|
import json, random, math, os
|
|
from pathlib import Path
|
|
from datasets import (
|
|
BuilderConfig, DatasetInfo, DownloadManager, GeneratorBasedBuilder,
|
|
SplitGenerator, Split, Features, Image, Value
|
|
)
|
|
from huggingface_hub import hf_hub_url
|
|
|
|
_REPO_ID = "infosys/OpenHumnoidActuatedFaceData"
|
|
_IMAGES_PER_SHARD = 10_000
|
|
_TAR_TPL = "images-{start:05d}-{end:05d}.tar"
|
|
|
|
|
|
class ImageSubsetConfig(BuilderConfig):
|
|
def __init__(self, name, sample_size=None, **kw):
|
|
super().__init__(name=name, version="1.0.2",
|
|
description=kw.get("description", ""))
|
|
self.sample_size = sample_size
|
|
|
|
|
|
class MyImageDataset(GeneratorBasedBuilder):
|
|
BUILDER_CONFIGS = [
|
|
ImageSubsetConfig("full", sample_size=None,
|
|
description="Entire dataset (≈100 GB)"),
|
|
ImageSubsetConfig("small", sample_size=20_000,
|
|
description="20 K random images"),
|
|
]
|
|
DEFAULT_CONFIG_NAME = "small"
|
|
|
|
|
|
|
|
|
|
def _info(self):
|
|
return DatasetInfo(
|
|
description="Humanoid face images + 16 servo angles.",
|
|
features=Features(
|
|
{
|
|
"image": Image(),
|
|
"actuated_angle":
|
|
{str(i): Value("int32") for i in range(16)},
|
|
}
|
|
),
|
|
)
|
|
|
|
|
|
|
|
|
|
def _split_generators(self, dl_manager: DownloadManager):
|
|
|
|
meta_url = hf_hub_url(_REPO_ID, "metadata.json", repo_type="dataset")
|
|
meta_path = dl_manager.download(meta_url)
|
|
with open(meta_path, encoding="utf-8") as f:
|
|
metadata = json.load(f)
|
|
|
|
all_names = sorted(metadata)
|
|
selected = (
|
|
sorted(random.sample(all_names, self.config.sample_size))
|
|
if self.config.sample_size else all_names
|
|
)
|
|
selected_set = set(selected)
|
|
|
|
|
|
max_idx = len(all_names) - 1
|
|
n_shards = math.floor(max_idx / _IMAGES_PER_SHARD) + 1
|
|
shard_files = [
|
|
_TAR_TPL.format(start=s*_IMAGES_PER_SHARD,
|
|
end=min((s+1)*_IMAGES_PER_SHARD-1, max_idx))
|
|
for s in range(n_shards)
|
|
]
|
|
|
|
|
|
tar_urls = [hf_hub_url(_REPO_ID, f, repo_type="dataset")
|
|
for f in shard_files]
|
|
local_tars = dl_manager.download(tar_urls)
|
|
|
|
|
|
|
|
return [
|
|
SplitGenerator(
|
|
name=Split.TRAIN,
|
|
gen_kwargs={
|
|
"tar_paths": local_tars,
|
|
"metadata": metadata,
|
|
"want": selected_set,
|
|
},
|
|
)
|
|
]
|
|
|
|
|
|
|
|
|
|
def _generate_examples(self, tar_paths, metadata, want):
|
|
"""Stream over each tar and yield only requested files."""
|
|
idx = 0
|
|
for tar_path in tar_paths:
|
|
|
|
for inner_path, fobj in \
|
|
self._iter_archive_fast(tar_path):
|
|
fname = Path(inner_path).name
|
|
if fname not in want:
|
|
continue
|
|
|
|
angles = metadata[fname]
|
|
yield idx, {
|
|
"image": {"bytes": fobj.read(), "path": fname},
|
|
"actuated_angle":
|
|
{str(i): int(angles.get(str(i), 0)) for i in range(16)}
|
|
}
|
|
idx += 1
|
|
|
|
|
|
@staticmethod
|
|
def _iter_archive_fast(tar_path):
|
|
import tarfile
|
|
with tarfile.open(tar_path) as tar:
|
|
for member in tar:
|
|
if member.isfile():
|
|
f = tar.extractfile(member)
|
|
yield member.name, f |