The", "constant", "typing", "caused", "pain", "in", "my", "Cerebellum", ",", "and", "my", "Neurons", "also", "began", "aching", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0 ]
-1.362181
0
negative_bleurt
2
His Spleen felt stiff, and there was a noticeable bruise on his Antibody, indicating a potential strain.
[ "His", "Spleen", "felt", "stiff", ",", "and", "there", "was", "a", "noticeable", "bruise", "on", "his", "Antibody", ",", "indicating", "a", "potential", "strain", "." ]
[ "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O" ]
[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ]
-1.133007
0
negative_bleurt
3
She felt a tingling sensation in her Finger, and it spread down to her Face, leaving her unable to move her Ankle.
[ "She", "felt", "a", "tingling", "sensation", "in", "her", "Finger", ",", "and", "it", "spread", "down", "to", "her", "Face", ",", "leaving", "her", "unable", "to", "move", "her", "Ankle", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0 ]
-1.255227
0
negative_bleurt
4
The injury caused limited movement in his Lymph node, and it also affected the flexibility in his Bone marrow.
[ "The", "injury", "caused", "limited", "movement", "in", "his", "Lymph", "node", ",", "and", "it", "also", "affected", "the", "flexibility", "in", "his", "Bone", "marrow", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "I-BodyPart", "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "I-BodyPart", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0 ]
-0.775272
0
negative_bleurt
5
After carrying the heavy box, my Taste buds began to hurt, and my Retina was sore too.
[ "After", "carrying", "the", "heavy", "box", ",", "my", "Taste", "buds", "began", "to", "hurt", ",", "and", "my", "Retina", "was", "sore", "too", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "I-BodyPart", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ]
-1.372687
0
negative_bleurt
6
I injured my Femur while carrying groceries, and my Carpal also started aching.
[ "I", "injured", "my", "Femur", "while", "carrying", "groceries", ",", "and", "my", "Carpal", "also", "started", "aching", "." ]
[ "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O" ]
[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ]
-1.343323
0
negative_bleurt
7
He complained of tightness in his Bone marrow, with pressure building in his Antibody during exertion.
[ "He", "complained", "of", "tightness", "in", "his", "Bone", "marrow", ",", "with", "pressure", "building", "in", "his", "Antibody", "during", "exertion", "." ]
[ "O", "O", "O", "O", "O", "O", "B-BodyPart", "I-BodyPart", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ]
-1.020372
0
negative_bleurt
8
I didn’t warm up before the run, and now my Abdominal muscles is sore, and my Tricep is stiff.
[ "I", "didn", "’", "t", "warm", "up", "before", "the", "run", ",", "and", "now", "my", "Abdominal", "muscles", "is", "sore", ",", "and", "my", "Tricep", "is", "stiff", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "I-BodyPart", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0 ]
-1.233356
0
negative_bleurt
9
She felt a tingling sensation in her Ulna, and it spread down to her Spine, leaving her unable to move her Fibula.
[ "She", "felt", "a", "tingling", "sensation", "in", "her", "Ulna", ",", "and", "it", "spread", "down", "to", "her", "Spine", ",", "leaving", "her", "unable", "to", "move", "her", "Fibula", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0 ]
-1.175705
0
negative_bleurt
10
I didn’t sleep well last night, and now my Blood vessel is sore, along with my Artery.
[ "I", "didn", "’", "t", "sleep", "well", "last", "night", ",", "and", "now", "my", "Blood", "vessel", "is", "sore", ",", "along", "with", "my", "Artery", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "I-BodyPart", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 1, 0 ]
-1.089233
0
negative_bleurt
11
The patient felt a sharp pain in the Leg and a dull ache in his Forehead, while also experiencing tightness in his Elbow.
[ "The", "patient", "felt", "a", "sharp", "pain", "in", "the", "Leg", "and", "a", "dull", "ache", "in", "his", "Forehead", ",", "while", "also", "experiencing", "tightness", "in", "his", "Elbow", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0 ]
-1.015876
0
negative_bleurt
12
She felt a tingling sensation in her Mouth, and it spread down to her Neck, leaving her unable to move her Hair.
[ "She", "felt", "a", "tingling", "sensation", "in", "her", "Mouth", ",", "and", "it", "spread", "down", "to", "her", "Neck", ",", "leaving", "her", "unable", "to", "move", "her", "Hair", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0 ]
-1.213321
0
negative_bleurt
13
I bumped my Foot against the doorframe and also felt a sharp pain in my Nose.
[ "I", "bumped", "my", "Foot", "against", "the", "doorframe", "and", "also", "felt", "a", "sharp", "pain", "in", "my", "Nose", "." ]
[ "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O" ]
[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 ]
-1.52668
0
negative_bleurt
14
I sprained my Leg playing soccer, and now my Thumb is swollen and painful.
[ "I", "sprained", "my", "Leg", "playing", "soccer", ",", "and", "now", "my", "Thumb", "is", "swollen", "and", "painful", "." ]
[ "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O" ]
[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ]
-1.541547
0
negative_bleurt
15
I spent hours working on my computer, and my Elbow started aching, along with my Back.
[ "I", "spent", "hours", "working", "on", "my", "computer", ",", "and", "my", "Elbow", "started", "aching", ",", "along", "with", "my", "Back", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0 ]
-1.447207
0
negative_bleurt
16
I was playing basketball and landed wrong on my Tongue, and my Eye felt sore after.
[ "I", "was", "playing", "basketball", "and", "landed", "wrong", "on", "my", "Tongue", ",", "and", "my", "Eye", "felt", "sore", "after", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0 ]
-1.38632
0
negative_bleurt
17
After climbing the stairs, my Windpipe started aching, and my Pleura also felt stiff.
[ "After", "climbing", "the", "stairs", ",", "my", "Windpipe", "started", "aching", ",", "and", "my", "Pleura", "also", "felt", "stiff", "." ]
[ "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ]
-1.262049
0
negative_bleurt
18
She reported sharp pain when bending her Brain, and her Optic nerve appeared swollen and red.
[ "She", "reported", "sharp", "pain", "when", "bending", "her", "Brain", ",", "and", "her", "Optic", "nerve", "appeared", "swollen", "and", "red", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "B-BodyPart", "I-BodyPart", "O", "O", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0 ]
-1.131266
0
negative_bleurt
19
I hurt my Cornea while running, and my Pupil also started to ache after.
[ "I", "hurt", "my", "Cornea", "while", "running", ",", "and", "my", "Pupil", "also", "started", "to", "ache", "after", "." ]
[ "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O" ]
[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ]
-1.356004
0
negative_bleurt
20
After the long flight, my Nerve felt stiff, and my Medulla also started hurting.
[ "After", "the", "long", "flight", ",", "my", "Nerve", "felt", "stiff", ",", "and", "my", "Medulla", "also", "started", "hurting", "." ]
[ "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ]
-1.24359
0
negative_bleurt
21
There was limited mobility in his Skull, and his Metacarpal was swollen due to the injury.
[ "There", "was", "limited", "mobility", "in", "his", "Skull", ",", "and", "his", "Metacarpal", "was", "swollen", "due", "to", "the", "injury", "." ]
[ "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ]
-1.04506
0
negative_bleurt
22
My Ureter began hurting after a long workout, and my Bladder was sore too.
[ "My", "Ureter", "began", "hurting", "after", "a", "long", "workout", ",", "and", "my", "Bladder", "was", "sore", "too", "." ]
[ "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O" ]
[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ]
-1.169025
0
negative_bleurt
23
The sudden fall twisted my Shoulderblade, and soon my Metacarpal was sore as well.
[ "The", "sudden", "fall", "twisted", "my", "Shoulderblade", ",", "and", "soon", "my", "Metacarpal", "was", "sore", "as", "well", "." ]
[ "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ]
-1.472512
0
negative_bleurt
24
My Vas deferens started to hurt after sitting in that position for hours, and now my Penis is stiff.
[ "My", "Vas", "deferens", "started", "to", "hurt", "after", "sitting", "in", "that", "position", "for", "hours", ",", "and", "now", "my", "Penis", "is", "stiff", "." ]
[ "O", "B-BodyPart", "I-BodyPart", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O" ]
[ 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ]
-1.417976
0
negative_bleurt
25
The doctor recommended rest for the Knee as there was inflammation in both the Cheek and Wrist.
[ "The", "doctor", "recommended", "rest", "for", "the", "Knee", "as", "there", "was", "inflammation", "in", "both", "the", "Cheek", "and", "Wrist", "." ]
[ "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "B-BodyPart", "O" ]
[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0 ]
-0.85946
0
negative_bleurt
26
After running, my Teeth was sore, and my Ear felt tight from the exertion.
[ "After", "running", ",", "my", "Teeth", "was", "sore", ",", "and", "my", "Ear", "felt", "tight", "from", "the", "exertion", "." ]
[ "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O" ]
[ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ]
-1.083959
0
negative_bleurt
27
After working at the computer all day, my Vertebra felt sore, and my Carpal was tight.
[ "After", "working", "at", "the", "computer", "all", "day", ",", "my", "Vertebra", "felt", "sore", ",", "and", "my", "Carpal", "was", "tight", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0 ]
-1.116247
0
negative_bleurt
28
Following the surgery, the patient complained of swelling in the Nail and the Sweat gland, along with stiffness in his Hair.
[ "Following", "the", "surgery", ",", "the", "patient", "complained", "of", "swelling", "in", "the", "Nail", "and", "the", "Sweat", "gland", ",", "along", "with", "stiffness", "in", "his", "Hair", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "B-BodyPart", "I-BodyPart", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 1, 0 ]
-1.04718
0
negative_bleurt
29
He ran into the wall, and his Chest took the brunt of the impact, causing his Back to feel sore.
[ "He", "ran", "into", "the", "wall", ",", "and", "his", "Chest", "took", "the", "brunt", "of", "the", "impact", ",", "causing", "his", "Back", "to", "feel", "sore", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ]
-1.298264
0
negative_bleurt
30
My Fibula started to feel sore after the long hike, and my Carpal also felt stiff.
[ "My", "Fibula", "started", "to", "feel", "sore", "after", "the", "long", "hike", ",", "and", "my", "Carpal", "also", "felt", "stiff", "." ]
[ "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O" ]
[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ]
-1.164859
0
negative_bleurt
31
I spent the whole day cleaning, and my Arm started to ache, along with my Wrist.
[ "I", "spent", "the", "whole", "day", "cleaning", ",", "and", "my", "Arm", "started", "to", "ache", ",", "along", "with", "my", "Wrist", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0 ]
-1.482656
0
negative_bleurt
32
After the fall, he developed severe bruising on his Bladder, and the pain in his Kidney was excruciating.
[ "After", "the", "fall", ",", "he", "developed", "severe", "bruising", "on", "his", "Bladder", ",", "and", "the", "pain", "in", "his", "Kidney", "was", "excruciating", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ]
-0.955374
0
negative_bleurt
33
I didn’t warm up before the run, and now my Nail is sore, and my Hair is stiff.
[ "I", "didn", "’", "t", "warm", "up", "before", "the", "run", ",", "and", "now", "my", "Nail", "is", "sore", ",", "and", "my", "Hair", "is", "stiff", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0 ]
-1.324541
0
negative_bleurt
34
After lifting the heavy box, my Quadricep began aching, and my Hamstring got sore too.
[ "After", "lifting", "the", "heavy", "box", ",", "my", "Quadricep", "began", "aching", ",", "and", "my", "Hamstring", "got", "sore", "too", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ]
-1.373916
0
negative_bleurt
35
After carrying the heavy box, my Metacarpal began to hurt, and my Skull was sore too.
[ "After", "carrying", "the", "heavy", "box", ",", "my", "Metacarpal", "began", "to", "hurt", ",", "and", "my", "Skull", "was", "sore", "too", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ]
-1.451665
0
negative_bleurt
36
The Eardrum was severely bruised, and the Lens seemed to have suffered a tear or muscle strain.
[ "The", "Eardrum", "was", "severely", "bruised", ",", "and", "the", "Lens", "seemed", "to", "have", "suffered", "a", "tear", "or", "muscle", "strain", "." ]
[ "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O" ]
[ 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
-1.099671
0
negative_bleurt
37
I sprained my Head playing soccer, and now my Lips is swollen and painful.
[ "I", "sprained", "my", "Head", "playing", "soccer", ",", "and", "now", "my", "Lips", "is", "swollen", "and", "painful", "." ]
[ "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O" ]
[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ]
-1.489815
0
negative_bleurt
38
The cold weather made my Face stiff, and my Foot felt numb.
[ "The", "cold", "weather", "made", "my", "Face", "stiff", ",", "and", "my", "Foot", "felt", "numb", "." ]
[ "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0 ]
-1.424979
0
negative_bleurt
39
The workout was intense, and my Elbow started aching, with my Ankle becoming sore too.
[ "The", "workout", "was", "intense", ",", "and", "my", "Elbow", "started", "aching", ",", "with", "my", "Ankle", "becoming", "sore", "too", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ]
-1.72556
0
negative_bleurt
40
During the checkup, the patient complained of discomfort in his Rib, with slight swelling around the Scapula and Collarbone.
[ "During", "the", "checkup", ",", "the", "patient", "complained", "of", "discomfort", "in", "his", "Rib", ",", "with", "slight", "swelling", "around", "the", "Scapula", "and", "Collarbone", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "B-BodyPart", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0 ]
-0.858337
0
negative_bleurt
41
After working at the computer all day, my Chest felt sore, and my Thumb was tight.
[ "After", "working", "at", "the", "computer", "all", "day", ",", "my", "Chest", "felt", "sore", ",", "and", "my", "Thumb", "was", "tight", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0 ]
-1.286038
0
negative_bleurt
42
I was running and tripped, and my Renal pelvis was hurt, followed by soreness in my Bladder.
[ "I", "was", "running", "and", "tripped", ",", "and", "my", "Renal", "pelvis", "was", "hurt", ",", "followed", "by", "soreness", "in", "my", "Bladder", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "I-BodyPart", "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 ]
-1.168389
0
negative_bleurt
43
While moving the furniture, my Hand got bruised, and my Wrist started aching.
[ "While", "moving", "the", "furniture", ",", "my", "Hand", "got", "bruised", ",", "and", "my", "Wrist", "started", "aching", "." ]
[ "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0 ]
-1.424254
0
negative_bleurt
44
I accidentally knocked my Leg on the table, and now my Wrist feels tender.
[ "I", "accidentally", "knocked", "my", "Leg", "on", "the", "table", ",", "and", "now", "my", "Wrist", "feels", "tender", "." ]
[ "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O" ]
[ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ]
-1.48176
0
negative_bleurt
45
I spent the whole day cleaning, and my Ankle started to ache, along with my Mouth.
[ "I", "spent", "the", "whole", "day", "cleaning", ",", "and", "my", "Ankle", "started", "to", "ache", ",", "along", "with", "my", "Mouth", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0 ]
-1.567066
0
negative_bleurt
46
After lifting the heavy box, he felt a sharp discomfort in his Vas deferens and lower back, followed by stiffness in his Uterus.
[ "After", "lifting", "the", "heavy", "box", ",", "he", "felt", "a", "sharp", "discomfort", "in", "his", "Vas", "deferens", "and", "lower", "back", ",", "followed", "by", "stiffness", "in", "his", "Uterus", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "I-BodyPart", "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 ]
-1.108985
0
negative_bleurt
47
After lifting the heavy box, my Pectoral began aching, and my Quadricep got sore too.
[ "After", "lifting", "the", "heavy", "box", ",", "my", "Pectoral", "began", "aching", ",", "and", "my", "Quadricep", "got", "sore", "too", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ]
-1.309179
0
negative_bleurt
48
I twisted my Toe lifting the box, and my Chin started to ache right after.
[ "I", "twisted", "my", "Toe", "lifting", "the", "box", ",", "and", "my", "Chin", "started", "to", "ache", "right", "after", "." ]
[ "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O" ]
[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ]
-1.509968
0
negative_bleurt
49
I was carrying a box and twisted my Eye, which made my Cornea hurt as well.
[ "I", "was", "carrying", "a", "box", "and", "twisted", "my", "Eye", ",", "which", "made", "my", "Cornea", "hurt", "as", "well", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0 ]
-1.423266
0
negative_bleurt
50
I bumped my Deltoid against the doorframe and also felt a sharp pain in my Bicep.
[ "I", "bumped", "my", "Deltoid", "against", "the", "doorframe", "and", "also", "felt", "a", "sharp", "pain", "in", "my", "Bicep", "." ]
[ "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O" ]
[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 ]
-1.314568
0
negative_bleurt
51
The doctor noted inflammation in the Renal pelvis and mild bruising in the Bladder after the accident.
[ "The", "doctor", "noted", "inflammation", "in", "the", "Renal", "pelvis", "and", "mild", "bruising", "in", "the", "Bladder", "after", "the", "accident", "." ]
[ "O", "O", "O", "O", "O", "O", "B-BodyPart", "I-BodyPart", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ]
-0.781807
0
negative_bleurt
52
I was carrying a box and twisted my Ankle, which made my Shoulder hurt as well.
[ "I", "was", "carrying", "a", "box", "and", "twisted", "my", "Ankle", ",", "which", "made", "my", "Shoulder", "hurt", "as", "well", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0 ]
-1.415119
0
negative_bleurt
53
After walking for hours, my Deltoid felt swollen, and my Pectoral started to ache.
[ "After", "walking", "for", "hours", ",", "my", "Deltoid", "felt", "swollen", ",", "and", "my", "Pectoral", "started", "to", "ache", "." ]
[ "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ]
-1.199337
0
negative_bleurt
54
I spent hours working on my computer, and my Toes started aching, along with my Elbow.
[ "I", "spent", "hours", "working", "on", "my", "computer", ",", "and", "my", "Toes", "started", "aching", ",", "along", "with", "my", "Elbow", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0 ]
-1.373422
0
negative_bleurt
55
After cleaning the house all day, my Tonsil started aching, and my Lymph node was sore too.
[ "After", "cleaning", "the", "house", "all", "day", ",", "my", "Tonsil", "started", "aching", ",", "and", "my", "Lymph", "node", "was", "sore", "too", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "B-BodyPart", "I-BodyPart", "O", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0 ]
-1.166371
0
negative_bleurt
56
The Knee was hyper-extended, and the Temple seemed to be dislocated due to the force of the impact.
[ "The", "Knee", "was", "hyper-extended", ",", "and", "the", "Temple", "seemed", "to", "be", "dislocated", "due", "to", "the", "force", "of", "the", "impact", "." ]
[ "O", "B-BodyPart", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O" ]
[ 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
-1.293742
0
negative_bleurt
57
I was carrying a box and twisted my Pupil, which made my Skin hurt as well.
[ "I", "was", "carrying", "a", "box", "and", "twisted", "my", "Pupil", ",", "which", "made", "my", "Skin", "hurt", "as", "well", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0 ]
-1.37421
0
negative_bleurt
58
The strain from working out caused my Vein to ache, and my Mitral valve started to feel sore.
[ "The", "strain", "from", "working", "out", "caused", "my", "Vein", "to", "ache", ",", "and", "my", "Mitral", "valve", "started", "to", "feel", "sore", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "B-BodyPart", "I-BodyPart", "O", "O", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0 ]
-1.067021
0
negative_bleurt
59
My Fingers began hurting after a long workout, and my Mouth was sore too.
[ "My", "Fingers", "began", "hurting", "after", "a", "long", "workout", ",", "and", "my", "Mouth", "was", "sore", "too", "." ]
[ "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O" ]
[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ]
-1.372574
0
negative_bleurt
60
After lifting the heavy box, my Ureter began aching, and my Urethra got sore too.
[ "After", "lifting", "the", "heavy", "box", ",", "my", "Ureter", "began", "aching", ",", "and", "my", "Urethra", "got", "sore", "too", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ]
-1.365898
0
negative_bleurt
61
After walking for hours, my Knee felt swollen, and my Neck started to ache.
[ "After", "walking", "for", "hours", ",", "my", "Knee", "felt", "swollen", ",", "and", "my", "Neck", "started", "to", "ache", "." ]
[ "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ]
-1.360985
0
negative_bleurt
62
The patient felt a sharp pain in the Spinal cord and a dull ache in his Cerebellum, while also experiencing tightness in his Neurons.
[ "The", "patient", "felt", "a", "sharp", "pain", "in", "the", "Spinal", "cord", "and", "a", "dull", "ache", "in", "his", "Cerebellum", ",", "while", "also", "experiencing", "tightness", "in", "his", "Neurons", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "I-BodyPart", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0 ]
-1.095669
0
negative_bleurt
63
My Sebaceous gland began hurting after a long workout, and my Hair was sore too.
[ "My", "Sebaceous", "gland", "began", "hurting", "after", "a", "long", "workout", ",", "and", "my", "Hair", "was", "sore", "too", "." ]
[ "O", "B-BodyPart", "I-BodyPart", "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O" ]
[ 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ]
-1.33295
0
negative_bleurt
64
I accidentally knocked my Eye on the table, and now my Taste buds feels tender.
[ "I", "accidentally", "knocked", "my", "Eye", "on", "the", "table", ",", "and", "now", "my", "Taste", "buds", "feels", "tender", "." ]
[ "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "I-BodyPart", "O", "O", "O" ]
[ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0 ]
-1.415792
0
negative_bleurt
65
I didn’t sleep well last night, and now my Neurons is sore, along with my Optic nerve.
[ "I", "didn", "’", "t", "sleep", "well", "last", "night", ",", "and", "now", "my", "Neurons", "is", "sore", ",", "along", "with", "my", "Optic", "nerve", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "B-BodyPart", "I-BodyPart", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 2, 0 ]
-1.22916
0
negative_bleurt
66
After the fall, he developed severe bruising on his Retina, and the pain in his Taste buds was excruciating.
[ "After", "the", "fall", ",", "he", "developed", "severe", "bruising", "on", "his", "Retina", ",", "and", "the", "pain", "in", "his", "Taste", "buds", "was", "excruciating", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "B-BodyPart", "I-BodyPart", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0 ]
-1.09169
0
negative_bleurt
67
After the workout, my Fallopian tube was sore, and my Epididymis was stiff.
[ "After", "the", "workout", ",", "my", "Fallopian", "tube", "was", "sore", ",", "and", "my", "Epididymis", "was", "stiff", "." ]
[ "O", "O", "O", "O", "O", "B-BodyPart", "I-BodyPart", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0 ]
-1.253959
0
negative_bleurt
68
The Tongue was inflamed, and the Eardrum was visibly out of alignment, causing significant discomfort.
[ "The", "Tongue", "was", "inflamed", ",", "and", "the", "Eardrum", "was", "visibly", "out", "of", "alignment", ",", "causing", "significant", "discomfort", "." ]
[ "O", "B-BodyPart", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O" ]
[ 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
-1.054834
0
negative_bleurt
69
His Spinal cord felt stiff, and there was a noticeable bruise on his Brain, indicating a potential strain.
[ "His", "Spinal", "cord", "felt", "stiff", ",", "and", "there", "was", "a", "noticeable", "bruise", "on", "his", "Brain", ",", "indicating", "a", "potential", "strain", "." ]
[ "O", "B-BodyPart", "I-BodyPart", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O" ]
[ 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ]
-1.058636
0
negative_bleurt
70
The strain from working out caused my Temple to ache, and my Eyebrow started to feel sore.
[ "The", "strain", "from", "working", "out", "caused", "my", "Temple", "to", "ache", ",", "and", "my", "Eyebrow", "started", "to", "feel", "sore", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ]
-1.362376
0
negative_bleurt
71
My Chest began hurting after a long workout, and my Knuckle was sore too.
[ "My", "Chest", "began", "hurting", "after", "a", "long", "workout", ",", "and", "my", "Knuckle", "was", "sore", "too", "." ]
[ "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O" ]
[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ]
-1.341403
0
negative_bleurt
72
The doctor observed inflammation around the Ulna and Vertebra, and noted that the Pelvis appeared slightly dislocated.
[ "The", "doctor", "observed", "inflammation", "around", "the", "Ulna", "and", "Vertebra", ",", "and", "noted", "that", "the", "Pelvis", "appeared", "slightly", "dislocated", "." ]
[ "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "B-BodyPart", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ]
-0.691841
0
negative_bleurt
73
After cleaning the house all day, my Hair started aching, and my Eye was sore too.
[ "After", "cleaning", "the", "house", "all", "day", ",", "my", "Hair", "started", "aching", ",", "and", "my", "Eye", "was", "sore", "too", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ]
-1.373171
0
negative_bleurt
74
The cold weather made my Sebaceous gland ache, and my Nail felt frozen as well.
[ "The", "cold", "weather", "made", "my", "Sebaceous", "gland", "ache", ",", "and", "my", "Nail", "felt", "frozen", "as", "well", "." ]
[ "O", "O", "O", "O", "O", "B-BodyPart", "I-BodyPart", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ]
-1.496397
0
negative_bleurt
75
The Chin was sensitive to touch, and there was an aching pain in his Arm that lasted throughout the day.
[ "The", "Chin", "was", "sensitive", "to", "touch", ",", "and", "there", "was", "an", "aching", "pain", "in", "his", "Arm", "that", "lasted", "throughout", "the", "day", "." ]
[ "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O" ]
[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ]
-1.127794
0
negative_bleurt
76
I was at the gym and hurt my Toes, followed by discomfort in my Elbow.
[ "I", "was", "at", "the", "gym", "and", "hurt", "my", "Toes", ",", "followed", "by", "discomfort", "in", "my", "Elbow", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0 ]
-1.331492
0
negative_bleurt
77
The cold weather made my Nose stiff, and my Lips felt numb.
[ "The", "cold", "weather", "made", "my", "Nose", "stiff", ",", "and", "my", "Lips", "felt", "numb", "." ]
[ "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0 ]
-1.418838
0
negative_bleurt
78
She hurt her Ear lifting weights and also strained her Back while pushing the cart.
[ "She", "hurt", "her", "Ear", "lifting", "weights", "and", "also", "strained", "her", "Back", "while", "pushing", "the", "cart", "." ]
[ "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O" ]
[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ]
-1.35149
0
negative_bleurt
79
She injured her Pectoral during soccer, and now her Quadricep is swollen.
[ "She", "injured", "her", "Pectoral", "during", "soccer", ",", "and", "now", "her", "Quadricep", "is", "swollen", "." ]
[ "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O" ]
[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ]
-1.427511
0
negative_bleurt
80
She hurt her Colon lifting weights and also strained her Salivary gland while pushing the cart.
[ "She", "hurt", "her", "Colon", "lifting", "weights", "and", "also", "strained", "her", "Salivary", "gland", "while", "pushing", "the", "cart", "." ]
[ "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "B-BodyPart", "I-BodyPart", "O", "O", "O", "O", "O" ]
[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0 ]
-1.353423
0
negative_bleurt
81
The workout was intense, and my Cornea started aching, with my Skin becoming sore too.
[ "The", "workout", "was", "intense", ",", "and", "my", "Cornea", "started", "aching", ",", "with", "my", "Skin", "becoming", "sore", "too", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ]
-1.298718
0
negative_bleurt
82
After the fall, he developed severe bruising on his Forehead, and the pain in his Fingers was excruciating.
[ "After", "the", "fall", ",", "he", "developed", "severe", "bruising", "on", "his", "Forehead", ",", "and", "the", "pain", "in", "his", "Fingers", "was", "excruciating", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ]
-0.983212
0
negative_bleurt
83
I spent too much time sitting at my desk, and my Sebaceous gland felt stiff, followed by soreness in my Sweat gland.
[ "I", "spent", "too", "much", "time", "sitting", "at", "my", "desk", ",", "and", "my", "Sebaceous", "gland", "felt", "stiff", ",", "followed", "by", "soreness", "in", "my", "Sweat", "gland", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "I-BodyPart", "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "I-BodyPart", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0 ]
-1.230072
0
negative_bleurt
84
During the checkup, the patient complained of discomfort in his Mitral valve, with slight swelling around the Artery and Heart.
[ "During", "the", "checkup", ",", "the", "patient", "complained", "of", "discomfort", "in", "his", "Mitral", "valve", ",", "with", "slight", "swelling", "around", "the", "Artery", "and", "Heart", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "I-BodyPart", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "B-BodyPart", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0 ]
-0.764845
0
negative_bleurt
85
After lifting weights, I felt pain in my Kidney, and my Bladder felt sore too.
[ "After", "lifting", "weights", ",", "I", "felt", "pain", "in", "my", "Kidney", ",", "and", "my", "Bladder", "felt", "sore", "too", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0 ]
-0.895523
0
negative_bleurt
86
I twisted my Urethra carrying groceries, and my Ureter also started to hurt after.
[ "I", "twisted", "my", "Urethra", "carrying", "groceries", ",", "and", "my", "Ureter", "also", "started", "to", "hurt", "after", "." ]
[ "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O" ]
[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ]
-1.539666
0
negative_bleurt
87
He ran into the wall, and his Pulmonary vein took the brunt of the impact, causing his Heart to feel sore.
[ "He", "ran", "into", "the", "wall", ",", "and", "his", "Pulmonary", "vein", "took", "the", "brunt", "of", "the", "impact", ",", "causing", "his", "Heart", "to", "feel", "sore", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "I-BodyPart", "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ]
-1.089586
0
negative_bleurt
88
She hurt her Hair lifting weights and also strained her Nail while pushing the cart.
[ "She", "hurt", "her", "Hair", "lifting", "weights", "and", "also", "strained", "her", "Nail", "while", "pushing", "the", "cart", "." ]
[ "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O" ]
[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ]
-1.412621
0
negative_bleurt
89
The cold weather made my Hair stiff, and my Sweat gland felt numb.
[ "The", "cold", "weather", "made", "my", "Hair", "stiff", ",", "and", "my", "Sweat", "gland", "felt", "numb", "." ]
[ "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "B-BodyPart", "I-BodyPart", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 2, 0, 0, 0 ]
-1.396027
0
negative_bleurt
90
My Femur started to hurt after sitting in that position for hours, and now my Radius is stiff.
[ "My", "Femur", "started", "to", "hurt", "after", "sitting", "in", "that", "position", "for", "hours", ",", "and", "now", "my", "Radius", "is", "stiff", "." ]
[ "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O" ]
[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ]
-1.344458
0
negative_bleurt
91
After lifting the heavy box, my Thumb began aching, and my Arm got sore too.
[ "After", "lifting", "the", "heavy", "box", ",", "my", "Thumb", "began", "aching", ",", "and", "my", "Arm", "got", "sore", "too", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ]
-1.320119
0
negative_bleurt
92
He hurt his Pectoral after the intense workout, and his Tricep was sore too.
[ "He", "hurt", "his", "Pectoral", "after", "the", "intense", "workout", ",", "and", "his", "Tricep", "was", "sore", "too", "." ]
[ "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O" ]
[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ]
-1.342025
0
negative_bleurt
93
My Cheek started to feel sore after the long hike, and my Palm also felt stiff.
[ "My", "Cheek", "started", "to", "feel", "sore", "after", "the", "long", "hike", ",", "and", "my", "Palm", "also", "felt", "stiff", "." ]
[ "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O" ]
[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ]
-1.217627
0
negative_bleurt
94
After lifting weights, I felt pain in my Bicep, and my Tricep felt sore too.
[ "After", "lifting", "weights", ",", "I", "felt", "pain", "in", "my", "Bicep", ",", "and", "my", "Tricep", "felt", "sore", "too", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0 ]
-1.017071
0
negative_bleurt
95
The pain in his Tonsil worsened during physical therapy, and his White blood cell felt weak and fatigued.
[ "The", "pain", "in", "his", "Tonsil", "worsened", "during", "physical", "therapy", ",", "and", "his", "White", "blood", "cell", "felt", "weak", "and", "fatigued", "." ]
[ "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "I-BodyPart", "I-BodyPart", "O", "O", "O", "O", "O" ]
[ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 0, 0, 0, 0, 0 ]
-0.890756
0
negative_bleurt
96
After lifting weights, I felt pain in my Capillary, and my Blood vessel felt sore too.
[ "After", "lifting", "weights", ",", "I", "felt", "pain", "in", "my", "Capillary", ",", "and", "my", "Blood", "vessel", "felt", "sore", "too", "." ]
[ "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "B-BodyPart", "I-BodyPart", "O", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 0, 0 ]
-0.951514
0
negative_bleurt
97
My Lens began hurting after a long workout, and my Eardrum was sore too.
[ "My", "Lens", "began", "hurting", "after", "a", "long", "workout", ",", "and", "my", "Eardrum", "was", "sore", "too", "." ]
[ "O", "B-BodyPart", "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O" ]
[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ]
-1.199075
0
negative_bleurt
98
I sprained my Pulmonary vein playing soccer, and now my Aorta is swollen and painful.
[ "I", "sprained", "my", "Pulmonary", "vein", "playing", "soccer", ",", "and", "now", "my", "Aorta", "is", "swollen", "and", "painful", "." ]
[ "O", "O", "O", "B-BodyPart", "I-BodyPart", "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O" ]
[ 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ]
-1.274132
0
negative_bleurt
99
The doctor noted inflammation in the Pectoral and mild bruising in the Calf muscle after the accident.
[ "The", "doctor", "noted", "inflammation", "in", "the", "Pectoral", "and", "mild", "bruising", "in", "the", "Calf", "muscle", "after", "the", "accident", "." ]
[ "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "B-BodyPart", "I-BodyPart", "O", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0 ]
-1.014778
0
negative_bleurt
100
After climbing the stairs, my Intestine started aching, and my Rectum also felt stiff.
[ "After", "climbing", "the", "stairs", ",", "my", "Intestine", "started", "aching", ",", "and", "my", "Rectum", "also", "felt", "stiff", "." ]
[ "O", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O", "O", "B-BodyPart", "O", "O", "O", "O" ]
[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ]
-1.001094
0
negative_bleurt
End of preview. Expand in Data Studio

Medical NER Dataset with BLEURT-Based Quality Separation

Dataset Summary

This dataset is a processed version of the gsri-18/body_parts_ner_dataset_synthetic dataset. The original dataset contains synthetic sentences with BIO-labeled body parts for Named Entity Recognition (NER) tasks.

This version extends the original by adding a BLEURT score to each sample. The score measures the semantic coherence of each sentence against a reference sentence representing a normal, healthy state. The dataset is then labeled into two quality classes based on this score, making it useful for data filtering, quality analysis, or training models to identify high-quality medical text.

The creation process is documented in the provided Jupyter Notebook.

How the Dataset Was Created

The dataset was generated using the following process:

  1. Load Source Data: The initial dataset gsri-18/body_parts_ner_dataset_synthetic was loaded.
  2. BLEURT Scoring: Each sentence was scored using the bleurt-base-512 model. The score was calculated based on the semantic similarity to the following reference sentence:

    "The patient reported normal function and good health without any complications."

  3. Class Separation: Based on the BLEURT score, each sample was assigned to one of two classes:
    • positive_bleurt (Class 1): Samples with a BLEURT score greater than or equal to 0. These sentences are considered more coherent or semantically similar to the reference.
    • negative_bleurt (Class 0): Samples with a BLEURT score less than 0. These sentences are considered less coherent or semantically dissimilar.
  4. New Fields Added: Three new columns were added to the dataset to store this information: bleurt_score, bleurt_class, and bleurt_class_name.

Data Splits

The dataset is divided into the same splits as the original:

Split Number of Samples
train 108,000
test 8,001
dev 8,001

Dataset Structure

Each sample in the dataset has the following fields:

  • sentence_id: A unique integer identifier for the sentence.
  • sentence: The full text of the sentence.
  • tokens: A list of strings representing the tokenized sentence.
  • bio_labels: A list of strings with the BIO (Beginning, Inside, Outside) tags for each token (e.g., 'B-BodyPart', 'I-BodyPart', 'O').
  • int_labels: Integer representations of the bio_labels (0: 'O', 1: 'B-BodyPart', 2: 'I-BodyPart').
  • bleurt_score: A float value representing the calculated BLEURT score.
  • bleurt_class: An integer label (1 for positive, 0 for negative) based on the BLEURT score.
  • bleurt_class_name: A string ('positive_bleurt' or 'negative_bleurt') corresponding to the class.

Data Sample

Here is an example from the training set:

{
  "sentence_id": 1,
  "sentence": "During the checkup, the patient complained of discomfort in his Peripheral nerves, with slight swelling around the Temporal lobe and Cerebellum.",
  "tokens": ["During", "the", "checkup", ",", "the", "patient", "complained", "of", "discomfort", "in", "his", "Peripheral", "nerves", ",", "with", "slight", "swelling", "around", "the", "Temporal", "lobe", "and", "Cerebellum", "."],
  "bio_labels": ["O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "B-BodyPart", "I-BodyPart", "O", "O", "O", "O", "O", "O", "B-BodyPart", "I-BodyPart", "O", "B-BodyPart", "O"],
  "int_labels": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 1, 2, 0, 1, 0],
  "bleurt_score": -0.82470703125,
  "bleurt_class": 0,
  "bleurt_class_name": "negative_bleurt"
}

How to Use the Dataset

You can load and use this dataset with the datasets library as follows:

from datasets import load_dataset

# Load the dataset
dataset = load_dataset("gsri-18/medical-ner-bleurt-separated")

# Access a split
train_data = dataset['train']

# Print the first example
print(train_data[0])

# You can easily filter the dataset by BLEURT class
positive_samples = train_data.filter(lambda example: example['bleurt_class'] == 1)
negative_samples = train_data.filter(lambda example: example['bleurt_class'] == 0)

print(f"Number of positive samples in train set: {len(positive_samples)}")
print(f"Number of negative samples in train set: {len(negative_samples)}")
Downloads last month
91