date
timestamp[ns]date 2023-05-05 00:00:00
2025-04-01 00:00:00
| arxiv_id
stringlengths 10
10
| title
stringlengths 8
177
| authors
sequencelengths 1
942
| github
stringlengths 0
116
| abstract
stringlengths 165
1.92k
|
---|---|---|---|---|---|
2023-06-29T00:00:00 | 2306.16009 | Accelerating Transducers through Adjacent Token Merging | [
"Yuang Li",
"Yu Wu",
"Jinyu Li",
"Shujie Liu"
] | Recent end-to-end automatic speech recognition (ASR) systems often utilize a Transformer-based acoustic encoder that generates embedding at a high frame rate. However, this design is inefficient, particularly for long speech signals due to the quadratic computation of self-attention. To address this, we propose a new method, Adjacent Token Merging (A-ToMe), which gradually combines adjacent tokens with high similarity scores between their key values. In this way, the total time step could be reduced, and the inference of both the encoder and joint network is accelerated. Experiments on LibriSpeech show that our method can reduce 57% of tokens and improve the inference speed on GPU by 70% without any notable loss of accuracy. Additionally, we demonstrate that A-ToMe is also an effective solution to reduce tokens in long-form ASR, where the input speech consists of multiple utterances. |
|
2023-06-30T00:00:00 | 2306.16928 | One-2-3-45: Any Single Image to 3D Mesh in 45 Seconds without Per-Shape Optimization | [
"Minghua Liu",
"Chao Xu",
"Haian Jin",
"Linghao Chen",
"Mukund Varma T",
"Zexiang Xu",
"Hao Su"
] | https://github.com/One-2-3-45/One-2-3-45 | Single image 3D reconstruction is an important but challenging task that requires extensive knowledge of our natural world. Many existing methods solve this problem by optimizing a neural radiance field under the guidance of 2D diffusion models but suffer from lengthy optimization time, 3D inconsistency results, and poor geometry. In this work, we propose a novel method that takes a single image of any object as input and generates a full 360-degree 3D textured mesh in a single feed-forward pass. Given a single image, we first use a view-conditioned 2D diffusion model, Zero123, to generate multi-view images for the input view, and then aim to lift them up to 3D space. Since traditional reconstruction methods struggle with inconsistent multi-view predictions, we build our 3D reconstruction module upon an SDF-based generalizable neural surface reconstruction method and propose several critical training strategies to enable the reconstruction of 360-degree meshes. Without costly optimizations, our method reconstructs 3D shapes in significantly less time than existing methods. Moreover, our method favors better geometry, generates more 3D consistent results, and adheres more closely to the input image. We evaluate our approach on both synthetic data and in-the-wild images and demonstrate its superiority in terms of both mesh quality and runtime. In addition, our approach can seamlessly support the text-to-3D task by integrating with off-the-shelf text-to-image diffusion models. |
2023-06-30T00:00:00 | 2306.16934 | DreamDiffusion: Generating High-Quality Images from Brain EEG Signals | [
"Yunpeng Bai",
"Xintao Wang",
"Yanpei Cao",
"Yixiao Ge",
"Chun Yuan",
"Ying Shan"
] | This paper introduces DreamDiffusion, a novel method for generating high-quality images directly from brain electroencephalogram (EEG) signals, without the need to translate thoughts into text. DreamDiffusion leverages pre-trained text-to-image models and employs temporal masked signal modeling to pre-train the EEG encoder for effective and robust EEG representations. Additionally, the method further leverages the CLIP image encoder to provide extra supervision to better align EEG, text, and image embeddings with limited EEG-image pairs. Overall, the proposed method overcomes the challenges of using EEG signals for image generation, such as noise, limited information, and individual differences, and achieves promising results. Quantitative and qualitative results demonstrate the effectiveness of the proposed method as a significant step towards portable and low-cost ``thoughts-to-image'', with potential applications in neuroscience and computer vision. |
|
2023-06-30T00:00:00 | 2306.17154 | Generate Anything Anywhere in Any Scene | [
"Yuheng Li",
"Haotian Liu",
"Yangming Wen",
"Yong Jae Lee"
] | Text-to-image diffusion models have attracted considerable interest due to their wide applicability across diverse fields. However, challenges persist in creating controllable models for personalized object generation. In this paper, we first identify the entanglement issues in existing personalized generative models, and then propose a straightforward and efficient data augmentation training strategy that guides the diffusion model to focus solely on object identity. By inserting the plug-and-play adapter layers from a pre-trained controllable diffusion model, our model obtains the ability to control the location and size of each generated personalized object. During inference, we propose a regionally-guided sampling technique to maintain the quality and fidelity of the generated images. Our method achieves comparable or superior fidelity for personalized objects, yielding a robust, versatile, and controllable text-to-image diffusion model that is capable of generating realistic and personalized images. Our approach demonstrates significant potential for various applications, such as those in art, entertainment, and advertising design. |
|
2023-06-30T00:00:00 | 2306.17156 | Generative AI for Programming Education: Benchmarking ChatGPT, GPT-4, and Human Tutors | [
"Tung Phung",
"Victor-Alexandru Pădurean",
"José Cambronero",
"Sumit Gulwani",
"Tobias Kohn",
"Rupak Majumdar",
"Adish Singla",
"Gustavo Soares"
] | Generative AI and large language models hold great promise in enhancing computing education by powering next-generation educational technologies for introductory programming. Recent works have studied these models for different scenarios relevant to programming education; however, these works are limited for several reasons, as they typically consider already outdated models or only specific scenario(s). Consequently, there is a lack of a systematic study that benchmarks state-of-the-art models for a comprehensive set of programming education scenarios. In our work, we systematically evaluate two models, ChatGPT (based on GPT-3.5) and GPT-4, and compare their performance with human tutors for a variety of scenarios. We evaluate using five introductory Python programming problems and real-world buggy programs from an online platform, and assess performance using expert-based annotations. Our results show that GPT-4 drastically outperforms ChatGPT (based on GPT-3.5) and comes close to human tutors' performance for several scenarios. These results also highlight settings where GPT-4 still struggles, providing exciting future directions on developing techniques to improve the performance of these models. |
|
2023-06-30T00:00:00 | 2306.16527 | OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents | [
"Hugo Laurençon",
"Lucile Saulnier",
"Léo Tronchon",
"Stas Bekman",
"Amanpreet Singh",
"Anton Lozhkov",
"Thomas Wang",
"Siddharth Karamcheti",
"Alexander M. Rush",
"Douwe Kiela",
"Matthieu Cord",
"Victor Sanh"
] | Large multimodal models trained on natural documents, which interleave images and text, outperform models trained on image-text pairs on various multimodal benchmarks. However, the datasets used to train these models have not been released, and the collection process has not been fully specified. We introduce the OBELICS dataset, an open web-scale filtered dataset of interleaved image-text documents comprising 141 million web pages extracted from Common Crawl, 353 million associated images, and 115 billion text tokens. We describe the dataset creation process, present comprehensive filtering rules, and provide an analysis of the dataset's content. To show the viability of OBELICS, we train vision and language models of 9 and 80 billion parameters named IDEFICS, and obtain competitive performance on different multimodal benchmarks. We release our dataset, models and code. |
|
2023-06-30T00:00:00 | 2306.17107 | LLaVAR: Enhanced Visual Instruction Tuning for Text-Rich Image Understanding | [
"Yanzhe Zhang",
"Ruiyi Zhang",
"Jiuxiang Gu",
"Yufan Zhou",
"Nedim Lipka",
"Diyi Yang",
"Tong Sun"
] | Instruction tuning unlocks the superior capability of Large Language Models (LLM) to interact with humans. Furthermore, recent instruction-following datasets include images as visual inputs, collecting responses for image-based instructions. However, visual instruction-tuned models cannot comprehend textual details within images well. This work enhances the current visual instruction tuning pipeline with text-rich images (e.g., movie posters, book covers, etc.). Specifically, we first use publicly available OCR tools to collect results on 422K text-rich images from the LAION dataset. Moreover, we prompt text-only GPT-4 with recognized texts and image captions to generate 16K conversations, each containing question-answer pairs for text-rich images. By combining our collected data with previous multi-modal instruction-following data, our model, LLaVAR, substantially improves the LLaVA model's capability on text-based VQA datasets (up to 20% accuracy improvement) while achieving an accuracy of 91.42% on ScienceQA. The GPT-4-based instruction-following evaluation also demonstrates the improvement of our model on both natural images and text-rich images. Through qualitative analysis, LLaVAR shows promising interaction (e.g., reasoning, writing, and elaboration) skills with humans based on the latest real-world online content that combines text and images. We make our code/data/models publicly available at https://llavar.github.io/. |
|
2023-06-30T00:00:00 | 2306.17115 | Michelangelo: Conditional 3D Shape Generation based on Shape-Image-Text Aligned Latent Representation | [
"Zibo Zhao",
"Wen Liu",
"Xin Chen",
"Xianfang Zeng",
"Rui Wang",
"Pei Cheng",
"Bin Fu",
"Tao Chen",
"Gang Yu",
"Shenghua Gao"
] | We present a novel alignment-before-generation approach to tackle the challenging task of generating general 3D shapes based on 2D images or texts. Directly learning a conditional generative model from images or texts to 3D shapes is prone to producing inconsistent results with the conditions because 3D shapes have an additional dimension whose distribution significantly differs from that of 2D images and texts. To bridge the domain gap among the three modalities and facilitate multi-modal-conditioned 3D shape generation, we explore representing 3D shapes in a shape-image-text-aligned space. Our framework comprises two models: a Shape-Image-Text-Aligned Variational Auto-Encoder (SITA-VAE) and a conditional Aligned Shape Latent Diffusion Model (ASLDM). The former model encodes the 3D shapes into the shape latent space aligned to the image and text and reconstructs the fine-grained 3D neural fields corresponding to given shape embeddings via the transformer-based decoder. The latter model learns a probabilistic mapping function from the image or text space to the latent shape space. Our extensive experiments demonstrate that our proposed approach can generate higher-quality and more diverse 3D shapes that better semantically conform to the visual or textural conditional inputs, validating the effectiveness of the shape-image-text-aligned space for cross-modality 3D shape generation. |
|
2023-06-30T00:00:00 | 2306.16793 | Benchmarking Large Language Model Capabilities for Conditional Generation | [
"Joshua Maynez",
"Priyanka Agrawal",
"Sebastian Gehrmann"
] | Pre-trained large language models (PLMs) underlie most new developments in natural language processing. They have shifted the field from application-specific model pipelines to a single model that is adapted to a wide range of tasks. Autoregressive PLMs like GPT-3 or PaLM, alongside techniques like few-shot learning, have additionally shifted the output modality to generation instead of classification or regression. Despite their ubiquitous use, the generation quality of language models is rarely evaluated when these models are introduced. Additionally, it is unclear how existing generation tasks--while they can be used to compare systems at a high level--relate to the real world use cases for which people have been adopting them. In this work, we discuss how to adapt existing application-specific generation benchmarks to PLMs and provide an in-depth, empirical study of the limitations and capabilities of PLMs in natural language generation tasks along dimensions such as scale, architecture, input and output language. Our results show that PLMs differ in their applicability to different data regimes and their generalization to multiple languages and inform which PLMs to use for a given generation task setup. We share best practices to be taken into consideration when benchmarking generation capabilities during the development of upcoming PLMs. |
|
2023-06-30T00:00:00 | 2306.16857 | ArrayBot: Reinforcement Learning for Generalizable Distributed Manipulation through Touch | [
"Zhengrong Xue",
"Han Zhang",
"Jingwen Cheng",
"Zhengmao He",
"Yuanchen Ju",
"Changyi Lin",
"Gu Zhang",
"Huazhe Xu"
] | We present ArrayBot, a distributed manipulation system consisting of a 16 times 16 array of vertically sliding pillars integrated with tactile sensors, which can simultaneously support, perceive, and manipulate the tabletop objects. Towards generalizable distributed manipulation, we leverage reinforcement learning (RL) algorithms for the automatic discovery of control policies. In the face of the massively redundant actions, we propose to reshape the action space by considering the spatially local action patch and the low-frequency actions in the frequency domain. With this reshaped action space, we train RL agents that can relocate diverse objects through tactile observations only. Surprisingly, we find that the discovered policy can not only generalize to unseen object shapes in the simulator but also transfer to the physical robot without any domain randomization. Leveraging the deployed policy, we present abundant real-world manipulation tasks, illustrating the vast potential of RL on ArrayBot for distributed manipulation. |
|
2023-06-30T00:00:00 | 2306.16869 | NeuralFuse: Learning to Improve the Accuracy of Access-Limited Neural Network Inference in Low-Voltage Regimes | [
"Hao-Lun Sun",
"Lei Hsiung",
"Nandhini Chandramoorthy",
"Pin-Yu Chen",
"Tsung-Yi Ho"
] | https://github.com/IBM/NeuralFuse | Deep neural networks (DNNs) have become ubiquitous in machine learning, but their energy consumption remains a notable issue. Lowering the supply voltage is an effective strategy for reducing energy consumption. However, aggressively scaling down the supply voltage can lead to accuracy degradation due to random bit flips in static random access memory (SRAM) where model parameters are stored. To address this challenge, we introduce NeuralFuse, a novel add-on module that addresses the accuracy-energy tradeoff in low-voltage regimes by learning input transformations to generate error-resistant data representations. NeuralFuse protects DNN accuracy in both nominal and low-voltage scenarios. Moreover, NeuralFuse is easy to implement and can be readily applied to DNNs with limited access, such as non-configurable hardware or remote access to cloud-based APIs. Experimental results demonstrate that, at a 1% bit error rate, NeuralFuse can reduce SRAM memory access energy by up to 24% while improving accuracy by up to 57%. To the best of our knowledge, this is the first model-agnostic approach (i.e., no model retraining) to address low-voltage-induced bit errors. The source code is available at https://github.com/IBM/NeuralFuse. |
2023-06-30T00:00:00 | 2306.16700 | Dynamic-Resolution Model Learning for Object Pile Manipulation | [
"Yixuan Wang",
"Yunzhu Li",
"Katherine Driggs-Campbell",
"Li Fei-Fei",
"Jiajun Wu"
] | Dynamics models learned from visual observations have shown to be effective in various robotic manipulation tasks. One of the key questions for learning such dynamics models is what scene representation to use. Prior works typically assume representation at a fixed dimension or resolution, which may be inefficient for simple tasks and ineffective for more complicated tasks. In this work, we investigate how to learn dynamic and adaptive representations at different levels of abstraction to achieve the optimal trade-off between efficiency and effectiveness. Specifically, we construct dynamic-resolution particle representations of the environment and learn a unified dynamics model using graph neural networks (GNNs) that allows continuous selection of the abstraction level. During test time, the agent can adaptively determine the optimal resolution at each model-predictive control (MPC) step. We evaluate our method in object pile manipulation, a task we commonly encounter in cooking, agriculture, manufacturing, and pharmaceutical applications. Through comprehensive evaluations both in the simulation and the real world, we show that our method achieves significantly better performance than state-of-the-art fixed-resolution baselines at the gathering, sorting, and redistribution of granular object piles made with various instances like coffee beans, almonds, corn, etc. |
|
2023-06-30T00:00:00 | 2306.16601 | An Efficient Sparse Inference Software Accelerator for Transformer-based Language Models on CPUs | [
"Haihao Shen",
"Hengyu Meng",
"Bo Dong",
"Zhe Wang",
"Ofir Zafrir",
"Yi Ding",
"Yu Luo",
"Hanwen Chang",
"Qun Gao",
"Ziheng Wang",
"Guy Boudoukh",
"Moshe Wasserblat"
] | https://github.com/intel/intel-extension-for-transformers | In recent years, Transformer-based language models have become the standard approach for natural language processing tasks. However, stringent throughput and latency requirements in industrial applications are limiting their adoption. To mitigate the gap, model compression techniques such as structured pruning are being used to improve inference efficiency. However, most existing neural network inference runtimes lack adequate support for structured sparsity. In this paper, we propose an efficient sparse deep learning inference software stack for Transformer-based language models where the weights are pruned with constant block size. Our sparse software accelerator leverages Intel Deep Learning Boost to maximize the performance of sparse matrix - dense matrix multiplication (commonly abbreviated as SpMM) on CPUs. Our SpMM kernel outperforms the existing sparse libraries (oneMKL, TVM, and LIBXSMM) by an order of magnitude on a wide range of GEMM shapes under 5 representative sparsity ratios (70%, 75%, 80%, 85%, 90%). Moreover, our SpMM kernel shows up to 5x speedup over dense GEMM kernel of oneDNN, a well-optimized dense library widely used in industry. We apply our sparse accelerator on widely-used Transformer-based language models including Bert-Mini, DistilBERT, Bert-Base, and BERT-Large. Our sparse inference software shows up to 1.5x speedup over Neural Magic's Deepsparse under same configurations on Xeon on Amazon Web Services under proxy production latency constraints. We also compare our solution with two framework-based inference solutions, ONNX Runtime and PyTorch, and demonstrate up to 37x speedup over ONNX Runtime and 345x over PyTorch on Xeon under the latency constraints. All the source code is publicly available on Github: https://github.com/intel/intel-extension-for-transformers. |
2023-06-30T00:00:00 | 2306.16940 | BEDLAM: A Synthetic Dataset of Bodies Exhibiting Detailed Lifelike Animated Motion | [
"Michael J. Black",
"Priyanka Patel",
"Joachim Tesch",
"Jinlong Yang"
] | We show, for the first time, that neural networks trained only on synthetic data achieve state-of-the-art accuracy on the problem of 3D human pose and shape (HPS) estimation from real images. Previous synthetic datasets have been small, unrealistic, or lacked realistic clothing. Achieving sufficient realism is non-trivial and we show how to do this for full bodies in motion. Specifically, our BEDLAM dataset contains monocular RGB videos with ground-truth 3D bodies in SMPL-X format. It includes a diversity of body shapes, motions, skin tones, hair, and clothing. The clothing is realistically simulated on the moving bodies using commercial clothing physics simulation. We render varying numbers of people in realistic scenes with varied lighting and camera motions. We then train various HPS regressors using BEDLAM and achieve state-of-the-art accuracy on real-image benchmarks despite training with synthetic data. We use BEDLAM to gain insights into what model design choices are important for accuracy. With good synthetic training data, we find that a basic method like HMR approaches the accuracy of the current SOTA method (CLIFF). BEDLAM is useful for a variety of tasks and all images, ground truth bodies, 3D clothing, support code, and more are available for research purposes. Additionally, we provide detailed information about our synthetic data generation pipeline, enabling others to generate their own datasets. See the project page: https://bedlam.is.tue.mpg.de/. |
|
2023-06-30T00:00:00 | 2306.16564 | Automatic Calibration and Error Correction for Large Language Models via Pareto Optimal Self-Supervision | [
"Theodore Zhao",
"Mu Wei",
"J. Samuel Preston",
"Hoifung Poon"
] | Large language models (LLMs) have demonstrated remarkable capabilities out of box for a wide range of applications, yet accuracy still remains a major growth area, especially in mission-critical domains such as biomedicine. An effective method to calibrate the confidence level on LLM responses is essential to automatically detect errors and facilitate human-in-the-loop verification. An important source of calibration signals stems from expert-stipulated programmatic supervision, which is often available at low cost but has its own limitations such as noise and coverage. In this paper, we introduce a Pareto optimal self-supervision framework that can leverage available programmatic supervision to systematically calibrate LLM responses by producing a risk score for every response, without any additional manual efforts. This is accomplished by learning a harmonizer model to align LLM output with other available supervision sources, which would assign higher risk scores to more uncertain LLM responses and facilitate error correction. Experiments on standard relation extraction tasks in biomedical and general domains demonstrate the promise of this approach, with our proposed risk scores highly correlated with the real error rate of LLMs. For the most uncertain test instances, dynamic prompting based on our proposed risk scores results in significant accuracy improvement for off-the-shelf LLMs, boosting GPT-3 results past state-of-the-art (SOTA) weak supervision and GPT-4 results past SOTA supervised results on challenging evaluation datasets. |
|
2023-07-03T00:00:00 | 2306.17843 | Magic123: One Image to High-Quality 3D Object Generation Using Both 2D and 3D Diffusion Priors | [
"Guocheng Qian",
"Jinjie Mai",
"Abdullah Hamdi",
"Jian Ren",
"Aliaksandr Siarohin",
"Bing Li",
"Hsin-Ying Lee",
"Ivan Skorokhodov",
"Peter Wonka",
"Sergey Tulyakov",
"Bernard Ghanem"
] | https://github.com/guochengqian/Magic123 | We present Magic123, a two-stage coarse-to-fine approach for high-quality, textured 3D meshes generation from a single unposed image in the wild using both2D and 3D priors. In the first stage, we optimize a neural radiance field to produce a coarse geometry. In the second stage, we adopt a memory-efficient differentiable mesh representation to yield a high-resolution mesh with a visually appealing texture. In both stages, the 3D content is learned through reference view supervision and novel views guided by a combination of 2D and 3D diffusion priors. We introduce a single trade-off parameter between the 2D and 3D priors to control exploration (more imaginative) and exploitation (more precise) of the generated geometry. Additionally, we employ textual inversion and monocular depth regularization to encourage consistent appearances across views and to prevent degenerate solutions, respectively. Magic123 demonstrates a significant improvement over previous image-to-3D techniques, as validated through extensive experiments on synthetic benchmarks and diverse real-world images. Our code, models, and generated 3D assets are available at https://github.com/guochengqian/Magic123. |
2023-07-03T00:00:00 | 2306.17806 | Stay on topic with Classifier-Free Guidance | [
"Guillaume Sanchez",
"Honglu Fan",
"Alexander Spangher",
"Elad Levi",
"Pawan Sasanka Ammanamanchi",
"Stella Biderman"
] | Classifier-Free Guidance (CFG) has recently emerged in text-to-image generation as a lightweight technique to encourage prompt-adherence in generations. In this work, we demonstrate that CFG can be used broadly as an inference-time technique in pure language modeling. We show that CFG (1) improves the performance of Pythia, GPT-2 and LLaMA-family models across an array of tasks: Q\&A, reasoning, code generation, and machine translation, achieving SOTA on LAMBADA with LLaMA-7B over PaLM-540B; (2) brings improvements equivalent to a model with twice the parameter-count; (3) can stack alongside other inference-time methods like Chain-of-Thought and Self-Consistency, yielding further improvements in difficult tasks; (4) can be used to increase the faithfulness and coherence of assistants in challenging form-driven and content-driven prompts: in a human evaluation we show a 75\% preference for GPT4All using CFG over baseline. |
|
2023-07-03T00:00:00 | 2306.17840 | Statler: State-Maintaining Language Models for Embodied Reasoning | [
"Takuma Yoneda",
"Jiading Fang",
"Peng Li",
"Huanyu Zhang",
"Tianchong Jiang",
"Shengjie Lin",
"Ben Picker",
"David Yunis",
"Hongyuan Mei",
"Matthew R. Walter"
] | Large language models (LLMs) provide a promising tool that enable robots to perform complex robot reasoning tasks. However, the limited context window of contemporary LLMs makes reasoning over long time horizons difficult. Embodied tasks such as those that one might expect a household robot to perform typically require that the planner consider information acquired a long time ago (e.g., properties of the many objects that the robot previously encountered in the environment). Attempts to capture the world state using an LLM's implicit internal representation is complicated by the paucity of task- and environment-relevant information available in a robot's action history, while methods that rely on the ability to convey information via the prompt to the LLM are subject to its limited context window. In this paper, we propose Statler, a framework that endows LLMs with an explicit representation of the world state as a form of ``memory'' that is maintained over time. Integral to Statler is its use of two instances of general LLMs -- a world-model reader and a world-model writer -- that interface with and maintain the world state. By providing access to this world state ``memory'', Statler improves the ability of existing LLMs to reason over longer time horizons without the constraint of context length. We evaluate the effectiveness of our approach on three simulated table-top manipulation domains and a real robot domain, and show that it improves the state-of-the-art in LLM-based robot reasoning. Project website: https://statler-lm.github.io/ |
|
2023-07-03T00:00:00 | 2306.17582 | ChatGPT for Robotics: Design Principles and Model Abilities | [
"Sai Vemprala",
"Rogerio Bonatti",
"Arthur Bucker",
"Ashish Kapoor"
] | This paper presents an experimental study regarding the use of OpenAI's ChatGPT for robotics applications. We outline a strategy that combines design principles for prompt engineering and the creation of a high-level function library which allows ChatGPT to adapt to different robotics tasks, simulators, and form factors. We focus our evaluations on the effectiveness of different prompt engineering techniques and dialog strategies towards the execution of various types of robotics tasks. We explore ChatGPT's ability to use free-form dialog, parse XML tags, and to synthesize code, in addition to the use of task-specific prompting functions and closed-loop reasoning through dialogues. Our study encompasses a range of tasks within the robotics domain, from basic logical, geometrical, and mathematical reasoning all the way to complex domains such as aerial navigation, manipulation, and embodied agents. We show that ChatGPT can be effective at solving several of such tasks, while allowing users to interact with it primarily via natural language instructions. In addition to these studies, we introduce an open-sourced research tool called PromptCraft, which contains a platform where researchers can collaboratively upload and vote on examples of good prompting schemes for robotics applications, as well as a sample robotics simulator with ChatGPT integration, making it easier for users to get started with using ChatGPT for robotics. |
|
2023-07-03T00:00:00 | 2306.17563 | Large Language Models are Effective Text Rankers with Pairwise Ranking Prompting | [
"Zhen Qin",
"Rolf Jagerman",
"Kai Hui",
"Honglei Zhuang",
"Junru Wu",
"Jiaming Shen",
"Tianqi Liu",
"Jialu Liu",
"Donald Metzler",
"Xuanhui Wang",
"Michael Bendersky"
] | Ranking documents using Large Language Models (LLMs) by directly feeding the query and candidate documents into the prompt is an interesting and practical problem. However, there has been limited success so far, as researchers have found it difficult to outperform fine-tuned baseline rankers on benchmark datasets. We analyze pointwise and listwise ranking prompts used by existing methods and argue that off-the-shelf LLMs do not fully understand these ranking formulations, possibly due to the nature of how LLMs are trained. In this paper, we propose to significantly reduce the burden on LLMs by using a new technique called Pairwise Ranking Prompting (PRP). Our results are the first in the literature to achieve state-of-the-art ranking performance on standard benchmarks using moderate-sized open-sourced LLMs. On TREC-DL2020, PRP based on the Flan-UL2 model with 20B parameters outperforms the previous best approach in the literature, which is based on the blackbox commercial GPT-4 that has 50x (estimated) model size, by over 5% at NDCG@1. On TREC-DL2019, PRP is only inferior to the GPT-4 solution on the NDCG@5 and NDCG@10 metrics, while outperforming other existing solutions, such as InstructGPT which has 175B parameters, by over 10% for nearly all ranking metrics. Furthermore, we propose several variants of PRP to improve efficiency and show that it is possible to achieve competitive results even with linear complexity. We also discuss other benefits of PRP, such as supporting both generation and scoring LLM APIs, as well as being insensitive to input ordering. |
|
2023-07-03T00:00:00 | 2306.17848 | Hardwiring ViT Patch Selectivity into CNNs using Patch Mixing | [
"Ariel N. Lee",
"Sarah Adel Bargal",
"Janavi Kasera",
"Stan Sclaroff",
"Kate Saenko",
"Nataniel Ruiz"
] | Vision transformers (ViTs) have significantly changed the computer vision landscape and have periodically exhibited superior performance in vision tasks compared to convolutional neural networks (CNNs). Although the jury is still out on which model type is superior, each has unique inductive biases that shape their learning and generalization performance. For example, ViTs have interesting properties with respect to early layer non-local feature dependence, as well as self-attention mechanisms which enhance learning flexibility, enabling them to ignore out-of-context image information more effectively. We hypothesize that this power to ignore out-of-context information (which we name patch selectivity), while integrating in-context information in a non-local manner in early layers, allows ViTs to more easily handle occlusion. In this study, our aim is to see whether we can have CNNs simulate this ability of patch selectivity by effectively hardwiring this inductive bias using Patch Mixing data augmentation, which consists of inserting patches from another image onto a training image and interpolating labels between the two image classes. Specifically, we use Patch Mixing to train state-of-the-art ViTs and CNNs, assessing its impact on their ability to ignore out-of-context patches and handle natural occlusions. We find that ViTs do not improve nor degrade when trained using Patch Mixing, but CNNs acquire new capabilities to ignore out-of-context information and improve on occlusion benchmarks, leaving us to conclude that this training method is a way of simulating in CNNs the abilities that ViTs already possess. We will release our Patch Mixing implementation and proposed datasets for public use. Project page: https://arielnlee.github.io/PatchMixing/ |
|
2023-07-03T00:00:00 | 2306.17194 | On the Exploitability of Instruction Tuning | [
"Manli Shu",
"Jiongxiao Wang",
"Chen Zhu",
"Jonas Geiping",
"Chaowei Xiao",
"Tom Goldstein"
] | https://github.com/azshue/AutoPoison | Instruction tuning is an effective technique to align large language models (LLMs) with human intents. In this work, we investigate how an adversary can exploit instruction tuning by injecting specific instruction-following examples into the training data that intentionally changes the model's behavior. For example, an adversary can achieve content injection by injecting training examples that mention target content and eliciting such behavior from downstream models. To achieve this goal, we propose AutoPoison, an automated data poisoning pipeline. It naturally and coherently incorporates versatile attack goals into poisoned data with the help of an oracle LLM. We showcase two example attacks: content injection and over-refusal attacks, each aiming to induce a specific exploitable behavior. We quantify and benchmark the strength and the stealthiness of our data poisoning scheme. Our results show that AutoPoison allows an adversary to change a model's behavior by poisoning only a small fraction of data while maintaining a high level of stealthiness in the poisoned examples. We hope our work sheds light on how data quality affects the behavior of instruction-tuned models and raises awareness of the importance of data quality for responsible deployments of LLMs. Code is available at https://github.com/azshue/AutoPoison. |
2023-07-03T00:00:00 | 2306.17492 | Preference Ranking Optimization for Human Alignment | [
"Feifan Song",
"Bowen Yu",
"Minghao Li",
"Haiyang Yu",
"Fei Huang",
"Yongbin Li",
"Houfeng Wang"
] | Large language models (LLMs) often contain misleading content, emphasizing the need to align them with human values to ensure secur AI systems. Reinforcement learning from human feedback (RLHF) has been employed to achieve this alignment by combining a reward model, typically based on Bradley-Terry paired comparison, with an RL algorithm such as Proximal Policy Optimization (PPO) to optimize LLM responses. However, RLHF exhibits complexity, instability, and sensitivity to hyperparameters. In this paper, we propose Preference Ranking Optimization (PRO) as an alternative to PPO for directly aligning LLMs with the Bradley-Terry comparison. PRO extends the pairwise Bradley-Terry comparison to accommodate preference rankings of any length. By iteratively contrasting the likelihood of generating responses, PRO instructs the LLM to prioritize the best response while progressively ranking the remaining responses. In this manner, PRO effectively transforms human alignment into aligning the probability ranking of n responses generated by LLM with the preference ranking of humans towards these responses. Experiments have shown that PRO outperforms existing alignment algorithms, achieving comparable results to ChatGPT and human responses through automatic-based, reward-based, GPT-4, and human evaluations. Furthermore, we demonstrate that longer, more diverse, and higher-quality preference ranking sequences can consistently enhance the performance of human alignment. |
|
2023-07-03T00:00:00 | 2306.17759 | The Shaped Transformer: Attention Models in the Infinite Depth-and-Width Limit | [
"Lorenzo Noci",
"Chuning Li",
"Mufan Bill Li",
"Bobby He",
"Thomas Hofmann",
"Chris Maddison",
"Daniel M. Roy"
] | In deep learning theory, the covariance matrix of the representations serves as a proxy to examine the network's trainability. Motivated by the success of Transformers, we study the covariance matrix of a modified Softmax-based attention model with skip connections in the proportional limit of infinite-depth-and-width. We show that at initialization the limiting distribution can be described by a stochastic differential equation (SDE) indexed by the depth-to-width ratio. To achieve a well-defined stochastic limit, the Transformer's attention mechanism is modified by centering the Softmax output at identity, and scaling the Softmax logits by a width-dependent temperature parameter. We examine the stability of the network through the corresponding SDE, showing how the scale of both the drift and diffusion can be elegantly controlled with the aid of residual connections. The existence of a stable SDE implies that the covariance structure is well-behaved, even for very large depth and width, thus preventing the notorious issues of rank degeneracy in deep attention models. Finally, we show, through simulations, that the SDE provides a surprisingly good description of the corresponding finite-size model. We coin the name shaped Transformer for these architectural modifications. |
|
2023-07-03T00:00:00 | 2306.17319 | ReMaX: Relaxing for Better Training on Efficient Panoptic Segmentation | [
"Shuyang Sun",
"Weijun Wang",
"Qihang Yu",
"Andrew Howard",
"Philip Torr",
"Liang-Chieh Chen"
] | https://github.com/google-research/deeplab2 | This paper presents a new mechanism to facilitate the training of mask transformers for efficient panoptic segmentation, democratizing its deployment. We observe that due to its high complexity, the training objective of panoptic segmentation will inevitably lead to much higher false positive penalization. Such unbalanced loss makes the training process of the end-to-end mask-transformer based architectures difficult, especially for efficient models. In this paper, we present ReMaX that adds relaxation to mask predictions and class predictions during training for panoptic segmentation. We demonstrate that via these simple relaxation techniques during training, our model can be consistently improved by a clear margin without any extra computational cost on inference. By combining our method with efficient backbones like MobileNetV3-Small, our method achieves new state-of-the-art results for efficient panoptic segmentation on COCO, ADE20K and Cityscapes. Code and pre-trained checkpoints will be available at https://github.com/google-research/deeplab2. |
2023-07-04T00:00:00 | 2307.01197 | Segment Anything Meets Point Tracking | [
"Frano Rajič",
"Lei Ke",
"Yu-Wing Tai",
"Chi-Keung Tang",
"Martin Danelljan",
"Fisher Yu"
] | https://github.com/SysCV/sam-pt | The Segment Anything Model (SAM) has established itself as a powerful zero-shot image segmentation model, employing interactive prompts such as points to generate masks. This paper presents SAM-PT, a method extending SAM's capability to tracking and segmenting anything in dynamic videos. SAM-PT leverages robust and sparse point selection and propagation techniques for mask generation, demonstrating that a SAM-based segmentation tracker can yield strong zero-shot performance across popular video object segmentation benchmarks, including DAVIS, YouTube-VOS, and MOSE. Compared to traditional object-centric mask propagation strategies, we uniquely use point propagation to exploit local structure information that is agnostic to object semantics. We highlight the merits of point-based tracking through direct evaluation on the zero-shot open-world Unidentified Video Objects (UVO) benchmark. To further enhance our approach, we utilize K-Medoids clustering for point initialization and track both positive and negative points to clearly distinguish the target object. We also employ multiple mask decoding passes for mask refinement and devise a point re-initialization strategy to improve tracking accuracy. Our code integrates different point trackers and video segmentation benchmarks and will be released at https://github.com/SysCV/sam-pt. |
2023-07-04T00:00:00 | 2307.00522 | LEDITS: Real Image Editing with DDPM Inversion and Semantic Guidance | [
"Linoy Tsaban",
"Apolinário Passos"
] | Recent large-scale text-guided diffusion models provide powerful image-generation capabilities. Currently, a significant effort is given to enable the modification of these images using text only as means to offer intuitive and versatile editing. However, editing proves to be difficult for these generative models due to the inherent nature of editing techniques, which involves preserving certain content from the original image. Conversely, in text-based models, even minor modifications to the text prompt frequently result in an entirely distinct result, making attaining one-shot generation that accurately corresponds to the users intent exceedingly challenging. In addition, to edit a real image using these state-of-the-art tools, one must first invert the image into the pre-trained models domain - adding another factor affecting the edit quality, as well as latency. In this exploratory report, we propose LEDITS - a combined lightweight approach for real-image editing, incorporating the Edit Friendly DDPM inversion technique with Semantic Guidance, thus extending Semantic Guidance to real image editing, while harnessing the editing capabilities of DDPM inversion as well. This approach achieves versatile edits, both subtle and extensive as well as alterations in composition and style, while requiring no optimization nor extensions to the architecture. |
|
2023-07-04T00:00:00 | 2307.00040 | DisCo: Disentangled Control for Referring Human Dance Generation in Real World | [
"Tan Wang",
"Linjie Li",
"Kevin Lin",
"Chung-Ching Lin",
"Zhengyuan Yang",
"Hanwang Zhang",
"Zicheng Liu",
"Lijuan Wang"
] | Generative AI has made significant strides in computer vision, particularly in image/video synthesis conditioned on text descriptions. Despite the advancements, it remains challenging especially in the generation of human-centric content such as dance synthesis. Existing dance synthesis methods struggle with the gap between synthesized content and real-world dance scenarios. In this paper, we define a new problem setting: Referring Human Dance Generation, which focuses on real-world dance scenarios with three important properties: (i) Faithfulness: the synthesis should retain the appearance of both human subject foreground and background from the reference image, and precisely follow the target pose; (ii) Generalizability: the model should generalize to unseen human subjects, backgrounds, and poses; (iii) Compositionality: it should allow for composition of seen/unseen subjects, backgrounds, and poses from different sources. To address these challenges, we introduce a novel approach, DISCO, which includes a novel model architecture with disentangled control to improve the faithfulness and compositionality of dance synthesis, and an effective human attribute pre-training for better generalizability to unseen humans. Extensive qualitative and quantitative results demonstrate that DISCO can generate high-quality human dance images and videos with diverse appearances and flexible motions. Code, demo, video and visualization are available at: https://disco-dance.github.io/. |
|
2023-07-04T00:00:00 | 2307.00184 | Personality Traits in Large Language Models | [
"Mustafa Safdari",
"Greg Serapio-García",
"Clément Crepy",
"Stephen Fitz",
"Peter Romero",
"Luning Sun",
"Marwa Abdulhai",
"Aleksandra Faust",
"Maja Matarić"
] | The advent of large language models (LLMs) has revolutionized natural language processing, enabling the generation of coherent and contextually relevant text. As LLMs increasingly power conversational agents, the synthesized personality embedded in these models by virtue of their training on large amounts of human-generated data draws attention. Since personality is an important factor determining the effectiveness of communication, we present a comprehensive method for administering validated psychometric tests and quantifying, analyzing, and shaping personality traits exhibited in text generated from widely-used LLMs. We find that: 1) personality simulated in the outputs of some LLMs (under specific prompting configurations) is reliable and valid; 2) evidence of reliability and validity of LLM-simulated personality is stronger for larger and instruction fine-tuned models; and 3) personality in LLM outputs can be shaped along desired dimensions to mimic specific personality profiles. We also discuss potential applications and ethical implications of our measurement and shaping framework, especially regarding responsible use of LLMs. |
|
2023-07-04T00:00:00 | 2307.00716 | JourneyDB: A Benchmark for Generative Image Understanding | [
"Junting Pan",
"Keqiang Sun",
"Yuying Ge",
"Hao Li",
"Haodong Duan",
"Xiaoshi Wu",
"Renrui Zhang",
"Aojun Zhou",
"Zipeng Qin",
"Yi Wang",
"Jifeng Dai",
"Yu Qiao",
"Hongsheng Li"
] | While recent advancements in vision-language models have revolutionized multi-modal understanding, it remains unclear whether they possess the capabilities of comprehending the generated images. Compared to real data, synthetic images exhibit a higher degree of diversity in both content and style, for which there are significant difficulties for the models to fully apprehend. To this end, we present a large-scale dataset, JourneyDB, for multi-modal visual understanding in generative images. Our curated dataset covers 4 million diverse and high-quality generated images paired with the text prompts used to produce them. We further design 4 benchmarks to quantify the performance of generated image understanding in terms of both content and style interpretation. These benchmarks include prompt inversion, style retrieval, image captioning and visual question answering. Lastly, we assess the performance of current state-of-the-art multi-modal models when applied to JourneyDB, and provide an in-depth analysis of their strengths and limitations in generated content understanding. We hope the proposed dataset and benchmarks will facilitate the research in the field of generative content understanding. The dataset will be available on https://journeydb.github.io. |
|
2023-07-04T00:00:00 | 2307.01200 | Real-time Monocular Full-body Capture in World Space via Sequential Proxy-to-Motion Learning | [
"Yuxiang Zhang",
"Hongwen Zhang",
"Liangxiao Hu",
"Hongwei Yi",
"Shengping Zhang",
"Yebin Liu"
] | Learning-based approaches to monocular motion capture have recently shown promising results by learning to regress in a data-driven manner. However, due to the challenges in data collection and network designs, it remains challenging for existing solutions to achieve real-time full-body capture while being accurate in world space. In this work, we contribute a sequential proxy-to-motion learning scheme together with a proxy dataset of 2D skeleton sequences and 3D rotational motions in world space. Such proxy data enables us to build a learning-based network with accurate full-body supervision while also mitigating the generalization issues. For more accurate and physically plausible predictions, a contact-aware neural motion descent module is proposed in our network so that it can be aware of foot-ground contact and motion misalignment with the proxy observations. Additionally, we share the body-hand context information in our network for more compatible wrist poses recovery with the full-body model. With the proposed learning-based solution, we demonstrate the first real-time monocular full-body capture system with plausible foot-ground contact in world space. More video results can be found at our project page: https://liuyebin.com/proxycap. |
|
2023-07-04T00:00:00 | 2307.01097 | MVDiffusion: Enabling Holistic Multi-view Image Generation with Correspondence-Aware Diffusion | [
"Shitao Tang",
"Fuyang Zhang",
"Jiacheng Chen",
"Peng Wang",
"Yasutaka Furukawa"
] | This paper introduces MVDiffusion, a simple yet effective multi-view image generation method for scenarios where pixel-to-pixel correspondences are available, such as perspective crops from panorama or multi-view images given geometry (depth maps and poses). Unlike prior models that rely on iterative image warping and inpainting, MVDiffusion concurrently generates all images with a global awareness, encompassing high resolution and rich content, effectively addressing the error accumulation prevalent in preceding models. MVDiffusion specifically incorporates a correspondence-aware attention mechanism, enabling effective cross-view interaction. This mechanism underpins three pivotal modules: 1) a generation module that produces low-resolution images while maintaining global correspondence, 2) an interpolation module that densifies spatial coverage between images, and 3) a super-resolution module that upscales into high-resolution outputs. In terms of panoramic imagery, MVDiffusion can generate high-resolution photorealistic images up to 1024times1024 pixels. For geometry-conditioned multi-view image generation, MVDiffusion demonstrates the first method capable of generating a textured map of a scene mesh. The project page is at https://mvdiffusion.github.io. |
|
2023-07-04T00:00:00 | 2307.01163 | Improving Language Plasticity via Pretraining with Active Forgetting | [
"Yihong Chen",
"Kelly Marchisio",
"Roberta Raileanu",
"David Ifeoluwa Adelani",
"Pontus Stenetor",
"Sebastian Riedel",
"Mikel Artetx"
] | Pretrained language models (PLMs) are today the primary model for natural language processing. Despite their impressive downstream performance, it can be difficult to apply PLMs to new languages, a barrier to making their capabilities universally accessible. While prior work has shown it possible to address this issue by learning a new embedding layer for the new language, doing so is both data and compute inefficient. We propose to use an active forgetting mechanism during pretraining, as a simple way of creating PLMs that can quickly adapt to new languages. Concretely, by resetting the embedding layer every K updates during pretraining, we encourage the PLM to improve its ability of learning new embeddings within a limited number of updates, similar to a meta-learning effect. Experiments with RoBERTa show that models pretrained with our forgetting mechanism not only demonstrate faster convergence during language adaptation but also outperform standard ones in a low-data regime, particularly for languages that are distant from English. |
|
2023-07-04T00:00:00 | 2307.00117 | Goal Representations for Instruction Following: A Semi-Supervised Language Interface to Control | [
"Vivek Myers",
"Andre He",
"Kuan Fang",
"Homer Walke",
"Philippe Hansen-Estruch",
"Ching-An Cheng",
"Mihai Jalobeanu",
"Andrey Kolobov",
"Anca Dragan",
"Sergey Levine"
] | Our goal is for robots to follow natural language instructions like "put the towel next to the microwave." But getting large amounts of labeled data, i.e. data that contains demonstrations of tasks labeled with the language instruction, is prohibitive. In contrast, obtaining policies that respond to image goals is much easier, because any autonomous trial or demonstration can be labeled in hindsight with its final state as the goal. In this work, we contribute a method that taps into joint image- and goal- conditioned policies with language using only a small amount of language data. Prior work has made progress on this using vision-language models or by jointly training language-goal-conditioned policies, but so far neither method has scaled effectively to real-world robot tasks without significant human annotation. Our method achieves robust performance in the real world by learning an embedding from the labeled data that aligns language not to the goal image, but rather to the desired change between the start and goal images that the instruction corresponds to. We then train a policy on this embedding: the policy benefits from all the unlabeled data, but the aligned embedding provides an interface for language to steer the policy. We show instruction following across a variety of manipulation tasks in different scenes, with generalization to language instructions outside of the labeled data. Videos and code for our approach can be found on our website: http://tiny.cc/grif . |
|
2023-07-04T00:00:00 | 2307.00804 | SketchMetaFace: A Learning-based Sketching Interface for High-fidelity 3D Character Face Modeling | [
"Zhongjin Luo",
"Dong Du",
"Heming Zhu",
"Yizhou Yu",
"Hongbo Fu",
"Xiaoguang Han"
] | Modeling 3D avatars benefits various application scenarios such as AR/VR, gaming, and filming. Character faces contribute significant diversity and vividity as a vital component of avatars. However, building 3D character face models usually requires a heavy workload with commercial tools, even for experienced artists. Various existing sketch-based tools fail to support amateurs in modeling diverse facial shapes and rich geometric details. In this paper, we present SketchMetaFace - a sketching system targeting amateur users to model high-fidelity 3D faces in minutes. We carefully design both the user interface and the underlying algorithm. First, curvature-aware strokes are adopted to better support the controllability of carving facial details. Second, considering the key problem of mapping a 2D sketch map to a 3D model, we develop a novel learning-based method termed "Implicit and Depth Guided Mesh Modeling" (IDGMM). It fuses the advantages of mesh, implicit, and depth representations to achieve high-quality results with high efficiency. In addition, to further support usability, we present a coarse-to-fine 2D sketching interface design and a data-driven stroke suggestion tool. User studies demonstrate the superiority of our system over existing modeling tools in terms of the ease to use and visual quality of results. Experimental analyses also show that IDGMM reaches a better trade-off between accuracy and efficiency. SketchMetaFace are available at https://zhongjinluo.github.io/SketchMetaFace/. |
|
2023-07-04T00:00:00 | 2307.00119 | Meta-training with Demonstration Retrieval for Efficient Few-shot Learning | [
"Aaron Mueller",
"Kanika Narang",
"Lambert Mathias",
"Qifan Wang",
"Hamed Firooz"
] | Large language models show impressive results on few-shot NLP tasks. However, these models are memory and computation-intensive. Meta-training allows one to leverage smaller models for few-shot generalization in a domain-general and task-agnostic manner; however, these methods alone results in models that may not have sufficient parameterization or knowledge to adapt quickly to a large variety of tasks. To overcome this issue, we propose meta-training with demonstration retrieval, where we use a dense passage retriever to retrieve semantically similar labeled demonstrations to each example for more varied supervision. By separating external knowledge from model parameters, we can use meta-training to train parameter-efficient models that generalize well on a larger variety of tasks. We construct a meta-training set from UnifiedQA and CrossFit, and propose a demonstration bank based on UnifiedQA tasks. To our knowledge, our work is the first to combine retrieval with meta-training, to use DPR models to retrieve demonstrations, and to leverage demonstrations from many tasks simultaneously, rather than randomly sampling demonstrations from the training set of the target task. Our approach outperforms a variety of targeted parameter-efficient and retrieval-augmented few-shot methods on QA, NLI, and text classification tasks (including SQuAD, QNLI, and TREC). Our approach can be meta-trained and fine-tuned quickly on a single GPU. |
|
2023-07-06T00:00:00 | 2307.02486 | LongNet: Scaling Transformers to 1,000,000,000 Tokens | [
"Jiayu Ding",
"Shuming Ma",
"Li Dong",
"Xingxing Zhang",
"Shaohan Huang",
"Wenhui Wang",
"Furu Wei"
] | Scaling sequence length has become a critical demand in the era of large language models. However, existing methods struggle with either computational complexity or model expressivity, rendering the maximum sequence length restricted. In this work, we introduce LongNet, a Transformer variant that can scale sequence length to more than 1 billion tokens, without sacrificing the performance on shorter sequences. Specifically, we propose dilated attention, which expands the attentive field exponentially as the distance grows. LongNet has significant advantages: 1) it has a linear computation complexity and a logarithm dependency between tokens; 2) it can be served as a distributed trainer for extremely long sequences; 3) its dilated attention is a drop-in replacement for standard attention, which can be seamlessly integrated with the existing Transformer-based optimization. Experiments results demonstrate that LongNet yields strong performance on both long-sequence modeling and general language tasks. Our work opens up new possibilities for modeling very long sequences, e.g., treating a whole corpus or even the entire Internet as a sequence. |
|
2023-07-06T00:00:00 | 2307.01952 | SDXL: Improving Latent Diffusion Models for High-Resolution Image Synthesis | [
"Dustin Podell",
"Zion English",
"Kyle Lacey",
"Andreas Blattmann",
"Tim Dockhorn",
"Jonas Müller",
"Joe Penna",
"Robin Rombach"
] | https://github.com/Stability-AI/generative-models | We present SDXL, a latent diffusion model for text-to-image synthesis. Compared to previous versions of Stable Diffusion, SDXL leverages a three times larger UNet backbone: The increase of model parameters is mainly due to more attention blocks and a larger cross-attention context as SDXL uses a second text encoder. We design multiple novel conditioning schemes and train SDXL on multiple aspect ratios. We also introduce a refinement model which is used to improve the visual fidelity of samples generated by SDXL using a post-hoc image-to-image technique. We demonstrate that SDXL shows drastically improved performance compared the previous versions of Stable Diffusion and achieves results competitive with those of black-box state-of-the-art image generators. In the spirit of promoting open research and fostering transparency in large model training and evaluation, we provide access to code and model weights at https://github.com/Stability-AI/generative-models |
2023-07-06T00:00:00 | 2307.02421 | DragonDiffusion: Enabling Drag-style Manipulation on Diffusion Models | [
"Chong Mou",
"Xintao Wang",
"Jiechong Song",
"Ying Shan",
"Jian Zhang"
] | https://github.com/MC-E/DragonDiffusion | Despite the ability of existing large-scale text-to-image (T2I) models to generate high-quality images from detailed textual descriptions, they often lack the ability to precisely edit the generated or real images. In this paper, we propose a novel image editing method, DragonDiffusion, enabling Drag-style manipulation on Diffusion models. Specifically, we construct classifier guidance based on the strong correspondence of intermediate features in the diffusion model. It can transform the editing signals into gradients via feature correspondence loss to modify the intermediate representation of the diffusion model. Based on this guidance strategy, we also build a multi-scale guidance to consider both semantic and geometric alignment. Moreover, a cross-branch self-attention is added to maintain the consistency between the original image and the editing result. Our method, through an efficient design, achieves various editing modes for the generated or real images, such as object moving, object resizing, object appearance replacement, and content dragging. It is worth noting that all editing and content preservation signals come from the image itself, and the model does not require fine-tuning or additional modules. Our source code will be available at https://github.com/MC-E/DragonDiffusion. |
2023-07-06T00:00:00 | 2307.02053 | Flacuna: Unleashing the Problem Solving Power of Vicuna using FLAN Fine-Tuning | [
"Deepanway Ghosal",
"Yew Ken Chia",
"Navonil Majumder",
"Soujanya Poria"
] | Recently, the release of INSTRUCTEVAL has provided valuable insights into the performance of large language models (LLMs) that utilize encoder-decoder or decoder-only architecture. Interestingly, despite being introduced four years ago, T5-based LLMs, such as FLAN-T5, continue to outperform the latest decoder-based LLMs, such as LLAMA and VICUNA, on tasks that require general problem-solving skills. This performance discrepancy can be attributed to three key factors: (1) Pre-training data, (2) Backbone architecture, and (3) Instruction dataset. In this technical report, our main focus is on investigating the impact of the third factor by leveraging VICUNA, a large language model based on LLAMA, which has undergone fine-tuning on ChatGPT conversations. To achieve this objective, we fine-tuned VICUNA using a customized instruction dataset collection called FLANMINI. This collection includes a subset of the large-scale instruction dataset known as FLAN, as well as various code-related datasets and conversational datasets derived from ChatGPT/GPT-4. This dataset comprises a large number of tasks that demand problem-solving skills. Our experimental findings strongly indicate that the enhanced problem-solving abilities of our model, FLACUNA, are obtained through fine-tuning VICUNA on the FLAN dataset, leading to significant improvements across numerous benchmark datasets in INSTRUCTEVAL. FLACUNA is publicly available at https://huggingface.co/declare-lab/flacuna-13b-v1.0. |
|
2023-07-06T00:00:00 | 2307.02469 | What Matters in Training a GPT4-Style Language Model with Multimodal Inputs? | [
"Yan Zeng",
"Hanbo Zhang",
"Jiani Zheng",
"Jiangnan Xia",
"Guoqiang Wei",
"Yang Wei",
"Yuchen Zhang",
"Tao Kong"
] | Recent advancements in Large Language Models (LLMs) such as GPT4 have displayed exceptional multi-modal capabilities in following open-ended instructions given images. However, the performance of these models heavily relies on design choices such as network structures, training data, and training strategies, and these choices have not been extensively discussed in the literature, making it difficult to quantify progress in this field. To address this issue, this paper presents a systematic and comprehensive study, quantitatively and qualitatively, on training such models. We implement over 20 variants with controlled settings. Concretely, for network structures, we compare different LLM backbones and model designs. For training data, we investigate the impact of data and sampling strategies. For instructions, we explore the influence of diversified prompts on the instruction-following ability of the trained models. For benchmarks, we contribute the first, to our best knowledge, comprehensive evaluation set including both image and video tasks through crowd-sourcing. Based on our findings, we present Lynx, which performs the most accurate multi-modal understanding while keeping the best multi-modal generation ability compared to existing open-sourced GPT4-style models. |
|
2023-07-06T00:00:00 | 2307.02485 | Building Cooperative Embodied Agents Modularly with Large Language Models | [
"Hongxin Zhang",
"Weihua Du",
"Jiaming Shan",
"Qinhong Zhou",
"Yilun Du",
"Joshua B. Tenenbaum",
"Tianmin Shu",
"Chuang Gan"
] | Large Language Models (LLMs) have demonstrated impressive planning abilities in single-agent embodied tasks across various domains. However, their capacity for planning and communication in multi-agent cooperation remains unclear, even though these are crucial skills for intelligent embodied agents. In this paper, we present a novel framework that utilizes LLMs for multi-agent cooperation and tests it in various embodied environments. Our framework enables embodied agents to plan, communicate, and cooperate with other embodied agents or humans to accomplish long-horizon tasks efficiently. We demonstrate that recent LLMs, such as GPT-4, can surpass strong planning-based methods and exhibit emergent effective communication using our framework without requiring fine-tuning or few-shot prompting. We also discover that LLM-based agents that communicate in natural language can earn more trust and cooperate more effectively with humans. Our research underscores the potential of LLMs for embodied AI and lays the foundation for future research in multi-agent cooperation. Videos can be found on the project website https://vis-www.cs.umass.edu/Co-LLM-Agents/. |
|
2023-07-06T00:00:00 | 2307.02483 | Jailbroken: How Does LLM Safety Training Fail? | [
"Alexander Wei",
"Nika Haghtalab",
"Jacob Steinhardt"
] | Large language models trained for safety and harmlessness remain susceptible to adversarial misuse, as evidenced by the prevalence of "jailbreak" attacks on early releases of ChatGPT that elicit undesired behavior. Going beyond recognition of the issue, we investigate why such attacks succeed and how they can be created. We hypothesize two failure modes of safety training: competing objectives and mismatched generalization. Competing objectives arise when a model's capabilities and safety goals conflict, while mismatched generalization occurs when safety training fails to generalize to a domain for which capabilities exist. We use these failure modes to guide jailbreak design and then evaluate state-of-the-art models, including OpenAI's GPT-4 and Anthropic's Claude v1.3, against both existing and newly designed attacks. We find that vulnerabilities persist despite the extensive red-teaming and safety-training efforts behind these models. Notably, new attacks utilizing our failure modes succeed on every prompt in a collection of unsafe requests from the models' red-teaming evaluation sets and outperform existing ad hoc jailbreaks. Our analysis emphasizes the need for safety-capability parity -- that safety mechanisms should be as sophisticated as the underlying model -- and argues against the idea that scaling alone can resolve these safety failure modes. |
|
2023-07-06T00:00:00 | 2307.01928 | Robots That Ask For Help: Uncertainty Alignment for Large Language Model Planners | [
"Allen Z. Ren",
"Anushri Dixit",
"Alexandra Bodrova",
"Sumeet Singh",
"Stephen Tu",
"Noah Brown",
"Peng Xu",
"Leila Takayama",
"Fei Xia",
"Jake Varley",
"Zhenjia Xu",
"Dorsa Sadigh",
"Andy Zeng",
"Anirudha Majumdar"
] | Large language models (LLMs) exhibit a wide range of promising capabilities -- from step-by-step planning to commonsense reasoning -- that may provide utility for robots, but remain prone to confidently hallucinated predictions. In this work, we present KnowNo, which is a framework for measuring and aligning the uncertainty of LLM-based planners such that they know when they don't know and ask for help when needed. KnowNo builds on the theory of conformal prediction to provide statistical guarantees on task completion while minimizing human help in complex multi-step planning settings. Experiments across a variety of simulated and real robot setups that involve tasks with different modes of ambiguity (e.g., from spatial to numeric uncertainties, from human preferences to Winograd schemas) show that KnowNo performs favorably over modern baselines (which may involve ensembles or extensive prompt tuning) in terms of improving efficiency and autonomy, while providing formal assurances. KnowNo can be used with LLMs out of the box without model-finetuning, and suggests a promising lightweight approach to modeling uncertainty that can complement and scale with the growing capabilities of foundation models. Website: https://robot-help.github.io |
|
2023-07-06T00:00:00 | 2307.01938 | Physics-based Motion Retargeting from Sparse Inputs | [
"Daniele Reda",
"Jungdam Won",
"Yuting Ye",
"Michiel van de Panne",
"Alexander Winkler"
] | Avatars are important to create interactive and immersive experiences in virtual worlds. One challenge in animating these characters to mimic a user's motion is that commercial AR/VR products consist only of a headset and controllers, providing very limited sensor data of the user's pose. Another challenge is that an avatar might have a different skeleton structure than a human and the mapping between them is unclear. In this work we address both of these challenges. We introduce a method to retarget motions in real-time from sparse human sensor data to characters of various morphologies. Our method uses reinforcement learning to train a policy to control characters in a physics simulator. We only require human motion capture data for training, without relying on artist-generated animations for each avatar. This allows us to use large motion capture datasets to train general policies that can track unseen users from real and sparse data in real-time. We demonstrate the feasibility of our approach on three characters with different skeleton structure: a dinosaur, a mouse-like creature and a human. We show that the avatar poses often match the user surprisingly well, despite having no sensor information of the lower body available. We discuss and ablate the important components in our framework, specifically the kinematic retargeting step, the imitation, contact and action reward as well as our asymmetric actor-critic observations. We further explore the robustness of our method in a variety of settings including unbalancing, dancing and sports motions. |
|
2023-07-06T00:00:00 | 2307.02321 | MSViT: Dynamic Mixed-Scale Tokenization for Vision Transformers | [
"Jakob Drachmann Havtorn",
"Amelie Royer",
"Tijmen Blankevoort",
"Babak Ehteshami Bejnordi"
] | The input tokens to Vision Transformers carry little semantic meaning as they are defined as regular equal-sized patches of the input image, regardless of its content. However, processing uniform background areas of an image should not necessitate as much compute as dense, cluttered areas. To address this issue, we propose a dynamic mixed-scale tokenization scheme for ViT, MSViT. Our method introduces a conditional gating mechanism that selects the optimal token scale for every image region, such that the number of tokens is dynamically determined per input. The proposed gating module is lightweight, agnostic to the choice of transformer backbone, and trained within a few epochs (e.g., 20 epochs on ImageNet) with little training overhead. In addition, to enhance the conditional behavior of the gate during training, we introduce a novel generalization of the batch-shaping loss. We show that our gating module is able to learn meaningful semantics despite operating locally at the coarse patch-level. We validate MSViT on the tasks of classification and segmentation where it leads to improved accuracy-complexity trade-off. |
|
2023-07-06T00:00:00 | 2307.02179 | Open-Source Large Language Models Outperform Crowd Workers and Approach ChatGPT in Text-Annotation Tasks | [
"Meysam Alizadeh",
"Maël Kubli",
"Zeynab Samei",
"Shirin Dehghani",
"Juan Diego Bermeo",
"Maria Korobeynikova",
"Fabrizio Gilardi"
] | This study examines the performance of open-source Large Language Models (LLMs) in text annotation tasks and compares it with proprietary models like ChatGPT and human-based services such as MTurk. While prior research demonstrated the high performance of ChatGPT across numerous NLP tasks, open-source LLMs like HugginChat and FLAN are gaining attention for their cost-effectiveness, transparency, reproducibility, and superior data protection. We assess these models using both zero-shot and few-shot approaches and different temperature parameters across a range of text annotation tasks. Our findings show that while ChatGPT achieves the best performance in most tasks, open-source LLMs not only outperform MTurk but also demonstrate competitive potential against ChatGPT in specific tasks. |
|
2023-07-06T00:00:00 | 2307.02484 | Elastic Decision Transformer | [
"Yueh-Hua Wu",
"Xiaolong Wang",
"Masashi Hamaya"
] | This paper introduces Elastic Decision Transformer (EDT), a significant advancement over the existing Decision Transformer (DT) and its variants. Although DT purports to generate an optimal trajectory, empirical evidence suggests it struggles with trajectory stitching, a process involving the generation of an optimal or near-optimal trajectory from the best parts of a set of sub-optimal trajectories. The proposed EDT differentiates itself by facilitating trajectory stitching during action inference at test time, achieved by adjusting the history length maintained in DT. Further, the EDT optimizes the trajectory by retaining a longer history when the previous trajectory is optimal and a shorter one when it is sub-optimal, enabling it to "stitch" with a more optimal trajectory. Extensive experimentation demonstrates EDT's ability to bridge the performance gap between DT-based and Q Learning-based approaches. In particular, the EDT outperforms Q Learning-based methods in a multi-task regime on the D4RL locomotion benchmark and Atari games. Videos are available at: https://kristery.github.io/edt/ |
|
2023-07-06T00:00:00 | 2307.01848 | Embodied Task Planning with Large Language Models | [
"Zhenyu Wu",
"Ziwei Wang",
"Xiuwei Xu",
"Jiwen Lu",
"Haibin Yan"
] | Equipping embodied agents with commonsense is important for robots to successfully complete complex human instructions in general environments. Recent large language models (LLM) can embed rich semantic knowledge for agents in plan generation of complex tasks, while they lack the information about the realistic world and usually yield infeasible action sequences. In this paper, we propose a TAsk Planing Agent (TaPA) in embodied tasks for grounded planning with physical scene constraint, where the agent generates executable plans according to the existed objects in the scene by aligning LLMs with the visual perception models. Specifically, we first construct a multimodal dataset containing triplets of indoor scenes, instructions and action plans, where we provide the designed prompts and the list of existing objects in the scene for GPT-3.5 to generate a large number of instructions and corresponding planned actions. The generated data is leveraged for grounded plan tuning of pre-trained LLMs. During inference, we discover the objects in the scene by extending open-vocabulary object detectors to multi-view RGB images collected in different achievable locations. Experimental results show that the generated plan from our TaPA framework can achieve higher success rate than LLaVA and GPT-3.5 by a sizable margin, which indicates the practicality of embodied task planning in general and complex environments. |
|
2023-07-06T00:00:00 | 2307.01229 | EmoGen: Eliminating Subjective Bias in Emotional Music Generation | [
"Chenfei Kang",
"Peiling Lu",
"Botao Yu",
"Xu Tan",
"Wei Ye",
"Shikun Zhang",
"Jiang Bian"
] | https://github.com/microsoft/muzic | Music is used to convey emotions, and thus generating emotional music is important in automatic music generation. Previous work on emotional music generation directly uses annotated emotion labels as control signals, which suffers from subjective bias: different people may annotate different emotions on the same music, and one person may feel different emotions under different situations. Therefore, directly mapping emotion labels to music sequences in an end-to-end way would confuse the learning process and hinder the model from generating music with general emotions. In this paper, we propose EmoGen, an emotional music generation system that leverages a set of emotion-related music attributes as the bridge between emotion and music, and divides the generation into two stages: emotion-to-attribute mapping with supervised clustering, and attribute-to-music generation with self-supervised learning. Both stages are beneficial: in the first stage, the attribute values around the clustering center represent the general emotions of these samples, which help eliminate the impacts of the subjective bias of emotion labels; in the second stage, the generation is completely disentangled from emotion labels and thus free from the subjective bias. Both subjective and objective evaluations show that EmoGen outperforms previous methods on emotion control accuracy and music quality respectively, which demonstrate our superiority in generating emotional music. Music samples generated by EmoGen are available via this link:https://ai-muzic.github.io/emogen/, and the code is available at this link:https://github.com/microsoft/muzic/. |
2023-07-06T00:00:00 | 2307.01831 | DiT-3D: Exploring Plain Diffusion Transformers for 3D Shape Generation | [
"Shentong Mo",
"Enze Xie",
"Ruihang Chu",
"Lewei Yao",
"Lanqing Hong",
"Matthias Nießner",
"Zhenguo Li"
] | Recent Diffusion Transformers (e.g., DiT) have demonstrated their powerful effectiveness in generating high-quality 2D images. However, it is still being determined whether the Transformer architecture performs equally well in 3D shape generation, as previous 3D diffusion methods mostly adopted the U-Net architecture. To bridge this gap, we propose a novel Diffusion Transformer for 3D shape generation, namely DiT-3D, which can directly operate the denoising process on voxelized point clouds using plain Transformers. Compared to existing U-Net approaches, our DiT-3D is more scalable in model size and produces much higher quality generations. Specifically, the DiT-3D adopts the design philosophy of DiT but modifies it by incorporating 3D positional and patch embeddings to adaptively aggregate input from voxelized point clouds. To reduce the computational cost of self-attention in 3D shape generation, we incorporate 3D window attention into Transformer blocks, as the increased 3D token length resulting from the additional dimension of voxels can lead to high computation. Finally, linear and devoxelization layers are used to predict the denoised point clouds. In addition, our transformer architecture supports efficient fine-tuning from 2D to 3D, where the pre-trained DiT-2D checkpoint on ImageNet can significantly improve DiT-3D on ShapeNet. Experimental results on the ShapeNet dataset demonstrate that the proposed DiT-3D achieves state-of-the-art performance in high-fidelity and diverse 3D point cloud generation. In particular, our DiT-3D decreases the 1-Nearest Neighbor Accuracy of the state-of-the-art method by 4.59 and increases the Coverage metric by 3.51 when evaluated on Chamfer Distance. |
|
2023-07-07T00:00:00 | 2307.03109 | A Survey on Evaluation of Large Language Models | [
"Yupeng Chang",
"Xu Wang",
"Jindong Wang",
"Yuan Wu",
"Kaijie Zhu",
"Hao Chen",
"Linyi Yang",
"Xiaoyuan Yi",
"Cunxiang Wang",
"Yidong Wang",
"Wei Ye",
"Yue Zhang",
"Yi Chang",
"Philip S. Yu",
"Qiang Yang",
"Xing Xie"
] | https://github.com/MLGroupJLU/LLM-eval-survey | Large language models (LLMs) are gaining increasing popularity in both academia and industry, owing to their unprecedented performance in various applications. As LLMs continue to play a vital role in both research and daily use, their evaluation becomes increasingly critical, not only at the task level, but also at the society level for better understanding of their potential risks. Over the past years, significant efforts have been made to examine LLMs from various perspectives. This paper presents a comprehensive review of these evaluation methods for LLMs, focusing on three key dimensions: what to evaluate, where to evaluate, and how to evaluate. Firstly, we provide an overview from the perspective of evaluation tasks, encompassing general natural language processing tasks, reasoning, medical usage, ethics, educations, natural and social sciences, agent applications, and other areas. Secondly, we answer the `where' and `how' questions by diving into the evaluation methods and benchmarks, which serve as crucial components in assessing performance of LLMs. Then, we summarize the success and failure cases of LLMs in different tasks. Finally, we shed light on several future challenges that lie ahead in LLMs evaluation. Our aim is to offer invaluable insights to researchers in the realm of LLMs evaluation, thereby aiding the development of more proficient LLMs. Our key point is that evaluation should be treated as an essential discipline to better assist the development of LLMs. We consistently maintain the related open-source materials at: https://github.com/MLGroupJLU/LLM-eval-survey. |
2023-07-07T00:00:00 | 2307.03172 | Lost in the Middle: How Language Models Use Long Contexts | [
"Nelson F. Liu",
"Kevin Lin",
"John Hewitt",
"Ashwin Paranjape",
"Michele Bevilacqua",
"Fabio Petroni",
"Percy Liang"
] | While recent language models have the ability to take long contexts as input, relatively little is known about how well the language models use longer context. We analyze language model performance on two tasks that require identifying relevant information within their input contexts: multi-document question answering and key-value retrieval. We find that performance is often highest when relevant information occurs at the beginning or end of the input context, and significantly degrades when models must access relevant information in the middle of long contexts. Furthermore, performance substantially decreases as the input context grows longer, even for explicitly long-context models. Our analysis provides a better understanding of how language models use their input context and provides new evaluation protocols for future long-context models. |
|
2023-07-07T00:00:00 | 2307.02499 | mPLUG-DocOwl: Modularized Multimodal Large Language Model for Document Understanding | [
"Jiabo Ye",
"Anwen Hu",
"Haiyang Xu",
"Qinghao Ye",
"Ming Yan",
"Yuhao Dan",
"Chenlin Zhao",
"Guohai Xu",
"Chenliang Li",
"Junfeng Tian",
"Qian Qi",
"Ji Zhang",
"Fei Huang"
] | https://github.com/X-PLUG/mPLUG-DocOwl | Document understanding refers to automatically extract, analyze and comprehend information from various types of digital documents, such as a web page. Existing Multi-model Large Language Models (MLLMs), including mPLUG-Owl, have demonstrated promising zero-shot capabilities in shallow OCR-free text recognition, indicating their potential for OCR-free document understanding. Nevertheless, without in-domain training, these models tend to ignore fine-grained OCR features, such as sophisticated tables or large blocks of text, which are essential for OCR-free document understanding. In this paper, we propose mPLUG-DocOwl based on mPLUG-Owl for OCR-free document understanding. Specifically, we first construct a instruction tuning dataset featuring a wide range of visual-text understanding tasks. Then, we strengthen the OCR-free document understanding ability by jointly train the model on language-only, general vision-and-language, and document instruction tuning dataset with our unified instruction tuning strategy. We also build an OCR-free document instruction understanding evaluation set LLMDoc to better compare models' capabilities on instruct compliance and document understanding. Experimental results show that our model outperforms existing multi-modal models, demonstrating its strong ability of document understanding. Besides, without specific fine-tuning, mPLUG-DocOwl generalizes well on various downstream tasks. Our code, models, training data and evaluation set are available at https://github.com/X-PLUG/mPLUG-DocOwl. |
2023-07-07T00:00:00 | 2307.02768 | Training Models to Generate, Recognize, and Reframe Unhelpful Thoughts | [
"Mounica Maddela",
"Megan Ung",
"Jing Xu",
"Andrea Madotto",
"Heather Foran",
"Y-Lan Boureau"
] | Many cognitive approaches to well-being, such as recognizing and reframing unhelpful thoughts, have received considerable empirical support over the past decades, yet still lack truly widespread adoption in self-help format. A barrier to that adoption is a lack of adequately specific and diverse dedicated practice material. This work examines whether current language models can be leveraged to both produce a virtually unlimited quantity of practice material illustrating standard unhelpful thought patterns matching specific given contexts, and generate suitable positive reframing proposals. We propose PATTERNREFRAME, a novel dataset of about 10k examples of thoughts containing unhelpful thought patterns conditioned on a given persona, accompanied by about 27k positive reframes. By using this dataset to train and/or evaluate current models, we show that existing models can already be powerful tools to help generate an abundance of tailored practice material and hypotheses, with no or minimal additional model training required. |
|
2023-07-07T00:00:00 | 2307.03170 | Focused Transformer: Contrastive Training for Context Scaling | [
"Szymon Tworkowski",
"Konrad Staniszewski",
"Mikołaj Pacek",
"Yuhuai Wu",
"Henryk Michalewski",
"Piotr Miłoś"
] | Large language models have an exceptional capability to incorporate new information in a contextual manner. However, the full potential of such an approach is often restrained due to a limitation in the effective context length. One solution to this issue is to endow an attention layer with access to an external memory, which comprises of (key, value) pairs. Yet, as the number of documents increases, the proportion of relevant keys to irrelevant ones decreases, leading the model to focus more on the irrelevant keys. We identify a significant challenge, dubbed the distraction issue, where keys linked to different semantic values might overlap, making them hard to distinguish. To tackle this problem, we introduce the Focused Transformer (FoT), a technique that employs a training process inspired by contrastive learning. This novel approach enhances the structure of the (key, value) space, enabling an extension of the context length. Our method allows for fine-tuning pre-existing, large-scale models to lengthen their effective context. This is demonstrated by our fine-tuning of 3B and 7B OpenLLaMA checkpoints. The resulting models, which we name LongLLaMA, exhibit advancements in tasks requiring a long context. We further illustrate that our LongLLaMA models adeptly manage a 256 k context length for passkey retrieval. |
|
2023-07-07T00:00:00 | 2307.03183 | Whisper-AT: Noise-Robust Automatic Speech Recognizers are Also Strong General Audio Event Taggers | [
"Yuan Gong",
"Sameer Khurana",
"Leonid Karlinsky",
"James Glass"
] | In this paper, we focus on Whisper, a recent automatic speech recognition model trained with a massive 680k hour labeled speech corpus recorded in diverse conditions. We first show an interesting finding that while Whisper is very robust against real-world background sounds (e.g., music), its audio representation is actually not noise-invariant, but is instead highly correlated to non-speech sounds, indicating that Whisper recognizes speech conditioned on the noise type. With this finding, we build a unified audio tagging and speech recognition model Whisper-AT by freezing the backbone of Whisper, and training a lightweight audio tagging model on top of it. With <1% extra computational cost, Whisper-AT can recognize audio events, in addition to spoken text, in a single forward pass. |
|
2023-07-07T00:00:00 | 2307.02628 | SkipDecode: Autoregressive Skip Decoding with Batching and Caching for Efficient LLM Inference | [
"Luciano Del Corro",
"Allie Del Giorno",
"Sahaj Agarwal",
"Bin Yu",
"Ahmed Awadallah",
"Subhabrata Mukherjee"
] | Autoregressive large language models (LLMs) have made remarkable progress in various natural language generation tasks. However, they incur high computation cost and latency resulting from the autoregressive token-by-token generation. To address this issue, several approaches have been proposed to reduce computational cost using early-exit strategies. These strategies enable faster text generation using reduced computation without applying the full computation graph to each token. While existing token-level early exit methods show promising results for online inference, they cannot be readily applied for batch inferencing and Key-Value caching. This is because they have to wait until the last token in a batch exits before they can stop computing. This severely limits the practical application of such techniques. In this paper, we propose a simple and effective token-level early exit method, SkipDecode, designed to work seamlessly with batch inferencing and KV caching. It overcomes prior constraints by setting up a singular exit point for every token in a batch at each sequence position. It also guarantees a monotonic decrease in exit points, thereby eliminating the need to recompute KV Caches for preceding tokens. Rather than terminating computation prematurely as in prior works, our approach bypasses lower to middle layers, devoting most of the computational resources to upper layers, allowing later tokens to benefit from the compute expenditure by earlier tokens. Our experimental results show that SkipDecode can obtain 2x to 5x inference speedups with negligible regression across a variety of tasks. This is achieved using OPT models of 1.3 billion and 6.7 billion parameters, all the while being directly compatible with batching and KV caching optimization techniques. |
|
2023-07-07T00:00:00 | 2307.03166 | VideoGLUE: Video General Understanding Evaluation of Foundation Models | [
"Liangzhe Yuan",
"Nitesh Bharadwaj Gundavarapu",
"Long Zhao",
"Hao Zhou",
"Yin Cui",
"Lu Jiang",
"Xuan Yang",
"Menglin Jia",
"Tobias Weyand",
"Luke Friedman",
"Mikhail Sirotenko",
"Huisheng Wang",
"Florian Schroff",
"Hartwig Adam",
"Ming-Hsuan Yang",
"Ting Liu",
"Boqing Gong"
] | We evaluate existing foundation models video understanding capabilities using a carefully designed experiment protocol consisting of three hallmark tasks (action recognition, temporal localization, and spatiotemporal localization), eight datasets well received by the community, and four adaptation methods tailoring a foundation model (FM) for a downstream task. Moreover, we propose a scalar VideoGLUE score (VGS) to measure an FMs efficacy and efficiency when adapting to general video understanding tasks. Our main findings are as follows. First, task-specialized models significantly outperform the six FMs studied in this work, in sharp contrast to what FMs have achieved in natural language and image understanding. Second,video-native FMs, whose pretraining data contains the video modality, are generally better than image-native FMs in classifying motion-rich videos, localizing actions in time, and understanding a video of more than one action. Third, the video-native FMs can perform well on video tasks under light adaptations to downstream tasks(e.g., freezing the FM backbones), while image-native FMs win in full end-to-end finetuning. The first two observations reveal the need and tremendous opportunities to conduct research on video-focused FMs, and the last confirms that both tasks and adaptation methods matter when it comes to the evaluation of FMs. |
|
2023-07-10T00:00:00 | 2307.03692 | Becoming self-instruct: introducing early stopping criteria for minimal instruct tuning | [
"Waseem AlShikh",
"Manhal Daaboul",
"Kirk Goddard",
"Brock Imel",
"Kiran Kamble",
"Parikshith Kulkarni",
"Melisa Russak"
] | In this paper, we introduce the Instruction Following Score (IFS), a metric that detects language models' ability to follow instructions. The metric has a dual purpose. First, IFS can be used to distinguish between base and instruct models. We benchmark publicly available base and instruct models, and show that the ratio of well formatted responses to partial and full sentences can be an effective measure between those two model classes. Secondly, the metric can be used as an early stopping criteria for instruct tuning. We compute IFS for Supervised Fine-Tuning (SFT) of 7B and 13B LLaMA models, showing that models learn to follow instructions relatively early in the training process, and the further finetuning can result in changes in the underlying base model semantics. As an example of semantics change we show the objectivity of model predictions, as defined by an auxiliary metric ObjecQA. We show that in this particular case, semantic changes are the steepest when the IFS tends to plateau. We hope that decomposing instruct tuning into IFS and semantic factors starts a new trend in better controllable instruct tuning and opens possibilities for designing minimal instruct interfaces querying foundation models. |
|
2023-07-10T00:00:00 | 2307.03381 | Teaching Arithmetic to Small Transformers | [
"Nayoung Lee",
"Kartik Sreenivasan",
"Jason D. Lee",
"Kangwook Lee",
"Dimitris Papailiopoulos"
] | Large language models like GPT-4 exhibit emergent capabilities across general-purpose tasks, such as basic arithmetic, when trained on extensive text data, even though these tasks are not explicitly encoded by the unsupervised, next-token prediction objective. This study investigates how small transformers, trained from random initialization, can efficiently learn arithmetic operations such as addition, multiplication, and elementary functions like square root, using the next-token prediction objective. We first demonstrate that conventional training data is not the most effective for arithmetic learning, and simple formatting changes can significantly improve accuracy. This leads to sharp phase transitions as a function of training data scale, which, in some cases, can be explained through connections to low-rank matrix completion. Building on prior work, we then train on chain-of-thought style data that includes intermediate step results. Even in the complete absence of pretraining, this approach significantly and simultaneously improves accuracy, sample complexity, and convergence speed. We also study the interplay between arithmetic and text data during training and examine the effects of few-shot prompting, pretraining, and model scale. Additionally, we discuss length generalization challenges. Our work highlights the importance of high-quality, instructive data that considers the particular characteristics of the next-word prediction objective for rapidly eliciting arithmetic capabilities. |
|
2023-07-10T00:00:00 | 2307.03601 | GPT4RoI: Instruction Tuning Large Language Model on Region-of-Interest | [
"Shilong Zhang",
"Peize Sun",
"Shoufa Chen",
"Min Xiao",
"Wenqi Shao",
"Wenwei Zhang",
"Kai Chen",
"Ping Luo"
] | https://github.com/jshilong/GPT4RoI | Instruction tuning large language model (LLM) on image-text pairs has achieved unprecedented vision-language multimodal abilities. However, their vision-language alignments are only built on image-level, the lack of region-level alignment limits their advancements to fine-grained multimodal understanding. In this paper, we propose instruction tuning on region-of-interest. The key design is to reformulate the bounding box as the format of spatial instruction. The interleaved sequences of visual features extracted by the spatial instruction and the language embedding are input to LLM, and trained on the transformed region-text data in instruction tuning format. Our region-level vision-language model, termed as GPT4RoI, brings brand new conversational and interactive experience beyond image-level understanding. (1) Controllability: Users can interact with our model by both language and spatial instructions to flexibly adjust the detail level of the question. (2) Capacities: Our model supports not only single-region spatial instruction but also multi-region. This unlocks more region-level multimodal capacities such as detailed region caption and complex region reasoning. (3) Composition: Any off-the-shelf object detector can be a spatial instruction provider so as to mine informative object attributes from our model, like color, shape, material, action, relation to other objects, etc. The code, data, and demo can be found at https://github.com/jshilong/GPT4RoI. |
2023-07-10T00:00:00 | 2307.03322 | BiPhone: Modeling Inter Language Phonetic Influences in Text | [
"Abhirut Gupta",
"Ananya B. Sai",
"Richard Sproat",
"Yuri Vasilevski",
"James S. Ren",
"Ambarish Jash",
"Sukhdeep S. Sodhi",
"Aravindan Raghuveer"
] | A large number of people are forced to use the Web in a language they have low literacy in due to technology asymmetries. Written text in the second language (L2) from such users often contains a large number of errors that are influenced by their native language (L1). We propose a method to mine phoneme confusions (sounds in L2 that an L1 speaker is likely to conflate) for pairs of L1 and L2. These confusions are then plugged into a generative model (Bi-Phone) for synthetically producing corrupted L2 text. Through human evaluations, we show that Bi-Phone generates plausible corruptions that differ across L1s and also have widespread coverage on the Web. We also corrupt the popular language understanding benchmark SuperGLUE with our technique (FunGLUE for Phonetically Noised GLUE) and show that SoTA language understating models perform poorly. We also introduce a new phoneme prediction pre-training task which helps byte models to recover performance close to SuperGLUE. Finally, we also release the FunGLUE benchmark to promote further research in phonetically robust language models. To the best of our knowledge, FunGLUE is the first benchmark to introduce L1-L2 interactions in text. |
|
2023-07-10T00:00:00 | 2307.03659 | Decomposing the Generalization Gap in Imitation Learning for Visual Robotic Manipulation | [
"Annie Xie",
"Lisa Lee",
"Ted Xiao",
"Chelsea Finn"
] | What makes generalization hard for imitation learning in visual robotic manipulation? This question is difficult to approach at face value, but the environment from the perspective of a robot can often be decomposed into enumerable factors of variation, such as the lighting conditions or the placement of the camera. Empirically, generalization to some of these factors have presented a greater obstacle than others, but existing work sheds little light on precisely how much each factor contributes to the generalization gap. Towards an answer to this question, we study imitation learning policies in simulation and on a real robot language-conditioned manipulation task to quantify the difficulty of generalization to different (sets of) factors. We also design a new simulated benchmark of 19 tasks with 11 factors of variation to facilitate more controlled evaluations of generalization. From our study, we determine an ordering of factors based on generalization difficulty, that is consistent across simulation and our real robot setup. |
|
2023-07-10T00:00:00 | 2307.03576 | One Step of Gradient Descent is Provably the Optimal In-Context Learner with One Layer of Linear Self-Attention | [
"Arvind Mahankali",
"Tatsunori B. Hashimoto",
"Tengyu Ma"
] | Recent works have empirically analyzed in-context learning and shown that transformers trained on synthetic linear regression tasks can learn to implement ridge regression, which is the Bayes-optimal predictor, given sufficient capacity [Aky\"urek et al., 2023], while one-layer transformers with linear self-attention and no MLP layer will learn to implement one step of gradient descent (GD) on a least-squares linear regression objective [von Oswald et al., 2022]. However, the theory behind these observations remains poorly understood. We theoretically study transformers with a single layer of linear self-attention, trained on synthetic noisy linear regression data. First, we mathematically show that when the covariates are drawn from a standard Gaussian distribution, the one-layer transformer which minimizes the pre-training loss will implement a single step of GD on the least-squares linear regression objective. Then, we find that changing the distribution of the covariates and weight vector to a non-isotropic Gaussian distribution has a strong impact on the learned algorithm: the global minimizer of the pre-training loss now implements a single step of pre-conditioned GD. However, if only the distribution of the responses is changed, then this does not have a large effect on the learned algorithm: even when the response comes from a more general family of nonlinear functions, the global minimizer of the pre-training loss still implements a single step of GD on a least-squares linear regression objective. |
|
2023-07-10T00:00:00 | 2307.03718 | Frontier AI Regulation: Managing Emerging Risks to Public Safety | [
"Markus Anderljung",
"Joslyn Barnhart",
"Jade Leung",
"Anton Korinek",
"Cullen O'Keefe",
"Jess Whittlestone",
"Shahar Avin",
"Miles Brundage",
"Justin Bullock",
"Duncan Cass-Beggs",
"Ben Chang",
"Tantum Collins",
"Tim Fist",
"Gillian Hadfield",
"Alan Hayes",
"Lewis Ho",
"Sara Hooker",
"Eric Horvitz",
"Noam Kolt",
"Jonas Schuett",
"Yonadav Shavit",
"Divya Siddarth",
"Robert Trager",
"Kevin Wolf"
] | Advanced AI models hold the promise of tremendous benefits for humanity, but society needs to proactively manage the accompanying risks. In this paper, we focus on what we term "frontier AI" models: highly capable foundation models that could possess dangerous capabilities sufficient to pose severe risks to public safety. Frontier AI models pose a distinct regulatory challenge: dangerous capabilities can arise unexpectedly; it is difficult to robustly prevent a deployed model from being misused; and, it is difficult to stop a model's capabilities from proliferating broadly. To address these challenges, at least three building blocks for the regulation of frontier models are needed: (1) standard-setting processes to identify appropriate requirements for frontier AI developers, (2) registration and reporting requirements to provide regulators with visibility into frontier AI development processes, and (3) mechanisms to ensure compliance with safety standards for the development and deployment of frontier AI models. Industry self-regulation is an important first step. However, wider societal discussions and government intervention will be needed to create standards and to ensure compliance with them. We consider several options to this end, including granting enforcement powers to supervisory authorities and licensure regimes for frontier AI models. Finally, we propose an initial set of safety standards. These include conducting pre-deployment risk assessments; external scrutiny of model behavior; using risk assessments to inform deployment decisions; and monitoring and responding to new information about model capabilities and uses post-deployment. We hope this discussion contributes to the broader conversation on how to balance public safety risks and innovation benefits from advances at the frontier of AI development. |
|
2023-07-11T00:00:00 | 2307.04725 | AnimateDiff: Animate Your Personalized Text-to-Image Diffusion Models without Specific Tuning | [
"Yuwei Guo",
"Ceyuan Yang",
"Anyi Rao",
"Yaohui Wang",
"Yu Qiao",
"Dahua Lin",
"Bo Dai"
] | https://github.com/guoyww/AnimateDiff | With the advance of text-to-image models (e.g., Stable Diffusion) and corresponding personalization techniques such as DreamBooth and LoRA, everyone can manifest their imagination into high-quality images at an affordable cost. Subsequently, there is a great demand for image animation techniques to further combine generated static images with motion dynamics. In this report, we propose a practical framework to animate most of the existing personalized text-to-image models once and for all, saving efforts in model-specific tuning. At the core of the proposed framework is to insert a newly initialized motion modeling module into the frozen text-to-image model and train it on video clips to distill reasonable motion priors. Once trained, by simply injecting this motion modeling module, all personalized versions derived from the same base T2I readily become text-driven models that produce diverse and personalized animated images. We conduct our evaluation on several public representative personalized text-to-image models across anime pictures and realistic photographs, and demonstrate that our proposed framework helps these models generate temporally smooth animation clips while preserving the domain and diversity of their outputs. Code and pre-trained weights will be publicly available at https://animatediff.github.io/ . |
2023-07-11T00:00:00 | 2307.03869 | Sketch-A-Shape: Zero-Shot Sketch-to-3D Shape Generation | [
"Aditya Sanghi",
"Pradeep Kumar Jayaraman",
"Arianna Rampini",
"Joseph Lambourne",
"Hooman Shayani",
"Evan Atherton",
"Saeid Asgari Taghanaki"
] | Significant progress has recently been made in creative applications of large pre-trained models for downstream tasks in 3D vision, such as text-to-shape generation. This motivates our investigation of how these pre-trained models can be used effectively to generate 3D shapes from sketches, which has largely remained an open challenge due to the limited sketch-shape paired datasets and the varying level of abstraction in the sketches. We discover that conditioning a 3D generative model on the features (obtained from a frozen large pre-trained vision model) of synthetic renderings during training enables us to effectively generate 3D shapes from sketches at inference time. This suggests that the large pre-trained vision model features carry semantic signals that are resilient to domain shifts, i.e., allowing us to use only RGB renderings, but generalizing to sketches at inference time. We conduct a comprehensive set of experiments investigating different design factors and demonstrate the effectiveness of our straightforward approach for generation of multiple 3D shapes per each input sketch regardless of their level of abstraction without requiring any paired datasets during training. |
|
2023-07-11T00:00:00 | 2307.04686 | VampNet: Music Generation via Masked Acoustic Token Modeling | [
"Hugo Flores Garcia",
"Prem Seetharaman",
"Rithesh Kumar",
"Bryan Pardo"
] | We introduce VampNet, a masked acoustic token modeling approach to music synthesis, compression, inpainting, and variation. We use a variable masking schedule during training which allows us to sample coherent music from the model by applying a variety of masking approaches (called prompts) during inference. VampNet is non-autoregressive, leveraging a bidirectional transformer architecture that attends to all tokens in a forward pass. With just 36 sampling passes, VampNet can generate coherent high-fidelity musical waveforms. We show that by prompting VampNet in various ways, we can apply it to tasks like music compression, inpainting, outpainting, continuation, and looping with variation (vamping). Appropriately prompted, VampNet is capable of maintaining style, genre, instrumentation, and other high-level aspects of the music. This flexible prompting capability makes VampNet a powerful music co-creation tool. Code and audio samples are available online. |
|
2023-07-11T00:00:00 | 2307.04767 | Semantic-SAM: Segment and Recognize Anything at Any Granularity | [
"Feng Li",
"Hao Zhang",
"Peize Sun",
"Xueyan Zou",
"Shilong Liu",
"Jianwei Yang",
"Chunyuan Li",
"Lei Zhang",
"Jianfeng Gao"
] | In this paper, we introduce Semantic-SAM, a universal image segmentation model to enable segment and recognize anything at any desired granularity. Our model offers two key advantages: semantic-awareness and granularity-abundance. To achieve semantic-awareness, we consolidate multiple datasets across three granularities and introduce decoupled classification for objects and parts. This allows our model to capture rich semantic information. For the multi-granularity capability, we propose a multi-choice learning scheme during training, enabling each click to generate masks at multiple levels that correspond to multiple ground-truth masks. Notably, this work represents the first attempt to jointly train a model on SA-1B, generic, and part segmentation datasets. Experimental results and visualizations demonstrate that our model successfully achieves semantic-awareness and granularity-abundance. Furthermore, combining SA-1B training with other segmentation tasks, such as panoptic and part segmentation, leads to performance improvements. We will provide code and a demo for further exploration and evaluation. |
|
2023-07-11T00:00:00 | 2307.04721 | Large Language Models as General Pattern Machines | [
"Suvir Mirchandani",
"Fei Xia",
"Pete Florence",
"Brian Ichter",
"Danny Driess",
"Montserrat Gonzalez Arenas",
"Kanishka Rao",
"Dorsa Sadigh",
"Andy Zeng"
] | We observe that pre-trained large language models (LLMs) are capable of autoregressively completing complex token sequences -- from arbitrary ones procedurally generated by probabilistic context-free grammars (PCFG), to more rich spatial patterns found in the Abstract Reasoning Corpus (ARC), a general AI benchmark, prompted in the style of ASCII art. Surprisingly, pattern completion proficiency can be partially retained even when the sequences are expressed using tokens randomly sampled from the vocabulary. These results suggest that without any additional training, LLMs can serve as general sequence modelers, driven by in-context learning. In this work, we investigate how these zero-shot capabilities may be applied to problems in robotics -- from extrapolating sequences of numbers that represent states over time to complete simple motions, to least-to-most prompting of reward-conditioned trajectories that can discover and represent closed-loop policies (e.g., a stabilizing controller for CartPole). While difficult to deploy today for real systems due to latency, context size limitations, and compute costs, the approach of using LLMs to drive low-level control may provide an exciting glimpse into how the patterns among words could be transferred to actions. |
|
2023-07-11T00:00:00 | 2307.03875 | Large Language Models for Supply Chain Optimization | [
"Beibin Li",
"Konstantina Mellou",
"Bo Zhang",
"Jeevan Pathuri",
"Ishai Menache"
] | Supply chain operations traditionally involve a variety of complex decision making problems. Over the last few decades, supply chains greatly benefited from advances in computation, which allowed the transition from manual processing to automation and cost-effective optimization. Nonetheless, business operators still need to spend substantial efforts in explaining and interpreting the optimization outcomes to stakeholders. Motivated by the recent advances in Large Language Models (LLMs), we study how this disruptive technology can help bridge the gap between supply chain automation and human comprehension and trust thereof. We design -- a framework that accepts as input queries in plain text, and outputs insights about the underlying optimization outcomes. Our framework does not forgo the state-of-the-art combinatorial optimization technology, but rather leverages it to quantitatively answer what-if scenarios (e.g., how would the cost change if we used supplier B instead of supplier A for a given demand?). Importantly, our design does not require sending proprietary data over to LLMs, which can be a privacy concern in some circumstances. We demonstrate the effectiveness of our framework on a real server placement scenario within Microsoft's cloud supply chain. Along the way, we develop a general evaluation benchmark, which can be used to evaluate the accuracy of the LLM output in other scenarios. |
|
2023-07-11T00:00:00 | 2307.03917 | On decoder-only architecture for speech-to-text and large language model integration | [
"Jian Wu",
"Yashesh Gaur",
"Zhuo Chen",
"Long Zhou",
"Yimeng Zhu",
"Tianrui Wang",
"Jinyu Li",
"Shujie Liu",
"Bo Ren",
"Linquan Liu",
"Yu Wu"
] | Large language models (LLMs) have achieved remarkable success in the field of natural language processing, enabling better human-computer interaction using natural language. However, the seamless integration of speech signals into LLMs has not been explored well. The "decoder-only" architecture has also not been well studied for speech processing tasks. In this research, we introduce Speech-LLaMA, a novel approach that effectively incorporates acoustic information into text-based large language models. Our method leverages Connectionist Temporal Classification and a simple audio encoder to map the compressed acoustic features to the continuous semantic space of the LLM. In addition, we further probe the decoder-only architecture for speech-to-text tasks by training a smaller scale randomly initialized speech-LLaMA model from speech-text paired data alone. We conduct experiments on multilingual speech-to-text translation tasks and demonstrate a significant improvement over strong baselines, highlighting the potential advantages of decoder-only models for speech-to-text conversion. |
|
2023-07-11T00:00:00 | 2307.04699 | International Institutions for Advanced AI | [
"Lewis Ho",
"Joslyn Barnhart",
"Robert Trager",
"Yoshua Bengio",
"Miles Brundage",
"Allison Carnegie",
"Rumman Chowdhury",
"Allan Dafoe",
"Gillian Hadfield",
"Margaret Levi",
"Duncan Snidal"
] | International institutions may have an important role to play in ensuring advanced AI systems benefit humanity. International collaborations can unlock AI's ability to further sustainable development, and coordination of regulatory efforts can reduce obstacles to innovation and the spread of benefits. Conversely, the potential dangerous capabilities of powerful and general-purpose AI systems create global externalities in their development and deployment, and international efforts to further responsible AI practices could help manage the risks they pose. This paper identifies a set of governance functions that could be performed at an international level to address these challenges, ranging from supporting access to frontier AI systems to setting international safety standards. It groups these functions into four institutional models that exhibit internal synergies and have precedents in existing organizations: 1) a Commission on Frontier AI that facilitates expert consensus on opportunities and risks from advanced AI, 2) an Advanced AI Governance Organization that sets international standards to manage global threats from advanced models, supports their implementation, and possibly monitors compliance with a future governance regime, 3) a Frontier AI Collaborative that promotes access to cutting-edge AI, and 4) an AI Safety Project that brings together leading researchers and engineers to further AI safety research. We explore the utility of these models and identify open questions about their viability. |
|
2023-07-11T00:00:00 | 2307.04603 | Solvent: A Framework for Protein Folding | [
"Jaemyung Lee",
"Jaehoon Kim",
"Hasun Yu",
"Youhan Lee"
] | https://github.com/kakaobrain/solvent | Consistency and reliability are crucial for conducting AI research. Many famous research fields, such as object detection, have been compared and validated with solid benchmark frameworks. After AlphaFold2, the protein folding task has entered a new phase, and many methods are proposed based on the component of AlphaFold2. The importance of a unified research framework in protein folding contains implementations and benchmarks to consistently and fairly compare various approaches. To achieve this, we present Solvent, an protein folding framework that supports significant components of state-of-th-arts models in the manner of off-the-shelf interface Solvent contains different models implemented in a unified codebase and supports training and evaluation for defined models on the same dataset. We benchmark well-known algorithms and their components and provide experiments that give helpful insights into the protein structure modeling field. We hope that Solvent will increase the reliability and consistency of proposed models and gives efficiency in both speed and costs, resulting in acceleration on protein folding modeling research. The code is available at https://github.com/kakaobrain/solvent, and the project will continue to be developed. |
2023-07-11T00:00:00 | 2307.04349 | RLTF: Reinforcement Learning from Unit Test Feedback | [
"Jiate Liu",
"Yiqin Zhu",
"Kaiwen Xiao",
"Qiang Fu",
"Xiao Han",
"Wei Yang",
"Deheng Ye"
] | https://github.com/Zyq-scut/RLTF | The goal of program synthesis, or code generation, is to generate executable code based on given descriptions. Recently, there has been an increasing number of studies employing reinforcement learning (RL) to improve the performance of large language models (LLMs) for code. However, these RL methods have only used offline frameworks, limiting their exploration of new sample spaces. Additionally, current approaches that utilize unit test signals are rather simple, not accounting for specific error locations within the code. To address these issues, we proposed RLTF, i.e., Reinforcement Learning from Unit Test Feedback, a novel online RL framework with unit test feedback of multi-granularity for refining code LLMs. Our approach generates data in real-time during training and simultaneously utilizes fine-grained feedback signals to guide the model towards producing higher-quality code. Extensive experiments show that RLTF achieves state-of-the-art performance on the APPS and the MBPP benchmarks. Our code can be found at: https://github.com/Zyq-scut/RLTF. |
2023-07-11T00:00:00 | 2307.04087 | SVIT: Scaling up Visual Instruction Tuning | [
"Bo Zhao",
"Boya Wu",
"Tiejun Huang"
] | Thanks to the emerging of foundation models, the large language and vision models are integrated to acquire the multimodal ability of visual captioning, dialogue, question answering, etc. Although existing multimodal models present impressive performance of visual understanding and reasoning, their limits are still largely under-explored due to the scarcity of high-quality instruction tuning data. To push the limits of multimodal capability, we Sale up Visual Instruction Tuning (SVIT) by constructing a dataset of 3.2 million visual instruction tuning data including 1.6M conversation question-answer (QA) pairs and 1.6M complex reasoning QA pairs and 106K detailed image descriptions. Besides the volume, the proposed dataset is also featured by the high quality and rich diversity, which is generated by prompting GPT-4 with the abundant manual annotations of images. We empirically verify that training multimodal models on SVIT can significantly improve the multimodal performance in terms of visual perception, reasoning and planing. |
|
2023-07-11T00:00:00 | 2307.04751 | Shelving, Stacking, Hanging: Relational Pose Diffusion for Multi-modal Rearrangement | [
"Anthony Simeonov",
"Ankit Goyal",
"Lucas Manuelli",
"Lin Yen-Chen",
"Alina Sarmiento",
"Alberto Rodriguez",
"Pulkit Agrawal",
"Dieter Fox"
] | We propose a system for rearranging objects in a scene to achieve a desired object-scene placing relationship, such as a book inserted in an open slot of a bookshelf. The pipeline generalizes to novel geometries, poses, and layouts of both scenes and objects, and is trained from demonstrations to operate directly on 3D point clouds. Our system overcomes challenges associated with the existence of many geometrically-similar rearrangement solutions for a given scene. By leveraging an iterative pose de-noising training procedure, we can fit multi-modal demonstration data and produce multi-modal outputs while remaining precise and accurate. We also show the advantages of conditioning on relevant local geometric features while ignoring irrelevant global structure that harms both generalization and precision. We demonstrate our approach on three distinct rearrangement tasks that require handling multi-modality and generalization over object shape and pose in both simulation and the real world. Project website, code, and videos: https://anthonysimeonov.github.io/rpdiff-multi-modal/ |
|
2023-07-11T00:00:00 | 2307.04008 | Toward Interactive Dictation | [
"Belinda Z. Li",
"Jason Eisner",
"Adam Pauls",
"Sam Thomson"
] | Voice dictation is an increasingly important text input modality. Existing systems that allow both dictation and editing-by-voice restrict their command language to flat templates invoked by trigger words. In this work, we study the feasibility of allowing users to interrupt their dictation with spoken editing commands in open-ended natural language. We introduce a new task and dataset, TERTiUS, to experiment with such systems. To support this flexibility in real-time, a system must incrementally segment and classify spans of speech as either dictation or command, and interpret the spans that are commands. We experiment with using large pre-trained language models to predict the edited text, or alternatively, to predict a small text-editing program. Experiments show a natural trade-off between model accuracy and latency: a smaller model achieves 30% end-state accuracy with 1.3 seconds of latency, while a larger model achieves 55% end-state accuracy with 7 seconds of latency. |
|
2023-07-11T00:00:00 | 2307.04577 | AnyTeleop: A General Vision-Based Dexterous Robot Arm-Hand Teleoperation System | [
"Yuzhe Qin",
"Wei Yang",
"Binghao Huang",
"Karl Van Wyk",
"Hao Su",
"Xiaolong Wang",
"Yu-Wei Chao",
"Dietor Fox"
] | Vision-based teleoperation offers the possibility to endow robots with human-level intelligence to physically interact with the environment, while only requiring low-cost camera sensors. However, current vision-based teleoperation systems are designed and engineered towards a particular robot model and deploy environment, which scales poorly as the pool of the robot models expands and the variety of the operating environment increases. In this paper, we propose AnyTeleop, a unified and general teleoperation system to support multiple different arms, hands, realities, and camera configurations within a single system. Although being designed to provide great flexibility to the choice of simulators and real hardware, our system can still achieve great performance. For real-world experiments, AnyTeleop can outperform a previous system that was designed for a specific robot hardware with a higher success rate, using the same robot. For teleoperation in simulation, AnyTeleop leads to better imitation learning performance, compared with a previous system that is particularly designed for that simulator. Project page: http://anyteleop.com/. |
|
2023-07-12T00:00:00 | 2307.04787 | Collaborative Score Distillation for Consistent Visual Synthesis | [
"Subin Kim",
"Kyungmin Lee",
"June Suk Choi",
"Jongheon Jeong",
"Kihyuk Sohn",
"Jinwoo Shin"
] | Generative priors of large-scale text-to-image diffusion models enable a wide range of new generation and editing applications on diverse visual modalities. However, when adapting these priors to complex visual modalities, often represented as multiple images (e.g., video), achieving consistency across a set of images is challenging. In this paper, we address this challenge with a novel method, Collaborative Score Distillation (CSD). CSD is based on the Stein Variational Gradient Descent (SVGD). Specifically, we propose to consider multiple samples as "particles" in the SVGD update and combine their score functions to distill generative priors over a set of images synchronously. Thus, CSD facilitates seamless integration of information across 2D images, leading to a consistent visual synthesis across multiple samples. We show the effectiveness of CSD in a variety of tasks, encompassing the visual editing of panorama images, videos, and 3D scenes. Our results underline the competency of CSD as a versatile method for enhancing inter-sample consistency, thereby broadening the applicability of text-to-image diffusion models. |
|
2023-07-12T00:00:00 | 2307.04964 | Secrets of RLHF in Large Language Models Part I: PPO | [
"Rui Zheng",
"Shihan Dou",
"Songyang Gao",
"Wei Shen",
"Binghai Wang",
"Yan Liu",
"Senjie Jin",
"Qin Liu",
"Limao Xiong",
"Lu Chen",
"Zhiheng Xi",
"Yuhao Zhou",
"Nuo Xu",
"Wenbin Lai",
"Minghao Zhu",
"Rongxiang Weng",
"Wensen Cheng",
"Cheng Chang",
"Zhangyue Yin",
"Yuan Hua",
"Haoran Huang",
"Tianxiang Sun",
"Hang Yan",
"Tao Gui",
"Qi Zhang",
"Xipeng Qiu",
"Xuanjing Huang"
] | Large language models (LLMs) have formulated a blueprint for the advancement of artificial general intelligence. Its primary objective is to function as a human-centric (helpful, honest, and harmless) assistant. Alignment with humans assumes paramount significance, and reinforcement learning with human feedback (RLHF) emerges as the pivotal technological paradigm underpinning this pursuit. Current technical routes usually include reward models to measure human preferences, Proximal Policy Optimization (PPO) to optimize policy model outputs, and process supervision to improve step-by-step reasoning capabilities. However, due to the challenges of reward design, environment interaction, and agent training, coupled with huge trial and error cost of large language models, there is a significant barrier for AI researchers to motivate the development of technical alignment and safe landing of LLMs. The stable training of RLHF has still been a puzzle. In the first report, we dissect the framework of RLHF, re-evaluate the inner workings of PPO, and explore how the parts comprising PPO algorithms impact policy agent training. We identify policy constraints being the key factor for the effective implementation of the PPO algorithm. Therefore, we explore the PPO-max, an advanced version of PPO algorithm, to efficiently improve the training stability of the policy model. Based on our main results, we perform a comprehensive analysis of RLHF abilities compared with SFT models and ChatGPT. The absence of open-source implementations has posed significant challenges to the investigation of LLMs alignment. Therefore, we are eager to release technical reports, reward models and PPO codes |
|
2023-07-12T00:00:00 | 2307.05222 | Generative Pretraining in Multimodality | [
"Quan Sun",
"Qiying Yu",
"Yufeng Cui",
"Fan Zhang",
"Xiaosong Zhang",
"Yueze Wang",
"Hongcheng Gao",
"Jingjing Liu",
"Tiejun Huang",
"Xinlong Wang"
] | We present Emu, a Transformer-based multimodal foundation model, which can seamlessly generate images and texts in multimodal context. This omnivore model can take in any single-modality or multimodal data input indiscriminately (e.g., interleaved image, text and video) through a one-model-for-all autoregressive training process. First, visual signals are encoded into embeddings, and together with text tokens form an interleaved input sequence. Emu is then end-to-end trained with a unified objective of classifying the next text token or regressing the next visual embedding in the multimodal sequence. This versatile multimodality empowers the exploration of diverse pretraining data sources at scale, such as videos with interleaved frames and text, webpages with interleaved images and text, as well as web-scale image-text pairs and video-text pairs. Emu can serve as a generalist multimodal interface for both image-to-text and text-to-image tasks, and supports in-context image and text generation. Across a broad range of zero-shot/few-shot tasks including image captioning, visual question answering, video question answering and text-to-image generation, Emu demonstrates superb performance compared to state-of-the-art large multimodal models. Extended capabilities such as multimodal assistants via instruction tuning are also demonstrated with impressive performance. |
|
2023-07-12T00:00:00 | 2307.05445 | AutoDecoding Latent 3D Diffusion Models | [
"Evangelos Ntavelis",
"Aliaksandr Siarohin",
"Kyle Olszewski",
"Chaoyang Wang",
"Luc Van Gool",
"Sergey Tulyakov"
] | We present a novel approach to the generation of static and articulated 3D assets that has a 3D autodecoder at its core. The 3D autodecoder framework embeds properties learned from the target dataset in the latent space, which can then be decoded into a volumetric representation for rendering view-consistent appearance and geometry. We then identify the appropriate intermediate volumetric latent space, and introduce robust normalization and de-normalization operations to learn a 3D diffusion from 2D images or monocular videos of rigid or articulated objects. Our approach is flexible enough to use either existing camera supervision or no camera information at all -- instead efficiently learning it during training. Our evaluations demonstrate that our generation results outperform state-of-the-art alternatives on various benchmark datasets and metrics, including multi-view image datasets of synthetic objects, real in-the-wild videos of moving people, and a large-scale, real video dataset of static objects. |
|
2023-07-12T00:00:00 | 2307.05300 | Unleashing Cognitive Synergy in Large Language Models: A Task-Solving Agent through Multi-Persona Self-Collaboration | [
"Zhenhailong Wang",
"Shaoguang Mao",
"Wenshan Wu",
"Tao Ge",
"Furu Wei",
"Heng Ji"
] | https://github.com/MikeWangWZHL/Solo-Performance-Prompting.git | Human intelligence thrives on the concept of cognitive synergy, where collaboration and information integration among different cognitive processes yield superior outcomes compared to individual cognitive processes in isolation. Although Large Language Models (LLMs) have demonstrated promising performance as general task-solving agents, they still struggle with tasks that require intensive domain knowledge and complex reasoning. In this work, we propose Solo Performance Prompting (SPP), which transforms a single LLM into a cognitive synergist by engaging in multi-turn self-collaboration with multiple personas. A cognitive synergist refers to an intelligent agent that collaborates with multiple minds, combining their individual strengths and knowledge, to enhance problem-solving and overall performance in complex tasks. By dynamically identifying and simulating different personas based on task inputs, SPP unleashes the potential of cognitive synergy in LLMs. We have discovered that assigning multiple, fine-grained personas in LLMs elicits better problem-solving abilities compared to using a single or fixed number of personas. We evaluate SPP on three challenging tasks: Trivia Creative Writing, Codenames Collaborative, and Logic Grid Puzzle, encompassing both knowledge-intensive and reasoning-intensive types. Unlike previous works, such as Chain-of-Thought, that solely enhance the reasoning abilities in LLMs, SPP effectively elicits internal knowledge acquisition abilities, reduces hallucination, and maintains strong reasoning capabilities. Code, data, and prompts can be found at: https://github.com/MikeWangWZHL/Solo-Performance-Prompting.git. |
2023-07-12T00:00:00 | 2307.05473 | Differentiable Blocks World: Qualitative 3D Decomposition by Rendering Primitives | [
"Tom Monnier",
"Jake Austin",
"Angjoo Kanazawa",
"Alexei A. Efros",
"Mathieu Aubry"
] | Given a set of calibrated images of a scene, we present an approach that produces a simple, compact, and actionable 3D world representation by means of 3D primitives. While many approaches focus on recovering high-fidelity 3D scenes, we focus on parsing a scene into mid-level 3D representations made of a small set of textured primitives. Such representations are interpretable, easy to manipulate and suited for physics-based simulations. Moreover, unlike existing primitive decomposition methods that rely on 3D input data, our approach operates directly on images through differentiable rendering. Specifically, we model primitives as textured superquadric meshes and optimize their parameters from scratch with an image rendering loss. We highlight the importance of modeling transparency for each primitive, which is critical for optimization and also enables handling varying numbers of primitives. We show that the resulting textured primitives faithfully reconstruct the input images and accurately model the visible 3D points, while providing amodal shape completions of unseen object regions. We compare our approach to the state of the art on diverse scenes from DTU, and demonstrate its robustness on real-life captures from BlendedMVS and Nerfstudio. We also showcase how our results can be used to effortlessly edit a scene or perform physical simulations. Code and video results are available at https://www.tmonnier.com/DBW . |
|
2023-07-12T00:00:00 | 2307.05432 | Self-Supervised Learning with Lie Symmetries for Partial Differential Equations | [
"Grégoire Mialon",
"Quentin Garrido",
"Hannah Lawrence",
"Danyal Rehman",
"Yann LeCun",
"Bobak T. Kiani"
] | Machine learning for differential equations paves the way for computationally efficient alternatives to numerical solvers, with potentially broad impacts in science and engineering. Though current algorithms typically require simulated training data tailored to a given setting, one may instead wish to learn useful information from heterogeneous sources, or from real dynamical systems observations that are messy or incomplete. In this work, we learn general-purpose representations of PDEs from heterogeneous data by implementing joint embedding methods for self-supervised learning (SSL), a framework for unsupervised representation learning that has had notable success in computer vision. Our representation outperforms baseline approaches to invariant tasks, such as regressing the coefficients of a PDE, while also improving the time-stepping performance of neural solvers. We hope that our proposed methodology will prove useful in the eventual development of general-purpose foundation models for PDEs. |
|
2023-07-12T00:00:00 | 2307.05463 | EgoVLPv2: Egocentric Video-Language Pre-training with Fusion in the Backbone | [
"Shraman Pramanick",
"Yale Song",
"Sayan Nag",
"Kevin Qinghong Lin",
"Hardik Shah",
"Mike Zheng Shou",
"Rama Chellappa",
"Pengchuan Zhang"
] | Video-language pre-training (VLP) has become increasingly important due to its ability to generalize to various vision and language tasks. However, existing egocentric VLP frameworks utilize separate video and language encoders and learn task-specific cross-modal information only during fine-tuning, limiting the development of a unified system. In this work, we introduce the second generation of egocentric video-language pre-training (EgoVLPv2), a significant improvement from the previous generation, by incorporating cross-modal fusion directly into the video and language backbones. EgoVLPv2 learns strong video-text representation during pre-training and reuses the cross-modal attention modules to support different downstream tasks in a flexible and efficient manner, reducing fine-tuning costs. Moreover, our proposed fusion in the backbone strategy is more lightweight and compute-efficient than stacking additional fusion-specific layers. Extensive experiments on a wide range of VL tasks demonstrate the effectiveness of EgoVLPv2 by achieving consistent state-of-the-art performance over strong baselines across all downstream. Our project page can be found at https://shramanpramanick.github.io/EgoVLPv2/. |
|
2023-07-12T00:00:00 | 2307.05454 | Empowering Cross-lingual Behavioral Testing of NLP Models with Typological Features | [
"Ester Hlavnova",
"Sebastian Ruder"
] | A challenge towards developing NLP systems for the world's languages is understanding how they generalize to typological differences relevant for real-world applications. To this end, we propose M2C, a morphologically-aware framework for behavioral testing of NLP models. We use M2C to generate tests that probe models' behavior in light of specific linguistic features in 12 typologically diverse languages. We evaluate state-of-the-art language models on the generated tests. While models excel at most tests in English, we highlight generalization failures to specific typological characteristics such as temporal expressions in Swahili and compounding possessives in Finish. Our findings motivate the development of models that address these blind spots. |
|
2023-07-12T00:00:00 | 2307.05462 | Efficient 3D Articulated Human Generation with Layered Surface Volumes | [
"Yinghao Xu",
"Wang Yifan",
"Alexander W. Bergman",
"Menglei Chai",
"Bolei Zhou",
"Gordon Wetzstein"
] | Access to high-quality and diverse 3D articulated digital human assets is crucial in various applications, ranging from virtual reality to social platforms. Generative approaches, such as 3D generative adversarial networks (GANs), are rapidly replacing laborious manual content creation tools. However, existing 3D GAN frameworks typically rely on scene representations that leverage either template meshes, which are fast but offer limited quality, or volumes, which offer high capacity but are slow to render, thereby limiting the 3D fidelity in GAN settings. In this work, we introduce layered surface volumes (LSVs) as a new 3D object representation for articulated digital humans. LSVs represent a human body using multiple textured mesh layers around a conventional template. These layers are rendered using alpha compositing with fast differentiable rasterization, and they can be interpreted as a volumetric representation that allocates its capacity to a manifold of finite thickness around the template. Unlike conventional single-layer templates that struggle with representing fine off-surface details like hair or accessories, our surface volumes naturally capture such details. LSVs can be articulated, and they exhibit exceptional efficiency in GAN settings, where a 2D generator learns to synthesize the RGBA textures for the individual layers. Trained on unstructured, single-view 2D image datasets, our LSV-GAN generates high-quality and view-consistent 3D articulated digital humans without the need for view-inconsistent 2D upsampling networks. |
|
2023-07-12T00:00:00 | 2307.05014 | Test-Time Training on Video Streams | [
"Renhao Wang",
"Yu Sun",
"Yossi Gandelsman",
"Xinlei Chen",
"Alexei A. Efros",
"Xiaolong Wang"
] | Prior work has established test-time training (TTT) as a general framework to further improve a trained model at test time. Before making a prediction on each test instance, the model is trained on the same instance using a self-supervised task, such as image reconstruction with masked autoencoders. We extend TTT to the streaming setting, where multiple test instances - video frames in our case - arrive in temporal order. Our extension is online TTT: The current model is initialized from the previous model, then trained on the current frame and a small window of frames immediately before. Online TTT significantly outperforms the fixed-model baseline for four tasks, on three real-world datasets. The relative improvement is 45% and 66% for instance and panoptic segmentation. Surprisingly, online TTT also outperforms its offline variant that accesses more information, training on all frames from the entire test video regardless of temporal order. This differs from previous findings using synthetic videos. We conceptualize locality as the advantage of online over offline TTT. We analyze the role of locality with ablations and a theory based on bias-variance trade-off. |
|
2023-07-13T00:00:00 | 2307.06018 | PolyLM: An Open Source Polyglot Large Language Model | [
"Xiangpeng Wei",
"Haoran Wei",
"Huan Lin",
"Tianhao Li",
"Pei Zhang",
"Xingzhang Ren",
"Mei Li",
"Yu Wan",
"Zhiwei Cao",
"Binbin Xie",
"Tianxiang Hu",
"Shangjie Li",
"Binyuan Hui",
"Bowen Yu",
"Dayiheng Liu",
"Baosong Yang",
"Fei Huang",
"Jun Xie"
] | Large language models (LLMs) demonstrate remarkable ability to comprehend, reason, and generate following nature language instructions. However, the development of LLMs has been primarily focused on high-resource languages, such as English, thereby limiting their applicability and research in other languages. Consequently, we present PolyLM, a multilingual LLM trained on 640 billion (B) tokens, avaliable in two model sizes: 1.7B and 13B. To enhance its multilingual capabilities, we 1) integrate bilingual data into training data; and 2) adopt a curriculum learning strategy that increases the proportion of non-English data from 30% in the first stage to 60% in the final stage during pre-training. Further, we propose a multilingual self-instruct method which automatically generates 132.7K diverse multilingual instructions for model fine-tuning. To assess the model's performance, we collect several existing multilingual tasks, including multilingual understanding, question answering, generation, and translation. Extensive experiments show that PolyLM surpasses other open-source models such as LLaMA and BLOOM on multilingual tasks while maintaining comparable performance in English. Our models, alone with the instruction data and multilingual benchmark, are available at: https://modelscope.cn/models/damo/nlp_polylm_13b_text_generation. |
|
2023-07-13T00:00:00 | 2307.06304 | Patch n' Pack: NaViT, a Vision Transformer for any Aspect Ratio and Resolution | [
"Mostafa Dehghani",
"Basil Mustafa",
"Josip Djolonga",
"Jonathan Heek",
"Matthias Minderer",
"Mathilde Caron",
"Andreas Steiner",
"Joan Puigcerver",
"Robert Geirhos",
"Ibrahim Alabdulmohsin",
"Avital Oliver",
"Piotr Padlewski",
"Alexey Gritsenko",
"Mario Lučić",
"Neil Houlsby"
] | The ubiquitous and demonstrably suboptimal choice of resizing images to a fixed resolution before processing them with computer vision models has not yet been successfully challenged. However, models such as the Vision Transformer (ViT) offer flexible sequence-based modeling, and hence varying input sequence lengths. We take advantage of this with NaViT (Native Resolution ViT) which uses sequence packing during training to process inputs of arbitrary resolutions and aspect ratios. Alongside flexible model usage, we demonstrate improved training efficiency for large-scale supervised and contrastive image-text pretraining. NaViT can be efficiently transferred to standard tasks such as image and video classification, object detection, and semantic segmentation and leads to improved results on robustness and fairness benchmarks. At inference time, the input resolution flexibility can be used to smoothly navigate the test-time cost-performance trade-off. We believe that NaViT marks a departure from the standard, CNN-designed, input and modelling pipeline used by most computer vision models, and represents a promising direction for ViTs. |
|
2023-07-13T00:00:00 | 2307.05695 | Stack More Layers Differently: High-Rank Training Through Low-Rank Updates | [
"Vladislav Lialin",
"Namrata Shivagunde",
"Sherin Muckatira",
"Anna Rumshisky"
] | Despite the dominance and effectiveness of scaling, resulting in large networks with hundreds of billions of parameters, the necessity to train overparametrized models remains poorly understood, and alternative approaches do not necessarily make it cheaper to train high-performance models. In this paper, we explore low-rank training techniques as an alternative approach to training large neural networks. We introduce a novel method called ReLoRA, which utilizes low-rank updates to train high-rank networks. We apply ReLoRA to pre-training transformer language models with up to 350M parameters and demonstrate comparable performance to regular neural network training. Furthermore, we observe that the efficiency of ReLoRA increases with model size, making it a promising approach for training multi-billion-parameter networks efficiently. Our findings shed light on the potential of low-rank training techniques and their implications for scaling laws. |
|
2023-07-13T00:00:00 | 2307.06135 | SayPlan: Grounding Large Language Models using 3D Scene Graphs for Scalable Task Planning | [
"Krishan Rana",
"Jesse Haviland",
"Sourav Garg",
"Jad Abou-Chakra",
"Ian Reid",
"Niko Suenderhauf"
] | Large language models (LLMs) have demonstrated impressive results in developing generalist planning agents for diverse tasks. However, grounding these plans in expansive, multi-floor, and multi-room environments presents a significant challenge for robotics. We introduce SayPlan, a scalable approach to LLM-based, large-scale task planning for robotics using 3D scene graph (3DSG) representations. To ensure the scalability of our approach, we: (1) exploit the hierarchical nature of 3DSGs to allow LLMs to conduct a semantic search for task-relevant subgraphs from a smaller, collapsed representation of the full graph; (2) reduce the planning horizon for the LLM by integrating a classical path planner and (3) introduce an iterative replanning pipeline that refines the initial plan using feedback from a scene graph simulator, correcting infeasible actions and avoiding planning failures. We evaluate our approach on two large-scale environments spanning up to 3 floors, 36 rooms and 140 objects, and show that our approach is capable of grounding large-scale, long-horizon task plans from abstract, and natural language instruction for a mobile manipulator robot to execute. |
|
2023-07-13T00:00:00 | 2307.05628 | DNAGPT: A Generalized Pretrained Tool for Multiple DNA Sequence Analysis Tasks | [
"Daoan Zhang",
"Weitong Zhang",
"Bing He",
"Jianguo Zhang",
"Chenchen Qin",
"Jianhua Yao"
] | The success of the GPT series proves that GPT can extract general information from sequences, thereby benefiting all downstream tasks. This motivates us to use pre-trained models to explore the hidden information in DNA sequences. However, data and task requirements in DNA sequence analysis are complexity and diversity as DNA relevant data includes different types of information, such as sequences, expression levels, etc, while there is currently no model specifically designed for these characteristics. Hereby, we present DNAGPT, a generalized foundation model pre-trained on over 10 billion base pairs from 9 species which can be fine-tuned for any DNA sequence analysis task. Our model can simultaneously process or output DNA sequences and numbers. In addition, our unique token design allows users to design prompts according to their own task requirements, making it applicable to any type of task. We have evaluated our model on classification, regression, and generation tasks. We demonstrate that DNAGPT benefits from pre-training, and therefore can bring performance gains to any downstream task. Our model is not only a new attempt in the field of genomes analysis, but also provides a new direction for the application of foundation models in biology. |
|
2023-07-13T00:00:00 | 2307.06290 | Instruction Mining: High-Quality Instruction Data Selection for Large Language Models | [
"Yihan Cao",
"Yanbin Kang",
"Lichao Sun"
] | Large language models typically undergo two training stages, pretraining and finetuning. Despite that large-scale pretraining endows the model with strong capabilities to generate natural language responses, these pretrained models can still fail to understand human instructions at times. To enhance language models' ability of interpreting and responding to instructions, instruction finetuning has emerged as a critical method in this area. Recent studies found that large language models can be finetuned to perform well even with a small amount of high-quality instruction-following data. However, the selection of high-quality datasets for finetuning language models still lacks clear guidelines to follow. In this paper, we propose InstructMining, a linear rule for evaluating instruction-following data quality. We formulate InstructMining using specific natural language indicators. To investigate the relationship between data quality and these indicators, we further conduct extensive finetuning experiments. The experiment results are then applied to estimating parameters in InstructMining. To further investigate its performance, we use InstructMining to select high-quality data from unseen datasets. Results demonstrate that InstructMining can help select relatively high-quality samples from various instruction-following datasets. Compared to models finetuned on unfiltered datasets, models finetuned on InstructMining selected datasets perform better on 42.5% cases. |
|
2023-07-13T00:00:00 | 2307.05591 | SITTA: A Semantic Image-Text Alignment for Image Captioning | [
"Fabian Paischer",
"Thomas Adler",
"Markus Hofmarcher",
"Sepp Hochreiter"
] | Textual and semantic comprehension of images is essential for generating proper captions. The comprehension requires detection of objects, modeling of relations between them, an assessment of the semantics of the scene and, finally, representing the extracted knowledge in a language space. To achieve rich language capabilities while ensuring good image-language mappings, pretrained language models (LMs) were conditioned on pretrained multi-modal (image-text) models that allow for image inputs. This requires an alignment of the image representation of the multi-modal model with the language representations of a generative LM. However, it is not clear how to best transfer semantics detected by the vision encoder of the multi-modal model to the LM. We introduce two novel ways of constructing a linear mapping that successfully transfers semantics between the embedding spaces of the two pretrained models. The first aligns the embedding space of the multi-modal language encoder with the embedding space of the pretrained LM via token correspondences. The latter leverages additional data that consists of image-text pairs to construct the mapping directly from vision to language space. Using our semantic mappings, we unlock image captioning for LMs without access to gradient information. By using different sources of data we achieve strong captioning performance on MS-COCO and Flickr30k datasets. Even in the face of limited data, our method partly exceeds the performance of other zero-shot and even finetuned competitors. Our ablation studies show that even LMs at a scale of merely 250M parameters can generate decent captions employing our semantic mappings. Our approach makes image captioning more accessible for institutions with restricted computational resources. |
|
2023-07-13T00:00:00 | 2307.05741 | Towards Robust and Efficient Continual Language Learning | [
"Adam Fisch",
"Amal Rannen-Triki",
"Razvan Pascanu",
"Jörg Bornschein",
"Angeliki Lazaridou",
"Elena Gribovskaya",
"Marc'Aurelio Ranzato"
] | As the application space of language models continues to evolve, a natural question to ask is how we can quickly adapt models to new tasks. We approach this classic question from a continual learning perspective, in which we aim to continue fine-tuning models trained on past tasks on new tasks, with the goal of "transferring" relevant knowledge. However, this strategy also runs the risk of doing more harm than good, i.e., negative transfer. In this paper, we construct a new benchmark of task sequences that target different possible transfer scenarios one might face, such as a sequence of tasks with high potential of positive transfer, high potential for negative transfer, no expected effect, or a mixture of each. An ideal learner should be able to maximally exploit information from all tasks that have any potential for positive transfer, while also avoiding the negative effects of any distracting tasks that may confuse it. We then propose a simple, yet effective, learner that satisfies many of our desiderata simply by leveraging a selective strategy for initializing new models from past task checkpoints. Still, limitations remain, and we hope this benchmark can help the community to further build and analyze such learners. |
|
2023-07-13T00:00:00 | 2307.05959 | Giving Robots a Hand: Learning Generalizable Manipulation with Eye-in-Hand Human Video Demonstrations | [
"Moo Jin Kim",
"Jiajun Wu",
"Chelsea Finn"
] | Eye-in-hand cameras have shown promise in enabling greater sample efficiency and generalization in vision-based robotic manipulation. However, for robotic imitation, it is still expensive to have a human teleoperator collect large amounts of expert demonstrations with a real robot. Videos of humans performing tasks, on the other hand, are much cheaper to collect since they eliminate the need for expertise in robotic teleoperation and can be quickly captured in a wide range of scenarios. Therefore, human video demonstrations are a promising data source for learning generalizable robotic manipulation policies at scale. In this work, we augment narrow robotic imitation datasets with broad unlabeled human video demonstrations to greatly enhance the generalization of eye-in-hand visuomotor policies. Although a clear visual domain gap exists between human and robot data, our framework does not need to employ any explicit domain adaptation method, as we leverage the partial observability of eye-in-hand cameras as well as a simple fixed image masking scheme. On a suite of eight real-world tasks involving both 3-DoF and 6-DoF robot arm control, our method improves the success rates of eye-in-hand manipulation policies by 58% (absolute) on average, enabling robots to generalize to both new environment configurations and new tasks that are unseen in the robot demonstration data. See video results at https://giving-robots-a-hand.github.io/ . |
Subsets and Splits