|
--- |
|
license: cc-by-nc-sa-4.0 |
|
configs: |
|
- config_name: en-de |
|
data_files: |
|
- split: train |
|
path: en-de/*.tsv |
|
- config_name: en-el |
|
data_files: |
|
- split: train |
|
path: en-el/*.tsv |
|
- config_name: en-es |
|
data_files: |
|
- split: train |
|
path: en-es/*.tsv |
|
- config_name: en-fr |
|
data_files: |
|
- split: train |
|
path: en-fr/*.tsv |
|
- config_name: en-it |
|
data_files: |
|
- split: train |
|
path: en-it/*.tsv |
|
task_categories: |
|
- text-generation |
|
- text2text-generation |
|
- translation |
|
- summarization |
|
language: |
|
- en |
|
- el |
|
- de |
|
- fr |
|
- es |
|
- it |
|
size_categories: |
|
- 100K<n<1M |
|
--- |
|
# SciPar Parallel Documents |
|
|
|
<br/> |
|
|
|
# Dataset Description |
|
|
|
This dataset contains parallel documents (i.e., titles & abstracts) extracted from academic theses, dissertations, and other scientific texts. |
|
|
|
In the original [paper](https://aclanthology.org/2022.lrec-1.284.pdf), we've extracted 9.17M sentence pairs in 31 language pairs from 86 repositories. |
|
|
|
This version has been created through further processing and filtering to extract parallel **documents** instead of parallel **sentences**. |
|
|
|
To do this, we kept only the parallel titles and abstracts of academic records with high (mean) alignment scores by also using other filters (e.g., word ratio, non-empty abstracts, etc.). |
|
|
|
Please note that this dataset will keep getting updated to include *more language pairs*, per the original paper. |
|
|
|
<br/> |
|
|
|
Table 1: Number of parallel documents per language pair |
|
|
|
| Lang. Pair | # Parallel Docs | |
|
|------------|-----------------| |
|
| EN-DE | 57,387 | |
|
| EN-EL | 55,833 | |
|
| EN-ES | 25,844 | |
|
| EN-FR | 130,750 | |
|
| EN-IT | 3,860 | |
|
| **TOTAL** | **273,674** | |
|
|
|
<br/> |
|
|
|
# Related Datasets |
|
|
|
The original datasets can be found in ELRC-SHARE: |
|
- [Original SciPar in Moses format](https://elrc-share.eu/repository/browse/scipar-a-collection-of-parallel-corpora-from-scientific-abstracts-v-2021-in-moses-format/e78f32fe739611ec9c1a00155d026706a5d3e42019af467193538b102cf080f8/) |
|
- [Original SciPar in TMX format](https://elrc-share.eu/repository/browse/scipar-a-collection-of-parallel-corpora-from-scientific-abstracts-v-2021-in-tmx-format/aaf503c0739411ec9c1a00155d02670665aacff53a8543938cd99da54fdd66af/) |
|
- [SciPar UK-EN-RU in TMX format](https://elrc-share.eu/repository/browse/scipar-uk-en-ru/f635552ab06011ec9c1a00155d0267061ce92362f8af4c0b9d4f64d017c2df3f/) |
|
|
|
# Citation |
|
``` |
|
@inproceedings{roussis2022scipar, |
|
title={SciPar: A collection of parallel corpora from scientific abstracts}, |
|
author={Roussis, Dimitrios and Papavassiliou, Vassilis and Prokopidis, Prokopis and Piperidis, Stelios and Katsouros, Vassilis}, |
|
booktitle={Proceedings of the Thirteenth Language Resources and Evaluation Conference}, |
|
pages={2652--2657}, |
|
year={2022} |
|
} |
|
``` |