The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code: JobManagerCrashedError
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
image
image | label
class label |
---|---|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
|
0hazy_images
|
HazyDet: Open-Source Benchmark for Drone-View Object Detection With Depth-Cues in Hazy Scenes (paper)
HazyDet is the first benchmark for object detection in hazy drone imagery. It couples physics-driven synthetic data with real foggy drone photos, providing a controlled yet realistic test-bed for designing haze-robust detectors.
Abstract
Object detection from aerial platforms under adverse atmospheric conditions, particularly haze, is paramount for robust drone autonomy. Yet, this domain remains largely underexplored, primarily hindered by the absence of specialized benchmarks. To bridge this gap, we present HazyDet, the first, large-scale benchmark specifically designed for drone-view object detection in hazy conditions. Comprising 383,000 real-world instances derived from both naturally hazy captures and synthetically hazed scenes augmented from clear images, HazyDet provides a challenging and realistic testbed for advancing detection algorithms. To address the severe visual degradation induced by haze, we propose the Depth-Conditioned Detector (DeCoDet), a novel architecture that integrates a Depth-Conditioned Kernel to dynamically modulate feature representations based on depth cues. The practical efficacy and robustness of DeCoDet are further enhanced by its training with a Progressive Domain Fine-Tuning (PDFT) strategy to navigate synthetic-to-real domain shifts, and a Scale-Invariant Refurbishment Loss (SIRLoss) to ensure resilient learning from potentially noisy depth annotations. Comprehensive empirical validation on HazyDet substantiates the superiority of our unified DeCoDet framework, which achieves state-of-the-art performance, surpassing the closest competitor by a notable +1.5% mAP on challenging real-world hazy test scenarios. Our dataset and toolkit are available at github.
HazyDet
π¦ Dataset at a Glance
Target size buckets: Small < 0.1 % of image area , Medium 0.1β1 % , Large > 1 %
Split | #Images | #Instances | Class | Small | Medium | Large |
---|---|---|---|---|---|---|
Train | 8 000 | 264 511 | Car | 159 491 | 77 527 | 5 177 |
Truck | 4 197 | 6 262 | 1 167 | |||
Bus | 1 990 | 7 879 | 861 | |||
Val | 1 000 | 34 560 | Car | 21 051 | 9 881 | 630 |
Truck | 552 | 853 | 103 | |||
Bus | 243 | 1 122 | 125 | |||
Test | 2 000 | 65 322 | Car | 38 910 | 19 860 | 1 256 |
Truck | 881 | 1 409 | 263 | |||
Bus | 473 | 1 991 | 279 | |||
Real-world Train | 400 | 13 753 | Car | 5 816 | 6 487 | 695 |
Truck | 86 | 204 | 57 | |||
Bus | 52 | 256 | 100 | |||
Real-world Test | 200 | 5 543 | Car | 2 351 | 2 506 | 365 |
Truck | 26 | 86 | 30 | |||
Bus | 17 | 107 | 55 |
You can also download our HazyDet dataset from Baidu Netdisk or OneDrive.
For both training and inference, the following dataset structure is required:
HazyDet/
βββ train/
β βββ clean images/
β βββ hazy images/
β βββ lables/
βββval/
β βββ clean images/
β βββ hazy images/
β βββ lables/
βββ test/
β βββ clean images/
β βββ hazy images/
β βββ lables/
βββ Real-world/
β βββ train/
β βββ test/
β βββ lables/
βββ README.md <-- you are here
Note: Both passwords for BaiduYun and OneDrive is grok
.
Leadboard and Model Zoo
All the weight files in the model zoo can be accessed on Baidu Cloud and OneDrive.
Detectors
Model | Backbone | #Params (M) | GFLOPs | mAP on Synthetic Test-set |
mAP on Real-world Test-set |
Weight |
---|---|---|---|---|---|---|
One Stage | ||||||
YOLOv3 | Darknet53 | 61.63 | 20.19 | 35.0 | 30.7 | weight |
GFL | ResNet50 | 32.26 | 198.65 | 36.8 | 32.5 | weight |
YOLOX | CSPDarkNet | 8.94 | 13.32 | 42.3 | 35.4 | weight |
FCOS | ResNet50 | 32.11 | 191.48 | 45.9 | 32.7 | weight |
VFNet | ResNet50 | 32.71 | 184.32 | 49.5 | 35.6 | weight |
ATTS | ResNet50 | 32.12 | 195.58 | 50.4 | 36.4 | weight |
DDOD | ResNet50 | 32.20 | 173.05 | 50.7 | 37.1 | weight |
TOOD | ResNet50 | 32.02 | 192.51 | 51.4 | 36.7 | weight |
Two Stage | ||||||
Faster RCNN | ResNet50 | 41.35 | 201.72 | 48.7 | 33.4 | weight |
Libra RCNN | ResNet50 | 41.62 | 209.92 | 49.0 | 34.5 | weight |
Grid RCNN | ResNet50 | 64.46 | 317.44 | 50.5 | 35.2 | weight |
Cascade RCNN | ResNet50 | 69.15 | 230.40 | 51.6 | 37.2 | weight |
End-to-End | ||||||
Conditional DETR | ResNet50 | 43.55 | 91.47 | 30.5 | 25.8 | weight |
DAB DETR | ResNet50 | 43.7 | 91.02 | 31.3 | 27.2 | weight |
Deform DETR | ResNet50 | 40.01 | 203.11 | 51.5 | 36.9 | weight |
DeCoDet | ||||||
DeCoDet (Ours) | ResNet50 | 34.62 | 225.37 | 52.0 | 38.7 | weight |
Dehazing
Type | Method | PSNR | SSIM | mAP on Test-set | mAP on RDDTS | Weight | |
Baseline | Faster RCNN | - | - | 39.5 | 21.5 | weight | |
Dehaze | GridDehaze | 12.66 | 0.713 | 38.9 (-0.6) | 19.6 (-1.9) | weight | |
Dehaze | MixDehazeNet | 15.52 | 0.743 | 39.9 (+0.4) | 21.2 (-0.3) | weight | |
Dehaze | DSANet | 19.01 | 0.751 | 40.8 (+1.3) | 22.4 (+0.9) | weight | |
Dehaze | FFA | 19.25 | 0.798 | 41.2 (+1.7) | 22.0 (+0.5) | weight | |
Dehaze | DehazeFormer | 17.53 | 0.802 | 42.5 (+3.0) | 21.9 (+0.4) | weight | |
Dehaze | gUNet | 19.49 | 0.822 | 42.7 (+3.2) | 22.2 (+0.7) | weight | |
Dehaze | C2PNet | 21.31 | 0.832 | 42.9 (+3.4) | 22.4 (+0.9) | weight | |
Dehaze | DCP | 16.98 | 0.824 | 44.0 (+4.5) | 20.6 (-0.9) | weight | |
Dehaze | RIDCP | 16.15 | 0.718 | 44.8 (+5.3) | 24.2 (+2.7) | weight |
Citation
If you use this toolbox or benchmark in your research, please cite this project.
@article{feng2025HazyDet,
title={HazyDet: Open-Source Benchmark for Drone-View Object Detection with Depth-Cues in Hazy Scenes},
author={Changfeng Feng and Zhenyuan Chen and Xiang Li and Chunping Wang and Jian Yang and Ming-Ming Cheng and Yimian Dai and Qiang Fu},
year={2025},
journal={arXiv preprint arXiv:2409.19833},
}
@article{zhu2021detection,
title={Detection and tracking meet drones challenge},
author={Zhu, Pengfei and Wen, Longyin and Du, Dawei and Bian, Xiao and Fan, Heng and Hu, Qinghua and Ling, Haibin},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
volume={44},
number={11},
pages={7380--7399},
year={2021},
publisher={IEEE}
}
- Downloads last month
- 22