File size: 12,884 Bytes
2fc81ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import glob
import json
import os
from io import BytesIO

import ijson
import more_itertools
import pandas as pd

import datasets
from datasets import Dataset, DatasetDict, DatasetInfo, Features, Sequence, Value

logger = datasets.logging.get_logger(__name__)
# _URL = "https://www.cs.tau.ac.il/~ohadr/NatQuestions.zip"

# RERANKING_URLS = {
#     "train": "https://dl.fbaipublicfiles.com/dpr/data/retriever/biencoder-nq-train.json.gz",
#     "validation": "https://dl.fbaipublicfiles.com/dpr/data/retriever/biencoder-nq-dev.json.gz",
#     # "test": "https://dl.fbaipublicfiles.com/dpr/data/retriever/nq-test.qa.csv",
# }

from tqdm.auto import tqdm

_CITATION = """ """

_DESCRIPTION = """ """

# def
# def read_glob(paths):
#     paths = glob.glob(paths)
#     data = []
#     for path in paths:
#         with open(path) as f:
#             if path.endswith(".json"):
#                 data.extend(json.load(f))
#             elif path.endswith(".jsonl"):
#                 for line in f:
#                     data.append(json.loads(line))
#     return data


def to_dict_element(el, cols):
    bucked_fields = more_itertools.bucket(cols, key=lambda x: x.split(".")[0])
    final_dict = {}
    for parent_name in list(bucked_fields):

        fields = [y.split(".")[-1] for y in list(bucked_fields[parent_name])]
        if len(fields) == 1 and fields[0] == parent_name:
            final_dict[parent_name] = el[fields[0]]
        else:
            parent_list = []
            zipped_fields = list(zip(*[el[f"{parent_name}.{child}"] for child in fields]))
            for x in zipped_fields:
                parent_list.append({k: v for k, v in zip(fields, x)})
            final_dict[parent_name] = parent_list
    return final_dict


def get_json_dataset(dataset):
    flat_dataset = dataset.flatten()
    json_dataset = dataset_to_json(flat_dataset)
    return [to_dict_element(el, cols=flat_dataset.column_names) for el in json_dataset]


def dataset_to_json(dataset):
    new_str = BytesIO()
    dataset.to_json(new_str)
    new_str.seek(0)
    return [json.loads(line.decode()) for line in new_str]


# inference_features = datasets.Features(
#     {
#         "source": Value(dtype="string"),
#         "meta": {
#             "question": Value(dtype="string"),
#             "text": Value(dtype="string"),
#             "title": Value(dtype="string"),
#             "qid": Value(dtype="string"),
#             "id": Value(dtype="string"),
#         },
#     }
# )


class NatQuestionsConfig(datasets.BuilderConfig):
    """BuilderConfig for NatQuestionsDPR."""

    def __init__(self, features, retriever, feature_format, url, **kwargs):
        """BuilderConfig for NatQuestions.

        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(NatQuestionsConfig, self).__init__(**kwargs)
        self.features = features
        self.retriever = retriever
        self.feature_format = feature_format
        self.url = url


RETBM25_RERANKING_URLS = {
    split: f"https://dl.fbaipublicfiles.com/dpr/data/retriever/biencoder-nq-{split}.json.gz"
    for split in ["train", "dev"]
}
RETDPR_RERANKING_URLS = {
    split: f"https://dl.fbaipublicfiles.com/dpr/data/retriever/biencoder-nq-adv-hn-{split}.json.gz"
    for split in ["train"]
}


RETDPR_INF_URLS = {
    split: f"https://dl.fbaipublicfiles.com/dpr/data/retriever_results/single/nq-{split}.json.gz"
    for split in ["train", "dev", "test"]
}

RETBM25_INF_URLS = {
    split:f"https://www.cs.tau.ac.il/~ohadr/nq-{split}.json.gz" for split in ["dev","test"]
    
}
RETBM25_RERANKING_features = Features(
    {
        "dataset": Value(dtype="string"),
        "qid": Value(dtype="string"),
        "question": Value(dtype="string"),
        "answers": Sequence(feature=Value(dtype="string")),
        "positive_ctxs": Sequence(
            feature={
                "title": Value(dtype="string"),
                "text": Value(dtype="string"),
                "score": Value(dtype="float32"),
                #    'title_score': Value(dtype='int32'),
                "passage_id": Value(dtype="string"),
            }
        ),
        # 'negative_ctxs': Sequence(feature={'title': Value(dtype='string'),
        #                                  'text': Value(dtype='string'),
        #                                   'score': Value(dtype='float32'),
        #                                 #    'title_score': Value(dtype='int32'),
        #                                     'passage_id': Value(dtype='string')}),
        "hard_negative_ctxs": Sequence(
            feature={
                "title": Value(dtype="string"),
                "text": Value(dtype="string"),
                "score": Value(dtype="float32"),
                #    'title_score': Value(dtype='int32'),
                "passage_id": Value(dtype="string"),
            }
        ),
    }
)

RETDPR_RERANKING_features = Features(
    {
        "qid": Value(dtype="string"),
        "question": Value(dtype="string"),
        "answers": Sequence(feature=Value(dtype="string")),
        # 'negative_ctxs': Sequence(feature=[]),
        "hard_negative_ctxs": Sequence(
            feature={
                "passage_id": Value(dtype="string"),
                "title": Value(dtype="string"),
                "text": Value(dtype="string"),
                "score": Value(dtype="string"),
                # 'has_answer': Value(dtype='int32')
            }
        ),
        "positive_ctxs": Sequence(
            feature={
                "title": Value(dtype="string"),
                "text": Value(dtype="string"),
                "score": Value(dtype="float32"),
                #    'title_score': Value(dtype='int32'),
                # 'has_answer': Value(dtype='int32'),
                "passage_id": Value(dtype="string"),
            }
        ),
    }
)


RETDPR_INF_features = Features(
    {
        "question": Value(dtype="string"),
        "qid": Value(dtype="string"),
        "answers": Sequence(feature=Value(dtype="string")),
        "ctxs": Sequence(
            feature={
                "id": Value(dtype="string"),
                "title": Value(dtype="string"),
                "text": Value(dtype="string"),
                "score": Value(dtype="float32"),
                # "has_answer": Value(dtype="int32"),
            }
        ),
    }
)
URL_DICT = {"reranking_dprnq":RETDPR_RERANKING_URLS, 
            "reranking_bm25":RETBM25_RERANKING_URLS,
            "inference_dprnq":RETDPR_INF_URLS}

class NatQuestions(datasets.GeneratorBasedBuilder):

    BUILDER_CONFIGS = [
        NatQuestionsConfig(
            name="reranking_dprnq",
            version=datasets.Version("1.0.1", ""),
            description="NatQuestions dataset in DPR format with the dprnq retrieval results",
            features=RETDPR_RERANKING_features,
            retriever="dprnq",
            feature_format="dpr",
            url=URL_DICT,
        ),
        NatQuestionsConfig(
            name="reranking_bm25",
            version=datasets.Version("1.0.1", ""),
            description="NatQuestions dataset in DPR format with the bm25 retrieval results",
            features=RETBM25_RERANKING_features,
            retriever="bm25",
            feature_format="dpr",
            url=URL_DICT,
        ),
        NatQuestionsConfig(
            name="inference_dprnq",
            version=datasets.Version("1.0.1", ""),
            description="NatQuestions dataset in a format accepted by the inference model, performing reranking on the dprnq retrieval results",
            features=RETDPR_INF_features,
            retriever="dprnq",
            feature_format="inference",
            url=URL_DICT,
        ),
        NatQuestionsConfig(
            name="inference_bm25",
            version=datasets.Version("1.0.1", ""),
            description="NatQuestions dataset in a format accepted by the inference model, performing reranking on the bm25 retrieval results",
            features=RETDPR_INF_features,
            retriever="bm25",
            feature_format="inference",
            url=URL_DICT,
        ),

    ]

    def _info(self):
        self.features = self.config.features
        self.retriever = self.config.retriever
        self.feature_format = self.config.feature_format
        self.url = self.config.url
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=self.config.features,
            supervised_keys=None,
            homepage="",
            citation=_CITATION,

        )
        

    def _split_generators(self, dl_manager):
        print(self.url)
        if len(self.url) > 0:
            filepath = dl_manager.download_and_extract(self.url)
        else:
            filepath = ""
        # filepath = "/home/joberant/home/ohadr/testbed/notebooks/NatQuestions_retrievers"
        
        result = []
        if "train" in filepath[self.info.config_name]:
            result.append(
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={"filepath": filepath, "split": "train"},
                )
            )
        if "dev" in filepath[self.info.config_name] or self.info.config_name=="reranking_dprnq":
            result.append(
                datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION,
                    gen_kwargs={"filepath": filepath, "split": "dev"},
                )
            )
        if "test" in filepath[self.info.config_name] or self.info.config_name=="reranking_dprnq":
            result.append(
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    gen_kwargs={"filepath": filepath, "split": "test"},
                )
            )
        
        return result

    def _prepare_split(self, split_generator, **kwargs):
        self.info.features = self.config.features
        super()._prepare_split(split_generator, **kwargs)

    def _generate_examples(self, filepath, split):
        if self.info.config_name=="reranking_dprnq" and split in ["dev","test"]:
            for i,dict_element in  new_method(split, "inference_dprnq", f"{filepath['inference_dprnq'][split]}"):
                dict_element['positive_ctxs'] = []
                answers = dict_element['answers']
                any_true = False
                for x in dict_element['ctxs']:
                    x['passage_id'] = x.pop('id')
                    x['has_answer'] = False
                    for ans in answers:
                        if ans in x['title'] or ans in x['text']:
                            if 'id' in x:
                                x['passage_id'] = x.pop('id')
                            x['has_answer'] = True
                            dict_element['positive_ctxs'].append(x)
                            any_true = True
                negative_candidates = [x for x in dict_element['ctxs'] if not x['has_answer']]
                dict_element['hard_negative_ctxs'] = negative_candidates[:len(dict_element['positive_ctxs'])]
                dict_element['ctxs'] = dict_element.pop("ctxs")
                for name in ['positive_ctxs',"hard_negative_ctxs"]:
                    for x in dict_element[name]:
                        x.pop("has_answer",None)
                if any_true:
                    dict_element.pop("ctxs")
                    yield i,dict_element
        else:
            yield from new_method(split, self.info.config_name, f"{filepath[self.info.config_name][split]}")

def new_method(split, config_name, object_path):
    count = 0
    with open(object_path) as f:
        items = ijson.items(f, "item")
        for element in items:
            element.pop("negative_ctxs",None)
            for name in ["positive_ctxs","hard_negative_ctxs","ctxs"]:
                for x in element.get(name,[]):
                    x.pop("title_score",None)
                    x.pop("has_answer", None)
                    if "reranking" in config_name and "id" in x:
                        x["passage_id"] = x.pop("id")
            element["qid"] = f"{count}_{split}"
            yield count, element
            count += 1


# def single_inference_format_example(ctx, question, qid):
#     datum = {}
#     datum["source"] = f"Title: {ctx['meta']['title']}\nText: {ctx['meta']['content']}\nQuestion: {question}\n"
#     datum["meta"] = {}
#     datum["meta"]["question"] = question
#     datum["meta"]["qid"] = qid
#     datum["meta"]["title"] = ctx["meta"]["title"]
#     datum["meta"]["text"] = ctx["meta"]["content"]
#     datum["meta"]["id"] = ctx["id"]
#     return datum


# def inference_format_example(element):
#     return [
#         single_inference_format_example(ctx, element["proof"], element["pid"]) for ctx in element["query_res"]
#     ]


# def inference_example(example):