| pdf
				 stringlengths 49 199 ⌀ | aff
				 stringlengths 1 1.36k ⌀ | year
				 stringclasses 19
				values | technical_novelty_avg
				 float64 0 4 ⌀ | video
				 stringlengths 21 47 ⌀ | doi
				 stringlengths 31 63 ⌀ | presentation_avg
				 float64 0 4 ⌀ | proceeding
				 stringlengths 43 129 ⌀ | presentation
				 stringclasses 796
				values | sess
				 stringclasses 576
				values | technical_novelty
				 stringclasses 700
				values | arxiv
				 stringlengths 10 16 ⌀ | author
				 stringlengths 1 1.96k ⌀ | site
				 stringlengths 37 191 ⌀ | keywords
				 stringlengths 2 582 ⌀ | oa
				 stringlengths 86 198 ⌀ | empirical_novelty_avg
				 float64 0 4 ⌀ | poster
				 stringlengths 57 95 ⌀ | openreview
				 stringlengths 41 45 ⌀ | conference
				 stringclasses 11
				values | corr_rating_confidence
				 float64 -1 1 ⌀ | corr_rating_correctness
				 float64 -1 1 ⌀ | project
				 stringlengths 1 162 ⌀ | track
				 stringclasses 3
				values | rating_avg
				 float64 0 10 ⌀ | rating
				 stringlengths 1 17 ⌀ | correctness
				 stringclasses 809
				values | slides
				 stringlengths 32 41 ⌀ | title
				 stringlengths 2 192 ⌀ | github
				 stringlengths 3 165 ⌀ | authors
				 stringlengths 7 161 ⌀ | correctness_avg
				 float64 0 5 ⌀ | confidence_avg
				 float64 0 5 ⌀ | status
				 stringclasses 22
				values | confidence
				 stringlengths 1 17 ⌀ | empirical_novelty
				 stringclasses 763
				values | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	Learning to plan;Reinforcement Learning;Value Iteration;Navigation;Convnets | null | 0 | null | null | 
	iclr | 0 | 0 | null | 
	main | 5.666667 | 
	5;5;7 | null | null | 
	Value Propagation Networks | null | null | 0 | 3 | 
	Workshop | 
	4;2;3 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	Deep Learning;Automated Design;Gradient Descent | null | 0 | null | null | 
	iclr | -0.755929 | 0 | null | 
	main | 5.333333 | 
	4;5;7 | null | null | 
	AUTOMATED DESIGN USING NEURAL NETWORKS AND GRADIENT DESCENT | null | null | 0 | 4.333333 | 
	Workshop | 
	5;4;4 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	Musical audio;neural style transfer;Time-Frequency;Spectrogram | null | 0 | null | null | 
	iclr | -0.755929 | 0 | null | 
	main | 5.666667 | 
	4;6;7 | null | null | 
	“Style” Transfer for Musical Audio Using Multiple Time-Frequency Representations | null | null | 0 | 3.666667 | 
	Reject | 
	4;4;3 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	distributed representations;sentence embedding;representation learning;unsupervised learning;encoder-decoder;RNN | null | 0 | null | null | 
	iclr | 0 | 0 | null | 
	main | 5 | 
	4;5;6 | null | null | 
	Decoding Decoders: Finding Optimal Representation Spaces for Unsupervised Similarity Tasks | null | null | 0 | 4.333333 | 
	Workshop | 
	4;5;4 | null | 
| null | 
	Microsoft Research, Canada; Ecole Polytechnique, Canada; Montreal Institute for Learning Algorithms (MILA), Canada | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | 
	Dmitriy Serdyuk, Nan Rosemary Ke, Alessandro Sordoni, Adam Trischler, Christopher Pal, Yoshua Bengio | 
	https://iclr.cc/virtual/2018/poster/86 | 
	generative rnns;long term dependencies;speech recognition;image captioning | null | 0 | null | null | 
	iclr | 0 | 0 | null | 
	main | 7 | 
	6;7;8 | null | null | 
	Twin Networks: Matching the Future for Sequence Generation | null | null | 0 | 4 | 
	Poster | 
	4;4;4 | null | 
| null | 
	Max-Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | 
	Seong Joon Oh, Max Augustin, Mario Fritz, Bernt Schiele | 
	https://iclr.cc/virtual/2018/poster/243 | 
	black box;security;privacy;attack;metamodel;adversarial example;reverse-engineering;machine learning | null | 0 | null | null | 
	iclr | -0.5 | 0 | null | 
	main | 6.333333 | 
	5;7;7 | null | null | 
	Towards Reverse-Engineering Black-Box Neural Networks | 
	https://goo.gl/MbYfsv | null | 0 | 3.666667 | 
	Poster | 
	4;3;4 | null | 
| null | 
	University of Siegen; Technical University of Munich | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | 
	Thomas Frerix, Thomas Möllenhoff, Michael Moeller, Daniel Cremers | 
	https://iclr.cc/virtual/2018/poster/202 | null | null | 0 | null | null | 
	iclr | 0 | 0 | null | 
	main | 6 | 
	5;6;7 | null | null | 
	Proximal Backpropagation | null | null | 0 | 4 | 
	Poster | 
	4;4;4 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	optimal control;reinforcement learning | null | 0 | null | null | 
	iclr | -0.188982 | 0 | null | 
	main | 5.333333 | 
	4;5;7 | null | null | 
	Towards Provable Control for Unknown Linear Dynamical Systems | null | null | 0 | 3.333333 | 
	Workshop | 
	3;4;3 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	structured attention;sentence matching | null | 0 | null | null | 
	iclr | 0 | 0 | null | 
	main | 5.333333 | 
	5;5;6 | null | null | 
	STRUCTURED ALIGNMENT NETWORKS | null | null | 0 | 4 | 
	Reject | 
	4;4;4 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	Named Entities;Neural methods;Goal oriented dialog | null | 0 | null | null | 
	iclr | 0 | 0 | null | 
	main | 4.333333 | 
	3;4;6 | null | null | 
	A Neural Method for Goal-Oriented Dialog Systems to interact with Named Entities | null | null | 0 | 3 | 
	Reject | 
	3;3;3 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	DenseNets;Tensor Analysis;Convolutional Arithmetic Circuits | null | 0 | null | null | 
	iclr | 0 | 0 | null | 
	main | 4.333333 | 
	4;4;5 | null | null | 
	A Tensor Analysis on Dense Connectivity via Convolutional Arithmetic Circuits | null | null | 0 | 3 | 
	Reject | 
	3;3;3 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	Deep Generative Models;GANs | null | 0 | null | null | 
	iclr | -0.5 | 0 | null | 
	main | 5.666667 | 
	5;6;6 | null | null | 
	Flexible Prior Distributions for Deep Generative Models | null | null | 0 | 3.666667 | 
	Reject | 
	4;4;3 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	Natural Language Processing;Machine Translation;Deep Learning;Data Augmentation | null | 0 | null | null | 
	iclr | -0.654654 | 0 | null | 
	main | 4.666667 | 
	3;5;6 | null | null | 
	A cluster-to-cluster framework for neural machine translation | null | null | 0 | 3 | 
	Withdraw | 
	4;2;3 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	dialogue generation;dialogue acts;open domain conversation;supervised learning;reinforcement learning | null | 0 | null | null | 
	iclr | -0.866025 | 0 | null | 
	main | 6 | 
	4;7;7 | null | null | 
	Towards Interpretable Chit-chat: Open Domain Dialogue Generation with Dialogue Acts | null | null | 0 | 4 | 
	Reject | 
	5;3;4 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | null | null | 0 | null | null | 
	iclr | -0.5 | 0 | null | 
	main | 3.333333 | 
	3;3;4 | null | null | 
	Learning Topics using Semantic Locality | null | null | 0 | 4.333333 | 
	Withdraw | 
	4;5;4 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	target propagation;biologically-plausible learning;benchmark;neuroscience | null | 0 | null | null | 
	iclr | 0.981981 | 0 | null | 
	main | 6.333333 | 
	5;6;8 | null | null | 
	Assessing the scalability of biologically-motivated deep learning algorithms and architectures | null | null | 0 | 4 | 
	Withdraw | 
	3;4;5 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | null | null | 0 | null | null | 
	iclr | -0.5 | 0 | null | 
	main | 5.333333 | 
	5;5;6 | null | null | 
	MACHINE VS MACHINE: MINIMAX-OPTIMAL DEFENSE AGAINST ADVERSARIAL EXAMPLES | null | null | 0 | 3.333333 | 
	Reject | 
	3;4;3 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	Natural Language Processing;Deep Learning;Reasoning | null | 0 | null | null | 
	iclr | 0 | 0 | null | 
	main | 4 | 
	4;4;4 | null | null | 
	Finding ReMO (Related Memory Object): A Simple neural architecture for Text based Reasoning | null | null | 0 | 4 | 
	Reject | 
	4;4;4 | null | 
| null | 
	University of California, Los Angeles; École Normale Supérieure de Lyon; École Polytechnique Fédérale de Lausanne | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | 
	Seyed Mohsen Moosavi Dezfooli, Alhussein Fawzi, Omar Fawzi, Pascal Frossard, Stefano Soatto | 
	https://iclr.cc/virtual/2018/poster/286 | 
	Universal perturbations;robustness;curvature | null | 0 | null | null | 
	iclr | 0 | 0 | null | 
	main | 6 | 
	5;6;7 | null | null | 
	Robustness of Classifiers to Universal Perturbations: A Geometric Perspective | null | null | 0 | 3.333333 | 
	Poster | 
	3;4;3 | null | 
| null | 
	Department of Computer Science, Stanford University | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | 
	Aditi Raghunathan, Jacob Steinhardt, Percy Liang | 
	https://iclr.cc/virtual/2018/poster/116 | 
	adversarial examples;certificate of robustness;convex relaxations | null | 0 | null | null | 
	iclr | 1 | 0 | null | 
	main | 7 | 
	5;8;8 | null | null | 
	Certified Defenses against Adversarial Examples | null | null | 0 | 3.666667 | 
	Poster | 
	3;4;4 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	deep learning;regularization | null | 0 | null | null | 
	iclr | -0.866025 | 0 | null | 
	main | 5 | 
	4;5;6 | null | null | 
	Achieving Strong Regularization for Deep Neural Networks | 
	https://github.com/(anonymized) | null | 0 | 4 | 
	Reject | 
	5;5;2 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	Dialog Systems;Language Generation | null | 0 | null | null | 
	iclr | 0 | 0 | null | 
	main | 0 | null | null | null | 
	Placeholder | null | null | 0 | 0 | 
	Withdraw | null | null | 
| null | 
	Department of Statistics, Columbia University; Google Brain | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | 
	gonzalo mena, David Belanger, Scott Linderman, Jasper Snoek | 
	https://iclr.cc/virtual/2018/poster/183 | 
	Permutation;Latent;Sinkhorn;Inference;Optimal Transport;Gumbel;Softmax;Sorting | null | 0 | null | null | 
	iclr | 0.866025 | 0 | null | 
	main | 7 | 
	6;7;8 | null | null | 
	Learning Latent Permutations with Gumbel-Sinkhorn Networks | null | null | 0 | 3.333333 | 
	Poster | 
	2;4;4 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	generative adversarial networks;Wasserstein;GAN;generalization;theory | null | 0 | null | null | 
	iclr | -0.866025 | 0 | null | 
	main | 5 | 
	4;5;6 | null | null | 
	Towards a Testable Notion of Generalization for Generative Adversarial Networks | null | null | 0 | 3.333333 | 
	Reject | 
	4;3;3 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	Adversarial Training;Privacy Protection;Random Subspace | null | 0 | null | null | 
	iclr | -0.5 | 0 | null | 
	main | 5.666667 | 
	5;6;6 | null | null | 
	Censoring Representations with Multiple-Adversaries over Random Subspaces | null | null | 0 | 3.666667 | 
	Reject | 
	4;3;4 | null | 
| null | 
	University of Washington, Seattle | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | 
	Tianyi Zhou, Jeff Bilmes | 
	https://iclr.cc/virtual/2018/poster/276 | 
	machine teaching;deep learning;minimax;curriculum learning;submodular;diversity | null | 0 | null | null | 
	iclr | 0.5 | 0 | null | 
	main | 5.666667 | 
	5;6;6 | null | null | 
	Minimax Curriculum Learning: Machine Teaching with Desirable Difficulties and Scheduled Diversity | null | null | 0 | 3.333333 | 
	Poster | 
	3;3;4 | null | 
| null | 
	Paper under double-blind review | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	Training Deep Models;Non-convex Optimization;Local and Global Equivalence;Local Openness | null | 0 | null | null | 
	iclr | 0 | 0 | null | 
	main | 5.666667 | 
	5;6;6 | null | null | 
	Learning Deep Models: Critical Points and Local Openness | null | null | 0 | 4 | 
	Workshop | 
	4;4;4 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	representation learning;disentanglement;regularization | null | 0 | null | null | 
	iclr | 0 | 0 | null | 
	main | 5 | 
	4;5;6 | null | null | 
	Disentangled activations in deep networks | null | null | 0 | 3.333333 | 
	Reject | 
	3;4;3 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	language modeling;NCE;self-normalization | null | 0 | null | null | 
	iclr | -0.720577 | 0 | null | 
	main | 3.666667 | 
	2;3;6 | null | null | 
	A Matrix Approximation View of NCE that Justifies Self-Normalization | null | null | 0 | 4 | 
	Withdraw | 
	4;5;3 | null | 
| null | 
	University of Cambridge; University of Cambridge, Uber AI Labs | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | 
	Alexander Matthews, Jiri Hron, Mark Rowland, Richard E Turner, Zoubin Ghahramani | 
	https://iclr.cc/virtual/2018/poster/161 | 
	Gaussian Processes;Bayesian Deep Learning;Theory of Deep Neural Networks | null | 0 | null | null | 
	iclr | 0 | 0 | null | 
	main | 6 | 
	6;6;6 | null | null | 
	Gaussian Process Behaviour in Wide Deep Neural Networks | 
	https://github.com/widedeepnetworks/widedeepnetworks | null | 0 | 4 | 
	Poster | 
	4;4;4 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	invariance;cnn;gan;infogan;transformation | null | 0 | null | null | 
	iclr | 0.5 | 0 | null | 
	main | 3.333333 | 
	2;4;4 | null | null | 
	Parametrizing filters of a CNN with a GAN | null | null | 0 | 4.333333 | 
	Reject | 
	4;4;5 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	graph convolutional neural networks;graph-structured data;semi-classification | null | 0 | null | null | 
	iclr | -0.866025 | 0 | null | 
	main | 5 | 
	4;5;6 | null | null | 
	Topology Adaptive Graph Convolutional Networks | null | null | 0 | 3.666667 | 
	Reject | 
	4;4;3 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	deep learning theory;architecture selection;algebraic topology | null | 0 | null | null | 
	iclr | 0 | 0 | null | 
	main | 3.666667 | 
	3;4;4 | null | null | 
	On Characterizing the Capacity of Neural Networks Using Algebraic Topology | null | null | 0 | 5 | 
	Reject | 
	5;5;5 | null | 
| null | 
	Product Architecture Group, Intel, OR; Parallel Computing Lab, Intel Labs, SC; Parallel Computing Lab, Intel Labs, India; Software Services Group, Intel, OR | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | 
	Dipankar Das, Naveen Mellempudi, Dheevatsa Mudigere, Dhiraj Kalamkar, Sasikanth Avancha, Kunal Banerjee, Srinivas Sridharan, Karthik Vaidyanathan, Bharat Kaul, Evangelos Georganas, Alexander Heinecke, Pradeep K Dubey, Jesus Corbal, Nikita Shustrov, Roma Dubtsov, Evarist Fomenko, Vadim Pirogov | 
	https://iclr.cc/virtual/2018/poster/52 | 
	deep learning training;reduced precision;imagenet;dynamic fixed point | null | 0 | null | null | 
	iclr | 0.5 | 0 | null | 
	main | 6.666667 | 
	6;7;7 | null | null | 
	Mixed Precision Training of Convolutional Neural Networks using Integer Operations | null | null | 0 | 3.333333 | 
	Poster | 
	3;4;3 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	Label Propagation;Depthwise separable convolution;Graph and geometric convolution | null | 0 | null | null | 
	iclr | -0.5 | 0 | null | 
	main | 5 | 
	4;5;6 | null | null | 
	Learning Graph Convolution Filters from Data Manifold | null | null | 0 | 4 | 
	Reject | 
	5;3;4 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	distributed;deep learning;straggler | null | 0 | null | null | 
	iclr | 1 | 0 | null | 
	main | 3.666667 | 
	3;4;4 | null | null | 
	Faster Distributed Synchronous SGD with Weak Synchronization | null | null | 0 | 4.666667 | 
	Reject | 
	4;5;5 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	GAN;graphs;random walks;implicit generative models | null | 0 | null | null | 
	iclr | -0.944911 | 0 | null | 
	main | 5.666667 | 
	4;6;7 | null | null | 
	GraphGAN: Generating Graphs via Random Walks | null | null | 0 | 4.333333 | 
	Reject | 
	5;4;4 | null | 
| null | 
	Department of Computer Science, ETH Zurich | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | 
	Yannic Kilcher, Aurelien Lucchi, Thomas Hofmann | 
	https://iclr.cc/virtual/2018/poster/117 | 
	Deep Generative Models;GANs | null | 0 | null | null | 
	iclr | 0 | 0 | null | 
	main | 6 | 
	5;6;7 | null | null | 
	Semantic Interpolation in Implicit Models | null | null | 0 | 3.666667 | 
	Poster | 
	4;3;4 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	sequence-to-sequence recurrent networks;compositionality;systematicity;generalization;language-driven navigation | null | 0 | null | null | 
	iclr | 0 | 0 | null | 
	main | 6.333333 | 
	6;6;7 | null | null | 
	Still not systematic after all these years: On the compositional skills of sequence-to-sequence recurrent networks | null | null | 0 | 4 | 
	Workshop | 
	3;5;4 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	Nuisance variation;transform learning;image embeddings | null | 0 | null | null | 
	iclr | -0.755929 | 0 | null | 
	main | 5.333333 | 
	4;5;7 | null | null | 
	Correcting Nuisance Variation using Wasserstein Distance | null | null | 0 | 3.666667 | 
	Reject | 
	5;3;3 | null | 
| null | 
	Facebook AI Research; Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6 | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | 
	Guillaume Lample,  , Marc'Aurelio Ranzato,  , Hervé Jégou | 
	https://iclr.cc/virtual/2018/poster/336 | 
	unsupervised learning;machine translation;multilingual embeddings;parallel dictionary induction;adversarial training | null | 0 | null | null | 
	iclr | -0.777714 | 0 | null | 
	main | 6.666667 | 
	3;8;9 | null | null | 
	Word translation without parallel data | 
	https://github.com/facebookresearch/MUSE | null | 0 | 4 | 
	Poster | 
	5;3;4 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	Deep Learning;machine learning | null | 0 | null | null | 
	iclr | 0 | 0 | null | 
	main | 4 | 
	4;4;4 | null | null | 
	Super-Convergence: Very Fast Training of Residual Networks Using Large Learning Rates | null | null | 0 | 3.333333 | 
	Reject | 
	3;3;4 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	Deep Learning;Robotics;Artificial Intelligence;Computer Vision | null | 0 | null | null | 
	iclr | 0.5 | 0 | null | 
	main | 2.333333 | 
	2;2;3 | null | null | 
	TOWARDS ROBOT VISION MODULE DEVELOPMENT WITH EXPERIENTIAL ROBOT LEARNING | null | null | 0 | 3.666667 | 
	Reject | 
	3;4;4 | null | 
| null | 
	University of California, Irvine, CA 92697, USA | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | 
	Zhengli Zhao, Dheeru Dua, Sameer Singh | 
	https://iclr.cc/virtual/2018/poster/142 | 
	adversarial examples;generative adversarial networks;interpretability;image classification;textual entailment;machine translation | null | 0 | null | null | 
	iclr | 1 | 0 | null | 
	main | 6.333333 | 
	6;6;7 | null | null | 
	Generating Natural Adversarial Examples | null | null | 0 | 3.333333 | 
	Poster | 
	3;3;4 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	Lifelong learning;meta learning;word embedding | null | 0 | null | null | 
	iclr | 0 | 0 | null | 
	main | 4 | 
	3;4;5 | null | null | 
	Lifelong Word Embedding via Meta-Learning | null | null | 0 | 4 | 
	Reject | 
	4;4;4 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	Batch Normalized;Convolutional Neural Networks;Displaced Rectifier Linear Unit;Comparative Study | null | 0 | null | null | 
	iclr | 0 | 0 | null | 
	main | 4 | 
	3;4;5 | null | null | 
	Enhancing Batch Normalized Convolutional Networks using Displaced Rectifier Linear Units: A Systematic Comparative Study | null | null | 0 | 4.666667 | 
	Reject | 
	5;4;5 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	program induction;HCI;deep learning | null | 0 | null | null | 
	iclr | 0.5 | 0 | null | 
	main | 4.666667 | 
	4;4;6 | null | null | 
	Learning to Infer Graphics Programs from Hand-Drawn Images | null | null | 0 | 3.333333 | 
	Reject | 
	4;2;4 | null | 
| null | 
	New York University, New York, NY 10003; New York Genome Center, New York, NY 10003, USA; Weill Cornell Medicine, Meyer Cancer Center, New York, NY 10065; Tri-Institutional Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY 10065; Weill Cornell Medicine, Division of Hematology and Medical Oncology, New York, NY 10065 | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	somatic mutation;variant calling;cancer;liquid biopsy;early detection;convolution;deep learning;machine learning;lung cancer;error suppression;mutect | null | 0 | null | null | 
	iclr | 0.693375 | 0 | null | 
	main | 5.666667 | 
	4;5;8 | null | null | 
	Deep learning mutation prediction enables early stage lung cancer detection in liquid biopsy | null | null | 0 | 3.666667 | 
	Workshop | 
	3;4;4 | null | 
| null | 
	DeepMind | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | 
	Daniel Horgan, John Quan, David Budden, Gabriel Barth-maron, Matteo Hessel, Hado van Hasselt, David Silver | 
	https://iclr.cc/virtual/2018/poster/134 | 
	deep learning;reinforcement learning;distributed systems | null | 0 | null | null | 
	iclr | 0.755929 | 0 | null | 
	main | 7.333333 | 
	6;7;9 | null | null | 
	Distributed Prioritized Experience Replay | null | null | 0 | 3.666667 | 
	Poster | 
	3;4;4 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	Deep learning;model compression | null | 0 | null | null | 
	iclr | -0.866025 | 0 | null | 
	main | 5.666667 | 
	5;6;6 | null | null | 
	WSNet: Learning Compact and Efficient Networks with Weight Sampling | null | null | 0 | 4 | 
	Workshop | 
	5;4;3 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | null | null | 0 | null | null | 
	iclr | -0.5 | 0 | null | 
	main | 4.333333 | 
	4;4;5 | null | null | 
	TESLA: Task-wise Early Stopping and Loss Aggregation for Dynamic Neural Network Inference | null | null | 0 | 2.666667 | 
	Reject | 
	2;4;2 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	Real time strategy;latent space;forward model;monte carlo tree search;reinforcement learning;planning | null | 0 | null | null | 
	iclr | 0 | 0 | null | 
	main | 4.333333 | 
	4;4;5 | null | null | 
	Latent forward model for Real-time Strategy game planning with incomplete information | null | null | 0 | 4 | 
	Reject | 
	5;3;4 | null | 
| null | 
	University of Toronto and Vector Institute | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | 
	Yuhuai Wu, Mengye Ren, Renjie Liao, Roger Grosse | 
	https://iclr.cc/virtual/2018/poster/240 | 
	meta-learning; optimization; short-horizon bias. | null | 0 | null | null | 
	iclr | -0.866025 | 0 | null | 
	main | 7 | 
	6;7;8 | null | null | 
	Understanding Short-Horizon Bias in Stochastic Meta-Optimization | 
	https://github.com/renmengye/meta-optim-public | null | 0 | 3.666667 | 
	Poster | 
	4;4;3 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	Object detection;Visual Tracking;Loss function;Region Proposal Network;Network compression | null | 0 | null | null | 
	iclr | -0.866025 | 0 | null | 
	main | 4 | 
	3;4;5 | null | null | 
	Tracking Loss: Converting Object Detector to Robust Visual Tracker | null | null | 0 | 4.333333 | 
	Reject | 
	5;4;4 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	neural network;reinforcement learning;natural language processing;machine translation;alpha-divergence | null | 0 | null | null | 
	iclr | 0 | 0 | null | 
	main | 4 | 
	4;4;4 | null | null | 
	Alpha-divergence bridges maximum likelihood and reinforcement learning in neural sequence generation | null | null | 0 | 3 | 
	Reject | 
	1;5;3 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | null | null | 0 | null | null | 
	iclr | -0.866025 | 0 | null | 
	main | 4 | 
	3;4;5 | null | null | 
	Post-training for Deep Learning | null | null | 0 | 4.333333 | 
	Reject | 
	5;4;4 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	hyper-parameters;optimization | null | 0 | null | null | 
	iclr | 0 | 0 | null | 
	main | 4.333333 | 
	4;4;5 | null | null | 
	Online Hyper-Parameter Optimization | null | null | 0 | 3 | 
	Reject | 
	3;3;3 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	exploration;intrinsic motivation;reinforcement learning | null | 0 | null | null | 
	iclr | 0 | 0 | null | 
	main | 0 | null | null | null | 
	Curiosity-driven Exploration by Bootstrapping Features | null | null | 0 | 0 | 
	Withdraw | null | null | 
| null | 
	Microsoft Research, Montreal; Unknown; Element AI, Montreal; Montreal Institute for Learning Algorithms (MILA), Montreal | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | 
	Chiheb Trabelsi, Olexa Bilaniuk, Ying Zhang, Dmitriy Serdyuk, Sandeep Subramanian, Joao Felipe Santos, Soroush Mehri, Negar Rostamzadeh, Yoshua Bengio, Christopher Pal | 
	https://iclr.cc/virtual/2018/poster/2 | 
	deep learning;complex-valued neural networks | null | 0 | null | null | 
	iclr | 0 | 0 | null | 
	main | 6.333333 | 
	4;7;8 | null | null | 
	Deep Complex Networks | null | null | 0 | 4 | 
	Poster | 
	4;4;4 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	interpreting convolutional neural networks;nearest neighbors;generative adversarial networks | null | 0 | null | null | 
	iclr | 0.5 | 0 | null | 
	main | 3.333333 | 
	3;3;4 | null | null | 
	Do Convolutional Neural Networks act as Compositional Nearest Neighbors? | null | null | 0 | 4.333333 | 
	Withdraw | 
	3;5;5 | null | 
| null | 
	Baidu Research, Sunnyvale USA; National Engineering Laboratory for Deep Learning Technology and Applications, Beijing China | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | 
	Haonan Yu, Haichao Zhang, Wei Xu | 
	https://iclr.cc/virtual/2018/poster/275 | 
	grounded language learning and generalization;zero-shot language learning | null | 0 | null | null | 
	iclr | 0 | 0 | null | 
	main | 6.333333 | 
	6;6;7 | null | null | 
	Interactive Grounded Language Acquisition and Generalization in a 2D World | null | null | 0 | 4 | 
	Poster | 
	4;4;4 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	kernel methods;low-rank approximation;quadrature rules;random features | null | 0 | null | null | 
	iclr | 0.981981 | 0 | null | 
	main | 5.666667 | 
	4;6;7 | null | null | 
	Quadrature-based features for kernel approximation | null | null | 0 | 4 | 
	Reject | 
	3;4;5 | null | 
| null | 
	Facebook Research; Coordinated Science Lab, Department of ECE, University of Illinois at Urbana-Champaign | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | 
	R. Srikant, Shiyu Liang, Yixuan Li | 
	https://iclr.cc/virtual/2018/poster/264 | 
	Neural networks;out-of-distribution detection | null | 0 | null | null | 
	iclr | -0.5 | 0 | null | 
	main | 7 | 
	6;6;9 | null | null | 
	Enhancing The Reliability of Out-of-distribution Image Detection in Neural Networks | null | null | 0 | 3.333333 | 
	Poster | 
	4;3;3 | null | 
| null | 
	Facebook AI Research & The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel; The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | 
	Tomer Galanti, Lior Wolf, Sagie Benaim | 
	https://iclr.cc/virtual/2018/poster/154 | 
	Unsupervised learning;cross-domain mapping;Kolmogorov complexity;Occam's razor | null | 0 | null | null | 
	iclr | -0.5 | 0 | null | 
	main | 6.666667 | 
	6;7;7 | null | null | 
	The Role of Minimal Complexity Functions in Unsupervised Learning of Semantic Mappings | null | null | 0 | 3.333333 | 
	Poster | 
	4;2;4 | null | 
| null | 
	Toyota Technological Institute at Chicago, Chicago, IL, 60637, USA | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | 
	Lifu Tu, Kevin Gimpel | 
	https://iclr.cc/virtual/2018/poster/75 | 
	Approximate Inference Networks;Structured Prediction;Multi-Label Classification;Sequence Labeling | null | 0 | null | null | 
	iclr | 0.5 | 0 | null | 
	main | 7 | 
	5;7;9 | null | null | 
	Learning Approximate Inference Networks for Structured Prediction | null | null | 0 | 4 | 
	Poster | 
	3;5;4 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	multitask learning;lifelong learning;online learning | null | 0 | null | null | 
	iclr | -0.866025 | 0 | null | 
	main | 3 | 
	2;3;4 | null | null | 
	Lifelong Learning with Output Kernels | null | null | 0 | 4.333333 | 
	Reject | 
	5;4;4 | null | 
| null | 
	Deepmind; Google; University of Oxford; Microsoft Research | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | 
	Rudy Bunel, Matthew Hausknecht, Jacob Devlin, Rishabh Singh, Pushmeet Kohli | 
	https://iclr.cc/virtual/2018/poster/294 | 
	Program Synthesis;Reinforcement Learning;Language Model | null | 0 | null | null | 
	iclr | 0 | 0 | null | 
	main | 6 | 
	5;6;7 | null | null | 
	Leveraging Grammar and Reinforcement Learning for Neural Program Synthesis | null | null | 0 | 3 | 
	Poster | 
	3;3;3 | null | 
| null | 
	OpenAI; University of Amsterdam, TNO, Intelligent Imaging; University of Amsterdam, CIFAR | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | 
	Christos Louizos, Max Welling, Diederik Kingma | 
	https://iclr.cc/virtual/2018/poster/222 | 
	Sparsity;compression;hard and soft attention. | null | 0 | null | null | 
	iclr | 1 | 0 | null | 
	main | 6.333333 | 
	6;6;7 | null | null | 
	Learning Sparse Neural Networks through L_0 Regularization | null | null | 0 | 3.333333 | 
	Poster | 
	3;3;4 | null | 
| null | 
	ETH Zürich | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | 
	Paulina Grnarova, Kfir Y Levy, Aurelien Lucchi, Thomas Hofmann, Andreas Krause | 
	https://iclr.cc/virtual/2018/poster/301 | 
	Generative Adversarial Networks;GANs;online learning | null | 0 | null | null | 
	iclr | 0.755929 | 0 | null | 
	main | 6.666667 | 
	5;7;8 | null | null | 
	An Online Learning Approach to Generative Adversarial Networks | null | null | 0 | 4.333333 | 
	Poster | 
	4;4;5 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	Recurrent neural network;Vanishing and exploding gradients;Parameter efficiency;Kronecker matrices;Soft unitary constraint | null | 0 | null | null | 
	iclr | -0.5 | 0 | null | 
	main | 6 | 
	5;6;7 | null | null | 
	Kronecker Recurrent Units | null | null | 0 | 4 | 
	Workshop | 
	4;5;3 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	distributed representation;sentence embedding;structure;technical documents;sentence embedding;out-of-vocabulary | null | 0 | null | null | 
	iclr | 0 | 0 | null | 
	main | 5.666667 | 
	5;5;7 | null | null | 
	UNSUPERVISED SENTENCE EMBEDDING USING DOCUMENT STRUCTURE-BASED CONTEXT | null | null | 0 | 4 | 
	Reject | 
	4;4;4 | null | 
| null | 
	Stanford University; Intel Labs | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | 
	Ozan Sener, Silvio Savarese | 
	https://iclr.cc/virtual/2018/poster/194 | 
	Active Learning;Convolutional Neural Networks;Core-Set Selection | null | 0 | null | null | 
	iclr | 0 | 0 | null | 
	main | 7 | 
	7;7;7 | null | null | 
	Active Learning for Convolutional Neural Networks: A Core-Set Approach | null | null | 0 | 3.666667 | 
	Poster | 
	4;3;4 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	Multitask learning;computer vision;multitask loss function | null | 0 | null | null | 
	iclr | -1 | 0 | null | 
	main | 4.666667 | 
	4;4;6 | null | null | 
	GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks | null | null | 0 | 3.333333 | 
	Reject | 
	4;4;2 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	softmax;optimization;implicit sgd | null | 0 | null | null | 
	iclr | 0 | 0 | null | 
	main | 5 | 
	5;5;5 | null | null | 
	Unbiased scalable softmax optimization | null | null | 0 | 3.666667 | 
	Reject | 
	4;3;4 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	Reinforcement learning;Q-learning;ensemble method;upper confidence bound | null | 0 | null | null | 
	iclr | 0.5 | 0 | null | 
	main | 6 | 
	5;6;7 | null | null | 
	UCB EXPLORATION VIA Q-ENSEMBLES | null | null | 0 | 4 | 
	Reject | 
	3;5;4 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	convolution neural networks;attention;music information retrieval | null | 0 | null | null | 
	iclr | 0 | 0 | null | 
	main | 0 | null | null | null | 
	Learning Audio Features for Singer Identification and Embedding | null | null | 0 | 0 | 
	Withdraw | null | null | 
| null | 
	Centre for Artificial Intelligence, School of Software, University of Technology Sydney; Paul G. Allen School of Computer Science & Engineering, University of Washington | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | 
	Tao Shen, Tianyi Zhou, Guodong Long, Jing Jiang, Chengqi Zhang | 
	https://iclr.cc/virtual/2018/poster/234 | 
	deep learning;attention mechanism;sequence modeling;natural language processing;sentence embedding | null | 0 | null | null | 
	iclr | 0 | 0 | null | 
	main | 7 | 
	6;6;9 | null | null | 
	Bi-Directional Block Self-Attention for Fast and Memory-Efficient Sequence Modeling | null | null | 0 | 4 | 
	Poster | 
	4;4;4 | null | 
| null | 
	University of Oxford, United Kingdom | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | 
	Tim Rocktäschel | 
	https://iclr.cc/virtual/2018/poster/198 | 
	reinforcement learning;deep learning;planning | null | 0 | null | null | 
	iclr | 0.27735 | 0 | null | 
	main | 5.666667 | 
	4;5;8 | null | null | 
	TreeQN and ATreeC: Differentiable Tree-Structured Models for Deep Reinforcement Learning | null | null | 0 | 4.333333 | 
	Poster | 
	5;3;5 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	reading comprehension;question answering | null | 0 | null | null | 
	iclr | -0.5 | 0 | null | 
	main | 6.666667 | 
	6;7;7 | null | null | 
	DuoRC: Towards Complex Language Understanding with Paraphrased Reading Comprehension | null | null | 0 | 3.666667 | 
	Workshop | 
	4;3;4 | null | 
| null | 
	IBM Research AI, Yorktown Heights, NY | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | 
	Abhishek Kumar, Prasanna Sattigeri, Avinash Balakrishnan | 
	https://iclr.cc/virtual/2018/poster/82 | 
	disentangled representations;variational inference | null | 0 | null | null | 
	iclr | -1 | 0 | null | 
	main | 6.666667 | 
	6;7;7 | null | null | 
	Variational Inference of Disentangled Latent Concepts from Unlabeled Observations | null | null | 0 | 4.333333 | 
	Poster | 
	5;4;4 | null | 
| null | 
	N/A | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	reinforcement learning;pretrained;deep learning;perception;algorithmic | null | 0 | null | null | 
	iclr | 0 | 0 | null | 
	main | 3 | 
	2;3;4 | null | null | 
	Sequential Coordination of Deep Models for Learning Visual Arithmetic | null | null | 0 | 4 | 
	Reject | 
	4;4;4 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	natural gradient;generalization;optimization;function space;Hilbert | null | 0 | null | null | 
	iclr | 0 | 0 | null | 
	main | 5 | 
	4;5;6 | null | null | 
	Improving generalization by regularizing in $L^2$ function space | null | null | 0 | 3.333333 | 
	Reject | 
	3;4;3 | null | 
| null | 
	Computer Science, University of Texas at Austin, Austin, TX, 78712; Google, Kirkland, WA, 98033; Microsoft, Redmond, WA, 98052; Computer Science, UESTC, Chengdu, China; Computer Science, UIUC, Urbana, IL 61801; Computer science, University of Texas at Austin, Austin, TX, 78712 | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | 
	Hao Liu, Yihao Feng, Yi Mao, Dengyong Zhou, Jian Peng, Qiang Liu | 
	https://iclr.cc/virtual/2018/poster/106 | 
	reinforcement learning;control variates;sample efficiency;variance reduction | null | 0 | null | null | 
	iclr | 0 | 0 | null | 
	main | 7 | 
	7;7;7 | null | null | 
	Action-dependent Control Variates for Policy Optimization via Stein Identity | null | null | 0 | 3.333333 | 
	Poster | 
	4;3;3 | null | 
| null | 
	Salesforce Research, Palo Alto, CA 94301, USA | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | 
	Caiming Xiong, richard socher, Victor Zhong | 
	https://iclr.cc/virtual/2018/poster/258 | 
	question answering;deep learning;natural language processing;reinforcement learning | null | 0 | null | null | 
	iclr | -0.866025 | 0 | null | 
	main | 7 | 
	6;7;8 | null | null | 
	DCN+: Mixed Objective And Deep Residual Coattention for Question Answering | null | null | 0 | 3.333333 | 
	Poster | 
	4;4;2 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	deep learning theory;infinite neural networks;topology | null | 0 | null | null | 
	iclr | -0.995871 | 0 | null | 
	main | 4.666667 | 
	3;4;7 | null | null | 
	Deep Function Machines: Generalized Neural Networks for Topological Layer Expression | null | null | 0 | 2.666667 | 
	Reject | 
	4;3;1 | null | 
| null | 
	Stanford University; DeepMind | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | 
	Rui Shu, Hung H Bui, Hirokazu Narui, Stefano Ermon | 
	https://iclr.cc/virtual/2018/poster/26 | 
	domain adaptation;unsupervised learning;semi-supervised learning | null | 0 | null | null | 
	iclr | 0.5 | 0 | null | 
	main | 7.333333 | 
	7;7;8 | null | null | 
	A DIRT-T Approach to Unsupervised Domain Adaptation | 
	https://github.com/RuiShu/dirt-t | null | 0 | 3.333333 | 
	Poster | 
	2;4;4 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	information theory;generative models;latent variable models;variational autoencoders | null | 0 | null | null | 
	iclr | 0.5 | 0 | null | 
	main | 5.666667 | 
	5;5;7 | null | null | 
	An information-theoretic analysis of deep latent-variable models | null | null | 0 | 4.666667 | 
	Reject | 
	4;5;5 | null | 
| null | 
	Amazon Web Services; University of Illinois at Urbana-Champaign | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | 
	Ashish Khetan, Zachary Lipton, anima anandkumar | 
	https://iclr.cc/virtual/2018/poster/158 | 
	crowdsourcing;noisy annotations;deep leaerning | null | 0 | null | null | 
	iclr | 1 | 0 | null | 
	main | 6.666667 | 
	6;7;7 | null | null | 
	Learning From Noisy Singly-labeled Data | null | null | 0 | 3.666667 | 
	Poster | 
	3;4;4 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	deep learning;experimental analysis;hidden neurons | null | 0 | null | null | 
	iclr | 0 | 0 | null | 
	main | 5.333333 | 
	4;5;7 | null | null | 
	Discovering the mechanics of hidden neurons | null | null | 0 | 4 | 
	Reject | 
	4;4;4 | null | 
| null | 
	Department of EECS, UC Berkeley; OpenAI; Institute for Transportation Studies, UC Berkeley; Department of CSE, University of Washington | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | 
	Cathy Wu, Aravind Rajeswaran, Yan Duan, Vikash Kumar, Alexandre M Bayen, Sham M Kakade, Igor Mordatch, Pieter Abbeel | 
	https://iclr.cc/virtual/2018/poster/115 | 
	reinforcement learning;policy gradient;variance reduction;baseline;control variates | null | 0 | null | null | 
	iclr | -0.866025 | 0 | null | 
	main | 7 | 
	6;7;8 | null | null | 
	Variance Reduction for Policy Gradient with Action-Dependent Factorized Baselines | null | null | 0 | 3.666667 | 
	Oral | 
	4;4;3 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	active inference;predictive coding;motor control | null | 0 | null | null | 
	iclr | -0.944911 | 0 | null | 
	main | 3.666667 | 
	3;3;5 | null | null | 
	Toward predictive machine learning for active vision | null | null | 0 | 3.666667 | 
	Reject | 
	5;4;2 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	medical diagnosis;medical imaging;multi-label classification | null | 0 | null | null | 
	iclr | 0 | 0 | null | 
	main | 6 | 
	6;6;6 | null | null | 
	Learning to diagnose from scratch by exploiting dependencies among labels | null | null | 0 | 3.333333 | 
	Reject | 
	4;3;3 | null | 
| null | 
	UC Irvine; Amazon AI, Imperial College London; Amazon AI, Caltech; Amazon AI; Amazon AI, UT Austin; Amazon AI, CMU | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | 
	Guneet Dhillon, Kamyar Azizzadenesheli, Zachary Lipton, Jeremy Bernstein, Jean Kossaifi, Aran Khanna, anima anandkumar | 
	https://iclr.cc/virtual/2018/poster/71 | null | null | 0 | null | null | 
	iclr | 0.5 | 0 | null | 
	main | 6.333333 | 
	6;6;7 | null | null | 
	Stochastic Activation Pruning for Robust Adversarial Defense | null | null | 0 | 3.666667 | 
	Poster | 
	4;3;4 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | null | null | 0 | null | null | 
	iclr | -0.5 | 0 | null | 
	main | 3.666667 | 
	3;3;5 | null | null | 
	Interpreting Deep Classification Models With Bayesian Inference | null | null | 0 | 3.333333 | 
	Reject | 
	4;3;3 | null | 
| null | 
	New York University; New York University, Facebook AI Research; Facebook AI Research | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | 
	Jason Lee, Kyunghyun Cho, Jason Weston, Douwe Kiela | 
	https://iclr.cc/virtual/2018/poster/219 | null | null | 0 | null | null | 
	iclr | -0.188982 | 0 | null | 
	main | 6.666667 | 
	5;7;8 | null | null | 
	Emergent Translation in Multi-Agent Communication | null | null | 0 | 4.333333 | 
	Poster | 
	5;3;5 | null | 
| null | 
	University of California, Berkeley; OpenAI | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	machine teaching;interpretability;communication;cognitive science | null | 0 | null | null | 
	iclr | 0.5 | 0 | null | 
	main | 6.666667 | 
	4;8;8 | null | null | 
	Interpretable and Pedagogical Examples | null | null | 0 | 3.333333 | 
	Reject | 
	3;4;3 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	Adversarial Attack;Interpretability;Saliency Map;Influence Function;Robustness;Machine Learning;Deep Learning;Neural Network | null | 0 | null | null | 
	iclr | -0.654654 | 0 | null | 
	main | 5 | 
	4;5;6 | null | null | 
	INTERPRETATION OF NEURAL NETWORK IS FRAGILE | null | null | 0 | 3.666667 | 
	Reject | 
	4;5;2 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	computer vision;scene understanding;text processing | null | 0 | null | null | 
	iclr | -1 | 0 | null | 
	main | 4 | 
	2;5;5 | null | null | 
	pix2code: Generating Code from a Graphical User Interface Screenshot | 
	https://github.com/Anonymous | null | 0 | 4.333333 | 
	Withdraw | 
	5;4;4 | null | 
| null | 
	Department of Computer Science, University of Texas at Austin; Department of Computer Science, Cornell University; Princeton University and Google Brain | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | 
	Elad Hazan, Adam Klivans, Yang Yuan | 
	https://iclr.cc/virtual/2018/poster/280 | 
	Hyperparameter Optimization;Fourier Analysis;Decision Tree;Compressed Sensing | null | 0 | null | null | 
	iclr | 0.866025 | 0 | null | 
	main | 7 | 
	6;6;9 | null | null | 
	Hyperparameter optimization: a spectral approach | null | null | 0 | 4 | 
	Poster | 
	3;4;5 | null | 
| null | null | 
	2018 | 0 | null | null | 0 | null | null | null | null | null | null | null | 
	Generative models;Evaluation of generative models;Data Augmentation | null | 0 | null | null | 
	iclr | -1 | 0 | null | 
	main | 3.666667 | 
	3;3;5 | null | null | 
	Evaluation of generative networks through their data augmentation capacity | null | null | 0 | 4.333333 | 
	Reject | 
	5;5;3 | null | 
			Subsets and Splits
				
	
				
			
				
No community queries yet
The top public SQL queries from the community will appear here once available.
