You need to agree to share your contact information to access this dataset

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this dataset content.

Dataset Card for kabr-worked-example

Dataset Details

Manually annotated bounding box detections, mini-scenes, behavior annotations, and associated telemetry for three sessions used for kabr-tools case studies.

Annotations were created to evaluate the kabr-tools pipeline and conduct case studies on Grevy's landscape of fear and inter-species spatial distribution. Annotations include manual detections and tracks, mini-scenes cut from source videos, behavior annotations from an X3D action recognition model, and associated drone telemetry data. The detections contains bounding box coordinates, image file names, and class labels for each annotated animal. Annotations were created using CVAT to manually draw bounding boxes around animals in a selection of raw drone videos. The annotations were then exported as xml files and used to create the provided mini-scenes. The KABR X3D model was used to label the mini-scenes with predicted behaviors. Telemetry data was exported from Airdata.

Session Summary

Session Date Collected Demographic Information and Habitat Video File IDs in Session
1 2023-01-18 2 Adult male Grevy's zebra in an open plain DJI_0068, DJI_0069, DJI_0070, DJI_0071
2 2023-01-20 5 Grevy's zebra in a semi-open habitat along a roadway DJI_0142, DJI_0143, DJI_0144, DJI_0145, DJI_0146, DJI_0147
3 2023-01-21 Mixed herd of 3 reticulated giraffe, 2 plains zebras and 11 Grevy's zebras in a closed habitat with dense vegetation near Mo Kenya DJI_0206, DJI_0208, DJI_0210, DJI_0211

Dataset Structure


├── behavior
│   ├── 18_01_2023_session_7-DJI_0068.csv
│   ├── 18_01_2023_session_7-DJI_0069.csv
│   ├── 18_01_2023_session_7-DJI_0070.csv
│   ├── 18_01_2023_session_7-DJI_0071.csv
│   ├── 20_01_2023_session_3-DJI_0142.csv
│   ├── 20_01_2023_session_3-DJI_0143.csv
│   ├── 20_01_2023_session_3-DJI_0144.csv
│   ├── 20_01_2023_session_3-DJI_0145.csv
│   ├── 20_01_2023_session_3-DJI_0146.csv
│   ├── 20_01_2023_session_3-DJI_0147.csv
│   ├── 21_01_2023_session_5-DJI_0206.csv
│   ├── 21_01_2023_session_5-DJI_0208.csv
│   ├── 21_01_2023_session_5-DJI_0210.csv
│   ├── 21_01_2023_session_5-DJI_0211.csv
│   └── 21_01_2023_session_5-DJI_0212.csv
├── detections
│   ├── 18_01_2023_session_7-DJI_0068.xml
│   ├── 18_01_2023_session_7-DJI_0069.xml
│   ├── 18_01_2023_session_7-DJI_0070.xml
│   ├── 18_01_2023_session_7-DJI_0071.xml
│   ├── 20_01_2023_session_3-DJI_0142.xml
│   ├── 20_01_2023_session_3-DJI_0143.xml
│   ├── 20_01_2023_session_3-DJI_0144.xml
│   ├── 20_01_2023_session_3-DJI_0145.xml
│   ├── 20_01_2023_session_3-DJI_0146.xml
│   ├── 20_01_2023_session_3-DJI_0147.xml
│   ├── 21_01_2023_session_5-DJI_0206.xml
│   ├── 21_01_2023_session_5-DJI_0208.xml
│   ├── 21_01_2023_session_5-DJI_0210.xml
│   ├── 21_01_2023_session_5-DJI_0211.xml
│   └── 21_01_2023_session_5-DJI_0212.xml
├── mini_scenes
│   ├── 18_01_2023_session_7-DJI_0068
│   │   ├── 0.mp4
│   │   ├── 1.mp4
│   │   ├── DJI_0068.mp4
│   │   └── metadata
│   │       ├── DJI_0068.jpg
│   │       ├── DJI_0068_metadata.json
│   │       └── DJI_0068_tracks.xml
│   ├── 18_01_2023_session_7-DJI_0069
│   │   ├── 0.mp4
│   │   ├── 1.mp4
│   │   ├── DJI_0069.mp4
│   │   └── metadata
│   │       ├── DJI_0069.jpg
│   │       ├── DJI_0069_metadata.json
│   │       └── DJI_0069_tracks.xml
│   ├── 18_01_2023_session_7-DJI_0070
│   │   ├── 0.mp4
│   │   ├── 1.mp4
│   │   ├── DJI_0070.mp4
│   │   └── metadata
│   │       ├── DJI_0070.jpg
│   │       ├── DJI_0070_metadata.json
│   │       └── DJI_0070_tracks.xml
│   ├── 18_01_2023_session_7-DJI_0071
│   │   ├── 0.mp4
│   │   ├── 1.mp4
│   │   ├── DJI_0071.mp4
│   │   └── metadata
│   │       ├── DJI_0071.jpg
│   │       ├── DJI_0071_metadata.json
│   │       └── DJI_0071_tracks.xml
│   ├── 20_01_2023_session_3-DJI_0142
│   │   ├── 0.mp4
│   │   ├── 10.mp4
│   │   ├── 11.mp4
│   │   ├── 1.mp4
│   │   ├── 2.mp4
│   │   ├── 3.mp4
│   │   ├── 4.mp4
│   │   ├── 5.mp4
│   │   ├── 6.mp4
│   │   ├── 7.mp4
│   │   ├── 8.mp4
│   │   ├── 9.mp4
│   │   ├── actions
│   │   ├── DJI_0142.mp4
│   │   └── metadata
│   │       ├── DJI_0142.jpg
│   │       ├── DJI_0142_metadata.json
│   │       └── DJI_0142_tracks.xml
│   ├── 20_01_2023_session_3-DJI_0143
│   │   ├── 0.mp4
│   │   ├── 1.mp4
│   │   ├── 2.mp4
│   │   ├── 3.mp4
│   │   ├── 4.mp4
│   │   ├── actions
│   │   ├── DJI_0143.mp4
│   │   └── metadata
│   │       ├── DJI_0143.jpg
│   │       ├── DJI_0143_metadata.json
│   │       └── DJI_0143_tracks.xml
│   ├── 20_01_2023_session_3-DJI_0144
│   │   ├── 0.mp4
│   │   ├── 1.mp4
│   │   ├── 2.mp4
│   │   ├── 3.mp4
│   │   ├── 4.mp4
│   │   ├── 5.mp4
│   │   ├── actions
│   │   ├── DJI_0144.mp4
│   │   └── metadata
│   │       ├── DJI_0144.jpg
│   │       ├── DJI_0144_metadata.json
│   │       └── DJI_0144_tracks.xml
│   ├── 20_01_2023_session_3-DJI_0145
│   │   ├── 0.mp4
│   │   ├── 1.mp4
│   │   ├── 2.mp4
│   │   ├── 3.mp4
│   │   ├── 4.mp4
│   │   ├── actions
│   │   ├── DJI_0145.mp4
│   │   └── metadata
│   │       ├── DJI_0145.jpg
│   │       ├── DJI_0145_metadata.json
│   │       └── DJI_0145_tracks.xml
│   ├── 20_01_2023_session_3-DJI_0146
│   │   ├── 0.mp4
│   │   ├── 1.mp4
│   │   ├── 2.mp4
│   │   ├── 3.mp4
│   │   ├── 4.mp4
│   │   ├── 5.mp4
│   │   ├── actions
│   │   ├── DJI_0146.mp4
│   │   └── metadata
│   │       ├── DJI_0146.jpg
│   │       ├── DJI_0146_metadata.json
│   │       └── DJI_0146_tracks.xml
│   ├── 21_01_2023_session_5-DJI_0206
│   │   ├── 0.mp4
│   │   ├── 10.mp4
│   │   ├── 11.mp4
│   │   ├── 12.mp4
│   │   ├── 13.mp4
│   │   ├── 14.mp4
│   │   ├── 15.mp4
│   │   ├── 16.mp4
│   │   ├── 17.mp4
│   │   ├── 18.mp4
│   │   ├── 19.mp4
│   │   ├── 1.mp4
│   │   ├── 20.mp4
│   │   ├── 21.mp4
│   │   ├── 22.mp4
│   │   ├── 23.mp4
│   │   ├── 24.mp4
│   │   ├── 25.mp4
│   │   ├── 26.mp4
│   │   ├── 27.mp4
│   │   ├── 28.mp4
│   │   ├── 29.mp4
│   │   ├── 2.mp4
│   │   ├── 30.mp4
│   │   ├── 31.mp4
│   │   ├── 3.mp4
│   │   ├── 4.mp4
│   │   ├── 5.mp4
│   │   ├── 6.mp4
│   │   ├── 7.mp4
│   │   ├── 8.mp4
│   │   ├── 9.mp4
│   │   ├── DJI_0206.mp4
│   │   └── metadata
│   │       ├── DJI_0206.jpg
│   │       ├── DJI_0206_metadata.json
│   │       └── DJI_0206_tracks.xml
│   ├── 21_01_2023_session_5-DJI_0208
│   │   ├── 0.mp4
│   │   ├── 10.mp4
│   │   ├── 11.mp4
│   │   ├── 12.mp4
│   │   ├── 13.mp4
│   │   ├── 14.mp4
│   │   ├── 15.mp4
│   │   ├── 16.mp4
│   │   ├── 17.mp4
│   │   ├── 18.mp4
│   │   ├── 19.mp4
│   │   ├── 1.mp4
│   │   ├── 20.mp4
│   │   ├── 21.mp4
│   │   ├── 22.mp4
│   │   ├── 23.mp4
│   │   ├── 24.mp4
│   │   ├── 25.mp4
│   │   ├── 26.mp4
│   │   ├── 27.mp4
│   │   ├── 28.mp4
│   │   ├── 29.mp4
│   │   ├── 2.mp4
│   │   ├── 30.mp4
│   │   ├── 31.mp4
│   │   ├── 32.mp4
│   │   ├── 33.mp4
│   │   ├── 34.mp4
│   │   ├── 35.mp4
│   │   ├── 36.mp4
│   │   ├── 37.mp4
│   │   ├── 38.mp4
│   │   ├── 39.mp4
│   │   ├── 3.mp4
│   │   ├── 40.mp4
│   │   ├── 41.mp4
│   │   ├── 42.mp4
│   │   ├── 43.mp4
│   │   ├── 44.mp4
│   │   ├── 45.mp4
│   │   ├── 46.mp4
│   │   ├── 47.mp4
│   │   ├── 48.mp4
│   │   ├── 49.mp4
│   │   ├── 4.mp4
│   │   ├── 50.mp4
│   │   ├── 51.mp4
│   │   ├── 52.mp4
│   │   ├── 53.mp4
│   │   ├── 54.mp4
│   │   ├── 55.mp4
│   │   ├── 5.mp4
│   │   ├── 6.mp4
│   │   ├── 7.mp4
│   │   ├── 8.mp4
│   │   ├── 9.mp4
│   │   ├── DJI_0208.mp4
│   │   └── metadata
│   │       ├── DJI_0208.jpg
│   │       ├── DJI_0208_metadata.json
│   │       └── DJI_0208_tracks.xml
│   ├── 21_01_2023_session_5-DJI_0210
│   │   ├── 0.mp4
│   │   ├── 10.mp4
│   │   ├── 11.mp4
│   │   ├── 12.mp4
│   │   ├── 13.mp4
│   │   ├── 14.mp4
│   │   ├── 15.mp4
│   │   ├── 16.mp4
│   │   ├── 17.mp4
│   │   ├── 18.mp4
│   │   ├── 19.mp4
│   │   ├── 1.mp4
│   │   ├── 20.mp4
│   │   ├── 21.mp4
│   │   ├── 22.mp4
│   │   ├── 23.mp4
│   │   ├── 24.mp4
│   │   ├── 2.mp4
│   │   ├── 3.mp4
│   │   ├── 4.mp4
│   │   ├── 5.mp4
│   │   ├── 6.mp4
│   │   ├── 7.mp4
│   │   ├── 8.mp4
│   │   ├── 9.mp4
│   │   ├── DJI_0210.mp4
│   │   └── metadata
│   │       ├── DJI_0210.jpg
│   │       ├── DJI_0210_metadata.json
│   │       └── DJI_0210_tracks.xml
│   ├── 21_01_2023_session_5-DJI_0211
│   │   ├── 0.mp4
│   │   ├── 10.mp4
│   │   ├── 11.mp4
│   │   ├── 12.mp4
│   │   ├── 13.mp4
│   │   ├── 14.mp4
│   │   ├── 15.mp4
│   │   ├── 16.mp4
│   │   ├── 17.mp4
│   │   ├── 18.mp4
│   │   ├── 19.mp4
│   │   ├── 1.mp4
│   │   ├── 20.mp4
│   │   ├── 21.mp4
│   │   ├── 22.mp4
│   │   ├── 23.mp4
│   │   ├── 24.mp4
│   │   ├── 25.mp4
│   │   ├── 26.mp4
│   │   ├── 27.mp4
│   │   ├── 28.mp4
│   │   ├── 29.mp4
│   │   ├── 2.mp4
│   │   ├── 30.mp4
│   │   ├── 31.mp4
│   │   ├── 32.mp4
│   │   ├── 33.mp4
│   │   ├── 3.mp4
│   │   ├── 4.mp4
│   │   ├── 5.mp4
│   │   ├── 6.mp4
│   │   ├── 7.mp4
│   │   ├── 8.mp4
│   │   ├── 9.mp4
│   │   ├── DJI_0211.mp4
│   │   └── metadata
│   │       ├── DJI_0211.jpg
│   │       ├── DJI_0211_metadata.json
│   │       └── DJI_0211_tracks.xml
│   └── 21_01_2023_session_5-DJI_0212
│       ├── 0.mp4
│       ├── 10.mp4
│       ├── 11.mp4
│       ├── 12.mp4
│       ├── 13.mp4
│       ├── 14.mp4
│       ├── 1.mp4
│       ├── 2.mp4
│       ├── 3.mp4
│       ├── 4.mp4
│       ├── 5.mp4
│       ├── 6.mp4
│       ├── 7.mp4
│       ├── 8.mp4
│       ├── 9.mp4
│       ├── DJI_0212.mp4
│       └── metadata
│           ├── DJI_0212.jpg
│           ├── DJI_0212_metadata.json
│           └── DJI_0212_tracks.xml
├── README.md
└── telemetry
    ├── Jan-18th-2023-12-47PM-Flight-Airdata.csv
    ├── Jan-20th-2023-12-58PM-Flight-Airdata.csv
    └── Jan-21st-2023-02-49PM-Flight-Airdata.csv

What each file/folder is for

Path / Pattern Purpose
detections/*.xml Manual detections/tracks per source video (CVAT “tracks” XML). One <track> per animal across frames; used to cut mini-scenes.
mini_scenes/<video_id>/DJI_XXXX.mp4 The source video referenced by detections for that <video_id>.
mini_scenes/<video_id>/<k>.mp4 Mini-scenes (short clips) cut from the source video based on detection tracks (0.mp4, 1.mp4, …).
mini_scenes/<video_id>/metadata/DJI_XXXX_tracks.xml Copy of the CVAT tracks used to generate the mini-scenes (provenance).
mini_scenes/<video_id>/metadata/DJI_XXXX_metadata.json Video-level metadata (session/date, FPS, resolution, timing, etc.).
mini_scenes/<video_id>/metadata/DJI_XXXX.jpg Thumbnail/keyframe for quick preview.
mini_scenes/<video_id>/actions/ Per-clip auto behavior labels from the X3D action model (CSV or JSON; presence varies by video).
behavior/*.csv Per-video roll-ups of X3D behavior predictions. One row per mini-scene clip with label + references (and optional timing/confidence).
telemetry/*Flight-Airdata.csv Drone flight logs (Airdata export) for the corresponding sessions (timing, altitude, battery, etc.).
README.md Repository-level notes and usage tips.

Data instances

  • Detection instance (XML): one <track> spans frames; each <box> is a frame-level bounding box with coordinates and flags.
  • Mini-scene instance (MP4): a short clip indexed by file name (k.mp4) under mini_scenes/<video_id>/.
  • Behavior instance (CSV row): one mini-scene with X3D-predicted behavior and references to the clip (plus optional confidence/timing).
  • Telemetry instance (CSV row): one flight-log record from Airdata with timestamped vehicle context.

Data fields

A. Detections (CVAT “tracks” XML)

Element / Attribute Type Example Meaning
/annotations/version string 1.1 Annotation file/schema version.
/annotations/track@id integer 0 Unique id for a tracked object.
/annotations/track@label string Grevy Class/species label.
/annotations/track@source string manual How the annotation was created.
/annotations/track/box@frame int (0-based) 0,1,2,… Frame index.
/annotations/track/box@outside enum {0,1} 0 0 present; 1 not visible.
/annotations/track/box@occluded enum {0,1} 0 Occlusion flag.
/annotations/track/box@keyframe enum {0,1} 1 Keyframe marker.
/annotations/track/box@xtl float (px) 2342.00 X of top-left.
/annotations/track/box@ytl float (px) 2427.00 Y of top-left.
/annotations/track/box@xbr float (px) 2530.00 X of bottom-right.
/annotations/track/box@ybr float (px) 2623.00 Y of bottom-right.
/annotations/track/box@z_order integer 0 Drawing order.

B. Behavior CSV (auto labels; one file per source video)

Note: Column names may vary slightly by export; use the header in each CSV as ground truth.

Column (typical) Example Meaning
clip_path or clip_id mini_scenes/21_01_2023_session_5-DJI_0208/33.mp4 Relative path to the mini-scene clip.
source_video DJI_0208.mp4 Name of the parent/source video.
video_id 21_01_2023_session_5-DJI_0208 Folder/video identifier.
clip_index 33 Index of the clip within the video folder.
behavior walking X3D-predicted action/behavior label.
confidence 0.92 Model confidence/probability (if provided).
start_frame 1234 First frame of the segment (if provided).
end_frame 1450 Last frame of the segment (if provided).
start_time 00:00:41.2 Segment start time (if provided).
end_time 00:00:48.8 Segment end time (if provided).
species Grevy Species label (if propagated/available).
notes Free-text notes or flags (optional).
model x3d Model identifier used to label.
model_version x3d_m Specific checkpoint/version tag (optional).

C. Mini-scene metadata JSON (per source video)

Typical keys (presence may vary):

Key Example Meaning
video_id 21_01_2023_session_5-DJI_0208 Folder/video identifier.
source_video DJI_0208.mp4 Original MP4 filename.
session_date 2023-01-21 Capture date.
session_id session_5 Field session tag.
fps 29.97 Frames per second.
resolution [3840, 2160] Width × height (px).
duration_s 123.45 Video duration (seconds).
timezone Africa/Nairobi Local timezone of recording.
generator mini_scene_cutter@<git-sha> Tool/commit that wrote the metadata.
tracks_xml DJI_0208_tracks.xml Provenance link to the CVAT tracks file.

D. Actions folder (per-clip predictions; if present)

  • CSV format (typical columns): clip_index, clip_path, behavior, confidence, model, model_version.
  • JSON format (typical fields): object per clip with index, path, label, score, model, model_version.

E. Telemetry CSV (Airdata export)

Columns depend on Airdata export settings; common fields include:

Column (common) Example Meaning
UTC Timestamp 2023-01-21 12:49:07 Log timestamp (UTC).
Latitude / Longitude 0.28123, 37.12345 Aircraft location.
Altitude (m) 68.2 Altitude above takeoff or MSL (per export).
AGL (m) 47.9 Above-ground level (if provided).
Speed (m/s) 9.4 Horizontal speed.
Heading (deg) 135 Yaw/heading.
Battery (%) 54 Remaining battery percentage.
Flight Mode P-GPS Autopilot mode.
Distance (m) 122.5 Distance from home point.

Dataset Creation

Curation Rationale

Created to evaluate kabr-tools pipeline and conduct case studies on Grevy's landscape of fear and inter-species spatial distribution.

Source Data

Data Collection and Processing

Data collected at Mpala Research Centre, Kenya, in January 2023. The data was collected using a DJI Air 2S drone and manually annotated using CVAT. The annotations were exported as xml files.

Who are the source data producers?

See citation for kabr-full-video dataset - https://huggingface.co/datasets/imageomics/KABR-full-videos

Annotations

Annotation process

CVAT was used to manually annotate the bounding boxes around animals in the videos. The annotations were then exported as xml files to create mini-scenes using tracks_extractor.py. The mini-scenes were then labeled with predicted behaviors using the KABR X3D action recognition model using the miniscene2behavior.py.

Who are the annotators?

Alison Zhong and Jenna Kline

Personal and Sensitive Information

People trimmed from the videos before annotation. Endangered species are included in the dataset, but no personal or sensitive information is included.

Considerations for Using the Data

Intended Use Cases

This dataset serves as a worked example for the kabr-tools pipeline and is specifically designed for:

  • Pipeline demonstration: Showing complete end-to-end processing from raw videos to behavioral annotations
  • Method validation: Evaluating automated detection and behavior recognition against manual annotations
  • Case study research: Supporting specific research questions on Grevy's zebra landscape of fear and inter-species spatial distribution
  • Educational purposes: Teaching researchers how to use the kabr-tools pipeline with real data
  • Reproducibility: Providing a reference implementation with known inputs and outputs

Important Data Considerations

Limited scope: This is a demonstration dataset with only 3 sessions and 15 video files, designed to illustrate methodology rather than provide comprehensive coverage.

Session heterogeneity: Each session represents distinctly different scenarios:

  • Session 1: Minimal complexity (2 male Grevy's zebras, open habitat)
  • Session 2: Moderate complexity (5 Grevy's zebras, semi-open roadway habitat)
  • Session 3: High complexity (mixed species, dense vegetation, 16 total animals)

Processing completeness: Not all videos have complete processing outputs - some lack actions/ folders, reflecting real-world pipeline execution variability.

Annotation methodology: Manual detections serve as ground truth, while behavior labels are X3D model predictions, not expert-validated behaviors.

Bias, Risks, and Limitations

Sample size limitations:

  • Only 15 video files across 3 sessions
  • Insufficient for statistical generalization
  • Designed for demonstration, not comprehensive analysis

Species representation bias:

  • Heavily weighted toward Grevy's zebras (endangered species focus)
  • Giraffes only present in one session (Session 3)
  • Plains zebras only in mixed-species context
  • May not represent typical behavioral patterns for each species

Habitat and temporal constraints:

  • Single location (Mpala Research Centre, Kenya)
  • 3-day collection window (January 18-21, 2023)
  • Limited environmental and seasonal variability
  • Habitat types may not represent species' full range

Technical processing limitations:

  • X3D behavior predictions are automated, not expert-validated
  • Mini-scene extraction dependent on manual annotation quality
  • Telemetry synchronization with video timestamps may require adjustment
  • Some videos lack complete behavioral annotation outputs

Methodological constraints:

  • Manual annotations by only 2 annotators (potential inter-annotator variability)
  • CVAT tracking may have limitations in dense vegetation (Session 3)
  • Behavior model trained on different dataset, may not generalize perfectly

Recommendations

For pipeline evaluation and development:

  • Use manual detections in detections/*.xml as ground truth for automated detection validation
  • Compare processing outputs across sessions to understand pipeline performance in different scenarios
  • Use Session 1 (simple) for initial testing, Session 3 (complex) for stress testing
  • Validate timestamp alignment between telemetry and video data before spatial analysis

For case study research:

  • Landscape of fear studies: Focus on Grevy's zebra data from Sessions 1 and 2; use telemetry data to correlate spatial position with behaviors
  • Inter-species analysis: Use Session 3 mixed-species data; consider habitat complexity when interpreting interactions
  • Account for small sample sizes in statistical analyses and interpretation

For educational use:

  • Start with Session 1 data for learning pipeline basics
  • Progress through sessions in order of increasing complexity
  • Use metadata files to understand processing provenance
  • Examine both successful and incomplete processing examples

Technical recommendations:

  • Verify file completeness before analysis (not all videos have actions/ folders)
  • Check CSV headers as column names may vary between exports
  • Use metadata JSON files to understand video-specific processing parameters
  • Cross-reference telemetry timestamps with video timing for spatial-behavioral analysis

Data interpretation cautions:

  • Treat X3D behavior predictions as model outputs, not ground truth
  • Consider habitat context when interpreting behavioral patterns
  • Account for species-specific behavioral repertoires in analysis
  • Use this dataset to understand methodology, not to draw broad ecological conclusions

References

Licensing Information

This dataset is dedicated to the public domain for the benefit of scientific pursuits under the CC0 1.0 Universal Public Domain Dedication. We ask that you cite the dataset and related publications using the citations below if you make use of it in your research.

Citation

BibTeX:

Dataset

@misc{KABR_worked_example,
  author = {Zhong, Alison and Kline, Jenna and Kholiavchenko, Maksim and Stevens, Sam and Sheets, Alec and Babu, Reshma and Banerji, Namrata and Campolongo, Elizabeth and Thompson, Matthew and Van Tiel, Nina and Miliko, Jackson and Rosser, Neil and Stewart, Charles and Berger-Wolf, Tanya and Rubenstein, Daniel},
  title = {KABR Worked Example: Manually Annotated Detections and Behavioral Analysis for Kenyan Wildlife Pipeline Demonstration},
  year = {2023},
  url = {https://huggingface.co/datasets/imageomics/kabr-worked-example},
  publisher = {Hugging Face}
}

Related Publications

@inproceedings{kholiavchenko2024kabr,
  title={KABR: In-Situ Dataset for Kenyan Animal Behavior Recognition from Drone Videos},
  author={Kholiavchenko, Maksim and Kline, Jenna and Ramirez, Michelle and Stevens, Sam and Sheets, Alec and Babu, Reshma and Banerji, Namrata and Campolongo, Elizabeth and Thompson, Matthew and Van Tiel, Nina and Miliko, Jackson and Bessa, Eduardo and Duporge, Isla and Berger-Wolf, Tanya and Rubenstein, Daniel and Stewart, Charles},
  booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision},
  pages={31-40},
  year={2024}
}

kabr-tools manuscript (in preparation)

@article{kabr_tools_manuscript,
  title={kabr-tools: An Open-Source Pipeline for Automated Wildlife Behavior Analysis from Drone Videos},
  author={Zhong, Alison and Kline, Jenna and [additional authors]},
  journal={[Journal name]},
  year={[Year]},
  note={Manuscript in preparation}
}

Please also cite the original data sources:

Contributions

This work was supported by the Imageomics Institute, which is funded by the US National Science Foundation's Harnessing the Data Revolution (HDR) program under Award #2118240 (Imageomics: A New Frontier of Biological Information Powered by Knowledge-Guided Machine Learning). Additional support was provided by the AI Institute for Intelligent Cyberinfrastructure with Computational Learning in the Environment (ICICLE), funded by the US National Science Foundation under Award #2112606.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

The data was collected at the Mpala Research Centre in Kenya, in accordance with Research License No. NACOSTI/P/22/18214. The data collection protocol adhered strictly to the guidelines set forth by the Institutional Animal Care and Use Committee under permission No. IACUC 1835F.

Dataset Creation Contributors

  • Data Collection: Field team at Mpala Research Centre, Kenya
  • Manual Annotations: Alison Zhong and Jenna Kline
  • Pipeline Development: kabr-tools development team
  • Behavioral Analysis: X3D model predictions using KABR-trained models
  • Data Curation: Alison Zhong and Jenna Kline
  • Quality Assurance: Imageomics Institute research team

Glossary

Mini-scene: Short video clips (typically 5-10 seconds) extracted from source videos, centered on individual animals based on tracking annotations.

CVAT: Computer Vision Annotation Tool - open-source software used for manual video annotation and object tracking.

X3D: 3D CNN architecture used for video-based action recognition, adapted for animal behavior classification in the KABR project.

Track: A sequence of bounding boxes following a single animal across multiple video frames.

Telemetry: Flight data recorded by the drone during video capture, including GPS coordinates, altitude, speed, and battery status.

Session: A discrete data collection period, typically representing one flight or filming session on a specific date.

More Information

For detailed usage instructions and code examples, see the kabr-tools repository.

For questions about the broader KABR project and related datasets, visit the Imageomics Institute website.

This dataset is part of a larger effort to develop automated methods for wildlife monitoring and conservation using computer vision and machine learning techniques.

Dataset Card Authors

Jenna Kline

Dataset Card Contact

kline dot 377 at osu dot edu

Downloads last month
13

Collection including imageomics/kabr-worked-examples