nq / _nq.py
iohadrubin's picture
Rename nq.py to _nq.py
c9ca924
raw
history blame
12.9 kB
import glob
import json
import os
from io import BytesIO
import ijson
import more_itertools
import pandas as pd
import datasets
from datasets import Dataset, DatasetDict, DatasetInfo, Features, Sequence, Value
logger = datasets.logging.get_logger(__name__)
# _URL = "https://www.cs.tau.ac.il/~ohadr/NatQuestions.zip"
# RERANKING_URLS = {
# "train": "https://dl.fbaipublicfiles.com/dpr/data/retriever/biencoder-nq-train.json.gz",
# "validation": "https://dl.fbaipublicfiles.com/dpr/data/retriever/biencoder-nq-dev.json.gz",
# # "test": "https://dl.fbaipublicfiles.com/dpr/data/retriever/nq-test.qa.csv",
# }
from tqdm.auto import tqdm
_CITATION = """ """
_DESCRIPTION = """ """
# def
# def read_glob(paths):
# paths = glob.glob(paths)
# data = []
# for path in paths:
# with open(path) as f:
# if path.endswith(".json"):
# data.extend(json.load(f))
# elif path.endswith(".jsonl"):
# for line in f:
# data.append(json.loads(line))
# return data
def to_dict_element(el, cols):
bucked_fields = more_itertools.bucket(cols, key=lambda x: x.split(".")[0])
final_dict = {}
for parent_name in list(bucked_fields):
fields = [y.split(".")[-1] for y in list(bucked_fields[parent_name])]
if len(fields) == 1 and fields[0] == parent_name:
final_dict[parent_name] = el[fields[0]]
else:
parent_list = []
zipped_fields = list(zip(*[el[f"{parent_name}.{child}"] for child in fields]))
for x in zipped_fields:
parent_list.append({k: v for k, v in zip(fields, x)})
final_dict[parent_name] = parent_list
return final_dict
def get_json_dataset(dataset):
flat_dataset = dataset.flatten()
json_dataset = dataset_to_json(flat_dataset)
return [to_dict_element(el, cols=flat_dataset.column_names) for el in json_dataset]
def dataset_to_json(dataset):
new_str = BytesIO()
dataset.to_json(new_str)
new_str.seek(0)
return [json.loads(line.decode()) for line in new_str]
# inference_features = datasets.Features(
# {
# "source": Value(dtype="string"),
# "meta": {
# "question": Value(dtype="string"),
# "text": Value(dtype="string"),
# "title": Value(dtype="string"),
# "qid": Value(dtype="string"),
# "id": Value(dtype="string"),
# },
# }
# )
class NatQuestionsConfig(datasets.BuilderConfig):
"""BuilderConfig for NatQuestionsDPR."""
def __init__(self, features, retriever, feature_format, url, **kwargs):
"""BuilderConfig for NatQuestions.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(NatQuestionsConfig, self).__init__(**kwargs)
self.features = features
self.retriever = retriever
self.feature_format = feature_format
self.url = url
RETBM25_RERANKING_URLS = {
split: f"https://dl.fbaipublicfiles.com/dpr/data/retriever/biencoder-nq-{split}.json.gz"
for split in ["train", "dev"]
}
RETDPR_RERANKING_URLS = {
split: f"https://dl.fbaipublicfiles.com/dpr/data/retriever/biencoder-nq-adv-hn-{split}.json.gz"
for split in ["train"]
}
RETDPR_INF_URLS = {
split: f"https://dl.fbaipublicfiles.com/dpr/data/retriever_results/single/nq-{split}.json.gz"
for split in ["train", "dev", "test"]
}
RETBM25_INF_URLS = {
split:f"https://www.cs.tau.ac.il/~ohadr/nq-{split}.json.gz" for split in ["dev","test"]
}
RETBM25_RERANKING_features = Features(
{
"dataset": Value(dtype="string"),
"qid": Value(dtype="string"),
"question": Value(dtype="string"),
"answers": Sequence(feature=Value(dtype="string")),
"positive_ctxs": Sequence(
feature={
"title": Value(dtype="string"),
"text": Value(dtype="string"),
"score": Value(dtype="float32"),
# 'title_score': Value(dtype='int32'),
"passage_id": Value(dtype="string"),
}
),
# 'negative_ctxs': Sequence(feature={'title': Value(dtype='string'),
# 'text': Value(dtype='string'),
# 'score': Value(dtype='float32'),
# # 'title_score': Value(dtype='int32'),
# 'passage_id': Value(dtype='string')}),
"hard_negative_ctxs": Sequence(
feature={
"title": Value(dtype="string"),
"text": Value(dtype="string"),
"score": Value(dtype="float32"),
# 'title_score': Value(dtype='int32'),
"passage_id": Value(dtype="string"),
}
),
}
)
RETDPR_RERANKING_features = Features(
{
"qid": Value(dtype="string"),
"question": Value(dtype="string"),
"answers": Sequence(feature=Value(dtype="string")),
# 'negative_ctxs': Sequence(feature=[]),
"hard_negative_ctxs": Sequence(
feature={
"passage_id": Value(dtype="string"),
"title": Value(dtype="string"),
"text": Value(dtype="string"),
"score": Value(dtype="string"),
# 'has_answer': Value(dtype='int32')
}
),
"positive_ctxs": Sequence(
feature={
"title": Value(dtype="string"),
"text": Value(dtype="string"),
"score": Value(dtype="float32"),
# 'title_score': Value(dtype='int32'),
# 'has_answer': Value(dtype='int32'),
"passage_id": Value(dtype="string"),
}
),
}
)
RETDPR_INF_features = Features(
{
"question": Value(dtype="string"),
"qid": Value(dtype="string"),
"answers": Sequence(feature=Value(dtype="string")),
"ctxs": Sequence(
feature={
"id": Value(dtype="string"),
"title": Value(dtype="string"),
"text": Value(dtype="string"),
"score": Value(dtype="float32"),
# "has_answer": Value(dtype="int32"),
}
),
}
)
URL_DICT = {"reranking_dprnq":RETDPR_RERANKING_URLS,
"reranking_bm25":RETBM25_RERANKING_URLS,
"inference_dprnq":RETDPR_INF_URLS}
class NatQuestions(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
NatQuestionsConfig(
name="reranking_dprnq",
version=datasets.Version("1.0.1", ""),
description="NatQuestions dataset in DPR format with the dprnq retrieval results",
features=RETDPR_RERANKING_features,
retriever="dprnq",
feature_format="dpr",
url=URL_DICT,
),
NatQuestionsConfig(
name="reranking_bm25",
version=datasets.Version("1.0.1", ""),
description="NatQuestions dataset in DPR format with the bm25 retrieval results",
features=RETBM25_RERANKING_features,
retriever="bm25",
feature_format="dpr",
url=URL_DICT,
),
NatQuestionsConfig(
name="inference_dprnq",
version=datasets.Version("1.0.1", ""),
description="NatQuestions dataset in a format accepted by the inference model, performing reranking on the dprnq retrieval results",
features=RETDPR_INF_features,
retriever="dprnq",
feature_format="inference",
url=URL_DICT,
),
NatQuestionsConfig(
name="inference_bm25",
version=datasets.Version("1.0.1", ""),
description="NatQuestions dataset in a format accepted by the inference model, performing reranking on the bm25 retrieval results",
features=RETDPR_INF_features,
retriever="bm25",
feature_format="inference",
url=URL_DICT,
),
]
def _info(self):
self.features = self.config.features
self.retriever = self.config.retriever
self.feature_format = self.config.feature_format
self.url = self.config.url
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=self.config.features,
supervised_keys=None,
homepage="",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
print(self.url)
if len(self.url) > 0:
filepath = dl_manager.download_and_extract(self.url)
else:
filepath = ""
# filepath = "/home/joberant/home/ohadr/testbed/notebooks/NatQuestions_retrievers"
result = []
if "train" in filepath[self.info.config_name]:
result.append(
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": filepath, "split": "train"},
)
)
if "dev" in filepath[self.info.config_name] or self.info.config_name=="reranking_dprnq":
result.append(
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"filepath": filepath, "split": "dev"},
)
)
if "test" in filepath[self.info.config_name] or self.info.config_name=="reranking_dprnq":
result.append(
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": filepath, "split": "test"},
)
)
return result
def _prepare_split(self, split_generator, **kwargs):
self.info.features = self.config.features
super()._prepare_split(split_generator, **kwargs)
def _generate_examples(self, filepath, split):
if self.info.config_name=="reranking_dprnq" and split in ["dev","test"]:
for i,dict_element in new_method(split, "inference_dprnq", f"{filepath['inference_dprnq'][split]}"):
dict_element['positive_ctxs'] = []
answers = dict_element['answers']
any_true = False
for x in dict_element['ctxs']:
x['passage_id'] = x.pop('id')
x['has_answer'] = False
for ans in answers:
if ans in x['title'] or ans in x['text']:
if 'id' in x:
x['passage_id'] = x.pop('id')
x['has_answer'] = True
dict_element['positive_ctxs'].append(x)
any_true = True
negative_candidates = [x for x in dict_element['ctxs'] if not x['has_answer']]
dict_element['hard_negative_ctxs'] = negative_candidates[:len(dict_element['positive_ctxs'])]
dict_element['ctxs'] = dict_element.pop("ctxs")
for name in ['positive_ctxs',"hard_negative_ctxs"]:
for x in dict_element[name]:
x.pop("has_answer",None)
if any_true:
dict_element.pop("ctxs")
yield i,dict_element
else:
yield from new_method(split, self.info.config_name, f"{filepath[self.info.config_name][split]}")
def new_method(split, config_name, object_path):
count = 0
with open(object_path) as f:
items = ijson.items(f, "item")
for element in items:
element.pop("negative_ctxs",None)
for name in ["positive_ctxs","hard_negative_ctxs","ctxs"]:
for x in element.get(name,[]):
x.pop("title_score",None)
x.pop("has_answer", None)
if "reranking" in config_name and "id" in x:
x["passage_id"] = x.pop("id")
element["qid"] = f"{count}_{split}"
yield count, element
count += 1
# def single_inference_format_example(ctx, question, qid):
# datum = {}
# datum["source"] = f"Title: {ctx['meta']['title']}\nText: {ctx['meta']['content']}\nQuestion: {question}\n"
# datum["meta"] = {}
# datum["meta"]["question"] = question
# datum["meta"]["qid"] = qid
# datum["meta"]["title"] = ctx["meta"]["title"]
# datum["meta"]["text"] = ctx["meta"]["content"]
# datum["meta"]["id"] = ctx["id"]
# return datum
# def inference_format_example(element):
# return [
# single_inference_format_example(ctx, element["proof"], element["pid"]) for ctx in element["query_res"]
# ]
# def inference_example(example):