Dataset Viewer
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code:   FeaturesError
Exception:    ArrowInvalid
Message:      Schema at index 1 was different: 
models_vit: struct<failed: struct<PyTorch: struct<unclassified: int64, single: int64, multi: int64>, TensorFlow: struct<unclassified: int64, single: int64, multi: int64>, Flax: struct<unclassified: int64, single: int64, multi: int64>, Tokenizers: struct<unclassified: int64, single: int64, multi: int64>, Pipelines: struct<unclassified: int64, single: int64, multi: int64>, Trainer: struct<unclassified: int64, single: int64, multi: int64>, ONNX: struct<unclassified: int64, single: int64, multi: int64>, Auto: struct<unclassified: int64, single: int64, multi: int64>, Unclassified: struct<unclassified: int64, single: int64, multi: int64>>, success: int64, time_spent: string, failures: struct<>, job_link: struct<multi: string, single: string>>
models_levit: struct<failed: struct<PyTorch: struct<unclassified: int64, single: int64, multi: int64>, TensorFlow: struct<unclassified: int64, single: int64, multi: int64>, Flax: struct<unclassified: int64, single: int64, multi: int64>, Tokenizers: struct<unclassified: int64, single: int64, multi: int64>, Pipelines: struct<unclassified: int64, single: int64, multi: int64>, Trainer: struct<unclassified: int64, single: int64, multi: int64>, ONNX: struct<unclassified: int64, single: int64, multi: int64>, Auto: struct<unclassified: int64, single: int64, multi: int64>, Unclassified: struct<unclassified: int64, single: int64, multi: int64>>, success: int64, time_spent: string, failures: struct<>, job_link: struct<single: string, multi: string>>
vs
failed: struct<unclassified: int64, single: int64, multi: int64>
success: int64
time_spent: string
error: bool
failures: struct<multi: list<item: struct<line: string, trace: string>>, single: list<item: struct<line: string, trace: string>>>
job_link: struct<multi: string, single: string>
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 231, in compute_first_rows_from_streaming_response
                  iterable_dataset = iterable_dataset._resolve_features()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 3335, in _resolve_features
                  features = _infer_features_from_batch(self.with_format(None)._head())
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2096, in _head
                  return next(iter(self.iter(batch_size=n)))
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2296, in iter
                  for key, example in iterator:
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1856, in __iter__
                  for key, pa_table in self._iter_arrow():
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1878, in _iter_arrow
                  yield from self.ex_iterable._iter_arrow()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 504, in _iter_arrow
                  yield new_key, pa.Table.from_batches(chunks_buffer)
                File "pyarrow/table.pxi", line 4116, in pyarrow.lib.Table.from_batches
                File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: Schema at index 1 was different: 
              models_vit: struct<failed: struct<PyTorch: struct<unclassified: int64, single: int64, multi: int64>, TensorFlow: struct<unclassified: int64, single: int64, multi: int64>, Flax: struct<unclassified: int64, single: int64, multi: int64>, Tokenizers: struct<unclassified: int64, single: int64, multi: int64>, Pipelines: struct<unclassified: int64, single: int64, multi: int64>, Trainer: struct<unclassified: int64, single: int64, multi: int64>, ONNX: struct<unclassified: int64, single: int64, multi: int64>, Auto: struct<unclassified: int64, single: int64, multi: int64>, Unclassified: struct<unclassified: int64, single: int64, multi: int64>>, success: int64, time_spent: string, failures: struct<>, job_link: struct<multi: string, single: string>>
              models_levit: struct<failed: struct<PyTorch: struct<unclassified: int64, single: int64, multi: int64>, TensorFlow: struct<unclassified: int64, single: int64, multi: int64>, Flax: struct<unclassified: int64, single: int64, multi: int64>, Tokenizers: struct<unclassified: int64, single: int64, multi: int64>, Pipelines: struct<unclassified: int64, single: int64, multi: int64>, Trainer: struct<unclassified: int64, single: int64, multi: int64>, ONNX: struct<unclassified: int64, single: int64, multi: int64>, Auto: struct<unclassified: int64, single: int64, multi: int64>, Unclassified: struct<unclassified: int64, single: int64, multi: int64>>, success: int64, time_spent: string, failures: struct<>, job_link: struct<single: string, multi: string>>
              vs
              failed: struct<unclassified: int64, single: int64, multi: int64>
              success: int64
              time_spent: string
              error: bool
              failures: struct<multi: list<item: struct<line: string, trace: string>>, single: list<item: struct<line: string, trace: string>>>
              job_link: struct<multi: string, single: string>

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

No dataset card yet

Downloads last month
361