Datasets:
Tasks:
Image Segmentation
Modalities:
Image
Formats:
parquet
Sub-tasks:
semantic-segmentation
Languages:
English
Size:
10K - 100K
License:
language: | |
- en | |
license: cc0-1.0 | |
license_name: cc0-1.0 | |
license_link: https://creativecommons.org/publicdomain/zero/1.0/ | |
tags: | |
- computer-vision | |
- autonomous-driving | |
- mars | |
- semantic-segmentation | |
- robotics | |
- space | |
annotations_creators: | |
- crowdsourced | |
- expert-generated | |
language_creators: | |
- found | |
language_details: en-US | |
pretty_name: AI4MARS - Terrain-Aware Autonomous Driving on Mars | |
size_categories: | |
- 100K<n<1M | |
source_datasets: | |
- original | |
task_categories: | |
- image-segmentation | |
task_ids: | |
- semantic-segmentation | |
paperswithcode_id: ai4mars | |
dataset_info: | |
features: | |
- name: image | |
dtype: image | |
- name: label_mask | |
dtype: image | |
- name: rover_mask | |
dtype: image | |
- name: range_mask | |
dtype: image | |
- name: has_masks | |
dtype: bool | |
- name: has_labels | |
dtype: bool | |
splits: | |
- name: train | |
num_bytes: 6187608143.0 | |
num_examples: 18130 | |
- name: test_min1 | |
num_bytes: 109623610.0 | |
num_examples: 322 | |
- name: test_min2 | |
num_bytes: 109462392.0 | |
num_examples: 322 | |
- name: test_min3 | |
num_bytes: 109183059.0 | |
num_examples: 322 | |
download_size: 6465888396 | |
dataset_size: 6515877204.0 | |
configs: | |
- config_name: default | |
data_files: | |
- split: train | |
path: data/train-* | |
- split: test_min1 | |
path: data/test_min1-* | |
- split: test_min2 | |
path: data/test_min2-* | |
- split: test_min3 | |
path: data/test_min3-* | |
Taken from the kaggle repository [here](https://www.kaggle.com/datasets/yash92328/ai4mars-terrainaware-autonomous-driving-on-mars). | |
# AI4Mars Dataset | |
A dataset for terrain classification on Mars, specifically focused on Curiosity (MSL) rover data. | |
## Dataset Structure | |
The dataset contains high-resolution Mars surface images with corresponding semantic segmentation masks for terrain classification. | |
### Features | |
- **image**: Original EDR (Engineering Data Record) images from Mars | |
- **label_mask**: Semantic segmentation masks with terrain labels | |
- **rover_mask**: Binary masks (1 = rover visible) | |
- **range_mask**: Binary distance masks (1 = beyond 30m) | |
- **has_masks**: Boolean indicating presence of rover and range masks | |
- **has_labels**: Boolean indicating presence of segmentation labels | |
### Labels | |
Terrain classes are encoded as RGB values in the segmentation masks: | |
- `(0,0,0)`: Soil | |
- `(1,1,1)`: Bedrock | |
- `(2,2,2)`: Sand | |
- `(3,3,3)`: Big rock | |
- `(255,255,255)`: No label/null | |
### Data Splits | |
- **Train**: Crowdsourced labels with: | |
- Minimum 3 labeler agreement | |
- 2/3 agreement threshold per pixel | |
- 30m distance cutoff | |
- Rover regions masked out | |
- **Test**: Expert-validated labels with: | |
- 100% agreement requirement | |
- Three versions available based on labeler agreement thresholds | |
### Image Products | |
All image products share matching base names with different extensions: | |
1. **EDR Images** (.JPG): Raw Mars surface images | |
2. **MXY Files** (.png): Rover mask products | |
3. **RNG Files** (.png): 30-meter range mask products | |
## Notes | |
- Current version (0.1) only includes Curiosity (MSL) data | |
- MER (Mars Exploration Rover) data processing is work in progress | |
- Range masks are derived from PDS (Planetary Data System) products |