code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : List[Any] = [] if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): for v in tree.values(): shapes.extend(_fetch_dims(SCREAMING_SNAKE_CASE ) ) elif isinstance(SCREAMING_SNAKE_CASE , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(SCREAMING_SNAKE_CASE ) ) elif isinstance(SCREAMING_SNAKE_CASE , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('''Not supported''' ) return shapes @torch.jit.ignore def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : str = [] for d in reversed(SCREAMING_SNAKE_CASE ): idx.append(flat_idx % d ) A_ : List[str] = flat_idx // d return tuple(reversed(SCREAMING_SNAKE_CASE ) ) @torch.jit.ignore def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , ): # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(SCREAMING_SNAKE_CASE ) -> None: A_ : Dict = True for i in range(len(SCREAMING_SNAKE_CASE ) ): A_ : Optional[Any] = -1 * (i + 1) l[reversed_idx] &= tally A_ : Any = l[reversed_idx] if start_edges is None: A_ : Tuple = [s == 0 for s in start] reduce_edge_list(SCREAMING_SNAKE_CASE ) if end_edges is None: A_ : Union[str, Any] = [e == (d - 1) for e, d in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )] reduce_edge_list(SCREAMING_SNAKE_CASE ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(SCREAMING_SNAKE_CASE ) == 0: return [()] elif len(SCREAMING_SNAKE_CASE ) == 1: return [(slice(start[0] , end[0] + 1 ),)] A_ : List[Tuple[slice, ...]] = [] A_ : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if s == e: path_list.append(slice(SCREAMING_SNAKE_CASE , s + 1 ) ) else: break A_ : Tuple[slice, ...] = tuple(SCREAMING_SNAKE_CASE ) A_ : Optional[int] = len(SCREAMING_SNAKE_CASE ) # start == end, and we're done if divergence_idx == len(SCREAMING_SNAKE_CASE ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None A_ : List[Any] = start[divergence_idx] return tuple( path + (slice(SCREAMING_SNAKE_CASE , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None A_ : Union[str, Any] = end[divergence_idx] return tuple( path + (slice(SCREAMING_SNAKE_CASE , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) A_ : int = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : Tuple = t.shape[:no_batch_dims] A_ : Tuple = list(_flat_idx_to_idx(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) # _get_minimal_slice_set is inclusive A_ : List[str] = list(_flat_idx_to_idx(flat_end - 1 , SCREAMING_SNAKE_CASE ) ) # Get an ordered list of slices to perform A_ : List[Any] = _get_minimal_slice_set( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) A_ : Tuple = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False , ): if not (len(SCREAMING_SNAKE_CASE ) > 0): raise ValueError('''Must provide at least one input''' ) A_ : int = [shape[:no_batch_dims] for shape in _fetch_dims(SCREAMING_SNAKE_CASE )] A_ : int = tuple([max(SCREAMING_SNAKE_CASE ) for s in zip(*SCREAMING_SNAKE_CASE )] ) def _prep_inputs(SCREAMING_SNAKE_CASE ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: A_ : Any = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) A_ : List[Any] = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: A_ : Optional[int] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t A_ : Dict[str, Any] = tensor_tree_map(_prep_inputs , SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = None if _out is not None: A_ : Optional[int] = tensor_tree_map(lambda SCREAMING_SNAKE_CASE : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) A_ : Dict = 1 for d in orig_batch_dims: flat_batch_dim *= d A_ : Optional[Any] = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(SCREAMING_SNAKE_CASE ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t A_ : Union[str, Any] = 0 A_ : Optional[int] = prepped_outputs for _ in range(SCREAMING_SNAKE_CASE ): # Chunk the input if not low_mem: A_ : Optional[Any] = _select_chunk else: A_ : Dict = partial( _chunk_slice , flat_start=SCREAMING_SNAKE_CASE , flat_end=min(SCREAMING_SNAKE_CASE , i + chunk_size ) , no_batch_dims=len(SCREAMING_SNAKE_CASE ) , ) A_ : Dict[str, Any] = tensor_tree_map(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Run the layer on the chunk A_ : List[str] = layer(**SCREAMING_SNAKE_CASE ) # Allocate space for the output if out is None: A_ : Dict = tensor_tree_map(lambda SCREAMING_SNAKE_CASE : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , SCREAMING_SNAKE_CASE ) # Put the chunk in its pre-allocated space if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): def assign(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: for k, v in da.items(): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): assign(SCREAMING_SNAKE_CASE , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: A_ : Union[str, Any] = da[k] assign(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): for xa, xa in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if _add_into_out: xa[i : i + chunk_size] += xa else: A_ : Any = xa elif isinstance(SCREAMING_SNAKE_CASE , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: A_ : Tuple = output_chunk else: raise ValueError('''Not supported''' ) i += chunk_size A_ : Optional[Any] = tensor_tree_map(lambda SCREAMING_SNAKE_CASE : t.view(orig_batch_dims + t.shape[1:] ) , SCREAMING_SNAKE_CASE ) return out class _lowerCamelCase : """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE = 512 , )->Any: '''simple docstring''' A_ : Any = max_chunk_size A_ : Optional[int] = None A_ : Optional[tuple] = None def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->int: '''simple docstring''' logging.info('''Tuning chunk size...''' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size A_ : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] A_ : int = [c for c in candidates if c > min_chunk_size] A_ : Dict = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(_SCREAMING_SNAKE_CASE ) -> bool: try: with torch.no_grad(): fn(*_SCREAMING_SNAKE_CASE , chunk_size=_SCREAMING_SNAKE_CASE ) return True except RuntimeError: return False A_ : List[str] = 0 A_ : Union[str, Any] = len(_SCREAMING_SNAKE_CASE ) - 1 while i > min_viable_chunk_size_index: A_ : List[str] = test_chunk_size(candidates[i] ) if not viable: A_ : Any = (min_viable_chunk_size_index + i) // 2 else: A_ : Any = i A_ : int = (i + len(_SCREAMING_SNAKE_CASE ) - 1) // 2 return candidates[min_viable_chunk_size_index] def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->bool: '''simple docstring''' A_ : List[Any] = True for aa, aa in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert type(_SCREAMING_SNAKE_CASE ) == type(_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ): consistent &= self._compare_arg_caches(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ : List[Any] = [v for _, v in sorted(aa.items() , key=lambda _SCREAMING_SNAKE_CASE : x[0] )] A_ : int = [v for _, v in sorted(aa.items() , key=lambda _SCREAMING_SNAKE_CASE : x[0] )] consistent &= self._compare_arg_caches(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: consistent &= aa == aa return consistent def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )->int: '''simple docstring''' A_ : List[Any] = True A_ : tuple = tree_map(lambda _SCREAMING_SNAKE_CASE : a.shape if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) else a , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(_SCREAMING_SNAKE_CASE ) A_ : Tuple = self._compare_arg_caches(self.cached_arg_data , _SCREAMING_SNAKE_CASE ) else: # Otherwise, we can reuse the precomputed value A_ : Union[str, Any] = False if not consistent: A_ : List[Any] = self._determine_favorable_chunk_size( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) A_ : Union[str, Any] = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
186
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _lowerCamelCase ( UpperCamelCase , unittest.TestCase ): """simple docstring""" snake_case = DDIMPipeline snake_case = UNCONDITIONAL_IMAGE_GENERATION_PARAMS snake_case = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "latents", "callback", "callback_steps", } snake_case = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS snake_case = False def _snake_case ( self )->List[str]: '''simple docstring''' torch.manual_seed(0 ) A_ : List[str] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) A_ : Optional[Any] = DDIMScheduler() A_ : str = {'''unet''': unet, '''scheduler''': scheduler} return components def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 )->Optional[Any]: '''simple docstring''' if str(_SCREAMING_SNAKE_CASE ).startswith('''mps''' ): A_ : Any = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: A_ : Optional[int] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) A_ : Any = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def _snake_case ( self )->List[Any]: '''simple docstring''' A_ : Optional[int] = '''cpu''' A_ : Dict = self.get_dummy_components() A_ : str = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ : str = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) A_ : Any = pipe(**_SCREAMING_SNAKE_CASE ).images A_ : int = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) A_ : List[Any] = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) A_ : str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1e-3 ) def _snake_case ( self )->Union[str, Any]: '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def _snake_case ( self )->Optional[int]: '''simple docstring''' super().test_save_load_local(expected_max_difference=3e-3 ) def _snake_case ( self )->Optional[int]: '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=3e-3 ) def _snake_case ( self )->Any: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self )->Union[str, Any]: '''simple docstring''' A_ : int = '''google/ddpm-cifar10-32''' A_ : Tuple = UNetaDModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ : str = DDIMScheduler() A_ : str = DDIMPipeline(unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) ddim.to(_SCREAMING_SNAKE_CASE ) ddim.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = torch.manual_seed(0 ) A_ : Any = ddim(generator=_SCREAMING_SNAKE_CASE , eta=0.0 , output_type='''numpy''' ).images A_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A_ : Any = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self )->List[str]: '''simple docstring''' A_ : Tuple = '''google/ddpm-ema-bedroom-256''' A_ : int = UNetaDModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ : Any = DDIMScheduler.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = DDIMPipeline(unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) ddpm.to(_SCREAMING_SNAKE_CASE ) ddpm.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ : Dict = torch.manual_seed(0 ) A_ : List[str] = ddpm(generator=_SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images A_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) A_ : Tuple = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
186
1
class _UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , lowercase_ : Dict) -> str: """simple docstring""" _UpperCamelCase = arr.split(",") def __UpperCAmelCase ( self : Optional[int]) -> List[str]: """simple docstring""" _UpperCamelCase = [int(self.array[0])] * len(self.array) _UpperCamelCase = [int(self.array[0])] * len(self.array) for i in range(1 , len(self.array)): _UpperCamelCase = max( int(self.array[i]) + sum_value[i - 1] , int(self.array[i])) _UpperCamelCase = max(sum_value[i] , rear[i - 1]) return rear[len(self.array) - 1] if __name__ == "__main__": lowerCamelCase__ = input('''please input some numbers:''') lowerCamelCase__ = SubArray(whole_array) lowerCamelCase__ = array.solve_sub_array() print(('''the results is:''', re))
361
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class _UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , lowercase_ : Optional[Any] , ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = parent _UpperCamelCase = 13 _UpperCamelCase = 7 _UpperCamelCase = 30 _UpperCamelCase = self.seq_length + self.mem_len _UpperCamelCase = 15 _UpperCamelCase = True _UpperCamelCase = True _UpperCamelCase = 99 _UpperCamelCase = [10, 50, 80] _UpperCamelCase = 32 _UpperCamelCase = 32 _UpperCamelCase = 4 _UpperCamelCase = 8 _UpperCamelCase = 128 _UpperCamelCase = 2 _UpperCamelCase = 2 _UpperCamelCase = None _UpperCamelCase = 1 _UpperCamelCase = 0 _UpperCamelCase = 3 _UpperCamelCase = self.vocab_size - 1 _UpperCamelCase = 0.01 def __UpperCAmelCase ( self : Dict) -> Optional[int]: """simple docstring""" _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def __UpperCAmelCase ( self : Union[str, Any]) -> Tuple: """simple docstring""" random.seed(self.seed) tf.random.set_seed(self.seed) def __UpperCAmelCase ( self : int , lowercase_ : Optional[int] , lowercase_ : Tuple , lowercase_ : Optional[Any] , lowercase_ : Optional[Any]) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = TFTransfoXLModel(lowercase_) _UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple() _UpperCamelCase = {"input_ids": input_ids_a, "mems": mems_a} _UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __UpperCAmelCase ( self : Dict , lowercase_ : str , lowercase_ : str , lowercase_ : Dict , lowercase_ : List[Any]) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = TFTransfoXLLMHeadModel(lowercase_) _UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple() _UpperCamelCase = {"input_ids": input_ids_a, "labels": lm_labels} _UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple() _UpperCamelCase , _UpperCamelCase = model([input_ids_a, mems_a]).to_tuple() _UpperCamelCase = {"input_ids": input_ids_a, "mems": mems_a, "labels": lm_labels} _UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __UpperCAmelCase ( self : Optional[Any] , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : Optional[Any] , lowercase_ : Dict) -> str: """simple docstring""" _UpperCamelCase = TFTransfoXLForSequenceClassification(lowercase_) _UpperCamelCase = model(lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __UpperCAmelCase ( self : Dict) -> List[Any]: """simple docstring""" _UpperCamelCase = self.prepare_config_and_inputs() ((_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase)) = config_and_inputs _UpperCamelCase = {"input_ids": input_ids_a} return config, inputs_dict @require_tf class _UpperCAmelCase ( lowerCAmelCase, lowerCAmelCase, unittest.TestCase ): '''simple docstring''' __A = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) __A = () if is_tf_available() else () __A = ( { '''feature-extraction''': TFTransfoXLModel, '''text-classification''': TFTransfoXLForSequenceClassification, '''text-generation''': TFTransfoXLLMHeadModel, '''zero-shot''': TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented __A = False __A = False __A = False __A = False def __UpperCAmelCase ( self : List[Any] , lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : Any , lowercase_ : List[str]) -> Any: """simple docstring""" if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def __UpperCAmelCase ( self : Optional[Any]) -> int: """simple docstring""" _UpperCamelCase = TFTransfoXLModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=lowercase_ , d_embed=37) def __UpperCAmelCase ( self : Dict) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Union[str, Any]) -> List[str]: """simple docstring""" self.model_tester.set_seed() _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*lowercase_) def __UpperCAmelCase ( self : Optional[Any]) -> List[Any]: """simple docstring""" self.model_tester.set_seed() _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*lowercase_) def __UpperCAmelCase ( self : List[str]) -> List[Any]: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*lowercase_) def __UpperCAmelCase ( self : Dict) -> int: """simple docstring""" _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowercase_) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer) if model_class in list_other_models_with_output_ebd: _UpperCamelCase = model.get_output_embeddings() assert isinstance(lowercase_ , tf.keras.layers.Layer) _UpperCamelCase = model.get_bias() assert name is None else: _UpperCamelCase = model.get_output_embeddings() assert x is None _UpperCamelCase = model.get_bias() assert name is None def __UpperCAmelCase ( self : Optional[int]) -> Any: """simple docstring""" pass @slow def __UpperCAmelCase ( self : List[str]) -> Tuple: """simple docstring""" for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFTransfoXLModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) @unittest.skip(reason="This model doesn't play well with fit() due to not returning a single loss.") def __UpperCAmelCase ( self : Union[str, Any]) -> Tuple: """simple docstring""" pass @require_tf class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip("Skip test until #12651 is resolved.") @slow def __UpperCAmelCase ( self : Optional[Any]) -> Dict: """simple docstring""" _UpperCamelCase = TFTransfoXLLMHeadModel.from_pretrained("transfo-xl-wt103") # fmt: off _UpperCamelCase = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off _UpperCamelCase = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> _UpperCamelCase = model.generate(lowercase_ , max_length=200 , do_sample=lowercase_) self.assertListEqual(output_ids[0].numpy().tolist() , lowercase_)
63
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class lowercase_ ( unittest.TestCase ): __UpperCAmelCase = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __UpperCAmelCase = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def __a ( self , a , a , a ): UpperCamelCase__ = TextaTextGenerationPipeline(model=a , tokenizer=a ) return generator, ["Something to write", "Something else"] def __a ( self , a , a ): UpperCamelCase__ = generator("Something there" ) self.assertEqual(a , [{"generated_text": ANY(a )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["generated_text"].startswith("Something there" ) ) UpperCamelCase__ = generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=a ) self.assertEqual( a , [ [{"generated_text": ANY(a )}, {"generated_text": ANY(a )}], [{"generated_text": ANY(a )}, {"generated_text": ANY(a )}], ] , ) UpperCamelCase__ = generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=a ) self.assertEqual( a , [ [{"generated_text": ANY(a )}, {"generated_text": ANY(a )}], [{"generated_text": ANY(a )}, {"generated_text": ANY(a )}], ] , ) with self.assertRaises(a ): generator(4 ) @require_torch def __a ( self ): UpperCamelCase__ = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="pt" ) # do_sample=False necessary for reproducibility UpperCamelCase__ = generator("Something there" , do_sample=a ) self.assertEqual(a , [{"generated_text": ""}] ) UpperCamelCase__ = 3 UpperCamelCase__ = generator( "Something there" , num_return_sequences=a , num_beams=a , ) UpperCamelCase__ = [ {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide"}, {"generated_text": ""}, ] self.assertEqual(a , a ) UpperCamelCase__ = generator("This is a test" , do_sample=a , num_return_sequences=2 , return_tensors=a ) self.assertEqual( a , [ {"generated_token_ids": ANY(torch.Tensor )}, {"generated_token_ids": ANY(torch.Tensor )}, ] , ) UpperCamelCase__ = generator.model.config.eos_token_id UpperCamelCase__ = "<pad>" UpperCamelCase__ = generator( ["This is a test", "This is a second test"] , do_sample=a , num_return_sequences=2 , batch_size=2 , return_tensors=a , ) self.assertEqual( a , [ [ {"generated_token_ids": ANY(torch.Tensor )}, {"generated_token_ids": ANY(torch.Tensor )}, ], [ {"generated_token_ids": ANY(torch.Tensor )}, {"generated_token_ids": ANY(torch.Tensor )}, ], ] , ) @require_tf def __a ( self ): UpperCamelCase__ = pipeline("text2text-generation" , model="patrickvonplaten/t5-tiny-random" , framework="tf" ) # do_sample=False necessary for reproducibility UpperCamelCase__ = generator("Something there" , do_sample=a ) self.assertEqual(a , [{"generated_text": ""}] )
80
'''simple docstring''' import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class lowercase_ ( enum.Enum ): __UpperCAmelCase = 0 __UpperCAmelCase = 1 __UpperCAmelCase = 2 @add_end_docstrings(a__ ) class lowercase_ ( a__ ): __UpperCAmelCase = '\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n ' def __init__( self , *a , **a ): super().__init__(*a , **a ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == "tf" else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. UpperCamelCase__ = None if self.model.config.prefix is not None: UpperCamelCase__ = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. UpperCamelCase__ = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._sanitize_parameters(prefix=a , **self._forward_params ) UpperCamelCase__ = {**self._preprocess_params, **preprocess_params} UpperCamelCase__ = {**self._forward_params, **forward_params} def __a ( self , a=None , a=None , a=None , a=None , a=None , a=None , a=None , a=None , **a , ): UpperCamelCase__ = {} if prefix is not None: UpperCamelCase__ = prefix if prefix: UpperCamelCase__ = self.tokenizer( a , padding=a , add_special_tokens=a , return_tensors=self.framework ) UpperCamelCase__ = prefix_inputs["input_ids"].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' " [None, 'hole']" ) UpperCamelCase__ = handle_long_generation preprocess_params.update(a ) UpperCamelCase__ = generate_kwargs UpperCamelCase__ = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_full_text`" ) if return_tensors is not None: raise ValueError("`return_full_text` is mutually exclusive with `return_tensors`" ) UpperCamelCase__ = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_tensors`" ) UpperCamelCase__ = ReturnType.TENSORS if return_type is not None: UpperCamelCase__ = return_type if clean_up_tokenization_spaces is not None: UpperCamelCase__ = clean_up_tokenization_spaces if stop_sequence is not None: UpperCamelCase__ = self.tokenizer.encode(a , add_special_tokens=a ) if len(a ) > 1: warnings.warn( "Stopping on a multiple token sequence is not yet supported on transformers. The first token of" " the stop sequence will be used as the stop sequence string in the interim." ) UpperCamelCase__ = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __a ( self , *a , **a ): # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"add_space_before_punct_symbol": True} ) return super()._parse_and_tokenize(*a , **a ) def __call__( self , a , **a ): return super().__call__(a , **a ) def __a ( self , a , a="" , a=None , **a ): UpperCamelCase__ = self.tokenizer( prefix + prompt_text , padding=a , add_special_tokens=a , return_tensors=self.framework ) UpperCamelCase__ = prompt_text if handle_long_generation == "hole": UpperCamelCase__ = inputs["input_ids"].shape[-1] if "max_new_tokens" in generate_kwargs: UpperCamelCase__ = generate_kwargs["max_new_tokens"] else: UpperCamelCase__ = generate_kwargs.get("max_length" , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError("We cannot infer how many new tokens are expected" ) if cur_len + new_tokens > self.tokenizer.model_max_length: UpperCamelCase__ = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( "We cannot use `hole` to handle this generation the number of desired tokens exceeds the" " models max length" ) UpperCamelCase__ = inputs["input_ids"][:, -keep_length:] if "attention_mask" in inputs: UpperCamelCase__ = inputs["attention_mask"][:, -keep_length:] return inputs def __a ( self , a , **a ): UpperCamelCase__ = model_inputs["input_ids"] UpperCamelCase__ = model_inputs.get("attention_mask" , a ) # Allow empty prompts if input_ids.shape[1] == 0: UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = 1 else: UpperCamelCase__ = input_ids.shape[0] UpperCamelCase__ = model_inputs.pop("prompt_text" ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. UpperCamelCase__ = generate_kwargs.pop("prefix_length" , 0 ) if prefix_length > 0: UpperCamelCase__ = "max_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].max_new_tokens is not None ) if not has_max_new_tokens: UpperCamelCase__ = generate_kwargs.get("max_length" ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length UpperCamelCase__ = "min_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL UpperCamelCase__ = self.model.generate(input_ids=a , attention_mask=a , **a ) UpperCamelCase__ = generated_sequence.shape[0] if self.framework == "pt": UpperCamelCase__ = generated_sequence.reshape(a , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": UpperCamelCase__ = tf.reshape(a , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def __a ( self , a , a=ReturnType.FULL_TEXT , a=True ): UpperCamelCase__ = model_outputs["generated_sequence"][0] UpperCamelCase__ = model_outputs["input_ids"] UpperCamelCase__ = model_outputs["prompt_text"] UpperCamelCase__ = generated_sequence.numpy().tolist() UpperCamelCase__ = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: UpperCamelCase__ = {"generated_token_ids": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text UpperCamelCase__ = self.tokenizer.decode( a , skip_special_tokens=a , clean_up_tokenization_spaces=a , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: UpperCamelCase__ = 0 else: UpperCamelCase__ = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=a , clean_up_tokenization_spaces=a , ) ) if return_type == ReturnType.FULL_TEXT: UpperCamelCase__ = prompt_text + text[prompt_length:] else: UpperCamelCase__ = text[prompt_length:] UpperCamelCase__ = {"generated_text": all_text} records.append(a ) return records
80
1
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time __UpperCAmelCase : Tuple = Lock() def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> List[Any]: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(SCREAMING_SNAKE_CASE__) process_lock.release() # receive your right neighbor's value process_lock.acquire() __snake_case: Union[str, Any] = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left __snake_case: Optional[Any] = min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(SCREAMING_SNAKE_CASE__) process_lock.release() # receive your left neighbor's value process_lock.acquire() __snake_case: int = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right __snake_case: int = max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) # after all swaps are performed, send the values back to main result_pipe[1].send(SCREAMING_SNAKE_CASE__) def A__ ( SCREAMING_SNAKE_CASE__) -> Union[str, Any]: __snake_case: List[Any] = [] __snake_case: List[Any] = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe()) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop __snake_case: str = Pipe() __snake_case: Any = Pipe() process_array_.append( Process( target=SCREAMING_SNAKE_CASE__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , )) __snake_case: Optional[Any] = temp_rs __snake_case: Optional[int] = temp_rr for i in range(1 , len(SCREAMING_SNAKE_CASE__) - 1): __snake_case: Optional[Any] = Pipe() __snake_case: int = Pipe() process_array_.append( Process( target=SCREAMING_SNAKE_CASE__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , )) __snake_case: Any = temp_rs __snake_case: List[Any] = temp_rr process_array_.append( Process( target=SCREAMING_SNAKE_CASE__ , args=( len(SCREAMING_SNAKE_CASE__) - 1, arr[len(SCREAMING_SNAKE_CASE__) - 1], temp_ls, None, temp_lr, None, result_pipe[len(SCREAMING_SNAKE_CASE__) - 1], ) , )) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(SCREAMING_SNAKE_CASE__)): __snake_case: Tuple = result_pipe[p][0].recv() process_array_[p].join() return arr def A__ ( ) -> Union[str, Any]: __snake_case: List[str] = list(range(10 , 0 , -1)) print("""Initial List""") print(*SCREAMING_SNAKE_CASE__) __snake_case: int = odd_even_transposition(SCREAMING_SNAKE_CASE__) print("""Sorted List\n""") print(*SCREAMING_SNAKE_CASE__) if __name__ == "__main__": main()
293
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy __UpperCAmelCase : str = logging.get_logger(__name__) class __snake_case ( __lowerCamelCase ): '''simple docstring''' def __init__( self : Any , A : int , A : int , A : float , **A : Optional[int] ): __snake_case: List[str] = feature_size __snake_case: Optional[int] = sampling_rate __snake_case: Any = padding_value __snake_case: Dict = kwargs.pop("""padding_side""" , """right""" ) __snake_case: Union[str, Any] = kwargs.pop("""return_attention_mask""" , A ) super().__init__(**A ) def UpperCAmelCase__ ( self : Optional[Any] , A : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , A : Union[bool, str, PaddingStrategy] = True , A : Optional[int] = None , A : bool = False , A : Optional[int] = None , A : Optional[bool] = None , A : Optional[Union[str, TensorType]] = None , ): # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(A , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): __snake_case: Optional[int] = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( """You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`""" f''' to this method that includes {self.model_input_names[0]}, but you provided''' f''' {list(processed_features.keys() )}''' ) __snake_case: List[str] = processed_features[self.model_input_names[0]] __snake_case: Any = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(A ) == 0: if return_attention_mask: __snake_case: Union[str, Any] = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch __snake_case: int = required_input[0] if isinstance(A , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. __snake_case: Optional[int] = 0 while len(required_input[index] ) == 0: index += 1 if index < len(A ): __snake_case: Optional[int] = required_input[index][0] if return_tensors is None: if is_tf_tensor(A ): __snake_case: str = """tf""" elif is_torch_tensor(A ): __snake_case: str = """pt""" elif isinstance(A , (int, float, list, tuple, np.ndarray) ): __snake_case: List[str] = """np""" else: raise ValueError( f'''type of {first_element} unknown: {type(A )}. ''' """Should be one of a python, numpy, pytorch or tensorflow object.""" ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): __snake_case: List[Any] = to_numpy(A ) else: __snake_case: Union[str, Any] = [to_numpy(A ) for v in value] # Convert padding_strategy in PaddingStrategy __snake_case: Union[str, Any] = self._get_padding_strategies(padding=A , max_length=A ) __snake_case: Any = processed_features[self.model_input_names[0]] __snake_case: int = len(A ) if not all(len(A ) == batch_size for v in processed_features.values() ): raise ValueError("""Some items in the output dictionary have a different batch size than others.""" ) __snake_case: Union[str, Any] = [] for i in range(A ): __snake_case: List[Any] = {k: v[i] for k, v in processed_features.items()} # truncation __snake_case: Tuple = self._truncate( A , max_length=A , pad_to_multiple_of=A , truncation=A , ) truncated_inputs.append(A ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length __snake_case: Optional[Any] = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) __snake_case: List[str] = PaddingStrategy.MAX_LENGTH __snake_case: List[Any] = {} for i in range(A ): # padding __snake_case: Any = self._pad( truncated_inputs[i] , max_length=A , padding_strategy=A , pad_to_multiple_of=A , return_attention_mask=A , ) for key, value in outputs.items(): if key not in batch_outputs: __snake_case: Optional[Any] = [] if value.dtype is np.dtype(np.floataa ): __snake_case: str = value.astype(np.floataa ) batch_outputs[key].append(A ) return BatchFeature(A , tensor_type=A ) def UpperCAmelCase__ ( self : int , A : Union[Dict[str, np.ndarray], BatchFeature] , A : Optional[int] = None , A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , A : Optional[int] = None , A : Optional[bool] = None , ): __snake_case: List[Any] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: __snake_case: List[str] = len(A ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __snake_case: List[Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __snake_case: Dict = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(A ) < max_length if return_attention_mask and "attention_mask" not in processed_features: __snake_case: List[str] = np.ones(len(A ) , dtype=np.intaa ) if needs_to_be_padded: __snake_case: Any = max_length - len(A ) if self.padding_side == "right": if return_attention_mask: __snake_case: Optional[int] = np.pad( processed_features["""attention_mask"""] , (0, difference) ) __snake_case: Any = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) __snake_case: Union[str, Any] = np.pad( A , A , """constant""" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: __snake_case: Dict = np.pad( processed_features["""attention_mask"""] , (difference, 0) ) __snake_case: Union[str, Any] = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) __snake_case: str = np.pad( A , A , """constant""" , constant_values=self.padding_value ) else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return processed_features def UpperCAmelCase__ ( self : Optional[Any] , A : Union[Dict[str, np.ndarray], BatchFeature] , A : Optional[int] = None , A : Optional[int] = None , A : Optional[bool] = None , ): if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("""When setting ``truncation=True``, make sure that ``max_length`` is defined.""" ) __snake_case: List[str] = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): __snake_case: List[Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of __snake_case: Tuple = len(A ) > max_length if needs_to_be_truncated: __snake_case: List[Any] = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: __snake_case: int = processed_features["""attention_mask"""][:max_length] return processed_features def UpperCAmelCase__ ( self : int , A : int=False , A : int=None ): # Get padding strategy if padding is not False: if padding is True: __snake_case: Optional[int] = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(A , A ): __snake_case: Optional[int] = PaddingStrategy(A ) elif isinstance(A , A ): __snake_case: Any = padding else: __snake_case: Any = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f'''When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined''' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( """Asking to pad but the feature_extractor does not have a padding value. Please select a value to use""" """ as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.""" ) return padding_strategy
293
1
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ : Optional[int] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) lowerCAmelCase__ : Any = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.encoder.norm.weight', 'encoder.layernorm.weight'), ('transformer.encoder.norm.bias', 'encoder.layernorm.bias'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ] ) def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = state_dict.pop(lowerCamelCase ) UpperCAmelCase__ = val def a_ ( lowerCamelCase ): UpperCAmelCase__ = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCAmelCase__ = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) UpperCAmelCase__ = value else: UpperCAmelCase__ = value return new_state_dict def a_ ( lowerCamelCase ): UpperCAmelCase__ = '' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase__ = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase__ = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase__ = in_proj_weight[:2_5_6, :] UpperCAmelCase__ = in_proj_bias[:2_5_6] UpperCAmelCase__ = in_proj_weight[2_5_6:5_1_2, :] UpperCAmelCase__ = in_proj_bias[2_5_6:5_1_2] UpperCAmelCase__ = in_proj_weight[-2_5_6:, :] UpperCAmelCase__ = in_proj_bias[-2_5_6:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention UpperCAmelCase__ = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase__ = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase__ = in_proj_weight[:2_5_6, :] UpperCAmelCase__ = in_proj_bias[:2_5_6] UpperCAmelCase__ = in_proj_weight[2_5_6:5_1_2, :] UpperCAmelCase__ = in_proj_bias[2_5_6:5_1_2] UpperCAmelCase__ = in_proj_weight[-2_5_6:, :] UpperCAmelCase__ = in_proj_bias[-2_5_6:] # read in weights + bias of input projection layer of cross-attention UpperCAmelCase__ = state_dict.pop( f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) UpperCAmelCase__ = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict UpperCAmelCase__ = in_proj_weight_cross_attn[:2_5_6, :] UpperCAmelCase__ = in_proj_bias_cross_attn[:2_5_6] UpperCAmelCase__ = in_proj_weight_cross_attn[2_5_6:5_1_2, :] UpperCAmelCase__ = in_proj_bias_cross_attn[2_5_6:5_1_2] UpperCAmelCase__ = in_proj_weight_cross_attn[-2_5_6:, :] UpperCAmelCase__ = in_proj_bias_cross_attn[-2_5_6:] def a_ ( lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ , UpperCAmelCase__ = image.size UpperCAmelCase__ = max(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = 8_0_0 if 'detection' in checkpoint_url else 1_0_0_0 UpperCAmelCase__ = target_max_size / current_max_size UpperCAmelCase__ = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def a_ ( lowerCamelCase ): UpperCAmelCase__ = F.to_tensor(lowerCamelCase ) UpperCAmelCase__ = F.normalize(lowerCamelCase , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): logger.info('Converting model...' ) # load original state dict UpperCAmelCase__ = torch.hub.load_state_dict_from_url(lowerCamelCase , map_location='cpu' ) # rename keys for src, dest in rename_keys: rename_key(lowerCamelCase , lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = rename_backbone_keys(lowerCamelCase ) # query, key and value matrices need special treatment read_in_q_k_v(lowerCamelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase__ = 'model.' for key in state_dict.copy().keys(): if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): UpperCAmelCase__ = state_dict.pop(lowerCamelCase ) UpperCAmelCase__ = val # create HuggingFace model and load state dict UpperCAmelCase__ = TableTransformerConfig( backbone='resnet18' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: UpperCAmelCase__ = 1_5 UpperCAmelCase__ = 2 UpperCAmelCase__ = {0: 'table', 1: 'table rotated'} UpperCAmelCase__ = idalabel UpperCAmelCase__ = {v: k for k, v in idalabel.items()} else: UpperCAmelCase__ = 1_2_5 UpperCAmelCase__ = 6 UpperCAmelCase__ = { 0: 'table', 1: 'table column', 2: 'table row', 3: 'table column header', 4: 'table projected row header', 5: 'table spanning cell', } UpperCAmelCase__ = idalabel UpperCAmelCase__ = {v: k for k, v in idalabel.items()} UpperCAmelCase__ = DetrImageProcessor( format='coco_detection' , max_size=8_0_0 if 'detection' in checkpoint_url else 1_0_0_0 ) UpperCAmelCase__ = TableTransformerForObjectDetection(lowerCamelCase ) model.load_state_dict(lowerCamelCase ) model.eval() # verify our conversion UpperCAmelCase__ = 'example_pdf.png' if 'detection' in checkpoint_url else 'example_table.png' UpperCAmelCase__ = hf_hub_download(repo_id='nielsr/example-pdf' , repo_type='dataset' , filename=lowerCamelCase ) UpperCAmelCase__ = Image.open(lowerCamelCase ).convert('RGB' ) UpperCAmelCase__ = normalize(resize(lowerCamelCase , lowerCamelCase ) ).unsqueeze(0 ) UpperCAmelCase__ = model(lowerCamelCase ) if "detection" in checkpoint_url: UpperCAmelCase__ = (1, 1_5, 3) UpperCAmelCase__ = torch.tensor( [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] ) UpperCAmelCase__ = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] ) else: UpperCAmelCase__ = (1, 1_2_5, 7) UpperCAmelCase__ = torch.tensor( [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] ) UpperCAmelCase__ = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , lowerCamelCase , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , lowerCamelCase , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) image_processor.save_pretrained(lowerCamelCase ) if push_to_hub: # Push model to HF hub logger.info('Pushing model to the hub...' ) UpperCAmelCase__ = ( 'microsoft/table-transformer-detection' if 'detection' in checkpoint_url else 'microsoft/table-transformer-structure-recognition' ) model.push_to_hub(lowerCamelCase ) image_processor.push_to_hub(lowerCamelCase ) if __name__ == "__main__": lowerCAmelCase__ : Dict = argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', type=str, choices=[ 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth', ], help='URL of the Table Transformer checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) lowerCAmelCase__ : Optional[int] = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
98
import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir("""fixtures/test_sentencepiece_bpe_char.model""") @require_sentencepiece @require_tokenizers class a__ ( snake_case , unittest.TestCase ): """simple docstring""" __lowerCamelCase = SpeechTaTokenizer __lowerCamelCase = False __lowerCamelCase = True def UpperCamelCase ( self ) -> Any: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing A__ = SpeechTaTokenizer(lowercase ) A__ = AddedToken("<mask>" , lstrip=lowercase , rstrip=lowercase ) A__ = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self , lowercase ) -> Union[str, Any]: '''simple docstring''' A__ = "this is a test" A__ = "this is a test" return input_text, output_text def UpperCamelCase ( self , lowercase , lowercase=False , lowercase=20 , lowercase=5 ) -> Optional[Any]: '''simple docstring''' A__ , A__ = self.get_input_output_texts(lowercase ) A__ = tokenizer.encode(lowercase , add_special_tokens=lowercase ) A__ = tokenizer.decode(lowercase , clean_up_tokenization_spaces=lowercase ) return text, ids def UpperCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' A__ = "<pad>" A__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase ) , lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase ) , lowercase ) def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' A__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-4] , "œ" ) self.assertEqual(vocab_keys[-2] , "<mask>" ) self.assertEqual(vocab_keys[-1] , "<ctc_blank>" ) self.assertEqual(len(lowercase ) , 81 ) def UpperCamelCase ( self ) -> Dict: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' A__ = self.get_tokenizers(do_lower_case=lowercase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): A__ = tokenizer.vocab_size A__ = len(lowercase ) self.assertNotEqual(lowercase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) A__ = ["aaaaa bbbbbb", "cccccccccdddddddd"] A__ = tokenizer.add_tokens(lowercase ) A__ = tokenizer.vocab_size A__ = len(lowercase ) self.assertNotEqual(lowercase , 0 ) self.assertEqual(lowercase , lowercase ) self.assertEqual(lowercase , len(lowercase ) ) self.assertEqual(lowercase , all_size + len(lowercase ) ) A__ = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" , add_special_tokens=lowercase ) self.assertGreaterEqual(len(lowercase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) A__ = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} A__ = tokenizer.add_special_tokens(lowercase ) A__ = tokenizer.vocab_size A__ = len(lowercase ) self.assertNotEqual(lowercase , 0 ) self.assertEqual(lowercase , lowercase ) self.assertEqual(lowercase , len(lowercase ) ) self.assertEqual(lowercase , all_size_a + len(lowercase ) ) A__ = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" , add_special_tokens=lowercase ) self.assertGreaterEqual(len(lowercase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' pass def UpperCamelCase ( self ) -> Any: '''simple docstring''' pass def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' A__ = self.get_tokenizer() A__ = tokenizer.tokenize("This is a test" ) # fmt: off self.assertListEqual(lowercase , [SPIECE_UNDERLINE, "T", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "a", SPIECE_UNDERLINE, "t", "e", "s", "t"] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) A__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowercase , [SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "92000", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) A__ = tokenizer.convert_tokens_to_ids(lowercase ) # fmt: off self.assertListEqual(lowercase , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on A__ = tokenizer.convert_ids_to_tokens(lowercase ) self.assertListEqual( lowercase , [SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "<unk>", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) @slow def UpperCamelCase ( self ) -> int: '''simple docstring''' A__ = [ "Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides " "general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural " "Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained " "models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.", "BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly " "conditioning on both left and right context in all layers.", "The quick brown fox jumps over the lazy dog.", ] # fmt: off A__ = { "input_ids": [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase , model_name="microsoft/speecht5_asr" , revision="c5ef64c71905caeccde0e4462ef3f9077224c524" , sequences=lowercase , )
68
0
'''simple docstring''' from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
351
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = """wavlm""" def __init__( self : List[str] , _lowerCAmelCase : List[Any]=3_2 , _lowerCAmelCase : int=7_6_8 , _lowerCAmelCase : Any=1_2 , _lowerCAmelCase : Union[str, Any]=1_2 , _lowerCAmelCase : List[Any]=3_0_7_2 , _lowerCAmelCase : Dict="gelu" , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Optional[Any]=0.1 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : str=0.1 , _lowerCAmelCase : Dict=0.1 , _lowerCAmelCase : List[Any]=0.02 , _lowerCAmelCase : Dict=1e-5 , _lowerCAmelCase : List[Any]="group" , _lowerCAmelCase : Optional[Any]="gelu" , _lowerCAmelCase : Dict=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , _lowerCAmelCase : Any=(5, 2, 2, 2, 2, 2, 2) , _lowerCAmelCase : Optional[Any]=(1_0, 3, 3, 3, 3, 2, 2) , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : int=1_2_8 , _lowerCAmelCase : Tuple=1_6 , _lowerCAmelCase : Optional[int]=3_2_0 , _lowerCAmelCase : Union[str, Any]=8_0_0 , _lowerCAmelCase : Optional[Any]=False , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : Any=0.05 , _lowerCAmelCase : List[Any]=1_0 , _lowerCAmelCase : Any=2 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : Union[str, Any]=1_0 , _lowerCAmelCase : List[Any]=3_2_0 , _lowerCAmelCase : int=2 , _lowerCAmelCase : Dict=0.1 , _lowerCAmelCase : Optional[int]=1_0_0 , _lowerCAmelCase : Tuple=2_5_6 , _lowerCAmelCase : Union[str, Any]=2_5_6 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : Tuple="mean" , _lowerCAmelCase : Any=False , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : Any=2_5_6 , _lowerCAmelCase : Tuple=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , _lowerCAmelCase : Dict=(5, 3, 3, 1, 1) , _lowerCAmelCase : Dict=(1, 2, 3, 1, 1) , _lowerCAmelCase : int=5_1_2 , _lowerCAmelCase : Optional[int]=8_0 , _lowerCAmelCase : Any=0 , _lowerCAmelCase : int=1 , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Any=3 , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : List[Any]=3 , _lowerCAmelCase : List[str]=None , **_lowerCAmelCase : List[str] , ): '''simple docstring''' super().__init__(**_lowerCAmelCase , pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase) __lowercase =hidden_size __lowercase =feat_extract_norm __lowercase =feat_extract_activation __lowercase =list(_lowerCAmelCase) __lowercase =list(_lowerCAmelCase) __lowercase =list(_lowerCAmelCase) __lowercase =conv_bias __lowercase =num_buckets __lowercase =max_bucket_distance __lowercase =num_conv_pos_embeddings __lowercase =num_conv_pos_embedding_groups __lowercase =len(self.conv_dim) __lowercase =num_hidden_layers __lowercase =intermediate_size __lowercase =hidden_act __lowercase =num_attention_heads __lowercase =hidden_dropout __lowercase =attention_dropout __lowercase =activation_dropout __lowercase =feat_proj_dropout __lowercase =final_dropout __lowercase =layerdrop __lowercase =layer_norm_eps __lowercase =initializer_range __lowercase =num_ctc_classes __lowercase =vocab_size __lowercase =do_stable_layer_norm __lowercase =use_weighted_layer_sum __lowercase =classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowercase =apply_spec_augment __lowercase =mask_time_prob __lowercase =mask_time_length __lowercase =mask_time_min_masks __lowercase =mask_feature_prob __lowercase =mask_feature_length # parameters for pretraining with codevector quantized representations __lowercase =num_codevectors_per_group __lowercase =num_codevector_groups __lowercase =contrastive_logits_temperature __lowercase =num_negatives __lowercase =codevector_dim __lowercase =proj_codevector_dim __lowercase =diversity_loss_weight # ctc loss __lowercase =ctc_loss_reduction __lowercase =ctc_zero_infinity # adapter __lowercase =add_adapter __lowercase =adapter_kernel_size __lowercase =adapter_stride __lowercase =num_adapter_layers __lowercase =output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __lowercase =classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __lowercase =list(_lowerCAmelCase) __lowercase =list(_lowerCAmelCase) __lowercase =list(_lowerCAmelCase) __lowercase =xvector_output_dim @property def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1)
48
0
'''simple docstring''' import os lowerCAmelCase__ = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} def _A ( A__ ): """simple docstring""" __lowercase = 0 __lowercase = 0 while index < len(A__ ) - 1: __lowercase = SYMBOLS[numerals[index]] __lowercase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def _A ( A__ ): """simple docstring""" __lowercase = '''''' __lowercase = num // 1000 numerals += m_count * "M" num %= 1000 __lowercase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 __lowercase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def _A ( A__ = "/p089_roman.txt" ): """simple docstring""" __lowercase = 0 with open(os.path.dirname(A__ ) + roman_numerals_filename ) as filea: __lowercase = filea.readlines() for line in lines: __lowercase = line.strip() __lowercase = parse_roman_numerals(A__ ) __lowercase = generate_roman_numerals(A__ ) savings += len(A__ ) - len(A__ ) return savings if __name__ == "__main__": print(f'{solution() = }')
104
'''simple docstring''' import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) lowerCAmelCase__ = logging.getLogger() def _A ( ): """simple docstring""" __lowercase = argparse.ArgumentParser() parser.add_argument('''-f''' ) __lowercase = parser.parse_args() return args.f def _A ( A__ ): """simple docstring""" __lowercase = {} __lowercase = os.path.join(A__ , '''all_results.json''' ) if os.path.exists(A__ ): with open(A__ , '''r''' ) as f: __lowercase = json.load(A__ ) else: raise ValueError(F"can't find {path}" ) return results def _A ( ): """simple docstring""" __lowercase = torch.cuda.is_available() and torch_device == '''cuda''' return is_using_cuda and is_apex_available() lowerCAmelCase__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowercase_ (lowerCamelCase__ ): """simple docstring""" @classmethod def SCREAMING_SNAKE_CASE ( cls : List[str] ): # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU __lowercase = tempfile.mkdtemp() __lowercase = os.path.join(cls.tmpdir ,'''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) __lowercase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def SCREAMING_SNAKE_CASE ( cls : str ): shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n ".split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) __lowercase = get_results(lowercase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] ,0.7_5 ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''glue_no_trainer''' ) ) ) @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n ".split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) __lowercase = get_results(lowercase__ ) self.assertLess(result['''perplexity'''] ,1_0_0 ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''clm_no_trainer''' ) ) ) @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __lowercase = get_results(lowercase__ ) self.assertLess(result['''perplexity'''] ,4_2 ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''mlm_no_trainer''' ) ) ) @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def SCREAMING_SNAKE_CASE ( self : Tuple ): # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu __lowercase = 7 if get_gpu_count() > 1 else 2 __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __lowercase = get_results(lowercase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] ,0.7_5 ) self.assertLess(result['''train_loss'''] ,0.5 ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''ner_no_trainer''' ) ) ) @unittest.skip(reason='''Fix me @muellerzr''' ) @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __lowercase = get_results(lowercase__ ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['''eval_f1'''] ,2_8 ) self.assertGreaterEqual(result['''eval_exact'''] ,2_8 ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''qa_no_trainer''' ) ) ) @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __lowercase = get_results(lowercase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] ,0.8 ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''swag_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __lowercase = get_results(lowercase__ ) self.assertGreaterEqual(result['''eval_rouge1'''] ,1_0 ) self.assertGreaterEqual(result['''eval_rouge2'''] ,2 ) self.assertGreaterEqual(result['''eval_rougeL'''] ,7 ) self.assertGreaterEqual(result['''eval_rougeLsum'''] ,7 ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''summarization_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) __lowercase = get_results(lowercase__ ) self.assertGreaterEqual(result['''eval_bleu'''] ,3_0 ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''translation_no_trainer''' ) ) ) @slow def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = logging.StreamHandler(sys.stdout ) logger.addHandler(lowercase__ ) __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n ".split() run_command(self._launch_args + testargs ) __lowercase = get_results(lowercase__ ) self.assertGreaterEqual(result['''eval_overall_accuracy'''] ,0.1_0 ) @mock.patch.dict(os.environ ,{'''WANDB_MODE''': '''offline'''} ) def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = self.get_auto_remove_tmp_dir() __lowercase = F"\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n ".split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) __lowercase = get_results(lowercase__ ) # The base model scores a 25% self.assertGreaterEqual(result['''eval_accuracy'''] ,0.6 ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''step_1''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowercase__ ,'''image_classification_no_trainer''' ) ) )
104
1
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants lowercase_ = Mapping[str, np.ndarray] lowercase_ = Mapping[str, Any] # Is a nested dict. lowercase_ = 0.01 @dataclasses.dataclass(frozen=UpperCAmelCase ) class SCREAMING_SNAKE_CASE : _UpperCamelCase : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. _UpperCamelCase : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. _UpperCamelCase : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. _UpperCamelCase : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. _UpperCamelCase : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions _UpperCamelCase : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files _UpperCamelCase : Optional[str] = None # Templates used to generate this protein (prediction-only) _UpperCamelCase : Optional[Sequence[str]] = None # Chain corresponding to each parent _UpperCamelCase : Optional[Sequence[int]] = None def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Protein: lowercase__ = R'(\[[A-Z]+\]\n)' lowercase__ = [tag.strip() for tag in re.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0] lowercase__ = zip(tags[0::2] , [l.split('\n' ) for l in tags[1::2]] ) lowercase__ = ["N", "CA", "C"] lowercase__ = None lowercase__ = None lowercase__ = None for g in groups: if "[PRIMARY]" == g[0]: lowercase__ = g[1][0].strip() for i in range(len(_SCREAMING_SNAKE_CASE ) ): if seq[i] not in residue_constants.restypes: lowercase__ = 'X' # FIXME: strings are immutable lowercase__ = np.array( [residue_constants.restype_order.get(_SCREAMING_SNAKE_CASE , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: lowercase__ = [] for axis in range(3 ): tertiary.append(list(map(_SCREAMING_SNAKE_CASE , g[1][axis].split() ) ) ) lowercase__ = np.array(_SCREAMING_SNAKE_CASE ) lowercase__ = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(_SCREAMING_SNAKE_CASE ): lowercase__ = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: lowercase__ = np.array(list(map({'-': 0, '+': 1}.get , g[1][0].strip() ) ) ) lowercase__ = np.zeros( ( len(_SCREAMING_SNAKE_CASE ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(_SCREAMING_SNAKE_CASE ): lowercase__ = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=_SCREAMING_SNAKE_CASE , atom_mask=_SCREAMING_SNAKE_CASE , aatype=_SCREAMING_SNAKE_CASE , residue_index=np.arange(len(_SCREAMING_SNAKE_CASE ) ) , b_factors=_SCREAMING_SNAKE_CASE , ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0 ) -> List[str]: lowercase__ = [] lowercase__ = prot.remark if remark is not None: pdb_headers.append(F"""REMARK {remark}""" ) lowercase__ = prot.parents lowercase__ = prot.parents_chain_index if parents is not None and parents_chain_index is not None: lowercase__ = [p for i, p in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if i == chain_id] if parents is None or len(_SCREAMING_SNAKE_CASE ) == 0: lowercase__ = ['N/A'] pdb_headers.append(F"""PARENT {" ".join(_SCREAMING_SNAKE_CASE )}""" ) return pdb_headers def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: lowercase__ = [] lowercase__ = pdb_str.split('\n' ) lowercase__ = prot.remark if remark is not None: out_pdb_lines.append(F"""REMARK {remark}""" ) lowercase__ = 42 if prot.parents is not None and len(prot.parents ) > 0: lowercase__ = [] if prot.parents_chain_index is not None: lowercase__ = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(_SCREAMING_SNAKE_CASE ) , [] ) parent_dict[str(_SCREAMING_SNAKE_CASE )].append(_SCREAMING_SNAKE_CASE ) lowercase__ = max([int(_SCREAMING_SNAKE_CASE ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): lowercase__ = parent_dict.get(str(_SCREAMING_SNAKE_CASE ) , ['N/A'] ) parents_per_chain.append(_SCREAMING_SNAKE_CASE ) else: parents_per_chain.append(list(prot.parents ) ) else: lowercase__ = [['N/A']] def make_parent_line(_SCREAMING_SNAKE_CASE ) -> str: return F"""PARENT {" ".join(_SCREAMING_SNAKE_CASE )}""" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) lowercase__ = 0 for i, l in enumerate(_SCREAMING_SNAKE_CASE ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(_SCREAMING_SNAKE_CASE ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(_SCREAMING_SNAKE_CASE ): lowercase__ = parents_per_chain[chain_counter] else: lowercase__ = ['N/A'] out_pdb_lines.append(make_parent_line(_SCREAMING_SNAKE_CASE ) ) return "\n".join(_SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: lowercase__ = residue_constants.restypes + ['X'] def res_atoa(_SCREAMING_SNAKE_CASE ) -> str: return residue_constants.restype_atoa.get(restypes[r] , 'UNK' ) lowercase__ = residue_constants.atom_types lowercase__ = [] lowercase__ = prot.atom_mask lowercase__ = prot.aatype lowercase__ = prot.atom_positions lowercase__ = prot.residue_index.astype(np.intaa ) lowercase__ = prot.b_factors lowercase__ = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('Invalid aatypes.' ) lowercase__ = get_pdb_headers(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: pdb_lines.extend(_SCREAMING_SNAKE_CASE ) lowercase__ = aatype.shape[0] lowercase__ = 1 lowercase__ = 0 lowercase__ = string.ascii_uppercase lowercase__ = None # Add all atom sites. for i in range(_SCREAMING_SNAKE_CASE ): lowercase__ = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(_SCREAMING_SNAKE_CASE , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue lowercase__ = 'ATOM' lowercase__ = atom_name if len(_SCREAMING_SNAKE_CASE ) == 4 else F""" {atom_name}""" lowercase__ = '' lowercase__ = '' lowercase__ = 1.0_0 lowercase__ = atom_name[0] # Protein supports only C, N, O, S, this works. lowercase__ = '' lowercase__ = 'A' if chain_index is not None: lowercase__ = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! lowercase__ = ( F"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}""" F"""{res_name_a:>3} {chain_tag:>1}""" F"""{residue_index[i]:>4}{insertion_code:>1} """ F"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}""" F"""{occupancy:>6.2f}{b_factor:>6.2f} """ F"""{element:>2}{charge:>2}""" ) pdb_lines.append(_SCREAMING_SNAKE_CASE ) atom_index += 1 lowercase__ = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: lowercase__ = True lowercase__ = chain_index[i + 1] if should_terminate: # Close the chain. lowercase__ = 'TER' lowercase__ = ( F"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}""" ) pdb_lines.append(_SCREAMING_SNAKE_CASE ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) pdb_lines.append('END' ) pdb_lines.append('' ) return "\n".join(_SCREAMING_SNAKE_CASE ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> np.ndarray: return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , ) -> Protein: return Protein( aatype=features['aatype'] , atom_positions=result['final_atom_positions'] , atom_mask=result['final_atom_mask'] , residue_index=features['residue_index'] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['final_atom_mask'] ) , chain_index=_SCREAMING_SNAKE_CASE , remark=_SCREAMING_SNAKE_CASE , parents=_SCREAMING_SNAKE_CASE , parents_chain_index=_SCREAMING_SNAKE_CASE , )
269
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """transfo-xl-wt103""": """https://huggingface.co/transfo-xl-wt103/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Optional[Any] = 'transfo-xl' _UpperCamelCase : Any = ['mems'] _UpperCamelCase : Any = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Optional[Any] , a : Optional[int]=267_735 , a : str=[20_000, 40_000, 200_000] , a : str=1_024 , a : str=1_024 , a : int=16 , a : Optional[int]=64 , a : Optional[int]=4_096 , a : int=4 , a : Tuple=False , a : Any=18 , a : Tuple=1_600 , a : Union[str, Any]=1_000 , a : str=True , a : Dict=True , a : Any=0 , a : List[Any]=-1 , a : List[Any]=True , a : Tuple=0.1 , a : List[Any]=0.0 , a : Optional[Any]=True , a : int="normal" , a : Optional[Any]=0.01 , a : str=0.01 , a : List[Any]=0.02 , a : List[Any]=1E-5 , a : Optional[Any]=0 , **a : Optional[int] , )-> Optional[int]: """simple docstring""" lowercase__ = vocab_size lowercase__ = [] self.cutoffs.extend(a ) if proj_share_all_but_first: lowercase__ = [False] + [True] * len(self.cutoffs ) else: lowercase__ = [False] + [False] * len(self.cutoffs ) lowercase__ = d_model lowercase__ = d_embed lowercase__ = d_head lowercase__ = d_inner lowercase__ = div_val lowercase__ = pre_lnorm lowercase__ = n_layer lowercase__ = n_head lowercase__ = mem_len lowercase__ = same_length lowercase__ = attn_type lowercase__ = clamp_len lowercase__ = sample_softmax lowercase__ = adaptive lowercase__ = dropout lowercase__ = dropatt lowercase__ = untie_r lowercase__ = init lowercase__ = init_range lowercase__ = proj_init_std lowercase__ = init_std lowercase__ = layer_norm_epsilon super().__init__(eos_token_id=a , **a ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] )-> Union[str, Any]: """simple docstring""" logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def SCREAMING_SNAKE_CASE_ ( self : Any , a : Optional[int] )-> Optional[int]: """simple docstring""" raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
269
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL snake_case : Any = logging.get_logger(__name__) def __lowerCamelCase ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple ): """simple docstring""" a :Any = b.T a :Tuple = np.sum(np.square(UpperCAmelCase_ ) , axis=1 ) a :Union[str, Any] = np.sum(np.square(UpperCAmelCase_ ) , axis=0 ) a :Tuple = np.matmul(UpperCAmelCase_ , UpperCAmelCase_ ) a :List[str] = aa[:, None] - 2 * ab + ba[None, :] return d def __lowerCamelCase ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int ): """simple docstring""" a :Union[str, Any] = x.reshape(-1 , 3 ) a :List[Any] = squared_euclidean_distance(UpperCAmelCase_ , UpperCAmelCase_ ) return np.argmin(UpperCAmelCase_ , axis=1 ) class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = ['pixel_values'] def __init__( self , _lowerCamelCase = None , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = PILImageResampling.BILINEAR , _lowerCamelCase = True , _lowerCamelCase = True , **_lowerCamelCase , ): super().__init__(**_lowerCamelCase ) a :int = size if size is not None else {'''height''': 256, '''width''': 256} a :Any = get_size_dict(_lowerCamelCase ) a :List[Any] = np.array(_lowerCamelCase ) if clusters is not None else None a :Optional[Any] = do_resize a :Any = size a :Dict = resample a :Optional[int] = do_normalize a :Optional[int] = do_color_quantize def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = PILImageResampling.BILINEAR , _lowerCamelCase = None , **_lowerCamelCase , ): a :Optional[Any] = get_size_dict(_lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( _lowerCamelCase , size=(size['''height'''], size['''width''']) , resample=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = None , ): a :int = rescale(image=_lowerCamelCase , scale=1 / 127.5 , data_format=_lowerCamelCase ) a :List[Any] = image - 1 return image def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = ChannelDimension.FIRST , **_lowerCamelCase , ): a :Optional[int] = do_resize if do_resize is not None else self.do_resize a :Optional[Any] = size if size is not None else self.size a :Optional[int] = get_size_dict(_lowerCamelCase ) a :Union[str, Any] = resample if resample is not None else self.resample a :int = do_normalize if do_normalize is not None else self.do_normalize a :Tuple = do_color_quantize if do_color_quantize is not None else self.do_color_quantize a :List[str] = clusters if clusters is not None else self.clusters a :List[str] = np.array(_lowerCamelCase ) a :List[Any] = make_list_of_images(_lowerCamelCase ) if not valid_images(_lowerCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_color_quantize and clusters is None: raise ValueError('''Clusters must be specified if do_color_quantize is True.''' ) # All transformations expect numpy arrays. a :Tuple = [to_numpy_array(_lowerCamelCase ) for image in images] if do_resize: a :List[str] = [self.resize(image=_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase ) for image in images] if do_normalize: a :List[Any] = [self.normalize(image=_lowerCamelCase ) for image in images] if do_color_quantize: a :Union[str, Any] = [to_channel_dimension_format(_lowerCamelCase , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) a :Union[str, Any] = np.array(_lowerCamelCase ) a :List[Any] = color_quantize(_lowerCamelCase , _lowerCamelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) a :List[str] = images.shape[0] a :Optional[Any] = images.reshape(_lowerCamelCase , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. a :Optional[int] = list(_lowerCamelCase ) else: a :Tuple = [to_channel_dimension_format(_lowerCamelCase , _lowerCamelCase ) for image in images] a :Any = {'''input_ids''': images} return BatchFeature(data=_lowerCamelCase , tensor_type=_lowerCamelCase )
94
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class __lowerCAmelCase ( lowerCamelCase__ ): # to overwrite at feature extractactor specific tests __lowerCamelCase = None __lowerCamelCase = None @property def snake_case ( self ): """simple docstring""" return self.feat_extract_tester.prepare_feat_extract_dict() def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_snake_case , """feature_size""" ) ) self.assertTrue(hasattr(_snake_case , """sampling_rate""" ) ) self.assertTrue(hasattr(_snake_case , """padding_value""" ) ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common() _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCAmelCase = feat_extract.model_input_names[0] _lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_snake_case ) == len(_snake_case ) for x, y in zip(_snake_case , processed_features[input_name] ) ) ) _lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_snake_case ) _lowerCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type="""np""" ) _lowerCAmelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: _lowerCAmelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_snake_case ) _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCAmelCase = feat_extract.model_input_names[0] _lowerCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type="""pt""" ) _lowerCAmelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: _lowerCAmelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_snake_case ) _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCAmelCase = feat_extract.model_input_names[0] _lowerCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type="""tf""" ) _lowerCAmelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: _lowerCAmelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def snake_case ( self , _snake_case=False ): """simple docstring""" def _inputs_have_equal_length(_snake_case ): _lowerCAmelCase = len(input[0] ) for input_slice in input[1:]: if len(_snake_case ) != length: return False return True def _inputs_are_equal(_snake_case , _snake_case ): if len(_snake_case ) != len(_snake_case ): return False for input_slice_a, input_slice_a in zip(_snake_case , _snake_case ): if not np.allclose(np.asarray(_snake_case ) , np.asarray(_snake_case ) , atol=1e-3 ): return False return True _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(numpify=_snake_case ) _lowerCAmelCase = feat_extract.model_input_names[0] _lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) _lowerCAmelCase = self.feat_extract_tester.seq_length_diff _lowerCAmelCase = self.feat_extract_tester.max_seq_length + pad_diff _lowerCAmelCase = self.feat_extract_tester.min_seq_length _lowerCAmelCase = self.feat_extract_tester.batch_size _lowerCAmelCase = self.feat_extract_tester.feature_size # test padding for List[int] + numpy _lowerCAmelCase = feat_extract.pad(_snake_case , padding=_snake_case ) _lowerCAmelCase = input_a[input_name] _lowerCAmelCase = feat_extract.pad(_snake_case , padding="""longest""" ) _lowerCAmelCase = input_a[input_name] _lowerCAmelCase = feat_extract.pad(_snake_case , padding="""max_length""" , max_length=len(speech_inputs[-1] ) ) _lowerCAmelCase = input_a[input_name] _lowerCAmelCase = feat_extract.pad(_snake_case , padding="""longest""" , return_tensors="""np""" ) _lowerCAmelCase = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(_snake_case ): feat_extract.pad(_snake_case , padding="""max_length""" )[input_name] _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , max_length=_snake_case , return_tensors="""np""" ) _lowerCAmelCase = input_a[input_name] self.assertFalse(_inputs_have_equal_length(_snake_case ) ) self.assertTrue(_inputs_have_equal_length(_snake_case ) ) self.assertTrue(_inputs_have_equal_length(_snake_case ) ) self.assertTrue(_inputs_are_equal(_snake_case , _snake_case ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy _lowerCAmelCase = feat_extract.pad(_snake_case , pad_to_multiple_of=10 ) _lowerCAmelCase = input_a[input_name] _lowerCAmelCase = feat_extract.pad(_snake_case , padding="""longest""" , pad_to_multiple_of=10 ) _lowerCAmelCase = input_a[input_name] _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , pad_to_multiple_of=10 , max_length=_snake_case ) _lowerCAmelCase = input_a[input_name] _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , pad_to_multiple_of=10 , max_length=_snake_case , return_tensors="""np""" , ) _lowerCAmelCase = input_a[input_name] self.assertTrue(all(len(_snake_case ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(_snake_case , _snake_case ) ) _lowerCAmelCase = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(_snake_case ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct _lowerCAmelCase = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1e-3 ) def snake_case ( self , _snake_case=False ): """simple docstring""" def _inputs_have_equal_length(_snake_case ): _lowerCAmelCase = len(input[0] ) for input_slice in input[1:]: if len(_snake_case ) != length: return False return True def _inputs_are_equal(_snake_case , _snake_case ): if len(_snake_case ) != len(_snake_case ): return False for input_slice_a, input_slice_a in zip(_snake_case , _snake_case ): if not np.allclose(np.asarray(_snake_case ) , np.asarray(_snake_case ) , atol=1e-3 ): return False return True _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(numpify=_snake_case ) _lowerCAmelCase = feat_extract.model_input_names[0] _lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) # truncate to smallest _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , max_length=len(speech_inputs[0] ) , truncation=_snake_case ) _lowerCAmelCase = input_a[input_name] _lowerCAmelCase = feat_extract.pad(_snake_case , padding="""max_length""" , max_length=len(speech_inputs[0] ) ) _lowerCAmelCase = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_snake_case ) ) self.assertFalse(_inputs_have_equal_length(_snake_case ) ) # truncate to smallest with np _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , max_length=len(speech_inputs[0] ) , return_tensors="""np""" , truncation=_snake_case , ) _lowerCAmelCase = input_a[input_name] _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , max_length=len(speech_inputs[0] ) , return_tensors="""np""" ) _lowerCAmelCase = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_snake_case ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_snake_case ) ) # truncate to middle _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , max_length=len(speech_inputs[1] ) , truncation=_snake_case , return_tensors="""np""" , ) _lowerCAmelCase = input_a[input_name] _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , max_length=len(speech_inputs[1] ) , truncation=_snake_case ) _lowerCAmelCase = input_a[input_name] _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , max_length=len(speech_inputs[1] ) , return_tensors="""np""" ) _lowerCAmelCase = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(_snake_case ) ) self.assertTrue(_inputs_have_equal_length(_snake_case ) ) self.assertTrue(_inputs_are_equal(_snake_case , _snake_case ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_snake_case ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(_snake_case ): feat_extract.pad(_snake_case , truncation=_snake_case )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_snake_case ): feat_extract.pad(_snake_case , padding="""longest""" , truncation=_snake_case )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_snake_case ): feat_extract.pad(_snake_case , padding="""longest""" , truncation=_snake_case )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(_snake_case ): feat_extract.pad(_snake_case , padding="""max_length""" , truncation=_snake_case )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy _lowerCAmelCase = 12 _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_snake_case , truncation=_snake_case , ) _lowerCAmelCase = input_a[input_name] _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_snake_case , ) _lowerCAmelCase = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of _lowerCAmelCase = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: _lowerCAmelCase = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(_snake_case ) ) self.assertFalse(_inputs_have_equal_length(_snake_case ) ) def snake_case ( self ): """simple docstring""" self._check_padding(numpify=_snake_case ) def snake_case ( self ): """simple docstring""" self._check_padding(numpify=_snake_case ) def snake_case ( self ): """simple docstring""" self._check_truncation(numpify=_snake_case ) def snake_case ( self ): """simple docstring""" self._check_truncation(numpify=_snake_case ) @require_torch def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common() _lowerCAmelCase = feat_extract.model_input_names[0] _lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) _lowerCAmelCase = feat_extract.pad(_snake_case , padding="""longest""" , return_tensors="""np""" )[input_name] _lowerCAmelCase = feat_extract.pad(_snake_case , padding="""longest""" , return_tensors="""pt""" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) @require_tf def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common() _lowerCAmelCase = feat_extract.model_input_names[0] _lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) _lowerCAmelCase = feat_extract.pad(_snake_case , padding="""longest""" , return_tensors="""np""" )[input_name] _lowerCAmelCase = feat_extract.pad(_snake_case , padding="""longest""" , return_tensors="""tf""" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.feat_extract_dict _lowerCAmelCase = True _lowerCAmelCase = self.feature_extraction_class(**_snake_case ) _lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common() _lowerCAmelCase = [len(_snake_case ) for x in speech_inputs] _lowerCAmelCase = feat_extract.model_input_names[0] _lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) _lowerCAmelCase = feat_extract.pad(_snake_case , padding="""longest""" , return_tensors="""np""" ) self.assertIn("""attention_mask""" , _snake_case ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.feat_extract_dict _lowerCAmelCase = True _lowerCAmelCase = self.feature_extraction_class(**_snake_case ) _lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common() _lowerCAmelCase = [len(_snake_case ) for x in speech_inputs] _lowerCAmelCase = feat_extract.model_input_names[0] _lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) _lowerCAmelCase = min(_snake_case ) _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , max_length=_snake_case , truncation=_snake_case , return_tensors="""np""" ) self.assertIn("""attention_mask""" , _snake_case ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
82
0
"import argparse\r\nimport json\r\nfrom pathlib import Path\r\n\r\nimport requests\r\nimport timm\r\(...TRUNCATED)
35
"from .dependency_versions_table import deps\r\nfrom .utils.versions import require_version, require(...TRUNCATED)
35
1

Dataset Card for "python_codestyles-mixed1-500"

This dataset contains negative and positive examples with python code of compliance with a code style. A positive example represents compliance with the code style (label is 1). Each example is composed of two components, the first component consists of a code that either conforms to the code style or violates it and the second component corresponding to an example code that already conforms to a code style. The dataset combines both datasets infinityofspace/python_codestyles-random-500 and infinityofspace/python_codestyles-single-500 by randomly selecting half of the examples from each of the two datasets. The code styles in the combined dataset differ in at least one and exactly one codestyle rule, which is called a mixed codestyle dataset variant. The dataset consists of a training and test group, with none of the code styles overlapping between groups. In addition, both groups contain completely different underlying codes.

The examples contain source code from the following repositories:

repository tag or commit
TheAlgorithms/Python f614ed72170011d2d439f7901e1c8daa7deac8c4
huggingface/transformers v4.31.0
huggingface/datasets 2.13.1
huggingface/diffusers v0.18.2
huggingface/accelerate v0.21.0
Downloads last month
53
Edit dataset card