File size: 5,721 Bytes
495e3b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "from holisticai.datasets import load_dataset\n",
    "import pandas as pd\n",
    "\n",
    "from folktables import ACSDataSource, ACSIncome, ACSEmployment, ACSPublicCoverage, ACSMobility, ACSTravelTime\n",
    "import numpy as np"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(1458542, 17)"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data = pd.read_parquet('data/acstraveltime/acstraveltime_dataset.parquet')\n",
    "data.shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "datasets = [\"acsincome\", \"acspublic\", \"adult\", \"clinical_records\", \"law_school\", \"student\", \"us_crime\", \"german_credit\",\n",
    "            \"census_kdd\", \"bank_marketing\", \"compas_two_year_recid\", \"compas_is_recid\", \"diabetes\", \"mw_small\", \"mw_medium\"]\n",
    "\n",
    "tab = pd.DataFrame([], columns=['dataset', 'samples', 'features'])\n",
    "for data_name in datasets:\n",
    "    dataset = load_dataset(data_name)\n",
    "    samples = dataset['X'].shape[0]\n",
    "    features = dataset['X'].shape[1]\n",
    "    new = {\n",
    "        'dataset': data_name,\n",
    "        'samples': samples,\n",
    "        'features': features\n",
    "    }\n",
    "    tab = pd.concat([tab, pd.DataFrame([new])])\n",
    "\n",
    "print(tab.to_latex())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "ename": "",
     "evalue": "",
     "output_type": "error",
     "traceback": [
      "\u001b[1;31mThe Kernel crashed while executing code in the current cell or a previous cell. \n",
      "\u001b[1;31mPlease review the code in the cell(s) to identify a possible cause of the failure. \n",
      "\u001b[1;31mClick <a href='https://aka.ms/vscodeJupyterKernelCrash'>here</a> for more info. \n",
      "\u001b[1;31mView Jupyter <a href='command:jupyter.viewOutput'>log</a> for further details."
     ]
    }
   ],
   "source": [
    "def load_acs_data(path = 'datasets/', target_attr=\"income\", sensitive_attribute=\"sex\", survey_year=\"2018\",  states=[\"CA\"], horizon=\"1-Year\",survey='person'):\n",
    "    data_source = ACSDataSource(survey_year=survey_year, horizon=horizon, survey=survey, root_dir=path)\n",
    "    data = data_source.get_data(states=states, download=False)\n",
    "\n",
    "    if target_attr == \"acsincome\":\n",
    "        features, labels, _ = ACSIncome.df_to_pandas(data)\n",
    "        categorical_features = [\"COW\", \"SCHL\", \"MAR\", \"OCCP\", \"POBP\", \"RELP\", \"WKHP\"]\n",
    "    elif target_attr == \"acsemployment\":\n",
    "        features, labels, _ = ACSEmployment.df_to_pandas(data)\n",
    "        categorical_features = [\"AGEP\", \"SCHL\", \"MAR\", \"RELP\", \"DIS\", \"ESP\", \"CIT\", \"MIG\", \"MIL\", \"ANC\", \"NATIVITY\", \"DEAR\", \"DEYE\", \"DREM\"]\n",
    "    elif target_attr == \"acspubliccoverage\":\n",
    "        features, labels, _ = ACSPublicCoverage.df_to_pandas(data)\n",
    "        categorical_features = ['AGEP','SCHL','MAR','DIS','ESP','CIT','MIG','MIL','ANC','NATIVITY','DEAR','DEYE','DREM','PINCP','ESR','ST','FER']\n",
    "    elif target_attr == \"acsmobility\":\n",
    "        features, labels, _ = ACSMobility.df_to_pandas(data)\n",
    "        categorical_features = ['AGEP','SCHL','MAR','DIS','ESP','CIT','MIL','ANC','NATIVITY','RELP','DEAR','DEYE','DREM','GCL','COW','ESR','WKHP','JWMNP','PINCP']\n",
    "    elif target_attr == \"acstraveltime\":\n",
    "        features, labels, _ = ACSTravelTime.df_to_pandas(data)\n",
    "        categorical_features = ['AGEP','SCHL','MAR','DIS','ESP','MIG','RELP','PUMA','ST','CIT','OCCP','JWTR','POWPUMA','POVPIP']\n",
    "\n",
    "    else:\n",
    "        print( \"error\" )\n",
    "    \n",
    "\n",
    "    df = features\n",
    "    y = labels.astype(np.int32)\n",
    "    categorical_features.append(\"RAC1P\")\n",
    "    categorical_features.append(\"SEX\")\n",
    "\n",
    "    X = df\n",
    "    X[categorical_features] = X[categorical_features].astype(\"string\")\n",
    "\n",
    "\n",
    "    # Convert all non-uint8 columns to float32\n",
    "    string_cols = X.select_dtypes(exclude=\"string\").columns\n",
    "    X[string_cols] = X[string_cols].astype(\"float32\")\n",
    "\n",
    "    data = pd.concat([X, y], axis=1)\n",
    "    data.to_parquet(f'datasets/{target_attr}.parquet')\n",
    "\n",
    "\n",
    "states = [\"CA\", \"TX\", \"NY\", \"FL\", \"IL\", \"PA\", \"OH\", \"GA\", \"NC\", \"MI\", \"NJ\", \"VA\", \"WA\", \"AZ\", \"MA\", \"TN\", \"IN\", \"MO\", \"MD\", \"WI\", \"CO\", \"MN\", \"SC\", \"AL\", \"LA\", \"KY\", \"OR\", \"OK\", \"CT\", \"IA\", \"MS\", \"AR\", \"UT\", \"NV\", \"KS\", \"NM\", \"NE\", \"WV\", \"ID\", \"HI\", \"ME\", \"NH\", \"RI\", \"MT\", \"DE\", \"SD\", \"ND\", \"AK\", \"VT\", \"WY\"]\n",
    "for target in [\"acstraveltime\"]:\n",
    "    load_acs_data(target_attr=target, states=states)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "base",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}