text
stringlengths
12
1.05M
repo_name
stringlengths
5
86
path
stringlengths
4
191
language
stringclasses
1 value
license
stringclasses
15 values
size
int32
12
1.05M
keyword
sequencelengths
1
23
text_hash
stringlengths
64
64
######################################################################## # This program is copyright (c) Upinder S. Bhalla, NCBS, 2015. # It is licenced under the GPL 2.1 or higher. # There is no warranty of any kind. You are welcome to make copies under # the provisions of the GPL. # This programme illustrates building a panel of multiscale models to # test neuronal plasticity in different contexts. ######################################################################## try: import moogli except Exception as e: print( "[INFO ] Could not import moogli. Quitting..." ) quit() import numpy import time import pylab import moose from moose import neuroml from PyQt4 import Qt, QtCore, QtGui import matplotlib.pyplot as plt import sys import os from moose.neuroml.ChannelML import ChannelML sys.path.append('../../../Demos/util') import rdesigneur as rd PI = 3.14159265359 useGssa = True combineSegments = True # Pick your favourite cell here. #elecFileName = "ca1_minimal.p" ## Cell morphology from Bannister and Larkman J Neurophys 2015/NeuroMorpho elecFileName = "h10.CNG.swc" #elecFileName = "CA1.morph.xml" #elecFileName = "VHC-neuron.CNG.swc" synSpineList = [] synDendList = [] probeInterval = 0.1 probeAmplitude = 1.0 tetanusFrequency = 100.0 tetanusAmplitude = 1000 tetanusAmplitudeForSpines = 1000 frameRunTime = 1e-3 # 1 ms baselineTime = 0.05 tetTime = 0.01 postTetTime = 0.01 runtime = baselineTime + tetTime + postTetTime def buildRdesigneur(): ''' ################################################################## # Here we define which prototypes are to be loaded in to the system. # Each specification has the format # source [localName] # source can be any of # filename.extension, # Identify type of file by extension, load it. # function(), # func( name ) builds object of specified name # file.py:function() , # load Python file, run function(name) in it. # moose.Classname # Make obj moose.Classname, assign to name. # path # Already loaded into library or on path. # After loading the prototypes, there should be an object called 'name' # in the library. ################################################################## ''' cellProto = [ [ "./cells/" + elecFileName, "elec" ] ] chanProto = [ ['./chans/hd.xml'], \ ['./chans/kap.xml'], \ ['./chans/kad.xml'], \ ['./chans/kdr.xml'], \ ['./chans/na3.xml'], \ ['./chans/nax.xml'], \ ['./chans/CaConc.xml'], \ ['./chans/Ca.xml'], \ ['./chans/NMDA.xml'], \ ['./chans/Glu.xml'] \ ] spineProto = [ \ ['makeSpineProto()', 'spine' ] ] chemProto = [] ################################################################## # Here we define what goes where, and any parameters. Each distribution # has the format # protoName, path, field, expr, [field, expr]... # where # protoName identifies the prototype to be placed on the cell # path is a MOOSE wildcard path specifying where to put things # field is the field to assign. # expr is a math expression to define field value. This uses the # muParser. Built-in variables are: # p, g, L, len, dia, maxP, maxG, maxL. # where # p = path distance from soma, threaded along dendrite # g = geometrical distance from soma (shortest distance) # L = electrotonic distance from soma: number of length constants # len = length of dendritic compartment # dia = diameter of dendritic compartment # maxP = maximal value of 'p' for the cell # maxG = maximal value of 'g' for the cell # maxL = maximal value of 'L' for the cell # # The muParser provides most math functions, and the Heaviside # function H(x) = 1 for x > 0 is also provided. ################################################################## passiveDistrib = [ [ ".", "#", "RM", "2.8", "CM", "0.01", "RA", "1.5", \ "Em", "-58e-3", "initVm", "-65e-3" ], \ [ ".", "#axon#", "RA", "0.5" ] \ ] chanDistrib = [ \ ["hd", "#dend#,#apical#", "Gbar", "5e-2*(1+(p*3e4))" ], \ ["kdr", "#", "Gbar", "p < 50e-6 ? 500 : 100" ], \ ["na3", "#soma#,#dend#,#apical#", "Gbar", "250" ], \ ["nax", "#soma#,#axon#", "Gbar", "1250" ], \ ["kap", "#axon#,#soma#", "Gbar", "300" ], \ ["kap", "#dend#,#apical#", "Gbar", \ "300*(H(100-p*1e6)) * (1+(p*1e4))" ], \ ["Ca_conc", "#soma#,#dend#,#apical#", "tau", "0.0133" ], \ ["kad", "#soma#,#dend#,#apical#", "Gbar", \ "300*H(p - 100e-6)*(1+p*1e4)" ], \ ["Ca", "#dend#,#apical#", "Gbar", "p<160e-6? 10+ p*0.25e-6 : 50" ], \ ["Ca", "#soma#", "Gbar", "10" ], \ ["glu", "#dend#,#apical#", "Gbar", "200*H(p-200e-6)" ], \ ["NMDA", "#dend#,#apical#", "Gbar", "2*H(p-200e-6)" ] \ ] ''' spineDistrib = [ \ ["spine", '#apical#', "spineSpacing", "20e-6", \ "spineSpacingDistrib", "2e-6", \ "angle", "0", \ "angleDistrib", str( 2*PI ), \ "size", "1", \ "sizeDistrib", "0.5" ] \ ] ''' spineDistrib = [ ["spine", '#apical#', "20e-6", "2e-6", "1", "0.5", "0", str( 2*PI ) ] ] chemDistrib = [] spineProto = [['makeActiveSpine()', 'spine']] ###################################################################### # Here we define the mappings across scales. Format: # sourceObj sourceField destObj destField offset scale # where the coupling expression is anything a muParser can evaluate, # using the input variable x. For example: 8e-5 + 300*x # For now, let's use existing adaptors which take an offset and scale. ###################################################################### adaptorList = [] ###################################################################### # Having defined everything, now to create the rdesigneur and proceed # with creating the model. ###################################################################### #rd.addSpineProto() # This adds a version with an LCa channel by default. rdes = rd.rdesigneur( useGssa = useGssa, combineSegments = combineSegments, stealCellFromLibrary = True, passiveDistrib = passiveDistrib, spineDistrib = spineDistrib, chanDistrib = chanDistrib, chemDistrib = chemDistrib, cellProto = cellProto, chanProto = chanProto, chemProto = chemProto, spineProto = spineProto, adaptorList = adaptorList ) #spineProto = spineProto, \ return rdes def buildPlots( rdes ): graphs = moose.Neutral( '/graphs' ) vtab = moose.Table( '/graphs/VmTab' ) moose.connect( vtab, 'requestOut', rdes.soma, 'getVm' ) def displayPlots(): pylab.figure(1, figsize = (8,10 ) ) pylab.subplot( 1,1,1) for i in moose.wildcardFind( "/graphs/#VmTab" ): t = numpy.arange( 0, i.vector.size, 1 ) * i.dt pylab.plot( t, i.vector, label = i.name ) pylab.xlabel( "Time (s)" ) pylab.legend() pylab.title( 'Vm' ) pylab.figure(2, figsize= (8,10)) ax = pylab.subplot( 1,1,1 ) neuron = moose.element( '/model/elec' ) comptDistance = dict( list(zip( neuron.compartments, neuron.pathDistanceFromSoma ) )) for i in moose.wildcardFind( '/library/#[ISA=ChanBase]' ): chans = moose.wildcardFind( '/model/elec/#/' + i.name ) print ( i.name, len( chans ) ) p = [ 1e6*comptDistance.get( j.parent, 0) for j in chans ] Gbar = [ j.Gbar/(j.parent.length * j.parent.diameter * PI) for j in chans ] if len( p ) > 2: pylab.plot( p, Gbar, linestyle = 'None', marker = ".", label = i.name ) sortedGbar = sorted(zip(p, Gbar), key=lambda x: x[0]) ax.set_yscale( 'log' ) pylab.xlabel( "Distance from soma (microns)" ) pylab.ylabel( "Channel density (Seimens/sq mtr)" ) pylab.legend() pylab.title( 'Channel distribution' ) pylab.show() def create_vm_viewer(rdes): network = moogli.extensions.moose.read(rdes.elecid.path) normalizer = moogli.utilities.normalizer(-0.08, 0.02, clipleft=True, clipright=True) colormap = moogli.colors.UniformColorMap([moogli.colors.Color(0.0, 0.0, 1.0, 1.0), moogli.colors.Color(1.0, 1.0, 0.0, 0.1)]) mapper = moogli.utilities.mapper(colormap, normalizer) vms = [moose.element(x).Vm for x in list(network.shapes.keys())] network.set("color", vms, mapper) def prelude(view): view.pitch(PI/2) view.zoom(0.4) def interlude(view): moose.start(frameRunTime) vms = [moose.element(x).Vm for x in list(network.shapes.keys())] network.set("color", vms, mapper) view.yaw(0.01) currTime = moose.element('/clock').currentTime if currTime < runtime: deliverStim(currTime) else: view.stop() def postlude(view): displayPlots() viewer = moogli.Viewer("vm-viewer") viewer.attach_shapes(list(network.shapes.values())) view = moogli.View("vm-view", prelude=prelude, interlude=interlude, postlude=postlude) viewer.attach_view(view) return viewer def create_ca_viewer(rdes): network = moogli.extensions.moose.read(rdes.elecid.path) ca_elements = [] for compartment_path in list(network.shapes.keys()): if moose.exists(compartment_path + '/Ca_conc'): ca_elements.append(moose.element(compartment_path + '/Ca_conc')) else: ca_elements.append(moose.element('/library/Ca_conc')) normalizer = moogli.utilities.normalizer(0.0, 0.002, clipleft=True, clipright=True) colormap = moogli.colors.UniformColorMap([moogli.colors.Color(1.0, 0.0, 0.0, 1.0), moogli.colors.Color(0.0, 1.0, 1.0, 0.1)]) mapper = moogli.utilities.mapper(colormap, normalizer) cas = [element.Ca for element in ca_elements] network.set("color", cas, mapper) def prelude(view): view.pitch(PI/2) view.zoom(0.4) def interlude(view): moose.start(frameRunTime) cas = [element.Ca for element in ca_elements] network.set("color", cas, mapper) view.yaw(0.01) currTime = moose.element('/clock').currentTime if currTime < runtime: deliverStim(currTime) else: view.stop() viewer = moogli.Viewer("ca-viewer") viewer.attach_shapes(list(network.shapes.values())) view = moogli.View("ca-view", prelude=prelude, interlude=interlude) viewer.attach_view(view) return viewer def build3dDisplay(rdes): print (("building 3d Display")) app = QtGui.QApplication(sys.argv) vm_viewer = create_vm_viewer(rdes) vm_viewer.resize(700, 900) vm_viewer.show() vm_viewer.start() ca_viewer = create_ca_viewer(rdes) ca_viewer.resize(700, 900) ca_viewer.show() ca_viewer.start() return app.exec_() def deliverStim( currTime ): if currTime > baselineTime and currTime < baselineTime + tetTime: # deliver tet stim step = int ( (currTime - baselineTime) / frameRunTime ) tetStep = int( 1.0 / (tetanusFrequency * frameRunTime ) ) if step % tetStep == 0: for i in synDendList: i.activation( tetanusAmplitude ) for i in synSpineList: i.activation( tetanusAmplitudeForSpines ) else: # deliver probe stim step = int (currTime / frameRunTime ) probeStep = int( probeInterval / frameRunTime ) if step % probeStep == 0: print (("Doing probe Stim at ", currTime)) for i in synSpineList: i.activation( probeAmplitude ) def main(): global synSpineList global synDendList numpy.random.seed( 1234 ) rdes = buildRdesigneur() rdes.buildModel( '/model' ) assert( moose.exists( '/model' ) ) synSpineList = moose.wildcardFind( "/model/elec/#head#/glu,/model/elec/#head#/NMDA" ) temp = set( moose.wildcardFind( "/model/elec/#/glu,/model/elec/#/NMDA" ) ) synDendList = list( temp - set( synSpineList ) ) print (("num spine, dend syns = ", len( synSpineList ), len( synDendList ))) moose.reinit() #for i in moose.wildcardFind( '/model/elec/#apical#/#[ISA=CaConcBase]' ): #print i.path, i.length, i.diameter, i.parent.length, i.parent.diameter buildPlots(rdes) # Run for baseline, tetanus, and post-tetanic settling time t1 = time.time() build3dDisplay(rdes) print (('real time = ', time.time() - t1)) if __name__ == '__main__': main()
BhallaLab/moose
moose-examples/paper-2015/Fig2_elecModels/Fig2C.py
Python
gpl-3.0
14,223
[ "MOOSE", "NEURON" ]
5eb6a5a439a675762a02c12cdff996e6a0d98f6ee874773cba2951727562aac5
# creates: N.LDA import os from gpaw.test import gen gen('N') os.system('cp N.LDA ../_build')
qsnake/gpaw
doc/setups/N.py
Python
gpl-3.0
94
[ "GPAW" ]
ad7d53917d97406476db3321deeeb0fb89711b3341fa301373e89d7cf3800a42
# ---------------------------------------------------------------------------- # Copyright 2015 Nervana Systems Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ---------------------------------------------------------------------------- import numpy as np import os from neon.backends import gen_backend from neon.data import DataIterator, load_mnist, load_text, Text from neon.initializers import Gaussian, Constant from neon.layers import GeneralizedCost, Affine, BatchNorm from neon.layers import Dropout, Conv, Pooling, MergeConcat, Recurrent from neon.models import Model from neon.optimizers import GradientDescentMomentum from neon.transforms import Rectlin, Logistic, CrossEntropyBinary from neon.util.persist import save_obj def test_model_get_outputs_rnn(backend): data_path = load_text('ptb-valid') data_set = Text(time_steps=50, path=data_path) # weight initialization init = Constant(0.08) # model initialization layers = [ Recurrent(150, init, Logistic()), Affine(len(data_set.vocab), init, bias=init, activation=Rectlin()) ] model = Model(layers=layers) output = model.get_outputs(data_set) assert output.shape == (data_set.ndata, data_set.seq_length, data_set.nclass) def test_model_get_outputs(backend): (X_train, y_train), (X_test, y_test), nclass = load_mnist() train_set = DataIterator(X_train[:backend.bsz * 3]) init_norm = Gaussian(loc=0.0, scale=0.1) layers = [Affine(nout=20, init=init_norm, bias=init_norm, activation=Rectlin()), Affine(nout=10, init=init_norm, activation=Logistic(shortcut=True))] mlp = Model(layers=layers) out_list = [] for x, t in train_set: x = mlp.fprop(x) out_list.append(x.get().T.copy()) ref_output = np.vstack(out_list) train_set.reset() output = mlp.get_outputs(train_set) assert np.allclose(output, ref_output) def test_model_serialize(backend): (X_train, y_train), (X_test, y_test), nclass = load_mnist() train_set = DataIterator([X_train, X_train], y_train, nclass=nclass, lshape=(1, 28, 28)) init_norm = Gaussian(loc=0.0, scale=0.01) # initialize model path1 = [Conv((5, 5, 16), init=init_norm, bias=Constant(0), activation=Rectlin()), Pooling(2), Affine(nout=20, init=init_norm, bias=init_norm, activation=Rectlin())] path2 = [Dropout(keep=0.5), Affine(nout=20, init=init_norm, bias=init_norm, activation=Rectlin())] layers = [MergeConcat([path1, path2]), Affine(nout=20, init=init_norm, bias=init_norm, activation=Rectlin()), BatchNorm(), Affine(nout=10, init=init_norm, activation=Logistic(shortcut=True))] tmp_save = 'test_model_serialize_tmp_save.pickle' mlp = Model(layers=layers) mlp.optimizer = GradientDescentMomentum(learning_rate=0.1, momentum_coef=0.9) mlp.cost = GeneralizedCost(costfunc=CrossEntropyBinary()) n_test = 3 num_epochs = 3 # Train model for num_epochs and n_test batches for epoch in range(num_epochs): for i, (x, t) in enumerate(train_set): x = mlp.fprop(x) delta = mlp.cost.get_errors(x, t) mlp.bprop(delta) mlp.optimizer.optimize(mlp.layers_to_optimize, epoch=epoch) if i > n_test: break # Get expected outputs of n_test batches and states of all layers outputs_exp = [] pdicts_exp = [l.get_params_serialize() for l in mlp.layers_to_optimize] for i, (x, t) in enumerate(train_set): outputs_exp.append(mlp.fprop(x, inference=True)) if i > n_test: break # Serialize model save_obj(mlp.serialize(keep_states=True), tmp_save) # Load model mlp = Model(layers=layers) mlp.load_weights(tmp_save) outputs = [] pdicts = [l.get_params_serialize() for l in mlp.layers_to_optimize] for i, (x, t) in enumerate(train_set): outputs.append(mlp.fprop(x, inference=True)) if i > n_test: break # Check outputs, states, and params are the same for output, output_exp in zip(outputs, outputs_exp): assert np.allclose(output.get(), output_exp.get()) for pd, pd_exp in zip(pdicts, pdicts_exp): for s, s_e in zip(pd['states'], pd_exp['states']): if isinstance(s, list): # this is the batch norm case for _s, _s_e in zip(s, s_e): assert np.allclose(_s, _s_e) else: assert np.allclose(s, s_e) for p, p_e in zip(pd['params'], pd_exp['params']): if isinstance(p, list): # this is the batch norm case for _p, _p_e in zip(p, p_e): assert np.allclose(_p, _p_e) else: assert np.allclose(p, p_e) os.remove(tmp_save) if __name__ == '__main__': be = gen_backend(backend='gpu', batch_size=50) test_model_get_outputs_rnn(be)
misko/neon
tests/test_model.py
Python
apache-2.0
5,468
[ "Gaussian" ]
3bfd6fb19f3b714563f6e85de7e32ae6cf3194700cb2bc8edfd82d289f9d24bc
#!/usr/bin/env python """Extract read start from BAM files to Wig format for PAUSE. Usage: bam_to_wiggle.py <BAM file> """ import os import tempfile from contextlib import contextmanager import pysam import subprocess import argparse @contextmanager def indexed_bam(bam_file): if not os.path.exists(bam_file.name + ".bai"): pysam.index(bam_file.name) sam_reader = pysam.Samfile(bam_file.name, "rb") yield sam_reader sam_reader.close() def gen_header(bam_file, suffix): track_name = "name=%s_%s" % ( os.path.splitext(os.path.split(bam_file)[-1])[0], suffix, ) return "track type=wiggle_0 %s visibility=full\n" % track_name def convert_to_bigwig(wig_file, chr_sizes, bw_file): # This will be fine under Galaxy, but could use temp folder? size_file = "%s-sizes.txt" % (os.path.splitext(bw_file)[0]) with open(size_file, "w") as out_handle: for chrom, size in chr_sizes: out_handle.write("%s\t%s\n" % (chrom, size)) try: cl = ["wigToBigWig", wig_file, size_file, bw_file] subprocess.check_call(cl) finally: os.unlink(size_file) return bw_file def start_data(bam_file, starts_f=None, starts_r=None): with indexed_bam(bam_file) as work_bam: starts_f_wig = tempfile.NamedTemporaryFile(delete=False) starts_r_wig = tempfile.NamedTemporaryFile(delete=False) sizes = zip(work_bam.references, work_bam.lengths) regions = [(name, 0, length) for name, length in sizes] for chrom, start, end in regions: if end is None and chrom in work_bam.references: end = work_bam.lengths[work_bam.references.index(chrom)] assert end is not None, "Could not find %s in header" % chrom # Since the file is sorted, we could actually optimise this bit # out...currently fails cost benefit analysis so will wait until # memory issues are reported. start_map_f = {} start_map_r = {} for col in work_bam.fetch(chrom, start, end): # print " ".join(map(str, [col.qstart, col.qend, col.rlen, col.aend, col.alen, col.pos])) # qstart qend rlen aend alen pos # 0 145 145 13537 143 13394 # reverse strand # start is 13395 # end is 13537 if col.is_reverse: rstart = col.aend if rstart in start_map_r: start_map_r[rstart] += 1 else: start_map_r[rstart] = 1 else: rstart = col.pos + 1 if rstart in start_map_f: start_map_f[rstart] += 1 else: start_map_f[rstart] = 1 # Write to file starts_f_wig.write(gen_header(bam_file.name, "f")) starts_f_wig.write("variableStep chrom=%s\n" % chrom) for i in range(start + 1, end + 1): if i in start_map_f: starts_f_wig.write("%s %.1f\n" % (i, start_map_f[i])) else: starts_f_wig.write("%s 0.0\n" % i) starts_r_wig.write(gen_header(bam_file.name, "r")) starts_r_wig.write("variableStep chrom=%s\n" % chrom) for i in range(start + 1, end + 1): if i in start_map_r: starts_r_wig.write("%s %.1f\n" % (i, start_map_r[i])) else: starts_r_wig.write("%s 0.0\n" % i) starts_f_wig.close() starts_r_wig.close() try: convert_to_bigwig(starts_f_wig.name, sizes, starts_f.name) convert_to_bigwig(starts_r_wig.name, sizes, starts_r.name) finally: os.unlink(starts_f_wig.name) os.unlink(starts_r_wig.name) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Extract starts from BAM as BigWig") parser.add_argument("bam_file", type=argparse.FileType("r"), help="Bam file") parser.add_argument( "--starts_f", type=argparse.FileType("wb"), default="starts.f.bw", help="Sense Starts File", ) parser.add_argument( "--starts_r", type=argparse.FileType("wb"), default="starts.r.bw", help="Antisense Starts File", ) parser.add_argument("--version", action="version", version="0.1") args = parser.parse_args() start_data(**vars(args))
TAMU-CPT/galaxy-tools
tools/pause/pause_starts_to_wiggle.py
Python
gpl-3.0
4,610
[ "Galaxy", "pysam" ]
7a17a731153d43766a00672d66cbc22da6041df4aad39283a34c65b81a35440d
#!/usr/bin/env python """ check_pseudo.py calculates energy for 7 alat points near SIESTA equilibrium to fine tune the delta-factor. """ import os import sys import uuid import glob import numpy as np import shutil import matplotlib.pyplot as plt from generate import PGInputFile, PTInputFile from get_energies import read_energy from calc_delta import BM, read_ref_data, calcDelta, get_alats, get_volumes def check_pseudo(settings, data_dir): """ Checks pseudopotential for delta factor calculation Arguments: settings {[type]} -- [description] data_dir {[type]} -- [description] """ cwd = os.getcwd() element = settings.calc["element"] x, y = [], [] os.chdir(data_dir) pseudo_file = glob.glob("*.psf")[0] for root, dirs, _ in os.walk(os.getcwd()): if "check" in root: continue for dir_i in dirs: try: alat = float(dir_i) except: continue energies = read_energy(element, alat) if energies is not None: x_i, y_i = energies x.append(x_i) y.append(y_i) x = np.array(x) / settings.calc["nat"] y = np.array(y) / settings.calc["nat"] p = np.polyfit(x, y, 2) # make 7 points out of existing data if len(x) == 7: x_p = x y_p = y else: x_p = get_volumes(7, settings.calc) / settings.calc["nat"] y_p = np.poly1d(p)(x_p) # get check directory if not os.path.exists("check"): os.makedirs("check") shutil.copy(pseudo_file, "check") os.chdir("check") # write original data np.savetxt("energies_original.txt", np.vstack((x, y)).T) vol, bulk_mod, bulk_deriv, _ = BM(np.vstack((x_p, y_p)).T) np.savetxt("energies_BM.txt", np.vstack((x_p, y_p)).T) our_data = np.core.records.fromrecords([(element, vol, bulk_mod, bulk_deriv), ], names=('element', 'V0', 'B0', 'BP')) ref_data = read_ref_data(os.path.join(cwd, "delta", "WIEN2k.txt")) ref_data_el = ref_data[ref_data['element'] == element] delta, delta_rel, _ = calcDelta(our_data, ref_data_el, useasymm=False) with open("BP.dat", "w") as f: f.write("Our data: {}\n".format(our_data)) f.write("Reference data: {}\n".format(ref_data_el)) f.write("Delta factor: {} {}\n".format(delta, delta_rel))
ansobolev/PseudoGenerator
pseudogen/check_pseudo.py
Python
mit
2,386
[ "SIESTA", "WIEN2k" ]
2286a65136ae498e930e31d1f7c6bfcf92c0cc82d6b4540635ee0de03e12cad9
from copy import deepcopy as dc from itertools import combinations import ase.io as aseio import numpy as np from ase.atoms import Atoms as AAtoms from pyiid.asa import calculate_asa, get_neighbor_list, get_coordination __author__ = 'christopher' def convert_stru_to_atoms(stru): symbols = [] xyz = [] tags = [] for d_atom in stru: symbols.append(d_atom.element) xyz.append(d_atom.xyz) tags.append(d_atom.label) atoms = AAtoms(symbols, np.array(xyz), tags=tags) return atoms def build_sphere_np(file_name, radius): """ Build a spherical nanoparticle :param file_name: ASE loadable atomic positions :param radius: Radius of particle in Angstroms :return: """ atoms = aseio.read(file_name) cell_dist = atoms.get_cell() multiple = np.ceil(2 * radius / cell_dist.diagonal()).astype(int) atoms = atoms.repeat(multiple) com = atoms.get_center_of_mass() atoms.translate(-com) del atoms[[atom.index for atom in atoms if np.sqrt(np.dot(atom.position, atom.position)) >= np.sqrt(radius ** 2)]] atoms.center() atoms.set_pbc((False, False, False)) return atoms def tag_surface_atoms(atoms, tag=1, probe=1.4, cutoff=None): """ Find which are the surface atoms in a nanoparticle. Parameters ---------- atoms: ase.atoms object The atomic configuration tag: int The number with which to tag the surface atoms probe: float, optional Radius of the probe molecule, default is 1.4 A the radius of water cutoff: float Bond cutoff, defaults to van der Waals radius """ calculate_asa(atoms, probe, tag=tag, cutoff=cutoff) def add_ligands(ligand, surface, distance, coverage, head, tail): atoms = dc(surface) tag_surface_atoms(atoms) for atom in atoms: if atom.tag == 1 and np.random.random() < coverage: pos = atom.position com = surface.get_center_of_mass() disp = pos - com norm_disp = disp / np.sqrt(np.dot(disp, disp)) l_length = ligand[tail].position - ligand[head].position norm_l_length = l_length / np.sqrt(np.dot(l_length, l_length)) ads = dc(ligand) ads.rotate(norm_l_length, a=norm_disp) ads.translate(-ads[head].position) ads.translate(pos + distance * norm_disp) atoms += ads return atoms def get_angle_list(atoms, cutoff, element=None, tag=None): """ Get all the angles in the NP Parameters ---------- atoms: ase.Atoms objecct The atomic configuration cutoff: float Bond length cutoff element: str, optional Limit the list to only this element tag: int Limt the list to only this tag Returns ------- ndarray: The list of bond angles in degrees """ n_list = list(get_neighbor_list(cutoff, atoms)) angles = [] for i in range(len(atoms)): z = list(combinations(n_list[i], 2)) for a in z: if (element is not None and atoms[i].symbol != element) or \ (tag is not None and atoms[i].tag != tag): break angles.append(np.rad2deg(atoms.get_angle([a[0], i, a[1]]))) return np.nan_to_num(np.asarray(angles)) def get_coord_list(atoms, cutoff, element=None, tag=None): """ Get all the angles in the NP Parameters ---------- atoms: ase.Atoms object The atomic configuration cutoff: float Bond length cutoff element: str, optional Limit the list to only this element tag: int Limt the list to only this tag Returns ------- ndarray: The list of coordination nubmers """ if isinstance(atoms, list): coord_l = [] for atms in atoms: a = get_coordination(cutoff, atms) if element is not None and tag is not None: coord_l.append( a[(np.asarray(atoms.get_chemical_symbols()) == element) & (atoms.get_tags() == tag)]) elif element is not None: coord_l.append( a[np.asarray(atoms.get_chemical_symbols()) == element]) elif tag is not None: coord_l.append(a[atoms.get_tags() == tag]) else: coord_l.append(a) c = np.asarray(coord_l) return np.average(c, axis=0), np.std(c, axis=0) else: a = get_coordination(cutoff, atoms) if element is not None and tag is not None: return a[(np.asarray(atoms.get_chemical_symbols()) == element) & (atoms.get_tags() == tag)] elif element is not None: return a[np.asarray(atoms.get_chemical_symbols()) == element] elif tag is not None: return a[atoms.get_tags() == tag] else: return a def get_bond_dist_list(atoms, cutoff, element=None, tag=None): """ Get all the angles in the NP Parameters ---------- atoms: ase.Atoms objecct The atomic configuration cutoff: float Bond length cutoff element: str, optional Limit the list to only this element tag: int Limt the list to only this tag Returns ------- ndarray: The list of bond distances """ n_list = list(get_neighbor_list(cutoff, atoms)) bonds = [] for i in range(len(atoms)): for a in n_list[i]: if (element is not None and atoms[i].symbol != element) or \ (tag is not None and atoms[i].tag != tag): break bonds.append(atoms.get_distance(i, a)) return np.nan_to_num(np.asarray(bonds))
CJ-Wright/pyIID
pyiid/utils.py
Python
bsd-3-clause
5,803
[ "ASE" ]
5e32988f1ea4991d436343938a03c8967054e4336fc3660a3273e5bdda9ddf19
#!/usr/bin/env python # -*- coding: utf-8 -*- """ A app configuration defines the user-tunable parameters of the application and also the quality evaluation such as the: * Amazon Mechanical Turk HIT description, pricing, keywords, etc. * The description and instructions of the task * The configuration of the type of test (e.g 'mushra' or 'pairwise') * The definition of the quality scales * The paths to the audio stimuli * Which components of the evaluation are active (e.g. pre-test survey, post-test survey, hearing screening, etc.) This subpackage contains a base configuration which contains overridable defaults, as well as pre-defined testing configurations for common audio quality evaluation scenarios. Make sure that before you run a test that you at least change the stimuli and the ``SERVER_ADDRESS`` variable. .. seealso:: :doc:`../test_configurations` """ import os try: from secret_keys import CSRF_SECRET_KEY, SESSION_KEY except ImportError: try: CSRF_SECRET_KEY = os.environ['CSRF_SECRET_KEY'] SESSION_KEY = os.environ['SESSION_KEY'] except KeyError: raise KeyError('No keys found. Either define a secret_keys.py file (using generate_key_files.py) or set the ' 'keys using environment variables.') # Get the application mode from the environment variable APP_MODE APP_MODE = os.getenv('APP_MODE') # HEARING TEST CONSTANTS MIN_HEARING_TEST_AUDIO_TONES = 2 MAX_HEARING_TEST_AUDIO_TONES = 8 HEARING_TEST_AUDIO_FILES_PER_TONES = 4 MIN_HEARING_TEST_AUDIO_INDEX = HEARING_TEST_AUDIO_FILES_PER_TONES * MIN_HEARING_TEST_AUDIO_TONES MAX_HEARING_TEST_AUDIO_INDEX = HEARING_TEST_AUDIO_FILES_PER_TONES * MAX_HEARING_TEST_AUDIO_TONES # HEARING RESPONSE ESTIMATION CONSTANTS HEARING_RESPONSE_NFREQS = 8 # number of different frequencies HEARING_RESPONSE_NADD = 3 # number of max additional tones (60 for 10dB, 3 for 20dB Spacing) class BaseConfig(object): """ The base application configuration. Attributes ---------- DEBUG : bool Enable/disable debug mode (see Flask docs) (default is False) TESTING : bool Enable/disable testing mode (see Flask docs) (default is False) SECRET_KEY : str If a secret key is set, cryptographic components can use this to sign cookies and other things. Set this to a complex random value when you want to use the secure cookie for instance. Set via `generate_key_file.py` or using environment variable 'SECRET_KEY'. (see Flask Docs) CSRF_SESSION_KEY : str A Cross-site Request Forgery (CSRF) secret key for signing data. Set via `generate_key_file.py` or using environment variable 'CSRF_SESSION_KEY'. (see Flask docs) CSRF_ENABLED : bool Enable/disable protection against *Cross-site Request Forgery (CSRF)* (see Flask docs) (default is True) SERVER_ADDRESS : str The name and port number of the server. Do not include 'http'. (e.g.: 'caqe.local:5000') (see Flask docs) Can be set via environment variable 'SERVER_ADDRESS'. (default is 'caqe.local:5000') SQLALCHEMY_DATABASE_URI : str The database URI that should be used for the connection (see Flask-SQLAlchemy docs). Examples: * sqlite:////tmp/test.db * mysql://username:password@server/db Can be set via environment variable 'DATABASE_URL'. (default is'sqlite:////~/caqe.db') PREFERRED_URL_SCHEME : str The URL scheme that should be used for URL generation if no URL scheme is available. 'http' or 'https' (default is 'https') AUDIO_FILE_DIRECTORY : str Relative directory path to testing audio stimuli. (default is 'static/audio') ENCRYPT_AUDIO_STIMULI_URLS : bool Enable/disable encryption of the URLs so that users can't game consistency. (default is True) TEST_TYPE : str The test type (limited to 'pairwise' or 'mushra' for now). (default is None) ANONYMOUS_PARTICIPANTS_ENABLED : bool Enable/disable participants to enter through '/anonymous' entry point. (default is False) IP_COLLECTION_ENABLED : bool Enable/disable collection participants' IP addresses. (default is True) OBTAIN_CONSENT : bool If True, obtain consent from each participant (see consent.html) (default is True) PRE_TEST_SURVEY_ENABLED : bool If True, ask participants a survey before evaluation (see pre_test_survey.html). (default is True) PRE_TEST_SURVEY_INCLUSION_CRITERIA : list of str Pre-test survey inclusion criteria. (default is ["int(survey['age']) >= 18", "survey['hearing_disorder'] == 'No'"]) POST_TEST_SURVEY_ENABLED : bool If True, ask participants a survey after evaluation (see post_test_survey.html) (default is True) HEARING_RESPONSE_ESTIMATION_ENABLED : bool If enabled, ask participants to complete the in-situ hearing response estimation. (default is True) CONDITIONS_PER_EVALUATION : int The number of conditions to present to a participant in a single visit to '/evaluate'. Note that currently evaluation is limited to one condition group. So if this value is more than 1, there must be at least as many conditions per group as there are conditions per evaluation for this to have an effect. It is also recommended that an integer multiple of `CONDITIONS_PER_EVALUATION` comprise the number of conditions per group. For example, if there are 28 conditions in a group, set the number of `CONDITIONS_PER_EVALUATION` to 14 or 7. (default is 1) TRIALS_PER_CONDITION : int The number of trials we should collect per condition (with distinct participants). (default is 20) LIMIT_SUBJECT_TO_ONE_TASK_TYPE : bool If True, each subject is limited to one type of Test. (default is True) TEST_CONDITION_ORDER_RANDOMIZED : bool Randomize the condition order per test for each participant. (default is True) TEST_CONDITION_GROUP_ORDER_RANDOMIZED : bool Randomize the condition group order for each participant. (default is False) STIMULUS_ORDER_RANDOMIZED : bool Randomize the stimulus order per for each condition. (default is True) HEARING_SCREENING_TEST_ENABLED : bool Set to True if you want the participants to be required to take a hearing screening test. (default is True) HEARING_TEST_EXPIRATION_HOURS : int The number of hours their hearing test is valid for (they must retake after this time has passed) (default is 24) MAX_HEARING_TEST_ATTEMPTS : int The number of attempts one has before they are sent away (they must wait `hearing_test_expiration_hours` to take it again) (default is 2) HEARING_TEST_REJECTION_ENABLED : bool If this is set to True, then we still test the users, but we don't reject them. (default is True) HEARING_RESPONSE_NOPTIONS : int Max number of frequencies for user to respond with in hearing response estimation. (default is 20) MTURK_HOST : str Amazon Mechanical Turk host location. By default set it to the sandbox, and configure it via an environment variable (so, it can be easily modified when deploying and testing using Heroku). Can be set via environment variable 'MTURK_HOST'. (default is 'mechanicalturk.sandbox.amazonaws.com') MTURK_QUESTION_URL : str Entry point URL. (default is 'https://%s/mturk' % SERVER_ADDRESS) MTURK_REWARD : float This is the reward given to each worker for an approved assignment (in USD) (note that Amazon takes their Mechanical Turk Fee on top of this. See https://requester.mturk.com/pricing) (default is 0.50) MTURK_FIRST_HIT_BONUS : float The default bonus reward in USD that is optionally given (using ``turk_admin_cli.py``) to participants that completed the first assignment, which may have additional testing (e.g. survey, hearing tests, etc.) (default is 0.30) MTURK_MAX_CONSISTENCY_BONUS : float The defualt maximum bonus reward in USD for pairwise consistency. This optional bonus is given using ``turk_admin_cli.py``. (default is 0.25) MTURK_MIN_CONSISTENCY_THRESHOLD_FOR_BONUS : float The minimum pairwise consistency required to receive the optional bonus (given through ``turk_admin_cli.py``.) (default is 0.7) MTURK_NUMBER_HITS_APPROVED_REQUIREMENT : int MTurk worker must have this many approved HITs to accept task. (default is 1000) MTURK_PERCENT_ASSIGNMENTS_APPROVED_REQUIREMENT : int MTurk worker must have this percentage of approved assignments to accept task. (default is 97) MTURK_TITLE : str Title of MTurk HIT (default is 'Critical audio listening task. Listen to audio recordings and rate them on various scales of quality.') MTURK_DESCRIPTION : str Description of MTurk HIT. (default is 'This listening test aims to rate the quality of a set of signals in comparison to a reference signal. Note that while the maximum number assignments a worker can do is 10, it's possible that fewer than 10 may be available to you. \*\*CHROME ONLY\*\* \*\*BONUS AVAILABLE\*\*') MTURK_KEYWORDS : str Keywords for MTurk HIT. (default is 'audio, sound, music, listening, research') MTURK_ASSIGNMENT_DURATION_IN_SECONDS : int Accepted MTurk assignments must be completed within this duration or they will be released to other workers (default is 60 * 30, i.e. 30 minutes) MTURK_LIFETIME_IN_SECONDS : int HITs expire (no one can accept them) after this duration since being posted. (default is 60 * 60 * 24 * 7, i.e 1 week) MTURK_FRAME_HEIGHT : int The size of the Mechanical Turk browser frame (default is 1200) ACCEPTABLE_BROWSERS : list of str The set of acceptable browsers. set as None to disable browser rejection. (default is ['chrome',]) BEGIN_BUTTON_ENABLED : bool If true, participants will have to click a button that launches a new window. This is useful in order to delay condition assignment until the user is engaged in the task, and allows a new window to be launched that is bigger than the Mechanical Turk frame for instance. (default is True) POPUP_WIDTH : int The width of the window launched when participants press the "begin button" the task. (default is 1200) POPUP_HEIGHT : int The height of the window launched when participants press the "begin button" the task. (default is 1200) TEST_TIMEOUT_SEC : float The participant must spend at least this amount of time on the evaluation task before submission. (default is 60.) REQUIRE_LISTENING_TO_ALL_TRAINING_SOUNDS : bool If True, the participant must listen to all of the training sounds before proceeding to the evaluation task. (default is True) PREVIEW_HTML : str The HTML content of the preview page. This will be the same for all conditions, regardless of test since conditions are assigned on the fly (so we can have complete control over condition assignment). (default is None) MIN_RATING_VALUE : int The minimum rating value on the MUSHRA slider. (default is 0) MAX_RATING_VALUE : int The maximum rating value on the MUSHRA slider. (default is 99) DEFAULT_RATING_VALUE : int The default rating value on the MUSHRA slider. (default is 50) TESTS : list of dict The test and condition-specific configuration variables. Note that if 'evaluation_instructions_html' is not None in the condition, it will override the instructions defined in the test. Note also that reference keys must be alphanumeric and stimulus keys must begin with 'S' followed by a number, e.g. 'S29'. The dicts are of the form:: {'test_config_variables': {'test_title': '...', # The test title that is displayed on the evaluation page 'first_task_introduction_html': '...', # Content of the intro page the first time they do a task 'introduction_html': '...', # Content of the intro page (after the first time they perform the task) 'training_instructions_html': '...', # The HTML content of the training instructions 'evaluation_instructions_html': '...'}, # The HTML content of the evaluation instructions 'references' : (('<reference_name>', '<reference_description>'),), # Reference names and descriptions 'reference_example_dict': {'<reference_name}': url_for('static', filename='audio/<reference_filename>.wav'), ... }, 'quality_example_dict': {'<example_type0>': [url_for('static', filename='audio/<example0_filename>.wav'), url_for('static', filename='audio/<example1_filename>.wav'),], '<example_type1>': [url_for('static', filename='audio/<example3_filename>),]}}, 'condition_groups' : [{'reference_files': {<reference_name>: '<reference_filename>.wav',}, {'stimulus_files': {'S1': '<S1_filename>.wav', 'S2': '<S2_filename>,wav',}}, {'conditions': [{'reference_keys': [<reference_name>,], 'stimulus_keys': ['S1','S2','S7', ... ], 'evaluation_instructions_html': <condition_specific_evaluation_instructions>},]},]} (default is []) Note ---- For testing, add: :: 0.0.0.0 caqe.local to /etc/hosts We need to set the SERVER_ADDRESS to resolve ``url_for`` definitions when constructing the database, but we can't simply use `localhost` because the secure sessions are not compatible with that. """ # --------------------------------------------------------------------------------------------- # BACKEND VARIABLES TESTING = False DEBUG = False SECRET_KEY = CSRF_SECRET_KEY CSRF_SESSION_KEY = SESSION_KEY CSRF_ENABLED = True SQLALCHEMY_DATABASE_URI = os.getenv('DATABASE_URL', 'sqlite:////%s' % os.path.expanduser('~/caqe.db')) SERVER_ADDRESS = os.getenv('SERVER_ADDRESS', 'caqe.local:5000') PREFERRED_URL_SCHEME = 'https' AUDIO_FILE_DIRECTORY = os.getenv('AUDIO_FILE_DIRECTORY', 'static/audio') AUDIO_CODEC = 'wav' ENCRYPT_AUDIO_STIMULI_URLS = True EXTERNAL_FILE_HOST = False BEGIN_TITLE = 'Audio Quality Evaluation' # --------------------------------------------------------------------------------------------- # TESTING VARIABLES TEST_TYPE = None ANONYMOUS_PARTICIPANTS_ENABLED = False IP_COLLECTION_ENABLED = True OBTAIN_CONSENT = False PRE_TEST_SURVEY_ENABLED = True PRE_TEST_SURVEY_INCLUSION_CRITERIA = ["int(survey['age']) >= 18", "survey['hearing_disorder'] == 'No'"] POST_TEST_SURVEY_ENABLED = True HEARING_RESPONSE_ESTIMATION_ENABLED = True CONDITIONS_PER_EVALUATION = 1 TRIALS_PER_CONDITION = 20 LIMIT_SUBJECT_TO_ONE_TASK_TYPE = True TEST_CONDITION_ORDER_RANDOMIZED = True TEST_CONDITION_GROUP_ORDER_RANDOMIZED = False STIMULUS_ORDER_RANDOMIZED = True # --------------------------------------------------------------------------------------------- # HEARING SCREENING VARIABLES HEARING_SCREENING_TEST_ENABLED = True HEARING_TEST_EXPIRATION_HOURS = 12 MAX_HEARING_TEST_ATTEMPTS = 2 HEARING_TEST_REJECTION_ENABLED = True # --------------------------------------------------------------------------------------------- # HEARING RESPONSE ESTIMATION VARIABLES HEARING_RESPONSE_NOPTIONS = 20 # --------------------------------------------------------------------------------------------- # MECHANICAL TURK VARIABLES MTURK_HOST = os.getenv('MTURK_HOST', 'mechanicalturk.sandbox.amazonaws.com') MTURK_QUESTION_URL = 'https://%s/mturk' % SERVER_ADDRESS MTURK_REWARD = 0.50 MTURK_FIRST_HIT_BONUS = 0.30 MTURK_MAX_CONSISTENCY_BONUS = 0.25 MTURK_MIN_CONSISTENCY_THRESHOLD_FOR_BONUS = 0.7 MTURK_NUMBER_HITS_APPROVED_REQUIREMENT = 1000 MTURK_PERCENT_ASSIGNMENTS_APPROVED_REQUIREMENT = 97 MTURK_TITLE = 'Critical audio listening task. Listen to audio recordings and rate them on various ' \ 'scales of quality.' MTURK_DESCRIPTION = 'This listening test aims to rate the quality of a set of signals in comparison to a reference ' \ 'signal. Note that while the maximum number assignments a worker can do is 10, it\'s possible that ' \ 'fewer than 10 may be available to you. **CHROME ONLY** **BONUS AVAILABLE**' MTURK_KEYWORDS = 'audio, sound, music, listening, research' MTURK_ASSIGNMENT_DURATION_IN_SECONDS = 60 * 30 MTURK_LIFETIME_IN_SECONDS = 60 * 60 * 24 * 7 MTURK_MAX_ASSIGNMENTS = 200 MTURK_AUTO_APPROVAL_DELAY_IN_SECONDS = 60 * 60 * 24 * 1 # 1 day MTURK_FRAME_HEIGHT = 1200 # --------------------------------------------------------------------------------------------- # FRONT-END VARIABLES ACCEPTABLE_BROWSERS = ['chrome'] BEGIN_BUTTON_ENABLED = True POPUP_WIDTH = 1200 POPUP_HEIGHT = 1200 TEST_TIMEOUT_SEC = 60. REQUIRE_LISTENING_TO_ALL_TRAINING_SOUNDS = True PREVIEW_HTML = None MIN_RATING_VALUE = 0 MAX_RATING_VALUE = 99 DEFAULT_RATING_VALUE = 50 # --------------------------------------------------------------------------------------------- # DEFAULT CONDITION AND TEST-SPECIFIC VARIABLES # (These will be configured for each condition and saved in the database) TESTS = [] class TestingOverrideConfig(object): """ Override config for testing. Note ---- To enable these parameters set environment variable ``APP_MODE`` to 'TESTING'. In Linux: :: $ export APP_MODE=TESTING """ TESTING = True DEBUG = True SQLALCHEMY_DATABASE_URI = 'sqlite://' SERVER_ADDRESS = 'caqe.local:5000' MTURK_QUESTION_URL = 'https://%s/mturk' % SERVER_ADDRESS PREFERRED_URL_SCHEME = 'http' class DevelopmentOverrideConfig(object): """ Override config for development. Note ---- To enable these parameters set environment variable ``APP_MODE`` to 'DEVELOPMENT'. In Linux: :: $ export APP_MODE=DEVELOPMENT """ DEBUG = True SERVER_ADDRESS = 'caqe.local:5000' MTURK_QUESTION_URL = 'https://%s/mturk' % SERVER_ADDRESS HEARING_TEST_REJECTION_ENABLED = False PREFERRED_URL_SCHEME = 'http' REQUIRE_LISTENING_TO_ALL_TRAINING_SOUNDS = False class ProductionOverrideConfig(object): """ Override config for production. Note ---- To enable these parameters set environment variable ``APP_MODE`` to 'PRODUCTION'. In Linux: :: $ export APP_MODE=PRODUCTION """ TESTING = False DEBUG = False class EvaluationDevOverrideConfig(object): """ Override config for evaluation task development. Note ---- To enable these parameters set environment variable ``APP_MODE`` to 'EVALUATION'. In Linux: :: $ export APP_MODE=EVALUATION """ DEBUG = True SERVER_ADDRESS = 'caqe.local:5000' MTURK_QUESTION_URL = 'https://%s/mturk' % SERVER_ADDRESS HEARING_TEST_REJECTION_ENABLED = False HEARING_SCREENING_TEST_ENABLED = False HEARING_RESPONSE_ESTIMATION_ENABLED = False PREFERRED_URL_SCHEME = 'http' REQUIRE_LISTENING_TO_ALL_TRAINING_SOUNDS = False PRE_TEST_SURVEY_ENABLED = False POST_TEST_SURVEY_ENABLED = False
mcartwright/CAQE
src/caqe/configuration.py
Python
mit
19,785
[ "VisIt" ]
60f1965a4f5b55df7d2bb1ddb9a6d553291e0b68e9e279e55f56f6f2698d3754
#!/usr/bin/env python # # Wrapper script for Java Conda packages that ensures that the java runtime is invoked with the right options. # Adapted from https://github.com/bioconda/bioconda-recipes/blob/master/recipes/peptide-shaker/1.16.16/peptide-shaker.py (accessed June, 21th 2019). # # Program Parameters # import os import subprocess import sys import shutil from os import access from os import getenv from os import X_OK jar_file = 'GeMoMa-1.7.1.jar' default_jvm_mem_opts = ['-Xms1g', '-Xmx2g'] original_string = "java -jar "+jar_file+" CLI" wrapper_string = "GeMoMa" # !!! End of parameter section. No user-serviceable code below this line !!! def real_dirname(path): """Return the symlink-resolved, canonicalized directory-portion of path.""" return os.path.dirname(os.path.realpath(path)) def java_executable(): """Return the executable name of the Java interpreter.""" java_home = getenv('JAVA_HOME') java_bin = os.path.join('bin', 'java') if java_home and access(os.path.join(java_home, java_bin), X_OK): return os.path.join(java_home, java_bin) else: return 'java' def jvm_opts(argv): """Construct list of Java arguments based on our argument list. The argument list passed in argv must not include the script name. The return value is a 3-tuple lists of strings of the form: (memory_options, prop_options, passthrough_options) """ mem_opts = [] prop_opts = [] pass_args = [] for arg in argv: if arg.startswith('-D'): prop_opts.append(arg) elif arg.startswith('-XX'): prop_opts.append(arg) elif arg.startswith('-Xm'): mem_opts.append(arg) else: pass_args.append(arg) # In the original shell script the test coded below read: # if [ "$jvm_mem_opts" == "" ] && [ -z ${_JAVA_OPTIONS+x} ] # To reproduce the behaviour of the above shell code fragment # it is important to explictly check for equality with None # in the second condition, so a null envar value counts as True! if mem_opts == [] and getenv('_JAVA_OPTIONS') is None: mem_opts = default_jvm_mem_opts return (mem_opts, prop_opts, pass_args) def main(): java = java_executable() (mem_opts, prop_opts, pass_args) = jvm_opts(sys.argv[1:]) jar_dir = real_dirname(sys.argv[0]) jar_arg = '-jar' jar_path = os.path.join(jar_dir, jar_file) cli = 'CLI' cmd = [java] + mem_opts + prop_opts + [jar_arg] + [jar_path] + [cli] + pass_args # print('wrapper script translating:') # print(sys.argv) # print('to:') # print(cmd) # print('=======================================================================================================================\n') # print(original_string) # print(wrapper_string) #sys.exit(subprocess.call(cmd)) p = subprocess.Popen(cmd,stderr=subprocess.PIPE); for line in iter(p.stderr.readline,b''): tomod = line.decode("utf-8") tomod = tomod.replace(original_string,wrapper_string) print(tomod,end='',file=sys.stderr) exit(p.wait()) if __name__ == '__main__': main()
cokelaer/bioconda-recipes
recipes/gemoma/GeMoMa.py
Python
mit
3,169
[ "Bioconda" ]
018ca2619f82a0002e2334d695e8fe532aec2293d4d5bda0711ecab68d30118d
# sql/elements.py # Copyright (C) 2005-2013 the SQLAlchemy authors and contributors <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php """Core SQL expression elements, including :class:`.ClauseElement`, :class:`.ColumnElement`, and derived classes. """ from __future__ import unicode_literals from .. import util, exc, inspection from . import type_api from . import operators from .visitors import Visitable, cloned_traverse, traverse from .annotation import Annotated import itertools from .base import Executable, PARSE_AUTOCOMMIT, Immutable, NO_ARG import re import operator def _clone(element, **kw): return element._clone() def collate(expression, collation): """Return the clause ``expression COLLATE collation``. e.g.:: collate(mycolumn, 'utf8_bin') produces:: mycolumn COLLATE utf8_bin """ expr = _literal_as_binds(expression) return BinaryExpression( expr, _literal_as_text(collation), operators.collate, type_=expr.type) def between(ctest, cleft, cright): """Return a ``BETWEEN`` predicate clause. Equivalent of SQL ``clausetest BETWEEN clauseleft AND clauseright``. The :func:`between()` method on all :class:`.ColumnElement` subclasses provides similar functionality. """ ctest = _literal_as_binds(ctest) return ctest.between(cleft, cright) def literal(value, type_=None): """Return a literal clause, bound to a bind parameter. Literal clauses are created automatically when non- :class:`.ClauseElement` objects (such as strings, ints, dates, etc.) are used in a comparison operation with a :class:`.ColumnElement` subclass, such as a :class:`~sqlalchemy.schema.Column` object. Use this function to force the generation of a literal clause, which will be created as a :class:`BindParameter` with a bound value. :param value: the value to be bound. Can be any Python object supported by the underlying DB-API, or is translatable via the given type argument. :param type\_: an optional :class:`~sqlalchemy.types.TypeEngine` which will provide bind-parameter translation for this literal. """ return BindParameter(None, value, type_=type_, unique=True) def type_coerce(expr, type_): """Coerce the given expression into the given type, on the Python side only. :func:`.type_coerce` is roughly similar to :func:`.cast`, except no "CAST" expression is rendered - the given type is only applied towards expression typing and against received result values. e.g.:: from sqlalchemy.types import TypeDecorator import uuid class AsGuid(TypeDecorator): impl = String def process_bind_param(self, value, dialect): if value is not None: return str(value) else: return None def process_result_value(self, value, dialect): if value is not None: return uuid.UUID(value) else: return None conn.execute( select([type_coerce(mytable.c.ident, AsGuid)]).\\ where( type_coerce(mytable.c.ident, AsGuid) == uuid.uuid3(uuid.NAMESPACE_URL, 'bar') ) ) """ type_ = type_api.to_instance(type_) if hasattr(expr, '__clause_expr__'): return type_coerce(expr.__clause_expr__()) elif isinstance(expr, BindParameter): bp = expr._clone() bp.type = type_ return bp elif not isinstance(expr, Visitable): if expr is None: return Null() else: return literal(expr, type_=type_) else: return Label(None, expr, type_=type_) def outparam(key, type_=None): """Create an 'OUT' parameter for usage in functions (stored procedures), for databases which support them. The ``outparam`` can be used like a regular function parameter. The "output" value will be available from the :class:`~sqlalchemy.engine.ResultProxy` object via its ``out_parameters`` attribute, which returns a dictionary containing the values. """ return BindParameter( key, None, type_=type_, unique=False, isoutparam=True) def and_(*clauses): """Join a list of clauses together using the ``AND`` operator. The ``&`` operator is also overloaded on all :class:`.ColumnElement` subclasses to produce the same result. """ if len(clauses) == 1: return clauses[0] return BooleanClauseList(operator=operators.and_, *clauses) def or_(*clauses): """Join a list of clauses together using the ``OR`` operator. The ``|`` operator is also overloaded on all :class:`.ColumnElement` subclasses to produce the same result. """ if len(clauses) == 1: return clauses[0] return BooleanClauseList(operator=operators.or_, *clauses) def not_(clause): """Return a negation of the given clause, i.e. ``NOT(clause)``. The ``~`` operator is also overloaded on all :class:`.ColumnElement` subclasses to produce the same result. """ return operators.inv(_literal_as_binds(clause)) @inspection._self_inspects class ClauseElement(Visitable): """Base class for elements of a programmatically constructed SQL expression. """ __visit_name__ = 'clause' _annotations = {} supports_execution = False _from_objects = [] bind = None _is_clone_of = None is_selectable = False is_clause_element = True _order_by_label_element = None def _clone(self): """Create a shallow copy of this ClauseElement. This method may be used by a generative API. Its also used as part of the "deep" copy afforded by a traversal that combines the _copy_internals() method. """ c = self.__class__.__new__(self.__class__) c.__dict__ = self.__dict__.copy() ClauseElement._cloned_set._reset(c) ColumnElement.comparator._reset(c) # this is a marker that helps to "equate" clauses to each other # when a Select returns its list of FROM clauses. the cloning # process leaves around a lot of remnants of the previous clause # typically in the form of column expressions still attached to the # old table. c._is_clone_of = self return c @property def _constructor(self): """return the 'constructor' for this ClauseElement. This is for the purposes for creating a new object of this type. Usually, its just the element's __class__. However, the "Annotated" version of the object overrides to return the class of its proxied element. """ return self.__class__ @util.memoized_property def _cloned_set(self): """Return the set consisting all cloned ancestors of this ClauseElement. Includes this ClauseElement. This accessor tends to be used for FromClause objects to identify 'equivalent' FROM clauses, regardless of transformative operations. """ s = util.column_set() f = self while f is not None: s.add(f) f = f._is_clone_of return s def __getstate__(self): d = self.__dict__.copy() d.pop('_is_clone_of', None) return d def _annotate(self, values): """return a copy of this ClauseElement with annotations updated by the given dictionary. """ return Annotated(self, values) def _with_annotations(self, values): """return a copy of this ClauseElement with annotations replaced by the given dictionary. """ return Annotated(self, values) def _deannotate(self, values=None, clone=False): """return a copy of this :class:`.ClauseElement` with annotations removed. :param values: optional tuple of individual values to remove. """ if clone: # clone is used when we are also copying # the expression for a deep deannotation return self._clone() else: # if no clone, since we have no annotations we return # self return self def unique_params(self, *optionaldict, **kwargs): """Return a copy with :func:`bindparam()` elements replaced. Same functionality as ``params()``, except adds `unique=True` to affected bind parameters so that multiple statements can be used. """ return self._params(True, optionaldict, kwargs) def params(self, *optionaldict, **kwargs): """Return a copy with :func:`bindparam()` elements replaced. Returns a copy of this ClauseElement with :func:`bindparam()` elements replaced with values taken from the given dictionary:: >>> clause = column('x') + bindparam('foo') >>> print clause.compile().params {'foo':None} >>> print clause.params({'foo':7}).compile().params {'foo':7} """ return self._params(False, optionaldict, kwargs) def _params(self, unique, optionaldict, kwargs): if len(optionaldict) == 1: kwargs.update(optionaldict[0]) elif len(optionaldict) > 1: raise exc.ArgumentError( "params() takes zero or one positional dictionary argument") def visit_bindparam(bind): if bind.key in kwargs: bind.value = kwargs[bind.key] bind.required = False if unique: bind._convert_to_unique() return cloned_traverse(self, {}, {'bindparam': visit_bindparam}) def compare(self, other, **kw): """Compare this ClauseElement to the given ClauseElement. Subclasses should override the default behavior, which is a straight identity comparison. \**kw are arguments consumed by subclass compare() methods and may be used to modify the criteria for comparison. (see :class:`.ColumnElement`) """ return self is other def _copy_internals(self, clone=_clone, **kw): """Reassign internal elements to be clones of themselves. Called during a copy-and-traverse operation on newly shallow-copied elements to create a deep copy. The given clone function should be used, which may be applying additional transformations to the element (i.e. replacement traversal, cloned traversal, annotations). """ pass def get_children(self, **kwargs): """Return immediate child elements of this :class:`.ClauseElement`. This is used for visit traversal. \**kwargs may contain flags that change the collection that is returned, for example to return a subset of items in order to cut down on larger traversals, or to return child items from a different context (such as schema-level collections instead of clause-level). """ return [] def self_group(self, against=None): """Apply a 'grouping' to this :class:`.ClauseElement`. This method is overridden by subclasses to return a "grouping" construct, i.e. parenthesis. In particular it's used by "binary" expressions to provide a grouping around themselves when placed into a larger expression, as well as by :func:`.select` constructs when placed into the FROM clause of another :func:`.select`. (Note that subqueries should be normally created using the :func:`.Select.alias` method, as many platforms require nested SELECT statements to be named). As expressions are composed together, the application of :meth:`self_group` is automatic - end-user code should never need to use this method directly. Note that SQLAlchemy's clause constructs take operator precedence into account - so parenthesis might not be needed, for example, in an expression like ``x OR (y AND z)`` - AND takes precedence over OR. The base :meth:`self_group` method of :class:`.ClauseElement` just returns self. """ return self @util.dependencies("sqlalchemy.engine.default") def compile(self, default, bind=None, dialect=None, **kw): """Compile this SQL expression. The return value is a :class:`~.Compiled` object. Calling ``str()`` or ``unicode()`` on the returned value will yield a string representation of the result. The :class:`~.Compiled` object also can return a dictionary of bind parameter names and values using the ``params`` accessor. :param bind: An ``Engine`` or ``Connection`` from which a ``Compiled`` will be acquired. This argument takes precedence over this :class:`.ClauseElement`'s bound engine, if any. :param column_keys: Used for INSERT and UPDATE statements, a list of column names which should be present in the VALUES clause of the compiled statement. If ``None``, all columns from the target table object are rendered. :param dialect: A ``Dialect`` instance from which a ``Compiled`` will be acquired. This argument takes precedence over the `bind` argument as well as this :class:`.ClauseElement`'s bound engine, if any. :param inline: Used for INSERT statements, for a dialect which does not support inline retrieval of newly generated primary key columns, will force the expression used to create the new primary key value to be rendered inline within the INSERT statement's VALUES clause. This typically refers to Sequence execution but may also refer to any server-side default generation function associated with a primary key `Column`. """ if not dialect: if bind: dialect = bind.dialect elif self.bind: dialect = self.bind.dialect bind = self.bind else: dialect = default.DefaultDialect() return self._compiler(dialect, bind=bind, **kw) def _compiler(self, dialect, **kw): """Return a compiler appropriate for this ClauseElement, given a Dialect.""" return dialect.statement_compiler(dialect, self, **kw) def __str__(self): if util.py3k: return str(self.compile()) else: return unicode(self.compile()).encode('ascii', 'backslashreplace') def __and__(self, other): return and_(self, other) def __or__(self, other): return or_(self, other) def __invert__(self): return self._negate() def __bool__(self): raise TypeError("Boolean value of this clause is not defined") __nonzero__ = __bool__ def _negate(self): if hasattr(self, 'negation_clause'): return self.negation_clause else: return UnaryExpression( self.self_group(against=operators.inv), operator=operators.inv, negate=None) def __repr__(self): friendly = getattr(self, 'description', None) if friendly is None: return object.__repr__(self) else: return '<%s.%s at 0x%x; %s>' % ( self.__module__, self.__class__.__name__, id(self), friendly) class ColumnElement(ClauseElement, operators.ColumnOperators): """Represent a column-oriented SQL expression suitable for usage in the "columns" clause, WHERE clause etc. of a statement. While the most familiar kind of :class:`.ColumnElement` is the :class:`.Column` object, :class:`.ColumnElement` serves as the basis for any unit that may be present in a SQL expression, including the expressions themselves, SQL functions, bound parameters, literal expressions, keywords such as ``NULL``, etc. :class:`.ColumnElement` is the ultimate base class for all such elements. A :class:`.ColumnElement` provides the ability to generate new :class:`.ColumnElement` objects using Python expressions. This means that Python operators such as ``==``, ``!=`` and ``<`` are overloaded to mimic SQL operations, and allow the instantiation of further :class:`.ColumnElement` instances which are composed from other, more fundamental :class:`.ColumnElement` objects. For example, two :class:`.ColumnClause` objects can be added together with the addition operator ``+`` to produce a :class:`.BinaryExpression`. Both :class:`.ColumnClause` and :class:`.BinaryExpression` are subclasses of :class:`.ColumnElement`:: >>> from sqlalchemy.sql import column >>> column('a') + column('b') <sqlalchemy.sql.expression.BinaryExpression object at 0x101029dd0> >>> print column('a') + column('b') a + b :class:`.ColumnElement` supports the ability to be a *proxy* element, which indicates that the :class:`.ColumnElement` may be associated with a :class:`.Selectable` which was derived from another :class:`.Selectable`. An example of a "derived" :class:`.Selectable` is an :class:`.Alias` of a :class:`~sqlalchemy.schema.Table`. For the ambitious, an in-depth discussion of this concept can be found at `Expression Transformations <http://techspot.zzzeek.org/2008/01/23/expression-transformations/>`_. """ __visit_name__ = 'column' primary_key = False foreign_keys = [] _label = None _key_label = None _alt_names = () @util.memoized_property def type(self): return type_api.NULLTYPE @util.memoized_property def comparator(self): return self.type.comparator_factory(self) def __getattr__(self, key): try: return getattr(self.comparator, key) except AttributeError: raise AttributeError( 'Neither %r object nor %r object has an attribute %r' % ( type(self).__name__, type(self.comparator).__name__, key) ) def operate(self, op, *other, **kwargs): return op(self.comparator, *other, **kwargs) def reverse_operate(self, op, other, **kwargs): return op(other, self.comparator, **kwargs) def _bind_param(self, operator, obj): return BindParameter(None, obj, _compared_to_operator=operator, _compared_to_type=self.type, unique=True) @property def expression(self): """Return a column expression. Part of the inspection interface; returns self. """ return self @property def _select_iterable(self): return (self, ) @util.memoized_property def base_columns(self): return util.column_set(c for c in self.proxy_set if not hasattr(c, '_proxies')) @util.memoized_property def proxy_set(self): s = util.column_set([self]) if hasattr(self, '_proxies'): for c in self._proxies: s.update(c.proxy_set) return s def shares_lineage(self, othercolumn): """Return True if the given :class:`.ColumnElement` has a common ancestor to this :class:`.ColumnElement`.""" return bool(self.proxy_set.intersection(othercolumn.proxy_set)) def _compare_name_for_result(self, other): """Return True if the given column element compares to this one when targeting within a result row.""" return hasattr(other, 'name') and hasattr(self, 'name') and \ other.name == self.name def _make_proxy(self, selectable, name=None, name_is_truncatable=False, **kw): """Create a new :class:`.ColumnElement` representing this :class:`.ColumnElement` as it appears in the select list of a descending selectable. """ if name is None: name = self.anon_label try: key = str(self) except exc.UnsupportedCompilationError: key = self.anon_label else: key = name co = ColumnClause( _as_truncated(name) if name_is_truncatable else name, type_=getattr(self, 'type', None), _selectable=selectable ) co._proxies = [self] if selectable._is_clone_of is not None: co._is_clone_of = \ selectable._is_clone_of.columns.get(key) selectable._columns[key] = co return co def compare(self, other, use_proxies=False, equivalents=None, **kw): """Compare this ColumnElement to another. Special arguments understood: :param use_proxies: when True, consider two columns that share a common base column as equivalent (i.e. shares_lineage()) :param equivalents: a dictionary of columns as keys mapped to sets of columns. If the given "other" column is present in this dictionary, if any of the columns in the corresponding set() pass the comparison test, the result is True. This is used to expand the comparison to other columns that may be known to be equivalent to this one via foreign key or other criterion. """ to_compare = (other, ) if equivalents and other in equivalents: to_compare = equivalents[other].union(to_compare) for oth in to_compare: if use_proxies and self.shares_lineage(oth): return True elif hash(oth) == hash(self): return True else: return False def label(self, name): """Produce a column label, i.e. ``<columnname> AS <name>``. This is a shortcut to the :func:`~.expression.label` function. if 'name' is None, an anonymous label name will be generated. """ return Label(name, self, self.type) @util.memoized_property def anon_label(self): """provides a constant 'anonymous label' for this ColumnElement. This is a label() expression which will be named at compile time. The same label() is returned each time anon_label is called so that expressions can reference anon_label multiple times, producing the same label name at compile time. the compiler uses this function automatically at compile time for expressions that are known to be 'unnamed' like binary expressions and function calls. """ return _anonymous_label('%%(%d %s)s' % (id(self), getattr(self, 'name', 'anon'))) class BindParameter(ColumnElement): """Represent a bound parameter value. """ __visit_name__ = 'bindparam' _is_crud = False def __init__(self, key, value=NO_ARG, type_=None, unique=False, required=NO_ARG, quote=None, callable_=None, isoutparam=False, _compared_to_operator=None, _compared_to_type=None): """Construct a new :class:`.BindParameter`. :param key: the key for this bind param. Will be used in the generated SQL statement for dialects that use named parameters. This value may be modified when part of a compilation operation, if other :class:`BindParameter` objects exist with the same key, or if its length is too long and truncation is required. :param value: Initial value for this bind param. This value may be overridden by the dictionary of parameters sent to statement compilation/execution. Defaults to ``None``, however if neither ``value`` nor ``callable`` are passed explicitly, the ``required`` flag will be set to ``True`` which has the effect of requiring a value be present when the statement is actually executed. .. versionchanged:: 0.8 The ``required`` flag is set to ``True`` automatically if ``value`` or ``callable`` is not passed. :param callable\_: A callable function that takes the place of "value". The function will be called at statement execution time to determine the ultimate value. Used for scenarios where the actual bind value cannot be determined at the point at which the clause construct is created, but embedded bind values are still desirable. :param type\_: A ``TypeEngine`` object that will be used to pre-process the value corresponding to this :class:`BindParameter` at execution time. :param unique: if True, the key name of this BindParamClause will be modified if another :class:`BindParameter` of the same name already has been located within the containing :class:`.ClauseElement`. :param required: If ``True``, a value is required at execution time. If not passed, is set to ``True`` or ``False`` based on whether or not one of ``value`` or ``callable`` were passed.. .. versionchanged:: 0.8 If the ``required`` flag is not specified, it will be set automatically to ``True`` or ``False`` depending on whether or not the ``value`` or ``callable`` parameters were specified. :param quote: True if this parameter name requires quoting and is not currently known as a SQLAlchemy reserved word; this currently only applies to the Oracle backend. :param isoutparam: if True, the parameter should be treated like a stored procedure "OUT" parameter. .. seealso:: :func:`.outparam` """ if isinstance(key, ColumnClause): type_ = key.type key = key.name if required is NO_ARG: required = (value is NO_ARG and callable_ is None) if value is NO_ARG: value = None if quote is not None: key = quoted_name(key, quote) if unique: self.key = _anonymous_label('%%(%d %s)s' % (id(self), key or 'param')) else: self.key = key or _anonymous_label('%%(%d param)s' % id(self)) # identifying key that won't change across # clones, used to identify the bind's logical # identity self._identifying_key = self.key # key that was passed in the first place, used to # generate new keys self._orig_key = key or 'param' self.unique = unique self.value = value self.callable = callable_ self.isoutparam = isoutparam self.required = required if type_ is None: if _compared_to_type is not None: self.type = \ _compared_to_type.coerce_compared_value( _compared_to_operator, value) else: self.type = type_api._type_map.get(type(value), type_api.NULLTYPE) elif isinstance(type_, type): self.type = type_() else: self.type = type_ @property def effective_value(self): """Return the value of this bound parameter, taking into account if the ``callable`` parameter was set. The ``callable`` value will be evaluated and returned if present, else ``value``. """ if self.callable: return self.callable() else: return self.value def _clone(self): c = ClauseElement._clone(self) if self.unique: c.key = _anonymous_label('%%(%d %s)s' % (id(c), c._orig_key or 'param')) return c def _convert_to_unique(self): if not self.unique: self.unique = True self.key = _anonymous_label('%%(%d %s)s' % (id(self), self._orig_key or 'param')) def compare(self, other, **kw): """Compare this :class:`BindParameter` to the given clause.""" return isinstance(other, BindParameter) \ and self.type._compare_type_affinity(other.type) \ and self.value == other.value def __getstate__(self): """execute a deferred value for serialization purposes.""" d = self.__dict__.copy() v = self.value if self.callable: v = self.callable() d['callable'] = None d['value'] = v return d def __repr__(self): return 'BindParameter(%r, %r, type_=%r)' % (self.key, self.value, self.type) class TypeClause(ClauseElement): """Handle a type keyword in a SQL statement. Used by the ``Case`` statement. """ __visit_name__ = 'typeclause' def __init__(self, type): self.type = type class TextClause(Executable, ClauseElement): """Represent a literal SQL text fragment. Public constructor is the :func:`text()` function. """ __visit_name__ = 'textclause' _bind_params_regex = re.compile(r'(?<![:\w\x5c]):(\w+)(?!:)', re.UNICODE) _execution_options = \ Executable._execution_options.union( {'autocommit': PARSE_AUTOCOMMIT}) @property def _select_iterable(self): return (self,) @property def selectable(self): return self _hide_froms = [] def __init__( self, text='', bind=None, bindparams=None, typemap=None, autocommit=None): """Construct a new :class:`.TextClause` clause. E.g.:: fom sqlalchemy import text t = text("SELECT * FROM users") result = connection.execute(t) The advantages :func:`.text` provides over a plain string are backend-neutral support for bind parameters, per-statement execution options, as well as bind parameter and result-column typing behavior, allowing SQLAlchemy type constructs to play a role when executing a statement that is specified literally. Bind parameters are specified by name, using the format ``:name``. E.g.:: t = text("SELECT * FROM users WHERE id=:user_id") result = connection.execute(t, user_id=12) To invoke SQLAlchemy typing logic for bind parameters, the ``bindparams`` list allows specification of :func:`bindparam` constructs which specify the type for a given name:: t = text("SELECT id FROM users WHERE updated_at>:updated", bindparams=[bindparam('updated', DateTime())] ) Typing during result row processing is also an important concern. Result column types are specified using the ``typemap`` dictionary, where the keys match the names of columns. These names are taken from what the DBAPI returns as ``cursor.description``:: t = text("SELECT id, name FROM users", typemap={ 'id':Integer, 'name':Unicode } ) The :func:`text` construct is used internally for most cases when a literal string is specified for part of a larger query, such as within :func:`select()`, :func:`update()`, :func:`insert()` or :func:`delete()`. In those cases, the same bind parameter syntax is applied:: s = select([users.c.id, users.c.name]).where("id=:user_id") result = connection.execute(s, user_id=12) Using :func:`text` explicitly usually implies the construction of a full, standalone statement. As such, SQLAlchemy refers to it as an :class:`.Executable` object, and it supports the :meth:`Executable.execution_options` method. For example, a :func:`text` construct that should be subject to "autocommit" can be set explicitly so using the ``autocommit`` option:: t = text("EXEC my_procedural_thing()").\\ execution_options(autocommit=True) Note that SQLAlchemy's usual "autocommit" behavior applies to :func:`text` constructs - that is, statements which begin with a phrase such as ``INSERT``, ``UPDATE``, ``DELETE``, or a variety of other phrases specific to certain backends, will be eligible for autocommit if no transaction is in progress. :param text: the text of the SQL statement to be created. use ``:<param>`` to specify bind parameters; they will be compiled to their engine-specific format. :param autocommit: Deprecated. Use .execution_options(autocommit=<True|False>) to set the autocommit option. :param bind: an optional connection or engine to be used for this text query. :param bindparams: a list of :func:`bindparam()` instances which can be used to define the types and/or initial values for the bind parameters within the textual statement; the keynames of the bindparams must match those within the text of the statement. The types will be used for pre-processing on bind values. :param typemap: a dictionary mapping the names of columns represented in the columns clause of a ``SELECT`` statement to type objects, which will be used to perform post-processing on columns within the result set. This argument applies to any expression that returns result sets. """ self._bind = bind self.bindparams = {} self.typemap = typemap if autocommit is not None: util.warn_deprecated('autocommit on text() is deprecated. ' 'Use .execution_options(autocommit=Tru' 'e)') self._execution_options = \ self._execution_options.union( {'autocommit': autocommit}) if typemap is not None: for key in typemap: typemap[key] = type_api.to_instance(typemap[key]) def repl(m): self.bindparams[m.group(1)] = BindParameter(m.group(1)) return ':%s' % m.group(1) # scan the string and search for bind parameter names, add them # to the list of bindparams self.text = self._bind_params_regex.sub(repl, text) if bindparams is not None: for b in bindparams: self.bindparams[b.key] = b @property def type(self): if self.typemap is not None and len(self.typemap) == 1: return list(self.typemap)[0] else: return type_api.NULLTYPE @property def comparator(self): return self.type.comparator_factory(self) def self_group(self, against=None): if against is operators.in_op: return Grouping(self) else: return self def _copy_internals(self, clone=_clone, **kw): self.bindparams = dict((b.key, clone(b, **kw)) for b in self.bindparams.values()) def get_children(self, **kwargs): return list(self.bindparams.values()) class Null(ColumnElement): """Represent the NULL keyword in a SQL statement. """ __visit_name__ = 'null' def __init__(self): """Return a :class:`Null` object, which compiles to ``NULL``. """ self.type = type_api.NULLTYPE def compare(self, other): return isinstance(other, Null) class False_(ColumnElement): """Represent the ``false`` keyword in a SQL statement. """ __visit_name__ = 'false' def __init__(self): """Return a :class:`False_` object. """ self.type = type_api.BOOLEANTYPE def compare(self, other): return isinstance(other, False_) class True_(ColumnElement): """Represent the ``true`` keyword in a SQL statement. """ __visit_name__ = 'true' def __init__(self): """Return a :class:`True_` object. """ self.type = type_api.BOOLEANTYPE def compare(self, other): return isinstance(other, True_) class ClauseList(ClauseElement): """Describe a list of clauses, separated by an operator. By default, is comma-separated, such as a column listing. """ __visit_name__ = 'clauselist' def __init__(self, *clauses, **kwargs): self.operator = kwargs.pop('operator', operators.comma_op) self.group = kwargs.pop('group', True) self.group_contents = kwargs.pop('group_contents', True) if self.group_contents: self.clauses = [ _literal_as_text(clause).self_group(against=self.operator) for clause in clauses if clause is not None] else: self.clauses = [ _literal_as_text(clause) for clause in clauses if clause is not None] def __iter__(self): return iter(self.clauses) def __len__(self): return len(self.clauses) @property def _select_iterable(self): return iter(self) def append(self, clause): # TODO: not sure if i like the 'group_contents' flag. need to # define the difference between a ClauseList of ClauseLists, # and a "flattened" ClauseList of ClauseLists. flatten() # method ? if self.group_contents: self.clauses.append(_literal_as_text(clause).\ self_group(against=self.operator)) else: self.clauses.append(_literal_as_text(clause)) def _copy_internals(self, clone=_clone, **kw): self.clauses = [clone(clause, **kw) for clause in self.clauses] def get_children(self, **kwargs): return self.clauses @property def _from_objects(self): return list(itertools.chain(*[c._from_objects for c in self.clauses])) def self_group(self, against=None): if self.group and operators.is_precedent(self.operator, against): return Grouping(self) else: return self def compare(self, other, **kw): """Compare this :class:`.ClauseList` to the given :class:`.ClauseList`, including a comparison of all the clause items. """ if not isinstance(other, ClauseList) and len(self.clauses) == 1: return self.clauses[0].compare(other, **kw) elif isinstance(other, ClauseList) and \ len(self.clauses) == len(other.clauses): for i in range(0, len(self.clauses)): if not self.clauses[i].compare(other.clauses[i], **kw): return False else: return self.operator == other.operator else: return False class BooleanClauseList(ClauseList, ColumnElement): __visit_name__ = 'clauselist' def __init__(self, *clauses, **kwargs): super(BooleanClauseList, self).__init__(*clauses, **kwargs) self.type = type_api.to_instance(kwargs.get('type_', type_api.BOOLEANTYPE)) @property def _select_iterable(self): return (self, ) def self_group(self, against=None): if not self.clauses: return self else: return super(BooleanClauseList, self).self_group(against=against) class Tuple(ClauseList, ColumnElement): """Represent a SQL tuple.""" def __init__(self, *clauses, **kw): """Return a :class:`.Tuple`. Main usage is to produce a composite IN construct:: from sqlalchemy import tuple_ tuple_(table.c.col1, table.c.col2).in_( [(1, 2), (5, 12), (10, 19)] ) .. warning:: The composite IN construct is not supported by all backends, and is currently known to work on Postgresql and MySQL, but not SQLite. Unsupported backends will raise a subclass of :class:`~sqlalchemy.exc.DBAPIError` when such an expression is invoked. """ clauses = [_literal_as_binds(c) for c in clauses] self.type = kw.pop('type_', None) if self.type is None: self.type = _type_from_args(clauses) super(Tuple, self).__init__(*clauses, **kw) @property def _select_iterable(self): return (self, ) def _bind_param(self, operator, obj): return Tuple(*[ BindParameter(None, o, _compared_to_operator=operator, _compared_to_type=self.type, unique=True) for o in obj ]).self_group() class Case(ColumnElement): """Represent a SQL ``CASE`` construct. """ __visit_name__ = 'case' def __init__(self, whens, value=None, else_=None): """Produce a :class:`.Case` object. :param whens: A sequence of pairs, or alternatively a dict, to be translated into "WHEN / THEN" clauses. :param value: Optional for simple case statements, produces a column expression as in "CASE <expr> WHEN ..." :param else\_: Optional as well, for case defaults produces the "ELSE" portion of the "CASE" statement. The expressions used for THEN and ELSE, when specified as strings, will be interpreted as bound values. To specify textual SQL expressions for these, use the :func:`literal_column` construct. The expressions used for the WHEN criterion may only be literal strings when "value" is present, i.e. CASE table.somecol WHEN "x" THEN "y". Otherwise, literal strings are not accepted in this position, and either the text(<string>) or literal(<string>) constructs must be used to interpret raw string values. Usage examples:: case([(orderline.c.qty > 100, item.c.specialprice), (orderline.c.qty > 10, item.c.bulkprice) ], else_=item.c.regularprice) case(value=emp.c.type, whens={ 'engineer': emp.c.salary * 1.1, 'manager': emp.c.salary * 3, }) Using :func:`.literal_column()`, to allow for databases that do not support bind parameters in the ``then`` clause. The type can be specified which determines the type of the :func:`case()` construct overall:: case([(orderline.c.qty > 100, literal_column("'greaterthan100'", String)), (orderline.c.qty > 10, literal_column("'greaterthan10'", String)) ], else_=literal_column("'lethan10'", String)) """ try: whens = util.dictlike_iteritems(whens) except TypeError: pass if value is not None: whenlist = [ (_literal_as_binds(c).self_group(), _literal_as_binds(r)) for (c, r) in whens ] else: whenlist = [ (_no_literals(c).self_group(), _literal_as_binds(r)) for (c, r) in whens ] if whenlist: type_ = list(whenlist[-1])[-1].type else: type_ = None if value is None: self.value = None else: self.value = _literal_as_binds(value) self.type = type_ self.whens = whenlist if else_ is not None: self.else_ = _literal_as_binds(else_) else: self.else_ = None def _copy_internals(self, clone=_clone, **kw): if self.value is not None: self.value = clone(self.value, **kw) self.whens = [(clone(x, **kw), clone(y, **kw)) for x, y in self.whens] if self.else_ is not None: self.else_ = clone(self.else_, **kw) def get_children(self, **kwargs): if self.value is not None: yield self.value for x, y in self.whens: yield x yield y if self.else_ is not None: yield self.else_ @property def _from_objects(self): return list(itertools.chain(*[x._from_objects for x in self.get_children()])) def literal_column(text, type_=None): """Return a textual column expression, as would be in the columns clause of a ``SELECT`` statement. The object returned supports further expressions in the same way as any other column object, including comparison, math and string operations. The type\_ parameter is important to determine proper expression behavior (such as, '+' means string concatenation or numerical addition based on the type). :param text: the text of the expression; can be any SQL expression. Quoting rules will not be applied. To specify a column-name expression which should be subject to quoting rules, use the :func:`column` function. :param type\_: an optional :class:`~sqlalchemy.types.TypeEngine` object which will provide result-set translation and additional expression semantics for this column. If left as None the type will be NullType. """ return ColumnClause(text, type_=type_, is_literal=True) class Cast(ColumnElement): """Represent the SQL ``CAST`` construct.""" __visit_name__ = 'cast' def __init__(self, clause, totype, **kwargs): """Return a :class:`.Cast` object. Equivalent of SQL ``CAST(clause AS totype)``. Use with a :class:`~sqlalchemy.types.TypeEngine` subclass, i.e:: cast(table.c.unit_price * table.c.qty, Numeric(10,4)) or:: cast(table.c.timestamp, DATE) :class:`.Cast` is available using :func:`.cast` or alternatively ``func.cast`` from the :data:`.func` namespace. """ self.type = type_api.to_instance(totype) self.clause = _literal_as_binds(clause, None) self.typeclause = TypeClause(self.type) def _copy_internals(self, clone=_clone, **kw): self.clause = clone(self.clause, **kw) self.typeclause = clone(self.typeclause, **kw) def get_children(self, **kwargs): return self.clause, self.typeclause @property def _from_objects(self): return self.clause._from_objects class Extract(ColumnElement): """Represent a SQL EXTRACT clause, ``extract(field FROM expr)``.""" __visit_name__ = 'extract' def __init__(self, field, expr, **kwargs): """Return a :class:`.Extract` construct. This is typically available as :func:`.extract` as well as ``func.extract`` from the :data:`.func` namespace. """ self.type = type_api.INTEGERTYPE self.field = field self.expr = _literal_as_binds(expr, None) def _copy_internals(self, clone=_clone, **kw): self.expr = clone(self.expr, **kw) def get_children(self, **kwargs): return self.expr, @property def _from_objects(self): return self.expr._from_objects class UnaryExpression(ColumnElement): """Define a 'unary' expression. A unary expression has a single column expression and an operator. The operator can be placed on the left (where it is called the 'operator') or right (where it is called the 'modifier') of the column expression. """ __visit_name__ = 'unary' def __init__(self, element, operator=None, modifier=None, type_=None, negate=None): self.operator = operator self.modifier = modifier self.element = _literal_as_text(element).\ self_group(against=self.operator or self.modifier) self.type = type_api.to_instance(type_) self.negate = negate @classmethod def _create_nullsfirst(cls, column): """Return a NULLS FIRST ``ORDER BY`` clause element. e.g.:: someselect.order_by(desc(table1.mycol).nullsfirst()) produces:: ORDER BY mycol DESC NULLS FIRST """ return UnaryExpression(column, modifier=operators.nullsfirst_op) @classmethod def _create_nullslast(cls, column): """Return a NULLS LAST ``ORDER BY`` clause element. e.g.:: someselect.order_by(desc(table1.mycol).nullslast()) produces:: ORDER BY mycol DESC NULLS LAST """ return UnaryExpression(column, modifier=operators.nullslast_op) @classmethod def _create_desc(cls, column): """Return a descending ``ORDER BY`` clause element. e.g.:: someselect.order_by(desc(table1.mycol)) produces:: ORDER BY mycol DESC """ return UnaryExpression(column, modifier=operators.desc_op) @classmethod def _create_asc(cls, column): """Return an ascending ``ORDER BY`` clause element. e.g.:: someselect.order_by(asc(table1.mycol)) produces:: ORDER BY mycol ASC """ return UnaryExpression(column, modifier=operators.asc_op) @classmethod def _create_distinct(cls, expr): """Return a ``DISTINCT`` clause. e.g.:: distinct(a) renders:: DISTINCT a """ expr = _literal_as_binds(expr) return UnaryExpression(expr, operator=operators.distinct_op, type_=expr.type) @util.memoized_property def _order_by_label_element(self): if self.modifier in (operators.desc_op, operators.asc_op): return self.element._order_by_label_element else: return None @property def _from_objects(self): return self.element._from_objects def _copy_internals(self, clone=_clone, **kw): self.element = clone(self.element, **kw) def get_children(self, **kwargs): return self.element, def compare(self, other, **kw): """Compare this :class:`UnaryExpression` against the given :class:`.ClauseElement`.""" return ( isinstance(other, UnaryExpression) and self.operator == other.operator and self.modifier == other.modifier and self.element.compare(other.element, **kw) ) def _negate(self): if self.negate is not None: return UnaryExpression( self.element, operator=self.negate, negate=self.operator, modifier=self.modifier, type_=self.type) else: return super(UnaryExpression, self)._negate() def self_group(self, against=None): if self.operator and operators.is_precedent(self.operator, against): return Grouping(self) else: return self class BinaryExpression(ColumnElement): """Represent an expression that is ``LEFT <operator> RIGHT``. A :class:`.BinaryExpression` is generated automatically whenever two column expressions are used in a Python binary expresion:: >>> from sqlalchemy.sql import column >>> column('a') + column('b') <sqlalchemy.sql.expression.BinaryExpression object at 0x101029dd0> >>> print column('a') + column('b') a + b """ __visit_name__ = 'binary' def __init__(self, left, right, operator, type_=None, negate=None, modifiers=None): # allow compatibility with libraries that # refer to BinaryExpression directly and pass strings if isinstance(operator, util.string_types): operator = operators.custom_op(operator) self._orig = (left, right) self.left = _literal_as_text(left).self_group(against=operator) self.right = _literal_as_text(right).self_group(against=operator) self.operator = operator self.type = type_api.to_instance(type_) self.negate = negate if modifiers is None: self.modifiers = {} else: self.modifiers = modifiers def __bool__(self): if self.operator in (operator.eq, operator.ne): return self.operator(hash(self._orig[0]), hash(self._orig[1])) else: raise TypeError("Boolean value of this clause is not defined") __nonzero__ = __bool__ @property def is_comparison(self): return operators.is_comparison(self.operator) @property def _from_objects(self): return self.left._from_objects + self.right._from_objects def _copy_internals(self, clone=_clone, **kw): self.left = clone(self.left, **kw) self.right = clone(self.right, **kw) def get_children(self, **kwargs): return self.left, self.right def compare(self, other, **kw): """Compare this :class:`BinaryExpression` against the given :class:`BinaryExpression`.""" return ( isinstance(other, BinaryExpression) and self.operator == other.operator and ( self.left.compare(other.left, **kw) and self.right.compare(other.right, **kw) or ( operators.is_commutative(self.operator) and self.left.compare(other.right, **kw) and self.right.compare(other.left, **kw) ) ) ) def self_group(self, against=None): if operators.is_precedent(self.operator, against): return Grouping(self) else: return self def _negate(self): if self.negate is not None: return BinaryExpression( self.left, self.right, self.negate, negate=self.operator, type_=type_api.BOOLEANTYPE, modifiers=self.modifiers) else: return super(BinaryExpression, self)._negate() class Grouping(ColumnElement): """Represent a grouping within a column expression""" __visit_name__ = 'grouping' def __init__(self, element): self.element = element self.type = getattr(element, 'type', type_api.NULLTYPE) @property def _label(self): return getattr(self.element, '_label', None) or self.anon_label def _copy_internals(self, clone=_clone, **kw): self.element = clone(self.element, **kw) def get_children(self, **kwargs): return self.element, @property def _from_objects(self): return self.element._from_objects def __getattr__(self, attr): return getattr(self.element, attr) def __getstate__(self): return {'element': self.element, 'type': self.type} def __setstate__(self, state): self.element = state['element'] self.type = state['type'] def compare(self, other, **kw): return isinstance(other, Grouping) and \ self.element.compare(other.element) class Over(ColumnElement): """Represent an OVER clause. This is a special operator against a so-called "window" function, as well as any aggregate function, which produces results relative to the result set itself. It's supported only by certain database backends. """ __visit_name__ = 'over' order_by = None partition_by = None def __init__(self, func, partition_by=None, order_by=None): """Produce an :class:`.Over` object against a function. Used against aggregate or so-called "window" functions, for database backends that support window functions. E.g.:: from sqlalchemy import over over(func.row_number(), order_by='x') Would produce "ROW_NUMBER() OVER(ORDER BY x)". :param func: a :class:`.FunctionElement` construct, typically generated by :data:`~.expression.func`. :param partition_by: a column element or string, or a list of such, that will be used as the PARTITION BY clause of the OVER construct. :param order_by: a column element or string, or a list of such, that will be used as the ORDER BY clause of the OVER construct. This function is also available from the :data:`~.expression.func` construct itself via the :meth:`.FunctionElement.over` method. .. versionadded:: 0.7 """ self.func = func if order_by is not None: self.order_by = ClauseList(*util.to_list(order_by)) if partition_by is not None: self.partition_by = ClauseList(*util.to_list(partition_by)) @util.memoized_property def type(self): return self.func.type def get_children(self, **kwargs): return [c for c in (self.func, self.partition_by, self.order_by) if c is not None] def _copy_internals(self, clone=_clone, **kw): self.func = clone(self.func, **kw) if self.partition_by is not None: self.partition_by = clone(self.partition_by, **kw) if self.order_by is not None: self.order_by = clone(self.order_by, **kw) @property def _from_objects(self): return list(itertools.chain( *[c._from_objects for c in (self.func, self.partition_by, self.order_by) if c is not None] )) class Label(ColumnElement): """Represents a column label (AS). Represent a label, as typically applied to any column-level element using the ``AS`` sql keyword. """ __visit_name__ = 'label' def __init__(self, name, element, type_=None): """Return a :class:`Label` object for the given :class:`.ColumnElement`. A label changes the name of an element in the columns clause of a ``SELECT`` statement, typically via the ``AS`` SQL keyword. This functionality is more conveniently available via the :meth:`.ColumnElement.label` method on :class:`.ColumnElement`. :param name: label name :param obj: a :class:`.ColumnElement`. """ while isinstance(element, Label): element = element.element if name: self.name = name else: self.name = _anonymous_label('%%(%d %s)s' % (id(self), getattr(element, 'name', 'anon'))) self.key = self._label = self._key_label = self.name self._element = element self._type = type_ self._proxies = [element] @util.memoized_property def _order_by_label_element(self): return self @util.memoized_property def type(self): return type_api.to_instance( self._type or getattr(self._element, 'type', None) ) @util.memoized_property def element(self): return self._element.self_group(against=operators.as_) def self_group(self, against=None): sub_element = self._element.self_group(against=against) if sub_element is not self._element: return Label(self.name, sub_element, type_=self._type) else: return self @property def primary_key(self): return self.element.primary_key @property def foreign_keys(self): return self.element.foreign_keys def get_children(self, **kwargs): return self.element, def _copy_internals(self, clone=_clone, **kw): self.element = clone(self.element, **kw) @property def _from_objects(self): return self.element._from_objects def _make_proxy(self, selectable, name=None, **kw): e = self.element._make_proxy(selectable, name=name if name else self.name) e._proxies.append(self) if self._type is not None: e.type = self._type return e class ColumnClause(Immutable, ColumnElement): """Represents a generic column expression from any textual string. This includes columns associated with tables, aliases and select statements, but also any arbitrary text. May or may not be bound to an underlying :class:`.Selectable`. :class:`.ColumnClause` is constructed by itself typically via the :func:`~.expression.column` function. It may be placed directly into constructs such as :func:`.select` constructs:: from sqlalchemy.sql import column, select c1, c2 = column("c1"), column("c2") s = select([c1, c2]).where(c1==5) There is also a variant on :func:`~.expression.column` known as :func:`~.expression.literal_column` - the difference is that in the latter case, the string value is assumed to be an exact expression, rather than a column name, so that no quoting rules or similar are applied:: from sqlalchemy.sql import literal_column, select s = select([literal_column("5 + 7")]) :class:`.ColumnClause` can also be used in a table-like fashion by combining the :func:`~.expression.column` function with the :func:`~.expression.table` function, to produce a "lightweight" form of table metadata:: from sqlalchemy.sql import table, column user = table("user", column("id"), column("name"), column("description"), ) The above construct can be created in an ad-hoc fashion and is not associated with any :class:`.schema.MetaData`, unlike it's more full fledged :class:`.schema.Table` counterpart. """ __visit_name__ = 'column' onupdate = default = server_default = server_onupdate = None _memoized_property = util.group_expirable_memoized_property() def __init__(self, text, type_=None, is_literal=False, _selectable=None): """Construct a :class:`.ColumnClause` object. :param text: the text of the element. :param type: :class:`.types.TypeEngine` object which can associate this :class:`.ColumnClause` with a type. :param is_literal: if True, the :class:`.ColumnClause` is assumed to be an exact expression that will be delivered to the output with no quoting rules applied regardless of case sensitive settings. the :func:`literal_column()` function is usually used to create such a :class:`.ColumnClause`. :param text: the name of the column. Quoting rules will be applied to the clause like any other column name. For textual column constructs that are not to be quoted, use the :func:`literal_column` function. :param type\_: an optional :class:`~sqlalchemy.types.TypeEngine` object which will provide result-set translation for this column. """ self.key = self.name = text self.table = _selectable self.type = type_api.to_instance(type_) self.is_literal = is_literal def _compare_name_for_result(self, other): if self.is_literal or \ self.table is None or \ not hasattr(other, 'proxy_set') or ( isinstance(other, ColumnClause) and other.is_literal ): return super(ColumnClause, self).\ _compare_name_for_result(other) else: return other.proxy_set.intersection(self.proxy_set) def _get_table(self): return self.__dict__['table'] def _set_table(self, table): self._memoized_property.expire_instance(self) self.__dict__['table'] = table table = property(_get_table, _set_table) @_memoized_property def _from_objects(self): t = self.table if t is not None: return [t] else: return [] @util.memoized_property def description(self): if util.py3k: return self.name else: return self.name.encode('ascii', 'backslashreplace') @_memoized_property def _key_label(self): if self.key != self.name: return self._gen_label(self.key) else: return self._label @_memoized_property def _label(self): return self._gen_label(self.name) def _gen_label(self, name): t = self.table if self.is_literal: return None elif t is not None and t.named_with_column: if getattr(t, 'schema', None): label = t.schema.replace('.', '_') + "_" + \ t.name + "_" + name else: label = t.name + "_" + name # propagate name quoting rules for labels. if getattr(name, "quote", None) is not None: label = quoted_name(label, name.quote) elif getattr(t.name, "quote", None) is not None: label = quoted_name(label, t.name.quote) # ensure the label name doesn't conflict with that # of an existing column if label in t.c: _label = label counter = 1 while _label in t.c: _label = label + "_" + str(counter) counter += 1 label = _label return _as_truncated(label) else: return name def _bind_param(self, operator, obj): return BindParameter(self.name, obj, _compared_to_operator=operator, _compared_to_type=self.type, unique=True) def _make_proxy(self, selectable, name=None, attach=True, name_is_truncatable=False, **kw): # propagate the "is_literal" flag only if we are keeping our name, # otherwise its considered to be a label is_literal = self.is_literal and (name is None or name == self.name) c = self._constructor( _as_truncated(name or self.name) if \ name_is_truncatable else \ (name or self.name), type_=self.type, _selectable=selectable, is_literal=is_literal ) if name is None: c.key = self.key c._proxies = [self] if selectable._is_clone_of is not None: c._is_clone_of = \ selectable._is_clone_of.columns.get(c.key) if attach: selectable._columns[c.key] = c return c class _IdentifiedClause(Executable, ClauseElement): __visit_name__ = 'identified' _execution_options = \ Executable._execution_options.union({'autocommit': False}) def __init__(self, ident): self.ident = ident class SavepointClause(_IdentifiedClause): __visit_name__ = 'savepoint' class RollbackToSavepointClause(_IdentifiedClause): __visit_name__ = 'rollback_to_savepoint' class ReleaseSavepointClause(_IdentifiedClause): __visit_name__ = 'release_savepoint' class quoted_name(util.text_type): """Represent a SQL identifier combined with quoting preferences. :class:`.quoted_name` is a Python unicode/str subclass which represents a particular identifier name along with a ``quote`` flag. This ``quote`` flag, when set to ``True`` or ``False``, overrides automatic quoting behavior for this identifier in order to either unconditionally quote or to not quote the name. If left at its default of ``None``, quoting behavior is applied to the identifier on a per-backend basis based on an examination of the token itself. A :class:`.quoted_name` object with ``quote=True`` is also prevented from being modified in the case of a so-called "name normalize" option. Certain database backends, such as Oracle, Firebird, and DB2 "normalize" case-insensitive names as uppercase. The SQLAlchemy dialects for these backends convert from SQLAlchemy's lower-case-means-insensitive convention to the upper-case-means-insensitive conventions of those backends. The ``quote=True`` flag here will prevent this conversion from occurring to support an identifier that's quoted as all lower case against such a backend. The :class:`.quoted_name` object is normally created automatically when specifying the name for key schema constructs such as :class:`.Table`, :class:`.Column`, and others. The class can also be passed explicitly as the name to any function that receives a name which can be quoted. Such as to use the :meth:`.Engine.has_table` method with an unconditionally quoted name:: from sqlaclchemy import create_engine from sqlalchemy.sql.elements import quoted_name engine = create_engine("oracle+cx_oracle://some_dsn") engine.has_table(quoted_name("some_table", True)) The above logic will run the "has table" logic against the Oracle backend, passing the name exactly as ``"some_table"`` without converting to upper case. .. versionadded:: 0.9.0 """ #def __new__(cls, value, quote, sprcls=False): def __new__(cls, value, quote): if value is None: return None # experimental - don't bother with quoted_name # if quote flag is None. doesn't seem to make any dent # in performance however # elif not sprcls and quote is None: # return value elif isinstance(value, cls) and ( quote is None or value.quote == quote ): return value self = super(quoted_name, cls).__new__(cls, value) self.quote = quote return self def __reduce__(self): return quoted_name, (util.text_type(self), self.quote) @util.memoized_instancemethod def lower(self): if self.quote: return self else: return util.text_type(self).lower() @util.memoized_instancemethod def upper(self): if self.quote: return self else: return util.text_type(self).upper() def __repr__(self): return "'%s'" % self class _truncated_label(quoted_name): """A unicode subclass used to identify symbolic " "names that may require truncation.""" def __new__(cls, value, quote=None): quote = getattr(value, "quote", quote) #return super(_truncated_label, cls).__new__(cls, value, quote, True) return super(_truncated_label, cls).__new__(cls, value, quote) def __reduce__(self): return self.__class__, (util.text_type(self), self.quote) def apply_map(self, map_): return self # for backwards compatibility in case # someone is re-implementing the # _truncated_identifier() sequence in a custom # compiler _generated_label = _truncated_label class _anonymous_label(_truncated_label): """A unicode subclass used to identify anonymously generated names.""" def __add__(self, other): return _anonymous_label( quoted_name( util.text_type.__add__(self, util.text_type(other)), self.quote) ) def __radd__(self, other): return _anonymous_label( quoted_name( util.text_type.__add__(util.text_type(other), self), self.quote) ) def apply_map(self, map_): if self.quote is not None: # preserve quoting only if necessary return quoted_name(self % map_, self.quote) else: # else skip the constructor call return self % map_ def _as_truncated(value): """coerce the given value to :class:`._truncated_label`. Existing :class:`._truncated_label` and :class:`._anonymous_label` objects are passed unchanged. """ if isinstance(value, _truncated_label): return value else: return _truncated_label(value) def _string_or_unprintable(element): if isinstance(element, util.string_types): return element else: try: return str(element) except: return "unprintable element %r" % element def _expand_cloned(elements): """expand the given set of ClauseElements to be the set of all 'cloned' predecessors. """ return itertools.chain(*[x._cloned_set for x in elements]) def _select_iterables(elements): """expand tables into individual columns in the given list of column expressions. """ return itertools.chain(*[c._select_iterable for c in elements]) def _cloned_intersection(a, b): """return the intersection of sets a and b, counting any overlap between 'cloned' predecessors. The returned set is in terms of the entities present within 'a'. """ all_overlap = set(_expand_cloned(a)).intersection(_expand_cloned(b)) return set(elem for elem in a if all_overlap.intersection(elem._cloned_set)) def _cloned_difference(a, b): all_overlap = set(_expand_cloned(a)).intersection(_expand_cloned(b)) return set(elem for elem in a if not all_overlap.intersection(elem._cloned_set)) def _labeled(element): if not hasattr(element, 'name'): return element.label(None) else: return element def _is_column(col): """True if ``col`` is an instance of :class:`.ColumnElement`.""" return isinstance(col, ColumnElement) def _find_columns(clause): """locate Column objects within the given expression.""" cols = util.column_set() traverse(clause, {}, {'column': cols.add}) return cols # there is some inconsistency here between the usage of # inspect() vs. checking for Visitable and __clause_element__. # Ideally all functions here would derive from inspect(), # however the inspect() versions add significant callcount # overhead for critical functions like _interpret_as_column_or_from(). # Generally, the column-based functions are more performance critical # and are fine just checking for __clause_element__(). it's only # _interpret_as_from() where we'd like to be able to receive ORM entities # that have no defined namespace, hence inspect() is needed there. def _column_as_key(element): if isinstance(element, util.string_types): return element if hasattr(element, '__clause_element__'): element = element.__clause_element__() try: return element.key except AttributeError: return None def _clause_element_as_expr(element): if hasattr(element, '__clause_element__'): return element.__clause_element__() else: return element def _literal_as_text(element): if isinstance(element, Visitable): return element elif hasattr(element, '__clause_element__'): return element.__clause_element__() elif isinstance(element, util.string_types): return TextClause(util.text_type(element)) elif isinstance(element, (util.NoneType, bool)): return _const_expr(element) else: raise exc.ArgumentError( "SQL expression object or string expected." ) def _no_literals(element): if hasattr(element, '__clause_element__'): return element.__clause_element__() elif not isinstance(element, Visitable): raise exc.ArgumentError("Ambiguous literal: %r. Use the 'text()' " "function to indicate a SQL expression " "literal, or 'literal()' to indicate a " "bound value." % element) else: return element def _is_literal(element): return not isinstance(element, Visitable) and \ not hasattr(element, '__clause_element__') def _only_column_elements_or_none(element, name): if element is None: return None else: return _only_column_elements(element, name) def _only_column_elements(element, name): if hasattr(element, '__clause_element__'): element = element.__clause_element__() if not isinstance(element, ColumnElement): raise exc.ArgumentError( "Column-based expression object expected for argument " "'%s'; got: '%s', type %s" % (name, element, type(element))) return element def _literal_as_binds(element, name=None, type_=None): if hasattr(element, '__clause_element__'): return element.__clause_element__() elif not isinstance(element, Visitable): if element is None: return Null() else: return BindParameter(name, element, type_=type_, unique=True) else: return element def _interpret_as_column_or_from(element): if isinstance(element, Visitable): return element elif hasattr(element, '__clause_element__'): return element.__clause_element__() insp = inspection.inspect(element, raiseerr=False) if insp is None: if isinstance(element, (util.NoneType, bool)): return _const_expr(element) elif hasattr(insp, "selectable"): return insp.selectable return ColumnClause(str(element), is_literal=True) def _const_expr(element): if isinstance(element, (Null, False_, True_)): return element elif element is None: return Null() elif element is False: return False_() elif element is True: return True_() else: raise exc.ArgumentError( "Expected None, False, or True" ) def _type_from_args(args): for a in args: if not a.type._isnull: return a.type else: return type_api.NULLTYPE def _corresponding_column_or_error(fromclause, column, require_embedded=False): c = fromclause.corresponding_column(column, require_embedded=require_embedded) if c is None: raise exc.InvalidRequestError( "Given column '%s', attached to table '%s', " "failed to locate a corresponding column from table '%s'" % (column, getattr(column, 'table', None), fromclause.description) ) return c class AnnotatedColumnElement(Annotated): def __init__(self, element, values): Annotated.__init__(self, element, values) ColumnElement.comparator._reset(self) for attr in ('name', 'key'): if self.__dict__.get(attr, False) is None: self.__dict__.pop(attr) def _with_annotations(self, values): clone = super(AnnotatedColumnElement, self)._with_annotations(values) ColumnElement.comparator._reset(clone) return clone @util.memoized_property def name(self): """pull 'name' from parent, if not present""" return self._Annotated__element.name @util.memoized_property def key(self): """pull 'key' from parent, if not present""" return self._Annotated__element.key @util.memoized_property def info(self): return self._Annotated__element.info
alex/sqlalchemy
lib/sqlalchemy/sql/elements.py
Python
mit
80,420
[ "VisIt" ]
86bfc65f9d734ee04a7c2773fb927f89f54190ec9301257a444d40b24eadaa09
from .base import * class session(object): """ cytoscape session interface as shown in CyREST's swagger documentation for 'session'. :param url: an url of the type 'http://' + host + ':' + str(port) + '/' + version + '/'. """ def __init__(self, url): self.__url = url + 'commands/session' self.___url=url def new(self, verbose=False): """ Destroys the current session and creates a new, empty one. :param wid: Window ID :param verbose: print more """ response=api(url=self.__url+"/new", verbose=verbose) return response def open(self, session_file=None,session_url=None, verbose=False): """ Opens a session from a local file or URL. :param session_file: The path to the session file (.cys) to be loaded. :param session_url: A URL that provides a session file. :param verbose: print more """ PARAMS=set_param(["file", "url"],[session_file, session_url]) response=api(url=self.__url+"/open", PARAMS=PARAMS, verbose=verbose) return response def save(self, session_file, verbose=False): """ Saves the current session to an existing file, which will be replaced. If this is a new session that has not been saved yet, use 'save as' instead. :param session_file: The path to the file where the current session must be saved to. :param verbose: print more """ PARAMS={"file":session_file} response=api(url=self.__url+"/save", PARAMS=PARAMS, verbose=verbose) return response def save_as(self, session_file, verbose=False): """ Saves the current session as a new file. :param session_file: The path to the file where the current session must be saved to. :param verbose: print more """ PARAMS={"file":session_file} response=api(url=self.__url+"/save as", PARAMS=PARAMS, verbose=verbose) return response def createSessionFile(self, file, verbose=None): """ Saves the current session to a file. If successful, the session file location will be returned. :param file: Session file location as an absolute path :param verbose: print more :returns: 200: successful operation """ PARAMS=set_param(['file'],[file]) response=api(url=self.___url+'session', PARAMS=PARAMS, method="POST", verbose=verbose) return response def deleteSession(self, verbose=None): """ This deletes the current session and initializes a new one. A message is returned to indicate the success of the deletion. :param verbose: print more :returns: 200: successful operation """ response=api(url=self.___url+'session', method="DELETE", verbose=verbose) return response def getSessionFromFile(self, file, verbose=None): """ Loads a session from a local file and returns the session file name :param file: Session file location as an absolute path :param verbose: print more :returns: 200: successful operation """ response=api(url=self.___url+'session', PARAMS={'file':file}, method="GET", verbose=verbose, parse_params=False) return response def getSessionName(self, verbose=None): """ Returns the file name for the current Cytoscape session. :param verbose: print more :returns: 200: successful operation """ response=api(url=self.___url+'session/name', method="GET", verbose=verbose, parse_params=False) return response def runGarbageCollection(self, verbose=None): """ Manually call Java's System.gc() to free up unused memory. This process happens automatically, but may be useful to call explicitly for testing or evaluation purposes. :param verbose: print more :returns: 204: Successful Garbage Collection """ response=api(url=self.___url+'gc', method="GET", verbose=verbose, parse_params=False) return response
idekerlab/py2cytoscape
py2cytoscape/cyrest/session.py
Python
mit
4,191
[ "Cytoscape" ]
fe26253e7102c00f30e59407705c422f04c4aea74d370ec2e61a6ff1b43b3e24
#!/usr/bin/env python3 from abc import ABC, abstractproperty import torch from .. import settings from ..distributions import Delta, MultivariateNormal from ..module import Module from ..utils.broadcasting import _mul_broadcast_shape from ..utils.memoize import cached, clear_cache_hook class _VariationalStrategy(Module, ABC): """ Abstract base class for all Variational Strategies. """ def __init__(self, model, inducing_points, variational_distribution, learn_inducing_locations=True): super().__init__() # Model object.__setattr__(self, "model", model) # Inducing points inducing_points = inducing_points.clone() if inducing_points.dim() == 1: inducing_points = inducing_points.unsqueeze(-1) if learn_inducing_locations: self.register_parameter(name="inducing_points", parameter=torch.nn.Parameter(inducing_points)) else: self.register_buffer("inducing_points", inducing_points) # Variational distribution self._variational_distribution = variational_distribution self.register_buffer("variational_params_initialized", torch.tensor(0)) def _expand_inputs(self, x, inducing_points): """ Pre-processing step in __call__ to make x the same batch_shape as the inducing points """ batch_shape = _mul_broadcast_shape(inducing_points.shape[:-2], x.shape[:-2]) inducing_points = inducing_points.expand(*batch_shape, *inducing_points.shape[-2:]) x = x.expand(*batch_shape, *x.shape[-2:]) return x, inducing_points @abstractproperty @cached(name="prior_distribution_memo") def prior_distribution(self): r""" The :func:`~gpytorch.variational.VariationalStrategy.prior_distribution` method determines how to compute the GP prior distribution of the inducing points, e.g. :math:`p(u) \sim N(\mu(X_u), K(X_u, X_u))`. Most commonly, this is done simply by calling the user defined GP prior on the inducing point data directly. :rtype: :obj:`~gpytorch.distributions.MultivariateNormal` :return: The distribution :math:`p( \mathbf u)` """ raise NotImplementedError @property @cached(name="variational_distribution_memo") def variational_distribution(self): return self._variational_distribution() def forward(self, x, inducing_points, inducing_values, variational_inducing_covar=None): r""" The :func:`~gpytorch.variational.VariationalStrategy.forward` method determines how to marginalize out the inducing point function values. Specifically, forward defines how to transform a variational distribution over the inducing point values, :math:`q(u)`, in to a variational distribution over the function values at specified locations x, :math:`q(f|x)`, by integrating :math:`\int p(f|x, u)q(u)du` :param torch.Tensor x: Locations :math:`\mathbf X` to get the variational posterior of the function values at. :param torch.Tensor inducing_points: Locations :math:`\mathbf Z` of the inducing points :param torch.Tensor inducing_values: Samples of the inducing function values :math:`\mathbf u` (or the mean of the distribution :math:`q(\mathbf u)` if q is a Gaussian. :param ~gpytorch.lazy.LazyTensor variational_inducing_covar: If the distribuiton :math:`q(\mathbf u)` is Gaussian, then this variable is the covariance matrix of that Gaussian. Otherwise, it will be :attr:`None`. :rtype: :obj:`~gpytorch.distributions.MultivariateNormal` :return: The distribution :math:`q( \mathbf f(\mathbf X))` """ raise NotImplementedError def kl_divergence(self): r""" Compute the KL divergence between the variational inducing distribution :math:`q(\mathbf u)` and the prior inducing distribution :math:`p(\mathbf u)`. :rtype: torch.Tensor """ with settings.max_preconditioner_size(0): kl_divergence = torch.distributions.kl.kl_divergence(self.variational_distribution, self.prior_distribution) return kl_divergence def train(self, mode=True): # Make sure we are clearing the cache if we change modes if (self.training and not mode) or mode: clear_cache_hook(self) return super().train(mode=mode) def __call__(self, x, prior=False): # If we're in prior mode, then we're done! if prior: return self.model.forward(x) # Delete previously cached items from the training distribution if self.training: clear_cache_hook(self) # (Maybe) initialize variational distribution if not self.variational_params_initialized.item(): prior_dist = self.prior_distribution self._variational_distribution.initialize_variational_distribution(prior_dist) self.variational_params_initialized.fill_(1) # Ensure inducing_points and x are the same size inducing_points = self.inducing_points if inducing_points.shape[:-2] != x.shape[:-2]: x, inducing_points = self._expand_inputs(x, inducing_points) # Get p(u)/q(u) variational_dist_u = self.variational_distribution # Get q(f) if isinstance(variational_dist_u, MultivariateNormal): return super().__call__( x, inducing_points, inducing_values=variational_dist_u.mean, variational_inducing_covar=variational_dist_u.lazy_covariance_matrix, ) elif isinstance(variational_dist_u, Delta): return super().__call__( x, inducing_points, inducing_values=variational_dist_u.mean, variational_inducing_covar=None ) else: raise RuntimeError( f"Invalid variational distribuition ({type(variational_dist_u)}). " "Expected a multivariate normal or a delta distribution." )
jrg365/gpytorch
gpytorch/variational/_variational_strategy.py
Python
mit
6,122
[ "Gaussian" ]
cbf329ff3ac64378b8e2456fbfd4a4611c6f179ada0ab8216307b67e4a26bc48
from __future__ import division, unicode_literals import warnings import matplotlib matplotlib.use('pdf') import unittest as unittest import numpy as np from pymatgen import Composition from pymatgen.entries.computed_entries import ComputedEntry from pymatgen.analysis.phase_diagram import PhaseDiagram, \ GrandPotentialPhaseDiagram from pymatgen.analysis.reaction_calculator import Reaction from pymatgen.analysis.interface_reactions import InterfacialReactivity class InterfaceReactionTest(unittest.TestCase): def setUp(self): self.entries = [ComputedEntry(Composition('Li'), 0), ComputedEntry(Composition('Mn'), 0), ComputedEntry(Composition('O2'), 0), ComputedEntry(Composition('MnO2'), -10), ComputedEntry(Composition('Mn2O4'), -60), ComputedEntry(Composition('MnO3'), 20), ComputedEntry(Composition('Li2O'), -10), ComputedEntry(Composition('Li2O2'), -8), ComputedEntry(Composition('LiMnO2'), -30) ] self.pd = PhaseDiagram(self.entries) chempots = {'Li': -3} self.gpd = GrandPotentialPhaseDiagram(self.entries, chempots) self.ir = [] self.ir.append( InterfacialReactivity(Composition('O2'), Composition('Mn'), self.pd, norm=0, include_no_mixing_energy=0, pd_non_grand=None, use_hull_energy=False)) self.ir.append( InterfacialReactivity(Composition('MnO2'), Composition('Mn'), self.gpd, norm=0, include_no_mixing_energy=1, pd_non_grand=self.pd, use_hull_energy=False)) self.ir.append( InterfacialReactivity(Composition('Mn'), Composition('O2'), self.gpd, norm=1, include_no_mixing_energy=1, pd_non_grand=self.pd, use_hull_energy=False)) self.ir.append( InterfacialReactivity(Composition('Li2O'), Composition('Mn'), self.gpd, norm=0, include_no_mixing_energy=1, pd_non_grand=self.pd, use_hull_energy=False)) self.ir.append( InterfacialReactivity(Composition('Mn'), Composition('O2'), self.gpd, norm=1, include_no_mixing_energy=0, pd_non_grand=self.pd, use_hull_energy=False)) self.ir.append( InterfacialReactivity(Composition('Mn'), Composition('Li2O'), self.gpd, norm=1, include_no_mixing_energy=1, pd_non_grand=self.pd, use_hull_energy=False)) self.ir.append( InterfacialReactivity(Composition('Li2O2'), Composition('Li'), self.pd, norm=0, include_no_mixing_energy=0, pd_non_grand=None, use_hull_energy=True)) self.ir.append( InterfacialReactivity(Composition('Li2O2'), Composition('Li'), self.pd, norm=0, include_no_mixing_energy=0, pd_non_grand=None, use_hull_energy=False)) self.ir.append( InterfacialReactivity(Composition('Li2O2'), Composition('MnO2'), self.gpd, norm=0, include_no_mixing_energy=0, pd_non_grand=self.pd, use_hull_energy=True)) self.ir.append( InterfacialReactivity(Composition('Li2O2'), Composition('MnO2'), self.gpd, norm=0, include_no_mixing_energy=0, pd_non_grand=self.pd, use_hull_energy=False)) self.ir.append( InterfacialReactivity(Composition('O2'), Composition('Mn'), self.pd, norm=1, include_no_mixing_energy=0, pd_non_grand=None, use_hull_energy=False)) with self.assertRaises(Exception) as context1: self.ir.append( InterfacialReactivity(Composition('Li2O2'), Composition('Li'), self.pd, norm=0, include_no_mixing_energy=1, pd_non_grand=None)) self.assertTrue( 'Please provide grand phase diagram ' 'to compute no_mixing_energy!' == str(context1.exception)) with self.assertRaises(Exception) as context2: self.ir.append( InterfacialReactivity(Composition('O2'), Composition('Mn'), self.gpd, norm=0, include_no_mixing_energy=1, pd_non_grand=None)) self.assertTrue( 'Please provide non-grand phase diagram ' 'to compute no_mixing_energy!' == str(context2.exception)) def test_get_entry_energy(self): # Test warning message. comp = Composition('MnO3') with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") energy = InterfacialReactivity._get_entry_energy(self.pd, comp) self.assertTrue(len(w) == 1) self.assertTrue("The reactant MnO3 has no matching entry with" " negative formation energy, instead convex " "hull energy for this composition will be used" " for reaction energy calculation." in str(w[-1].message)) test1 = np.isclose(energy, -30, atol=1e-03) self.assertTrue(test1, '_get_entry_energy: energy for {} is wrong!'.format( comp.reduced_formula)) # Test normal functionality comp = Composition('MnO2') test2 = np.isclose(InterfacialReactivity._get_entry_energy(self.pd, comp), -30, atol=1e-03) self.assertTrue(test2, '_get_entry_energy: energy for {} is wrong!'.format( comp.reduced_formula)) def test_get_grand_potential(self): comp = Composition('LiMnO2') # Test non-normalized case test1 = np.isclose(self.ir[1]._get_grand_potential(comp), -27, atol=1e-03) self.assertTrue(test1, '_get_grand_potential: ' 'Non-normalized case gets error!') # Test normalized case test2 = np.isclose(self.ir[2]._get_grand_potential(comp), -9, atol=1e-03) self.assertTrue(test2, '_get_grand_potential: ' 'Normalized case gets error!') comp2 = Composition('Li2O2') # Test use_hull_energy option. test3 = np.isclose(self.ir[8]._get_grand_potential(comp2), -4, atol=1e-03) self.assertTrue(test3, '_get_grand_potential: ' 'get hull energy gets error!') test4 = np.isclose(self.ir[9]._get_grand_potential(comp2), -2, atol=1e-03) self.assertTrue(test4, '_get_grand_potential: ' 'gets error for {}!'.format(comp2.reduced_formula)) def test_get_energy(self): test1 = (np.isclose(self.ir[0]._get_energy(0.5), -15, atol=1e-03)) self.assertTrue(test1, '_get_energy: phase diagram gets error!') test2 = ( np.isclose(self.ir[3]._get_energy(0.6666666), -7.333333, atol=1e-03)) self.assertTrue(test2, '_get_energy: ' 'grand canonical phase diagram gets error!') test3 = ( np.isclose(self.ir[6]._get_energy(0.3333333), -3.333333, atol=1e-03)) self.assertTrue(test3, '_get_energy: convex hull energy gets error. ') test4 = ( np.isclose(self.ir[7]._get_energy(0.3333333), -4, atol=1e-03)) self.assertTrue(test4, '_get_energy: gets error. ') def test_get_reaction(self): test1 = str(self.ir[0]._get_reaction(0.5)) == 'O2 + Mn -> MnO2' self.assertTrue(test1, '_get_reaction: ' 'reaction not involving chempots species gets error!') test2 = str(self.ir[3]._get_reaction(0.666666)) \ == 'Mn + Li2O -> 2 Li + 0.5 MnO2 + 0.5 Mn' \ or str(self.ir[3]._get_reaction(0.666666)) \ == 'Mn + Li2O -> 2 Li + 0.5 Mn + 0.5 MnO2' self.assertTrue(test2, '_get_reaction: ' 'reaction involving chempots species gets error!') def test_get_get_elmt_amt_in_rxt(self): rxt1 = Reaction( [Composition('Mn'), Composition('O2'), Composition('Li')], [Composition('LiMnO2')]) test1 = np.isclose(self.ir[2]._get_elmt_amt_in_rxt(rxt1), 3) self.assertTrue(test1, '_get_get_elmt_amt_in_rxt: ' 'gpd elements amounts gets error!') rxt2 = rxt1 rxt2.normalize_to(Composition('Li'), 0.5) test2 = np.isclose(self.ir[2]._get_elmt_amt_in_rxt(rxt2), 1.5) self.assertTrue(test2, '_get_get_elmt_amt_in_rxt: ' 'gpd elements amounts gets error!') rxt3 = Reaction([Composition('O2'), Composition('Li')], [Composition('Li2O')]) # Li is not counted test3 = np.isclose(self.ir[2]._get_elmt_amt_in_rxt(rxt3), 1) self.assertTrue(test3, '_get_get_elmt_amt_in_rxt: ' 'gpd elements amounts gets error!') # Li is counted test4 = np.isclose(self.ir[6]._get_elmt_amt_in_rxt(rxt3), 3) self.assertTrue(test4, '_get_get_elmt_amt_in_rxt: ' 'pd elements amounts gets error!') def test_convert(self): test_array = [(0.5, 1, 3), (0.4, 2, 3), (0, 1, 9), (1, 2, 7)] result = [InterfacialReactivity._convert(x, f1, f2) for x, f1, f2 in test_array] answer = [0.75, 0.5, 0, 1] self.assertTrue(np.allclose(result, answer), '_convert: conversion gets error! {0} expected,' ' but gets {1}'.format(answer, result)) def test_reverse_convert(self): test_array = [(0.5, 1, 3), (0.4, 2, 3), (0, 1, 9), (1, 2, 7)] result = [InterfacialReactivity._reverse_convert(x, f1, f2) for x, f1, f2 in test_array] answer = [0.25, 0.3076923, 0, 1] self.assertTrue(np.allclose(result, answer), '_convert: conversion gets error! {0} expected,' ' but gets {1}'.format(answer, result)) def test_get_products(self): test1 = sorted(self.ir[0].get_products()) == sorted( ['MnO2', 'O2', 'Mn']) self.assertTrue(test1, 'get_products: decomposition products gets error ' 'for reaction not involving chempots species!') test2 = sorted(self.ir[3].get_products()) == sorted( ['Li', 'MnO2', 'Mn', 'Li2O']) self.assertTrue(test2, 'get_decomp: decomposition products gets error ' 'for reaction involving chempots species!') def test_get_kinks(self): ir = self.ir[0] lst = list(self.ir[0].get_kinks()) index = [i[0] for i in lst] x_kink = [i[1] for i in lst] energy_kink = [i[2] for i in lst] react_kink = [str(i[3]) for i in lst] energy_per_rxt_kink = [i[4] for i in lst] test1 = index == [1, 2, 3] self.assertTrue(test1, 'get_kinks:index gets error!') test2 = np.allclose(x_kink, [0, 0.5, 1]) self.assertTrue(test2, 'get_kinks:x kinks gets error!') test3 = np.allclose(energy_kink, [0, -15, 0]) self.assertTrue(test3, 'get_kinks:energy kinks gets error!') test4 = react_kink == ['Mn -> Mn', 'O2 + Mn -> MnO2', 'O2 -> O2'] self.assertTrue(test4, 'get_kinks: reaction kinks ' 'gets error for {0} and {1} reaction!'.format( ir.c1_original.reduced_formula, ir.c2_original.reduced_formula)) test5 = np.allclose(energy_per_rxt_kink, [0, -30 * InterfacialReactivity.EV_TO_KJ_PER_MOL, 0]) self.assertTrue(test5, 'get_kinks: energy_per_rxt_kinks gets error!') lst = list(self.ir[10].get_kinks()) index = [i[0] for i in lst] x_kink = [i[1] for i in lst] energy_kink = [i[2] for i in lst] react_kink = [str(i[3]) for i in lst] energy_per_rxt_kink = [i[4] for i in lst] test6 = index == [1, 2, 3] self.assertTrue(test6, 'get_kinks:index gets error!') test7 = np.allclose(x_kink, [0, 0.66667, 1]) self.assertTrue(test7, 'get_kinks:x kinks gets error!') test8 = np.allclose(energy_kink, [0, -10, 0]) self.assertTrue(test8, 'get_kinks:energy kinks gets error!') test9 = react_kink == ['Mn -> Mn', 'O2 + Mn -> MnO2', 'O2 -> O2'] self.assertTrue(test9, 'get_kinks:reaction kinks ' 'gets error for {0} and {1} reaction!'.format( ir.c1_original.reduced_formula, ir.c2_original.reduced_formula)) test10 = np.allclose(energy_per_rxt_kink, [0, -30 * InterfacialReactivity.EV_TO_KJ_PER_MOL, 0]) self.assertTrue(test10, 'get_kinks:energy_per_rxt_kinks gets error!') def test_labels(self): ir = self.ir[0] dict = ir.labels() test1 = dict == {1: 'x= 0.0 energy in eV/atom = 0.0 Mn -> Mn', 2: 'x= 0.5 energy in eV/atom = -15.0 O2 + Mn -> MnO2', 3: 'x= 1.0 energy in eV/atom = 0.0 O2 -> O2'} self.assertTrue(test1, 'labels:label does not match for interfacial system ' 'with {0} and {1}.'.format( ir.c1_original.reduced_formula, ir.c2_original.reduced_formula)) def test_plot(self): # Test plot is hard. Here just to call the plot function to see if any # error occurs. for i in self.ir: i.plot() def test_minimum(self): answer = [ (0.5, -15), (0, 0), (0.3333333, -10), (0.6666666, -7.333333), (0.3333333, -7.333333), (0.1428571, -7.333333), (0.3333333, -3.333333), (0.3333333, -4.0), ] for i, j in zip(self.ir, answer): self.assertTrue(np.allclose(i.minimum(), j), 'minimum: the system with {0} and {1} ' 'gets error!{2} expected, but gets {3}'.format( i.c1_original.reduced_formula, i.c2_original.reduced_formula, str(j), str(i.minimum()))) def test_get_no_mixing_energy(self): with self.assertRaises(Exception) as context1: self.ir[0].get_no_mixing_energy() self.assertTrue( 'Please provide grand potential phase diagram' ' for computing no_mixing_energy!' == str(context1.exception)) answer = [ [(u'MnO2 (eV/f.u.)', 0.0), (u'Mn (eV/f.u.)', 0.0)], [(u'Mn (eV/atom)', 0.0), (u'O2 (eV/atom)', -4.0)], [(u'Li2O (eV/f.u.)', 0.0), (u'Mn (eV/f.u.)', 0.0)], [(u'Mn (eV/atom)', 0.0), (u'O2 (eV/atom)', -4.0)], [(u'Mn (eV/atom)', 0.0), (u'Li2O (eV/atom)', 0.0)] ] def name_lst(lst): return (lst[0][0], lst[1][0]) def energy_lst(lst): return (lst[0][1], lst[1][1]) result_info = [i.get_no_mixing_energy() for i in self.ir if i.grand] for i, j in zip(result_info, answer): self.assertTrue(name_lst(i) == name_lst(j), 'get_no_mixing_energy: names get error,' ' {0} expected but gets {1}'.format( name_lst(j), name_lst(i))) self.assertTrue(np.allclose(energy_lst(i), energy_lst(j)), 'get_no_mixing_energy: ' 'no_mixing energies get error, ' '{0} expected but gets {1}'.format( energy_lst(j), energy_lst(i))) if __name__ == '__main__': unittest.main()
nisse3000/pymatgen
pymatgen/analysis/tests/test_interface_reactions.py
Python
mit
17,218
[ "pymatgen" ]
5ab5543c3163c6a13a930820d2e2aad8e90291dea8fb5580e6fc7d826acf1d31
from __future__ import unicode_literals import datetime import requests from requests_oauthlib import OAuth1 from oauthlib.oauth1 import (SIGNATURE_RSA, SIGNATURE_TYPE_AUTH_HEADER, SIGNATURE_HMAC) from six.moves.urllib.parse import urlencode, parse_qs from .constants import (XERO_BASE_URL, XERO_PARTNER_BASE_URL, REQUEST_TOKEN_URL, AUTHORIZE_URL, ACCESS_TOKEN_URL) from .exceptions import * OAUTH_EXPIRY_SECONDS = 3600 # Default unless a response reports differently class PrivateCredentials(object): """An object wrapping the 2-step OAuth process for Private Xero API access. Usage: 1) Construct a PrivateCredentials() instance: >>> from xero.auth import PrivateCredentials >>> credentials = PrivateCredentials(<consumer_key>, <rsa_key>) rsa_key should be a multi-line string, starting with: -----BEGIN RSA PRIVATE KEY-----\n 2) Use the credentials: >>> from xero import Xero >>> xero = Xero(credentials) >>> xero.contacts.all() ... """ def __init__(self, consumer_key, rsa_key): self.consumer_key = consumer_key self.rsa_key = rsa_key self.base_url = XERO_BASE_URL # Private API uses consumer key as the OAuth token. self.oauth_token = consumer_key self.oauth = OAuth1( self.consumer_key, resource_owner_key=self.oauth_token, rsa_key=self.rsa_key, signature_method=SIGNATURE_RSA, signature_type=SIGNATURE_TYPE_AUTH_HEADER, ) class PublicCredentials(object): """An object wrapping the 3-step OAuth process for Public Xero API access. Usage: 1) Construct a PublicCredentials() instance: >>> from xero import PublicCredentials >>> credentials = PublicCredentials(<consumer_key>, <consumer_secret>) 2) Visit the authentication URL: >>> credentials.url If a callback URI was provided (e.g., https://example.com/oauth), the user will be redirected to a URL of the form: https://example.com/oauth?oauth_token=<token>&oauth_verifier=<verifier>&org=<organization ID> from which the verifier can be extracted. If no callback URI is provided, the verifier will be shown on the screen, and must be manually entered by the user. 3) Verify the instance: >>> credentials.verify(<verifier string>) 4) Use the credentials. >>> from xero import Xero >>> xero = Xero(credentials) >>> xero.contacts.all() ... """ def __init__(self, consumer_key, consumer_secret, callback_uri=None, verified=False, oauth_token=None, oauth_token_secret=None, oauth_expires_at=None, oauth_authorization_expires_at=None): """Construct the auth instance. Must provide the consumer key and secret. A callback URL may be provided as an option. If provided, the Xero verification process will redirect to that URL when """ self.consumer_key = consumer_key self.consumer_secret = consumer_secret self.callback_uri = callback_uri self.verified = verified self._oauth = None self.oauth_expires_at = oauth_expires_at self.oauth_authorization_expires_at = oauth_authorization_expires_at self.base_url = XERO_BASE_URL self._signature_method = SIGNATURE_HMAC # These are not strictly used by Public Credentials, but # are reserved for use by other credentials (i.e. Partner) self.rsa_key = None self.client_cert = None self.oauth_session_handle = None self._init_credentials(oauth_token, oauth_token_secret) def _init_credentials(self, oauth_token, oauth_token_secret): "Depending on the state passed in, get self._oauth up and running" if oauth_token and oauth_token_secret: if self.verified: # If provided, this is a fully verified set of # credentials. Store the oauth_token and secret # and initialize OAuth around those self._init_oauth(oauth_token, oauth_token_secret) else: # If provided, we are reconstructing an initalized # (but non-verified) set of public credentials. self.oauth_token = oauth_token self.oauth_token_secret = oauth_token_secret else: # This is a brand new set of credentials - we need to generate # an oauth token so it's available for the url property. oauth = OAuth1( self.consumer_key, client_secret=self.consumer_secret, callback_uri=self.callback_uri, rsa_key=self.rsa_key, signature_method=self._signature_method ) url = self.base_url + REQUEST_TOKEN_URL response = requests.post(url=url, auth=oauth, cert=self.client_cert) self._process_oauth_response(response) def _init_oauth(self, oauth_token, oauth_token_secret): "Store and initialize a verified set of OAuth credentials" self.oauth_token = oauth_token self.oauth_token_secret = oauth_token_secret self._oauth = OAuth1( self.consumer_key, client_secret=self.consumer_secret, resource_owner_key=self.oauth_token, resource_owner_secret=self.oauth_token_secret, rsa_key=self.rsa_key, signature_method=self._signature_method ) def _process_oauth_response(self, response): "Extracts the fields from an oauth response" if response.status_code == 200: credentials = parse_qs(response.text) # Initialize the oauth credentials self._init_oauth( credentials.get('oauth_token')[0], credentials.get('oauth_token_secret')[0] ) # If tokens are refreshable, we'll get a session handle self.oauth_session_handle = credentials.get( 'oauth_session_handle', [None])[0] # Calculate token/auth expiry oauth_expires_in = credentials.get( 'oauth_expires_in', [OAUTH_EXPIRY_SECONDS])[0] oauth_authorisation_expires_in = credentials.get( 'oauth_authorization_expires_in', [OAUTH_EXPIRY_SECONDS])[0] self.oauth_expires_at = datetime.datetime.now() + \ datetime.timedelta(seconds=int( oauth_expires_in)) self.oauth_authorization_expires_at = \ datetime.datetime.now() + \ datetime.timedelta(seconds=int( oauth_authorisation_expires_in)) else: self._handle_error_response(response) def _handle_error_response(self, response): if response.status_code == 400: raise XeroBadRequest(response) elif response.status_code == 401: raise XeroUnauthorized(response) elif response.status_code == 403: raise XeroForbidden(response) elif response.status_code == 404: raise XeroNotFound(response) elif response.status_code == 500: raise XeroInternalError(response) elif response.status_code == 501: raise XeroNotImplemented(response) elif response.status_code == 503: # Two 503 responses are possible. Rate limit errors # return encoded content; offline errors don't. # If you parse the response text and there's nothing # encoded, it must be a not-available error. payload = parse_qs(response.text) if payload: raise XeroRateLimitExceeded(response, payload) else: raise XeroNotAvailable(response) else: raise XeroExceptionUnknown(response) @property def state(self): """Obtain the useful state of this credentials object so that we can reconstruct it independently. """ return dict( (attr, getattr(self, attr)) for attr in ( 'consumer_key', 'consumer_secret', 'callback_uri', 'verified', 'oauth_token', 'oauth_token_secret', 'oauth_session_handle', 'oauth_expires_at', 'oauth_authorization_expires_at' ) if getattr(self, attr) is not None ) def verify(self, verifier): "Verify an OAuth token" # Construct the credentials for the verification request oauth = OAuth1( self.consumer_key, client_secret=self.consumer_secret, resource_owner_key=self.oauth_token, resource_owner_secret=self.oauth_token_secret, verifier=verifier, rsa_key=self.rsa_key, signature_method=self._signature_method ) # Make the verification request, gettiung back an access token url = self.base_url + ACCESS_TOKEN_URL response = requests.post(url=url, auth=oauth, cert=self.client_cert) self._process_oauth_response(response) self.verified = True @property def url(self): "Returns the URL that can be visited to obtain a verifier code" # The authorize url is always api.xero.com url = XERO_BASE_URL + AUTHORIZE_URL + '?' + \ urlencode({'oauth_token': self.oauth_token}) return url @property def oauth(self): "Returns the requests-compatible OAuth object" if self._oauth is None: raise XeroNotVerified("OAuth credentials haven't been verified") return self._oauth def expired(self, now=None): if now is None: now = datetime.datetime.now() # Credentials states from older versions might not have # oauth_expires_at available if self.oauth_expires_at is None: raise XeroException(None, "Expiry time is not available") # Allow a bit of time for clock differences and round trip times # to prevent false negatives. If users want the precise expiry, # they can use self.oauth_expires_at CONSERVATIVE_SECONDS = 30 return self.oauth_expires_at <= \ (now + datetime.timedelta(seconds=CONSERVATIVE_SECONDS)) class PartnerCredentials(PublicCredentials): """An object wrapping the 3-step OAuth process for Partner Xero API access. Usage is very similar to Public Credentials with the following changes: 1) You'll need to pass the private key for your RSA certificate. >>> rsa_key = "-----BEGIN RSA PRIVATE KEY----- ..." 2) You'll need to pass a tuple to the Entrust certificate pair. >>> client_cert = ('/path/to/entrust-cert.pem', '/path/to/entrust-private-nopass.pem') 3) Once a token has expired, you can refresh it to get another 30 mins >>> credentials = PartnerCredentials(**state) >>> if credentials.expired(): credentials.refresh() 4) Authorization expiry and token expiry become different things. oauth_expires_at tells when the current token expires (~30 min window) oauth_authorization_expires_at tells when the overall access permissions expire (~10 year window) """ def __init__(self, consumer_key, consumer_secret, rsa_key, client_cert, callback_uri=None, verified=False, oauth_token=None, oauth_token_secret=None, oauth_expires_at=None, oauth_authorization_expires_at=None, oauth_session_handle=None): """Construct the auth instance. Must provide the consumer key and secret. A callback URL may be provided as an option. If provided, the Xero verification process will redirect to that URL when """ self.consumer_key = consumer_key self.consumer_secret = consumer_secret self.callback_uri = callback_uri self.verified = verified self._oauth = None self.oauth_expires_at = oauth_expires_at self.oauth_authorization_expires_at = oauth_authorization_expires_at self._signature_method = SIGNATURE_RSA self.base_url = XERO_PARTNER_BASE_URL self.rsa_key = rsa_key self.client_cert = client_cert self.oauth_session_handle = oauth_session_handle self._init_credentials(oauth_token, oauth_token_secret) def refresh(self): "Refresh an expired token" # Construct the credentials for the verification request oauth = OAuth1( self.consumer_key, client_secret=self.consumer_secret, resource_owner_key=self.oauth_token, resource_owner_secret=self.oauth_token_secret, rsa_key=self.rsa_key, signature_method=self._signature_method ) # Make the verification request, getting back an access token params = {'oauth_session_handle': self.oauth_session_handle} response = requests.post(url=self.base_url + ACCESS_TOKEN_URL, params=params, auth=oauth, cert=self.client_cert) self._process_oauth_response(response)
MJMortimer/pyxero
xero/auth.py
Python
bsd-3-clause
13,625
[ "VisIt" ]
e7c50eaf91b091a9ca538d2b45240df1a54ccca446f71eff0b782f19c8a6baa2
import ast import collections from ..visitor import ClassVisitor, handle from . import Metric class _TypeCountVisitor(ClassVisitor): @handle(ast.AST) def __visit_ast(self, node): return (node.__class__,) + tuple(cls for name in node._fields for cls in self.visit(getattr(node, name))) @handle(collections.Sequence) def __visit_sequence(self, node): return tuple(cls for entry in node for cls in self.visit(entry)) @handle(str) def __visit_str(self, node): return () def default(self, node): return () @classmethod def count(cls, node): res = {} for entry in cls().visit(node): res.setdefault(entry, 0) res[entry] += 1 return res class _CyclomaticVisitor(ClassVisitor): @handle( ast.If, ast.IfExp, ast.For, ast.While, ast.TryExcept, ast.TryFinally, ast.Break, ast.Continue, ast.And, ast.Or ) def __visit_selected(self, node): return 1 + self.__visit_ast(node) @handle(ast.FunctionDef) def __visit_function(self, node): count = _TypeCountVisitor.count(node).get(ast.Return, 0) if isinstance(node.body[-1], ast.Return): count -= 1 return count + self.__visit_ast(node) @handle(ast.AST) def __visit_ast(self, node): return sum(self.visit(getattr(node, name)) for name in node._fields) @handle(collections.Sequence) def __visit_sequence(self, node): return sum(self.visit(entry) for entry in node) @handle(str) def __visit_str(self, node): return 0 def default(self, node): return 0 class CyclomaticComplexity(Metric): def calculate(self, node): return _CyclomaticVisitor().visit(node.ast) def get_metric_name(self): return 'Cyclomatic complexity'
herczy/pydepend
pydepend/metric/cyclomatic.py
Python
bsd-3-clause
1,908
[ "VisIt" ]
c66a25e202655c7f073a823fb8d8dccc257ea7f48e319421947bec27c7206669
from django.conf import settings from django.contrib.sites.models import get_current_site from django.core.urlresolvers import reverse from django.http import Http404, HttpResponse from django.shortcuts import redirect from .models import APIKey, Short, Visit def _record_visit(request, short): remote_addr = ( request.META.get('REMOTE_ADDR') or request.META.get('HTTP_X_REAL_IP') or request.META.get('HTTP_X_FORWARDED_FOR') ) return Visit.objects.create( short=short, remote_addr=remote_addr, user_agent=request.META.get('HTTP_USER_AGENT'), referrer=request.META.get('HTTP_REFERER'), ) def short_detail(request, short_key): try: short = Short.objects.get_for_key(short_key) except Short.DoesNotExist as e: raise Http404(e.message) _record_visit(request, short) if short.destination: return redirect(short.destination) return redirect(short.image.url) def short_create(request): url = request.GET.get('url') api_key = request.GET.get('key') user = APIKey.objects.get(key=api_key).user short, __ = Short.objects.get_or_create( destination=url, created_by=user, ) domain = get_current_site(request).domain short_path = reverse('short_detail', kwargs={'short_key': short.key}) short_url = '{scheme}://{domain}{short_path}'.format( scheme=settings.SHORT_SCHEME, domain=domain, short_path=short_path) return HttpResponse(short_url, content_type='text/plain')
sneeu/little
little/views.py
Python
mit
1,560
[ "VisIt" ]
5044b35c3eb85a66e78dc6ba0307c40f432a7e54e2055aee67a8bee015916f5c
# Author: Christian Brodbeck <[email protected]> # # License: BSD-3-Clause import os import os.path as op import re import shutil import numpy as np from numpy.testing import assert_allclose, assert_array_almost_equal import pytest import warnings import mne from mne.datasets import testing from mne.io import read_info from mne.io.kit.tests import data_dir as kit_data_dir from mne.io.constants import FIFF from mne.surface import dig_mri_distances from mne.transforms import invert_transform from mne.utils import requires_mayavi, traits_test, modified_env, get_config from mne.channels import DigMontage data_path = testing.data_path(download=False) raw_path = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc_raw.fif') fname_trans = op.join(data_path, 'MEG', 'sample', 'sample_audvis_trunc-trans.fif') kit_raw_path = op.join(kit_data_dir, 'test_bin_raw.fif') subjects_dir = op.join(data_path, 'subjects') fid_fname = op.join(subjects_dir, 'sample', 'bem', 'sample-fiducials.fif') ctf_raw_path = op.join(data_path, 'CTF', 'catch-alp-good-f.ds') nirx_15_0_raw_path = op.join(data_path, 'NIRx', 'nirscout', 'nirx_15_0_recording', 'NIRS-2019-10-27_003.hdr') nirsport2_raw_path = op.join(data_path, 'NIRx', 'nirsport_v2', 'aurora_2021_9', '2021-10-01_002_config.hdr') snirf_nirsport2_raw_path = op.join(data_path, 'SNIRF', 'NIRx', 'NIRSport2', '1.0.3', '2021-05-05_001.snirf') @testing.requires_testing_data @requires_mayavi @traits_test def test_coreg_model_decimation(subjects_dir_tmp): """Test CoregModel decimation of high-res to low-res head.""" from mne.gui._coreg_gui import CoregModel # This makes the test much faster subject_dir = op.join(subjects_dir_tmp, 'sample') shutil.move(op.join(subject_dir, 'bem', 'outer_skin.surf'), op.join(subject_dir, 'surf', 'lh.seghead')) for fname in ('sample-head.fif', 'sample-head-dense.fif'): os.remove(op.join(subject_dir, 'bem', fname)) model = CoregModel(guess_mri_subject=False) with pytest.warns(RuntimeWarning, match='No low-resolution'): model.mri.subjects_dir = op.dirname(subject_dir) assert model.mri.subject == 'sample' # already set by setting subjects_dir assert model.mri.bem_low_res.file == '' assert len(model.mri.bem_low_res.surf.rr) == 2562 assert len(model.mri.bem_high_res.surf.rr) == 2562 # because we moved it @requires_mayavi @traits_test def test_coreg_model(subjects_dir_tmp): """Test CoregModel.""" from mne.gui._coreg_gui import CoregModel trans_dst = op.join(subjects_dir_tmp, 'test-trans.fif') # make it use MNI fiducials os.remove(op.join(subjects_dir_tmp, 'sample', 'bem', 'sample-fiducials.fif')) model = CoregModel() with pytest.raises(RuntimeError, match='Not enough information for savin'): model.save_trans('blah.fif') model.mri.subjects_dir = subjects_dir_tmp model.mri.subject = 'sample' assert model.mri.fid_ok # automated using MNI fiducials model.hsp.file = raw_path assert_allclose(model.hsp.lpa, [[-7.137e-2, 0, 5.122e-9]], 1e-4) assert_allclose(model.hsp.rpa, [[+7.527e-2, 0, 5.588e-9]], 1e-4) assert_allclose(model.hsp.nasion, [[+3.725e-9, 1.026e-1, 4.191e-9]], 1e-4) assert model.has_lpa_data assert model.has_nasion_data assert model.has_rpa_data assert len(model.hsp.eeg_points) > 1 assert len(model.mri.bem_low_res.surf.rr) == 2562 assert len(model.mri.bem_high_res.surf.rr) == 267122 lpa_distance = model.lpa_distance nasion_distance = model.nasion_distance rpa_distance = model.rpa_distance avg_point_distance = np.mean(model.point_distance) model.nasion_weight = 1. model.fit_fiducials(0) old_x = lpa_distance ** 2 + rpa_distance ** 2 + nasion_distance ** 2 new_x = (model.lpa_distance ** 2 + model.rpa_distance ** 2 + model.nasion_distance ** 2) assert new_x < old_x model.fit_icp(0) new_dist = np.mean(model.point_distance) assert new_dist < avg_point_distance model.save_trans(trans_dst) trans = mne.read_trans(trans_dst) assert_allclose(trans['trans'], model.head_mri_t) # test restoring trans x, y, z = 100, 200, 50 rot_x, rot_y, rot_z = np.rad2deg([1.5, 0.1, -1.2]) model.trans_x = x model.trans_y = y model.trans_z = z model.rot_x = rot_x model.rot_y = rot_y model.rot_z = rot_z trans = model.mri_head_t model.reset_traits(["trans_x", "trans_y", "trans_z", "rot_x", "rot_y", "rot_z"]) assert model.trans_x == 0 model.set_trans(trans) assert_array_almost_equal(model.trans_x, x) assert_array_almost_equal(model.trans_y, y) assert_array_almost_equal(model.trans_z, z) assert_array_almost_equal(model.rot_x, rot_x) assert_array_almost_equal(model.rot_y, rot_y) assert_array_almost_equal(model.rot_z, rot_z) # info assert isinstance(model.fid_eval_str, str) assert isinstance(model.points_eval_str, str) # scaling job assert not model.can_prepare_bem_model model.n_scale_params = 1 assert model.can_prepare_bem_model model.prepare_bem_model = True sdir, sfrom, sto, scale, skip_fiducials, labels, annot, bemsol = \ model.get_scaling_job('sample2', False) assert sdir == subjects_dir_tmp assert sfrom == 'sample' assert sto == 'sample2' assert_allclose(scale, model.parameters[6:9]) assert skip_fiducials is False # find BEM files bems = set() for fname in os.listdir(op.join(subjects_dir, 'sample', 'bem')): match = re.match(r'sample-(.+-bem)\.fif', fname) if match: bems.add(match.group(1)) assert set(bemsol) == bems model.prepare_bem_model = False sdir, sfrom, sto, scale, skip_fiducials, labels, annot, bemsol = \ model.get_scaling_job('sample2', True) assert bemsol == [] assert (skip_fiducials) model.load_trans(fname_trans) model.save_trans(trans_dst) trans = mne.read_trans(trans_dst) assert_allclose(trans['trans'], model.head_mri_t) assert_allclose(invert_transform(trans)['trans'][:3, 3] * 1000., [model.trans_x, model.trans_y, model.trans_z]) @requires_mayavi @traits_test def test_coreg_gui_display(subjects_dir_tmp, check_gui_ci): """Test CoregFrame.""" from mayavi import mlab from tvtk.api import tvtk home_dir = subjects_dir_tmp # Remove the two files that will make the fiducials okay via MNI estimation os.remove(op.join(subjects_dir_tmp, 'sample', 'bem', 'sample-fiducials.fif')) os.remove(op.join(subjects_dir_tmp, 'sample', 'mri', 'transforms', 'talairach.xfm')) with modified_env(_MNE_GUI_TESTING_MODE='true', _MNE_FAKE_HOME_DIR=home_dir): with pytest.raises(ValueError, match='not a valid subject'): mne.gui.coregistration( subject='Elvis', subjects_dir=subjects_dir_tmp) # avoid modal dialog if SUBJECTS_DIR is set to a directory that # does not contain valid subjects ui, frame = mne.gui.coregistration(subjects_dir='') mlab.process_ui_events() ui.dispose() mlab.process_ui_events() ui, frame = mne.gui.coregistration(subjects_dir=subjects_dir_tmp, subject='sample') mlab.process_ui_events() assert not frame.model.mri.fid_ok frame.model.mri.lpa = [[-0.06, 0, 0]] frame.model.mri.nasion = [[0, 0.05, 0]] frame.model.mri.rpa = [[0.08, 0, 0]] assert frame.model.mri.fid_ok frame.data_panel.raw_src.file = raw_path assert isinstance(frame.eeg_obj.glyph.glyph.glyph_source.glyph_source, tvtk.SphereSource) frame.data_panel.view_options_panel.eeg_obj.project_to_surface = True assert isinstance(frame.eeg_obj.glyph.glyph.glyph_source.glyph_source, tvtk.CylinderSource) mlab.process_ui_events() # grow hair (faster for low-res) assert frame.data_panel.view_options_panel.head_high_res frame.data_panel.view_options_panel.head_high_res = False frame.model.grow_hair = 40. # scale frame.coreg_panel.n_scale_params = 3 frame.coreg_panel.scale_x_inc = True assert frame.model.scale_x == 101. frame.coreg_panel.scale_y_dec = True assert frame.model.scale_y == 99. # reset parameters frame.coreg_panel.reset_params = True assert frame.model.grow_hair == 0 assert not frame.data_panel.view_options_panel.head_high_res # configuration persistence assert (frame.model.prepare_bem_model) frame.model.prepare_bem_model = False frame.save_config(home_dir) ui.dispose() mlab.process_ui_events() ui, frame = mne.gui.coregistration(subjects_dir=subjects_dir_tmp) assert not frame.model.prepare_bem_model assert not frame.data_panel.view_options_panel.head_high_res ui.dispose() mlab.process_ui_events() @testing.requires_testing_data @requires_mayavi @traits_test def test_coreg_model_with_fsaverage(tmpdir): """Test CoregModel with the fsaverage brain data.""" tempdir = str(tmpdir) from mne.gui._coreg_gui import CoregModel mne.create_default_subject(subjects_dir=tempdir, fs_home=op.join(subjects_dir, '..')) model = CoregModel() model.mri.subjects_dir = tempdir model.mri.subject = 'fsaverage' assert model.mri.fid_ok model.hsp.file = raw_path lpa_distance = model.lpa_distance nasion_distance = model.nasion_distance rpa_distance = model.rpa_distance avg_point_distance = np.mean(model.point_distance) # test hsp point omission model.nasion_weight = 1. model.trans_y = -0.008 model.fit_fiducials(0) model.omit_hsp_points(0.02) assert model.hsp.n_omitted == 1 model.omit_hsp_points(np.inf) assert model.hsp.n_omitted == 0 model.omit_hsp_points(0.02) assert model.hsp.n_omitted == 1 model.omit_hsp_points(0.01) assert model.hsp.n_omitted == 4 model.omit_hsp_points(0.005) assert model.hsp.n_omitted == 40 model.omit_hsp_points(0.01) assert model.hsp.n_omitted == 4 model.omit_hsp_points(0.02) assert model.hsp.n_omitted == 1 # scale with 1 parameter model.n_scale_params = 1 model.fit_fiducials(1) old_x = lpa_distance ** 2 + rpa_distance ** 2 + nasion_distance ** 2 new_x = (model.lpa_distance ** 2 + model.rpa_distance ** 2 + model.nasion_distance ** 2) assert (new_x < old_x) model.fit_icp(1) avg_point_distance_1param = np.mean(model.point_distance) assert (avg_point_distance_1param < avg_point_distance) # scaling job sdir, sfrom, sto, scale, skip_fiducials, labels, annot, bemsol = \ model.get_scaling_job('scaled', False) assert sdir == tempdir assert sfrom == 'fsaverage' assert sto == 'scaled' assert_allclose(scale, model.parameters[6:9]) assert set(bemsol) == {'inner_skull-bem'} model.prepare_bem_model = False sdir, sfrom, sto, scale, skip_fiducials, labels, annot, bemsol = \ model.get_scaling_job('scaled', False) assert bemsol == [] # scale with 3 parameters model.n_scale_params = 3 model.fit_icp(3) assert (np.mean(model.point_distance) < avg_point_distance_1param) # test switching raw disables point omission assert model.hsp.n_omitted == 1 model.hsp.file = kit_raw_path assert model.hsp.n_omitted == 0 @testing.requires_testing_data @requires_mayavi @traits_test def test_coreg_gui_automation(): """Test that properties get properly updated.""" from mne.gui._file_traits import DigSource from mne.gui._fiducials_gui import MRIHeadWithFiducialsModel from mne.gui._coreg_gui import CoregModel subject = 'sample' hsp = DigSource() hsp.file = raw_path mri = MRIHeadWithFiducialsModel(subjects_dir=subjects_dir, subject=subject) model = CoregModel(mri=mri, hsp=hsp) # gh-7254 assert not (model.nearest_transformed_high_res_mri_idx_hsp == 0).all() model.fit_fiducials() model.icp_iterations = 2 model.nasion_weight = 2. model.fit_icp() model.omit_hsp_points(distance=5e-3) model.icp_iterations = 2 model.fit_icp() errs_icp = np.median( model._get_point_distance()) assert 2e-3 < errs_icp < 3e-3 info = mne.io.read_info(raw_path) errs_nearest = np.median( dig_mri_distances(info, fname_trans, subject, subjects_dir)) assert 1e-3 < errs_nearest < 2e-3 class TstVTKPicker(object): """Class to test cell picking.""" def __init__(self, mesh, cell_id, event_pos): self.mesh = mesh self.cell_id = cell_id self.point_id = None self.event_pos = event_pos def GetCellId(self): """Return the picked cell.""" return self.cell_id def GetDataSet(self): """Return the picked mesh.""" return self.mesh def GetPickPosition(self): """Return the picked position.""" vtk_cell = self.mesh.GetCell(self.cell_id) cell = [vtk_cell.GetPointId(point_id) for point_id in range(vtk_cell.GetNumberOfPoints())] self.point_id = cell[0] return self.mesh.points[self.point_id] def GetEventPosition(self): """Return event position.""" return self.event_pos @pytest.mark.slowtest @testing.requires_testing_data @pytest.mark.parametrize( 'inst_path', (raw_path, 'gen_montage', ctf_raw_path, nirx_15_0_raw_path, nirsport2_raw_path, snirf_nirsport2_raw_path)) def test_coreg_gui_pyvista_file_support(inst_path, tmpdir, renderer_interactive_pyvistaqt): """Test reading supported files.""" from mne.gui import coregistration tempdir = str(tmpdir) if inst_path == 'gen_montage': # generate a montage fig to use as inst. tmp_info = read_info(raw_path) eeg_chans = [] for pt in tmp_info['dig']: if pt['kind'] == FIFF.FIFFV_POINT_EEG: eeg_chans.append(f"EEG {pt['ident']:03d}") dig = DigMontage(dig=tmp_info['dig'], ch_names=eeg_chans) inst_path = op.join(tempdir, 'tmp-dig.fif') dig.save(inst_path) # Suppressing warnings here is not ideal. # However ctf_raw_path (catch-alp-good-f.ds) is poorly formed and causes # mne.io.read_raw to issue warning. # XXX consider replacing ctf_raw_path and removing warning ignore filter. with warnings.catch_warnings(): warnings.simplefilter("ignore") coregistration(inst=inst_path, subject='sample', subjects_dir=subjects_dir) @pytest.mark.slowtest @testing.requires_testing_data def test_coreg_gui_pyvista(tmpdir, renderer_interactive_pyvistaqt): """Test that using CoregistrationUI matches mne coreg.""" from mne.gui import coregistration tempdir = str(tmpdir) config = get_config(home_dir=os.environ.get('_MNE_FAKE_HOME_DIR')) tmp_trans = op.join(tempdir, 'tmp-trans.fif') coreg = coregistration(subject='sample', subjects_dir=subjects_dir, trans=fname_trans) coreg._reset_fiducials() coreg.close() coreg = coregistration(inst=raw_path, subject='sample', subjects_dir=subjects_dir) coreg._set_fiducials_file(fid_fname) assert coreg._fiducials_file == fid_fname # picking vtk_picker = TstVTKPicker(coreg._surfaces['head'], 0, (0, 0)) coreg._on_mouse_move(vtk_picker, None) coreg._on_button_press(vtk_picker, None) coreg._on_pick(vtk_picker, None) coreg._on_button_release(vtk_picker, None) coreg._set_lock_fids(True) assert coreg._lock_fids coreg._on_pick(vtk_picker, None) # also pick when locked coreg._set_lock_fids(False) assert not coreg._lock_fids coreg._set_lock_fids(True) assert coreg._lock_fids assert coreg._nasion_weight == 10. coreg._set_point_weight(11., 'nasion') assert coreg._nasion_weight == 11. coreg._fit_fiducials() coreg._fit_icp() assert coreg._coreg._extra_points_filter is None coreg._omit_hsp() assert coreg._coreg._extra_points_filter is not None coreg._reset_omit_hsp_filter() assert coreg._coreg._extra_points_filter is None assert coreg._grow_hair == 0 coreg._set_grow_hair(0.1) assert coreg._grow_hair == 0.1 assert coreg._orient_glyphs == \ (config.get('MNE_COREG_ORIENT_TO_SURFACE', '') == 'true') assert coreg._hpi_coils assert coreg._eeg_channels assert coreg._head_shape_points assert coreg._scale_mode == 'None' assert coreg._icp_fid_match == 'nearest' assert coreg._head_resolution == \ (config.get('MNE_COREG_HEAD_HIGH_RES', 'true') == 'true') assert not coreg._head_transparency coreg._set_head_transparency(True) assert coreg._head_transparency coreg._save_trans(tmp_trans) assert op.isfile(tmp_trans) coreg.close()
bloyl/mne-python
mne/gui/tests/test_coreg_gui.py
Python
bsd-3-clause
17,357
[ "Mayavi" ]
7b2eab80347728042def65e93368d029b3a5e05cf40ed46c7f88bc14362b4fb9
# Copyright 2018 Open Source Robotics Foundation, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the DeclareLaunchArgument action class.""" from launch import LaunchContext from launch.actions import DeclareLaunchArgument import pytest def test_declare_launch_argument_constructors(): """Test the constructors for DeclareLaunchArgument class.""" DeclareLaunchArgument('name') DeclareLaunchArgument('name', default_value='default value') DeclareLaunchArgument('name', default_value='default value', description='description') DeclareLaunchArgument('name', default_value='val1', description='description', choices=['val1', 'val2']) def test_declare_launch_argument_methods(): """Test the methods of the DeclareLaunchArgument class.""" dla1 = DeclareLaunchArgument('name', default_value='default value', description='description') assert dla1.name == 'name' assert isinstance(dla1.default_value, list) assert dla1.description == 'description' assert dla1.choices is None assert 'DeclareLaunchArgument' in dla1.describe() assert isinstance(dla1.describe_sub_entities(), list) assert isinstance(dla1.describe_conditional_sub_entities(), list) dla2 = DeclareLaunchArgument('name') assert dla2.default_value is None assert dla2.choices is None assert dla2.description, 'description does not have a non-empty default value' dla3 = DeclareLaunchArgument('name', description='description', choices=['var1', 'var2']) assert dla3.default_value is None assert dla3.choices == ['var1', 'var2'] assert str(dla3.choices) in dla3.description with pytest.raises(RuntimeError) as excinfo: DeclareLaunchArgument('name', description='description', choices=['var1', 'var2'], default_value='invalid') assert 'not in provided choices' in str(excinfo.value) def test_declare_launch_argument_execute(): """Test the execute (or visit) of the DeclareLaunchArgument class.""" action1 = DeclareLaunchArgument('name') lc1 = LaunchContext() with pytest.raises(RuntimeError) as excinfo: action1.visit(lc1) assert 'Required launch argument' in str(excinfo.value) lc1.launch_configurations['name'] = 'value' assert action1.visit(lc1) is None action2 = DeclareLaunchArgument('name', default_value='value') lc2 = LaunchContext() assert action2.visit(lc2) is None assert lc1.launch_configurations['name'] == 'value' action3 = DeclareLaunchArgument('name', default_value='var1', choices=['var1', 'var2']) lc3 = LaunchContext() assert action3.visit(lc3) is None lc3.launch_configurations['name'] = 'invalid_value' with pytest.raises(RuntimeError) as excinfo: action3.visit(lc3) assert 'Valid options are: [var1, var2]' in str(excinfo.value) lc3.launch_configurations['name'] = 'var1' assert action3.visit(lc3) is None lc3.launch_configurations['name'] = 'var2' assert action3.visit(lc3) is None
ros2/launch
launch/test/launch/actions/test_declare_launch_argument.py
Python
apache-2.0
3,551
[ "VisIt" ]
966797089121da9911a1feaea06c8d1935e69018bad76da622c74db14fbff0ed
#!/usr/bin/env python # # Appcelerator Titanium Module Packager # # import os, sys, glob, string import zipfile from datetime import date cwd = os.path.abspath(os.path.dirname(sys._getframe(0).f_code.co_filename)) os.chdir(cwd) required_module_keys = ['name','version','moduleid','description','copyright','license','copyright','platform','minsdk'] module_defaults = { 'description':'My module', 'author': 'Your Name', 'license' : 'Specify your license', 'copyright' : 'Copyright (c) %s by Your Company' % str(date.today().year), } module_license_default = "TODO: place your license here and we'll include it in the module distribution" def replace_vars(config,token): idx = token.find('$(') while idx != -1: idx2 = token.find(')',idx+2) if idx2 == -1: break key = token[idx+2:idx2] if not config.has_key(key): break token = token.replace('$(%s)' % key, config[key]) idx = token.find('$(') return token def read_ti_xcconfig(): contents = open(os.path.join(cwd,'titanium.xcconfig')).read() config = {} for line in contents.splitlines(False): line = line.strip() if line[0:2]=='//': continue idx = line.find('=') if idx > 0: key = line[0:idx].strip() value = line[idx+1:].strip() config[key] = replace_vars(config,value) return config def generate_doc(config): docdir = os.path.join(cwd,'documentation') if not os.path.exists(docdir): print "Couldn't find documentation file at: %s" % docdir return None sdk = config['TITANIUM_SDK'] support_dir = os.path.join(sdk,'module','support') sys.path.append(support_dir) import markdown documentation = [] for file in os.listdir(docdir): md = open(os.path.join(docdir,file)).read() html = markdown.markdown(md) documentation.append({file:html}); return documentation def compile_js(manifest,config): js_file = os.path.join(cwd,'assets','jp.msmc.gesturerecognizer.js') if not os.path.exists(js_file): return sdk = config['TITANIUM_SDK'] iphone_dir = os.path.join(sdk,'iphone') sys.path.insert(0,iphone_dir) from compiler import Compiler path = os.path.basename(js_file) metadata = Compiler.make_function_from_file(path,js_file) method = metadata['method'] eq = path.replace('.','_') method = ' return %s;' % method f = os.path.join(cwd,'Classes','JpMsmcGesturerecognizerModuleAssets.m') c = open(f).read() idx = c.find('return ') before = c[0:idx] after = """ } @end """ newc = before + method + after if newc!=c: x = open(f,'w') x.write(newc) x.close() def die(msg): print msg sys.exit(1) def warn(msg): print "[WARN] %s" % msg def validate_license(): c = open(os.path.join(cwd,'LICENSE')).read() if c.find(module_license_default)!=1: warn('please update the LICENSE file with your license text before distributing') def validate_manifest(): path = os.path.join(cwd,'manifest') f = open(path) if not os.path.exists(path): die("missing %s" % path) manifest = {} for line in f.readlines(): line = line.strip() if line[0:1]=='#': continue if line.find(':') < 0: continue key,value = line.split(':') manifest[key.strip()]=value.strip() for key in required_module_keys: if not manifest.has_key(key): die("missing required manifest key '%s'" % key) if module_defaults.has_key(key): defvalue = module_defaults[key] curvalue = manifest[key] if curvalue==defvalue: warn("please update the manifest key: '%s' to a non-default value" % key) return manifest,path ignoreFiles = ['.DS_Store','.gitignore','libTitanium.a','titanium.jar','README','jp.msmc.gesturerecognizer.js'] ignoreDirs = ['.DS_Store','.svn','.git','CVSROOT'] def zip_dir(zf,dir,basepath,ignore=[]): for root, dirs, files in os.walk(dir): for name in ignoreDirs: if name in dirs: dirs.remove(name) # don't visit ignored directories for file in files: if file in ignoreFiles: continue e = os.path.splitext(file) if len(e)==2 and e[1]=='.pyc':continue from_ = os.path.join(root, file) to_ = from_.replace(dir, basepath, 1) zf.write(from_, to_) def glob_libfiles(): files = [] for libfile in glob.glob('build/**/*.a'): if libfile.find('Release-')!=-1: files.append(libfile) return files def build_module(manifest,config): rc = os.system("xcodebuild -sdk iphoneos -configuration Release") if rc != 0: die("xcodebuild failed") rc = os.system("xcodebuild -sdk iphonesimulator -configuration Release") if rc != 0: die("xcodebuild failed") # build the merged library using lipo moduleid = manifest['moduleid'] libpaths = '' for libfile in glob_libfiles(): libpaths+='%s ' % libfile os.system("lipo %s -create -output build/lib%s.a" %(libpaths,moduleid)) def package_module(manifest,mf,config): name = manifest['name'].lower() moduleid = manifest['moduleid'].lower() version = manifest['version'] modulezip = '%s-iphone-%s.zip' % (moduleid,version) if os.path.exists(modulezip): os.remove(modulezip) zf = zipfile.ZipFile(modulezip, 'w', zipfile.ZIP_DEFLATED) modulepath = 'modules/iphone/%s/%s' % (moduleid,version) zf.write(mf,'%s/manifest' % modulepath) libname = 'lib%s.a' % moduleid zf.write('build/%s' % libname, '%s/%s' % (modulepath,libname)) docs = generate_doc(config) if docs!=None: for doc in docs: for file, html in doc.iteritems(): filename = string.replace(file,'.md','.html') zf.writestr('%s/documentation/%s'%(modulepath,filename),html) for dn in ('assets','example','platform'): if os.path.exists(dn): zip_dir(zf,dn,'%s/%s' % (modulepath,dn),['README']) zf.write('LICENSE','%s/LICENSE' % modulepath) zf.write('module.xcconfig','%s/module.xcconfig' % modulepath) zf.close() if __name__ == '__main__': manifest,mf = validate_manifest() validate_license() config = read_ti_xcconfig() compile_js(manifest,config) build_module(manifest,config) package_module(manifest,mf,config) sys.exit(0)
atsusy/Gesture-Recognizer
build.py
Python
mit
5,858
[ "VisIt" ]
465200aeae16f4231749cbb7cb86141dc29e25b87dd2dec0229c02103ee5cc41
#!/usr/bin/python #========================================================================== # # Copyright NumFOCUS # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0.txt # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # #==========================================================================*/ # # \author Hans J. Johnson # # This script is designed to help change the copyright notices in all ITK files to a common format. # For files that are .h, .cxx, .hxx, .c, if there is no other copyright information, add the itkCopyright. from __future__ import print_function import re import sys import os ## New license as specified on: https://itk.org/Wiki/ITK_Release_4/Licensing NewITKCopyrightNotice="""/*========================================================================= * * Copyright NumFOCUS * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0.txt * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *=========================================================================*/ """ NewVTKDependantCopyrightNotice="""/*========================================================================= * * Portions of this file are subject to the VTK Toolkit Version 3 copyright. * * Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen * * For complete copyright, license and disclaimer of warranty information * please refer to the NOTICE file at the top of the ITK source tree. * *=========================================================================*/ """ ## Patterns that match the old copyright notice sections ## ITK only copyright ITKOnlyOldHeader=""" */\* *==.*Program:.*Insight Segmentation & Registration Toolkit.*Copyright .* Insight.*Consortium. All rights reserved.*See ITKCopyright.txt or https://www.itk.org/HTML/Copyright.htm for details.[\n\r ]*This software is distributed WITHOUT ANY WARRANTY; without even.*the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR.*PURPOSE. See the above copyright notices for more information.*=== *\*/[\n\r ]*""" ITKOnlyOldRE=re.compile(ITKOnlyOldHeader,re.MULTILINE|re.DOTALL|re.IGNORECASE) ## Files that originated in VTK, and now have ITK also ITKVTKOldHeader=""" */\* *==.*Program:.*Insight Segmentation & Registration Toolkit.*Copyright .* Insight Software Consortium. All rights reserved.*See ITKCopyright.txt or https://www.itk.org/HTML/Copyright.htm for details.[\n\r ]*.*VTKCopyright.txt.*This software is distributed WITHOUT ANY WARRANTY; without even.*the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR.*PURPOSE. See the above copyright notices for more information.*=== *\*/[\n\r ]*""" ITKVTKOldRE=re.compile(ITKVTKOldHeader,re.MULTILINE|re.DOTALL|re.IGNORECASE) ## Looking for new files. NewITKHeader=""" */\* *==.*http://www.apache.org/licenses/LICENSE-2.0.txt.*=== *\*/""" NewITKHeaderRE=re.compile(NewITKHeader,re.MULTILINE|re.DOTALL|re.IGNORECASE) eolSpaceRemove=re.compile(r' *$',re.MULTILINE) ## The exception list contains files that should not have the ITK copyright notices added. ExclusionList=['Utilities','.git'] ExtensionsThatNeedCopyright=['.cxx','.c','.h','.hxx'] ############ ############ ############ ############ ############ ############ ############ if len(sys.argv) != 2: print("USAGE: {0} <Top of ITK tree to process>".format(sys.argv[0])) sys.exit(-1) HeadOfITKTree=sys.argv[1] for top,directory,files in os.walk(HeadOfITKTree): ## First remove Excluded directories for dd in directory: if dd[0] == '.': #Skip all directories that begin with '.' directory.remove(dd) continue if dd in ExclusionList: directory.remove(dd) continue ## Now process each file for ff in files: if ff in ExclusionList: files.remove(ff) continue if ff[0] == '.': #Skip all files that begin with '.' files.remove(ff) #print("@@@@@@@",ff) continue currFile=os.path.join(top,ff) print(currFile) infile=open(currFile,'r') file_text=infile.read() newstring=file_text # default output to input, just in case all search patterns fail infile.close() substitutionMade=0 testITKOnlySearch=ITKOnlyOldRE.search(file_text) if testITKOnlySearch: print("{0} is ITKOnlyHeader".format(currFile)) newstring=ITKOnlyOldRE.sub(NewITKCopyrightNotice,file_text) newstring=eolSpaceRemove.sub("",newstring) ## a few files still have eol spaces substitutionMade=1 testITKVTKSearch=ITKVTKOldRE.search(file_text) if testITKVTKSearch: print("{0} is VTKITKHeader".format(currFile)) newstring=ITKVTKOldRE.sub(NewITKCopyrightNotice+NewVTKDependantCopyrightNotice,file_text) newstring=eolSpaceRemove.sub("",newstring) ## a few files still have eol spaces substitutionMade=1 ##Add new copyright if it had not already existed. root,ext=os.path.splitext(currFile) if ext in ExtensionsThatNeedCopyright: testNewITKHeaderRE=NewITKHeaderRE.search(file_text) # see if new CopyRight notice already exists. if testNewITKHeaderRE: print("Already Processed {0}".format(currFile)) elif (substitutionMade == 0): print("{0} needed copyright header.".format(currFile)) newstring=NewITKCopyrightNotice+file_text newstring=eolSpaceRemove.sub("",newstring) ## a few files still have eol spaces outfile=open(currFile,'w') outfile.write(newstring) outfile.close()
richardbeare/ITK
Utilities/Maintenance/UpdateCopyrightStatementsInITK.py
Python
apache-2.0
6,453
[ "VTK" ]
70f5abe5d90fab68c9f4a9c60dde4a634c70587a826adbdb9b9060b21fbc4c56
import numpy as np import itertools import logging import time import traceback import threading from collections import Mapping from distutils.version import StrictVersion from ..conventions import cf_encoder from ..core.utils import FrozenOrderedDict from ..core.pycompat import iteritems, dask_array_type, OrderedDict # Create a logger object, but don't add any handlers. Leave that to user code. logger = logging.getLogger(__name__) NONE_VAR_NAME = '__values__' def _encode_variable_name(name): if name is None: name = NONE_VAR_NAME return name def _decode_variable_name(name): if name == NONE_VAR_NAME: name = None return name def is_trivial_index(var): """ Determines if in index is 'trivial' meaning that it is equivalent to np.arange(). This is determined by checking if there are any attributes or encodings, if ndims is one, dtype is int and finally by comparing the actual values to np.arange() """ # if either attributes or encodings are defined # the index is not trivial. if len(var.attrs) or len(var.encoding): return False # if the index is not a 1d integer array if var.ndim > 1 or not var.dtype.kind == 'i': return False arange = np.arange(var.size, dtype=var.dtype) return np.all(var.values == arange) def robust_getitem(array, key, catch=Exception, max_retries=6, initial_delay=500): """ Robustly index an array, using retry logic with exponential backoff if any of the errors ``catch`` are raised. The initial_delay is measured in ms. With the default settings, the maximum delay will be in the range of 32-64 seconds. """ assert max_retries >= 0 for n in range(max_retries + 1): try: return array[key] except catch: if n == max_retries: raise base_delay = initial_delay * 2 ** n next_delay = base_delay + np.random.randint(base_delay) msg = ('getitem failed, waiting %s ms before trying again ' '(%s tries remaining). Full traceback: %s' % (next_delay, max_retries - n, traceback.format_exc())) logger.debug(msg) time.sleep(1e-3 * next_delay) class AbstractDataStore(Mapping): def __iter__(self): return iter(self.variables) def __getitem__(self, key): return self.variables[key] def __len__(self): return len(self.variables) def get_attrs(self): # pragma: no cover raise NotImplementedError def get_variables(self): # pragma: no cover raise NotImplementedError def load(self): """ This loads the variables and attributes simultaneously. A centralized loading function makes it easier to create data stores that do automatic encoding/decoding. For example: class SuffixAppendingDataStore(AbstractDataStore): def load(self): variables, attributes = AbstractDataStore.load(self) variables = {'%s_suffix' % k: v for k, v in iteritems(variables)} attributes = {'%s_suffix' % k: v for k, v in iteritems(attributes)} return variables, attributes This function will be called anytime variables or attributes are requested, so care should be taken to make sure its fast. """ variables = FrozenOrderedDict((_decode_variable_name(k), v) for k, v in iteritems(self.get_variables())) attributes = FrozenOrderedDict(self.get_attrs()) return variables, attributes @property def variables(self): # Because encoding/decoding might happen which may require both the # attributes and the variables, and because a store may be updated # we need to load both the attributes and variables # anytime either one is requested. variables, _ = self.load() return variables @property def attrs(self): # Because encoding/decoding might happen which may require both the # attributes and the variables, and because a store may be updated # we need to load both the attributes and variables # anytime either one is requested. _, attributes = self.load() return attributes @property def dimensions(self): return self.get_dimensions() def close(self): pass def __enter__(self): return self def __exit__(self, exception_type, exception_value, traceback): self.close() class ArrayWriter(object): def __init__(self): self.sources = [] self.targets = [] def add(self, source, target): if isinstance(source, dask_array_type): self.sources.append(source) self.targets.append(target) else: target[...] = source def sync(self): if self.sources: import dask.array as da import dask if StrictVersion(dask.__version__) > StrictVersion('0.8.1'): da.store(self.sources, self.targets, lock=threading.Lock()) else: da.store(self.sources, self.targets) self.sources = [] self.targets = [] class AbstractWritableDataStore(AbstractDataStore): def __init__(self, writer=None): if writer is None: writer = ArrayWriter() self.writer = writer def set_dimension(self, d, l): # pragma: no cover raise NotImplementedError def set_attribute(self, k, v): # pragma: no cover raise NotImplementedError def set_variable(self, k, v): # pragma: no cover raise NotImplementedError def sync(self): self.writer.sync() def store_dataset(self, dataset): # in stores variables are all variables AND coordinates # in xarray.Dataset variables are variables NOT coordinates, # so here we pass the whole dataset in instead of doing # dataset.variables self.store(dataset, dataset.attrs) def store(self, variables, attributes, check_encoding_set=frozenset()): self.set_attributes(attributes) neccesary_dims = [v.dims for v in variables.values()] neccesary_dims = set(itertools.chain(*neccesary_dims)) # set all non-indexes and any index which is not trivial. variables = OrderedDict((k, v) for k, v in iteritems(variables) if not (k in neccesary_dims and is_trivial_index(v))) self.set_variables(variables, check_encoding_set) def set_attributes(self, attributes): for k, v in iteritems(attributes): self.set_attribute(k, v) def set_variables(self, variables, check_encoding_set): for vn, v in iteritems(variables): name = _encode_variable_name(vn) check = vn in check_encoding_set target, source = self.prepare_variable(name, v, check) self.writer.add(source, target) def set_necessary_dimensions(self, variable): for d, l in zip(variable.dims, variable.shape): if d not in self.dimensions: self.set_dimension(d, l) class WritableCFDataStore(AbstractWritableDataStore): def store(self, variables, attributes, check_encoding_set=frozenset()): # All NetCDF files get CF encoded by default, without this attempting # to write times, for example, would fail. cf_variables, cf_attrs = cf_encoder(variables, attributes) AbstractWritableDataStore.store(self, cf_variables, cf_attrs, check_encoding_set)
NicWayand/xray
xarray/backends/common.py
Python
apache-2.0
7,876
[ "NetCDF" ]
6b70bb9f1a602b9f0e9932ff55ae5efcc049d59ab08b72b0865f4605bf34616c
#!/usr/bin/python # # Copyright (C) 2014, Jaguar Land Rover # # This program is licensed under the terms and conditions of the # Mozilla Public License, version 2.0. The full text of the # Mozilla Public License is at https://www.mozilla.org/MPL/2.0/ # # # Simple RVI service caller # import sys from rvilib import RVI import threading import time import getopt def usage(): print "Usage:", sys.argv[0], "[-n RVI-node] service key=val ..." print " RVI-node DNS name or IP of host running RVI. " print " default: http://localhost:9001" print " service Service to invoke in RVI." print " key=val Named arguments to provide to service." print print "Example: ./callrvi.py -n http://rvi1.nginfotpdx.net:9001 \\" print " jlr.com/vin/aaron/4711/test/ping \\" print " arg1=val1 arg2=val2" sys.exit(255) # # Check that we have the correct arguments # opts, args= getopt.getopt(sys.argv[1:], "n:") rvi_node = "http://localhost:9001" for o, a in opts: if o == "-n": rvi_node = a else: usage() if len(args) < 1: usage() # Construct a dictionary from the provided paths. i = 0 service = args[0] rvi_args = {} for i in args[1:]: print i [k, v] = i.split('=') rvi_args[k] = v # # Setup an outbound JSON-RPC connection to the backend RVI node # Service Edge. # rvi = RVI(rvi_node) print "RVI Node: ", rvi_node print "Service: ", service print "args: ", rvi_args # # Send the messge. # rvi.message(service, rvi_args)
magnusfeuer/rvi_core
python/rvi_call.py
Python
mpl-2.0
1,624
[ "Jaguar" ]
9d61ad24355832a2b36eb1e737da5748e50d47487823333b79eb1e452182e1ed
# coding=utf-8 from __future__ import unicode_literals from .. import Provider as PersonProvider class Provider(PersonProvider): formats = ( '{{first_name_male}} {{last_name}}', '{{first_name_male}} {{last_name}}', '{{first_name_male}} {{last_name}}', '{{first_name_male}} {{last_name}}', '{{first_name_male}} {{last_name}}-{{last_name}}', '{{first_name_female}} {{last_name}}', '{{first_name_female}} {{last_name}}', '{{first_name_female}} {{last_name}}', '{{first_name_female}} {{last_name}}', '{{first_name_female}} {{last_name}}-{{last_name}}', '{{prefix_male}} {{first_name_male}} {{last_name}}', '{{prefix_female}} {{first_name_female}} {{last_name}}', '{{prefix_male}} {{first_name_male}} {{last_name}}', '{{prefix_female}} {{first_name_female}} {{last_name}}', ) first_names_male = ( 'Adam', 'Albert', 'Aksel', 'Alex', 'Alexander', 'Alf', 'Allan', 'Alvin', 'Anders', 'André', 'Andreas', 'Anton', 'Arne', 'Asger', 'ugust', 'Benjamin', 'Benny', 'Bent', 'Bertil', 'Bertram', 'Birger', 'Bjarne', 'Bo', 'Bob', 'Bobby', 'Boe', 'Boris', 'Borris', 'Brian', 'Bruno', 'Bøje', 'Børge', 'Carl', 'Carlo', 'Carsten', 'Casper', 'Christian', 'Christoffer', 'Christopher', 'Claus', 'Clavs', 'Curt', 'Dan', 'Daniel', 'Danny', 'David', 'Dennis', 'Ebbe', 'Einar', 'Einer', 'Elias', 'Emil', 'Eric', 'Erik', 'Erling', 'Ernst', 'Esben', 'Finn', 'Flemming', 'Frank', 'Frans', 'Freddy', 'Frede', 'Frederik', 'Frode', 'Georg', 'George', 'Gert', 'Gorm', 'Gunnar', 'Gunner', 'Gustav', 'Hans', 'Helge', 'Henrik', 'Henry', 'Herbert', 'Herman', 'Hjalte', 'Holger', 'Hugo', 'Ib', 'Ivan', 'Iver', 'Jack', 'Jacob', 'Jakob', 'James', 'Jan', 'Jano', 'Jarl', 'Jean', 'Jens', 'Jeppe', 'Jesper', 'Jim', 'Jimmy', 'Joachim', 'Joakim', 'Johan', 'Johannes', 'John', 'Johnnie', 'Johnny', 'Jon', 'Jonas', 'Jonathan', 'Julius', 'Jørgen', 'Karl', 'Karlo', 'Karsten', 'Kaspar', 'Kasper', 'Keld', 'Ken', 'Kenn', 'Kenneth', 'Kenny', 'Kent', 'Kim', 'Kjeld', 'Klaus', 'Klavs', 'Kristian', 'Kurt', 'Kåre', 'Lars', 'Lasse', 'Laurits', 'Laus', 'Laust', 'Leif', 'Lennarth', 'Lucas', 'Ludvig', 'Mads', 'Magnus', 'Malthe', 'Marcus', 'Marius', 'Mark', 'Martin', 'Mathias', 'Matthias', 'Michael', 'Mik', 'Mikael', 'Mike', 'Mikkel', 'Mogens', 'Morten', 'Nick', 'Nicklas', 'Nicolai', 'Nicolaj', 'Niels', 'Nikolai', 'Nikolaj', 'Nils', 'Noah', 'Ole', 'Olfert', 'Oliver', 'Oscar', 'Oskar', 'Osvald', 'Otto', 'Ove', 'Palle', 'Patrick', 'Paw', 'Peder', 'Per', 'Pete', 'Peter', 'Paul', 'Philip', 'Poul', 'Preben', 'Ragnar', 'Ragner', 'Rasmus', 'René', 'Richard', 'Richardt', 'Robert', 'Robin', 'Rolf', 'Ron', 'Ronni', 'Ronnie', 'Ronny', 'Ruben', 'Rune', 'Sam', 'Sebastian', 'Silas', 'Simon', 'Simon', 'Sonny', 'Steen', 'Stefan', 'Sten', 'Stephan', 'Steve', 'Steven', 'Stig', 'Svenning', 'Søren', 'Tage', 'Tejs', 'Thomas', 'Tim', 'Timmy', 'Tobias', 'Tom', 'Tommy', 'Tonny', 'Torben', 'Troels', 'Uffe', 'Ulf', 'Ulrik', 'Vagn', 'Valdemar', 'Verner', 'Victor', 'Villads', 'Werner', 'William', 'Yan', 'Yannick', 'Yngve', 'Zacharias', 'Ziggy', 'Øivind', 'Øjvind', 'Ørni', 'Øvli', 'Øystein', 'Øyvind', 'Åbjørn', 'Aage', 'Åge', ) first_names_female = ( 'Abelone', 'Agnes', 'Agnete', 'Alberte', 'Alma', 'Amalie', 'Amanda', 'Andrea', 'Ane', 'Anette', 'Anna', 'Anne', 'Annemette', 'Annette', 'Asta', 'Astrid', 'Benedicte', 'Benedikte', 'Bente', 'Benthe', 'Berit', 'Berta', 'Beth', 'Bettina', 'Birgit', 'Birgitte', 'Birte', 'Birthe', 'Bitten', 'Bodil', 'Britt', 'Britta', 'Camilla', 'Carina', 'Carla', 'Caroline', 'Cathrine', 'Catrine', 'Cecilie', 'Charlotte', 'Christina', 'Christine', 'Cirkeline', 'Clara', 'Connie', 'Conny', 'Dagmar', 'Dagny', 'Daniella', 'Dina', 'Ditte', 'Doris', 'Dorte', 'Dorthe', 'Edith', 'Elin', 'Elisabeth', 'Ella', 'Ellen', 'Elna', 'Else', 'Elsebeth', 'Emilie', 'Emily', 'Emma', 'Erna', 'Esmarelda', 'Ester', 'Filippa', 'Frederikke', 'Freja', 'Frida', 'Gerda', 'Gertrud', 'Gitte', 'Grete', 'Grethe', 'Gundhild', 'Gunhild', 'Gurli', 'Gyda', 'Hannah', 'Hanne', 'Heidi', 'Helen', 'Helle', 'Henriette', 'Herdis', 'Iben', 'Ida', 'Inga', 'Inge', 'Ingelise', 'Inger', 'Ingrid', 'Irma', 'Isabella', 'Jacobine', 'Jacqueline', 'Janne', 'Janni', 'Jannie', 'Jasmin', 'Jean', 'Jenny', 'Joan', 'Johanne', 'Jonna', 'Josefine', 'Josephine', 'Julie', 'Justina', 'Jytte', 'Karen', 'Karin', 'Karina', 'Karla', 'Karoline', 'Katcha', 'Katja', 'Katrine', 'Kirsten', 'Kirstin', 'Kirstine', 'Klara', 'Kristina', 'Kristine', 'Laura', 'Lea', 'Lena', 'Lene', 'Leonora', 'Line', 'Liva', 'Lona', 'Lone', 'Lotte', 'Louise', 'Lærke', 'Maiken', 'Maja', 'Majken', 'Malene', 'Malou', 'Maren', 'Margit', 'Margrethe', 'Maria', 'Marianne', 'Marie', 'Marlene', 'Mathilde', 'Maya', 'Merete', 'Merethe', 'Mette', 'Mia', 'Michala', 'Michelle', 'Mie', 'Mille', 'Mimi', 'Minna', 'Nadia', 'Naja', 'Nana', 'Nanna', 'Nanni', 'Natasha', 'Natasja', 'Nete', 'Nicoline', 'Nina', 'Nora', 'Oda', 'Odeline', 'Odette', 'Ofelia', 'Olga', 'Olivia', 'Patricia', 'Paula', 'Paulina', 'Pernille', 'Pia', 'Ragna', 'Ragnhild', 'Randi', 'Rebecca', 'Regitse', 'Regitze', 'Rikke', 'Rita', 'Ritt', 'Ronja', 'Rosa', 'Ruth', 'Sabine', 'Sandra', 'Sanne', 'Sara', 'Sarah', 'Selma', 'Signe', 'Sigrid', 'Silje', 'Sille', 'Simone', 'Sine', 'Sofia', 'Sofie', 'Solveig', 'Solvej', 'Sonja', 'Sophie', 'Stina', 'Stine', 'Susanne', 'Sussanne', 'Sussie', 'Sys', 'Sørine', 'Søs', 'Tammy', 'Tanja', 'Thea', 'Tilde', 'Tina', 'Tine', 'Tove', 'Trine', 'Ulla', 'Ulrike', 'Ursula', 'Vera', 'Victoria', 'Viola', 'Vivian', 'Weena', 'Winni', 'Winnie', 'Xenia', 'Yasmin', 'Yda', 'Yrsa', 'Yvonne', 'Zahra', 'Zara', 'Zehnia', 'Zelma', 'Zenia', 'Åse', ) first_names = first_names_male + first_names_female last_names = ( 'Jensen', 'Nielsen', 'Hansen', 'Pedersen', 'Andersen', 'Christensen', 'Larsen', 'Sørensen', 'Rasmussen', 'Petersen', 'Jørgensen', 'Madsen', 'Kristensen', 'Olsen', 'Christiansen', 'Thomsen', 'Poulsen', 'Johansen', 'Knudsen', 'Mortensen', 'Møller', 'Jacobsen', 'Jakobsen', 'Olesen', 'Frederiksen', 'Mikkelsen', 'Henriksen', 'Laursen', 'Lund', 'Schmidt', 'Eriksen', 'Holm', 'Kristiansen', 'Clausen', 'Simonsen', 'Svendsen', 'Andreasen', 'Iversen', 'Jeppesen', 'Mogensen', 'Jespersen', 'Nissen', 'Lauridsen', 'Frandsen', 'Østergaard', 'Jepsen', 'Kjær', 'Carlsen', 'Vestergaard', 'Jessen', 'Nørgaard', 'Dahl', 'Christoffersen', 'Skov', 'Søndergaard', 'Bertelsen', 'Bruun', 'Lassen', 'Bach', 'Gregersen', 'Friis', 'Johnsen', 'Steffensen', 'Kjeldsen', 'Bech', 'Krogh', 'Lauritsen', 'Danielsen', 'Mathiesen', 'Andresen', 'Brandt', 'Winther', 'Toft', 'Ravn', 'Mathiasen', 'Dam', 'Holst', 'Nilsson', 'Lind', 'Berg', 'Schou', 'Overgaard', 'Kristoffersen', 'Schultz', 'Klausen', 'Karlsen', 'Paulsen', 'Hermansen', 'Thorsen', 'Koch', 'Thygesen', ) prefixes_male = ( 'Hr', 'Dr.', 'Prof.', 'Univ.Prof.', ) prefixes_female = ( 'Fru', 'Dr.', 'Prof.', 'Univ.Prof.', )
deanishe/alfred-fakeum
src/libs/faker/providers/person/dk_DK/__init__.py
Python
mit
7,620
[ "Brian" ]
a401ce9b3640495f6c4a3b61aac789b56ece4a0c1b7a8993eef49c44f78657e9
################################################################################ # Copyright (C) 2013-2014 Jaakko Luttinen # # This file is licensed under the MIT License. ################################################################################ """ Unit tests for gaussian_markov_chain module. """ import numpy as np from ..gaussian_markov_chain import GaussianMarkovChain from ..gaussian_markov_chain import VaryingGaussianMarkovChain from ..gaussian import Gaussian, GaussianMoments from ..gaussian import GaussianARD from ..wishart import Wishart, WishartMoments from ..gamma import Gamma, GammaMoments from bayespy.utils import random from bayespy.utils import linalg from bayespy.utils import misc from bayespy.utils.misc import TestCase def kalman_filter(y, U, A, V, mu0, Cov0, out=None): """ Perform Kalman filtering to obtain filtered mean and covariance. The parameters of the process may vary in time, thus they are given as iterators instead of fixed values. Parameters ---------- y : (N,D) array "Normalized" noisy observations of the states, that is, the observations multiplied by the precision matrix U (and possibly other transformation matrices). U : (N,D,D) array or N-list of (D,D) arrays Precision matrix (i.e., inverse covariance matrix) of the observation noise for each time instance. A : (N-1,D,D) array or (N-1)-list of (D,D) arrays Dynamic matrix for each time instance. V : (N-1,D,D) array or (N-1)-list of (D,D) arrays Covariance matrix of the innovation noise for each time instance. Returns ------- mu : array Filtered mean of the states. Cov : array Filtered covariance of the states. See also -------- rts_smoother """ mu = mu0 Cov = Cov0 # Allocate memory for the results (N,D) = np.shape(y) X = np.empty((N,D)) CovX = np.empty((N,D,D)) # Update step for t=0 M = np.dot(np.dot(Cov, U[0]), Cov) + Cov L = linalg.chol(M) mu = np.dot(Cov, linalg.chol_solve(L, np.dot(Cov,y[0]) + mu)) Cov = np.dot(Cov, linalg.chol_solve(L, Cov)) X[0,:] = mu CovX[0,:,:] = Cov #for (yn, Un, An, Vn) in zip(y, U, A, V): for n in range(len(y)-1): #(yn, Un, An, Vn) in zip(y, U, A, V): # Prediction step mu = np.dot(A[n], mu) Cov = np.dot(np.dot(A[n], Cov), A[n].T) + V[n] # Update step M = np.dot(np.dot(Cov, U[n+1]), Cov) + Cov L = linalg.chol(M) mu = np.dot(Cov, linalg.chol_solve(L, np.dot(Cov,y[n+1]) + mu)) Cov = np.dot(Cov, linalg.chol_solve(L, Cov)) # Force symmetric covariance (for numeric inaccuracy) Cov = 0.5*Cov + 0.5*Cov.T # Store results X[n+1,:] = mu CovX[n+1,:,:] = Cov return (X, CovX) def rts_smoother(mu, Cov, A, V, removethis=None): """ Perform Rauch-Tung-Striebel smoothing to obtain the posterior. The function returns the posterior mean and covariance of each state. The parameters of the process may vary in time, thus they are given as iterators instead of fixed values. Parameters ---------- mu : (N,D) array Mean of the states from Kalman filter. Cov : (N,D,D) array Covariance of the states from Kalman filter. A : (N-1,D,D) array or (N-1)-list of (D,D) arrays Dynamic matrix for each time instance. V : (N-1,D,D) array or (N-1)-list of (D,D) arrays Covariance matrix of the innovation noise for each time instance. Returns ------- mu : array Posterior mean of the states. Cov : array Posterior covariance of the states. See also -------- kalman_filter """ N = len(mu) #n = N-1 # Start from the last time instance and smoothen backwards x = mu[-1,:] Covx = Cov[-1,:,:] for n in reversed(range(N-1)):#(An, Vn) in zip(reversed(A), reversed(V)): #n = n - 1 #if n <= 0: # break # The predicted value of n x_p = np.dot(A[n], mu[n,:]) Cov_p = np.dot(np.dot(A[n], Cov[n,:,:]), A[n].T) + V[n] # Temporary variable S = np.linalg.solve(Cov_p, np.dot(A[n], Cov[n,:,:])) # Smoothed value of n x = mu[n,:] + np.dot(S.T, x-x_p) Covx = Cov[n,:,:] + np.dot(np.dot(S.T, Covx-Cov_p), S) # Force symmetric covariance (for numeric inaccuracy) Covx = 0.5*Covx + 0.5*Covx.T # Store results mu[n,:] = x Cov[n,:] = Covx return (mu, Cov) class TestGaussianMarkovChain(TestCase): def create_model(self, N, D): # Construct the model Mu = Gaussian(np.random.randn(D), np.identity(D)) Lambda = Wishart(D, random.covariance(D)) A = Gaussian(np.random.randn(D,D), np.identity(D)) V = Gamma(D, np.random.rand(D)) X = GaussianMarkovChain(Mu, Lambda, A, V, n=N) Y = Gaussian(X, np.identity(D)) return (Y, X, Mu, Lambda, A, V) def test_plates(self): """ Test that plates are handled correctly. """ def test_message_to_mu0(self): pass def test_message_to_Lambda0(self): pass def test_message_to_A(self): pass def test_message_to_v(self): pass def test_message_to_child(self): """ Test the updating of GaussianMarkovChain. Check that the moments and the lower bound contribution are computed correctly. """ # TODO: Add plates and missing values! # Dimensionalities D = 3 N = 5 (Y, X, Mu, Lambda, A, V) = self.create_model(N, D) # Inference with arbitrary observations y = np.random.randn(N,D) Y.observe(y) X.update() (x_vb, xnxn_vb, xpxn_vb) = X.get_moments() # Get parameter moments (mu0, mumu0) = Mu.get_moments() (icov0, logdet0) = Lambda.get_moments() (a, aa) = A.get_moments() (icov_x, logdetx) = V.get_moments() icov_x = np.diag(icov_x) # Prior precision Z = np.einsum('...kij,...kk->...ij', aa, icov_x) U_diag = [icov0+Z] + (N-2)*[icov_x+Z] + [icov_x] U_super = (N-1) * [-np.dot(a.T, icov_x)] U = misc.block_banded(U_diag, U_super) # Prior mean mu_prior = np.zeros(D*N) mu_prior[:D] = np.dot(icov0,mu0) # Data Cov = np.linalg.inv(U + np.identity(D*N)) mu = np.dot(Cov, mu_prior + y.flatten()) # Moments xx = mu[:,np.newaxis]*mu[np.newaxis,:] + Cov mu = np.reshape(mu, (N,D)) xx = np.reshape(xx, (N,D,N,D)) # Check results self.assertAllClose(x_vb, mu, msg="Incorrect mean") for n in range(N): self.assertAllClose(xnxn_vb[n,:,:], xx[n,:,n,:], msg="Incorrect second moment") for n in range(N-1): self.assertAllClose(xpxn_vb[n,:,:], xx[n,:,n+1,:], msg="Incorrect lagged second moment") # Compute the entropy H(X) ldet = linalg.logdet_cov(Cov) H = random.gaussian_entropy(-ldet, N*D) # Compute <log p(X|...)> xx = np.reshape(xx, (N*D, N*D)) mu = np.reshape(mu, (N*D,)) ldet = -logdet0 - np.sum(np.ones((N-1,D))*logdetx) P = random.gaussian_logpdf(np.einsum('...ij,...ij', xx, U), np.einsum('...i,...i', mu, mu_prior), np.einsum('...ij,...ij', mumu0, icov0), -ldet, N*D) # The VB bound from the net l = X.lower_bound_contribution() self.assertAllClose(l, H+P) # Compute the true bound <log p(X|...)> + H(X) # # Simple tests # def check(N, D, plates=None, mu=None, Lambda=None, A=None, V=None): if mu is None: mu = np.random.randn(D) if Lambda is None: Lambda = random.covariance(D) if A is None: A = np.random.randn(D,D) if V is None: V = np.random.rand(D) X = GaussianMarkovChain(mu, Lambda, A, V, plates=plates, n=N) (u0, u1, u2) = X._message_to_child() (mu, mumu) = Gaussian._ensure_moments(mu, GaussianMoments, ndim=1).get_moments() (Lambda, _) = Wishart._ensure_moments(Lambda, WishartMoments, ndim=1).get_moments() (a, aa) = Gaussian._ensure_moments(A, GaussianMoments, ndim=1).get_moments() a = a * np.ones((N-1,D,D)) # explicit broadcasting for simplicity aa = aa * np.ones((N-1,D,D,D)) # explicit broadcasting for simplicity (v, _) = Gamma._ensure_moments(V, GammaMoments).get_moments() v = v * np.ones((N-1,D)) plates_C = X.plates plates_mu = X.plates C = np.zeros(plates_C + (N,D,N,D)) plates_mu = np.shape(mu)[:-1] m = np.zeros(plates_mu + (N,D)) m[...,0,:] = np.einsum('...ij,...j->...i', Lambda, mu) C[...,0,:,0,:] = Lambda + np.einsum('...dij,...d->...ij', aa[...,0,:,:,:], v[...,0,:]) for n in range(1,N-1): C[...,n,:,n,:] = (np.einsum('...dij,...d->...ij', aa[...,n,:,:,:], v[...,n,:]) + v[...,n,:,None] * np.identity(D)) for n in range(N-1): C[...,n,:,n+1,:] = -np.einsum('...di,...d->...id', a[...,n,:,:], v[...,n,:]) C[...,n+1,:,n,:] = -np.einsum('...di,...d->...di', a[...,n,:,:], v[...,n,:]) C[...,-1,:,-1,:] = v[...,-1,:,None]*np.identity(D) C = np.reshape(C, plates_C+(N*D,N*D)) Cov = np.linalg.inv(C) Cov = np.reshape(Cov, plates_C+(N,D,N,D)) m0 = np.einsum('...minj,...nj->...mi', Cov, m) m1 = np.zeros(plates_C+(N,D,D)) m2 = np.zeros(plates_C+(N-1,D,D)) for n in range(N): m1[...,n,:,:] = Cov[...,n,:,n,:] + np.einsum('...i,...j->...ij', m0[...,n,:], m0[...,n,:]) for n in range(N-1): m2[...,n,:,:] = Cov[...,n,:,n+1,:] + np.einsum('...i,...j->...ij', m0[...,n,:], m0[...,n+1,:]) self.assertAllClose(m0, u0*np.ones(np.shape(m0))) self.assertAllClose(m1, u1*np.ones(np.shape(m1))) self.assertAllClose(m2, u2*np.ones(np.shape(m2))) pass check(4,1) check(4,3) # # Test mu # # Simple check(4,3, mu=Gaussian(np.random.randn(3), random.covariance(3))) # Plates check(4,3, mu=Gaussian(np.random.randn(5,6,3), random.covariance(3), plates=(5,6))) # Plates with moments broadcasted over plates check(4,3, mu=Gaussian(np.random.randn(3), random.covariance(3), plates=(5,))) check(4,3, mu=Gaussian(np.random.randn(1,3), random.covariance(3), plates=(5,))) # Plates broadcasting check(4,3, plates=(5,), mu=Gaussian(np.random.randn(3), random.covariance(3), plates=())) check(4,3, plates=(5,), mu=Gaussian(np.random.randn(1,3), random.covariance(3), plates=(1,))) # # Test Lambda # # Simple check(4,3, Lambda=Wishart(10+np.random.rand(), random.covariance(3))) # Plates check(4,3, Lambda=Wishart(10+np.random.rand(), random.covariance(3), plates=(5,6))) # Plates with moments broadcasted over plates check(4,3, Lambda=Wishart(10+np.random.rand(), random.covariance(3), plates=(5,))) check(4,3, Lambda=Wishart(10+np.random.rand(1), random.covariance(3), plates=(5,))) # Plates broadcasting check(4,3, plates=(5,), Lambda=Wishart(10+np.random.rand(), random.covariance(3), plates=())) check(4,3, plates=(5,), Lambda=Wishart(10+np.random.rand(), random.covariance(3), plates=(1,))) # # Test A # # Simple check(4,3, A=GaussianARD(np.random.randn(3,3), np.random.rand(3,3), shape=(3,), plates=(3,))) # Plates on time axis check(5,3, A=GaussianARD(np.random.randn(4,3,3), np.random.rand(4,3,3), shape=(3,), plates=(4,3))) # Plates on time axis with broadcasted moments check(5,3, A=GaussianARD(np.random.randn(1,3,3), np.random.rand(1,3,3), shape=(3,), plates=(4,3))) check(5,3, A=GaussianARD(np.random.randn(3,3), np.random.rand(3,3), shape=(3,), plates=(4,3))) # Plates check(4,3, A=GaussianARD(np.random.randn(5,6,1,3,3), np.random.rand(5,6,1,3,3), shape=(3,), plates=(5,6,1,3))) # Plates with moments broadcasted over plates check(4,3, A=GaussianARD(np.random.randn(3,3), np.random.rand(3,3), shape=(3,), plates=(5,1,3))) check(4,3, A=GaussianARD(np.random.randn(1,1,3,3), np.random.rand(1,1,3,3), shape=(3,), plates=(5,1,3))) # Plates broadcasting check(4,3, plates=(5,), A=GaussianARD(np.random.randn(3,3), np.random.rand(3,3), shape=(3,), plates=(3,))) check(4,3, plates=(5,), A=GaussianARD(np.random.randn(3,3), np.random.rand(3,3), shape=(3,), plates=(1,1,3))) # # Test v # # Simple check(4,3, V=Gamma(np.random.rand(1,3), np.random.rand(1,3), plates=(1,3))) check(4,3, V=Gamma(np.random.rand(3), np.random.rand(3), plates=(3,))) # Plates check(4,3, V=Gamma(np.random.rand(5,6,1,3), np.random.rand(5,6,1,3), plates=(5,6,1,3))) # Plates with moments broadcasted over plates check(4,3, V=Gamma(np.random.rand(1,3), np.random.rand(1,3), plates=(5,1,3))) check(4,3, V=Gamma(np.random.rand(1,1,3), np.random.rand(1,1,3), plates=(5,1,3))) # Plates broadcasting check(4,3, plates=(5,), V=Gamma(np.random.rand(1,3), np.random.rand(1,3), plates=(1,3))) check(4,3, plates=(5,), V=Gamma(np.random.rand(1,1,3), np.random.rand(1,1,3), plates=(1,1,3))) # # Check with input signals # mu = 2 Lambda = 3 A = 4 B = 5 v = 6 inputs = [[-2], [3]] X = GaussianMarkovChain([mu], [[Lambda]], [[A,B]], [v], inputs=inputs) V = (np.array([[v*A**2, -v*A, 0], [-v*A, v*A**2, -v*A], [0, -v*A, 0]]) + np.array([[Lambda, 0, 0], [0, v, 0], [0, 0, v]])) m = (np.array([Lambda*mu, 0, 0]) + np.array([0, v*B*inputs[0][0], v*B*inputs[1][0]]) - np.array([v*A*B*inputs[0][0], v*A*B*inputs[1][0], 0])) Cov = np.linalg.inv(V) mean = np.dot(Cov, m) X.update() u = X.get_moments() self.assertAllClose(u[0], mean[:,None]) self.assertAllClose(u[1] - u[0][...,None,:]*u[0][...,:,None], Cov[(0,1,2),(0,1,2),None,None]) self.assertAllClose(u[2] - u[0][...,:-1,:,None]*u[0][...,1:,None,:], Cov[(0,1),(1,2),None,None]) pass def test_smoothing(self): """ Test the posterior estimation of GaussianMarkovChain. Create time-variant dynamics and compare the results of BayesPy VB inference and standard Kalman filtering & smoothing. This is not that useful anymore, because the moments are checked much better in another test method. """ # # Set up an artificial system # # Dimensions N = 500 D = 2 # Dynamics (time varying) A0 = np.array([[.9, -.4], [.4, .9]]) A1 = np.array([[.98, -.1], [.1, .98]]) l = np.linspace(0, 1, N-1).reshape((-1,1,1)) A = (1-l)*A0 + l*A1 # Innovation covariance matrix (time varying) v = np.random.rand(D) V = np.diag(v) # Observation noise covariance matrix C = np.identity(D) # # Simulate data # X = np.empty((N,D)) Y = np.empty((N,D)) x = np.array([0.5, -0.5]) X[0,:] = x Y[0,:] = x + np.random.multivariate_normal(np.zeros(D), C) for n in range(N-1): x = np.dot(A[n,:,:],x) + np.random.multivariate_normal(np.zeros(D), V) X[n+1,:] = x Y[n+1,:] = x + np.random.multivariate_normal(np.zeros(D), C) # # BayesPy inference # # Construct VB model Xh = GaussianMarkovChain(np.zeros(D), np.identity(D), A, 1/v, n=N) Yh = Gaussian(Xh, np.identity(D), plates=(N,)) # Put data Yh.observe(Y) # Run inference Xh.update() # Store results Xh_vb = Xh.u[0] CovXh_vb = Xh.u[1] - Xh_vb[...,np.newaxis,:] * Xh_vb[...,:,np.newaxis] # # "The ground truth" using standard Kalman filter and RTS smoother # V = N*(V,) UY = Y U = N*(C,) (Xh, CovXh) = kalman_filter(UY, U, A, V, np.zeros(D), np.identity(D)) (Xh, CovXh) = rts_smoother(Xh, CovXh, A, V) # # Check results # self.assertTrue(np.allclose(Xh_vb, Xh)) self.assertTrue(np.allclose(CovXh_vb, CovXh)) class TestVaryingGaussianMarkovChain(TestCase): def test_plates_from_parents(self): """ Test that VaryingGaussianMarkovChain deduces plates correctly """ def check(plates_X, plates_mu=(), plates_Lambda=(), plates_B=(), plates_S=(), plates_v=()): D = 3 K = 2 N = 4 np.random.seed(42) mu = Gaussian(np.random.randn(*(plates_mu+(D,))), random.covariance(D)) Lambda = Wishart(D+np.ones(plates_Lambda), random.covariance(D)) B = GaussianARD(np.random.randn(*(plates_B+(D,D,K))), 1+np.random.rand(*(plates_B+(D,D,K))), shape=(D,K), plates=plates_B+(D,)) S = GaussianARD(np.random.randn(*(plates_S+(N,K))), 1+np.random.rand(*(plates_S+(N,K))), shape=(K,), plates=plates_S+(N,)) v = Gamma(1+np.random.rand(*(plates_v+(1,D))), 1+np.random.rand(*(plates_v+(1,D)))) X = VaryingGaussianMarkovChain(mu, Lambda, B, S, v, name="X") self.assertEqual(plates_X, X.plates, msg="Incorrect plates deduced") pass check(()) check((2,3), plates_mu=(2,3)) check((6,7), plates_Lambda=(6,7)) check((2,3), plates_B=(2,3)) check((2,3), plates_S=(2,3)) check((2,3), plates_v=(2,3)) pass def test_message_to_child(self): # A very simple check before the more complex ones: # 1-D process, k=1, fixed constant parameters m = 1.0 l = 4.0 b = 2.0 s = [3.0, 8.0] v = 5.0 X = VaryingGaussianMarkovChain([m], [[l]], [[[b]]], [[s[0]],[s[1]]], [v]) (u0, u1, u2) = X._message_to_child() C = np.array([[l+b**2*s[0]**2*v, -b*s[0]*v, 0], [ -b*s[0]*v, v+b**2*s[1]**2*v, -b*s[1]*v], [ 0, -b*s[1]*v, v]]) Cov = np.linalg.inv(C) m0 = np.dot(Cov, [[l*m], [0], [0]]) m1 = np.diag(Cov)[:,None,None] + m0[:,:,None]**2 m2 = np.diag(Cov, k=1)[:,None,None] + m0[1:,:,None]*m0[:-1,:,None] self.assertAllClose(m0, u0) self.assertAllClose(m1, u1) self.assertAllClose(m2, u2) def check(N, D, K, plates=None, mu=None, Lambda=None, B=None, S=None, V=None): if mu is None: mu = np.random.randn(D) if Lambda is None: Lambda = random.covariance(D) if B is None: B = np.random.randn(D,D,K) if S is None: S = np.random.randn(N-1,K) if V is None: V = np.random.rand(D) X = VaryingGaussianMarkovChain(mu, Lambda, B, S, V, plates=plates, n=N) (u0, u1, u2) = X._message_to_child() (mu, mumu) = X.parents[0].get_moments() (Lambda, _) = X.parents[1].get_moments() (b, bb) = X.parents[2].get_moments() (s, ss) = X.parents[3].get_moments() (v, _) = X.parents[4].get_moments() v = v * np.ones((N-1,D)) #V = np.atleast_3d(v)[...,-1,:,None]*np.identity(D) plates_C = X.plates plates_mu = X.plates C = np.zeros(plates_C + (N,D,N,D)) plates_mu = np.shape(mu)[:-1] m = np.zeros(plates_mu + (N,D)) m[...,0,:] = np.einsum('...ij,...j->...i', Lambda, mu) #m = np.reshape(m, plates_mu + (N*D,)) A = np.einsum('...dik,...nk->...ndi', b, s) AA = np.einsum('...dikjl,...nkl->...ndij', bb, ss) C[...,0,:,0,:] = Lambda + np.einsum('...dij,...d->...ij', AA[...,0,:,:,:], v[...,0,:]) for n in range(1,N-1): C[...,n,:,n,:] = (np.einsum('...dij,...d->...ij', AA[...,n,:,:,:], v[...,n,:]) + v[...,n,:,None] * np.identity(D)) for n in range(N-1): C[...,n,:,n+1,:] = -np.einsum('...di,...d->...id', A[...,n,:,:], v[...,n,:]) C[...,n+1,:,n,:] = -np.einsum('...di,...d->...di', A[...,n,:,:], v[...,n,:]) C[...,-1,:,-1,:] = v[...,-1,:,None]*np.identity(D) C = np.reshape(C, plates_C+(N*D,N*D)) Cov = np.linalg.inv(C) Cov = np.reshape(Cov, plates_C+(N,D,N,D)) m0 = np.einsum('...minj,...nj->...mi', Cov, m) m1 = np.zeros(plates_C+(N,D,D)) m2 = np.zeros(plates_C+(N-1,D,D)) for n in range(N): m1[...,n,:,:] = Cov[...,n,:,n,:] + np.einsum('...i,...j->...ij', m0[...,n,:], m0[...,n,:]) for n in range(N-1): m2[...,n,:,:] = Cov[...,n,:,n+1,:] + np.einsum('...i,...j->...ij', m0[...,n,:], m0[...,n+1,:]) self.assertAllClose(m0, u0*np.ones(np.shape(m0))) self.assertAllClose(m1, u1*np.ones(np.shape(m1))) self.assertAllClose(m2, u2*np.ones(np.shape(m2))) pass check(2,1,1) check(2,3,1) check(2,1,3) check(4,3,2) # # Test mu # # Simple check(4,3,2, mu=Gaussian(np.random.randn(3), random.covariance(3))) # Plates check(4,3,2, mu=Gaussian(np.random.randn(5,6,3), random.covariance(3), plates=(5,6))) # Plates with moments broadcasted over plates check(4,3,2, mu=Gaussian(np.random.randn(3), random.covariance(3), plates=(5,))) check(4,3,2, mu=Gaussian(np.random.randn(1,3), random.covariance(3), plates=(5,))) # Plates broadcasting check(4,3,2, plates=(5,), mu=Gaussian(np.random.randn(3), random.covariance(3), plates=())) check(4,3,2, plates=(5,), mu=Gaussian(np.random.randn(1,3), random.covariance(3), plates=(1,))) # # Test Lambda # # Simple check(4,3,2, Lambda=Wishart(10+np.random.rand(), random.covariance(3))) # Plates check(4,3,2, Lambda=Wishart(10+np.random.rand(), random.covariance(3), plates=(5,6))) # Plates with moments broadcasted over plates check(4,3,2, Lambda=Wishart(10+np.random.rand(), random.covariance(3), plates=(5,))) check(4,3,2, Lambda=Wishart(10+np.random.rand(1), random.covariance(3), plates=(5,))) # Plates broadcasting check(4,3,2, plates=(5,), Lambda=Wishart(10+np.random.rand(), random.covariance(3), plates=())) check(4,3,2, plates=(5,), Lambda=Wishart(10+np.random.rand(), random.covariance(3), plates=(1,))) # # Test B # # Simple check(4,3,2, B=GaussianARD(np.random.randn(3,3,2), np.random.rand(3,3,2), shape=(3,2), plates=(3,))) # Plates check(4,3,2, B=GaussianARD(np.random.randn(5,6,3,3,2), np.random.rand(5,6,3,3,2), shape=(3,2), plates=(5,6,3))) # Plates with moments broadcasted over plates check(4,3,2, B=GaussianARD(np.random.randn(3,3,2), np.random.rand(3,3,2), shape=(3,2), plates=(5,3))) check(4,3,2, B=GaussianARD(np.random.randn(1,3,3,2), np.random.rand(1,3,3,2), shape=(3,2), plates=(5,3))) # Plates broadcasting check(4,3,2, plates=(5,), B=GaussianARD(np.random.randn(3,3,2), np.random.rand(3,3,2), shape=(3,2), plates=(3,))) check(4,3,2, plates=(5,), B=GaussianARD(np.random.randn(3,3,2), np.random.rand(3,3,2), shape=(3,2), plates=(1,3))) # # Test S # # Simple check(4,3,2, S=GaussianARD(np.random.randn(4-1,2), np.random.rand(4-1,2), shape=(2,), plates=(4-1,))) # Plates check(4,3,2, S=GaussianARD(np.random.randn(5,6,4-1,2), np.random.rand(5,6,4-1,2), shape=(2,), plates=(5,6,4-1,))) # Plates with moments broadcasted over plates check(4,3,2, S=GaussianARD(np.random.randn(4-1,2), np.random.rand(4-1,2), shape=(2,), plates=(5,4-1,))) check(4,3,2, S=GaussianARD(np.random.randn(1,4-1,2), np.random.rand(1,4-1,2), shape=(2,), plates=(5,4-1,))) # Plates broadcasting check(4,3,2, plates=(5,), S=GaussianARD(np.random.randn(4-1,2), np.random.rand(4-1,2), shape=(2,), plates=(4-1,))) check(4,3,2, plates=(5,), S=GaussianARD(np.random.randn(4-1,2), np.random.rand(4-1,2), shape=(2,), plates=(1,4-1,))) # # Test v # # Simple check(4,3,2, V=Gamma(np.random.rand(1,3), np.random.rand(1,3), plates=(1,3))) check(4,3,2, V=Gamma(np.random.rand(3), np.random.rand(3), plates=(3,))) # Plates check(4,3,2, V=Gamma(np.random.rand(5,6,1,3), np.random.rand(5,6,1,3), plates=(5,6,1,3))) # Plates with moments broadcasted over plates check(4,3,2, V=Gamma(np.random.rand(1,3), np.random.rand(1,3), plates=(5,1,3))) check(4,3,2, V=Gamma(np.random.rand(1,1,3), np.random.rand(1,1,3), plates=(5,1,3))) # Plates broadcasting check(4,3,2, plates=(5,), V=Gamma(np.random.rand(1,3), np.random.rand(1,3), plates=(1,3))) check(4,3,2, plates=(5,), V=Gamma(np.random.rand(1,1,3), np.random.rand(1,1,3), plates=(1,1,3))) # # Uncertainty in both B and S # check(4,3,2, B=GaussianARD(np.random.randn(3,3,2), np.random.rand(3,3,2), shape=(3,2), plates=(3,)), S=GaussianARD(np.random.randn(4-1,2), np.random.rand(4-1,2), shape=(2,), plates=(4-1,))) pass def test_message_to_mu(self): # TODO pass def test_message_to_Lambda(self): # TODO pass def test_message_to_B(self): # TODO pass def test_message_to_S(self): # TODO pass def test_message_to_v(self): # TODO pass
dungvtdev/upsbayescpm
bayespy/inference/vmp/nodes/tests/test_gaussian_markov_chain.py
Python
mit
34,665
[ "Gaussian" ]
b44dc7a0ffb7c06f44560960b5fa4b98d8c27ce95ceddaf1526a240d3ae8a0d1
#!/usr/bin/env python # Copyright (c) 2012, 2014 ARM Limited # All rights reserved # # The license below extends only to copyright in the software and shall # not be construed as granting a license to any other intellectual # property including but not limited to intellectual property relating # to a hardware implementation of the functionality of the software # licensed hereunder. You may use the software subject to the license # terms below provided that you ensure that this notice is replicated # unmodified and in its entirety in all distributions of the software, # modified or unmodified, in source code or in binary form. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Author: Dam Sunwoo # # This script converts gem5 output to ARM DS-5 Streamline .apc project file # (Requires the gem5 runs to be run with ContextSwitchStatsDump enabled and # some patches applied to target Linux kernel.) # Visit http://www.gem5.org/Streamline for more details. # # Usage: # m5stats2streamline.py <stat_config.ini> <gem5 run folder> <dest .apc folder> # # <stat_config.ini>: .ini file that describes which stats to be included # in conversion. Sample .ini files can be found in # util/streamline. # NOTE: this is NOT the gem5 config.ini file. # # <gem5 run folder>: Path to gem5 run folder (must contain config.ini, # stats.txt[.gz], and system.tasks.txt.) # # <dest .apc folder>: Destination .apc folder path # # APC project generation based on Gator v17 (DS-5 v5.17) # Subsequent versions should be backward compatible import re, sys, os from ConfigParser import ConfigParser import gzip import xml.etree.ElementTree as ET import xml.dom.minidom as minidom import shutil import zlib import argparse parser = argparse.ArgumentParser( formatter_class=argparse.RawDescriptionHelpFormatter, description=""" Converts gem5 runs to ARM DS-5 Streamline .apc project file. (NOTE: Requires gem5 runs to be run with ContextSwitchStatsDump enabled and some patches applied to the target Linux kernel.) Visit http://www.gem5.org/Streamline for more details. APC project generation based on Gator v17 (DS-5 v5.17) Subsequent versions should be backward compatible """) parser.add_argument("stat_config_file", metavar="<stat_config.ini>", help=".ini file that describes which stats to be included \ in conversion. Sample .ini files can be found in \ util/streamline. NOTE: this is NOT the gem5 config.ini \ file.") parser.add_argument("input_path", metavar="<gem5 run folder>", help="Path to gem5 run folder (must contain config.ini, \ stats.txt[.gz], and system.tasks.txt.)") parser.add_argument("output_path", metavar="<dest .apc folder>", help="Destination .apc folder path") parser.add_argument("--num-events", action="store", type=int, default=1000000, help="Maximum number of scheduling (context switch) \ events to be processed. Set to truncate early. \ Default=1000000") parser.add_argument("--gzipped-bmp-not-supported", action="store_true", help="Do not use gzipped .bmp files for visual annotations. \ This option is only required when using Streamline versions \ older than 5.14") parser.add_argument("--verbose", action="store_true", help="Enable verbose output") args = parser.parse_args() if not re.match("(.*)\.apc", args.output_path): print "ERROR: <dest .apc folder> should end with '.apc'!" sys.exit(1) # gzipped BMP files for visual annotation is supported in Streamline 5.14. # Setting this to True will significantly compress the .apc binary file that # includes frame buffer snapshots. gzipped_bmp_supported = not args.gzipped_bmp_not_supported ticks_in_ns = -1 # Default max # of events. Increase this for longer runs. num_events = args.num_events start_tick = -1 end_tick = -1 # Parse gem5 config.ini file to determine some system configurations. # Number of CPUs, L2s, etc. def parseConfig(config_file): global num_cpus, num_l2 print "\n===============================" print "Parsing gem5 config.ini file..." print config_file print "===============================\n" config = ConfigParser() if not config.read(config_file): print "ERROR: config file '", config_file, "' not found" sys.exit(1) if config.has_section("system.cluster.cpu"): num_cpus = 1 else: num_cpus = 0 while config.has_section("system.cluster.cpu" + str(num_cpus)): num_cpus += 1 if config.has_section("system.cluster.l2_cache"): num_l2 = 1 else: num_l2 = 0 while config.has_section("system.cluster.l2_cache" + str(num_l2)): num_l2 += 1 print "Num CPUs:", num_cpus print "Num L2s:", num_l2 print "" return (num_cpus, num_l2) process_dict = {} thread_dict = {} process_list = [] idle_uid = -1 kernel_uid = -1 class Task(object): def __init__(self, uid, pid, tgid, task_name, is_process, tick): if pid == 0: # Idle self.uid = 0 elif pid == -1: # Kernel self.uid = 0 else: self.uid = uid self.pid = pid self.tgid = tgid self.is_process = is_process self.task_name = task_name self.children = [] self.tick = tick # time this task first appeared class Event(object): def __init__(self, tick, task): self.tick = tick self.task = task ############################################################ # Types used in APC Protocol # - packed32, packed64 # - int32 # - string ############################################################ def packed32(x): ret = [] more = True while more: b = x & 0x7f x = x >> 7 if (((x == 0) and ((b & 0x40) == 0)) or \ ((x == -1) and ((b & 0x40) != 0))): more = False else: b = b | 0x80 ret.append(b) return ret # For historical reasons, 32/64-bit versions of functions are presevered def packed64(x): return packed32(x) # variable length packed 4-byte signed value def unsigned_packed32(x): ret = [] if ((x & 0xffffff80) == 0): ret.append(x & 0x7f) elif ((x & 0xffffc000) == 0): ret.append((x | 0x80) & 0xff) ret.append((x >> 7) & 0x7f) elif ((x & 0xffe00000) == 0): ret.append((x | 0x80) & 0xff) ret.append(((x >> 7) | 0x80) & 0xff) ret.append((x >> 14) & 0x7f) elif ((x & 0xf0000000) == 0): ret.append((x | 0x80) & 0xff) ret.append(((x >> 7) | 0x80) & 0xff) ret.append(((x >> 14) | 0x80) & 0xff) ret.append((x >> 21) & 0x7f) else: ret.append((x | 0x80) & 0xff) ret.append(((x >> 7) | 0x80) & 0xff) ret.append(((x >> 14) | 0x80) & 0xff) ret.append(((x >> 21) | 0x80) & 0xff) ret.append((x >> 28) & 0x0f) return ret # variable length packed 8-byte signed value def unsigned_packed64(x): ret = [] if ((x & 0xffffffffffffff80) == 0): ret.append(x & 0x7f) elif ((x & 0xffffffffffffc000) == 0): ret.append((x | 0x80) & 0xff) ret.append((x >> 7) & 0x7f) elif ((x & 0xffffffffffe00000) == 0): ret.append((x | 0x80) & 0xff) ret.append(((x >> 7) | 0x80) & 0xff) ret.append((x >> 14) & 0x7f) elif ((x & 0xfffffffff0000000) == 0): ret.append((x | 0x80) & 0xff) ret.append(((x >> 7) | 0x80) & 0xff) ret.append(((x >> 14) | 0x80) & 0xff) ret.append((x >> 21) & 0x7f) elif ((x & 0xfffffff800000000) == 0): ret.append((x | 0x80) & 0xff) ret.append(((x >> 7) | 0x80) & 0xff) ret.append(((x >> 14) | 0x80) & 0xff) ret.append(((x >> 21) | 0x80) & 0xff) ret.append((x >> 28) & 0x7f) elif ((x & 0xfffffc0000000000) == 0): ret.append((x | 0x80) & 0xff) ret.append(((x >> 7) | 0x80) & 0xff) ret.append(((x >> 14) | 0x80) & 0xff) ret.append(((x >> 21) | 0x80) & 0xff) ret.append(((x >> 28) | 0x80) & 0xff) ret.append((x >> 35) & 0x7f) elif ((x & 0xfffe000000000000) == 0): ret.append((x | 0x80) & 0xff) ret.append(((x >> 7) | 0x80) & 0xff) ret.append(((x >> 14) | 0x80) & 0xff) ret.append(((x >> 21) | 0x80) & 0xff) ret.append(((x >> 28) | 0x80) & 0xff) ret.append(((x >> 35) | 0x80) & 0xff) ret.append((x >> 42) & 0x7f) elif ((x & 0xff00000000000000) == 0): ret.append((x | 0x80) & 0xff) ret.append(((x >> 7) | 0x80) & 0xff) ret.append(((x >> 14) | 0x80) & 0xff) ret.append(((x >> 21) | 0x80) & 0xff) ret.append(((x >> 28) | 0x80) & 0xff) ret.append(((x >> 35) | 0x80) & 0xff) ret.append(((x >> 42) | 0x80) & 0xff) ret.append((x >> 49) & 0x7f) elif ((x & 0x8000000000000000) == 0): ret.append((x | 0x80) & 0xff) ret.append(((x >> 7) | 0x80) & 0xff) ret.append(((x >> 14) | 0x80) & 0xff) ret.append(((x >> 21) | 0x80) & 0xff) ret.append(((x >> 28) | 0x80) & 0xff) ret.append(((x >> 35) | 0x80) & 0xff) ret.append(((x >> 42) | 0x80) & 0xff) ret.append(((x >> 49) | 0x80) & 0xff) ret.append((x >> 56) & 0x7f) else: ret.append((x | 0x80) & 0xff) ret.append(((x >> 7) | 0x80) & 0xff) ret.append(((x >> 14) | 0x80) & 0xff) ret.append(((x >> 21) | 0x80) & 0xff) ret.append(((x >> 28) | 0x80) & 0xff) ret.append(((x >> 35) | 0x80) & 0xff) ret.append(((x >> 42) | 0x80) & 0xff) ret.append(((x >> 49) | 0x80) & 0xff) ret.append(((x >> 56) | 0x80) & 0xff) ret.append((x >> 63) & 0x7f) return ret # 4-byte signed little endian def int32(x): ret = [] ret.append(x & 0xff) ret.append((x >> 8) & 0xff) ret.append((x >> 16) & 0xff) ret.append((x >> 24) & 0xff) return ret # 2-byte signed little endian def int16(x): ret = [] ret.append(x & 0xff) ret.append((x >> 8) & 0xff) return ret # a packed32 length followed by the specified number of characters def stringList(x): ret = [] ret += packed32(len(x)) for i in x: ret.append(i) return ret def utf8StringList(x): ret = [] for i in x: ret.append(ord(i)) return ret # packed64 time value in nanoseconds relative to the uptime from the # Summary message. def timestampList(x): ret = packed64(x) return ret ############################################################ # Write binary ############################################################ def writeBinary(outfile, binary_list): for i in binary_list: outfile.write("%c" % i) ############################################################ # APC Protocol Frame Types ############################################################ def addFrameHeader(frame_type, body, core): ret = [] if frame_type == "Summary": code = 1 elif frame_type == "Backtrace": code = 2 elif frame_type == "Name": code = 3 elif frame_type == "Counter": code = 4 elif frame_type == "Block Counter": code = 5 elif frame_type == "Annotate": code = 6 elif frame_type == "Sched Trace": code = 7 elif frame_type == "GPU Trace": code = 8 elif frame_type == "Idle": code = 9 else: print "ERROR: Unknown frame type:", frame_type sys.exit(1) packed_code = packed32(code) packed_core = packed32(core) length = int32(len(packed_code) + len(packed_core) + len(body)) ret = length + packed_code + packed_core + body return ret # Summary frame # - timestamp: packed64 # - uptime: packed64 def summaryFrame(timestamp, uptime): frame_type = "Summary" newline_canary = stringList("1\n2\r\n3\r4\n\r5") monotonic_delta = packed64(0) end_of_attr = stringList("") body = newline_canary + packed64(timestamp) + packed64(uptime) body += monotonic_delta + end_of_attr ret = addFrameHeader(frame_type, body, 0) return ret # Backtrace frame # - not implemented yet def backtraceFrame(): pass # Cookie name message # - cookie: packed32 # - name: string def cookieNameFrame(cookie, name): frame_type = "Name" packed_code = packed32(1) body = packed_code + packed32(cookie) + stringList(name) ret = addFrameHeader(frame_type, body, 0) return ret # Thread name message # - timestamp: timestamp # - thread id: packed32 # - name: string def threadNameFrame(timestamp, thread_id, name): frame_type = "Name" packed_code = packed32(2) body = packed_code + timestampList(timestamp) + \ packed32(thread_id) + stringList(name) ret = addFrameHeader(frame_type, body, 0) return ret # Core name message # - name: string # - core_id: packed32 # - cpuid: packed32 def coreNameFrame(name, core_id, cpuid): frame_type = "Name" packed_code = packed32(3) body = packed_code + packed32(core_id) + packed32(cpuid) + stringList(name) ret = addFrameHeader(frame_type, body, 0) return ret # IRQ Cookie name message # - cookie: packed32 # - name: string # - irq: packed32 def irqCookieNameFrame(cookie, name, irq): frame_type = "Name" packed_code = packed32(5) body = packed_code + packed32(cookie) + stringList(name) + packed32(irq) ret = addFrameHeader(frame_type, body, 0) return ret # Counter frame message # - timestamp: timestamp # - core: packed32 # - key: packed32 # - value: packed64 def counterFrame(timestamp, core, key, value): frame_type = "Counter" body = timestampList(timestamp) + packed32(core) + packed32(key) + \ packed64(value) ret = addFrameHeader(frame_type, body, core) return ret # Block Counter frame message # - key: packed32 # - value: packed64 def blockCounterFrame(core, key, value): frame_type = "Block Counter" body = packed32(key) + packed64(value) ret = addFrameHeader(frame_type, body, core) return ret # Annotate frame messages # - core: packed32 # - tid: packed32 # - timestamp: timestamp # - size: packed32 # - body def annotateFrame(core, tid, timestamp, size, userspace_body): frame_type = "Annotate" body = packed32(core) + packed32(tid) + timestampList(timestamp) + \ packed32(size) + userspace_body ret = addFrameHeader(frame_type, body, core) return ret # Scheduler Trace frame messages # Sched Switch # - Code: 1 # - timestamp: timestamp # - pid: packed32 # - tid: packed32 # - cookie: packed32 # - state: packed32 def schedSwitchFrame(core, timestamp, pid, tid, cookie, state): frame_type = "Sched Trace" body = packed32(1) + timestampList(timestamp) + packed32(pid) + \ packed32(tid) + packed32(cookie) + packed32(state) ret = addFrameHeader(frame_type, body, core) return ret # Sched Thread Exit # - Code: 2 # - timestamp: timestamp # - tid: packed32 def schedThreadExitFrame(core, timestamp, pid, tid, cookie, state): frame_type = "Sched Trace" body = packed32(2) + timestampList(timestamp) + packed32(tid) ret = addFrameHeader(frame_type, body, core) return ret # GPU Trace frame messages # - Not implemented yet def gpuTraceFrame(): pass # Idle frame messages # Enter Idle # - code: 1 # - timestamp: timestamp # - core: packed32 def enterIdleFrame(timestamp, core): frame_type = "Idle" body = packed32(1) + timestampList(timestamp) + packed32(core) ret = addFrameHeader(frame_type, body, core) return ret # Exit Idle # - code: 2 # - timestamp: timestamp # - core: packed32 def exitIdleFrame(timestamp, core): frame_type = "Idle" body = packed32(2) + timestampList(timestamp) + packed32(core) ret = addFrameHeader(frame_type, body, core) return ret #################################################################### def parseProcessInfo(task_file): print "\n===============================" print "Parsing Task file..." print task_file print "===============================\n" global start_tick, end_tick, num_cpus global process_dict, thread_dict, process_list global event_list, unified_event_list global idle_uid, kernel_uid event_list = [] unified_event_list = [] for cpu in range(num_cpus): event_list.append([]) uid = 1 # uid 0 is reserved for idle # Dummy Tasks for frame buffers and system diagrams process = Task(uid, 9999, 9999, "framebuffer", True, 0) process_list.append(process) uid += 1 thread = Task(uid, 9999, 9999, "framebuffer", False, 0) process.children.append(thread) uid += 1 process = Task(uid, 9998, 9998, "System", True, 0) process_list.append(process) # if we don't find the real kernel, use this to keep things going kernel_uid = uid uid += 1 thread = Task(uid, 9998, 9998, "System", False, 0) process.children.append(thread) uid += 1 ext = os.path.splitext(task_file)[1] try: if ext == ".gz": process_file = gzip.open(task_file, 'rb') else: process_file = open(task_file, 'rb') except: print "ERROR opening task file:", task_file print "Make sure context switch task dumping is enabled in gem5." sys.exit(1) process_re = re.compile("tick=(\d+)\s+(\d+)\s+cpu_id=(\d+)\s+" + "next_pid=([-\d]+)\s+next_tgid=([-\d]+)\s+next_task=(.*)") task_name_failure_warned = False for line in process_file: match = re.match(process_re, line) if match: tick = int(match.group(1)) if (start_tick < 0): start_tick = tick cpu_id = int(match.group(3)) pid = int(match.group(4)) tgid = int(match.group(5)) task_name = match.group(6) if not task_name_failure_warned: if task_name == "FailureIn_curTaskName": print "-------------------------------------------------" print "WARNING: Task name not set correctly!" print "Process/Thread info will not be displayed correctly" print "Perhaps forgot to apply m5struct.patch to kernel?" print "-------------------------------------------------" task_name_failure_warned = True if not tgid in process_dict: if tgid == pid: # new task is parent as well if args.verbose: print "new process", uid, pid, tgid, task_name if tgid == 0: # new process is the "idle" task process = Task(uid, pid, tgid, "idle", True, tick) idle_uid = 0 else: process = Task(uid, pid, tgid, task_name, True, tick) else: if tgid == 0: process = Task(uid, tgid, tgid, "idle", True, tick) idle_uid = 0 else: # parent process name not known yet process = Task(uid, tgid, tgid, "_Unknown_", True, tick) if tgid == -1: # kernel kernel_uid = 0 uid += 1 process_dict[tgid] = process process_list.append(process) else: if tgid == pid: if process_dict[tgid].task_name == "_Unknown_": if args.verbose: print "new process", \ process_dict[tgid].uid, pid, tgid, task_name process_dict[tgid].task_name = task_name if process_dict[tgid].task_name != task_name and tgid != 0: process_dict[tgid].task_name = task_name if not pid in thread_dict: if args.verbose: print "new thread", \ uid, process_dict[tgid].uid, pid, tgid, task_name thread = Task(uid, pid, tgid, task_name, False, tick) uid += 1 thread_dict[pid] = thread process_dict[tgid].children.append(thread) else: if thread_dict[pid].task_name != task_name: thread_dict[pid].task_name = task_name if args.verbose: print tick, uid, cpu_id, pid, tgid, task_name task = thread_dict[pid] event = Event(tick, task) event_list[cpu_id].append(event) unified_event_list.append(event) if len(unified_event_list) == num_events: print "Truncating at", num_events, "events!" break print "Found %d events." % len(unified_event_list) for process in process_list: if process.pid > 9990: # fix up framebuffer ticks process.tick = start_tick print process.uid, process.pid, process.tgid, \ process.task_name, str(process.tick) for thread in process.children: if thread.pid > 9990: thread.tick = start_tick print "\t", thread.uid, thread.pid, thread.tgid, \ thread.task_name, str(thread.tick) end_tick = tick print "Start tick:", start_tick print "End tick: ", end_tick print "" return def initOutput(output_path): if not os.path.exists(output_path): os.mkdir(output_path) def ticksToNs(tick): if ticks_in_ns < 0: print "ticks_in_ns not set properly!" sys.exit(1) return tick / ticks_in_ns def writeXmlFile(xml, filename): f = open(filename, "w") txt = ET.tostring(xml) f.write(minidom.parseString(txt).toprettyxml()) f.close() # StatsEntry that contains individual statistics class StatsEntry(object): def __init__(self, name, group, group_index, per_cpu, key): # Full name of statistics self.name = name # Streamline group name that statistic will belong to self.group = group # Index of statistics within group (used to change colors within groups) self.group_index = group_index # Shorter name with "system" stripped off # and symbols converted to alphanumerics self.short_name = re.sub("system\.", "", name) self.short_name = re.sub(":", "_", name) # Regex for this stat (string version used to construct union regex) self.regex_string = "^" + name + "\s+([\d\.]+)" self.regex = re.compile("^" + name + "\s+([\d\.e\-]+)\s+# (.*)$", re.M) self.description = "" # Whether this stat is use per CPU or not self.per_cpu = per_cpu # Key used in .apc protocol (as described in captured.xml) self.key = key # List of values of stat per timestamp self.values = [] # Whether this stat has been found for the current timestamp self.found = False # Whether this stat has been found at least once # (to suppress too many warnings) self.not_found_at_least_once = False # Field used to hold ElementTree subelement for this stat self.ET_element = None # Create per-CPU stat name and regex, etc. if self.per_cpu: self.per_cpu_regex_string = [] self.per_cpu_regex = [] self.per_cpu_name = [] self.per_cpu_found = [] for i in range(num_cpus): if num_cpus > 1: per_cpu_name = re.sub("#", str(i), self.name) else: per_cpu_name = re.sub("#", "", self.name) self.per_cpu_name.append(per_cpu_name) print "\t", per_cpu_name self.per_cpu_regex_string.\ append("^" + per_cpu_name + "\s+[\d\.]+") self.per_cpu_regex.append(re.compile("^" + per_cpu_name + \ "\s+([\d\.e\-]+)\s+# (.*)$", re.M)) self.values.append([]) self.per_cpu_found.append(False) def append_value(self, val, per_cpu_index = None): if self.per_cpu: self.values[per_cpu_index].append(str(val)) else: self.values.append(str(val)) # Global stats object that contains the list of stats entries # and other utility functions class Stats(object): def __init__(self): self.stats_list = [] self.tick_list = [] self.next_key = 1 def register(self, name, group, group_index, per_cpu): print "registering stat:", name, "group:", group, group_index self.stats_list.append(StatsEntry(name, group, group_index, per_cpu, \ self.next_key)) self.next_key += 1 # Union of all stats to accelerate parsing speed def createStatsRegex(self): regex_strings = []; print "\nnum entries in stats_list", len(self.stats_list) for entry in self.stats_list: if entry.per_cpu: for i in range(num_cpus): regex_strings.append(entry.per_cpu_regex_string[i]) else: regex_strings.append(entry.regex_string) self.regex = re.compile('|'.join(regex_strings)) def registerStats(config_file): print "===============================" print "Parsing stats config.ini file..." print config_file print "===============================" config = ConfigParser() if not config.read(config_file): print "ERROR: config file '", config_file, "' not found!" sys.exit(1) print "\nRegistering Stats..." stats = Stats() per_cpu_stat_groups = config.options('PER_CPU_STATS') for group in per_cpu_stat_groups: i = 0 per_cpu_stats_list = config.get('PER_CPU_STATS', group).split('\n') for item in per_cpu_stats_list: if item: stats.register(item, group, i, True) i += 1 per_l2_stat_groups = config.options('PER_L2_STATS') for group in per_l2_stat_groups: i = 0 per_l2_stats_list = config.get('PER_L2_STATS', group).split('\n') for item in per_l2_stats_list: if item: for l2 in range(num_l2): if num_l2 > 1: name = re.sub("#", str(l2), item) else: name = re.sub("#", "", item) stats.register(name, group, i, False) i += 1 other_stat_groups = config.options('OTHER_STATS') for group in other_stat_groups: i = 0 other_stats_list = config.get('OTHER_STATS', group).split('\n') for item in other_stats_list: if item: stats.register(item, group, i, False) i += 1 stats.createStatsRegex() return stats # Parse and read in gem5 stats file # Streamline counters are organized per CPU def readGem5Stats(stats, gem5_stats_file): print "\n===============================" print "Parsing gem5 stats file..." print gem5_stats_file print "===============================\n" ext = os.path.splitext(gem5_stats_file)[1] window_start_regex = \ re.compile("^---------- Begin Simulation Statistics ----------") window_end_regex = \ re.compile("^---------- End Simulation Statistics ----------") final_tick_regex = re.compile("^final_tick\s+(\d+)") global ticks_in_ns sim_freq_regex = re.compile("^sim_freq\s+(\d+)") sim_freq = -1 try: if ext == ".gz": f = gzip.open(gem5_stats_file, "r") else: f = open(gem5_stats_file, "r") except: print "ERROR opening stats file", gem5_stats_file, "!" sys.exit(1) stats_not_found_list = stats.stats_list[:] window_num = 0 while (True): error = False try: line = f.readline() except IOError: print "" print "WARNING: IO error in stats file" print "(gzip stream not closed properly?)...continuing for now" error = True if not line: break # Find out how many gem5 ticks in 1ns if sim_freq < 0: m = sim_freq_regex.match(line) if m: sim_freq = int(m.group(1)) # ticks in 1 sec ticks_in_ns = int(sim_freq / 1e9) print "Simulation frequency found! 1 tick == %e sec\n" \ % (1.0 / sim_freq) # Final tick in gem5 stats: current absolute timestamp m = final_tick_regex.match(line) if m: tick = int(m.group(1)) if tick > end_tick: break stats.tick_list.append(tick) if (window_end_regex.match(line) or error): if args.verbose: print "new window" for stat in stats.stats_list: if stat.per_cpu: for i in range(num_cpus): if not stat.per_cpu_found[i]: if not stat.not_found_at_least_once: print "WARNING: stat not found in window #", \ window_num, ":", stat.per_cpu_name[i] print "suppressing further warnings for " + \ "this stat" stat.not_found_at_least_once = True stat.values[i].append(str(0)) stat.per_cpu_found[i] = False else: if not stat.found: if not stat.not_found_at_least_once: print "WARNING: stat not found in window #", \ window_num, ":", stat.name print "suppressing further warnings for this stat" stat.not_found_at_least_once = True stat.values.append(str(0)) stat.found = False stats_not_found_list = stats.stats_list[:] window_num += 1 if error: break # Do a single regex of the union of all stats first for speed if stats.regex.match(line): # Then loop through only the stats we haven't seen in this window for stat in stats_not_found_list[:]: if stat.per_cpu: for i in range(num_cpus): m = stat.per_cpu_regex[i].match(line) if m: if stat.name == "ipc": value = str(int(float(m.group(1)) * 1000)) else: value = str(int(float(m.group(1)))) if args.verbose: print stat.per_cpu_name[i], value stat.values[i].append(value) stat.per_cpu_found[i] = True all_found = True for j in range(num_cpus): if not stat.per_cpu_found[j]: all_found = False if all_found: stats_not_found_list.remove(stat) if stat.description == "": stat.description = m.group(2) else: m = stat.regex.match(line) if m: value = str(int(float(m.group(1)))) if args.verbose: print stat.name, value stat.values.append(value) stat.found = True stats_not_found_list.remove(stat) if stat.description == "": stat.description = m.group(2) f.close() # Create session.xml file in .apc folder def doSessionXML(output_path): session_file = output_path + "/session.xml" xml = ET.Element("session") xml.set("version", "1") xml.set("call_stack_unwinding", "no") xml.set("parse_debug_info", "no") xml.set("high_resolution", "yes") xml.set("buffer_mode", "streaming") xml.set("sample_rate", "low") # Setting duration to zero for now. Doesn't affect visualization. xml.set("duration", "0") xml.set("target_host", "") xml.set("target_port", "8080") writeXmlFile(xml, session_file) # Create captured.xml file in .apc folder def doCapturedXML(output_path, stats): captured_file = output_path + "/captured.xml" xml = ET.Element("captured") xml.set("version", "1") xml.set("protocol", "17") xml.set("backtrace_processing", "none") target = ET.SubElement(xml, "target") target.set("name", "gem5") target.set("sample_rate", "1000") target.set("cores", str(num_cpus)) counters = ET.SubElement(xml, "counters") for stat in stats.stats_list: s = ET.SubElement(counters, "counter") stat_name = re.sub("\.", "_", stat.short_name) stat_name = re.sub("#", "", stat_name) s.set("title", stat.group) s.set("name", stat_name) s.set("color", "0x00000000") s.set("key", "0x%08x" % stat.key) s.set("type", stat_name) s.set("event", "0x00000000") if stat.per_cpu: s.set("per_cpu", "yes") else: s.set("per_cpu", "no") s.set("display", "") s.set("units", "") s.set("average_selection", "no") s.set("description", stat.description) writeXmlFile(xml, captured_file) # Writes out Streamline cookies (unique IDs per process/thread) def writeCookiesThreads(blob): thread_list = [] for process in process_list: if process.uid > 0: print "cookie", process.task_name, process.uid writeBinary(blob, cookieNameFrame(process.uid, process.task_name)) # pid and tgid need to be positive values -- no longer true? for thread in process.children: thread_list.append(thread) # Threads need to be sorted in timestamp order thread_list.sort(key = lambda x: x.tick) for thread in thread_list: print "thread", thread.task_name, (ticksToNs(thread.tick)),\ thread.tgid, thread.pid writeBinary(blob, threadNameFrame(ticksToNs(thread.tick),\ thread.pid, thread.task_name)) # Writes context switch info as Streamline scheduling events def writeSchedEvents(blob): for cpu in range(num_cpus): for event in event_list[cpu]: timestamp = ticksToNs(event.tick) pid = event.task.tgid tid = event.task.pid if process_dict.has_key(event.task.tgid): cookie = process_dict[event.task.tgid].uid else: cookie = 0 # State: # 0: waiting on other event besides I/O # 1: Contention/pre-emption # 2: Waiting on I/O # 3: Waiting on mutex # Hardcoding to 0 for now. Other states not implemented yet. state = 0 if args.verbose: print cpu, timestamp, pid, tid, cookie writeBinary(blob,\ schedSwitchFrame(cpu, timestamp, pid, tid, cookie, state)) # Writes selected gem5 statistics as Streamline counters def writeCounters(blob, stats): timestamp_list = [] for tick in stats.tick_list: if tick > end_tick: break timestamp_list.append(ticksToNs(tick)) for stat in stats.stats_list: if stat.per_cpu: stat_length = len(stat.values[0]) else: stat_length = len(stat.values) for n in range(len(timestamp_list)): for stat in stats.stats_list: if stat.per_cpu: for i in range(num_cpus): writeBinary(blob, counterFrame(timestamp_list[n], i, \ stat.key, int(float(stat.values[i][n])))) else: writeBinary(blob, counterFrame(timestamp_list[n], 0, \ stat.key, int(float(stat.values[n])))) # Streamline can display LCD frame buffer dumps (gzipped bmp) # This function converts the frame buffer dumps to the Streamline format def writeVisualAnnotations(blob, input_path, output_path): frame_path = input_path + "/frames_system.vncserver" if not os.path.exists(frame_path): return frame_count = 0 file_list = os.listdir(frame_path) file_list.sort() re_fb = re.compile("fb\.(\d+)\.(\d+)\.bmp.gz") # Use first non-negative pid to tag visual annotations annotate_pid = -1 for e in unified_event_list: pid = e.task.pid if pid >= 0: annotate_pid = pid break for fn in file_list: m = re_fb.match(fn) if m: seq = m.group(1) tick = int(m.group(2)) if tick > end_tick: break frame_count += 1 userspace_body = [] userspace_body += packed32(0x1C) # escape code userspace_body += packed32(0x04) # visual code text_annotation = "image_" + str(ticksToNs(tick)) + ".bmp.gz" userspace_body += int16(len(text_annotation)) userspace_body += utf8StringList(text_annotation) if gzipped_bmp_supported: # copy gzipped bmp directly bytes_read = open(frame_path + "/" + fn, "rb").read() else: # copy uncompressed bmp bytes_read = gzip.open(frame_path + "/" + fn, "rb").read() userspace_body += int32(len(bytes_read)) userspace_body += bytes_read writeBinary(blob, annotateFrame(0, annotate_pid, ticksToNs(tick), \ len(userspace_body), userspace_body)) print "\nfound", frame_count, "frames for visual annotation.\n" def createApcProject(input_path, output_path, stats): initOutput(output_path) blob = open(output_path + "/0000000000", "wb") # Summary frame takes current system time and system uptime. # Filling in with random values for now. writeBinary(blob, summaryFrame(1234, 5678)) writeCookiesThreads(blob) print "writing Events" writeSchedEvents(blob) print "writing Counters" writeCounters(blob, stats) print "writing Visual Annotations" writeVisualAnnotations(blob, input_path, output_path) doSessionXML(output_path) doCapturedXML(output_path, stats) blob.close() ####################### # Main Routine input_path = args.input_path output_path = args.output_path #### # Make sure input path exists #### if not os.path.exists(input_path): print "ERROR: Input path %s does not exist!" % input_path sys.exit(1) #### # Parse gem5 configuration file to find # of CPUs and L2s #### (num_cpus, num_l2) = parseConfig(input_path + "/config.ini") #### # Parse task file to find process/thread info #### parseProcessInfo(input_path + "/system.tasks.txt") #### # Parse stat config file and register stats #### stat_config_file = args.stat_config_file stats = registerStats(stat_config_file) #### # Parse gem5 stats #### # Check if both stats.txt and stats.txt.gz exist and warn if both exist if os.path.exists(input_path + "/stats.txt") and \ os.path.exists(input_path + "/stats.txt.gz"): print "WARNING: Both stats.txt.gz and stats.txt exist. \ Using stats.txt.gz by default." gem5_stats_file = input_path + "/stats.txt.gz" if not os.path.exists(gem5_stats_file): gem5_stats_file = input_path + "/stats.txt" if not os.path.exists(gem5_stats_file): print "ERROR: stats.txt[.gz] file does not exist in %s!" % input_path sys.exit(1) readGem5Stats(stats, gem5_stats_file) #### # Create Streamline .apc project folder #### createApcProject(input_path, output_path, stats) print "All done!"
kaiyuanl/gem5
util/streamline/m5stats2streamline.py
Python
bsd-3-clause
42,084
[ "VisIt" ]
2b9bc9aac676a08ead6cd3c135469cfffe4bb25e74d59d3810d9536ef6fa15ac
#import sys, os #sys.path.insert(0, '/media/nmsutton/Ext3Drive/General/NEST/NEST/lib64/python3.4/site-packages') #print (os.path.dirname(sys.executable)) #print (os.environ) import pylab import nest print ("test") neuron = nest.Create("iaf_neuron") nest.GetStatus(neuron) nest.GetStatus(neuron, "I_e") print (nest.GetStatus(neuron, ["V_reset", "V_th"])) nest.SetStatus(neuron, {"I_e": 376.0}) multimeter = nest.Create("multimeter") nest.SetStatus(multimeter, {"withtime":True, "record_from":["V_m"]}) nest.SetStatus(neuron, {"V_m": 376.0}) print (nest.GetStatus(neuron, "V_m")) spikedetector = nest.Create("spike_detector", params={"withgid": True, "withtime": True})
nmsutton/MemoryModule
python_version/examples/nestTest.py
Python
mit
693
[ "NEURON" ]
116d5d448f085debfd8d290233cf104c14341f60e9d3483cd06449145556c813
#!/usr/bin/env python # # Author: Qiming Sun <[email protected]> # from pyscf import gto from pyscf import scf ''' Specify irrep_nelec to control the wave function symmetry ''' mol = gto.Mole() mol.build( verbose = 0, atom = ''' C 0. 0. 0.625 C 0. 0. -0.625 ''', basis = 'cc-pVDZ', spin = 0, symmetry = True, ) mf = scf.RHF(mol) # Frozen occupancy # 'A1g': 4 electrons # 'E1gx': 2 electrons # 'E1gy': 2 electrons # Rest 4 electrons are put in irreps A1u, E1ux, E1uy ... based on Aufbau principle # The irrep names can be found in pyscf/symm/param.py mf.irrep_nelec = {'A1g': 4, 'E1gx': 2, 'E1gy': 2} e = mf.kernel() print('E = %.15g ref = -74.1112374269129' % e) mol.symmetry = 'D2h' mol.charge = 1 mol.spin = 1 mol.build(dump_input=False, parse_arg=False) mf = scf.RHF(mol) # Frozen occupancy # 'Ag': 2 alpha, 1 beta electrons # 'B1u': 4 electrons # 'B2u': 2 electrons # 'B3u': 2 electrons mf.irrep_nelec = {'Ag': (2,1), 'B1u': 4, 'B2u': 2, 'B3u': 2,} e = mf.kernel() print('E = %.15g ref = -74.4026583773135' % e) # Frozen occupancy # 'Ag': 4 electrons # 'B1u': 2 alpha, 1 beta electrons # 'B2u': 2 electrons # 'B3u': 2 electrons mf.irrep_nelec = {'Ag': 4, 'B1u': (2,1), 'B2u': 2, 'B3u': 2,} e = mf.kernel() print('E = %.15g ref = -74.8971476600812' % e)
gkc1000/pyscf
examples/scf/13-symmetry.py
Python
apache-2.0
1,324
[ "PySCF" ]
1e05657a8616f7299ec08fbcfae6f552af6f9075690569e62988ad36d5bfe0d1
""" Acceptance tests for the teams feature. """ import json import random import ddt from flaky import flaky from nose.plugins.attrib import attr from uuid import uuid4 from ..helpers import UniqueCourseTest from ...fixtures import LMS_BASE_URL from ...fixtures.course import CourseFixture from ...fixtures.discussion import ( Thread, MultipleThreadFixture ) from ...pages.lms.auto_auth import AutoAuthPage from ...pages.lms.course_info import CourseInfoPage from ...pages.lms.learner_profile import LearnerProfilePage from ...pages.lms.tab_nav import TabNavPage from ...pages.lms.teams import TeamsPage, MyTeamsPage, BrowseTopicsPage, BrowseTeamsPage, CreateTeamPage, TeamPage TOPICS_PER_PAGE = 12 class TeamsTabBase(UniqueCourseTest): """Base class for Teams Tab tests""" def setUp(self): super(TeamsTabBase, self).setUp() self.tab_nav = TabNavPage(self.browser) self.course_info_page = CourseInfoPage(self.browser, self.course_id) self.teams_page = TeamsPage(self.browser, self.course_id) def create_topics(self, num_topics): """Create `num_topics` test topics.""" return [{u"description": i, u"name": i, u"id": i} for i in map(str, xrange(num_topics))] def create_teams(self, topic, num_teams): """Create `num_teams` teams belonging to `topic`.""" teams = [] for i in xrange(num_teams): team = { 'course_id': self.course_id, 'topic_id': topic['id'], 'name': 'Team {}'.format(i), 'description': 'Description {}'.format(i), 'language': 'aa', 'country': 'AF' } response = self.course_fixture.session.post( LMS_BASE_URL + '/api/team/v0/teams/', data=json.dumps(team), headers=self.course_fixture.headers ) teams.append(json.loads(response.text)) return teams def create_membership(self, username, team_id): """Assign `username` to `team_id`.""" response = self.course_fixture.session.post( LMS_BASE_URL + '/api/team/v0/team_membership/', data=json.dumps({'username': username, 'team_id': team_id}), headers=self.course_fixture.headers ) return json.loads(response.text) def set_team_configuration(self, configuration, enroll_in_course=True, global_staff=False): """ Sets team configuration on the course and calls auto-auth on the user. """ #pylint: disable=attribute-defined-outside-init self.course_fixture = CourseFixture(**self.course_info) if configuration: self.course_fixture.add_advanced_settings( {u"teams_configuration": {u"value": configuration}} ) self.course_fixture.install() enroll_course_id = self.course_id if enroll_in_course else None #pylint: disable=attribute-defined-outside-init self.user_info = AutoAuthPage(self.browser, course_id=enroll_course_id, staff=global_staff).visit().user_info self.course_info_page.visit() def verify_teams_present(self, present): """ Verifies whether or not the teams tab is present. If it should be present, also checks the text on the page (to ensure view is working). """ if present: self.assertIn("Teams", self.tab_nav.tab_names) self.teams_page.visit() self.assertEqual(self.teams_page.active_tab(), 'browse') else: self.assertNotIn("Teams", self.tab_nav.tab_names) def verify_teams(self, page, expected_teams): """Verify that the list of team cards on the current page match the expected teams in order.""" def assert_team_equal(expected_team, team_card_name, team_card_description): """ Helper to assert that a single team card has the expected name and description. """ self.assertEqual(expected_team['name'], team_card_name) self.assertEqual(expected_team['description'], team_card_description) team_cards = page.team_cards team_card_names = [ team_card.find_element_by_css_selector('.card-title').text for team_card in team_cards.results ] team_card_descriptions = [ team_card.find_element_by_css_selector('.card-description').text for team_card in team_cards.results ] map(assert_team_equal, expected_teams, team_card_names, team_card_descriptions) def verify_my_team_count(self, expected_number_of_teams): """ Verify the number of teams shown on "My Team". """ # We are doing these operations on this top-level page object to avoid reloading the page. self.teams_page.verify_my_team_count(expected_number_of_teams) @ddt.ddt @attr('shard_5') class TeamsTabTest(TeamsTabBase): """ Tests verifying when the Teams tab is present. """ def test_teams_not_enabled(self): """ Scenario: teams tab should not be present if no team configuration is set Given I am enrolled in a course without team configuration When I view the course info page Then I should not see the Teams tab """ self.set_team_configuration(None) self.verify_teams_present(False) def test_teams_not_enabled_no_topics(self): """ Scenario: teams tab should not be present if team configuration does not specify topics Given I am enrolled in a course with no topics in the team configuration When I view the course info page Then I should not see the Teams tab """ self.set_team_configuration({u"max_team_size": 10, u"topics": []}) self.verify_teams_present(False) def test_teams_not_enabled_not_enrolled(self): """ Scenario: teams tab should not be present if student is not enrolled in the course Given there is a course with team configuration and topics And I am not enrolled in that course, and am not global staff When I view the course info page Then I should not see the Teams tab """ self.set_team_configuration( {u"max_team_size": 10, u"topics": self.create_topics(1)}, enroll_in_course=False ) self.verify_teams_present(False) def test_teams_enabled(self): """ Scenario: teams tab should be present if user is enrolled in the course and it has team configuration Given I am enrolled in a course with team configuration and topics When I view the course info page Then I should see the Teams tab And the correct content should be on the page """ self.set_team_configuration({u"max_team_size": 10, u"topics": self.create_topics(1)}) self.verify_teams_present(True) def test_teams_enabled_global_staff(self): """ Scenario: teams tab should be present if user is not enrolled in the course, but is global staff Given there is a course with team configuration And I am not enrolled in that course, but am global staff When I view the course info page Then I should see the Teams tab And the correct content should be on the page """ self.set_team_configuration( {u"max_team_size": 10, u"topics": self.create_topics(1)}, enroll_in_course=False, global_staff=True ) self.verify_teams_present(True) @ddt.data( ('browse', '.topics-list'), # TODO: find a reliable way to match the "My Teams" tab # ('my-teams', 'div.teams-list'), ('teams/{topic_id}/{team_id}', 'div.discussion-module'), ('topics/{topic_id}/create-team', 'div.create-team-instructions'), ('topics/{topic_id}', '.teams-list'), ('not-a-real-route', 'div.warning') ) @ddt.unpack def test_url_routing(self, route, selector): """Ensure that navigating to a URL route correctly updates the page content. """ topics = self.create_topics(1) topic = topics[0] self.set_team_configuration({ u'max_team_size': 10, u'topics': topics }) team = self.create_teams(topic, 1)[0] self.teams_page.visit() # Get the base URL (the URL without any trailing fragment) url = self.browser.current_url fragment_index = url.find('#') if fragment_index >= 0: url = url[0:fragment_index] self.browser.get( '{url}#{route}'.format( url=url, route=route.format( topic_id=topic['id'], team_id=team['id'] )) ) self.teams_page.wait_for_ajax() self.assertTrue(self.teams_page.q(css=selector).present) self.assertTrue(self.teams_page.q(css=selector).visible) @attr('shard_5') class MyTeamsTest(TeamsTabBase): """ Tests for the "My Teams" tab of the Teams page. """ def setUp(self): super(MyTeamsTest, self).setUp() self.topic = {u"name": u"Example Topic", u"id": "example_topic", u"description": "Description"} self.set_team_configuration({'course_id': self.course_id, 'max_team_size': 10, 'topics': [self.topic]}) self.my_teams_page = MyTeamsPage(self.browser, self.course_id) def test_not_member_of_any_teams(self): """ Scenario: Visiting the My Teams page when user is not a member of any team should not display any teams. Given I am enrolled in a course with a team configuration and a topic but am not a member of a team When I visit the My Teams page And I should see no teams And I should see a message that I belong to no teams. """ self.my_teams_page.visit() self.assertEqual(len(self.my_teams_page.team_cards), 0, msg='Expected to see no team cards') self.assertEqual( self.my_teams_page.q(css='.page-content-main').text, [u'You are not currently a member of any team.'] ) def test_member_of_a_team(self): """ Scenario: Visiting the My Teams page when user is a member of a team should display the teams. Given I am enrolled in a course with a team configuration and a topic and am a member of a team When I visit the My Teams page Then I should see a pagination header showing the number of teams And I should see all the expected team cards And I should not see a pagination footer """ teams = self.create_teams(self.topic, 1) self.create_membership(self.user_info['username'], teams[0]['id']) self.my_teams_page.visit() self.verify_teams(self.my_teams_page, teams) @attr('shard_5') @ddt.ddt class BrowseTopicsTest(TeamsTabBase): """ Tests for the Browse tab of the Teams page. """ def setUp(self): super(BrowseTopicsTest, self).setUp() self.topics_page = BrowseTopicsPage(self.browser, self.course_id) @ddt.data(('name', False), ('team_count', True)) @ddt.unpack def test_sort_topics(self, sort_order, reverse): """ Scenario: the user should be able to sort the list of topics by name or team count Given I am enrolled in a course with team configuration and topics When I visit the Teams page And I browse topics Then I should see a list of topics for the course When I choose a sort order Then I should see the paginated list of topics in that order """ topics = self.create_topics(TOPICS_PER_PAGE + 1) self.set_team_configuration({u"max_team_size": 100, u"topics": topics}) for i, topic in enumerate(random.sample(topics, len(topics))): self.create_teams(topic, i) topic['team_count'] = i self.topics_page.visit() self.topics_page.sort_topics_by(sort_order) topic_names = self.topics_page.topic_names self.assertEqual(len(topic_names), TOPICS_PER_PAGE) self.assertEqual( topic_names, [t['name'] for t in sorted(topics, key=lambda t: t[sort_order], reverse=reverse)][:TOPICS_PER_PAGE] ) def test_sort_topics_update(self): """ Scenario: the list of topics should remain sorted after updates Given I am enrolled in a course with team configuration and topics When I visit the Teams page And I browse topics and choose a sort order Then I should see the paginated list of topics in that order When I create a team in one of those topics And I return to the topics list Then I should see the topics in the correct sorted order """ topics = self.create_topics(3) self.set_team_configuration({u"max_team_size": 100, u"topics": topics}) self.topics_page.visit() self.topics_page.sort_topics_by('team_count') topic_name = self.topics_page.topic_names[-1] topic = [t for t in topics if t['name'] == topic_name][0] self.topics_page.browse_teams_for_topic(topic_name) browse_teams_page = BrowseTeamsPage(self.browser, self.course_id, topic) self.assertTrue(browse_teams_page.is_browser_on_page()) browse_teams_page.click_create_team_link() create_team_page = CreateTeamPage(self.browser, self.course_id, topic) create_team_page.value_for_text_field(field_id='name', value='Team Name', press_enter=False) create_team_page.value_for_textarea_field( field_id='description', value='Team description.' ) create_team_page.submit_form() team_page = TeamPage(self.browser, self.course_id) self.assertTrue(team_page.is_browser_on_page) team_page.click_all_topics_breadcrumb() self.assertTrue(self.topics_page.is_browser_on_page()) self.assertEqual(topic_name, self.topics_page.topic_names[0]) def test_list_topics(self): """ Scenario: a list of topics should be visible in the "Browse" tab Given I am enrolled in a course with team configuration and topics When I visit the Teams page And I browse topics Then I should see a list of topics for the course """ self.set_team_configuration({u"max_team_size": 10, u"topics": self.create_topics(2)}) self.topics_page.visit() self.assertEqual(len(self.topics_page.topic_cards), 2) self.assertTrue(self.topics_page.get_pagination_header_text().startswith('Showing 1-2 out of 2 total')) self.assertFalse(self.topics_page.pagination_controls_visible()) self.assertFalse(self.topics_page.is_previous_page_button_enabled()) self.assertFalse(self.topics_page.is_next_page_button_enabled()) def test_topic_pagination(self): """ Scenario: a list of topics should be visible in the "Browse" tab, paginated 12 per page Given I am enrolled in a course with team configuration and topics When I visit the Teams page And I browse topics Then I should see only the first 12 topics """ self.set_team_configuration({u"max_team_size": 10, u"topics": self.create_topics(20)}) self.topics_page.visit() self.assertEqual(len(self.topics_page.topic_cards), TOPICS_PER_PAGE) self.assertTrue(self.topics_page.get_pagination_header_text().startswith('Showing 1-12 out of 20 total')) self.assertTrue(self.topics_page.pagination_controls_visible()) self.assertFalse(self.topics_page.is_previous_page_button_enabled()) self.assertTrue(self.topics_page.is_next_page_button_enabled()) def test_go_to_numbered_page(self): """ Scenario: topics should be able to be navigated by page number Given I am enrolled in a course with team configuration and topics When I visit the Teams page And I browse topics And I enter a valid page number in the page number input Then I should see that page of topics """ self.set_team_configuration({u"max_team_size": 10, u"topics": self.create_topics(25)}) self.topics_page.visit() self.topics_page.go_to_page(3) self.assertEqual(len(self.topics_page.topic_cards), 1) self.assertTrue(self.topics_page.is_previous_page_button_enabled()) self.assertFalse(self.topics_page.is_next_page_button_enabled()) def test_go_to_invalid_page(self): """ Scenario: browsing topics should not respond to invalid page numbers Given I am enrolled in a course with team configuration and topics When I visit the Teams page And I browse topics And I enter an invalid page number in the page number input Then I should stay on the current page """ self.set_team_configuration({u"max_team_size": 10, u"topics": self.create_topics(13)}) self.topics_page.visit() self.topics_page.go_to_page(3) self.assertEqual(self.topics_page.get_current_page_number(), 1) def test_page_navigation_buttons(self): """ Scenario: browsing topics should not respond to invalid page numbers Given I am enrolled in a course with team configuration and topics When I visit the Teams page And I browse topics When I press the next page button Then I should move to the next page When I press the previous page button Then I should move to the previous page """ self.set_team_configuration({u"max_team_size": 10, u"topics": self.create_topics(13)}) self.topics_page.visit() self.topics_page.press_next_page_button() self.assertEqual(len(self.topics_page.topic_cards), 1) self.assertTrue(self.topics_page.get_pagination_header_text().startswith('Showing 13-13 out of 13 total')) self.topics_page.press_previous_page_button() self.assertEqual(len(self.topics_page.topic_cards), TOPICS_PER_PAGE) self.assertTrue(self.topics_page.get_pagination_header_text().startswith('Showing 1-12 out of 13 total')) def test_topic_description_truncation(self): """ Scenario: excessively long topic descriptions should be truncated so as to fit within a topic card. Given I am enrolled in a course with a team configuration and a topic with a long description When I visit the Teams page And I browse topics Then I should see a truncated topic description """ initial_description = "A" + " really" * 50 + " long description" self.set_team_configuration( {u"max_team_size": 1, u"topics": [{"name": "", "id": "", "description": initial_description}]} ) self.topics_page.visit() truncated_description = self.topics_page.topic_cards[0].text self.assertLess(len(truncated_description), len(initial_description)) self.assertTrue(truncated_description.endswith('...')) self.assertIn(truncated_description.split('...')[0], initial_description) def test_go_to_teams_list(self): """ Scenario: Clicking on a Topic Card should take you to the teams list for that Topic. Given I am enrolled in a course with a team configuration and a topic When I visit the Teams page And I browse topics And I click on the arrow link to view teams for the first topic Then I should be on the browse teams page """ topic = {u"name": u"Example Topic", u"id": u"example_topic", u"description": "Description"} self.set_team_configuration( {u"max_team_size": 1, u"topics": [topic]} ) self.topics_page.visit() self.topics_page.browse_teams_for_topic('Example Topic') browse_teams_page = BrowseTeamsPage(self.browser, self.course_id, topic) self.assertTrue(browse_teams_page.is_browser_on_page()) self.assertEqual(browse_teams_page.header_topic_name, 'Example Topic') self.assertEqual(browse_teams_page.header_topic_description, 'Description') @attr('shard_5') class BrowseTeamsWithinTopicTest(TeamsTabBase): """ Tests for browsing Teams within a Topic on the Teams page. """ TEAMS_PAGE_SIZE = 10 def setUp(self): super(BrowseTeamsWithinTopicTest, self).setUp() self.topic = {u"name": u"Example Topic", u"id": "example_topic", u"description": "Description"} self.set_team_configuration({'course_id': self.course_id, 'max_team_size': 10, 'topics': [self.topic]}) self.browse_teams_page = BrowseTeamsPage(self.browser, self.course_id, self.topic) self.topics_page = BrowseTopicsPage(self.browser, self.course_id) def verify_page_header(self): """Verify that the page header correctly reflects the current topic's name and description.""" self.assertEqual(self.browse_teams_page.header_topic_name, self.topic['name']) self.assertEqual(self.browse_teams_page.header_topic_description, self.topic['description']) def verify_on_page(self, page_num, total_teams, pagination_header_text, footer_visible): """ Verify that we are on the correct team list page. Arguments: page_num (int): The one-indexed page we expect to be on total_teams (list): An unsorted list of all the teams for the current topic pagination_header_text (str): Text we expect to see in the pagination header. footer_visible (bool): Whether we expect to see the pagination footer controls. """ alphabetized_teams = sorted(total_teams, key=lambda team: team['name']) self.assertEqual(self.browse_teams_page.get_pagination_header_text(), pagination_header_text) self.verify_teams( self.browse_teams_page, alphabetized_teams[(page_num - 1) * self.TEAMS_PAGE_SIZE:page_num * self.TEAMS_PAGE_SIZE] ) self.assertEqual( self.browse_teams_page.pagination_controls_visible(), footer_visible, msg='Expected paging footer to be ' + 'visible' if footer_visible else 'invisible' ) def test_no_teams(self): """ Scenario: Visiting a topic with no teams should not display any teams. Given I am enrolled in a course with a team configuration and a topic When I visit the Teams page for that topic Then I should see the correct page header And I should see a pagination header showing no teams And I should see no teams And I should see a button to add a team And I should not see a pagination footer """ self.browse_teams_page.visit() self.verify_page_header() self.assertEqual(self.browse_teams_page.get_pagination_header_text(), 'Showing 0 out of 0 total') self.assertEqual(len(self.browse_teams_page.team_cards), 0, msg='Expected to see no team cards') self.assertFalse( self.browse_teams_page.pagination_controls_visible(), msg='Expected paging footer to be invisible' ) def test_teams_one_page(self): """ Scenario: Visiting a topic with fewer teams than the page size should all those teams on one page. Given I am enrolled in a course with a team configuration and a topic When I visit the Teams page for that topic Then I should see the correct page header And I should see a pagination header showing the number of teams And I should see all the expected team cards And I should see a button to add a team And I should not see a pagination footer """ teams = self.create_teams(self.topic, self.TEAMS_PAGE_SIZE) self.browse_teams_page.visit() self.verify_page_header() self.assertEqual(self.browse_teams_page.get_pagination_header_text(), 'Showing 1-10 out of 10 total') self.verify_teams(self.browse_teams_page, teams) self.assertFalse( self.browse_teams_page.pagination_controls_visible(), msg='Expected paging footer to be invisible' ) def test_teams_navigation_buttons(self): """ Scenario: The user should be able to page through a topic's team list using navigation buttons when it is longer than the page size. Given I am enrolled in a course with a team configuration and a topic When I visit the Teams page for that topic Then I should see the correct page header And I should see that I am on the first page of results When I click on the next page button Then I should see that I am on the second page of results And when I click on the previous page button Then I should see that I am on the first page of results """ teams = self.create_teams(self.topic, self.TEAMS_PAGE_SIZE + 1) self.browse_teams_page.visit() self.verify_page_header() self.verify_on_page(1, teams, 'Showing 1-10 out of 11 total', True) self.browse_teams_page.press_next_page_button() self.verify_on_page(2, teams, 'Showing 11-11 out of 11 total', True) self.browse_teams_page.press_previous_page_button() self.verify_on_page(1, teams, 'Showing 1-10 out of 11 total', True) def test_teams_page_input(self): """ Scenario: The user should be able to page through a topic's team list using the page input when it is longer than the page size. Given I am enrolled in a course with a team configuration and a topic When I visit the Teams page for that topic Then I should see the correct page header And I should see that I am on the first page of results When I input the second page Then I should see that I am on the second page of results When I input the first page Then I should see that I am on the first page of results """ teams = self.create_teams(self.topic, self.TEAMS_PAGE_SIZE + 10) self.browse_teams_page.visit() self.verify_page_header() self.verify_on_page(1, teams, 'Showing 1-10 out of 20 total', True) self.browse_teams_page.go_to_page(2) self.verify_on_page(2, teams, 'Showing 11-20 out of 20 total', True) self.browse_teams_page.go_to_page(1) self.verify_on_page(1, teams, 'Showing 1-10 out of 20 total', True) def test_navigation_links(self): """ Scenario: User should be able to navigate to "browse all teams" and "search team description" links. Given I am enrolled in a course with a team configuration and a topic containing one team When I visit the Teams page for that topic Then I should see the correct page header And I should see the link to "browse all team" And I should navigate to that link And I see the relevant page loaded And I should see the link to "search teams" And I should navigate to that link And I see the relevant page loaded """ self.browse_teams_page.visit() self.verify_page_header() self.browse_teams_page.click_browse_all_teams_link() self.assertTrue(self.topics_page.is_browser_on_page()) self.browse_teams_page.visit() self.verify_page_header() self.browse_teams_page.click_search_team_link() # TODO Add search page expectation once that implemented. @attr('shard_5') class CreateTeamTest(TeamsTabBase): """ Tests for creating a new Team within a Topic on the Teams page. """ def setUp(self): super(CreateTeamTest, self).setUp() self.topic = {'name': 'Example Topic', 'id': 'example_topic', 'description': 'Description'} self.set_team_configuration({'course_id': self.course_id, 'max_team_size': 10, 'topics': [self.topic]}) self.browse_teams_page = BrowseTeamsPage(self.browser, self.course_id, self.topic) self.browse_teams_page.visit() self.create_team_page = CreateTeamPage(self.browser, self.course_id, self.topic) self.team_name = 'Avengers' def verify_page_header(self): """ Verify that the page header correctly reflects the create team header, description and breadcrumb. """ self.assertEqual(self.create_team_page.header_page_name, 'Create a New Team') self.assertEqual( self.create_team_page.header_page_description, 'Create a new team if you can\'t find existing teams to join, ' 'or if you would like to learn with friends you know.' ) self.assertEqual(self.create_team_page.header_page_breadcrumbs, self.topic['name']) def verify_and_navigate_to_create_team_page(self): """Navigates to the create team page and verifies.""" self.browse_teams_page.click_create_team_link() self.verify_page_header() def fill_create_form(self): """Fill the create team form fields with appropriate values.""" self.create_team_page.value_for_text_field(field_id='name', value=self.team_name, press_enter=False) self.create_team_page.value_for_textarea_field( field_id='description', value='The Avengers are a fictional team of superheroes.' ) self.create_team_page.value_for_dropdown_field(field_id='language', value='English') self.create_team_page.value_for_dropdown_field(field_id='country', value='Pakistan') def test_user_can_see_create_team_page(self): """ Scenario: The user should be able to see the create team page via teams list page. Given I am enrolled in a course with a team configuration and a topic When I visit the Teams page for that topic Then I should see the Create Team page link on bottom And When I click create team link Then I should see the create team page. And I should see the create team header And I should also see the help messages for fields. """ self.verify_and_navigate_to_create_team_page() self.assertEqual( self.create_team_page.message_for_field('name'), 'A name that identifies your team (maximum 255 characters).' ) self.assertEqual( self.create_team_page.message_for_textarea_field('description'), 'A short description of the team to help other learners understand ' 'the goals or direction of the team (maximum 300 characters).' ) self.assertEqual( self.create_team_page.message_for_field('country'), 'The country that team members primarily identify with.' ) self.assertEqual( self.create_team_page.message_for_field('language'), 'The language that team members primarily use to communicate with each other.' ) def test_user_can_see_error_message_for_missing_data(self): """ Scenario: The user should be able to see error message in case of missing required field. Given I am enrolled in a course with a team configuration and a topic When I visit the Create Team page for that topic Then I should see the Create Team header and form And When I click create team button without filling required fields Then I should see the error message and highlighted fields. """ self.verify_and_navigate_to_create_team_page() self.create_team_page.submit_form() self.assertEqual( self.create_team_page.validation_message_text, 'Check the highlighted fields below and try again.' ) self.assertTrue(self.create_team_page.error_for_field(field_id='name')) self.assertTrue(self.create_team_page.error_for_field(field_id='description')) def test_user_can_see_error_message_for_incorrect_data(self): """ Scenario: The user should be able to see error message in case of increasing length for required fields. Given I am enrolled in a course with a team configuration and a topic When I visit the Create Team page for that topic Then I should see the Create Team header and form When I add text > than 255 characters for name field And I click Create button Then I should see the error message for exceeding length. """ self.verify_and_navigate_to_create_team_page() # Fill the name field with >255 characters to see validation message. self.create_team_page.value_for_text_field( field_id='name', value='EdX is a massive open online course (MOOC) provider and online learning platform. ' 'It hosts online university-level courses in a wide range of disciplines to a worldwide ' 'audience, some at no charge. It also conducts research into learning based on how ' 'people use its platform. EdX was created for students and institutions that seek to' 'transform themselves through cutting-edge technologies, innovative pedagogy, and ' 'rigorous courses. More than 70 schools, nonprofits, corporations, and international' 'organizations offer or plan to offer courses on the edX website. As of 22 October 2014,' 'edX has more than 4 million users taking more than 500 courses online.', press_enter=False ) self.create_team_page.submit_form() self.assertEqual( self.create_team_page.validation_message_text, 'Check the highlighted fields below and try again.' ) self.assertTrue(self.create_team_page.error_for_field(field_id='name')) def test_user_can_create_new_team_successfully(self): """ Scenario: The user should be able to create new team. Given I am enrolled in a course with a team configuration and a topic When I visit the Create Team page for that topic Then I should see the Create Team header and form When I fill all the fields present with appropriate data And I click Create button Then I should see the page for my team And I should see the message that says "You are member of this team" And the new team should be added to the list of teams within the topic And the number of teams should be updated on the topic card And if I switch to "My Team", the newly created team is displayed """ self.verify_and_navigate_to_create_team_page() self.fill_create_form() self.create_team_page.submit_form() # Verify that the page is shown for the new team team_page = TeamPage(self.browser, self.course_id) team_page.wait_for_page() self.assertEqual(team_page.team_name, self.team_name) self.assertEqual(team_page.team_description, 'The Avengers are a fictional team of superheroes.') self.assertEqual(team_page.team_user_membership_text, 'You are a member of this team.') # Verify the new team was added to the topic list self.teams_page.click_specific_topic("Example Topic") self.teams_page.verify_topic_team_count(1) self.teams_page.click_all_topics() self.teams_page.verify_team_count_in_first_topic(1) # Verify that if one switches to "My Team" without reloading the page, the newly created team is shown. self.verify_my_team_count(1) def test_user_can_cancel_the_team_creation(self): """ Scenario: The user should be able to cancel the creation of new team. Given I am enrolled in a course with a team configuration and a topic When I visit the Create Team page for that topic Then I should see the Create Team header and form When I click Cancel button Then I should see teams list page without any new team. And if I switch to "My Team", it shows no teams """ self.assertEqual(self.browse_teams_page.get_pagination_header_text(), 'Showing 0 out of 0 total') self.verify_and_navigate_to_create_team_page() self.create_team_page.cancel_team() self.assertTrue(self.browse_teams_page.is_browser_on_page()) self.assertEqual(self.browse_teams_page.get_pagination_header_text(), 'Showing 0 out of 0 total') self.teams_page.click_all_topics() self.teams_page.verify_team_count_in_first_topic(0) self.verify_my_team_count(0) @attr('shard_5') @ddt.ddt class TeamPageTest(TeamsTabBase): """Tests for viewing a specific team""" SEND_INVITE_TEXT = 'Send this link to friends so that they can join too.' def setUp(self): super(TeamPageTest, self).setUp() self.topic = {u"name": u"Example Topic", u"id": "example_topic", u"description": "Description"} def _set_team_configuration_and_membership( self, max_team_size=10, membership_team_index=0, visit_team_index=0, create_membership=True, another_user=False): """ Set team configuration. Arguments: max_team_size (int): number of users a team can have membership_team_index (int): index of team user will join visit_team_index (int): index of team user will visit create_membership (bool): whether to create membership or not another_user (bool): another user to visit a team """ #pylint: disable=attribute-defined-outside-init self.set_team_configuration( {'course_id': self.course_id, 'max_team_size': max_team_size, 'topics': [self.topic]} ) self.teams = self.create_teams(self.topic, 2) if create_membership: self.create_membership(self.user_info['username'], self.teams[membership_team_index]['id']) if another_user: AutoAuthPage(self.browser, course_id=self.course_id).visit() self.team_page = TeamPage(self.browser, self.course_id, self.teams[visit_team_index]) def setup_thread(self): """ Create and return a thread for this test's discussion topic. """ thread = Thread( id="test_thread_{}".format(uuid4().hex), commentable_id=self.teams[0]['discussion_topic_id'], body="Dummy text body." ) thread_fixture = MultipleThreadFixture([thread]) thread_fixture.push() return thread def setup_discussion_user(self, role=None, staff=False): """Set this test's user to have the given role in its discussions. Role is one of 'Community TA', 'Moderator', 'Administrator', or 'Student'. """ kwargs = { 'course_id': self.course_id, 'staff': staff } if role is not None: kwargs['roles'] = role #pylint: disable=attribute-defined-outside-init self.user_info = AutoAuthPage(self.browser, **kwargs).visit().user_info def verify_teams_discussion_permissions(self, should_have_permission): """Verify that the teams discussion component is in the correct state for the test user. If `should_have_permission` is True, assert that the user can see controls for posting replies, voting, editing, and deleting. Otherwise, assert that those controls are hidden. """ thread = self.setup_thread() self.team_page.visit() self.assertEqual(self.team_page.discussion_id, self.teams[0]['discussion_topic_id']) discussion = self.team_page.discussion_page self.assertTrue(discussion.is_browser_on_page()) self.assertTrue(discussion.is_discussion_expanded()) self.assertEqual(discussion.get_num_displayed_threads(), 1) self.assertTrue(discussion.has_thread(thread['id'])) assertion = self.assertTrue if should_have_permission else self.assertFalse assertion(discussion.q(css='.post-header-actions').present) assertion(discussion.q(css='.add-response').present) assertion(discussion.q(css='.new-post-btn').present) def test_discussion_on_my_team_page(self): """ Scenario: Team Page renders a discussion for a team to which I belong. Given I am enrolled in a course with a team configuration, a topic, and a team belonging to that topic of which I am a member When the team has a discussion with a thread And I visit the Team page for that team Then I should see a discussion with the correct discussion_id And I should see the existing thread And I should see controls to change the state of the discussion """ self._set_team_configuration_and_membership() self.verify_teams_discussion_permissions(True) @ddt.data(True, False) def test_discussion_on_other_team_page(self, is_staff): """ Scenario: Team Page renders a team discussion for a team to which I do not belong. Given I am enrolled in a course with a team configuration, a topic, and a team belonging to that topic of which I am not a member When the team has a discussion with a thread And I visit the Team page for that team Then I should see a discussion with the correct discussion_id And I should see the team's thread And I should not see controls to change the state of the discussion """ self._set_team_configuration_and_membership(create_membership=False) self.setup_discussion_user(staff=is_staff) self.verify_teams_discussion_permissions(False) @ddt.data('Moderator', 'Community TA', 'Administrator') def test_discussion_privileged(self, role): self._set_team_configuration_and_membership(create_membership=False) self.setup_discussion_user(role=role) self.verify_teams_discussion_permissions(True) def assert_team_details(self, num_members, is_member=True, max_size=10): """ Verifies that user can see all the information, present on detail page according to their membership status. Arguments: num_members (int): number of users in a team is_member (bool) default True: True if request user is member else False max_size (int): number of users a team can have """ self.assertEqual( self.team_page.team_capacity_text, self.team_page.format_capacity_text(num_members, max_size) ) self.assertEqual(self.team_page.team_location, 'Afghanistan') self.assertEqual(self.team_page.team_language, 'Afar') self.assertEqual(self.team_page.team_members, num_members) if num_members > 0: self.assertTrue(self.team_page.team_members_present) else: self.assertFalse(self.team_page.team_members_present) if is_member: self.assertEqual(self.team_page.team_user_membership_text, 'You are a member of this team.') self.assertTrue(self.team_page.team_leave_link_present) self.assertTrue(self.team_page.new_post_button_present) else: self.assertEqual(self.team_page.team_user_membership_text, '') self.assertFalse(self.team_page.team_leave_link_present) self.assertFalse(self.team_page.new_post_button_present) def test_team_member_can_see_full_team_details(self): """ Scenario: Team member can see full info for team. Given I am enrolled in a course with a team configuration, a topic, and a team belonging to that topic of which I am a member When I visit the Team page for that team Then I should see the full team detail And I should see the team members And I should see my team membership text And I should see the language & country And I should see the Leave Team and Invite Team """ self._set_team_configuration_and_membership() self.team_page.visit() self.assert_team_details( num_members=1, ) def test_other_users_can_see_limited_team_details(self): """ Scenario: Users who are not member of this team can only see limited info for this team. Given I am enrolled in a course with a team configuration, a topic, and a team belonging to that topic of which I am not a member When I visit the Team page for that team Then I should not see full team detail And I should see the team members And I should not see my team membership text And I should not see the Leave Team and Invite Team links """ self._set_team_configuration_and_membership(create_membership=False) self.team_page.visit() self.assert_team_details(is_member=False, num_members=0) def test_user_can_navigate_to_members_profile_page(self): """ Scenario: User can navigate to profile page via team member profile image. Given I am enrolled in a course with a team configuration, a topic, and a team belonging to that topic of which I am a member When I visit the Team page for that team Then I should see profile images for the team members When I click on the first profile image Then I should be taken to the user's profile page And I should see the username on profile page """ self._set_team_configuration_and_membership() self.team_page.visit() learner_name = self.team_page.first_member_username self.team_page.click_first_profile_image() learner_profile_page = LearnerProfilePage(self.browser, learner_name) learner_profile_page.wait_for_page() learner_profile_page.wait_for_field('username') self.assertTrue(learner_profile_page.field_is_visible('username')) def test_join_team(self): """ Scenario: User can join a Team if not a member already.. Given I am enrolled in a course with a team configuration, a topic, and a team belonging to that topic And I visit the Team page for that team Then I should see Join Team button And I should not see New Post button When I click on Join Team button Then there should be no Join Team button and no message And I should see the updated information under Team Details And I should see New Post button And if I switch to "My Team", the team I have joined is displayed """ self._set_team_configuration_and_membership(create_membership=False) self.team_page.visit() self.assertTrue(self.team_page.join_team_button_present) self.team_page.click_join_team_button() self.assertFalse(self.team_page.join_team_button_present) self.assertFalse(self.team_page.join_team_message_present) self.assert_team_details(num_members=1, is_member=True) # Verify that if one switches to "My Team" without reloading the page, the newly created team is shown. self.teams_page.click_all_topics() self.verify_my_team_count(1) def test_already_member_message(self): """ Scenario: User should see `You are already in a team` if user is a member of other team. Given I am enrolled in a course with a team configuration, a topic, and a team belonging to that topic And I am already a member of a team And I visit a team other than mine Then I should see `You are already in a team` message """ self._set_team_configuration_and_membership(membership_team_index=0, visit_team_index=1) self.team_page.visit() self.assertEqual(self.team_page.join_team_message, 'You already belong to another team.') self.assert_team_details(num_members=0, is_member=False) def test_team_full_message(self): """ Scenario: User should see `Team is full` message when team is full. Given I am enrolled in a course with a team configuration, a topic, and a team belonging to that topic And team has no space left And I am not a member of any team And I visit the team Then I should see `Team is full` message """ self._set_team_configuration_and_membership( create_membership=True, max_team_size=1, membership_team_index=0, visit_team_index=0, another_user=True ) self.team_page.visit() self.assertEqual(self.team_page.join_team_message, 'This team is full.') self.assert_team_details(num_members=1, is_member=False, max_size=1) def test_leave_team(self): """ Scenario: User can leave a team. Given I am enrolled in a course with a team configuration, a topic, and a team belonging to that topic And I am a member of team And I visit the team And I should not see Join Team button And I should see New Post button Then I should see Leave Team link When I click on Leave Team link Then user should be removed from team And I should see Join Team button And I should not see New Post button And if I switch to "My Team", the team I have left is not displayed """ self._set_team_configuration_and_membership() self.team_page.visit() self.assertFalse(self.team_page.join_team_button_present) self.assert_team_details(num_members=1) self.team_page.click_leave_team_link() self.assert_team_details(num_members=0, is_member=False) self.assertTrue(self.team_page.join_team_button_present) # Verify that if one switches to "My Team" without reloading the page, the old team no longer shows. self.teams_page.click_all_topics() self.verify_my_team_count(0)
zerobatu/edx-platform
common/test/acceptance/tests/lms/test_teams.py
Python
agpl-3.0
50,559
[ "VisIt" ]
8617aedf98c8d8b02d476a672f3dd751a0e4affd5c7a96f378223f10c7e26bad
""" This handler basically provides a REST interface to interact with the OAuth 2 authentication server .. literalinclude:: ../ConfigTemplate.cfg :start-after: ##BEGIN Auth: :end-before: ##END :dedent: 2 :caption: Auth options """ import json import pprint from dominate import tags as dom from DIRAC import gConfig from DIRAC.Core.Tornado.Server.TornadoREST import location, TornadoREST from DIRAC.ConfigurationSystem.Client.Helpers.Registry import getIdPForGroup, getGroupsForUser from DIRAC.FrameworkSystem.private.authorization.AuthServer import AuthServer from DIRAC.FrameworkSystem.private.authorization.utils.Requests import createOAuth2Request from DIRAC.FrameworkSystem.private.authorization.grants.DeviceFlow import DeviceAuthorizationEndpoint from DIRAC.FrameworkSystem.private.authorization.grants.RevokeToken import RevocationEndpoint from DIRAC.FrameworkSystem.private.authorization.utils.Utilities import getHTML class AuthHandler(TornadoREST): # Authorization access to all methods handled by AuthServer instance DEFAULT_AUTHENTICATION = ["JWT", "VISITOR"] DEFAULT_AUTHORIZATION = "all" DEFAULT_LOCATION = "/auth" @classmethod def initializeHandler(cls, serviceInfo): """This method is called only one time, at the first request :param dict ServiceInfoDict: infos about services """ cls.server = AuthServer() cls.server.LOCATION = cls.DEFAULT_LOCATION def initializeRequest(self): """Called at every request""" self.currentPath = self.request.protocol + "://" + self.request.host + self.request.path @location(".well-known/(?:oauth-authorization-server|openid-configuration)") def get_index(self): """Well known endpoint, specified by `RFC8414 <https://tools.ietf.org/html/rfc8414#section-3>`_ Request examples:: GET: LOCATION/.well-known/openid-configuration GET: LOCATION/.well-known/oauth-authorization-server Responce:: HTTP/1.1 200 OK Content-Type: application/json { "registration_endpoint": "https://domain.com/auth/register", "userinfo_endpoint": "https://domain.com/auth/userinfo", "jwks_uri": "https://domain.com/auth/jwk", "code_challenge_methods_supported": [ "S256" ], "grant_types_supported": [ "authorization_code", "code", "refresh_token" ], "token_endpoint": "https://domain.com/auth/token", "response_types_supported": [ "code", "device", "id_token token", "id_token", "token" ], "authorization_endpoint": "https://domain.com/auth/authorization", "issuer": "https://domain.com/auth" } """ if self.request.method == "GET": resDict = dict( setups=gConfig.getSections("DIRAC/Setups").get("Value", []), configuration_server=gConfig.getValue("/DIRAC/Configuration/MasterServer", ""), ) resDict.update(self.server.metadata) resDict.pop("Clients", None) return resDict def get_jwk(self): """JWKs endpoint Request example:: GET LOCATION/jwk Response:: HTTP/1.1 200 OK Content-Type: application/json { "keys": [ { "e": "AQAB", "kty": "RSA", "n": "3Vv5h5...X3Y7k" } ] } """ result = self.server.db.getKeySet() return result["Value"].as_dict() if result["OK"] else {} def post_revoke(self): """Revocation endpoint Request example:: GET LOCATION/revoke Response:: HTTP/1.1 200 OK Content-Type: application/json """ self.log.verbose("Initialize a Device authentication flow.") return self.server.create_endpoint_response(RevocationEndpoint.ENDPOINT_NAME, self.request) def get_userinfo(self): """The UserInfo endpoint can be used to retrieve identity information about a user, see `spec <https://openid.net/specs/openid-connect-core-1_0.html#UserInfo>`_ GET LOCATION/userinfo Parameters: +---------------+--------+---------------------------------+--------------------------------------------------+ | **name** | **in** | **description** | **example** | +---------------+--------+---------------------------------+--------------------------------------------------+ | Authorization | header | Provide access token | Bearer jkagfbfd3r4ubf887gqduyqwogasd87 | +---------------+--------+---------------------------------+--------------------------------------------------+ Request example:: GET LOCATION/userinfo Authorization: Bearer <access_token> Response:: HTTP/1.1 200 OK Content-Type: application/json { "sub": "248289761001", "name": "Bob Smith", "given_name": "Bob", "family_name": "Smith", "group": [ "dirac_user", "dirac_admin" ] } """ return self.getRemoteCredentials() def post_device(self, provider=None, user_code=None, client_id=None): """The device authorization endpoint can be used to request device and user codes. This endpoint is used to start the device flow authorization process and user code verification. POST LOCATION/device/<provider>?<query> Parameters: +----------------+--------+-------------------------------------------+---------------------------------------+ | **name** | **in** | **description** | **example** | +----------------+--------+-------------------------------------------+---------------------------------------+ | user code | query | in the last step to confirm recived user | WE8R-WEN9 | | | | code put it as query parameter (optional) | | | | | It's possible to add it interactively. | | +----------------+--------+-------------------------------------------+---------------------------------------+ | client_id | query | The public client ID | 3f6eNw0E6JGq1VuzRkpWUL9XTxhL86efZw | +----------------+--------+-------------------------------------------+---------------------------------------+ | scope | query | list of scoupes separated by a space, to | g:dirac_user | | | | add a group you must add "g:" before the | | | | | group name | | +----------------+--------+-------------------------------------------+---------------------------------------+ | provider | path | identity provider to autorize (optional) | CheckIn | | | | It's possible to add it interactively. | | +----------------+--------+-------------------------------------------+---------------------------------------+ Request example, to initialize a Device authentication flow:: POST LOCATION/device/CheckIn_dev?client_id=3f1DAj8z6eNw0E6JGq1Vu6efZwyV&scope=g:dirac_admin Response:: HTTP/1.1 200 OK Content-Type: application/json { "device_code": "TglwLiow0HUwowjB9aHH5HqH3bZKP9d420LkNhCEuR", "verification_uri": "https://marosvn32.in2p3.fr/auth/device", "interval": 5, "expires_in": 1800, "verification_uri_complete": "https://marosvn32.in2p3.fr/auth/device/WSRL-HJMR", "user_code": "WSRL-HJMR" } Request example, to confirm the user code:: POST LOCATION/device/CheckIn_dev/WSRL-HJMR Response:: HTTP/1.1 200 OK """ self.log.verbose("Initialize a Device authentication flow.") return self.server.create_endpoint_response(DeviceAuthorizationEndpoint.ENDPOINT_NAME, self.request) def get_device(self, provider=None, user_code=None, client_id=None): """The device authorization endpoint can be used to request device and user codes. This endpoint is used to start the device flow authorization process and user code verification. User code confirmation:: GET LOCATION/device/<provider>?user_code=<user code> Response:: HTTP/1.1 200 OK """ if user_code: # If received a request with a user code, then prepare a request to authorization endpoint. self.log.verbose("User code verification.") result = self.server.db.getSessionByUserCode(user_code) if not result["OK"] or not result["Value"]: return getHTML( "session is expired.", theme="warning", body=result.get("Message"), info="Seems device code flow authorization session %s expired." % user_code, ) session = result["Value"] # Get original request from session req = createOAuth2Request(dict(method="GET", uri=session["uri"])) req.setQueryArguments(id=session["id"], user_code=user_code) # Save session to cookie and redirect to authorization endpoint authURL = "%s?%s" % (req.path.replace("device", "authorization"), req.query) return self.server.handle_response(302, {}, [("Location", authURL)], session) # If received a request without a user code, then send a form to enter the user code with dom.div(cls="row mt-5 justify-content-md-center") as tag: with dom.div(cls="col-auto"): dom.div( dom.form( dom._input(type="text", name="user_code"), dom.button("Submit", type="submit", cls="btn btn-submit"), action=self.currentPath, method="GET", ), cls="card", ) return getHTML( "user code verification..", body=tag, icon="ticket-alt", info="Device flow required user code. You will need to type user code to continue.", ) def get_authorization(self, provider=None, **kwargs): """Authorization endpoint GET: LOCATION/authorization/<provider> Parameters: +----------------+--------+-------------------------------------------+---------------------------------------+ | **name** | **in** | **description** | **example** | +----------------+--------+-------------------------------------------+---------------------------------------+ | response_type | query | informs of the desired grant type | code | +----------------+--------+-------------------------------------------+---------------------------------------+ | client_id | query | The client ID | 3f6eNw0E6JGq1VuzRkpWUL9XTxhL86efZw | +----------------+--------+-------------------------------------------+---------------------------------------+ | scope | query | list of scoupes separated by a space, to | g:dirac_user | | | | add a group you must add "g:" before the | | | | | group name | | +----------------+--------+-------------------------------------------+---------------------------------------+ | provider | path | identity provider to autorize (optional) | CheckIn | | | | It's possible to add it interactively. | | +----------------+--------+-------------------------------------------+---------------------------------------+ General options: provider -- identity provider to autorize Device flow: &user_code=.. (required) Authentication code flow: &scope=.. (optional) &redirect_uri=.. (optional) &state=.. (main session id, optional) &code_challenge=.. (PKCE, optional) &code_challenge_method=(pain|S256) ('pain' by default, optional) """ return self.server.validate_consent_request(self.request, provider) def get_redirect(self, state, error=None, error_description="", chooseScope=[]): """Redirect endpoint. After a user successfully authorizes an application, the authorization server will redirect the user back to the application with either an authorization code or access token in the URL. The full URL of this endpoint must be registered in the identity provider. Read more in `oauth.com <https://www.oauth.com/oauth2-servers/redirect-uris/>`_. Specified by `RFC6749 <https://tools.ietf.org/html/rfc6749#section-3.1.2>`_. GET LOCATION/redirect :param str state: Current IdP session state :param str error: IdP error response :param str error_description: error description :param list chooseScope: to specify new scope(group in our case) (optional) :return: S_OK()/S_ERROR() """ # Check current auth session that was initiated for the selected external identity provider session = self.get_secure_cookie("auth_session") if not session: return self.server.handle_response( payload=getHTML( "session is expired.", theme="warning", state=400, info="Seems %s session is expired, please, try again." % state, ), delSession=True, ) sessionWithExtIdP = json.loads(session) if state and not sessionWithExtIdP.get("state") == state: return self.server.handle_response( payload=getHTML( "session is expired.", theme="warning", state=400, info="Seems %s session is expired, please, try again." % state, ), delSession=True, ) # Try to catch errors if the authorization on the selected identity provider was unsuccessful if error: provider = sessionWithExtIdP.get("Provider") return self.server.handle_response( payload=getHTML( error, theme="error", body=error_description, info="Seems %s session is failed on the %s's' side." % (state, provider), ), delSession=True, ) if not sessionWithExtIdP.get("authed"): # Parse result of the second authentication flow self.log.info("%s session, parsing authorization response:\n" % state, self.request.uri) result = self.server.parseIdPAuthorizationResponse(self.request, sessionWithExtIdP) if not result["OK"]: if result["Message"].startswith("<!DOCTYPE html>"): return self.server.handle_response(payload=result["Message"], delSession=True) return self.server.handle_response( payload=getHTML("server error", state=500, info=result["Message"]), delSession=True ) # Return main session flow sessionWithExtIdP["authed"] = result["Value"] # Research group grant_user, response = self.__researchDIRACGroup(sessionWithExtIdP, chooseScope, state) if not grant_user: return response # RESPONSE to basic DIRAC client request resp = self.server.create_authorization_response(response, grant_user) if isinstance(resp.payload, str) and not resp.payload.startswith("<!DOCTYPE html>"): resp.payload = getHTML("authorization response", state=resp.status_code, body=resp.payload) return resp def post_token(self): """The token endpoint, the description of the parameters will differ depending on the selected grant_type POST LOCATION/token Parameters: +----------------+--------+-------------------------------+---------------------------------------------------+ | **name** | **in** | **description** | **example** | +----------------+--------+-------------------------------+---------------------------------------------------+ | grant_type | query | grant type to use | urn:ietf:params:oauth:grant-type:device_code | +----------------+--------+-------------------------------+---------------------------------------------------+ | client_id | query | The public client ID | 3f1DAj8z6eNw0E6JGq1VuzRkpWUL9XTxhL86efZw | +----------------+--------+-------------------------------+---------------------------------------------------+ | device_code | query | device code | uW5xL4hr2tqwBPKL5d0JO9Fcc67gLqhJsNqYTSp | +----------------+--------+-------------------------------+---------------------------------------------------+ :mod:`Supported grant types <DIRAC.FrameworkSystem.private.authorization.grants>` Request example:: POST LOCATION/token?client_id=L86..yV&grant_type=urn:ietf:params:oauth:grant-type:device_code&device_code=uW5 Response:: HTTP/1.1 400 OK Content-Type: application/json { "error": "authorization_pending" } """ return self.server.create_token_response(self.request) def __researchDIRACGroup(self, extSession, chooseScope, state): """Research DIRAC groups for authorized user :param dict extSession: ended authorized external IdP session :return: -- will return (None, response) to provide error or group selector will return (grant_user, request) to contionue authorization with choosed group """ # Base DIRAC client auth session firstRequest = createOAuth2Request(extSession["firstRequest"]) # Read requested groups by DIRAC client or user firstRequest.addScopes(chooseScope) # Read already authed user username = extSession["authed"]["username"] # Requested arguments in first request provider = firstRequest.provider self.log.debug("Next groups has been found for %s:" % username, ", ".join(firstRequest.groups)) # Researche Group result = getGroupsForUser(username) if not result["OK"]: return None, self.server.handle_response( payload=getHTML("server error", theme="error", info=result["Message"]), delSession=True ) groups = result["Value"] validGroups = [ group for group in groups if (getIdPForGroup(group) == provider) or ("proxy" in firstRequest.scope) ] if not validGroups: return None, self.server.handle_response( payload=getHTML( "groups not found.", theme="error", info=f"No groups found for {username} and for {provider} Identity Provider.", ), delSession=True, ) self.log.debug("The state of %s user groups has been checked:" % username, pprint.pformat(validGroups)) # If group already defined in first request, just return it if firstRequest.groups: return extSession["authed"], firstRequest # If not and we found only one valid group, apply this group if len(validGroups) == 1: firstRequest.addScopes(["g:%s" % validGroups[0]]) return extSession["authed"], firstRequest # Else give user chanse to choose group in browser with dom.div(cls="row mt-5 justify-content-md-center align-items-center") as tag: for group in sorted(validGroups): vo, gr = group.split("_") with dom.div(cls="col-auto p-2").add(dom.div(cls="card shadow-lg border-0 text-center p-2")): dom.h4(vo.upper() + " " + gr, cls="p-2") dom.a(href="%s?state=%s&chooseScope=g:%s" % (self.currentPath, state, group), cls="stretched-link") html = getHTML( "group selection..", body=tag, icon="users", info="Dirac use groups to describe permissions. " "You will need to select one of the groups to continue.", ) return None, self.server.handle_response(payload=html, newSession=extSession)
DIRACGrid/DIRAC
src/DIRAC/FrameworkSystem/API/AuthHandler.py
Python
gpl-3.0
22,010
[ "DIRAC" ]
ecf64c9f29117fa8d8b937412d19da8ae573d06a50ac2b582c2c2777a69654c1
# Copyright (C) 2012,2013,2015 # Max Planck Institute for Polymer Research # Copyright (C) 2008,2009,2010,2011 # Max-Planck-Institute for Polymer Research & Fraunhofer SCAI # # This file is part of ESPResSo++. # # ESPResSo++ is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # ESPResSo++ is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. r""" ************************ espressopp.ParticleGroup ************************ .. function:: espressopp.ParticleGroup(storage) :param storage: :type storage: .. function:: espressopp.ParticleGroup.add(pid) :param pid: :type pid: :rtype: .. function:: espressopp.ParticleGroup.has(pid) :param pid: :type pid: :rtype: .. function:: espressopp.ParticleGroup.show() :rtype: .. function:: espressopp.ParticleGroup.size() :rtype: """ import _espressopp import esutil import pmi from espressopp.esutil import cxxinit class ParticleGroupLocal(_espressopp.ParticleGroup): def __init__(self, storage): if pmi.workerIsActive(): cxxinit(self, _espressopp.ParticleGroup, storage) def add(self, pid): if pmi.workerIsActive(): self.cxxclass.add(self, pid) def show(self): if pmi.workerIsActive(): self.cxxclass.show(self) def has(self, pid): if pmi.workerIsActive(): return self.cxxclass.has(self, pid) def size(self): if pmi.workerIsActive(): return self.cxxclass.size(self) if pmi.isController: class ParticleGroup(object): __metaclass__ = pmi.Proxy pmiproxydefs = dict( cls = 'espressopp.ParticleGroupLocal', pmicall = [ "add", "show", "has", "size" ] )
fedepad/espressopp
src/ParticleGroup.py
Python
gpl-3.0
2,244
[ "ESPResSo" ]
aeff8bcf0c31118ec17b5df32e97cdb06e59c28f589eb11f1dcab4b7b6a53595
# Copyright 2014 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from math import exp import sys import ConfigParser as cfg import os import numpy as n import numpy.random as nr from math import ceil, floor from collections import OrderedDict from os import linesep as NL from python_util.options import OptionsParser import re class LayerParsingError(Exception): pass # A neuron that doesn't take parameters class NeuronParser: def __init__(self, type, func_str, uses_acts=True, uses_inputs=True): self.type = type self.func_str = func_str self.uses_acts = uses_acts self.uses_inputs = uses_inputs def parse(self, type): if type == self.type: return {'type': self.type, 'params': {}, 'usesActs': self.uses_acts, 'usesInputs': self.uses_inputs} return None # A neuron that takes parameters class ParamNeuronParser(NeuronParser): neuron_regex = re.compile(r'^\s*(\w+)\s*\[\s*(\w+(\s*,\w+)*)\s*\]\s*$') def __init__(self, type, func_str, uses_acts=True, uses_inputs=True): NeuronParser.__init__(self, type, func_str, uses_acts, uses_inputs) m = self.neuron_regex.match(type) self.base_type = m.group(1) self.param_names = m.group(2).split(',') assert len(set(self.param_names)) == len(self.param_names) def parse(self, type): m = re.match(r'^%s\s*\[([\d,\.\s\-]*)\]\s*$' % self.base_type, type) if m: try: param_vals = [float(v.strip()) for v in m.group(1).split(',')] if len(param_vals) == len(self.param_names): return {'type': self.base_type, 'params': dict(zip(self.param_names, param_vals)), 'usesActs': self.uses_acts, 'usesInputs': self.uses_inputs} except TypeError: pass return None class AbsTanhNeuronParser(ParamNeuronParser): def __init__(self): ParamNeuronParser.__init__(self, 'abstanh[a,b]', 'f(x) = a * |tanh(b * x)|') def parse(self, type): dic = ParamNeuronParser.parse(self, type) # Make b positive, since abs(tanh(bx)) = abs(tanh(-bx)) and the C++ code # assumes b is positive. if dic: dic['params']['b'] = abs(dic['params']['b']) return dic class ParamParser: lrs_regex = re.compile(r'^\s*(\w+)\s*(?:\[\s*(\w+(\s*;\w+)*)\s*\])?\s*$') param_converters = {'i': int, 'f': float} def __init__(self, type): m = self.lrs_regex.match(type) self.base_type = m.group(1) param_names_with_type = m.group(2).split(';') if m.group(2) is not None else [] self.param_names = [p[1:] for p in param_names_with_type] self.param_types = [self.param_converters[p[0]] for p in param_names_with_type] self.param_regex_inner = ";".join([('\s*%s\s*=\s*[^;,\s=]+\s*' % p) for p in self.param_names]) self.regex_str = ('^%s\s*(?:\[(%s)\])?\s*$') % (self.base_type, self.param_regex_inner) assert len(set(self.param_names)) == len(self.param_names) def parse(self, type): m = re.match(self.regex_str, type, flags=re.IGNORECASE) if m: try: param_vals = [ptype(v.split('=')[1].strip()) for ptype,v in zip(self.param_types, m.group(1).split(';'))] if m.group(1) is not None else [] if len(param_vals) == len(self.param_names): return {'type': self.base_type, 'params': dict(zip(self.param_names, param_vals))} except TypeError: pass return None # Subclass that throws more convnet-specific exceptions than the default class MyConfigParser(cfg.SafeConfigParser): def safe_get(self, section, option, f=cfg.SafeConfigParser.get, typestr=None, default=None): try: return f(self, section, option) except cfg.NoOptionError, e: if default is not None: return default raise LayerParsingError("Layer '%s': required parameter '%s' missing" % (section, option)) except ValueError, e: if typestr is None: raise e raise LayerParsingError("Layer '%s': parameter '%s' must be %s" % (section, option, typestr)) def safe_get_list(self, section, option, f=str, typestr='strings', default=None): v = self.safe_get(section, option, default=default) if type(v) == list: return v try: return [f(x.strip()) for x in v.split(',')] except: raise LayerParsingError("Layer '%s': parameter '%s' must be ','-delimited list of %s" % (section, option, typestr)) def safe_get_int(self, section, option, default=None): return self.safe_get(section, option, f=cfg.SafeConfigParser.getint, typestr='int', default=default) def safe_get_float(self, section, option, default=None): return self.safe_get(section, option, f=cfg.SafeConfigParser.getfloat, typestr='float', default=default) def safe_get_bool(self, section, option, default=None): return self.safe_get(section, option, f=cfg.SafeConfigParser.getboolean, typestr='bool', default=default) def safe_get_float_list(self, section, option, default=None): return self.safe_get_list(section, option, float, typestr='floats', default=default) def safe_get_int_list(self, section, option, default=None): return self.safe_get_list(section, option, int, typestr='ints', default=default) def safe_get_bool_list(self, section, option, default=None): return self.safe_get_list(section, option, lambda x: x.lower() in ('true', '1'), typestr='bools', default=default) # A class that implements part of the interface of MyConfigParser class FakeConfigParser(object): def __init__(self, dic): self.dic = dic def safe_get(self, section, option, default=None): if option in self.dic: return self.dic[option] return default def safe_get_int(self, section, option, default=None): return int(self.safe_get(section, option, default)) def safe_get_int_list(self, section, option, default=None): return list(self.safe_get(section, option, default)) class LayerParser: def __init__(self): self.dic = {} self.set_defaults() # Post-processing step -- this is called after all layers have been initialized def optimize(self, layers): self.dic['actsTarget'] = -1 self.dic['actsGradTarget'] = -1 if len(set(len(l['gpu']) for l in layers.values() if 'inputs' in l and self.dic['name'] in l['inputs'])) > 1: # print set(len(l['gpu']) for l in layers.values()) raise LayerParsingError("Layer '%s': all next layers must have equal number of replicas." % (self.dic['name'])) def parse_params(self, vals, parsers, param_name, human_name, num_params=1): dic, name = self.dic, self.dic['name'] # print vals if len(vals) != num_params and len(vals) != 1: raise LayerParsingError("Layer '%s': expected list of length %d for %s but got list of length %d."% (name, num_params, param_name, len(vals))) parsed = [] # print vals for v in vals: for p in parsers: parsedv = p.parse(v) if parsedv: parsed += [parsedv] break if len(parsed) == 1 and num_params > 1: parsed = parsed * num_params if len(parsed) == num_params: return parsed # print parsed, vals raise LayerParsingError("Layer '%s': unable to parse %s %s=%s." % (name, human_name, param_name, ",".join(vals))) # Add parameters from layer parameter file def add_params(self, mcp): pass # self.dic['conserveMem'] = mcp.convnet.op.get_value('conserve_mem') if mcp.convnet is not None else 0 def init(self, dic): self.dic = dic return self def set_defaults(self): self.dic['outputs'] = 0 self.dic['parser'] = self self.dic['requiresParams'] = False # Does this layer use its own activity matrix # for some purpose other than computing its output? # Usually, this will only be true for layers that require their # own activity matrix for gradient computations. For example, layers # with logistic units must compute the gradient y * (1 - y), where y is # the activity matrix. # # Layers that do not not use their own activity matrix should advertise # this, since this will enable memory-saving matrix re-use optimizations. # # The default value of this property is True, for safety purposes. # If a layer advertises that it does not use its own activity matrix when # in fact it does, bad things will happen. self.dic['usesActs'] = True # Does this layer use the activity matrices of its input layers # for some purpose other than computing its output? # # Again true by default for safety self.dic['usesInputs'] = True # Force this layer to use its own activity gradient matrix, # instead of borrowing one from one of its inputs. # # This should be true for layers where the mapping from output # gradient to input gradient is non-elementwise. self.dic['forceOwnActs'] = True # Does this layer need the gradient at all? # Should only be true for layers with parameters (weights). self.dic['gradConsumer'] = False # The gpu indices on which this layer runs self.dic['gpu'] = [-1] def parse(self, name, mcp, prev_layers, model=None): self.prev_layers = prev_layers self.dic['name'] = name self.dic['type'] = mcp.safe_get(name, 'type') self.dic['id'] = len(prev_layers) return self.dic def verify_float_range(self, v, param_name, _min, _max): self.verify_num_range(v, param_name, _min, _max, strconv=lambda x: '%.3f' % x) def verify_num_range(self, v, param_name, _min, _max, strconv=lambda x:'%d' % x): if type(v) == list: for i,vv in enumerate(v): self._verify_num_range(vv, param_name, _min, _max, i, strconv=strconv) else: self._verify_num_range(v, param_name, _min, _max, strconv=strconv) def _verify_num_range(self, v, param_name, _min, _max, input=-1, strconv=lambda x:'%d' % x): layer_name = self.dic['name'] if input < 0 else '%s[%d]' % (self.dic['name'], input) if _min is not None and _max is not None and (v < _min or v > _max): raise LayerParsingError("Layer '%s': parameter '%s' must be in the range %s-%s" % (layer_name, param_name, strconv(_min), strconv(_max))) elif _min is not None and v < _min: raise LayerParsingError("Layer '%s': parameter '%s' must be greater than or equal to %s" % (layer_name, param_name, strconv(_min))) elif _max is not None and v > _max: raise LayerParsingError("Layer '%s': parameter '%s' must be smaller than or equal to %s" % (layer_name, param_name, strconv(_max))) def verify_divisible(self, value, div, value_name, div_name=None, input_idx=0): layer_name = self.dic['name'] if len(self.dic['inputs']) == 0 else '%s[%d]' % (self.dic['name'], input_idx) if value % div != 0: raise LayerParsingError("Layer '%s': parameter '%s' must be divisible by %s" % (layer_name, value_name, str(div) if div_name is None else "'%s'" % div_name)) def verify_str_in(self, value, param_name, lst, input_idx=-1): lname = self.dic['name'] if input_idx == -1 else ('%s[%d]' % (self.dic['name'], input_idx)) if value not in lst: raise LayerParsingError("Layer '%s': parameter '%s' must be one of %s" % (lname, param_name, ", ".join("'%s'" % s for s in lst))) def verify_int_in(self, value, param_name, lst): if value not in lst: raise LayerParsingError("Layer '%s': parameter '%s' must be one of %s" % (self.dic['name'], param_name, ", ".join("'%d'" % s for s in lst))) def verify_all_ints_in(self, values, param_name, lst): if len([v for v in values if v not in lst]) > 0: raise LayerParsingError("Layer '%s': all parameters to '%s' must be among %s" % (self.dic['name'], param_name, ", ".join("'%d'" % s for s in lst))) def verify_input_dims(self, dims): for i,d in enumerate(dims): if d is not None and self.dic['numInputs'][i] != d: # first input must be labels raise LayerParsingError("Layer '%s': dimensionality of input %d must be %d" % (self.dic['name'], i, d)) # This looks for neuron=x arguments in various layers, and creates # separate layer definitions for them. @staticmethod def detach_neuron_layers(layers): for name,l in layers.items(): if l['type'] != 'neuron' and 'neuron' in l and l['neuron']: NeuronLayerParser().detach_neuron_layer(name, layers) @staticmethod def parse_layers(layer_cfg_path, param_cfg_path, model, layers={}): try: if not os.path.exists(layer_cfg_path): raise LayerParsingError("Layer definition file '%s' does not exist" % layer_cfg_path) if not os.path.exists(param_cfg_path): raise LayerParsingError("Layer parameter file '%s' does not exist" % param_cfg_path) if len(layers) == 0: mcp = MyConfigParser(dict_type=OrderedDict) mcp.readfp(open(layer_cfg_path)) for name in mcp.sections(): if not mcp.has_option(name, 'type'): raise LayerParsingError("Layer '%s': no type given" % name) ltype = mcp.safe_get(name, 'type') if ltype not in layer_parsers: raise LayerParsingError("Layer '%s': Unknown layer type: '%s'" % (name, ltype)) layers[name] = layer_parsers[ltype]().parse(name, mcp, layers, model) LayerParser.detach_neuron_layers(layers) for l in layers.values(): l['parser'].optimize(layers) del l['parser'] for name,l in layers.items(): if not l['type'].startswith('cost.'): found = max(name in l2['inputs'] for l2 in layers.values() if 'inputs' in l2) if not found: raise LayerParsingError("Layer '%s' of type '%s' is unused" % (name, l['type'])) mcp = MyConfigParser(dict_type=OrderedDict) mcp.readfp(open(param_cfg_path)) # mcp.convnet = model for name,l in layers.items(): if not mcp.has_section(name) and l['requiresParams']: raise LayerParsingError("Layer '%s' of type '%s' requires extra parameters, but none given in file '%s'." % (name, l['type'], param_cfg_path)) lp = layer_parsers[l['type']]().init(l) lp.add_params(mcp) except LayerParsingError, e: print e sys.exit(1) return layers @staticmethod def register_layer_parser(ltype, cls): if ltype in layer_parsers: raise LayerParsingError("Layer type '%s' already registered" % ltype) layer_parsers[ltype] = cls # Any layer that takes an input (i.e. non-data layer) class LayerWithInputParser(LayerParser): def __init__(self, num_inputs=-1): LayerParser.__init__(self) self.num_inputs = num_inputs def verify_num_params(self, params, auto_expand=True): for param in params: if len(self.dic[param]) != len(self.dic['inputs']): if auto_expand and len(self.dic[param]) == 1: self.dic[param] *= len(self.dic['inputs']) else: raise LayerParsingError("Layer '%s': %s list length does not match number of inputs" % (self.dic['name'], param)) # layers: dictionary: name -> layer def optimize(self, layers): LayerParser.optimize(self, layers) dic = self.dic # Check if I have an input that no one else uses. #print "Layer %s optimizing" % dic['name'] if not dic['forceOwnActs']: for i, inp in enumerate(dic['inputLayers']): if inp['outputs'] == dic['outputs'] and sum(('inputs' in ll) and (inp['name'] in ll['inputs']) for ll in layers.itervalues()) == 1: # I can share my activity matrix with this layer # if it does not use its activity matrix, and I # do not need to remember my inputs. # TODO: a dropout layer should always be able to overwrite # its input. Make it so. # print "Layer %s(uses inputs=%d), input %s(uses acts = %d)" % (dic['name'], dic['usesInputs'], inp['name'], inp['usesActs']) if not inp['usesActs'] and not dic['usesInputs']: dic['actsTarget'] = i print "Layer %s using acts from layer %s" % (dic['name'], inp['name']) # print "Layer '%s' sharing activity matrix with layer '%s'" % (dic['name'], l['name']) # I can share my gradient matrix with this layer if we're on the same GPU. # This is different from the logic for actsTarget because this guy doesn't # have an actsGrad matrix on my GPU if our GPUs are different, so there's # nothing to share. if dic['gpu'] == inp['gpu']: dic['actsGradTarget'] = i # print "Layer '%s' sharing activity gradient matrix with layer '%s'" % (dic['name'], l['name']) def parse(self, name, mcp, prev_layers, model=None): dic = LayerParser.parse(self, name, mcp, prev_layers, model) dic['inputs'] = [inp.strip() for inp in mcp.safe_get(name, 'inputs').split(',')] for inp in dic['inputs']: if inp not in prev_layers: raise LayerParsingError("Layer '%s': input layer '%s' not defined" % (name, inp)) dic['inputLayers'] = [prev_layers[inp] for inp in dic['inputs']] dic['gpu'] = mcp.safe_get_int_list(name, 'gpu', default=dic['inputLayers'][0]['gpu']) dic['gpus'] = ", ".join('%s' % d for d in dic['gpu']) dic['numReplicas'] = len(dic['gpu']) if len(set(dic['gpu'])) != len(dic['gpu']): raise LayerParsingError("Layer '%s': all replicas must run on different GPUs." % (name)) for inp in dic['inputs']: # Data layers do not explicitly define how many replicas they have. # The number of replicas for a data layer is given by the number of replicas # in the next layer(s). So we set that here. inpl = prev_layers[inp] if inpl['type'] == 'data': inpl['numReplicas'] = dic['numReplicas'] if inpl['numReplicas'] % dic['numReplicas'] != 0: raise LayerParsingError("Layer '%s': number of replicas (%d) must divide number of replicas in all input layers (input %s has %d replicas)." % (name, dic['numReplicas'], inpl['name'], inpl['numReplicas'])) if len(set(inp['numReplicas'] for inp in dic['inputLayers'])) != 1: raise LayerParsingError("Layer '%s': all input layers must have equal numbers of replicas." % (name)) # Need to also assert that all *next* layers have equal number of replicas but this is hard so it's done in Layer.optimize for inp in dic['inputLayers']: if inp['outputs'] == 0: raise LayerParsingError("Layer '%s': input layer '%s' does not produce any output" % (name, inp['name'])) dic['numInputs'] = [inp['outputs'] for inp in dic['inputLayers']] # Layers can declare a neuron activation function to apply to their output, as a shortcut # to avoid declaring a separate neuron layer above themselves. dic['neuron'] = mcp.safe_get(name, 'neuron', default="") if self.num_inputs > 0 and len(dic['numInputs']) != self.num_inputs: raise LayerParsingError("Layer '%s': number of inputs must be %d" % (name, self.num_inputs)) if model: self.verify_all_ints_in(dic['gpu'], 'gpu', range(len(model.op.get_value('gpu')))) return dic def verify_img_size(self): dic = self.dic if dic['numInputs'][0] % dic['imgPixels'] != 0 or dic['imgSize'] * dic['imgSize'] != dic['imgPixels']: raise LayerParsingError("Layer '%s': has %-d dimensional input, not interpretable as %d-channel images" % (dic['name'], dic['numInputs'][0], dic['channels'])) @staticmethod def grad_consumers_below(dic): if dic['gradConsumer']: return True if 'inputLayers' in dic: return any(LayerWithInputParser.grad_consumers_below(l) for l in dic['inputLayers']) def verify_no_grads(self): if LayerWithInputParser.grad_consumers_below(self.dic): raise LayerParsingError("Layer '%s': layers of type '%s' cannot propagate gradient and must not be placed over layers with parameters." % (self.dic['name'], self.dic['type'])) class NailbedLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def parse(self, name, mcp, prev_layers, model=None): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['forceOwnActs'] = False dic['usesActs'] = False dic['usesInputs'] = False dic['channels'] = mcp.safe_get_int(name, 'channels') dic['stride'] = mcp.safe_get_int(name, 'stride') self.verify_num_range(dic['channels'], 'channels', 1, None) # Computed values dic['imgPixels'] = dic['numInputs'][0] / dic['channels'] dic['imgSize'] = int(n.sqrt(dic['imgPixels'])) dic['outputsX'] = (dic['imgSize'] + dic['stride'] - 1) / dic['stride'] dic['start'] = (dic['imgSize'] - dic['stride'] * (dic['outputsX'] - 1)) / 2 dic['outputs'] = dic['channels'] * dic['outputsX']**2 self.verify_num_range(dic['outputsX'], 'outputsX', 0, None) self.verify_img_size() print "Initialized bed-of-nails layer '%s' on GPUs %s, producing %dx%d %d-channel output" % (name, dic['gpus'], dic['outputsX'], dic['outputsX'], dic['channels']) return dic class GaussianBlurLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def parse(self, name, mcp, prev_layers, model=None): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['forceOwnActs'] = False dic['usesActs'] = False dic['usesInputs'] = False dic['outputs'] = dic['numInputs'][0] dic['channels'] = mcp.safe_get_int(name, 'channels') dic['filterSize'] = mcp.safe_get_int(name, 'filterSize') dic['stdev'] = mcp.safe_get_float(name, 'stdev') self.verify_num_range(dic['channels'], 'channels', 1, None) self.verify_int_in(dic['filterSize'], 'filterSize', [3, 5, 7, 9]) # Computed values dic['imgPixels'] = dic['numInputs'][0] / dic['channels'] dic['imgSize'] = int(n.sqrt(dic['imgPixels'])) dic['filter'] = n.array([exp(-(dic['filterSize']/2 - i)**2 / float(2 * dic['stdev']**2)) for i in xrange(dic['filterSize'])], dtype=n.float32).reshape(1, dic['filterSize']) dic['filter'] /= dic['filter'].sum() self.verify_img_size() if dic['filterSize'] > dic['imgSize']: raise LayerParsingError("Later '%s': filter size (%d) must be smaller than image size (%d)." % (dic['name'], dic['filterSize'], dic['imgSize'])) print "Initialized Gaussian blur layer '%s', producing %dx%d %d-channel output" % (name, dic['imgSize'], dic['imgSize'], dic['channels']) return dic class HorizontalReflectionLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def parse(self, name, mcp, prev_layers, model=None): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['outputs'] = dic['numInputs'][0] dic['channels'] = mcp.safe_get_int(name, 'channels') self.verify_num_range(dic['channels'], 'channels', 1, 3) # Computed values dic['imgPixels'] = dic['numInputs'][0] / dic['channels'] dic['imgSize'] = int(n.sqrt(dic['imgPixels'])) self.verify_img_size() print "Initialized horizontal reflection layer '%s', producing %dx%d %d-channel output" % (name, dic['imgSize'], dic['imgSize'], dic['channels']) return dic class ResizeLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def parse(self, name, mcp, prev_layers, model=None): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['forceOwnActs'] = False dic['usesActs'] = False dic['usesInputs'] = False dic['channels'] = mcp.safe_get_int(name, 'channels') dic['imgPixels'] = dic['numInputs'][0] / dic['channels'] dic['imgSize'] = int(n.sqrt(dic['imgPixels'])) dic['scale'] = mcp.safe_get_float(name, 'scale') dic['tgtSize'] = int(floor(dic['imgSize'] / dic['scale'])) dic['tgtPixels'] = dic['tgtSize']**2 self.verify_num_range(dic['channels'], 'channels', 1, None) # Really not recommended to use this for such severe scalings self.verify_float_range(dic['scale'], 'scale', 0.5, 2) dic['outputs'] = dic['channels'] * dic['tgtPixels'] self.verify_img_size() self.verify_no_grads() print "Initialized resize layer '%s', producing %dx%d %d-channel output" % (name, dic['tgtSize'], dic['tgtSize'], dic['channels']) return dic class RandomScaleLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def parse(self, name, mcp, prev_layers, model=None): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['forceOwnActs'] = False dic['usesActs'] = False dic['usesInputs'] = False dic['channels'] = mcp.safe_get_int(name, 'channels') self.verify_num_range(dic['channels'], 'channels', 1, None) # Computed values dic['imgPixels'] = dic['numInputs'][0] / dic['channels'] dic['imgSize'] = int(n.sqrt(dic['imgPixels'])) dic['maxScale'] = mcp.safe_get_float(name, 'maxScale') dic['tgtSize'] = mcp.safe_get_int(name, 'tgtSize') min_size = int(floor(dic['imgSize'] / dic['maxScale'])) max_size = dic['imgSize'] #int(floor(dic['imgSize'] * dic['maxScale'])) if dic['tgtSize'] < min_size: raise LayerParsingError("Layer '%s': target size must be greater than minimum image size after rescaling (%d)" % (name, min_size)) if dic['tgtSize'] > max_size: raise LayerParsingError("Layer '%s': target size must be smaller than maximum image size after rescaling (%d)" % (name, max_size)) dic['tgtPixels'] = dic['tgtSize']**2 self.verify_float_range(dic['maxScale'], 'maxScale', 1, 2) dic['outputs'] = dic['channels'] * dic['tgtPixels'] self.verify_img_size() self.verify_no_grads() print "Initialized random scale layer '%s', producing %dx%d %d-channel output" % (name, dic['tgtSize'], dic['tgtSize'], dic['channels']) return dic class CropLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def parse(self, name, mcp, prev_layers, model=None): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['forceOwnActs'] = False dic['usesActs'] = False dic['usesInputs'] = False dic['channels'] = mcp.safe_get_int(name, 'channels') self.verify_num_range(dic['channels'], 'channels', 1, None) dic['startX'] = mcp.safe_get_int(name, 'startX') dic['startY'] = mcp.safe_get_int(name, 'startY', default=dic['startX']) dic['sizeX'] = mcp.safe_get_int(name, 'sizeX') # Computed values dic['imgPixels'] = dic['numInputs'][0] / dic['channels'] dic['imgSize'] = int(n.sqrt(dic['imgPixels'])) dic['outputs'] = dic['channels'] * (dic['sizeX']**2) self.verify_num_range(dic['startX'], 'startX', 0, dic['imgSize']-1) self.verify_num_range(dic['sizeX'], 'sizeX', 1, dic['imgSize']) self.verify_num_range(dic['startY'], 'startY', 0, dic['imgSize']-1) self.verify_img_size() self.verify_no_grads() if dic['startX'] + dic['sizeX'] > dic['imgSize']: raise LayerParsingError("Layer '%s': startX (%d) + sizeX (%d) > imgSize (%d)" % (name, dic['startX'], dic['sizeX'], dic['imgSize'])) print "Initialized cropping layer '%s', producing %dx%d %d-channel output" % (name, dic['sizeX'], dic['sizeX'], dic['channels']) return dic class ColorTransformLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def parse(self, name, mcp, prev_layers, model=None): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['forceOwnActs'] = False dic['usesActs'] = False dic['usesInputs'] = False # Computed values dic['imgPixels'] = dic['numInputs'][0] / 3 dic['imgSize'] = int(n.sqrt(dic['imgPixels'])) dic['channels'] = 3 dic['outputs'] = dic['numInputs'][0] self.verify_img_size() self.verify_no_grads() return dic class RGBToYUVLayerParser(ColorTransformLayerParser): def __init__(self): ColorTransformLayerParser.__init__(self) def parse(self, name, mcp, prev_layers, model=None): dic = ColorTransformLayerParser.parse(self, name, mcp, prev_layers, model) print "Initialized RGB --> YUV layer '%s', producing %dx%d %d-channel output" % (name, dic['imgSize'], dic['imgSize'], dic['channels']) return dic class RGBToLABLayerParser(ColorTransformLayerParser): def __init__(self): ColorTransformLayerParser.__init__(self) def parse(self, name, mcp, prev_layers, model=None): dic = ColorTransformLayerParser.parse(self, name, mcp, prev_layers, model) dic['center'] = mcp.safe_get_bool(name, 'center', default=False) print "Initialized RGB --> LAB layer '%s', producing %dx%d %d-channel output" % (name, dic['imgSize'], dic['imgSize'], dic['channels']) return dic class NeuronLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) @staticmethod def get_unused_layer_name(layers, wish): if wish not in layers: return wish for i in xrange(1, 100): name = '%s.%d' % (wish, i) if name not in layers: return name raise LayerParsingError("This is insane.") def parse_neuron(self, neuron_str): for n in neuron_parsers: p = n.parse(neuron_str) if p: # Successfully parsed neuron, return it self.dic['neuron'] = p self.dic['usesActs'] = self.dic['neuron']['usesActs'] self.dic['usesInputs'] = self.dic['neuron']['usesInputs'] return # Could not parse neuron # Print available neuron types colnames = ['Neuron type', 'Function'] m = max(len(colnames[0]), OptionsParser._longest_value(neuron_parsers, key=lambda x:x.type)) + 2 ntypes = [OptionsParser._bold(colnames[0].ljust(m))] + [n.type.ljust(m) for n in neuron_parsers] fnames = [OptionsParser._bold(colnames[1])] + [n.func_str for n in neuron_parsers] usage_lines = NL.join(ntype + fname for ntype,fname in zip(ntypes, fnames)) raise LayerParsingError("Layer '%s': unable to parse neuron type '%s'. Valid neuron types: %sWhere neurons have parameters, they must be floats." % (self.dic['name'], neuron_str, NL + usage_lines + NL)) def detach_neuron_layer(self, src_name, layers): dic = self.dic # self.set_defaults() dic['name'] = NeuronLayerParser.get_unused_layer_name(layers, '%s_neuron' % src_name) dic['type'] = 'neuron' dic['inputs'] = src_name dic['neuron'] = layers[src_name]['neuron'] dic['gpu'] = layers[src_name]['gpu'] # Yes it's not entirely correct to pass all of layers as prev_layers, but it's harmless dic = self.parse(dic['name'], FakeConfigParser(dic), layers) dic['src_layer'] = src_name # Link upper layers to this new one for l in layers.values(): if 'inputs' in l: l['inputs'] = [inp if inp != src_name else dic['name'] for inp in l['inputs']] l['inputLayers'] = [inp if inp['name'] != src_name else dic for inp in l['inputLayers']] layers[dic['name']] = dic def parse(self, name, mcp, prev_layers, model=None): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['outputs'] = dic['numInputs'][0] self.parse_neuron(dic['neuron']) dic['forceOwnActs'] = False print "Initialized neuron layer '%s' on GPUs %s, producing %d outputs" % (name, dic['gpus'], dic['outputs']) return dic class EltwiseSumLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self) def add_params(self, mcp): LayerWithInputParser.add_params(self, mcp) dic, name = self.dic, self.dic['name'] dic['coeffs'] = mcp.safe_get_float_list(name, 'coeffs', default=[1.0] * len(dic['inputs'])) def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) if len(set(dic['numInputs'])) != 1: raise LayerParsingError("Layer '%s': all inputs must have the same dimensionality. Got dimensionalities: %s" % (name, ", ".join(str(s) for s in dic['numInputs']))) dic['outputs'] = dic['numInputs'][0] dic['usesInputs'] = False dic['usesActs'] = False dic['forceOwnActs'] = False dic['requiresParams'] = True print "Initialized elementwise sum layer '%s' on GPUs %s, producing %d outputs" % (name, dic['gpus'], dic['outputs']) return dic class EltwiseMaxLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self) def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) if len(dic['inputs']) < 2: raise LayerParsingError("Layer '%s': elementwise max layer must have at least 2 inputs, got %d." % (name, len(dic['inputs']))) if len(set(dic['numInputs'])) != 1: raise LayerParsingError("Layer '%s': all inputs must have the same dimensionality. Got dimensionalities: %s" % (name, ", ".join(str(s) for s in dic['numInputs']))) dic['outputs'] = dic['numInputs'][0] print "Initialized elementwise max layer '%s' on GPUs %s, producing %d outputs" % (name, dic['gpus'], dic['outputs']) return dic class SumLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['stride'] = mcp.safe_get_int(name, 'stride', default=1) self.verify_divisible(dic['numInputs'][0], dic['stride'], 'input dimensionality', 'stride') dic['outputs'] = dic['numInputs'][0] / dic['stride'] print "Initialized sum layer '%s' on GPUs %s, producing %d outputs" % (name, dic['gpus'], dic['outputs']) return dic class DropoutLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def add_params(self, mcp): LayerWithInputParser.add_params(self, mcp) dic, name = self.dic, self.dic['name'] dic['enable'] = mcp.safe_get_bool(name, 'enable', default=True) dic['keep'] = mcp.safe_get_float(name, 'keep', default=0.5) def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['requiresParams'] = True dic['usesInputs'] = False dic['usesActs'] = False dic['forceOwnActs'] = False dic['outputs'] = dic['numInputs'][0] print "Initialized %s layer '%s' on GPUs %s, producing %d outputs" % (dic['type'], name, dic['gpus'], dic['outputs']) return dic class Dropout2LayerParser(DropoutLayerParser): def __init__(self): DropoutLayerParser.__init__(self) class WeightLayerParser(LayerWithInputParser): LAYER_PAT = re.compile(r'^\s*([^\s\[]+)(?:\[(\d+)\])?\s*$') # matches things like layername[5], etc def __init__(self, num_inputs=-1): LayerWithInputParser.__init__(self, num_inputs=num_inputs) @staticmethod def get_layer_name(name_str): m = WeightLayerParser.LAYER_PAT.match(name_str) if not m: return None return m.group(1), m.group(2) def add_params(self, mcp): LayerWithInputParser.add_params(self, mcp) dic, name = self.dic, self.dic['name'] dic['momW'] = mcp.safe_get_float_list(name, 'momW') dic['momB'] = mcp.safe_get_float(name, 'momB') dic['superEps'] = mcp.safe_get_float(name, 'superEps', default=0.0) dic['superMom'] = mcp.safe_get_float(name, 'superMom', default=0.0) dic['wc'] = mcp.safe_get_float_list(name, 'wc', default=[0.0] * len(dic['inputs'])) dic['wball'] = mcp.safe_get_float_list(name, 'wball', default=[0.0] * len(dic['inputs'])) self.verify_num_params(['momW', 'wc', 'wball']) # dic['wballNormed'] = [wball * nweights for wball,nweights in zip(dic['wball'], dic['weightsPerFilter'])] dic['wballNormed'] = dic['wball'] # Convert from old-style 0.001,0.02 hyperparam specification to new-stye # const[base=0.001],const[base=0.02] and so forth def convert_scalars_to_schedules(scalars): parts = scalars.split(',') for i,p in enumerate(parts): p = p.strip() if re.match('(?:\d*\.)?\d+$', p): parts[i] = 'const[base=%s]' % p return parts dic['epsW'] = self.parse_params(convert_scalars_to_schedules(mcp.safe_get(name, 'epsW')), lrs_parsers, 'epsW', 'learning rate schedule', num_params=len(dic['inputs'])) dic['epsB'] = self.parse_params(convert_scalars_to_schedules(mcp.safe_get(name, 'epsB')), lrs_parsers, 'epsB', 'learning rate schedule', num_params=1)[0] dic['updatePeriod'] = mcp.safe_get_int(name, 'updatePeriod', default=0) # 0 means update as often as possible # TODO: assert that updatePeriod is a multiple of active pass period, which is unknown here. # the assert has to go in some post-processing step.. dic['gradConsumer'] = dic['epsB']['params']['base'] > 0 or any(w['params']['base'] > 0 for w in dic['epsW']) @staticmethod def unshare_weights(layer, layers, matrix_idx=None): def unshare(layer, layers, indices): for i in indices: if layer['weightSourceLayers'][i] >= 0: src_matrix_idx = layer['weightSourceMatrixIndices'][i] layer['weightSourceLayers'][i] = "" layer['weightSourceMatrixIndices'][i] = -1 layer['weights'][i] = layer['weights'][i].copy() layer['weightsInc'][i] = n.zeros_like(layer['weights'][i]) print "Unshared weight matrix %s[%d] from %s[%d]." % (layer['name'], i, layer['weightSourceLayers'][i], src_matrix_idx) else: print "Weight matrix %s[%d] already unshared." % (layer['name'], i) if 'weightSourceLayers' in layer: unshare(layer, layers, range(len(layer['inputs'])) if matrix_idx is None else [matrix_idx]) # Load weight/biases initialization module def call_init_func(self, param_name, shapes, input_idx=-1): dic = self.dic func_pat = re.compile('^([^\.]+)\.([^\(\)]+)\s*(?:\(([^,]+(?:,[^,]+)*)\))?$') m = func_pat.match(dic[param_name]) if not m: raise LayerParsingError("Layer '%s': '%s' parameter must have format 'moduleName.functionName(param1,param2,...)'; got: %s." % (dic['name'], param_name, dic['initWFunc'])) module, func = m.group(1), m.group(2) params = m.group(3).split(',') if m.group(3) is not None else [] try: mod = __import__(module) return getattr(mod, func)(dic['name'], input_idx, shapes, params=params) if input_idx >= 0 else getattr(mod, func)(dic['name'], shapes, params=params) except (ImportError, AttributeError, TypeError), e: raise LayerParsingError("Layer '%s': %s." % (dic['name'], e)) def make_weights(self, initW, rows, cols, order='C'): dic = self.dic dic['weights'], dic['weightsInc'] = [], [] if dic['initWFunc']: # Initialize weights from user-supplied python function # Initialization function is supplied in the format # module.func for i in xrange(len(dic['inputs'])): dic['weights'] += [self.call_init_func('initWFunc', (rows[i], cols[i]), input_idx=i)] if type(dic['weights'][i]) != n.ndarray: raise LayerParsingError("Layer '%s[%d]': weight initialization function %s must return numpy.ndarray object. Got: %s." % (dic['name'], i, dic['initWFunc'], type(dic['weights'][i]))) if dic['weights'][i].dtype != n.float32: raise LayerParsingError("Layer '%s[%d]': weight initialization function %s must weight matrices consisting of single-precision floats. Got: %s." % (dic['name'], i, dic['initWFunc'], dic['weights'][i].dtype)) if dic['weights'][i].shape != (rows[i], cols[i]): raise LayerParsingError("Layer '%s[%d]': weight matrix returned by weight initialization function %s has wrong shape. Should be: %s; got: %s." % (dic['name'], i, dic['initWFunc'], (rows[i], cols[i]), dic['weights'][i].shape)) # Convert to desired order dic['weights'][i] = n.require(dic['weights'][i], requirements=order) dic['weightsInc'] += [n.zeros_like(dic['weights'][i])] print "Layer '%s[%d]' initialized weight matrices from function %s" % (dic['name'], i, dic['initWFunc']) else: for i in xrange(len(dic['inputs'])): if dic['weightSourceLayers'][i] != '': # Shared weight matrix src_layer = self.prev_layers[dic['weightSourceLayers'][i]] if dic['weightSourceLayers'][i] != dic['name'] else dic dic['weights'] += [src_layer['weights'][dic['weightSourceMatrixIndices'][i]]] dic['weightsInc'] += [src_layer['weightsInc'][dic['weightSourceMatrixIndices'][i]]] if dic['weights'][i].shape != (rows[i], cols[i]): raise LayerParsingError("Layer '%s': weight sharing source matrix '%s' has shape %dx%d; should be %dx%d." % (dic['name'], dic['weightSource'][i], dic['weights'][i].shape[0], dic['weights'][i].shape[1], rows[i], cols[i])) print "Layer '%s' initialized weight matrix %d from %s" % (dic['name'], i, dic['weightSource'][i]) else: dic['weights'] += [n.array(initW[i] * nr.randn(rows[i], cols[i]), dtype=n.single, order=order)] dic['weightsInc'] += [n.zeros_like(dic['weights'][i])] def make_biases(self, rows, cols, order='C'): dic = self.dic if dic['initBFunc']: dic['biases'] = self.call_init_func('initBFunc', (rows, cols)) if type(dic['biases']) != n.ndarray: raise LayerParsingError("Layer '%s': bias initialization function %s must return numpy.ndarray object. Got: %s." % (dic['name'], dic['initBFunc'], type(dic['biases']))) if dic['biases'].dtype != n.float32: raise LayerParsingError("Layer '%s': bias initialization function %s must return numpy.ndarray object consisting of single-precision floats. Got: %s." % (dic['name'], dic['initBFunc'], dic['biases'].dtype)) if dic['biases'].shape != (rows, cols): raise LayerParsingError("Layer '%s': bias vector returned by bias initialization function %s has wrong shape. Should be: %s; got: %s." % (dic['name'], dic['initBFunc'], (rows, cols), dic['biases'].shape)) dic['biases'] = n.require(dic['biases'], requirements=order) print "Layer '%s' initialized bias vector from function %s" % (dic['name'], dic['initBFunc']) else: dic['biases'] = dic['initB'] * n.ones((rows, cols), order=order, dtype=n.single) dic['biasesInc'] = n.zeros_like(dic['biases']) def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['requiresParams'] = True dic['gradConsumer'] = True dic['usesActs'] = False dic['initW'] = mcp.safe_get_float_list(name, 'initW', default=0.01) dic['initB'] = mcp.safe_get_float(name, 'initB', default=0) dic['initWFunc'] = mcp.safe_get(name, 'initWFunc', default="") dic['initBFunc'] = mcp.safe_get(name, 'initBFunc', default="") # Find shared weight matrices dic['weightSource'] = mcp.safe_get_list(name, 'weightSource', default=[''] * len(dic['inputs'])) self.verify_num_params(['initW']) self.verify_num_params(['weightSource'], auto_expand=False) dic['weightSourceLayers'] = [] dic['weightSourceMatrixIndices'] = [] for i, src_name in enumerate(dic['weightSource']): src_layer_matrix_idx = -1 src_layer_name = '' if src_name != '': src_layer_match = WeightLayerParser.get_layer_name(src_name) if src_layer_match is None: raise LayerParsingError("Layer '%s': unable to parse weight sharing source '%s'. Format is layer[idx] or just layer, in which case idx=0 is used." % (name, src_name)) src_layer_name = src_layer_match[0] src_layer_matrix_idx = int(src_layer_match[1]) if src_layer_match[1] is not None else 0 if src_layer_name not in prev_layers and src_layer_name != name: raise LayerParsingError("Layer '%s': weight sharing source layer '%s' does not exist." % (name, src_layer_name)) # src_layer_idx = prev_names.index(src_layer_name) if src_layer_name != name else len(prev_names) src_layer = prev_layers[src_layer_name] if src_layer_name != name else dic if src_layer['gpu'] != dic['gpu']: raise LayerParsingError("Layer '%s': weight sharing source layer '%s' runs on GPUs %s, while '%s' runs on GPUs %s." % (name, src_layer_name, src_layer['gpu'], name, dic['gpu'])) if src_layer['type'] != dic['type']: raise LayerParsingError("Layer '%s': weight sharing source layer '%s' is of type '%s'; should be '%s'." % (name, src_layer_name, src_layer['type'], dic['type'])) if src_layer_name != name and len(src_layer['weights']) <= src_layer_matrix_idx: raise LayerParsingError("Layer '%s': weight sharing source layer '%s' has %d weight matrices, but '%s[%d]' requested." % (name, src_layer_name, len(src_layer['weights']), src_name, src_layer_matrix_idx)) if src_layer_name == name and src_layer_matrix_idx >= i: raise LayerParsingError("Layer '%s': weight sharing source '%s[%d]' not defined yet." % (name, name, src_layer_matrix_idx)) dic['weightSourceLayers'] += [src_layer_name] dic['weightSourceMatrixIndices'] += [src_layer_matrix_idx] return dic class FCLayerParser(WeightLayerParser): def __init__(self): WeightLayerParser.__init__(self) def parse(self, name, mcp, prev_layers, model): dic = WeightLayerParser.parse(self, name, mcp, prev_layers, model) dic['outputs'] = mcp.safe_get_int(name, 'outputs') dic['weightsPerFilter'] = dic['numInputs'] self.verify_num_range(dic['outputs'], 'outputs', 1, None) self.make_weights(dic['initW'], dic['numInputs'], [dic['outputs']] * len(dic['numInputs']), order='F') self.make_biases(1, dic['outputs'], order='F') print "Initialized fully-connected layer '%s' on GPUs %s, producing %d outputs" % (name, dic['gpus'], dic['outputs']) return dic class SplitFCLayerParser(WeightLayerParser): def __init__(self): WeightLayerParser.__init__(self) def parse(self, name, mcp, prev_layers, model): dic = WeightLayerParser.parse(self, name, mcp, prev_layers, model) dic['parts'] = mcp.safe_get_int(name, 'parts') dic['outputs'] = mcp.safe_get_int(name, 'outputs') * dic['parts'] dic['weightsPerFilter'] = dic['numInputs'] self.verify_num_range(dic['parts'], 'parts', 1, None) self.make_weights(dic['initW'], dic['numInputs'], [dic['outputs']/dic['parts']] * len(dic['numInputs']), order='F') self.make_biases(1, dic['outputs'], order='F') for i in xrange(len(dic['numInputs'])): self.verify_divisible(dic['numInputs'][i], dic['parts'], 'numInputs', 'parts', input_idx=i) print "Initialized split fully-connected layer '%s' on GPUs %s, producing %d outputs in %d parts" % (name, dic['gpus'], dic['outputs'], dic['parts']) return dic class LocalLayerParser(WeightLayerParser): def __init__(self): WeightLayerParser.__init__(self) # Convert convolutional layer to unshared, locally-connected layer @staticmethod def conv_to_local(layers, lname): layer = layers[lname] if layer['type'] == 'conv': layer['type'] = 'local' for inp,inpname in enumerate(layer['inputs']): src_layer_name = layer['weightSourceLayers'][inp] if src_layer_name != '': src_layer = layers[src_layer_name] src_matrix_idx = layer['weightSourceMatrixIndices'][inp] LocalLayerParser.conv_to_local(layers, src_layer_name) for w in ('weights', 'weightsInc'): layer[w][inp] = src_layer[w][src_matrix_idx] else: layer['weights'][inp] = n.require(n.reshape(n.tile(n.reshape(layer['weights'][inp], (1, n.prod(layer['weights'][inp].shape))), (layer['modules'], 1)), (layer['modules'] * layer['filterChannels'][inp] * layer['filterPixels'][inp], layer['filters'])), requirements='C') layer['weightsInc'][inp] = n.zeros_like(layer['weights'][inp]) if layer['sharedBiases']: layer['biases'] = n.require(n.repeat(layer['biases'], layer['modules'], axis=0), requirements='C') layer['biasesInc'] = n.zeros_like(layer['biases']) print "Converted layer '%s' from convolutional to unshared, locally-connected" % layer['name'] # Also call this function on any layers sharing my weights for l in layers: if 'weightSourceLayers' in l and lname in l['weightSourceLayers']: LocalLayerParser.conv_to_local(layers, l) return layer def parse(self, name, mcp, prev_layers, model): dic = WeightLayerParser.parse(self, name, mcp, prev_layers, model) dic['requiresParams'] = True dic['usesActs'] = False # Supplied values dic['channels'] = mcp.safe_get_int_list(name, 'channels') dic['padding'] = mcp.safe_get_int_list(name, 'padding', default=[0]*len(dic['inputs'])) dic['stride'] = mcp.safe_get_int_list(name, 'stride', default=[1]*len(dic['inputs'])) dic['filterSize'] = mcp.safe_get_int_list(name, 'filterSize') dic['filters'] = mcp.safe_get_int_list(name, 'filters') dic['groups'] = mcp.safe_get_int_list(name, 'groups', default=[1]*len(dic['inputs'])) dic['initW'] = mcp.safe_get_float_list(name, 'initW') dic['initCFunc'] = mcp.safe_get(name, 'initCFunc', default='') dic['modulesX'] = mcp.safe_get_int(name, 'modulesX', default=0) self.verify_num_params(['channels', 'padding', 'stride', 'filterSize', \ 'filters', 'groups', 'initW']) self.verify_num_range(dic['stride'], 'stride', 1, None) self.verify_num_range(dic['filterSize'],'filterSize', 1, None) self.verify_num_range(dic['padding'], 'padding', 0, None) self.verify_num_range(dic['channels'], 'channels', 1, None) self.verify_num_range(dic['groups'], 'groups', 1, None) self.verify_num_range(dic['modulesX'], 'modulesX', 0, None) for i in xrange(len(dic['filters'])): self.verify_divisible(dic['filters'][i], 16, 'filters', input_idx=i) # Computed values dic['imgPixels'] = [numInputs/channels for numInputs,channels in zip(dic['numInputs'], dic['channels'])] dic['imgSize'] = [int(n.sqrt(imgPixels)) for imgPixels in dic['imgPixels']] self.verify_num_range(dic['imgSize'], 'imgSize', 1, None) dic['filters'] = [filters*groups for filters,groups in zip(dic['filters'], dic['groups'])] dic['filterPixels'] = [filterSize**2 for filterSize in dic['filterSize']] if dic['modulesX'] <= 0: dic['modulesX'] = [1 + int(ceil((2*padding + imgSize - filterSize) / float(stride))) for padding,imgSize,filterSize,stride in zip(dic['padding'], dic['imgSize'], dic['filterSize'], dic['stride'])] else: dic['modulesX'] = [dic['modulesX']] * len(dic['inputs']) dic['filterChannels'] = [channels/groups for channels,groups in zip(dic['channels'], dic['groups'])] if len(set(dic['modulesX'])) != 1 or len(set(dic['filters'])) != 1: raise LayerParsingError("Layer '%s': all inputs must produce equally-dimensioned output. Dimensions are: %s." % (name, ", ".join("%dx%dx%d" % (filters, modulesX, modulesX) for filters,modulesX in zip(dic['filters'], dic['modulesX'])))) dic['modulesX'] = dic['modulesX'][0] dic['modules'] = dic['modulesX']**2 dic['filters'] = dic['filters'][0] dic['outputs'] = dic['modules'] * dic['filters'] # dic['filterConns'] = [[]] * len(dic['inputs']) for i in xrange(len(dic['inputs'])): if dic['numInputs'][i] % dic['imgPixels'][i] != 0 or dic['imgSize'][i] * dic['imgSize'][i] != dic['imgPixels'][i]: raise LayerParsingError("Layer '%s[%d]': has %-d dimensional input, not interpretable as square %d-channel images" % (name, i, dic['numInputs'][i], dic['channels'][i])) if dic['channels'][i] > 3 and dic['channels'][i] % 4 != 0: raise LayerParsingError("Layer '%s[%d]': number of channels must be smaller than 4 or divisible by 4" % (name, i)) # if dic['filterSize'][i] > totalPadding[i] + dic['imgSize'][i]: # raise LayerParsingError("Layer '%s[%d]': filter size (%d) greater than image size + padding (%d)" % (name, i, dic['filterSize'][i], dic['padding'][i] + dic['imgSize'][i])) if -dic['padding'][i] + dic['stride'][i] * (dic['modulesX'] - 1) + dic['filterSize'][i] < dic['imgSize'][i]: raise LayerParsingError("Layer '%s[%d]': %dx%d output map with padding=%d, stride=%d does not cover entire input image." % (name, i, dic['modulesX'], dic['outputsX'], dic['padding'][i], dic['stride'][i])) if dic['groups'][i] > 1: self.verify_divisible(dic['channels'][i], 4*dic['groups'][i], 'channels', '4 * groups', input_idx=i) self.verify_divisible(dic['channels'][i], dic['groups'][i], 'channels', 'groups', input_idx=i) self.verify_divisible(dic['filters'], 16*dic['groups'][i], 'filters * groups', input_idx=i) dic['padding'][i] = -dic['padding'][i] # dic['overSample'] = [groups*filterChannels/channels for groups,filterChannels,channels in zip(dic['groups'], dic['filterChannels'], dic['channels'])] dic['weightsPerFilter'] = [fc * (fz**2) for fc, fz in zip(dic['filterChannels'], dic['filterSize'])] return dic class ConvLayerParser(LocalLayerParser): def __init__(self): LocalLayerParser.__init__(self) def add_params(self, mcp): LocalLayerParser.add_params(self, mcp) self.dic['wcNormMax'] = mcp.safe_get_float_list(self.dic['name'], 'wcNormMax', default=[0.0] * len(self.dic['inputs'])) self.dic['wcNormMin'] = mcp.safe_get_float_list(self.dic['name'], 'wcNormMin', default=[0.0] * len(self.dic['inputs'])) self.verify_num_params(['wcNormMax', 'wcNormMin']) for min,max in zip(self.dic['wcNormMin'], self.dic['wcNormMax']): if min > max: raise LayerParsingError("Layer '%s': wcNormMin must be <= wcNormMax." % (self.dic['name'])) def parse(self, name, mcp, prev_layers, model): dic = LocalLayerParser.parse(self, name, mcp, prev_layers, model) dic['sumWidth'] = mcp.safe_get_int(name, 'sumWidth') dic['sharedBiases'] = mcp.safe_get_bool(name, 'sharedBiases', default=True) num_biases = dic['filters'] if dic['sharedBiases'] else dic['modules']*dic['filters'] eltmult = lambda list1, list2: [l1 * l2 for l1,l2 in zip(list1, list2)] self.make_weights(dic['initW'], eltmult(dic['filterPixels'], dic['filterChannels']), [dic['filters']] * len(dic['inputs']), order='C') self.make_biases(num_biases, 1, order='C') print "Initialized convolutional layer '%s' on GPUs %s, producing %dx%d %d-channel output" % (name, dic['gpus'], dic['modulesX'], dic['modulesX'], dic['filters']) return dic class LocalUnsharedLayerParser(LocalLayerParser): def __init__(self): LocalLayerParser.__init__(self) def parse(self, name, mcp, prev_layers, model): dic = LocalLayerParser.parse(self, name, mcp, prev_layers, model) eltmult = lambda list1, list2: [l1 * l2 for l1,l2 in zip(list1, list2)] scmult = lambda x, lst: [x * l for l in lst] self.make_weights(dic['initW'], scmult(dic['modules'], eltmult(dic['filterPixels'], dic['filterChannels'])), [dic['filters']] * len(dic['inputs']), order='C') self.make_biases(dic['modules'] * dic['filters'], 1, order='C') print "Initialized locally-connected layer '%s' on GPUs %s, producing %dx%d %d-channel output" % (name, dic['gpus'], dic['modulesX'], dic['modulesX'], dic['filters']) return dic class DataLayerParser(LayerParser): def __init__(self): LayerParser.__init__(self) def parse(self, name, mcp, prev_layers, model): dic = LayerParser.parse(self, name, mcp, prev_layers, model) dic['dataIdx'] = mcp.safe_get_int(name, 'dataIdx') dic['start'] = mcp.safe_get_int(name, 'start', default=0) dic['end'] = mcp.safe_get_int(name, 'end', default=model.train_data_provider.get_data_dims(idx=dic['dataIdx'])) dic['outputs'] = dic['end'] - dic['start'] # dic['usesActs'] = False print "Initialized data layer '%s', producing %d outputs" % (name, dic['outputs']) return dic class SoftmaxLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['outputs'] = dic['inputLayers'][0]['outputs'] print "Initialized softmax layer '%s' on GPUs %s, producing %d outputs" % (name, dic['gpus'], dic['outputs']) return dic class ConcatentionLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self) def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['outputs'] = sum(l['outputs'] for l in dic['inputLayers']) dic['copyOffsets'] = [sum(dic['inputLayers'][j]['outputs'] for j in xrange(i)) for i in xrange(len(dic['inputLayers']))] print "Initialized concatenation layer '%s' on GPUs %s, producing %d outputs" % (name, dic['gpus'], dic['outputs']) return dic class PassThroughLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self) # Note: this doesn't verify all the necessary constraints. Layer construction may still fail in C++ code. # For example, it does not verify that every layer only has one pass-through parent. Obviously having # two such parents is incoherent. def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) # if len(dic['inputLayers']) == 1: # raise LayerParsingError("Layer %s: pass-through layer must have more than one input." % dic['name']) if len(dic['gpu']) != len(dic['inputLayers'][0]['gpu']): raise LayerParsingError("Layer '%s': number of replicas in pass-through layer must be equivalent to number of replicas in input layers." % dic['name']) for inp in dic['inputLayers']: conflicting_layers = [l for l in prev_layers.values() if l['type'] == 'pass' and inp['name'] in l['inputs'] and len(set(dic['gpu']).intersection(set(l['gpu']))) > 0] if len(conflicting_layers) > 0: raise LayerParsingError("Layer '%s' conflicts with layer '%s'. Both pass-through layers take layer '%s' as input and operate on an overlapping set of GPUs." % (dic['name'], conflicting_layers[0]['name'], inp['name'])) dic['outputs'] = sum(l['outputs'] for l in dic['inputLayers']) # dic['copyOffsets'] = [sum(dic['inputLayers'][j]['outputs'] for j in xrange(i)) for i in xrange(len(dic['inputLayers']))] print "Initialized pass-through layer '%s' on GPUs %s, producing %d outputs" % (name, dic['gpus'], dic['outputs']) return dic class PoolLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def add_params(self, mcp): LayerWithInputParser.add_params(self, mcp) dic, name = self.dic, self.dic['name'] def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['channels'] = mcp.safe_get_int(name, 'channels') dic['sizeX'] = mcp.safe_get_int(name, 'sizeX') dic['start'] = mcp.safe_get_int(name, 'start', default=0) dic['stride'] = mcp.safe_get_int(name, 'stride') dic['outputsX'] = mcp.safe_get_int(name, 'outputsX', default=0) dic['pool'] = mcp.safe_get(name, 'pool') # Avg pooler does not use its acts or inputs dic['usesActs'] = dic['pool'] != 'avg' dic['usesInputs'] = dic['pool'] != 'avg' dic['imgPixels'] = dic['numInputs'][0] / dic['channels'] dic['imgSize'] = int(n.sqrt(dic['imgPixels'])) if dic['pool'] == 'avg': dic['sum'] = mcp.safe_get_bool(name, 'sum', default=False) self.verify_num_range(dic['sizeX'], 'sizeX', 1, dic['imgSize']) self.verify_num_range(dic['stride'], 'stride', 1, dic['sizeX']) self.verify_num_range(dic['outputsX'], 'outputsX', 0, None) self.verify_num_range(dic['channels'], 'channels', 1, None) if LayerWithInputParser.grad_consumers_below(dic): self.verify_divisible(dic['channels'], 16, 'channels') self.verify_str_in(dic['pool'], 'pool', ['max', 'maxabs', 'avg']) self.verify_img_size() if dic['outputsX'] <= 0: dic['outputsX'] = int(ceil((dic['imgSize'] - dic['start'] - dic['sizeX']) / float(dic['stride']))) + 1; dic['outputs'] = dic['outputsX']**2 * dic['channels'] print "Initialized %s-pooling layer '%s' on GPUs %s, producing %dx%d %d-channel output" % (dic['pool'], name, dic['gpus'], dic['outputsX'], dic['outputsX'], dic['channels']) return dic class CrossMapPoolLayerParser(LayerWithInputParser): def __init__(self): LayerWithInputParser.__init__(self, num_inputs=1) def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['channels'] = mcp.safe_get_int(name, 'channels') dic['size'] = mcp.safe_get_int(name, 'size') dic['start'] = mcp.safe_get_int(name, 'start', default=0) dic['stride'] = mcp.safe_get_int(name, 'stride') dic['outputChannels'] = mcp.safe_get_int(name, 'outputs', default=0) dic['pool'] = mcp.safe_get(name, 'pool') dic['requiresParams'] = False # Avg pooler does not use its acts or inputs dic['usesActs'] = 'pool' != 'avg' dic['usesInputs'] = 'pool' != 'avg' dic['imgPixels'] = dic['numInputs'][0] / dic['channels'] dic['imgSize'] = int(n.sqrt(dic['imgPixels'])) dic['outputs'] = dic['outputChannels'] * dic['imgPixels'] self.verify_num_range(dic['size'], 'size', 1, dic['channels']) self.verify_num_range(dic['stride'], 'stride', 1, dic['size']) self.verify_num_range(dic['outputChannels'], 'outputChannels', 0, None) self.verify_num_range(dic['channels'], 'channels', 1, None) self.verify_num_range(dic['start'], 'start', None, 0) self.verify_str_in(dic['pool'], 'pool', ['max']) self.verify_img_size() covered_chans = dic['start'] + (dic['outputChannels'] - 1) * dic['stride'] + dic['size'] if covered_chans < dic['channels']: raise LayerParsingError("Layer '%s': cross-map pooling with start=%d, stride=%d, size=%d, outputs=%d covers only %d of %d input channels." % \ (name, dic['start'], dic['stride'], dic['size'], dic['outputChannels'], covered_chans, dic['channels'])) print "Initialized cross-map %s-pooling layer '%s' on GPUs %s, producing %dx%d %d-channel output" % (dic['pool'], name, dic['gpus'], dic['imgSize'], dic['imgSize'], dic['outputChannels']) return dic class NormLayerParser(LayerWithInputParser): RESPONSE_NORM = 'response' CONTRAST_NORM = 'contrast' CROSSMAP_RESPONSE_NORM = 'cross-map response' def __init__(self, norm_type): LayerWithInputParser.__init__(self, num_inputs=1) self.norm_type = norm_type def add_params(self, mcp): LayerWithInputParser.add_params(self, mcp) dic, name = self.dic, self.dic['name'] dic['scale'] = mcp.safe_get_float(name, 'scale') dic['scale'] /= dic['size'] if self.norm_type == self.CROSSMAP_RESPONSE_NORM else dic['size']**2 dic['pow'] = mcp.safe_get_float(name, 'pow') dic['minDiv'] = mcp.safe_get_float(name, 'minDiv', default=1.0) def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['requiresParams'] = True dic['channels'] = mcp.safe_get_int(name, 'channels') dic['size'] = mcp.safe_get_int(name, 'size') dic['blocked'] = mcp.safe_get_bool(name, 'blocked', default=False) dic['imgPixels'] = dic['numInputs'][0] / dic['channels'] dic['imgSize'] = int(n.sqrt(dic['imgPixels'])) # Contrast normalization layer does not use its inputs dic['usesInputs'] = self.norm_type != self.CONTRAST_NORM self.verify_num_range(dic['channels'], 'channels', 1, None) if self.norm_type == self.CROSSMAP_RESPONSE_NORM: self.verify_num_range(dic['size'], 'size', 2, dic['channels']) if dic['channels'] % 16 != 0: raise LayerParsingError("Layer '%s': number of channels must be divisible by 16 when using crossMap" % name) else: self.verify_num_range(dic['size'], 'size', 1, dic['imgSize']) if self.norm_type != self.CROSSMAP_RESPONSE_NORM and dic['channels'] > 3 and dic['channels'] % 4 != 0: raise LayerParsingError("Layer '%s': number of channels must be smaller than 4 or divisible by 4" % name) self.verify_img_size() dic['outputs'] = dic['imgPixels'] * dic['channels'] print "Initialized %s-normalization layer '%s' on GPUs %s, producing %dx%d %d-channel output" % (self.norm_type, name, dic['gpus'], dic['imgSize'], dic['imgSize'], dic['channels']) return dic class CostParser(LayerWithInputParser): def __init__(self, num_inputs=-1): LayerWithInputParser.__init__(self, num_inputs=num_inputs) def parse(self, name, mcp, prev_layers, model): dic = LayerWithInputParser.parse(self, name, mcp, prev_layers, model) dic['requiresParams'] = True # Stored as string because python can't pickle lambda functions dic['outputFilter'] = 'lambda costs,num_cases: [c/num_cases for c in costs]' dic['children'] = mcp.safe_get_list(name, 'children', default=[]) # Aggregated costs only produce outputs which are additive. for c in dic['children']: if c not in prev_layers: raise LayerParsingError("Layer '%s': child cost layer '%s' not defined" % (name, c)) if prev_layers[c]['type'] != dic['type']: raise LayerParsingError("Layer '%s': child cost layer '%s' must have same type as parent" % (name, c)) prev_layers[c]['aggregated'] = 1 dic['aggregated'] = dic['children'] != [] del dic['neuron'] return dic def add_params(self, mcp): LayerWithInputParser.add_params(self, mcp) dic, name = self.dic, self.dic['name'] dic['coeff'] = mcp.safe_get_float(name, 'coeff') dic['gradConsumer'] = dic['coeff'] > 0 class CrossEntCostParser(CostParser): def __init__(self): CostParser.__init__(self, num_inputs=2) def parse(self, name, mcp, prev_layers, model): dic = CostParser.parse(self, name, mcp, prev_layers, model) if dic['numInputs'][0] != model.train_data_provider.get_num_classes(): # first input must be labels raise LayerParsingError("Layer '%s': Dimensionality of first input must be equal to number of labels" % name) if dic['inputLayers'][1]['type'] != 'softmax': raise LayerParsingError("Layer '%s': Second input must be softmax layer" % name) if dic['numInputs'][1] != model.train_data_provider.get_num_classes(): raise LayerParsingError("Layer '%s': Softmax input '%s' must produce %d outputs, because that is the number of classes in the dataset" \ % (name, dic['inputs'][1], model.train_data_provider.get_num_classes())) print "Initialized cross-entropy cost '%s' on GPUs %s" % (name, dic['gpus']) return dic class LogregCostParser(CostParser): def __init__(self): CostParser.__init__(self, num_inputs=2) def add_params(self, mcp): CostParser.add_params(self, mcp) dic, name = self.dic, self.dic['name'] dic['topk'] = mcp.safe_get_int(name, 'topk', default=1) if dic['topk'] > dic['numInputs'][1]: raise LayerParsingError("Layer '%s': parameter 'topk'must not have value greater than the number of classess." % (name)) def parse(self, name, mcp, prev_layers, model): dic = CostParser.parse(self, name, mcp, prev_layers, model) dic['requiresParams'] = True if dic['numInputs'][0] != 1: # first input must be labels raise LayerParsingError("Layer '%s': dimensionality of first input must be 1" % name) if dic['inputLayers'][1]['type'] != 'softmax': raise LayerParsingError("Layer '%s': second input must be softmax layer" % name) if dic['numInputs'][1] != model.train_data_provider.get_num_classes(): raise LayerParsingError("Layer '%s': softmax input '%s' must produce %d outputs, because that is the number of classes in the dataset" \ % (name, dic['inputs'][1], model.train_data_provider.get_num_classes())) print "Initialized logistic regression cost '%s' on GPUs %s" % (name, dic['gpus']) return dic class BinomialCrossEntCostParser(CostParser): def __init__(self): CostParser.__init__(self, num_inputs=2) def add_params(self, mcp): CostParser.add_params(self, mcp) self.dic['posWeight'] = mcp.safe_get_float(self.dic['name'], 'posWeight', default=1.0) def parse(self, name, mcp, prev_layers, model): dic = CostParser.parse(self, name, mcp, prev_layers, model) if dic['numInputs'][0] != dic['numInputs'][1]: raise LayerParsingError("Layer '%s': both inputs must produce the same number of outputs" % (name)) if 'neuron' not in dic['inputLayers'][1] or dic['inputLayers'][1]['neuron'] != 'logistic': print "WARNING: Layer '%s': input '%s' is not logistic, results may not be what you intend." % (dic['name'], dic['inputs'][1]) if dic['type'] == 'cost.bce': print "Initialized binomial cross-entropy cost '%s' on GPUs %s" % (name, dic['gpus']) dic['computeSoftmaxErrorRate'] = True return dic class DetectionCrossEntCostParser(BinomialCrossEntCostParser): def __init__(self): BinomialCrossEntCostParser.__init__(self) def parse(self, name, mcp, prev_layers, model): dic = BinomialCrossEntCostParser.parse(self, name, mcp, prev_layers, model) if dic['numInputs'][0] != model.train_data_provider.get_num_classes(): # first input must be labels raise LayerParsingError("Layer '%s': Dimensionality of first input must be equal to number of labels" % name) dic['computeSoftmaxErrorRate'] = False dic['outputFilter'] = 'lambda costs,num_cases: [c/num_cases for c in costs[:2]] + [(class_cost[2] / class_cost[j] if class_cost[j] > 0 else n.inf) for class_cost in [costs[2:][i*3:(i+1)*3] for i in range(len(costs[2:])/3)] for j in range(2)]' dic['outputFilterFormatter'] = 'lambda self,costs: "(crossent) %.6f, (err) %.6f, " % (costs[0], costs[1]) + ", ".join("(%s) %.6f, %.6f" % (self.train_data_provider.batch_meta["label_names"][i/2-1],costs[i],costs[i+1]) for i in xrange(2, len(costs), 2))' print "Initialized detection cross-entropy cost '%s' on GPUs %s" % (name, dic['gpus']) return dic class SumOfSquaresCostParser(CostParser): def __init__(self): CostParser.__init__(self, num_inputs=1) def parse(self, name, mcp, prev_layers, model): dic = CostParser.parse(self, name, mcp, prev_layers, model) print "Initialized sum-of-squares cost '%s' on GPUs %s" % (name, dic['gpus']) return dic # All the layer parsers layer_parsers = {'data' : lambda : DataLayerParser(), 'fc': lambda : FCLayerParser(), 'sfc': lambda : SplitFCLayerParser(), 'conv': lambda : ConvLayerParser(), 'local': lambda : LocalUnsharedLayerParser(), 'softmax': lambda : SoftmaxLayerParser(), 'eltsum': lambda : EltwiseSumLayerParser(), 'eltmax': lambda : EltwiseMaxLayerParser(), 'sum': lambda : SumLayerParser(), 'neuron': lambda : NeuronLayerParser(), 'pool': lambda : PoolLayerParser(), 'cmpool': lambda : CrossMapPoolLayerParser(), 'rnorm': lambda : NormLayerParser(NormLayerParser.RESPONSE_NORM), 'cnorm': lambda : NormLayerParser(NormLayerParser.CONTRAST_NORM), 'cmrnorm': lambda : NormLayerParser(NormLayerParser.CROSSMAP_RESPONSE_NORM), 'nailbed': lambda : NailbedLayerParser(), 'blur': lambda : GaussianBlurLayerParser(), 'href': lambda : HorizontalReflectionLayerParser(), 'resize': lambda : ResizeLayerParser(), 'rgb2yuv': lambda : RGBToYUVLayerParser(), 'rgb2lab': lambda : RGBToLABLayerParser(), 'rscale': lambda : RandomScaleLayerParser(), 'crop': lambda : CropLayerParser(), 'concat': lambda : ConcatentionLayerParser(), 'pass': lambda : PassThroughLayerParser(), 'dropout': lambda : DropoutLayerParser(), 'dropout2': lambda : Dropout2LayerParser(), 'cost.logreg': lambda : LogregCostParser(), 'cost.crossent': lambda : CrossEntCostParser(), 'cost.bce': lambda : BinomialCrossEntCostParser(), 'cost.dce': lambda : DetectionCrossEntCostParser(), 'cost.sum2': lambda : SumOfSquaresCostParser()} # All the neuron parsers # This isn't a name --> parser mapping as the layer parsers above because neurons don't have fixed names. # A user may write tanh[0.5,0.25], etc. neuron_parsers = sorted([NeuronParser('ident', 'f(x) = x', uses_acts=False, uses_inputs=False), NeuronParser('logistic', 'f(x) = 1 / (1 + e^-x)', uses_acts=True, uses_inputs=False), NeuronParser('abs', 'f(x) = |x|', uses_acts=False, uses_inputs=True), NeuronParser('relu', 'f(x) = max(0, x)', uses_acts=True, uses_inputs=False), NeuronParser('nrelu', 'f(x) = max(0, x) + noise', uses_acts=True, uses_inputs=False), NeuronParser('softrelu', 'f(x) = log(1 + e^x)', uses_acts=True, uses_inputs=False), NeuronParser('square', 'f(x) = x^2', uses_acts=False, uses_inputs=True), NeuronParser('sqrt', 'f(x) = sqrt(x)', uses_acts=True, uses_inputs=False), ParamNeuronParser('log[a]', 'f(x) = log(a + x)', uses_acts=False, uses_inputs=True), ParamNeuronParser('tanh[a,b]', 'f(x) = a * tanh(b * x)', uses_acts=True, uses_inputs=False), ParamNeuronParser('brelu[a]', 'f(x) = min(a, max(0, x))', uses_acts=True, uses_inputs=False), ParamNeuronParser('linear[a,b]', 'f(x) = a * x + b', uses_acts=True, uses_inputs=False), ParamNeuronParser('drelu[a]', 'f(x) = x - a * tanh(x / a)', uses_acts=False, uses_inputs=True)], key=lambda x:x.type) # Learning rate schedules lrs_parsers = sorted([ParamParser('const[fbase]'), ParamParser('linear[fbase;ftgtFactor]'), ParamParser('exp[fbase;ftgtFactor]'), ParamParser('dexp[fbase;ftgtFactor;inumSteps]')])
hgaspar/cuda-convnet2
layer.py
Python
apache-2.0
82,481
[ "Gaussian", "NEURON" ]
8deb05a78844813bf5d2758584c3179192e3f25d4f7ed212856973883fa574e9
#!/usr/bin/python import pymol from pymol import stored from pymol import cmd, CmdException cmd=pymol.cmd import export_to_gl as glmol def out_atoms(modelName): #print modelName
S-John-S/MAT
sb_script_gl.py
Python
mit
181
[ "PyMOL" ]
0c076cb4abb60cc00faaf67f180414675a101b0e9a44bb5e7e656b1b44f8916e
from collections import defaultdict class TreeNode(object): def __init__(self, x): self.val = x self.left = None self.right = None def serialize(root): if root is None: return '#' q = [root] i, j = 0, 0 while i <= j: node = q[i] i += 1 if node is not None: q.extend([node.left, node.right]) j += 2 while q[-1] is None: q.pop() res = ['#' if node is None else str(node.val) for node in q] return ','.join(res) def deserialize(data): if data == '#': return None nodes = [None if x == '#' else TreeNode(x) for x in data.split(',')] i, j = 0, 0 n = len(nodes) while i < n and j < n: j += 1 if j < n: nodes[i].left = nodes[j] j += 1 if j < n: nodes[i].right = nodes[j] i += 1 while i < n and nodes[i] is None: i += 1 return nodes[0] class Solution(object): def findDuplicateSubtrees(self, root): """ :type root: TreeNode :rtype: List[TreeNode] """ if not root: return [] tree_map = defaultdict(list) def visit(node): if node is None: return 'null' left = visit(node.left) right = visit(node.right) res = '%s,%s,%s' % (node.val, left, right) tree_map[res].append(node) return res visit(root) return [v[0] for v in tree_map.values() if len(v) > 1] if __name__ == "__main__": sol = Solution() root = deserialize('0,0,0,0,#,#,0,#,#,#,0') res = sol.findDuplicateSubtrees(root) for r in res: print(serialize(r))
shenfei/oj_codes
leetcode/python/n652_Find_Duplicate_Subtrees.py
Python
mit
1,746
[ "VisIt" ]
5b5df5dbc6cc2d991e970140bcec388fc063ff4d5b72a1b760a911eb3a9a620b
''' DQN approach for different RL problems as part of the basic series on reinforcement learning @ https://github.com/vmayoral/basic_reinforcement_learning FIXME: - ANN not performing at all Inspired by - https://gym.openai.com/evaluations/eval_kWknKOkPQ7izrixdhriurA - http://outlace.com/Reinforcement-Learning-Part-3/ @author: Victor Mayoral Vilches <[email protected]> ''' import gym import numpy import random import pandas from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation from keras.optimizers import RMSprop, SGD monitor = False class QLearn: def __init__(self, actions, epsilon, alpha, gamma): self.q = {} self.epsilon = epsilon # exploration constant self.alpha = alpha # discount constant self.gamma = gamma # discount factor self.actions = actions def getQ(self, state, action): return self.q.get((state, action), 0.0) def learnQ(self, state, action, reward, value): ''' Q-learning: Q(s, a) += alpha * (reward(s,a) + max(Q(s') - Q(s,a)) ''' oldv = self.q.get((state, action), None) if oldv is None: self.q[(state, action)] = reward else: self.q[(state, action)] = oldv + self.alpha * (value - oldv) def chooseAction(self, state, return_q=False): q = [self.getQ(state, a) for a in self.actions] maxQ = max(q) if random.random() < self.epsilon: minQ = min(q); mag = max(abs(minQ), abs(maxQ)) # add random values to all the actions, recalculate maxQ q = [q[i] + random.random() * mag - .5 * mag for i in range(len(self.actions))] maxQ = max(q) count = q.count(maxQ) # In case there're several state-action max values # we select a random one among them if count > 1: best = [i for i in range(len(self.actions)) if q[i] == maxQ] i = random.choice(best) else: i = q.index(maxQ) action = self.actions[i] if return_q: # if they want it, give it! return action, q return action def learn(self, state1, action1, reward, state2): maxqnew = max([self.getQ(state2, a) for a in self.actions]) self.learnQ(state1, action1, reward, reward + self.gamma*maxqnew) def build_state(features): return int("".join(map(lambda feature: str(int(feature)), features))) def to_bin(value, bins): return numpy.digitize(x=[value], bins=bins)[0] class DQN: def __init__(self, actions, epsilon, alpha, gamma): # instead of a dictionary, we'll be using # a neural network # self.q = {} self.epsilon = epsilon # exploration constant self.alpha = alpha # discount constant self.gamma = gamma # discount factor self.actions = actions # Build the neural network self.network = Sequential() # self.network.add(Dense(100, init='lecun_uniform', input_shape=(4,))) self.network.add(Dense(100, init='lecun_uniform', input_shape=(4,))) self.network.add(Activation('relu')) # self.network.add(Activation('tanh')) # self.network.add(Dropout(0.2)) self.network.add(Dense(80, init='lecun_uniform')) self.network.add(Activation('relu')) # # self.network.add(Activation('tanh')) # # self.network.add(Dropout(0.2)) self.network.add(Dense(2, init='lecun_uniform')) self.network.add(Activation('linear')) #linear output so we can have range of real-valued outputs # rms = RMSprop() rms = SGD() self.network.compile(loss='mse', optimizer=rms) # Get a summary of the network self.network.summary() def learnQ(self, state, action, reward, newState, terminal=False): ''' DQN learning: Instead of the Q-learning: Q(s, a) += alpha * (reward(s,a) + gamma * max(Q(s') - Q(s,a)) we'll be updating the network following: target = reward(s,a) + gamma * max(Q(s') ''' # oldv = self.q.get((state, action), None) # if oldv is None: # self.q[(state, action)] = reward # else: # self.q[(state, action)] = oldv + self.alpha * (value - oldv) state = numpy.asarray(state) state = state.reshape(1,4) newState = numpy.asarray(newState) newState = newState.reshape(1,4) qval = self.network.predict(state, batch_size=1) newQ = self.network.predict(newState, batch_size=1) # if (qval==newQ).all(): # pass # else: # print("NOT EQUAL!") maxNewQ = numpy.max(newQ) y = numpy.zeros((1,2)) y[:] = qval[:] if terminal: newReward = reward else: newReward = (reward + (self.gamma * maxNewQ)) y[0][action] = newReward #target output self.network.fit(state, y, batch_size=1, nb_epoch=1, verbose=0) # print("\tstate: "+str(state)) # print("\tnewState: "+str(newState)) # print("\taction: "+str(action)) # print("\tqval: "+str(qval)) # print("\tnewQval: "+str(newQ)) # print("\treward: "+str(reward)) # print("\tnewReward: "+str(newReward)) # print("\ty: "+str(y)) def chooseAction(self, state, return_q=False): if (random.random() < self.epsilon): #choose random action action = numpy.random.randint(0,2) else: #choose best action from Q(s,a) values # convert to a numpy array state = numpy.asarray(state) state = state.reshape(1,4) # Let's run our Q function on state "state" to get Q values for all possible actions qvals = self.network.predict(state, batch_size=1) # Select the neuron that fired the most action = numpy.argmax(qvals) q = qvals[0][action] # if return_q: # if they want it, give it! # return action, q return action def to_bin(value, bins): return numpy.digitize(x=[value], bins=bins)[0] if __name__ == '__main__': env = gym.make('CartPole-v0') if monitor: env.monitor.start('/tmp/cartpole-experiment-1', force=True) # video_callable=lambda count: count % 10 == 0) epochs = 500 goal_average_steps = 195 max_number_of_steps = 200 last_time_steps = numpy.ndarray(0) # Discretization of the space n_bins = 10 n_bins_angle = 10 number_of_features = env.observation_space.shape[0] last_time_steps = numpy.ndarray(0) # Number of states is huge so in order to simplify the situation # we discretize the space to: 10 ** number_of_features cart_position_bins = pandas.cut([-2.4, 2.4], bins=n_bins, retbins=True)[1][1:-1] pole_angle_bins = pandas.cut([-2, 2], bins=n_bins_angle, retbins=True)[1][1:-1] cart_velocity_bins = pandas.cut([-1, 1], bins=n_bins, retbins=True)[1][1:-1] angle_rate_bins = pandas.cut([-3.5, 3.5], bins=n_bins_angle, retbins=True)[1][1:-1] # The Deep Q-learn algorithm dqn = DQN(actions=range(env.action_space.n), alpha=0.5, gamma=0.90, epsilon=0.99) # The Q-learn algorithm qlearn = QLearn(actions=range(env.action_space.n), alpha=0.5, gamma=0.90, epsilon=0.1) for i_episode in xrange(epochs): observation = env.reset() cart_position, pole_angle, cart_velocity, angle_rate_of_change = observation state = build_state([to_bin(cart_position, cart_position_bins), to_bin(pole_angle, pole_angle_bins), to_bin(cart_velocity, cart_velocity_bins), to_bin(angle_rate_of_change, angle_rate_bins)]) state_raw = [to_bin(cart_position, cart_position_bins), to_bin(pole_angle, pole_angle_bins), to_bin(cart_velocity, cart_velocity_bins), to_bin(angle_rate_of_change, angle_rate_bins)] cumulated_reward = 0 for t in xrange(max_number_of_steps): # env.render() # Pick an action based on the current state action_qlearn = qlearn.chooseAction(state) action_dqn = dqn.chooseAction(state_raw) # print("\t\tdqn: "+str(action_dqn)) # print("\t\tqlearn: "+str(action_qlearn)) # action = action_qlearn action = action_dqn # Execute the action and get feedback observation, reward, done, info = env.step(action) # Digitize the observation to get a state cart_position, pole_angle, cart_velocity, angle_rate_of_change = observation nextState = build_state([to_bin(cart_position, cart_position_bins), to_bin(pole_angle, pole_angle_bins), to_bin(cart_velocity, cart_velocity_bins), to_bin(angle_rate_of_change, angle_rate_bins)]) nextState_raw = [to_bin(cart_position, cart_position_bins), to_bin(pole_angle, pole_angle_bins), to_bin(cart_velocity, cart_velocity_bins), to_bin(angle_rate_of_change, angle_rate_bins)] # # If out of bounds # if (cart_position > 2.4 or cart_position < -2.4): # reward = -200 # dqn.learn(state, action, reward, nextState) # print("Out of bounds, reseting") # break if not(done): dqn.learnQ(state_raw, action, reward, nextState_raw) qlearn.learn(state, action, reward, nextState) state = nextState cumulated_reward += reward else: # Q-learn stuff reward = -200 dqn.learnQ(state_raw, action, reward, nextState_raw, done) qlearn.learn(state, action, reward, nextState) last_time_steps = numpy.append(last_time_steps, [int(t + 1)]) cumulated_reward += reward if dqn.epsilon > 0.1: dqn.epsilon = dqn.epsilon - (1.0/epochs) # print(dqn.epsilon) break print("Episode {:d} reward score: {:0.2f}".format(i_episode, cumulated_reward)) l = last_time_steps.tolist() l.sort() print("Overall score: {:0.2f}".format(last_time_steps.mean())) print("Best 100 score: {:0.2f}".format(reduce(lambda x, y: x + y, l[-100:]) / len(l[-100:]))) if monitor: env.monitor.close() # gym.upload('/tmp/cartpole-experiment-1', algorithm_id='vmayoral simple Q-learning', api_key='your-key')
vmayoral/basic_reinforcement_learning
tutorial5/tests/dq-learning-gym.py
Python
gpl-3.0
11,084
[ "NEURON" ]
c0e9cf990ff631b2cd011818812dcf7a2650dd5714c436f61b8292ac675d5a74
from datetime import timedelta, datetime from tapiriik.database import cachedb from tapiriik.database.tz import TZLookup import hashlib import pytz class ActivityType: # taken from RK API docs. The text values have no meaning except for debugging Running = "Running" Cycling = "Cycling" MountainBiking = "MtnBiking" Walking = "Walking" Hiking = "Hiking" DownhillSkiing = "DownhillSkiing" CrossCountrySkiing = "XCSkiing" Snowboarding = "Snowboarding" Skating = "Skating" Swimming = "Swimming" Wheelchair = "Wheelchair" Rowing = "Rowing" Elliptical = "Elliptical" Gym = "Gym" Climbing = "Climbing" Other = "Other" def List(): # I'd argue that this is marginally better than the 200+ char hardcoded list it's replacing type_list = [] for key, value in ActivityType.__dict__.items(): if type(value) is str and "__" not in key: type_list.append(value) return type_list # The right-most element is the "most specific." _hierarchy = [ [Cycling, MountainBiking], [Running, Walking, Hiking] ] def PickMostSpecific(types): types = [x for x in types if x and x is not ActivityType.Other] if len(types) == 0: return ActivityType.Other most_specific = types[0] for definition in ActivityType._hierarchy: if len([x for x in types if x in definition]) == len(types): for act_type in types: if definition.index(most_specific) < definition.index(act_type): most_specific = act_type return most_specific def AreVariants(types): for definition in ActivityType._hierarchy: if len([x for x in types if x in definition]) == len(types): return True return False class Activity: def __init__(self, startTime=None, endTime=None, actType=ActivityType.Other, distance=None, name=None, notes=None, tz=None, lapList=None, private=False, fallbackTz=None, stationary=None, gps=None, device=None): self.StartTime = startTime self.EndTime = endTime self.Type = actType self.Laps = lapList if lapList is not None else [] self.Stats = ActivityStatistics(distance=distance) self.TZ = tz self.FallbackTZ = fallbackTz self.Name = name self.Notes = notes self.Private = private self.Stationary = stationary self.GPS = gps self.PrerenderedFormats = {} self.Device = device def CalculateUID(self): if not self.StartTime: return # don't even try csp = hashlib.new("md5") roundedStartTime = self.StartTime roundedStartTime = roundedStartTime - timedelta(microseconds=roundedStartTime.microsecond) if self.TZ: roundedStartTime = roundedStartTime.astimezone(self.TZ) csp.update(roundedStartTime.strftime("%Y-%m-%d %H:%M:%S").encode('utf-8')) # exclude TZ for compat self.UID = csp.hexdigest() def CountTotalWaypoints(self): return sum([len(x.Waypoints) for x in self.Laps]) def GetFlatWaypoints(self): return [wp for waypoints in [x.Waypoints for x in self.Laps] for wp in waypoints] def GetFirstWaypointWithLocation(self): loc_wp = None for lap in self.Laps: for wp in lap.Waypoints: if wp.Location is not None and wp.Location.Latitude is not None and wp.Location.Longitude is not None: loc_wp = wp.Location break return loc_wp def DefineTZ(self): """ run localize() on all contained dates to tag them with the activity TZ (doesn't change values) """ if self.TZ is None: raise ValueError("TZ not set") if self.StartTime and self.StartTime.tzinfo is None: self.StartTime = self.TZ.localize(self.StartTime) if self.EndTime and self.EndTime.tzinfo is None: self.EndTime = self.TZ.localize(self.EndTime) for lap in self.Laps: lap.StartTime = self.TZ.localize(lap.StartTime) if lap.StartTime.tzinfo is None else lap.StartTime lap.EndTime = self.TZ.localize(lap.EndTime) if lap.EndTime.tzinfo is None else lap.EndTime for wp in lap.Waypoints: if wp.Timestamp.tzinfo is None: wp.Timestamp = self.TZ.localize(wp.Timestamp) self.CalculateUID() def AdjustTZ(self): """ run astimezone() on all contained dates to align them with the activity TZ (requires non-naive DTs) """ if self.TZ is None: raise ValueError("TZ not set") self.StartTime = self.StartTime.astimezone(self.TZ) self.EndTime = self.EndTime.astimezone(self.TZ) for lap in self.Laps: lap.StartTime = lap.StartTime.astimezone(self.TZ) lap.EndTime = lap.EndTime.astimezone(self.TZ) for wp in lap.Waypoints: wp.Timestamp = wp.Timestamp.astimezone(self.TZ) self.CalculateUID() def CalculateTZ(self, loc=None, recalculate=False): if self.TZ and not recalculate: return self.TZ if loc is None: loc = self.GetFirstWaypointWithLocation() if loc is None and self.FallbackTZ is None: raise Exception("Can't find TZ without a waypoint with a location, or a fallback TZ") if loc is None: # At this point, we'll resort to the fallback TZ. if self.FallbackTZ is None: raise Exception("Can't find TZ without a waypoint with a location, specified location, or fallback TZ") self.TZ = self.FallbackTZ return self.TZ # I guess at some point it will be faster to perform a full lookup than digging through this table. res = TZLookup(loc.Latitude, loc.Longitude) cachedTzData = {"TZ": res, "Latitude": loc.Latitude, "Longitude": loc.Longitude} cachedb.tz_cache.insert(cachedTzData) if type(cachedTzData["TZ"]) != str: self.TZ = pytz.FixedOffset(cachedTzData["TZ"] * 60) else: self.TZ = pytz.timezone(cachedTzData["TZ"]) return self.TZ def EnsureTZ(self, recalculate=False): self.CalculateTZ(recalculate=recalculate) if self.StartTime.tzinfo is None: self.DefineTZ() else: self.AdjustTZ() def CheckSanity(self): """ Started out as a function that checked to make sure the activity itself is sane. Now we perform a lot of checks to make sure all the objects were initialized properly I'm undecided on this front... - Forcing the .NET model of "XYZCollection"s that enforce integrity seems wrong - Enforcing them in constructors makes using the classes a pain """ if "ServiceDataCollection" in self.__dict__: srcs = self.ServiceDataCollection # this is just so I can see the source of the activity in the exception message if len(self.Laps) == 0: raise ValueError("No laps") wptCt = sum([len(x.Waypoints) for x in self.Laps]) if self.Stationary is None: raise ValueError("Activity is undecidedly stationary") if self.GPS is None: raise ValueError("Activity is undecidedly GPS-tracked") if not self.Stationary: if wptCt == 0: raise ValueError("Exactly 0 waypoints") if wptCt == 1: raise ValueError("Only 1 waypoint") if self.Stats.Distance.Value is not None and self.Stats.Distance.asUnits(ActivityStatisticUnit.Meters).Value > 1000 * 1000: raise ValueError("Exceedingly long activity (distance)") if self.StartTime.replace(tzinfo=None) > (datetime.now() + timedelta(days=5)): raise ValueError("Activity is from the future") if self.StartTime.replace(tzinfo=None) < datetime(1995, 1, 1): raise ValueError("Activity falls implausibly far in the past") if self.EndTime and self.EndTime.replace(tzinfo=None) > (datetime.now() + timedelta(days=5 + 5)): # Based on the 5-day activity length limit imposed later. raise ValueError("Activity ends in the future") if self.StartTime and self.EndTime: # We can only do these checks if the activity has both start and end times (Dropbox) if (self.EndTime - self.StartTime).total_seconds() < 0: raise ValueError("Event finishes before it starts") if (self.EndTime - self.StartTime).total_seconds() == 0: raise ValueError("0-duration activity") if (self.EndTime - self.StartTime).total_seconds() > 60 * 60 * 24 * 5: raise ValueError("Exceedingly long activity (time)") if len(self.Laps) == 1: if self.Laps[0].Stats != self.Stats: raise ValueError("Activity with 1 lap has mismatching statistics between activity and lap") altLow = None altHigh = None pointsWithLocation = 0 unpausedPoints = 0 for lap in self.Laps: if not lap.StartTime: raise ValueError("Lap has no start time") if not lap.EndTime: raise ValueError("Lap has no end time") for wp in lap.Waypoints: if wp.Type != WaypointType.Pause: unpausedPoints += 1 if wp.Location: if wp.Location.Latitude == 0 and wp.Location.Longitude == 0: raise ValueError("Invalid lat/lng") if (wp.Location.Latitude is not None and (wp.Location.Latitude > 90 or wp.Location.Latitude < -90)) or (wp.Location.Longitude is not None and (wp.Location.Longitude > 180 or wp.Location.Longitude < -180)): raise ValueError("Out of range lat/lng") if wp.Location.Altitude is not None and (altLow is None or wp.Location.Altitude < altLow): altLow = wp.Location.Altitude if wp.Location.Altitude is not None and (altHigh is None or wp.Location.Altitude > altHigh): altHigh = wp.Location.Altitude if wp.Location and wp.Location.Latitude is not None and wp.Location.Longitude is not None: pointsWithLocation += 1 if unpausedPoints == 1: raise ValueError("0 < n <= 1 unpaused points in activity") if pointsWithLocation == 1: raise ValueError("0 < n <= 1 geographic points in activity") # Make RK happy if altLow is not None and altLow == altHigh and altLow == 0: # some activities have very sporadic altitude data, we'll let it be... raise ValueError("Invalid altitudes / no change from " + str(altLow)) # Gets called a bit later than CheckSanity, meh def CheckTimestampSanity(self): out_of_bounds_leeway = timedelta(minutes=10) if self.StartTime.tzinfo != self.TZ: raise ValueError("Activity StartTime TZ mismatch - %s master vs %s instance" % (self.TZ, self.StartTime.tzinfo)) if self.EndTime.tzinfo != self.TZ: raise ValueError("Activity EndTime TZ mismatch - %s master vs %s instance" % (self.TZ, self.EndTime.tzinfo)) for lap in self.Laps: if lap.StartTime.tzinfo != self.TZ: raise ValueError("Lap StartTime TZ mismatch - %s master vs %s instance" % (self.TZ, lap.StartTime.tzinfo)) if lap.EndTime.tzinfo != self.TZ: raise ValueError("Lap EndTime TZ mismatch - %s master vs %s instance" % (self.TZ, lap.EndTime.tzinfo)) for wp in lap.Waypoints: if wp.Timestamp.tzinfo != self.TZ: raise ValueError("Waypoint TZ mismatch - %s master vs %s instance" % (self.TZ, wp.Timestamp.tzinfo)) if lap.StartTime - wp.Timestamp > out_of_bounds_leeway: raise ValueError("Waypoint occurs too far before lap") if wp.Timestamp - lap.EndTime > out_of_bounds_leeway: raise ValueError("Waypoint occurs too far after lap") if self.StartTime - wp.Timestamp > out_of_bounds_leeway: raise ValueError("Waypoint occurs too far before activity") if wp.Timestamp - self.EndTime > out_of_bounds_leeway: raise ValueError("Waypoint occurs too far after activity") if self.StartTime - lap.StartTime > out_of_bounds_leeway: raise ValueError("Lap starts too far before activity") if lap.EndTime - self.EndTime > out_of_bounds_leeway: raise ValueError("Lap ends too far after activity") def CleanStats(self): """ Some devices/apps populate fields with patently false values, e.g. HR avg = 1bpm, calories = 0kcal So, rather than propagating these, or bailing, we silently strip them, in hopes that destinations will do a better job of calculating them. Most of the upper limits match the FIT spec """ def _cleanStatsObj(stats): ranges = { "Power": [ActivityStatisticUnit.Watts, 0, 5000], "Speed": [ActivityStatisticUnit.KilometersPerHour, 0, 150], "Elevation": [ActivityStatisticUnit.Meters, -500, 8850], # Props for bringing your Forerunner up Everest "HR": [ActivityStatisticUnit.BeatsPerMinute, 15, 300], # Please visit the ER before you email me about these limits "Cadence": [ActivityStatisticUnit.RevolutionsPerMinute, 0, 255], # FIT "RunCadence": [ActivityStatisticUnit.StepsPerMinute, 0, 255], # FIT "Strides": [ActivityStatisticUnit.Strides, 1, 9999999], "Temperature": [ActivityStatisticUnit.DegreesCelcius, -62, 50], "Energy": [ActivityStatisticUnit.Kilocalories, 1, 65535], # FIT "Distance": [ActivityStatisticUnit.Kilometers, 0, 1000] # You can let me know when you ride 1000 km and I'll up this. } checkFields = ["Average", "Max", "Min", "Value"] for key in ranges: stat = stats.__dict__[key].asUnits(ranges[key][0]) for field in checkFields: value = stat.__dict__[field] if value is not None and (value < ranges[key][1] or value > ranges[key][2]): stats.__dict__[key]._samples[field] = 0 # Need to update the original, not the asUnits copy stats.__dict__[key].__dict__[field] = None _cleanStatsObj(self.Stats) for lap in self.Laps: _cleanStatsObj(lap.Stats) def CleanWaypoints(self): # Similarly, we sometimes get complete nonsense like negative distance waypoints = self.GetFlatWaypoints() for wp in waypoints: if wp.Distance and wp.Distance < 0: wp.Distance = 0 if wp.Speed and wp.Speed < 0: wp.Speed = 0 if wp.Cadence and wp.Cadence < 0: wp.Cadence = 0 if wp.RunCadence and wp.RunCadence < 0: wp.RunCadence = 0 if wp.Power and wp.Power < 0: wp.Power = 0 if wp.Calories and wp.Calories < 0: wp.Calories = 0 # Are there any devices that track your caloric intake? Interesting idea... if wp.HR and wp.HR < 0: wp.HR = 0 def __str__(self): return "Activity (" + self.Type + ") Start " + str(self.StartTime) + " " + str(self.TZ) + " End " + str(self.EndTime) + " stat " + str(self.Stationary) __repr__ = __str__ def __eq__(self, other): # might need to fix this for TZs? return self.StartTime == other.StartTime and self.EndTime == other.EndTime and self.Type == other.Type and self.Laps == other.Laps and self.Stats.Distance == other.Stats.Distance and self.Name == other.Name def __ne__(self, other): return not self.__eq__(other) class UploadedActivity (Activity): pass # will contain list of which service instances contain this activity - not really merited class LapIntensity: Active = 0 Rest = 1 Warmup = 2 Cooldown = 3 class LapTriggerMethod: Manual = 0 Time = 1 Distance = 2 PositionStart = 3 PositionLap = 4 PositionWaypoint = 5 PositionMarked = 6 SessionEnd = 7 FitnessEquipment = 8 class Lap: def __init__(self, startTime=None, endTime=None, intensity=LapIntensity.Active, trigger=LapTriggerMethod.Manual, stats=None, waypointList=None): self.StartTime = startTime self.EndTime = endTime self.Trigger = trigger self.Intensity = intensity self.Stats = stats if stats else ActivityStatistics() self.Waypoints = waypointList if waypointList else [] def __str__(self): return str(self.StartTime) + "-" + str(self.EndTime) + " " + str(self.Intensity) + " (" + str(self.Trigger) + ") " + str(len(self.Waypoints)) + " wps" __repr__ = __str__ class ActivityStatistics: _statKeyList = ["Distance", "TimerTime", "MovingTime", "Energy", "Speed", "Elevation", "HR", "Cadence", "RunCadence", "Strides", "Temperature", "Power"] def __init__(self, distance=None, timer_time=None, moving_time=None, avg_speed=None, max_speed=None, max_elevation=None, min_elevation=None, gained_elevation=None, lost_elevation=None, avg_hr=None, max_hr=None, avg_cadence=None, max_cadence=None, avg_run_cadence=None, max_run_cadence=None, strides=None, min_temp=None, avg_temp=None, max_temp=None, kcal=None, avg_power=None, max_power=None): self.Distance = ActivityStatistic(ActivityStatisticUnit.Meters, value=distance) self.TimerTime = ActivityStatistic(ActivityStatisticUnit.Seconds, value=timer_time) self.MovingTime = ActivityStatistic(ActivityStatisticUnit.Seconds, value=moving_time) self.Energy = ActivityStatistic(ActivityStatisticUnit.Kilocalories, value=kcal) self.Speed = ActivityStatistic(ActivityStatisticUnit.KilometersPerHour, avg=avg_speed, max=max_speed) self.Elevation = ActivityStatistic(ActivityStatisticUnit.Meters, max=max_elevation, min=min_elevation, gain=gained_elevation, loss=lost_elevation) self.HR = ActivityStatistic(ActivityStatisticUnit.BeatsPerMinute, avg=avg_hr, max=max_hr) self.Cadence = ActivityStatistic(ActivityStatisticUnit.RevolutionsPerMinute, avg=avg_cadence, max=max_cadence) self.RunCadence = ActivityStatistic(ActivityStatisticUnit.StepsPerMinute, avg=avg_run_cadence, max=max_run_cadence) self.Strides = ActivityStatistic(ActivityStatisticUnit.Strides, value=strides) self.Temperature = ActivityStatistic(ActivityStatisticUnit.DegreesCelcius, avg=avg_temp, max=max_temp, min=min_temp) self.Power = ActivityStatistic(ActivityStatisticUnit.Watts, avg=avg_power, max=max_power) def coalesceWith(self, other_stats): for stat in ActivityStatistics._statKeyList: self.__dict__[stat].coalesceWith(other_stats.__dict__[stat]) # Could overload +, but... def sumWith(self, other_stats): for stat in ActivityStatistics._statKeyList: self.__dict__[stat].sumWith(other_stats.__dict__[stat]) # Magic dict is meh def update(self, other_stats): for stat in ActivityStatistics._statKeyList: self.__dict__[stat].update(other_stats.__dict__[stat]) def __eq__(self, other): if not other: return False for stat in ActivityStatistics._statKeyList: if not self.__dict__[stat] == other.__dict__[stat]: return False return True def __ne__(self, other): return not self.__eq__(other) class ActivityStatistic: def __init__(self, units, value=None, avg=None, min=None, max=None, gain=None, loss=None): self.Value = value self.Average = avg self.Min = min self.Max = max self.Gain = gain self.Loss = loss # Nothing outside of this class should be accessing _samples (though CleanStats gets a pass) self._samples = {} self._samples["Value"] = 1 if value is not None else 0 self._samples["Average"] = 1 if avg is not None else 0 self._samples["Min"] = 1 if min is not None else 0 self._samples["Max"] = 1 if max is not None else 0 self._samples["Gain"] = 1 if gain is not None else 0 self._samples["Loss"] = 1 if loss is not None else 0 self.Units = units def asUnits(self, units): if units == self.Units: return self newStat = ActivityStatistic(units) existing_dict = dict(self.__dict__) del existing_dict["Units"] del existing_dict["_samples"] ActivityStatistic.convertUnitsInDict(existing_dict, self.Units, units) newStat.__dict__ = existing_dict newStat.Units = units newStat._samples = self._samples return newStat def convertUnitsInDict(values_dict, from_units, to_units): for key, value in values_dict.items(): if value is None: continue values_dict[key] = ActivityStatistic.convertValue(value, from_units, to_units) def convertValue(value, from_units, to_units): conversions = { (ActivityStatisticUnit.KilometersPerHour, ActivityStatisticUnit.HectometersPerHour): 10, (ActivityStatisticUnit.KilometersPerHour, ActivityStatisticUnit.MilesPerHour): 0.621371, (ActivityStatisticUnit.KilometersPerSecond, ActivityStatisticUnit.KilometersPerHour): 60 * 60, (ActivityStatisticUnit.MilesPerHour, ActivityStatisticUnit.HundredYardsPerHour): 17.6, (ActivityStatisticUnit.MetersPerSecond, ActivityStatisticUnit.KilometersPerHour): 3.6, (ActivityStatisticUnit.DegreesCelcius, ActivityStatisticUnit.DegreesFahrenheit): (lambda C: C*9/5 + 32, lambda F: (F-32) * 5/9), (ActivityStatisticUnit.Kilometers, ActivityStatisticUnit.Meters): 1000, (ActivityStatisticUnit.Meters, ActivityStatisticUnit.Feet): 3.281, (ActivityStatisticUnit.Meters, ActivityStatisticUnit.Yards): 1.09361, (ActivityStatisticUnit.Miles, ActivityStatisticUnit.Feet): 5280, (ActivityStatisticUnit.Kilocalories, ActivityStatisticUnit.Kilojoules): 4.184, (ActivityStatisticUnit.StepsPerMinute, ActivityStatisticUnit.DoubledStepsPerMinute): 2 } def recurseFindConversionPath(unit, target, stack): assert(unit != target) for transform in conversions.keys(): if unit in transform: if transform in stack: continue # Prevent circular conversion if target in transform: # We've arrived at the end return stack + [transform] else: next_unit = transform[0] if transform[1] == unit else transform[1] result = recurseFindConversionPath(next_unit, target, stack + [transform]) if result: return result return None conversionPath = recurseFindConversionPath(from_units, to_units, []) if not conversionPath: raise ValueError("No conversion from %s to %s" % (from_units, to_units)) for transform in conversionPath: if type(conversions[transform]) is float or type(conversions[transform]) is int: if from_units == transform[0]: value = value * conversions[transform] from_units = transform[1] else: value = value / conversions[transform] from_units = transform[0] else: if from_units == transform[0]: func = conversions[transform][0] if type(conversions[transform]) is tuple else conversions[transform] value = func(value) from_units = transform[1] else: if type(conversions[transform]) is not tuple: raise ValueError("No transform function for %s to %s" % (from_units, to_units)) value = conversions[transform][1](value) from_units = transform[0] return value def coalesceWith(self, stat): stat = stat.asUnits(self.Units) items = ["Value", "Max", "Min", "Average", "Gain", "Loss"] my_items = self.__dict__ other_items = stat.__dict__ my_samples = self._samples other_samples = stat._samples for item in items: # Only average if there's a second value if other_items[item] is not None: # We need to override this so we can be lazy elsewhere and just assign values (.Average = ...) and don't have to use .update(ActivityStatistic(blah, blah, blah)) other_samples[item] = other_samples[item] if other_samples[item] else 1 if my_items[item] is None: # We don't have this item's value, nothing to do really. my_items[item] = other_items[item] my_samples[item] = other_samples[item] else: my_items[item] += (other_items[item] - my_items[item]) / ((my_samples[item] + 1 / other_samples[item])) my_samples[item] += other_samples[item] def sumWith(self, stat): """ Used if you want to sum up, for instance, laps' stats to get the activity's stats Not all items can be simply summed (min/max), and sum just shouldn't (average) """ stat = stat.asUnits(self.Units) summable_items = ["Value", "Gain", "Loss"] other_items = stat.__dict__ for item in summable_items: if item in other_items and other_items[item] is not None: if self.__dict__[item] is not None: self.__dict__[item] += other_items[item] self._samples[item] = 1 # Break the chain of coalesceWith() calls - this is an entirely fresh "measurement" else: self.__dict__[item] = other_items[item] self._samples[item] = stat._samples[item] self.Average = None self._samples["Average"] = 0 if self.Max is None or (stat.Max is not None and stat.Max > self.Max): self.Max = stat.Max self._samples["Max"] = stat._samples["Max"] if self.Min is None or (stat.Min is not None and stat.Min < self.Min): self.Min = stat.Min self._samples["Min"] = stat._samples["Min"] def update(self, stat): stat = stat.asUnits(self.Units) items = ["Value", "Max", "Min", "Average", "Gain", "Loss"] other_items = stat.__dict__ for item in items: if item in other_items and other_items[item] is not None: self.__dict__[item] = other_items[item] self._samples[item] = stat._samples[item] def __eq__(self, other): if not other: return False return self.Units == other.Units and self.Value == other.Value and self.Average == other.Average and self.Max == other.Max and self.Min == other.Min and self.Gain == other.Gain and self.Loss == other.Loss def __ne__(self, other): return not self.__eq__(other) class ActivityStatisticUnit: Seconds = "s" Milliseconds = "ms" Meters = "m" Kilometers = "km" Feet = "f" Yards = "yd" Miles = "mi" DegreesCelcius = "ºC" DegreesFahrenheit = "ºF" KilometersPerHour = "km/h" HectometersPerHour = "hm/h" # Silly Garmin Connect! KilometersPerSecond = "km/s" # Silly (unnamed service)! MetersPerSecond = "m/s" MilesPerHour = "mph" HundredYardsPerHour = "hydph" # Hundred instead of Hecto- because imperial :< BeatsPerMinute = "BPM" RevolutionsPerMinute = "RPM" StepsPerMinute = "SPM" DoubledStepsPerMinute = "2SPM" # Garmin Connect is still weird. Strides = "strides" Kilocalories = "kcal" Kilojoules = "kj" Watts = "W" class WaypointType: Start = 0 # Start of activity Regular = 1 # Normal Pause = 11 # All waypoints within a paused period should have this type Resume = 12 # The first waypoint after a paused period End = 100 # End of activity class Waypoint: __slots__ = ["Timestamp", "Location", "HR", "Calories", "Power", "Temp", "Cadence", "RunCadence", "Type", "Distance", "Speed"] def __init__(self, timestamp=None, ptType=WaypointType.Regular, location=None, hr=None, power=None, calories=None, cadence=None, runCadence=None, temp=None, distance=None, speed=None): self.Timestamp = timestamp self.Location = location self.HR = hr # BPM self.Calories = calories # kcal self.Power = power # Watts. I doubt there will ever be more parameters than this in terms of interchange self.Temp = temp # degrees C. never say never self.Cadence = cadence # RPM. dammit this better be the last one self.RunCadence = runCadence # SPM. screw it self.Distance = distance # meters. I don't even care any more. self.Speed = speed # m/sec. neghhhhh self.Type = ptType def __eq__(self, other): return self.Timestamp == other.Timestamp and self.Location == other.Location and self.HR == other.HR and self.Calories == other.Calories and self.Temp == other.Temp and self.Cadence == other.Cadence and self.Type == other.Type and self.Power == other.Power and self.RunCadence == other.RunCadence and self.Distance == other.Distance and self.Speed == other.Speed def __ne__(self, other): return not self.__eq__(other) def __str__(self): return str(self.Type) + "@" + str(self.Timestamp) + " " + ((str(self.Location.Latitude) + "|" + str(self.Location.Longitude) + "^" + str(round(self.Location.Altitude) if self.Location.Altitude is not None else None)) if self.Location is not None else "") + "\n\tHR " + str(self.HR) + " CAD " + str(self.Cadence) + " RCAD " + str(self.RunCadence) + " TEMP " + str(self.Temp) + " PWR " + str(self.Power) + " CAL " + str(self.Calories) + " SPD " + str(self.Speed) + " DST " + str(self.Distance) __repr__ = __str__ class Location: __slots__ = ["Latitude", "Longitude", "Altitude"] def __init__(self, lat=None, lon=None, alt=None): self.Latitude = lat self.Longitude = lon self.Altitude = alt def __eq__(self, other): if not other: return False return self.Latitude == other.Latitude and self.Longitude == other.Longitude and self.Altitude == other.Altitude def __ne__(self, other): return not self.__eq__(other)
marxin/tapiriik
tapiriik/services/interchange.py
Python
apache-2.0
31,215
[ "VisIt" ]
3ce1e836415f91fee00b6d8bb199e3ffe96ddbd2836c6423549b77bd577ac022
""" Probability density functions. This module defines L{AbstractDensity}: a common interface for all PDFs. Each L{AbstractDensity} describes a specific type of probability distribution, for example L{Normal} is an implementation of the Gaussian distribution: >>> pdf = Normal(mu=10, sigma=1.1) >>> pdf.mu, pdf['sigma'] 10.0, 1.1 Every PDF provides an implementation of the L{AbstractDensity.evaluate} method, which evaluates the PDF for a list of input data points: >>> pdf.evaluate([10, 9, 11, 12]) array([ 0.3626748 , 0.2399147 , 0.2399147 , 0.06945048]) PDF instances also behave like functions: >>> pdf(data) # the same as pdf.evaluate(data) Some L{AbstractDensity} implementations may support drawing random numbers from the distribution (or raise an exception otherwise): >>> pdf.random(2) array([ 9.86257083, 9.73760515]) Each implementation of L{AbstractDensity} may support infinite number of estimators, used to estimate and re-initialize the PDF parameters from a set of observed data points: >>> pdf.estimate([5, 5, 10, 10]) >>> pdf.mu, pdf.sigma (7.5, 2.5) >>> pdf.estimator <csb.statistics.pdf.GaussianMLEstimator> Estimators implement the L{AbstractEstimator} interface. They are treated as pluggable tools, which can be exchanged through the L{AbstractDensity.estimator} property (you could create, initialize and plug your own estimator as well). This is a classic Strategy pattern. """ import numpy.random import scipy.special import csb.core from abc import ABCMeta, abstractmethod from csb.core import OrderedDict from csb.numeric import log, exp, psi, inv_psi, EULER_MASCHERONI from scipy.special import gammaln from numpy import array, fabs, power, sqrt, pi, mean, median, clip class IncompatibleEstimatorError(TypeError): pass class ParameterNotFoundError(AttributeError): pass class ParameterValueError(ValueError): def __init__(self, param, value): self.param = param self.value = value super(ParameterValueError, self).__init__(param, value) def __str__(self): return '{0} = {1}'.format(self.param, self.value) class EstimationFailureError(ParameterValueError): pass class AbstractEstimator(object): """ Density parameter estimation strategy. """ __metaclass__ = ABCMeta @abstractmethod def estimate(self, context, data): """ Estimate the parameters of the distribution from same {data}. @param context: context distribution @type context: L{AbstractDensity} @param data: sample values @type data: array @return: a new distribution, initialized with the estimated parameters @rtype: L{AbstractDensity} @raise EstimationFailureError: if estimation is not possible """ pass class NullEstimator(AbstractEstimator): """ Does not estimate anything. """ def estimate(self, context, data): raise NotImplementedError() class LaplaceMLEstimator(AbstractEstimator): def estimate(self, context, data): x = array(data) mu = median(x) b = mean(fabs(x - mu)) return Laplace(mu, b) class GaussianMLEstimator(AbstractEstimator): def estimate(self, context, data): x = array(data) mu = mean(x) sigma = sqrt(mean((x - mu) ** 2)) return Normal(mu, sigma) class InverseGaussianMLEstimator(AbstractEstimator): def estimate(self, context, data): x = array(data) mu = mean(x) il = mean((1.0 / x) - (1.0 / mu)) if il == 0: raise EstimationFailureError('lambda', float('inf')) return InverseGaussian(mu, 1.0 / il) class GammaMLEstimator(AbstractEstimator): def __init__(self): super(GammaMLEstimator, self).__init__() self.n_iter = 1000 def estimate(self, context, data): mu = mean(data) logmean = mean(log(data)) a = 0.5 / (log(mu) - logmean) for dummy in range(self.n_iter): a = inv_psi(logmean - log(mu) + log(a)) return Gamma(a, a / mu) class GenNormalBruteForceEstimator(AbstractEstimator): def __init__(self, minbeta=0.5, maxbeta=8.0, step=0.1): self._minbeta = minbeta self._maxbeta = maxbeta self._step = step super(GenNormalBruteForceEstimator, self).__init__() def estimate(self, context, data): pdf = GeneralizedNormal(1, 1, 1) data = array(data) logl = [] for beta in numpy.arange(self._minbeta, self._maxbeta, self._step): self.update(pdf, data, beta) l = pdf.log_prob(data).sum() logl.append([beta, l]) logl = numpy.array(logl) # optimal parameters: beta = logl[ numpy.argmax(logl[:, 1]) ][0] self.update(pdf, data, beta) return pdf def estimate_with_fixed_beta(self, data, beta): mu = median(data) v = mean((data - mu) ** 2) alpha = sqrt(v * exp(gammaln(1. / beta) - gammaln(3. / beta))) return mu, alpha def update(self, pdf, data, beta): mu, alpha = self.estimate_with_fixed_beta(data, beta) pdf.mu = mu pdf.alpha = alpha pdf.beta = beta return pdf class MultivariateGaussianMLEstimator(AbstractEstimator): def __init__(self): super(MultivariateGaussianMLEstimator, self).__init__() def estimate(self, context, data): return MultivariateGaussian(numpy.mean(data, 0), numpy.cov(data.T)) class DirichletEstimator(AbstractEstimator): def __init__(self): super(DirichletEstimator, self).__init__() self.n_iter = 1000 self.tol = 1e-5 def estimate(self, context, data): log_p = numpy.mean(log(data), 0) e = numpy.mean(data, 0) v = numpy.mean(data ** 2, 0) q = (e[0] - v[0]) / (v[0] - e[0] ** 2) a = e * q y = a * 0 k = 0 while(sum(abs(y - a)) > self.tol and k < self.n_iter): y = psi(sum(a)) + log_p a = numpy.array(list(map(inv_psi, y))) k += 1 return Dirichlet(a) class GumbelMinMomentsEstimator(AbstractEstimator): def estimate(self, context, data): x = array(data) beta = sqrt(6 * numpy.var(x)) / pi mu = mean(x) + EULER_MASCHERONI * beta return GumbelMinimum(mu, beta) class GumbelMaxMomentsEstimator(AbstractEstimator): def estimate(self, context, data): x = array(data) beta = sqrt(6 * numpy.var(x)) / pi mu = mean(x) - EULER_MASCHERONI * beta return GumbelMaximum(mu, beta) class AbstractDensity(object): """ Defines the interface and common operations for all probability density functions. This is a generic class which can operate on parameters of any type (e.g. simple floats or custom parameter objects). Subclasses must complete the implementation by implementing the L{AbstractDensity.log_prob} method. Subclasses could also consider--but are not obliged to--override the L{AbstractDensity.random} method. If any of the density parameters need validation, subclasses are expected to override the L{AbstractDensity._validate} method and raise L{ParameterValueError} on validation failure. Note that implementing parameter validation in property setters has almost no effect and is discouraged. """ __metaclass__ = ABCMeta def __init__(self): self._params = OrderedDict() self._estimator = None self.estimator = NullEstimator() def __getitem__(self, param): if param in self._params: return self._params[param] else: raise ParameterNotFoundError(param) def __setitem__(self, param, value): if param in self._params: self._validate(param, value) self._set(param, value) else: raise ParameterNotFoundError(param) def _set(self, param, value): """ Update the C{value} of C{param}. """ self._params[param] = value @property def estimator(self): return self._estimator @estimator.setter def estimator(self, strategy): if not isinstance(strategy, AbstractEstimator): raise TypeError(strategy) self._estimator = strategy def __call__(self, x): return self.evaluate(x) def __str__(self): name = self.__class__.__name__ params = ', '.join([ '{0}={1}'.format(p, v) for p, v in self._params.items() ]) return '{0}({1})'.format(name, params) def _register(self, name): """ Register a new parameter name. """ if name not in self._params: self._params[name] = None def _validate(self, param, value): """ Parameter value validation hook. @raise ParameterValueError: on failed validation (value not accepted) """ pass def get_params(self): return [self._params[name] for name in self.parameters] def set_params(self, *values, **named_params): for p, v in zip(self.parameters, values): self[p] = v for p in named_params: self[p] = named_params[p] @property def parameters(self): """ Get a list of all distribution parameter names. """ return tuple(self._params) @abstractmethod def log_prob(self, x): """ Evaluate the logarithm of the probability of observing values C{x}. @param x: values @type x: array @rtype: array """ pass def evaluate(self, x): """ Evaluate the probability of observing values C{x}. @param x: values @type x: array @rtype: array """ x = numpy.array(x) return exp(self.log_prob(x)) def random(self, size=None): """ Generate random samples from the probability distribution. @param size: number of values to sample @type size: int """ raise NotImplementedError() def estimate(self, data): """ Estimate and load the parameters of the distribution from sample C{data} using the current L{AbstractEstimator} strategy. @param data: sample values @type data: array @raise NotImplementedError: when no estimator is available for this distribution @raise IncompatibleEstimatorError: when the current estimator is not compatible with this pdf """ try: pdf = self.estimator.estimate(self, data) for param in pdf.parameters: self[param] = pdf[param] except ParameterNotFoundError as e: raise IncompatibleEstimatorError(self.estimator) except ParameterValueError as e: raise EstimationFailureError(e.param, e.value) class BaseDensity(AbstractDensity): """ Base abstract class for all PDFs, which operate on simple float or array-of-float parameters. Parameters of any other type will trigger TypeError-s. """ def _set(self, param, value): try: if csb.core.iterable(value): value = array(value) else: value = float(value) except ValueError: raise TypeError(value) super(BaseDensity, self)._set(param, value) class Laplace(BaseDensity): def __init__(self, mu=0, b=1): super(Laplace, self).__init__() self._register('mu') self._register('b') self.set_params(b=b, mu=mu) self.estimator = LaplaceMLEstimator() def _validate(self, param, value): if param == 'b' and value <= 0: raise ParameterValueError(param, value) @property def b(self): return self['b'] @b.setter def b(self, value): self['b'] = value @property def mu(self): return self['mu'] @mu.setter def mu(self, value): self['mu'] = value def log_prob(self, x): b = self.b mu = self.mu return log(1 / (2. * b)) - fabs(x - mu) / b def random(self, size=None): loc = self.mu scale = self.b return numpy.random.laplace(loc, scale, size) class Normal(BaseDensity): def __init__(self, mu=0, sigma=1): super(Normal, self).__init__() self._register('mu') self._register('sigma') self.set_params(mu=mu, sigma=sigma) self.estimator = GaussianMLEstimator() @property def mu(self): return self['mu'] @mu.setter def mu(self, value): self['mu'] = value @property def sigma(self): return self['sigma'] @sigma.setter def sigma(self, value): self['sigma'] = value def log_prob(self, x): mu = self.mu sigma = self.sigma return log(1.0 / sqrt(2 * pi * sigma ** 2)) - (x - mu) ** 2 / (2 * sigma ** 2) def random(self, size=None): mu = self.mu sigma = self.sigma return numpy.random.normal(mu, sigma, size) class InverseGaussian(BaseDensity): def __init__(self, mu=1, shape=1): super(InverseGaussian, self).__init__() self._register('mu') self._register('shape') self.set_params(mu=mu, shape=shape) self.estimator = InverseGaussianMLEstimator() def _validate(self, param, value): if value <= 0: raise ParameterValueError(param, value) @property def mu(self): return self['mu'] @mu.setter def mu(self, value): self['mu'] = value @property def shape(self): return self['shape'] @shape.setter def shape(self, value): self['shape'] = value def log_prob(self, x): mu = self.mu scale = self.shape x = numpy.array(x) if numpy.min(x) <= 0: raise ValueError('InverseGaussian is defined for x > 0') y = -0.5 * scale * (x - mu) ** 2 / (mu ** 2 * x) z = 0.5 * (log(scale) - log(2 * pi * x ** 3)) return z + y def random(self, size=None): mu = self.mu shape = self.shape mu_2l = mu / shape / 2. Y = numpy.random.standard_normal(size) Y = mu * Y ** 2 X = mu + mu_2l * (Y - sqrt(4 * shape * Y + Y ** 2)) U = numpy.random.random(size) m = numpy.less_equal(U, mu / (mu + X)) return m * X + (1 - m) * mu ** 2 / X class GeneralizedNormal(BaseDensity): def __init__(self, mu=0, alpha=1, beta=1): super(GeneralizedNormal, self).__init__() self._register('mu') self._register('alpha') self._register('beta') self.set_params(mu=mu, alpha=alpha, beta=beta) self.estimator = GenNormalBruteForceEstimator() def _validate(self, param, value): if param in ('alpha, beta') and value <= 0: raise ParameterValueError(param, value) @property def mu(self): return self['mu'] @mu.setter def mu(self, value): self['mu'] = value @property def alpha(self): return self['alpha'] @alpha.setter def alpha(self, value): self['alpha'] = value @property def beta(self): return self['beta'] @beta.setter def beta(self, value): self['beta'] = value def log_prob(self, x): mu = self.mu alpha = self.alpha beta = self.beta return log(beta / (2.0 * alpha)) - gammaln(1. / beta) - power(fabs(x - mu) / alpha, beta) class GeneralizedInverseGaussian(BaseDensity): def __init__(self, a=1, b=1, p=1): super(GeneralizedInverseGaussian, self).__init__() self._register('a') self._register('b') self._register('p') self.set_params(a=a, b=b, p=p) self.estimator = NullEstimator() def _validate(self, param, value): if value <= 0: raise ParameterValueError(param, value) @property def a(self): return self['a'] @a.setter def a(self, value): self['a'] = value @property def b(self): return self['b'] @b.setter def b(self, value): self['b'] = value @property def p(self): return self['p'] @p.setter def p(self, value): self['p'] = value def log_prob(self, x): a = self['a'] b = self['b'] p = self['p'] lz = 0.5 * p * (log(a) - log(b)) - log(2 * scipy.special.kv(p, sqrt(a * b))) return lz + (p - 1) * log(x) - 0.5 * (a * x + b / x) def random(self, size=None): from csb.statistics.rand import inv_gaussian rvs = [] burnin = 10 a = self['a'] b = self['b'] p = self['p'] s = a * 0. + 1. if p < 0: a, b = b, a if size == None: size = 1 for i in range(int(size)): for j in range(burnin): l = b + 2 * s m = sqrt(l / a) x = inv_gaussian(m, l, shape=m.shape) s = numpy.random.gamma(abs(p) + 0.5, x) if p >= 0: rvs.append(x) else: rvs.append(1 / x) return numpy.array(rvs) class Gamma(BaseDensity): def __init__(self, alpha=1, beta=1): super(Gamma, self).__init__() self._register('alpha') self._register('beta') self.set_params(alpha=alpha, beta=beta) self.estimator = GammaMLEstimator() def _validate(self, param, value): if value <= 0: raise ParameterValueError(param, value) @property def alpha(self): return self['alpha'] @alpha.setter def alpha(self, value): self['alpha'] = value @property def beta(self): return self['beta'] @beta.setter def beta(self, value): self['beta'] = value def log_prob(self, x): a, b = self['alpha'], self['beta'] return a * log(b) - gammaln(clip(a, 1e-308, 1e308)) + \ (a - 1) * log(clip(x, 1e-308, 1e308)) - b * x def random(self, size=None): return numpy.random.gamma(self['alpha'], 1 / self['beta'], size) class InverseGamma(BaseDensity): def __init__(self, alpha=1, beta=1): super(InverseGamma, self).__init__() self._register('alpha') self._register('beta') self.set_params(alpha=alpha, beta=beta) self.estimator = NullEstimator() def _validate(self, param, value): if value <= 0: raise ParameterValueError(param, value) @property def alpha(self): return self['alpha'] @alpha.setter def alpha(self, value): self['alpha'] = value @property def beta(self): return self['beta'] @beta.setter def beta(self, value): self['beta'] = value def log_prob(self, x): a, b = self['alpha'], self['beta'] return a * log(b) - gammaln(a) - (a + 1) * log(x) - b / x def random(self, size=None): return 1. / numpy.random.gamma(self['alpha'], 1 / self['beta'], size) class MultivariateGaussian(Normal): def __init__(self, mu=numpy.zeros(2), sigma=numpy.eye(2)): super(MultivariateGaussian, self).__init__(mu, sigma) self.estimator = MultivariateGaussianMLEstimator() def random(self, size=None): return numpy.random.multivariate_normal(self.mu, self.sigma, size) def log_prob(self, x): from numpy.linalg import det mu = self.mu S = self.sigma D = len(mu) q = self.__q(x) return -0.5 * (D * log(2 * pi) + log(abs(det(S)))) - 0.5 * q ** 2 def __q(self, x): from numpy import sum, dot, reshape from numpy.linalg import inv mu = self.mu S = self.sigma return sqrt(clip(sum(reshape((x - mu) * dot(x - mu, inv(S).T.squeeze()), (-1, len(mu))), -1), 0., 1e308)) def conditional(self, x, dims): """ Return the distribution along the dimensions dims conditioned on x @param x: conditional values @param dims: new dimensions """ from numpy import take, dot from numpy.linalg import inv dims2 = [i for i in range(self['mu'].shape[0]) if not i in dims] mu1 = take(self['mu'], dims) mu2 = take(self['mu'], dims2) # x1 = take(x, dims) x2 = take(x, dims2) A = take(take(self['Sigma'], dims, 0), dims, 1) B = take(take(self['Sigma'], dims2, 0), dims2, 1) C = take(take(self['Sigma'], dims, 0), dims2, 1) mu = mu1 + dot(C, dot(inv(B), x2 - mu2)) Sigma = A - dot(C, dot(inv(B), C.T)) return MultivariateGaussian((mu, Sigma)) class Dirichlet(BaseDensity): def __init__(self, alpha): super(Dirichlet, self).__init__() self._register('alpha') self.set_params(alpha=alpha) self.estimator = DirichletEstimator() @property def alpha(self): return self['alpha'] @alpha.setter def alpha(self, value): self['alpha'] = numpy.ravel(value) def log_prob(self, x): #TODO check wether x is in the probability simplex alpha = self.alpha return gammaln(sum(alpha)) - sum(gammaln(alpha)) \ + numpy.dot((alpha - 1).T, log(x).T) def random(self, size=None): return numpy.random.mtrand.dirichlet(self.alpha, size) class GumbelMinimum(BaseDensity): def __init__(self, mu=0, beta=1): super(GumbelMinimum, self).__init__() self._register('mu') self._register('beta') self.set_params(mu=mu, beta=beta) self.estimator = GumbelMinMomentsEstimator() def _validate(self, param, value): if param == 'beta' and value <= 0: raise ParameterValueError(param, value) @property def mu(self): return self['mu'] @mu.setter def mu(self, value): self['mu'] = value @property def beta(self): return self['beta'] @beta.setter def beta(self, value): self['beta'] = value def log_prob(self, x): mu = self.mu beta = self.beta z = (x - mu) / beta return log(1. / beta) + z - exp(z) def random(self, size=None): mu = self.mu beta = self.beta return -numpy.random.gumbel(-mu, beta, size) class GumbelMaximum(GumbelMinimum): def __init__(self, mu=0, beta=1): super(GumbelMaximum, self).__init__(mu=mu, beta=beta) self.estimator = GumbelMaxMomentsEstimator() def log_prob(self, x): mu = self.mu beta = self.beta z = (x - mu) / beta return log(1. / beta) - z - exp(-z) def random(self, size=None): mu = self.mu beta = self.beta return numpy.random.gumbel(mu, beta, size)
csb-toolbox/CSB
csb/statistics/pdf/__init__.py
Python
mit
24,534
[ "Gaussian" ]
b28670682f0432df6655811d805f72e3eb354d924163666284a3e9a564a61626
""" Tests for ProxyProvider modules module """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import re import sys import shutil import unittest from diraccfg import CFG import DIRAC from DIRAC import gConfig from DIRAC.Core.Security.X509Chain import X509Chain # pylint: disable=import-error from DIRAC.Resources.ProxyProvider.ProxyProviderFactory import ProxyProviderFactory certsPath = os.path.join(os.path.dirname(DIRAC.__file__), 'Core/Security/test/certs') diracTestCACFG = """ Resources { ProxyProviders { DIRAC_TEST_CA { ProviderType = DIRACCA CertFile = %s KeyFile = %s Match = Supplied = C, O, OU, CN Optional = emailAddress DNOrder = C, O, OU, CN, emailAddress C = FR O = DIRAC OU = DIRAC TEST } } } """ % (os.path.join(certsPath, 'ca/ca.cert.pem'), os.path.join(certsPath, 'ca/ca.key.pem')) userCFG = """ Registry { Users { testuser { DN = /C=FR/O=DIRAC/OU=DIRAC TEST/CN=DIRAC test user/[email protected] } } Groups { dirac_user { Users = testuser } dirac_no_user { Users = nouser } } } """ class DIRACCAPPTest(unittest.TestCase): """ Base class for the Modules test cases """ @classmethod def setUpClass(cls): pass @classmethod def tearDownClass(cls): pass def setUp(self): cfg = CFG() cfg.loadFromBuffer(diracTestCACFG) gConfig.loadCFG(cfg) cfg.loadFromBuffer(userCFG) gConfig.loadCFG(cfg) result = ProxyProviderFactory().getProxyProvider('DIRAC_TEST_CA') self.assertTrue(result['OK'], '\n%s' % result.get('Message') or 'Error message is absent.') self.pp = result['Value'] def tearDown(self): pass def test_getProxy(self): for dn, res in [('/C=FR/O=DIRAC/OU=DIRAC TEST/CN=DIRAC test user/[email protected]', True), ('/C=FR/OU=DIRAC TEST/[email protected]', False), ('/C=FR/OU=DIRAC/O=DIRAC TEST/[email protected]', False), ('/C=FR/O=DIRAC/BADFIELD=DIRAC TEST/CN=DIRAC test user', False)]: result = self.pp.getProxy(dn) text = 'Must be ended %s%s' % ('successful' if res else 'with error', ': %s' % result.get('Message', 'Error message is absent.')) self.assertEqual(result['OK'], res, text) if res: chain = X509Chain() chain.loadChainFromString(result['Value']) result = chain.getCredentials() self.assertTrue(result['OK'], '\n%s' % result.get('Message') or 'Error message is absent.') credDict = result['Value'] self.assertEqual(credDict['username'], 'testuser', '%s, expected %s' % (credDict['username'], 'testuser')) def test_generateProxyDN(self): userDict = {"FullName": "John Doe", "Email": "[email protected]", "O": 'DIRAC', 'OU': 'DIRAC TEST', 'C': 'FR'} result = self.pp.generateDN(**userDict) self.assertTrue(result['OK'], '\n%s' % result.get('Message') or 'Error message is absent.') result = self.pp.getProxy(result['Value']) self.assertTrue(result['OK'], '\n%s' % result.get('Message') or 'Error message is absent.') chain = X509Chain() chain.loadChainFromString(result['Value']) result = chain.getCredentials() self.assertTrue(result['OK'], '\n%s' % result.get('Message') or 'Error message is absent.') issuer = result['Value']['issuer'] self.assertEqual(issuer, '/C=FR/O=DIRAC/OU=DIRAC TEST/CN=John Doe/[email protected]') if __name__ == '__main__': suite = unittest.defaultTestLoader.loadTestsFromTestCase(DIRACCAPPTest) testResult = unittest.TextTestRunner(verbosity=2).run(suite) sys.exit(not testResult.wasSuccessful())
yujikato/DIRAC
tests/Integration/Resources/ProxyProvider/Test_DIRACCAProxyProvider.py
Python
gpl-3.0
3,956
[ "DIRAC" ]
7071ed2f3eae5c508c39c6e44af1b33bdc81ed2af29a7d44e61533c5b0ea6b7c
# Import of the relevant tools import time import numpy as np import theano import theano.tensor as T from theano import pp, config import os from plotly.tools import FigureFactory as FF import plotly.graph_objs as go from ..io.read_vtk import ReadVTK from ..data_attachment.measures import Measures from ..data_attachment.varifolds import Varifolds from ..math_utils.kernels import _squared_distances, _gaussian_kernel # a TheanoShapes manifold will be created from a regular Curve/Surface, # with information about connectivity and number of points. # Basically, a TheanoShapes is an efficient implementation of # a shape orbit. from .riemannian_manifold import RManifold class TheanoHamiltonianClouds(RManifold) : """ Abstract class which implements the symbolic Hamiltonian dynamic. """ def __init__(self, kernel = ('gaussian', 1), weights = (0.01, 1), # gamma_V, gamma_W dt = 0.1, plot_interactive = False, plot_file = True, foldername = 'results/' ) : # We are going to re-implement the RManifold shoot and backward methods, # so we may as well start from scratch. # no need for RManifold.__init__(self, npoints, dimension, kernel, dt) self.kernel = kernel self.kernel_radius = kernel[1] self.dt = dt self.weight_regularization = weights[0] self.weight_attachment = weights[1] self.current_axis = [] self.plot_interactive = plot_interactive self.plot_file = plot_file self.foldername = foldername def assert_folder(dname) : if not os.path.exists(dname): os.makedirs(dname) assert_folder(self.foldername) assert_folder(self.foldername + '/Descent/') assert_folder(self.foldername + '/Descent/Models/') assert_folder(self.foldername + '/Descent/Momentums/') assert_folder(self.foldername + '/Descent/Plans/') assert_folder(self.foldername + '/Grid/') assert_folder(self.foldername + '/Momentums/') assert_folder(self.foldername + '/Shoot/') # We don't need all those legacy routines : ================================================ def K(self,q,p, kernels) : raise(NotImplementedError) def upP(self,q,p, kernels) : raise(NotImplementedError) def gradq_pKqz(self, p, q, z, kernels) : raise(NotImplementedError) def dq_gradq_pKqp_a(self, q, p, a, kernels) : raise(NotImplementedError) def dq_Kqp_a(self,q,p,a, kernels) : raise(NotImplementedError) # Symbolic Hamiltonian functions ========================================================================== # Part 1 : cometric on the space of landmarks, kinetic energy on the phase space (Hamiltonian)----- def _kq(self, q): # Computes the standard gaussian kernel matrix of variance kernel_radius return _gaussian_kernel(q, q, self.kernel_radius) def _Kq(self, q) : k = self._kq(q) return k def _Hqp(self, q, p) : """Hamiltonian.""" pKqp = self._Kq(q) * (p.dot(p.T)) return .5 * T.sum(pKqp) # H(q,p) = (1/2) * sum_ij K(x_i,x_j) p_i.p_j # Part 2 : Geodesic shooting ------------------------------------------------------------------ # The partial derivatives of the Hamiltonian are automatically computed ! def _dq_Hqp(self, q,p) : return T.grad(self._Hqp(q,p), q) def _dp_Hqp(self, q,p) : return T.grad(self._Hqp(q,p), p) def _hamiltonian_step(self, q,p) : # The "math" part of the code : return [q + self.dt * self._dp_Hqp(q,p) , # Simplistic euler scheme p - self.dt * self._dq_Hqp(q,p) ] def _HamiltonianTrajectory(self, q, p) : # Here, we use the "scan" theano routine, which can be understood as a "for" loop result, updates = theano.scan(fn = lambda x,y : self._hamiltonian_step(x,y), outputs_info = [q,p], n_steps = int(np.round(1/self.dt) )) return result def _HamiltonianShooting(self, q, p) : # Here, we use the "scan" theano routine, which can be understood as a "for" loop result, updates = theano.scan(fn = lambda x,y : self._hamiltonian_step(x,y), outputs_info = [q,p], n_steps = int(np.round(1/self.dt) )) final_result = [result[0][-1], result[1][-1]] # We do not store the intermediate results return final_result # and only return the final state + momentum # Part 2bis : Action on the ambiant space. ------------------------------------------------------- # This is useful to visualize the grid deformation, or in the control points setting def _carry(self, q, p, s, dt) : """ Defines the infinitesimal action of a momentum p located at q on the theano variable s. """ return s + dt * _gaussian_kernel(s, q, self.kernel_radius).dot(p) def _hamiltonian_step_carrying(self, q,p, s) : # The "math" part of the code : return [q + self.dt * self._dp_Hqp(q,p) , # Simplistic euler scheme p - self.dt * self._dq_Hqp(q,p) , self._carry(q, p, s, self.dt) ] def _HamiltonianTrajectoryCarrying(self, q, p, s) : # Here, we use the "scan" theano routine, which can be understood as a "for" loop result, updates = theano.scan(fn = lambda x,y,z : self._hamiltonian_step_carrying(x,y,z), outputs_info = [q,p,s], n_steps = int(np.round(1/self.dt) )) return result def _HamiltonianShootingCarrying(self, q, p, s) : # Here, we use the "scan" theano routine, which can be understood as a "for" loop result = self._HamiltonianTrajectoryCarrying(q, p, s) final_result = [result[0][-1], result[1][-1], result[2][-1]] # We do not store the intermediate results return final_result # and only return the final state + momentum # Part 3 : Cost function and derivatives ------------------------------------------------------- def _cost(self, q, p, *args) : cost_reg = self._Hqp(q,p) cost_att = self._data_attachment(self._HamiltonianShooting(q,p)[0], *args) # C(q_0, p_0) = A(q_1, x_t) return self.weight_regularization * cost_reg + self.weight_attachment * cost_att[0], cost_att[1] # The discrete backward scheme is automatically computed : def _dcost_q0(self, q,p, *args) : # Useful for template estimation return T.grad(self._cost(q,p,*args)[0], q) # The gradients wrt. q_0 is automatically computed def _dcost_p0(self, q,p,*args) : # Useful in a matching problem return T.grad(self._cost(q,p,*args)[0], p) # The gradients wrt. p_0 is automatically computed def _opt_shooting_cost(self, q0, p0, *args) : # Wrapper cost_info = self._cost( q0, p0, *args) return [cost_info[0] , # the actual cost q0,#self._dcost_q0( q0, p0, *args) , self._dcost_p0( q0, p0, *args) , self._HamiltonianShooting(q0,p0)[0], cost_info[1]] # Additional information (transport plan, etc.) # Appendix : Collection of data attachment terms ----------------------------------------------- def _data_attachment(self, q1, *args) : """Selects the appropriate data attachment routine, depending on self's attributes.""" raise(NotImplementedError) # Input-Output ================================================================================= def show(self, *args, **kwargs) : if self.plot_interactive : self.interactive_show(*args, **kwargs) def interactive_show(self) : raise(NotImplementedError) def marker(self, *args, **kwargs) : if self.plot_interactive : self.interactive_marker(*args, **kwargs) if self.plot_file : self.file_marker(*args, **kwargs) def marker_target(self, *args, **kwargs) : if self.plot_interactive : self.interactive_marker_target(*args, **kwargs) if self.plot_file : self.file_marker_target(*args, **kwargs) def plot_traj(self, *args, **kwargs) : if self.plot_interactive : self.interactive_plot_traj(*args, **kwargs) if self.plot_file : self.file_plot_traj(*args, **kwargs) def quiver(self, *args, **kwargs) : if self.plot_interactive : self.interactive_quiver(*args, **kwargs) if self.plot_file : self.file_quiver(*args, **kwargs) def plot_momentums(self, *args, **kwargs) : if self.plot_interactive : self.interactive_plot_momentums(*args, **kwargs) if self.plot_file : self.file_plot_momentums(*args, **kwargs) def show_transport(self, *args, **kwargs) : #if self.plot_interactive : # self.interactive_show_transport(*args, **kwargs) if self.plot_file : self.file_show_transport(*args, **kwargs)
jeanfeydy/lddmm-ot
LDDMM_Python/lddmm_python/modules/manifolds/theano_hamiltonianclouds.py
Python
mit
8,642
[ "Gaussian" ]
9936c3809c04da18547ffc4bca2164745bda11d1fc5daa601a6fcfc12756a41c
# # @BEGIN LICENSE # # Psi4: an open-source quantum chemistry software package # # Copyright (c) 2007-2022 The Psi4 Developers. # # The copyrights for code used from other parties are included in # the corresponding files. # # This file is part of Psi4. # # Psi4 is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, version 3. # # Psi4 is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License along # with Psi4; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # # @END LICENSE # import os import numpy as np from psi4 import core from psi4.driver import p4util from psi4.driver import qcdb from psi4.driver.p4util import solvers from .augmented_hessian import ah_iteration from .. import proc_util def print_iteration(mtype, niter, energy, de, orb_rms, ci_rms, nci, norb, stype): core.print_out("%s %2d: % 18.12f % 1.4e %1.2e %1.2e %3d %3d %s\n" % (mtype, niter, energy, de, orb_rms, ci_rms, nci, norb, stype)) def mcscf_solver(ref_wfn): # Build CIWavefunction core.prepare_options_for_module("DETCI") ciwfn = core.CIWavefunction(ref_wfn) ciwfn.set_module("detci") # Hush a lot of CI output ciwfn.set_print(0) # Begin with a normal two-step step_type = 'Initial CI' total_step = core.Matrix("Total step", ciwfn.get_dimension('OA'), ciwfn.get_dimension('AV')) start_orbs = ciwfn.get_orbitals("ROT").clone() ciwfn.set_orbitals("ROT", start_orbs) # Grab da options mcscf_orb_grad_conv = core.get_option("DETCI", "MCSCF_R_CONVERGENCE") mcscf_e_conv = core.get_option("DETCI", "MCSCF_E_CONVERGENCE") mcscf_max_macroiteration = core.get_option("DETCI", "MCSCF_MAXITER") mcscf_type = core.get_option("DETCI", "MCSCF_TYPE") mcscf_d_file = core.get_option("DETCI", "CI_FILE_START") + 3 mcscf_nroots = core.get_option("DETCI", "NUM_ROOTS") mcscf_wavefunction_type = core.get_option("DETCI", "WFN") mcscf_ndet = ciwfn.ndet() mcscf_nuclear_energy = ciwfn.molecule().nuclear_repulsion_energy() mcscf_steplimit = core.get_option("DETCI", "MCSCF_MAX_ROT") mcscf_rotate = core.get_option("DETCI", "MCSCF_ROTATE") # DIIS info mcscf_diis_start = core.get_option("DETCI", "MCSCF_DIIS_START") mcscf_diis_freq = core.get_option("DETCI", "MCSCF_DIIS_FREQ") mcscf_diis_error_type = core.get_option("DETCI", "MCSCF_DIIS_ERROR_TYPE") mcscf_diis_max_vecs = core.get_option("DETCI", "MCSCF_DIIS_MAX_VECS") # One-step info mcscf_target_conv_type = core.get_option("DETCI", "MCSCF_ALGORITHM") mcscf_so_start_grad = core.get_option("DETCI", "MCSCF_SO_START_GRAD") mcscf_so_start_e = core.get_option("DETCI", "MCSCF_SO_START_E") mcscf_current_step_type = 'Initial CI' # Start with SCF energy and other params scf_energy = ciwfn.variable("HF TOTAL ENERGY") eold = scf_energy norb_iter = 1 converged = False ah_step = False qc_step = False approx_integrals_only = True # Fake info to start with the initial diagonalization ediff = 1.e-4 orb_grad_rms = 1.e-3 # Grab needed objects diis_obj = solvers.DIIS(mcscf_diis_max_vecs) mcscf_obj = ciwfn.mcscf_object() # Execute the rotate command for rot in mcscf_rotate: if len(rot) != 4: raise p4util.PsiException("Each element of the MCSCF rotate command requires 4 arguements (irrep, orb1, orb2, theta).") irrep, orb1, orb2, theta = rot if irrep > ciwfn.Ca().nirrep(): raise p4util.PsiException("MCSCF_ROTATE: Expression %s irrep number is larger than the number of irreps" % (str(rot))) if max(orb1, orb2) > ciwfn.Ca().coldim()[irrep]: raise p4util.PsiException("MCSCF_ROTATE: Expression %s orbital number exceeds number of orbitals in irrep" % (str(rot))) theta = np.deg2rad(theta) x = ciwfn.Ca().nph[irrep][:, orb1].copy() y = ciwfn.Ca().nph[irrep][:, orb2].copy() xp = np.cos(theta) * x - np.sin(theta) * y yp = np.sin(theta) * x + np.cos(theta) * y ciwfn.Ca().nph[irrep][:, orb1] = xp ciwfn.Ca().nph[irrep][:, orb2] = yp # Limited RAS functionality if core.get_local_option("DETCI", "WFN") == "RASSCF" and mcscf_target_conv_type != "TS": core.print_out("\n Warning! Only the TS algorithm for RASSCF wavefunction is currently supported.\n") core.print_out(" Switching to the TS algorithm.\n\n") mcscf_target_conv_type = "TS" # Print out headers if mcscf_type == "CONV": mtype = " @MCSCF" core.print_out("\n ==> Starting MCSCF iterations <==\n\n") core.print_out(" Iter Total Energy Delta E Orb RMS CI RMS NCI NORB\n") elif mcscf_type == "DF": mtype = " @DF-MCSCF" core.print_out("\n ==> Starting DF-MCSCF iterations <==\n\n") core.print_out(" Iter Total Energy Delta E Orb RMS CI RMS NCI NORB\n") else: mtype = " @AO-MCSCF" core.print_out("\n ==> Starting AO-MCSCF iterations <==\n\n") core.print_out(" Iter Total Energy Delta E Orb RMS CI RMS NCI NORB\n") # Iterate ! for mcscf_iter in range(1, mcscf_max_macroiteration + 1): # Transform integrals, diagonalize H ciwfn.transform_mcscf_integrals(approx_integrals_only) nci_iter = ciwfn.diag_h(abs(ediff) * 1.e-2, orb_grad_rms * 1.e-3) # After the first diag we need to switch to READ ciwfn.set_ci_guess("DFILE") ciwfn.form_opdm() ciwfn.form_tpdm() ci_grad_rms = ciwfn.variable("DETCI AVG DVEC NORM") # Update MCSCF object Cocc = ciwfn.get_orbitals("DOCC") Cact = ciwfn.get_orbitals("ACT") Cvir = ciwfn.get_orbitals("VIR") opdm = ciwfn.get_opdm(-1, -1, "SUM", False) tpdm = ciwfn.get_tpdm("SUM", True) mcscf_obj.update(Cocc, Cact, Cvir, opdm, tpdm) current_energy = ciwfn.variable("MCSCF TOTAL ENERGY") ciwfn.reset_ci_H0block() orb_grad_rms = mcscf_obj.gradient_rms() ediff = current_energy - eold # Print iterations print_iteration(mtype, mcscf_iter, current_energy, ediff, orb_grad_rms, ci_grad_rms, nci_iter, norb_iter, mcscf_current_step_type) eold = current_energy if mcscf_current_step_type == 'Initial CI': mcscf_current_step_type = 'TS' # Check convergence if (orb_grad_rms < mcscf_orb_grad_conv) and (abs(ediff) < abs(mcscf_e_conv)) and\ (mcscf_iter > 3) and not qc_step: core.print_out("\n %s has converged!\n\n" % mtype); converged = True break # Which orbital convergence are we doing? if ah_step: converged, norb_iter, step = ah_iteration(mcscf_obj, print_micro=False) norb_iter += 1 if converged: mcscf_current_step_type = 'AH' else: core.print_out(" !Warning. Augmented Hessian did not converge. Taking an approx step.\n") step = mcscf_obj.approx_solve() mcscf_current_step_type = 'TS, AH failure' else: step = mcscf_obj.approx_solve() step_type = 'TS' maxstep = step.absmax() if maxstep > mcscf_steplimit: core.print_out(' Warning! Maxstep = %4.2f, scaling to %4.2f\n' % (maxstep, mcscf_steplimit)) step.scale(mcscf_steplimit / maxstep) xstep = total_step.clone() total_step.add(step) # Do or add DIIS if (mcscf_iter >= mcscf_diis_start) and ("TS" in mcscf_current_step_type): # Figure out DIIS error vector if mcscf_diis_error_type == "GRAD": error = core.triplet(ciwfn.get_orbitals("OA"), mcscf_obj.gradient(), ciwfn.get_orbitals("AV"), False, False, True) else: error = step diis_obj.add(total_step, error) if not (mcscf_iter % mcscf_diis_freq): total_step = diis_obj.extrapolate() mcscf_current_step_type = 'TS, DIIS' # Build the rotation by continuous updates if mcscf_iter == 1: totalU = mcscf_obj.form_rotation_matrix(total_step) else: xstep.axpy(-1.0, total_step) xstep.scale(-1.0) Ustep = mcscf_obj.form_rotation_matrix(xstep) totalU = core.doublet(totalU, Ustep, False, False) # Build the rotation directly (not recommended) # orbs_mat = mcscf_obj.Ck(start_orbs, total_step) # Finally rotate and set orbitals orbs_mat = core.doublet(start_orbs, totalU, False, False) ciwfn.set_orbitals("ROT", orbs_mat) # Figure out what the next step should be if (orb_grad_rms < mcscf_so_start_grad) and (abs(ediff) < abs(mcscf_so_start_e)) and\ (mcscf_iter >= 2): if mcscf_target_conv_type == 'AH': approx_integrals_only = False ah_step = True elif mcscf_target_conv_type == 'OS': approx_integrals_only = False mcscf_current_step_type = 'OS, Prep' break else: continue #raise p4util.PsiException("") # If we converged do not do onestep if converged or (mcscf_target_conv_type != 'OS'): one_step_iters = [] # If we are not converged load in Dvec and build iters array else: one_step_iters = range(mcscf_iter + 1, mcscf_max_macroiteration + 1) dvec = ciwfn.D_vector() dvec.init_io_files(True) dvec.read(0, 0) dvec.symnormalize(1.0, 0) ci_grad = ciwfn.new_civector(1, mcscf_d_file + 1, True, True) ci_grad.set_nvec(1) ci_grad.init_io_files(True) # Loop for onestep for mcscf_iter in one_step_iters: # Transform integrals and update the MCSCF object ciwfn.transform_mcscf_integrals(ciwfn.H(), False) ciwfn.form_opdm() ciwfn.form_tpdm() # Update MCSCF object Cocc = ciwfn.get_orbitals("DOCC") Cact = ciwfn.get_orbitals("ACT") Cvir = ciwfn.get_orbitals("VIR") opdm = ciwfn.get_opdm(-1, -1, "SUM", False) tpdm = ciwfn.get_tpdm("SUM", True) mcscf_obj.update(Cocc, Cact, Cvir, opdm, tpdm) orb_grad_rms = mcscf_obj.gradient_rms() # Warning! Does not work for SA-MCSCF current_energy = mcscf_obj.current_total_energy() current_energy += mcscf_nuclear_energy ciwfn.set_variable("CI ROOT %d TOTAL ENERGY" % 1, current_energy) ciwfn.set_variable("CURRENT ENERGY", current_energy) ciwfn.set_energy(current_energy) docc_energy = mcscf_obj.current_docc_energy() ci_energy = mcscf_obj.current_ci_energy() # Compute CI gradient ciwfn.sigma(dvec, ci_grad, 0, 0) ci_grad.scale(2.0, 0) ci_grad.axpy(-2.0 * ci_energy, dvec, 0, 0) ci_grad_rms = ci_grad.norm(0) orb_grad_rms = mcscf_obj.gradient().rms() ediff = current_energy - eold print_iteration(mtype, mcscf_iter, current_energy, ediff, orb_grad_rms, ci_grad_rms, nci_iter, norb_iter, mcscf_current_step_type) mcscf_current_step_type = 'OS' eold = current_energy if (orb_grad_rms < mcscf_orb_grad_conv) and (abs(ediff) < abs(mcscf_e_conv)): core.print_out("\n %s has converged!\n\n" % mtype); converged = True break # Take a step converged, norb_iter, nci_iter, step = qc_iteration(dvec, ci_grad, ciwfn, mcscf_obj) # Rotate integrals to new frame total_step.add(step) orbs_mat = mcscf_obj.Ck(ciwfn.get_orbitals("ROT"), step) ciwfn.set_orbitals("ROT", orbs_mat) core.print_out(mtype + " Final Energy: %20.15f\n" % current_energy) # Die if we did not converge if (not converged): if core.get_global_option("DIE_IF_NOT_CONVERGED"): raise p4util.PsiException("MCSCF: Iterations did not converge!") else: core.print_out("\nWarning! MCSCF iterations did not converge!\n\n") # Print out CI vector information if mcscf_target_conv_type == 'OS': dvec.close_io_files() ci_grad.close_io_files() # For orbital invariant methods we transform the orbitals to the natural or # semicanonical basis. Frozen doubly occupied and virtual orbitals are not # modified. if core.get_option("DETCI", "WFN") == "CASSCF": # Do we diagonalize the opdm? if core.get_option("DETCI", "NAT_ORBS"): ciwfn.ci_nat_orbs() else: ciwfn.semicanonical_orbs() # Retransform intragrals and update CI coeffs., OPDM, and TPDM ciwfn.transform_mcscf_integrals(approx_integrals_only) ciwfn.set_print(1) ciwfn.set_ci_guess("H0_BLOCK") nci_iter = ciwfn.diag_h(mcscf_e_conv, mcscf_e_conv ** 0.5) ciwfn.form_opdm() ciwfn.form_tpdm() proc_util.print_ci_results(ciwfn, "MCSCF", scf_energy, current_energy, print_opdm_no=True) # Set final energy ciwfn.set_variable("CURRENT ENERGY", ciwfn.variable("MCSCF TOTAL ENERGY")) ciwfn.set_energy(ciwfn.variable("MCSCF TOTAL ENERGY")) # What do we need to cleanup? if core.get_option("DETCI", "MCSCF_CI_CLEANUP"): ciwfn.cleanup_ci() if core.get_option("DETCI", "MCSCF_DPD_CLEANUP"): ciwfn.cleanup_dpd() del diis_obj del mcscf_obj return ciwfn
susilehtola/psi4
psi4/driver/procrouting/mcscf/mcscf_solver.py
Python
lgpl-3.0
14,311
[ "Psi4" ]
710b32e6dd48f0115908640eacf559d0266ce4aa7b3b22594e13701b07530f8a
# -*- coding: UTF-8 -*- ####################################################################### # ---------------------------------------------------------------------------- # "THE BEER-WARE LICENSE" (Revision 42): # @Daddy_Blamo wrote this file. As long as you retain this notice you # can do whatever you want with this stuff. If we meet some day, and you think # this stuff is worth it, you can buy me a beer in return. - Muad'Dib # ---------------------------------------------------------------------------- ####################################################################### # Addon Name: Placenta # Addon id: plugin.video.placenta # Addon Provider: Mr.Blamo # FIXME: Some titles, such as Thor Ragnarok, cause exceptions and not pulling URL correct. Need to investigate. import re,traceback,urllib,urlparse from resources.lib.modules import cleantitle from resources.lib.modules import client from resources.lib.modules import debrid from resources.lib.modules import log_utils from resources.lib.modules import source_utils class source: def __init__(self): self.priority = 1 self.language = ['en'] self.domains = ['watch32hd.co'] self.base_link = 'https://watch32hd.co/' self.search_link = '/results/%s' self.watch_link = '/watch?v=%s_%s' # Working: https://watch32hd.co/results?q=guardians+of+the+galaxy # # https://watch32hd.co/watch?v=Guardians_Of_The_Galaxy_2014#video=ggvOQDQLiMEw0h2fAil9YwZbiUtwuMcBfCs1mQ_4 # https://watch32hd.co/watch?v=Guardians_Of_The_Galaxy_2014 def movie(self, imdb, title, localtitle, aliases, year): try: url = {'imdb': imdb, 'title': title, 'year': year} url = urllib.urlencode(url) return url except: failure = traceback.format_exc() log_utils.log('Watch32 - Exception: \n' + str(failure)) return def sources(self, url, hostDict, hostprDict): try: sources = [] if url == None: return sources data = urlparse.parse_qs(url) data = dict([(i, data[i][0]) if data[i] else (i, '') for i in data]) title = data['title'] year = data['year'] #url = urlparse.urljoin(self.base_link, self.search_link) url = urlparse.urljoin(self.base_link, self.watch_link) #url = url % (title.replace(':', '').replace(' ','_'), year) url = url % (re.sub('[: \-]+','_',title), year) search_results = client.request(url) varid = re.compile('var frame_url = "(.+?)"',re.DOTALL).findall(search_results)[0].replace('/embed/','/streamdrive/info/') res_chk = re.compile('class="title"><h1>(.+?)</h1>',re.DOTALL).findall(search_results)[0] varid = 'http:'+varid holder = client.request(varid) links = re.compile('"src":"(.+?)"',re.DOTALL).findall(holder) for link in links: vid_url = link.replace('\\','') if '1080' in res_chk: quality = '1080p' elif '720' in res_chk: quality = '720p' else: quality = 'DVD' sources.append({'source': 'Googlelink', 'quality': quality, 'language': 'en', 'url': vid_url, 'direct': False, 'debridonly': False}) return sources except: failure = traceback.format_exc() log_utils.log('Watch32 - Exception: \n' + str(failure)) return sources def resolve(self, url): return url
RuiNascimento/krepo
script.module.lambdascrapers/lib/lambdascrapers/sources_placenta/en_placenta-1.7.8/to_be_fixed/needsfixing/watch32.py
Python
gpl-2.0
3,615
[ "Galaxy" ]
9410bfae75decbc44d65c44ddf0ee11863e8969cb68e529028f6d7fb8feb4d86
import unittest import warnings from nose.tools import assert_equal import numpy as np import iminuit from iminuit import describe from iminuit.iminuit_warnings import InitialParamWarning from probfit.funcutil import rename from probfit.pdf import gaussian, linear from probfit.costfunc import UnbinnedLH, BinnedLH, BinnedChi2, Chi2Regression, \ SimultaneousFit def assert_almost_equal(x, y, delta=1e-7): if y - delta < x < y + delta: pass else: raise AssertionError('x = %f and y = %f differs more than %g' % (x, y, delta)) class TestFit(unittest.TestCase): def setUp(self): warnings.simplefilter("ignore", InitialParamWarning) np.random.seed(0) self.ndata = 20000 self.data = np.random.randn(self.ndata) self.analytic = self.ndata * 0.5 * (np.log(2 * np.pi) + 1) def test_UnbinnedLH(self): f = gaussian assert_equal(list(describe(f)), ['x', 'mean', 'sigma']) lh = UnbinnedLH(gaussian, self.data,) assert_equal(list(describe(lh)), ['mean', 'sigma']) assert_almost_equal(lh(0, 1), 28188.201229348757) minuit = iminuit.Minuit(lh) assert_equal(minuit.errordef, 0.5) def test_BinnedLH(self): # write a better test... this depends on subtraction f = gaussian assert_equal(list(describe(f)), ['x', 'mean', 'sigma']) lh = BinnedLH(gaussian, self.data, bound=[-3, 3]) assert_equal(list(describe(lh)), ['mean', 'sigma']) assert_almost_equal(lh(0, 1), 20.446130781601543, 1) minuit = iminuit.Minuit(lh) assert_equal(minuit.errordef, 0.5) def test_BinnedChi2(self): f = gaussian assert_equal(list(describe(f)), ['x', 'mean', 'sigma']) lh = BinnedChi2(gaussian, self.data, bound=[-3, 3]) assert_equal(list(describe(lh)), ['mean', 'sigma']) assert_almost_equal(lh(0, 1), 19951.005399882044, 1) minuit = iminuit.Minuit(lh) assert_equal(minuit.errordef, 1.0) def test_Chi2Regression(self): x = np.linspace(1, 10, 10) y = 10 * x + 1 f = linear assert_equal(list(describe(f)), ['x', 'm', 'c']) lh = Chi2Regression(f, x, y) assert_equal(list(describe(lh)), ['m', 'c']) assert_almost_equal(lh(10, 1), 0) assert_almost_equal(lh(10, 0), 10.) minuit = iminuit.Minuit(lh) assert_equal(minuit.errordef, 1.0) def test_simultaneous(self): np.random.seed(0) data = np.random.randn(10000) shifted = data + 3. g1 = rename(gaussian, ['x', 'lmu', 'sigma']) g2 = rename(gaussian, ['x', 'rmu', 'sigma']) ulh1 = UnbinnedLH(g1, data) ulh2 = UnbinnedLH(g2, shifted) sim = SimultaneousFit(ulh1, ulh2) assert_equal(describe(sim), ['lmu', 'sigma', 'rmu']) minuit = iminuit.Minuit(sim, sigma=1.2, pedantic=False, print_level=0) minuit.migrad() assert(minuit.migrad_ok()) assert_almost_equal(minuit.values['lmu'], 0., delta=2 * minuit.errors['lmu']) assert_almost_equal(minuit.values['rmu'], 3., delta=2 * minuit.errors['rmu']) assert_almost_equal(minuit.values['sigma'], 1., delta=2 * minuit.errors['sigma']) if __name__ == '__main__': unittest.main()
mtresch/probfit
test/testfit.py
Python
mit
3,327
[ "Gaussian" ]
2895219b50d6413f95cfc8ff7bc5ba966d2169de3a60b82cc63c3c261a9a9484
__all__ = [ 'Generator' ] import numpy as np import molecules a0 = 0.52917721092 class Generator( dict ): """ Used to create molecules, write dalton .mol files using -param for study with use_calculator.py water currently implemented only plans to implement methanol """ def __init__(self, *args, **kwargs): #This waater is TIP3P model, self[ ("water", "tip3p", "a_hoh", "degree") ] = 104.52 self[ ("water", "tip3p", "r_oh", "AA") ] = 0.9572 #This waater is SPC model, self[ ("water", "spc", "a_hoh", "degree") ] = 109.47 self[ ("water", "spc", "r_oh", "AA") ] = 1.0 self[ ("methanol", "gas_opt", "r_oh", "AA" ) ] = 0.967 self[ ("methanol", "gas_opt", "r_co", "AA" ) ] = 1.428 self[ ("methanol", "gas_opt", "r_ch", "AA" ) ] = 1.098 self[ ("methanol", "gas_opt", "a_coh", "degree" ) ] = 107.16 self[ ("methanol", "gas_opt", "a_hch", "degree" ) ] = 109.6 self[ ("methanol", "gas_opt", "a_hco", "degree" ) ] = 109.342 self[ ("methanol", "gas_opt", "d_hcoh", "h4", "degree" ) ] = 60.0 self[ ("methanol", "gas_opt", "d_hcoh", "h5", "degree" ) ] = -60.0 self[ ("methanol", "gas_opt", "d_hcoh", "h6", "degree" ) ] = 180.0 #Default options for water for val in ["r", "tau", "theta", "rho1", "rho2", "rho3", ]: self[ ( val, 'min') ] = 0.0 self[ ( val, 'max') ] = 0.0 self[ ( val, 'points') ] = 1 self[ ( 'r', 'min') ] = 5.0 self[ ( 'r', 'max') ] = 10.0 self[ ( 'r', 'points') ] = 1 # Set by default all parameters to False for val in ["r", "tau", "theta", "rho1", "rho2", "rho3", ]: self[ ( val, "active" ) ] = False @staticmethod def get_pe_b3lyp_dal( co = 1.0, AA = True, max_l = 2, sites = 3): r_order = max_l + 1 if AA: aa = "AA" else: aa = "AU" co /= a0 st = """**DALTON INPUT .RUN WAVE FUNCTION .DIRECT .PARALLELL .PEQM *PEQM .BORDER REDIST -%d %.1f %s %d **WAVE FUNCTION .DFT B3LYP **END OF DALTON INPUT""" % (max_l+1, co, aa, sites) return st @staticmethod def get_qmmm_b3lyp_dal( damp = False): if damp: damp = "\n.DAMP" else: damp = "" st = """**DALTON INPUT .RUN RESPONSE .DIRECT .PARALLELL *QMMM .QMMM%s **WAVE FUNCTION .DFT B3LYP **END OF DALTON INPUT""" % damp return st @staticmethod def get_lin_dal( _string ): if _string == 'hflin': return Generator.get_hflin_dal() elif _string == 'b3lyplin': return Generator.get_b3lyplin_dal() elif _string == 'camb3lyplin': return Generator.get_camb3lyplin_dal() elif _string == 'ccsdlin': return Generator.get_ccsdlin_dal() @staticmethod def get_hf_imag_dal( freq = ("0.0",), functional = 'B3PW91' ): _string = """**DALTON INPUT .RUN RESPONSE .DIRECT .PARALLELL **WAVE FUNCTION .HF **RESPONSE *ABSORP .ALPHA .IMAG F .FREQUE """ _string += str(len(freq)) + '\n' freqs = " ".join( map( str, freq ) ) _string += freqs _string += '\n' _string += "**END OF DALTON INPUT\n" return _string @staticmethod def get_b3lyplin_dal(): return """**DALTON INPUT .RUN RESPONSE .DIRECT .PARALLELL **WAVE FUNCTION .DFT B3LYP .INTERFACE **INTEGRAL .DIPLEN .SECMOM **RESPONSE .PROPAV XDIPLEN .PROPAV YDIPLEN .PROPAV ZDIPLEN *LINEAR .DIPLEN **END OF DALTON INPUT""" @staticmethod def get_b3lypqua_dal( ): return """**DALTON INPUT .RUN RESPONSE .DIRECT .PARALLELL **WAVE FUNCTION .DFT B3LYP .INTERFACE **INTEGRAL .DIPLEN .SECMOM **RESPONSE .PROPAV XDIPLEN .PROPAV YDIPLEN .PROPAV ZDIPLEN *QUADRATIC .QLOP .DIPLEN **END OF DALTON INPUT""" @staticmethod def get_hflin_freq_dal( freq = "0.0", au = True, nm = False ): _string = """**DALTON INPUT .RUN RESPONSE .DIRECT .PARALLELL **WAVE FUNCTION .HF **INTEGRAL .DIPLEN .SECMOM **RESPONSE .PROPAV XDIPLEN .PROPAV YDIPLEN .PROPAV ZDIPLEN *LINEAR .DIPLEN .FREQUE 1 %s """ %( freq ) _string += "**END OF DALTON INPUT\n" return _string @staticmethod def get_hfqua_dal( ): return """**DALTON INPUT .RUN RESPONSE .DIRECT .PARALLELL **WAVE FUNCTION .HF .INTERFACE **INTEGRAL .DIPLEN .SECMOM **RESPONSE .PROPAV XDIPLEN .PROPAV YDIPLEN .PROPAV ZDIPLEN *QUADRATIC .QLOP .DIPLEN **END OF DALTON INPUT""" @staticmethod def get_hflin_dal( ): return """**DALTON INPUT .RUN RESPONSE .DIRECT .PARALLELL **WAVE FUNCTION .HF .INTERFACE **INTEGRAL .DIPLEN .SECMOM **RESPONSE .PROPAV XDIPLEN .PROPAV YDIPLEN .PROPAV ZDIPLEN *LINEAR .DIPLEN **END OF DALTON INPUT""" @staticmethod def get_b3lyplin_freq_dal( freq = "0.0", au = True, nm = False ): _string = """**DALTON INPUT .RUN RESPONSE .DIRECT .PARALLELL **WAVE FUNCTION .DFT B3LYP .INTERFACE **INTEGRAL .DIPLEN .SECMOM **RESPONSE .PROPAV XDIPLEN .PROPAV YDIPLEN .PROPAV ZDIPLEN *LINEAR .DIPLEN .FREQUE 1 %s """ %( freq ) _string += "**END OF DALTON INPUT\n" return _string @staticmethod def get_camb3lyplin_dal(): return """**DALTON INPUT .RUN RESPONSE .DIRECT .PARALLELL **WAVE FUNCTION .DFT CAMB3LYP .INTERFACE **INTEGRAL .DIPLEN .SECMOM **RESPONSE .PROPAV XDIPLEN .PROPAV YDIPLEN .PROPAV ZDIPLEN *LINEAR .DIPLEN **END OF DALTON INPUT""" @staticmethod def get_camb3lypqua_dal( ): return """**DALTON INPUT .RUN RESPONSE .DIRECT .PARALLELL **WAVE FUNCTION .DFT CAMB3LYP .INTERFACE **INTEGRAL .DIPLEN .SECMOM **RESPONSE .PROPAV XDIPLEN .PROPAV YDIPLEN .PROPAV ZDIPLEN *QUADRATIC .QLOP .DIPLEN **END OF DALTON INPUT""" @staticmethod def get_camb3lyplin_freq_dal( freq = "0.0", au = True, nm = False ): _string = """**DALTON INPUT .RUN RESPONSE .DIRECT .PARALLELL **WAVE FUNCTION .DFT CAMB3LYP .INTERFACE **INTEGRAL .DIPLEN .SECMOM **RESPONSE .PROPAV XDIPLEN .PROPAV YDIPLEN .PROPAV ZDIPLEN *LINEAR .DIPLEN .FREQUE 1 %s """ %( freq ) _string += "**END OF DALTON INPUT\n" return _string @staticmethod def get_ccsdlin_dal(): return """**DALTON INPUT .RUN RESPONSE **INTEGRALS .DIPLEN .SECMOM **WAVE FUNCTION .CC *CC INPUT .CCSD *CCFOP .DIPMOM *CCLR .DIPOLE **END OF DALTON INPUT """ @staticmethod def get_ccsdqua_dal(): return """ **DALTON INPUT .RUN RESPONSE **INTEGRALS .DIPLEN .SECMOM **WAVE FUNCTION .CC *CC INPUT .CCSD *CCFOP .DIPMOM *CCLR .DIPOLE *CCQR .DIPOLE **END OF DALTON INPUT """ def get_mol( self, center = [0,0,0], mol = "water", model = "tip3p", AA = False ): """return molecule in center, all molecules have different definition of euler angles for water place O in origo for methanol place C=O bond in origo """ if mol == "water": #Geometrical parameters, dependent om model if model == "tip3p": r_oh = self[ ("water", "tip3p", "r_oh", "AA") ] a_hoh = self[ ("water", "tip3p", "a_hoh","degree") ] if model == "spc": r_oh = self[ ("water", "spc", "r_oh", "AA") ] a_hoh = self[ ("water", "spc", "a_hoh","degree") ] if not AA: r_oh = r_oh / a0 d = (90 - a_hoh/2 ) * np.pi / 180 xo = center[0] yo = center[1] zo = center[2] xh1 = (center[0] + r_oh * np.cos(d)) yh1 = center[1] zh1 = (center[2] + r_oh* np.sin(d)) xh2 = (center[0] - r_oh * np.cos(d)) yh2 = center[1] zh2 = (center[2] + r_oh* np.sin(d)) h1 = molecules.Atom( **{ "AA" : AA, "x" : xh1, "y" : yh1, "z" : zh1, "element" : "H"} ) h2 = molecules.Atom( **{ "AA" : AA, "x" : xh2, "y" : yh2, "z" : zh2, "element" : "H"} ) o = molecules.Atom( **{ "AA" : AA, "x" : xo, "y" : yo, "z" : zo, "element" : "O"} ) w = molecules.Water( AA = AA) w.append( o ) w.append( h1 ) w.append( h2 ) return w elif mol == "methanol": r_co = self[ ("methanol", "gas_opt", "r_co", "AA" )] r_oh = self[ ("methanol", "gas_opt", "r_oh", "AA" )] r_ch = self[ ("methanol", "gas_opt", "r_ch", "AA" )] a_coh = self[ ("methanol", "gas_opt", "a_coh", "degree" ) ] #a_hch = self[ ("methanol","gas_opt", "a_hch", "degree" ) ] a_hco = self[ ("methanol", "gas_opt", "a_hco", "degree" ) ] a_coh *= np.pi / 180 a_hco *= np.pi / 180 d_hcoh_4 = self[ ("methanol","gas_opt", "d_hcoh", "h4", "degree" ) ] d_hcoh_4 *= np.pi / 180 d_hcoh_5 = self[ ("methanol","gas_opt", "d_hcoh", "h5", "degree" ) ] d_hcoh_5 *= np.pi / 180 d_hcoh_6 = self[ ("methanol","gas_opt", "d_hcoh", "h6", "degree" ) ] d_hcoh_6 *= np.pi / 180 if not AA: r_co, r_oh, r_ch = r_co/a0, r_oh/a0, r_ch/a0 c1 = molecules.Atom( **{"x":0, "y":0, "z":-r_co/2, "AA": AA, "element":"C" } ) o2 = molecules.Atom( **{"x":0, "y":0, "z": r_co/2, "AA": AA, "element":"O" } ) h3 = molecules.Atom( **{"x":r_oh*np.cos( a_coh-np.pi/2), "y":0, "z":r_oh*np.sin( a_coh-np.pi/2) + r_co/2, "AA": AA, "element":"H" } ) h4 = molecules.Atom( **{"x": r_ch*np.sin( a_hco ) * np.cos( d_hcoh_4 ), "y": r_ch*np.sin( a_hco) * np.sin( d_hcoh_4 ), "z": r_ch*np.cos( a_hco) - r_co/2 , "AA": AA, "element":"H" } ) h5 = molecules.Atom( **{"x": r_ch*np.sin( a_hco ) * np.cos( d_hcoh_5 ), "y": r_ch*np.sin( a_hco) * np.sin( d_hcoh_5 ), "z": r_ch*np.cos( a_hco) - r_co/2 , "AA": AA, "element":"H" } ) h6 = molecules.Atom( **{"x": r_ch*np.sin( a_hco ) * np.cos( d_hcoh_6 ), "y": r_ch*np.sin( a_hco) * np.sin( d_hcoh_6 ), "z": r_ch*np.cos( a_hco) - r_co/2 , "AA": AA, "element":"H" } ) m = Methanol() m.append(c1) m.append(o2) m.append(h3) m.append(h4) m.append(h5) m.append(h6) return m def gen_mols_param(self, mol = "water", model = 'tip3p', basis = ["ano-1 2", "ano-1 4 3 1"], AA = True, worst = False): r = np.linspace( self[ ('r', 'min')] , self[ ('r', 'max')] , self[ ('r', 'points' ) ] ) tau = np.linspace( self[ ('tau', 'min')] , self[ ('tau', 'max')] , self[ ('tau', 'points' ) ] ) theta = np.linspace( self[ ('theta', 'min')] , self[ ('theta', 'max')] , self[ ('theta', 'points' ) ] ) rho1 = np.linspace( self[ ('rho1', 'min')], self[ ('rho1', 'max')], self[ ('rho1', 'points' ) ] ) rho2 = np.linspace( self[ ('rho2', 'min')], self[ ('rho2', 'max')], self[ ('rho2', 'points' ) ] ) rho3 = np.linspace( self[ ('rho3', 'min')], self[ ('rho3', 'max')], self[ ('rho3', 'points' ) ] ) if model == 'tip3p': r_oh = self[ ("water", 'tip3p', "r_oh", "AA") ] a_hoh = np.pi * self[ ("water", 'tip3p', "a_hoh", "degree" )] / 180.0 else: r_oh = self[ ("water", 'tip3p', "r_oh", "AA") ] a_hoh = np.pi * self[ ("water", 'tip3p', "a_hoh", "degree" )] / 180.0 for i in r: for j in tau: for k in theta: for l in rho1: for m in rho2: for n in rho3: w1 = molecules.Water.get_standard( AA = AA) w1.t( -w1.o.r ) if worst: w1 = self.get_mol( [0, 0, 0], mol = mol, model = model, AA = AA) w1.populate_bonds() w1.populate_angles() w1.h1.scale_angle( 0.988 ) w1.h1.scale_bond( 0.985 ) w1.h2.scale_bond( 1.015 ) w1.inv_rotate() w2 = molecules.Water.get_standard( AA = AA ) w2.t( -w2.o.r ) x, y, z = self.polar_to_cartesian( i, j, k ) w2.rotate( l, m, n ) w2.t( np.array( [x, y, z]) ) name = "" name += "-".join( map( str, ["%3.2f"%i, "%3.2f"%j, "%3.2f"%k, "%3.2f"%l, "%3.2f"%m, "%3.2f"%n] ) ) name += ".mol" c = molecules.Cluster( w1, w2 ) tmp_mol = c.get_mol_string( basis = tuple(basis)) f_ = open(name, 'w') f_.write( tmp_mol ) return 0 def vary_parameters( self, opts ): """Given two parameters, e.g. r and theta, keeps all other static param_list should be list of strings of parameters ["r":{"min": 2, "max":5, "points": 10}, "rho1" , ... ] Has sane defaults, but can be overrided by passing arguments to main program as: -r_min 5 -r_max 10 -r_points 10 Which overrides defaults """ for val in opts: self[ (val, 'active') ] = True self[ (val, 'min') ] = opts[val][ "min" ] self[ (val, 'max') ] = opts[val][ "max" ] self[ (val, 'points') ] = opts[val][ "points" ] def polar_to_cartesian(self, r, tau, theta): x, y, z = r* np.sin( theta )*np.cos( tau ) \ , r* np.sin( theta )*np.sin( tau ) \ , r* np.cos( theta ) return x , y , z def one_mol_gen(self, mol = 'water', model = 'tip3p',): """ Only implemented for water so far""" if mol == "water": d = self[ ("r_oh_dev", "max") ] p = self[ ("r_oh_dev", "points") ] r_d = 0.01*np.linspace( -d, d, p ) d = self[ ("theta_hoh_dev", "max") ] p = self[ ("theta_hoh_dev", "points") ] theta_d = 0.01*np.linspace( -d, d, p ) #a_hoh = self[ ( mol, model, "a_hoh", "degree" ) ] *np.pi/180 #r_oh = self[ ( mol, model, "r_oh", "AA" ) ] for i in r_d: for j in r_d: for k in theta_d: scale_bond1 = 1 + i scale_bond2 = 1 + j scale_angle = 1 + k names = map( lambda x:"%.3f"%x, [i, j, k] ) w = self.get_mol( mol = mol, model = model) w.populate_bonds() ; w.populate_angles() w.h1.scale_bond( scale_bond1 ) w.h2.scale_bond( scale_bond2 ) w.h1.scale_angle( scale_angle ) w.inv_rotate() open( "_".join([model]+names) + ".mol",'w').write(w.get_mol_string()) def build_pna( self, xyz = "tmp.xyz", waters = 0, min_r = 2.0, mult_r = 10, seed = 111 ): pna = Molecule.from_xyz( xyz ) freqs = [ "0.0", "0.0238927", "0.0428227", "0.0773571" ] np.random.seed( seed ) c = molecules.Cluster() c.add_mol(pna, in_qm = True) cnt = 0 while cnt < waters: # Random rotation angles t1 = np.random.uniform( 0, np.pi/2 ) t2 = np.random.uniform( 0, np.pi ) t3 = np.random.uniform( 0, np.pi/2 ) # random length, rho and tau r = np.random.uniform( min_r , min_r * mult_r) tau = np.random.uniform( 0, np.pi*2) theta = np.random.uniform( 0,np.pi) center = self.polar_to_cartesian( r, tau, theta ) wat = self.get_mol( center = pna.com + center, mol = "water") wat.rotate( t1, t2, t3 ) wat._res_id = cnt if c.mol_too_close( wat ): continue #We are satisfied with this position, add properties to the water, and rotate them according to t1, t2, t3 so they match the water orientation c.add_mol( wat, in_mm = True ) cnt += 1 for f_mm in freqs: for dist in ["nodist", "dist"]: for wat in [ m for m in c if m.in_mm ]: t1, t2, t3 = wat.get_euler() kwargs_dict = Template().get( *("TIP3P", "HF", "ANOPVDZ", dist == "dist",f_mm ) ) for at in wat: Property.add_prop_from_template( at, kwargs_dict ) Property.transform_ut_properties( wat.h1.Property, t1,t2,t3 ) Property.transform_ut_properties( wat.h2.Property, t1,t2,t3 ) Property.transform_ut_properties( wat.o.Property, t1,t2,t3 ) #Write out QM and MM region separately with properties open("pna.mol" ,'w').write(c.get_qm_mol_string( basis= ("ano-1 2 1", "ano-1 3 2 1"), AA = True)) open("%dmm_%s_%s.pot" %(waters, f_mm, dist ),'w').write(c.get_qmmm_pot_string( in_AA = True )) open("tmp.xyz", 'w').write( c.get_xyz_string() )
fishstamp82/moltools
moltools/generator.py
Python
mit
18,121
[ "Dalton" ]
cbad4eae034f472005d10777208f2e474bb61c0b69701d3bd79c56aded6d2dfe
################################################################################ # Peach - Computational Intelligence for Python # Jose Alexandre Nalon # # This file: tutorial/basic-neural-network.py # Basic example of using neural networks ################################################################################ # We import numpy for arrays and peach for the library. Actually, peach also # imports the numpy module, but we want numpy in a separate namespace: from numpy import * import peach as p # Creation of a three layer neural network. The first layer is the input layer, # receives the inputs, and it contains 2 neurons. The second layer is the first # hidden layer and will contain 2 neurons. The last layer is the output layer # and will contain only one neuron. We will choose as activation function the # `Sigmoid` class, and `BackPropagation` class as the learning rule. nn = p.FeedForward((2, 2, 1), p.Sigmoid, p.BackPropagation) # We can use the `[]` operator to select a specific layer. Notice that the input # layer cannot be modified in any way, so `[0]`-th layer is the first hidden # layer. The `weights` property of a layer is an array containing the synaptic # weights of those layer -- each line is the weight vector of the corresponding # neuron. nn[0].weights = array([[ 0.5, 0.5 ], [ -0.5, -0.5 ]], dtype = float) # We set up the synaptic weights of the neuron on the last layer. Notice that # this layer could be accessed as `[-1]`, as a FeedForward network is only a # list of `Layers`. nn[1].weights = array([ 0.25, -0.25 ], dtype = float) # This is an example that will be shown to the network for learning. x = array([ 0.8, 0.2 ], dtype = float) # Input vector d = 0.9 # Desired response # We feed the network the input by calling the network as a function. The # argument to the function is the input vector. The function returns the output # of the network. y = nn(x) # The method below tells the network to learn the example. The specified # learning rule, in this case the BackPropagation, will be used to adapt the # synaptic weights of the network. nn.feed(x, d) # The code below shows the results print "Peach tutorial on neural network basics" print print "Input to the network:" print x print "Network output:" print y print print "Error: %7.4f" % (d - y,) print print "Updated weights in the first hidden layer:" print nn[0].weights print print "Updated weights in the output layer:" print nn[1].weights print print "Network output with updated weights:" print nn(x) print print "Updated error: %7.4f" % (d - nn(x),) print
anki1909/peach
tutorial/neural-networks/basic-neural-network.py
Python
lgpl-2.1
2,642
[ "NEURON" ]
cebf1a465015b778f4b3538d4ce9cd5b0b3af5915fbc7b30ed5701d5594bc981
r"""OS routines for NT or Posix depending on what system we're on. This exports: - all functions from posix or nt, e.g. unlink, stat, etc. - os.path is either posixpath or ntpath - os.name is either 'posix' or 'nt' - os.curdir is a string representing the current directory (always '.') - os.pardir is a string representing the parent directory (always '..') - os.sep is the (or a most common) pathname separator ('/' or '\\') - os.extsep is the extension separator (always '.') - os.altsep is the alternate pathname separator (None or '/') - os.pathsep is the component separator used in $PATH etc - os.linesep is the line separator in text files ('\r' or '\n' or '\r\n') - os.defpath is the default search path for executables - os.devnull is the file path of the null device ('/dev/null', etc.) Programs that import and use 'os' stand a better chance of being portable between different platforms. Of course, they must then only use functions that are defined by all platforms (e.g., unlink and opendir), and leave all pathname manipulation to os.path (e.g., split and join). """ #' import abc import sys import stat as st from _collections_abc import _check_methods _names = sys.builtin_module_names # Note: more names are added to __all__ later. __all__ = ["altsep", "curdir", "pardir", "sep", "pathsep", "linesep", "defpath", "name", "path", "devnull", "SEEK_SET", "SEEK_CUR", "SEEK_END", "fsencode", "fsdecode", "get_exec_path", "fdopen", "popen", "extsep"] def _exists(name): return name in globals() def _get_exports_list(module): try: return list(module.__all__) except AttributeError: return [n for n in dir(module) if n[0] != '_'] # Any new dependencies of the os module and/or changes in path separator # requires updating importlib as well. if 'posix' in _names: name = 'posix' linesep = '\n' from posix import * try: from posix import _exit __all__.append('_exit') except ImportError: pass import posixpath as path try: from posix import _have_functions except ImportError: pass import posix __all__.extend(_get_exports_list(posix)) del posix elif 'nt' in _names: name = 'nt' linesep = '\r\n' from nt import * try: from nt import _exit __all__.append('_exit') except ImportError: pass import ntpath as path import nt __all__.extend(_get_exports_list(nt)) del nt try: from nt import _have_functions except ImportError: pass else: raise ImportError('no os specific module found') sys.modules['os.path'] = path from os.path import (curdir, pardir, sep, pathsep, defpath, extsep, altsep, devnull) del _names if _exists("_have_functions"): _globals = globals() def _add(str, fn): if (fn in _globals) and (str in _have_functions): _set.add(_globals[fn]) _set = set() _add("HAVE_FACCESSAT", "access") _add("HAVE_FCHMODAT", "chmod") _add("HAVE_FCHOWNAT", "chown") _add("HAVE_FSTATAT", "stat") _add("HAVE_FUTIMESAT", "utime") _add("HAVE_LINKAT", "link") _add("HAVE_MKDIRAT", "mkdir") _add("HAVE_MKFIFOAT", "mkfifo") _add("HAVE_MKNODAT", "mknod") _add("HAVE_OPENAT", "open") _add("HAVE_READLINKAT", "readlink") _add("HAVE_RENAMEAT", "rename") _add("HAVE_SYMLINKAT", "symlink") _add("HAVE_UNLINKAT", "unlink") _add("HAVE_UNLINKAT", "rmdir") _add("HAVE_UTIMENSAT", "utime") supports_dir_fd = _set _set = set() _add("HAVE_FACCESSAT", "access") supports_effective_ids = _set _set = set() _add("HAVE_FCHDIR", "chdir") _add("HAVE_FCHMOD", "chmod") _add("HAVE_FCHOWN", "chown") _add("HAVE_FDOPENDIR", "listdir") _add("HAVE_FDOPENDIR", "scandir") _add("HAVE_FEXECVE", "execve") _set.add(stat) # fstat always works _add("HAVE_FTRUNCATE", "truncate") _add("HAVE_FUTIMENS", "utime") _add("HAVE_FUTIMES", "utime") _add("HAVE_FPATHCONF", "pathconf") if _exists("statvfs") and _exists("fstatvfs"): # mac os x10.3 _add("HAVE_FSTATVFS", "statvfs") supports_fd = _set _set = set() _add("HAVE_FACCESSAT", "access") # Some platforms don't support lchmod(). Often the function exists # anyway, as a stub that always returns ENOSUP or perhaps EOPNOTSUPP. # (No, I don't know why that's a good design.) ./configure will detect # this and reject it--so HAVE_LCHMOD still won't be defined on such # platforms. This is Very Helpful. # # However, sometimes platforms without a working lchmod() *do* have # fchmodat(). (Examples: Linux kernel 3.2 with glibc 2.15, # OpenIndiana 3.x.) And fchmodat() has a flag that theoretically makes # it behave like lchmod(). So in theory it would be a suitable # replacement for lchmod(). But when lchmod() doesn't work, fchmodat()'s # flag doesn't work *either*. Sadly ./configure isn't sophisticated # enough to detect this condition--it only determines whether or not # fchmodat() minimally works. # # Therefore we simply ignore fchmodat() when deciding whether or not # os.chmod supports follow_symlinks. Just checking lchmod() is # sufficient. After all--if you have a working fchmodat(), your # lchmod() almost certainly works too. # # _add("HAVE_FCHMODAT", "chmod") _add("HAVE_FCHOWNAT", "chown") _add("HAVE_FSTATAT", "stat") _add("HAVE_LCHFLAGS", "chflags") _add("HAVE_LCHMOD", "chmod") if _exists("lchown"): # mac os x10.3 _add("HAVE_LCHOWN", "chown") _add("HAVE_LINKAT", "link") _add("HAVE_LUTIMES", "utime") _add("HAVE_LSTAT", "stat") _add("HAVE_FSTATAT", "stat") _add("HAVE_UTIMENSAT", "utime") _add("MS_WINDOWS", "stat") supports_follow_symlinks = _set del _set del _have_functions del _globals del _add # Python uses fixed values for the SEEK_ constants; they are mapped # to native constants if necessary in posixmodule.c # Other possible SEEK values are directly imported from posixmodule.c SEEK_SET = 0 SEEK_CUR = 1 SEEK_END = 2 # Super directory utilities. # (Inspired by Eric Raymond; the doc strings are mostly his) def makedirs(name, mode=0o777, exist_ok=False): """makedirs(name [, mode=0o777][, exist_ok=False]) Super-mkdir; create a leaf directory and all intermediate ones. Works like mkdir, except that any intermediate path segment (not just the rightmost) will be created if it does not exist. If the target directory already exists, raise an OSError if exist_ok is False. Otherwise no exception is raised. This is recursive. """ head, tail = path.split(name) if not tail: head, tail = path.split(head) if head and tail and not path.exists(head): try: makedirs(head, exist_ok=exist_ok) except FileExistsError: # Defeats race condition when another thread created the path pass cdir = curdir if isinstance(tail, bytes): cdir = bytes(curdir, 'ASCII') if tail == cdir: # xxx/newdir/. exists if xxx/newdir exists return try: mkdir(name, mode) except OSError: # Cannot rely on checking for EEXIST, since the operating system # could give priority to other errors like EACCES or EROFS if not exist_ok or not path.isdir(name): raise def removedirs(name): """removedirs(name) Super-rmdir; remove a leaf directory and all empty intermediate ones. Works like rmdir except that, if the leaf directory is successfully removed, directories corresponding to rightmost path segments will be pruned away until either the whole path is consumed or an error occurs. Errors during this latter phase are ignored -- they generally mean that a directory was not empty. """ rmdir(name) head, tail = path.split(name) if not tail: head, tail = path.split(head) while head and tail: try: rmdir(head) except OSError: break head, tail = path.split(head) def renames(old, new): """renames(old, new) Super-rename; create directories as necessary and delete any left empty. Works like rename, except creation of any intermediate directories needed to make the new pathname good is attempted first. After the rename, directories corresponding to rightmost path segments of the old name will be pruned until either the whole path is consumed or a nonempty directory is found. Note: this function can fail with the new directory structure made if you lack permissions needed to unlink the leaf directory or file. """ head, tail = path.split(new) if head and tail and not path.exists(head): makedirs(head) rename(old, new) head, tail = path.split(old) if head and tail: try: removedirs(head) except OSError: pass __all__.extend(["makedirs", "removedirs", "renames"]) def walk(top, topdown=True, onerror=None, followlinks=False): """Directory tree generator. For each directory in the directory tree rooted at top (including top itself, but excluding '.' and '..'), yields a 3-tuple dirpath, dirnames, filenames dirpath is a string, the path to the directory. dirnames is a list of the names of the subdirectories in dirpath (excluding '.' and '..'). filenames is a list of the names of the non-directory files in dirpath. Note that the names in the lists are just names, with no path components. To get a full path (which begins with top) to a file or directory in dirpath, do os.path.join(dirpath, name). If optional arg 'topdown' is true or not specified, the triple for a directory is generated before the triples for any of its subdirectories (directories are generated top down). If topdown is false, the triple for a directory is generated after the triples for all of its subdirectories (directories are generated bottom up). When topdown is true, the caller can modify the dirnames list in-place (e.g., via del or slice assignment), and walk will only recurse into the subdirectories whose names remain in dirnames; this can be used to prune the search, or to impose a specific order of visiting. Modifying dirnames when topdown is false has no effect on the behavior of os.walk(), since the directories in dirnames have already been generated by the time dirnames itself is generated. No matter the value of topdown, the list of subdirectories is retrieved before the tuples for the directory and its subdirectories are generated. By default errors from the os.scandir() call are ignored. If optional arg 'onerror' is specified, it should be a function; it will be called with one argument, an OSError instance. It can report the error to continue with the walk, or raise the exception to abort the walk. Note that the filename is available as the filename attribute of the exception object. By default, os.walk does not follow symbolic links to subdirectories on systems that support them. In order to get this functionality, set the optional argument 'followlinks' to true. Caution: if you pass a relative pathname for top, don't change the current working directory between resumptions of walk. walk never changes the current directory, and assumes that the client doesn't either. Example: import os from os.path import join, getsize for root, dirs, files in os.walk('python/Lib/email'): print(root, "consumes", end="") print(sum([getsize(join(root, name)) for name in files]), end="") print("bytes in", len(files), "non-directory files") if 'CVS' in dirs: dirs.remove('CVS') # don't visit CVS directories """ top = fspath(top) dirs = [] nondirs = [] walk_dirs = [] # We may not have read permission for top, in which case we can't # get a list of the files the directory contains. os.walk # always suppressed the exception then, rather than blow up for a # minor reason when (say) a thousand readable directories are still # left to visit. That logic is copied here. try: # Note that scandir is global in this module due # to earlier import-*. scandir_it = scandir(top) except OSError as error: if onerror is not None: onerror(error) return with scandir_it: while True: try: try: entry = next(scandir_it) except StopIteration: break except OSError as error: if onerror is not None: onerror(error) return try: is_dir = entry.is_dir() except OSError: # If is_dir() raises an OSError, consider that the entry is not # a directory, same behaviour than os.path.isdir(). is_dir = False if is_dir: dirs.append(entry.name) else: nondirs.append(entry.name) if not topdown and is_dir: # Bottom-up: recurse into sub-directory, but exclude symlinks to # directories if followlinks is False if followlinks: walk_into = True else: try: is_symlink = entry.is_symlink() except OSError: # If is_symlink() raises an OSError, consider that the # entry is not a symbolic link, same behaviour than # os.path.islink(). is_symlink = False walk_into = not is_symlink if walk_into: walk_dirs.append(entry.path) # Yield before recursion if going top down if topdown: yield top, dirs, nondirs # Recurse into sub-directories islink, join = path.islink, path.join for dirname in dirs: new_path = join(top, dirname) # Issue #23605: os.path.islink() is used instead of caching # entry.is_symlink() result during the loop on os.scandir() because # the caller can replace the directory entry during the "yield" # above. if followlinks or not islink(new_path): yield from walk(new_path, topdown, onerror, followlinks) else: # Recurse into sub-directories for new_path in walk_dirs: yield from walk(new_path, topdown, onerror, followlinks) # Yield after recursion if going bottom up yield top, dirs, nondirs __all__.append("walk") if {open, stat} <= supports_dir_fd and {scandir, stat} <= supports_fd: def fwalk(top=".", topdown=True, onerror=None, *, follow_symlinks=False, dir_fd=None): """Directory tree generator. This behaves exactly like walk(), except that it yields a 4-tuple dirpath, dirnames, filenames, dirfd `dirpath`, `dirnames` and `filenames` are identical to walk() output, and `dirfd` is a file descriptor referring to the directory `dirpath`. The advantage of fwalk() over walk() is that it's safe against symlink races (when follow_symlinks is False). If dir_fd is not None, it should be a file descriptor open to a directory, and top should be relative; top will then be relative to that directory. (dir_fd is always supported for fwalk.) Caution: Since fwalk() yields file descriptors, those are only valid until the next iteration step, so you should dup() them if you want to keep them for a longer period. Example: import os for root, dirs, files, rootfd in os.fwalk('python/Lib/email'): print(root, "consumes", end="") print(sum([os.stat(name, dir_fd=rootfd).st_size for name in files]), end="") print("bytes in", len(files), "non-directory files") if 'CVS' in dirs: dirs.remove('CVS') # don't visit CVS directories """ if not isinstance(top, int) or not hasattr(top, '__index__'): top = fspath(top) # Note: To guard against symlink races, we use the standard # lstat()/open()/fstat() trick. if not follow_symlinks: orig_st = stat(top, follow_symlinks=False, dir_fd=dir_fd) topfd = open(top, O_RDONLY, dir_fd=dir_fd) try: if (follow_symlinks or (st.S_ISDIR(orig_st.st_mode) and path.samestat(orig_st, stat(topfd)))): yield from _fwalk(topfd, top, isinstance(top, bytes), topdown, onerror, follow_symlinks) finally: close(topfd) def _fwalk(topfd, toppath, isbytes, topdown, onerror, follow_symlinks): # Note: This uses O(depth of the directory tree) file descriptors: if # necessary, it can be adapted to only require O(1) FDs, see issue # #13734. scandir_it = scandir(topfd) dirs = [] nondirs = [] entries = None if topdown or follow_symlinks else [] for entry in scandir_it: name = entry.name if isbytes: name = fsencode(name) try: if entry.is_dir(): dirs.append(name) if entries is not None: entries.append(entry) else: nondirs.append(name) except OSError: try: # Add dangling symlinks, ignore disappeared files if entry.is_symlink(): nondirs.append(name) except OSError: pass if topdown: yield toppath, dirs, nondirs, topfd for name in dirs if entries is None else zip(dirs, entries): try: if not follow_symlinks: if topdown: orig_st = stat(name, dir_fd=topfd, follow_symlinks=False) else: assert entries is not None name, entry = name orig_st = entry.stat(follow_symlinks=False) dirfd = open(name, O_RDONLY, dir_fd=topfd) except OSError as err: if onerror is not None: onerror(err) continue try: if follow_symlinks or path.samestat(orig_st, stat(dirfd)): dirpath = path.join(toppath, name) yield from _fwalk(dirfd, dirpath, isbytes, topdown, onerror, follow_symlinks) finally: close(dirfd) if not topdown: yield toppath, dirs, nondirs, topfd __all__.append("fwalk") # Make sure os.environ exists, at least try: environ except NameError: environ = {} def execl(file, *args): """execl(file, *args) Execute the executable file with argument list args, replacing the current process. """ execv(file, args) def execle(file, *args): """execle(file, *args, env) Execute the executable file with argument list args and environment env, replacing the current process. """ env = args[-1] execve(file, args[:-1], env) def execlp(file, *args): """execlp(file, *args) Execute the executable file (which is searched for along $PATH) with argument list args, replacing the current process. """ execvp(file, args) def execlpe(file, *args): """execlpe(file, *args, env) Execute the executable file (which is searched for along $PATH) with argument list args and environment env, replacing the current process. """ env = args[-1] execvpe(file, args[:-1], env) def execvp(file, args): """execvp(file, args) Execute the executable file (which is searched for along $PATH) with argument list args, replacing the current process. args may be a list or tuple of strings. """ _execvpe(file, args) def execvpe(file, args, env): """execvpe(file, args, env) Execute the executable file (which is searched for along $PATH) with argument list args and environment env, replacing the current process. args may be a list or tuple of strings. """ _execvpe(file, args, env) __all__.extend(["execl","execle","execlp","execlpe","execvp","execvpe"]) def _execvpe(file, args, env=None): if env is not None: exec_func = execve argrest = (args, env) else: exec_func = execv argrest = (args,) env = environ if path.dirname(file): exec_func(file, *argrest) return saved_exc = None path_list = get_exec_path(env) if name != 'nt': file = fsencode(file) path_list = map(fsencode, path_list) for dir in path_list: fullname = path.join(dir, file) try: exec_func(fullname, *argrest) except (FileNotFoundError, NotADirectoryError) as e: last_exc = e except OSError as e: last_exc = e if saved_exc is None: saved_exc = e if saved_exc is not None: raise saved_exc raise last_exc def get_exec_path(env=None): """Returns the sequence of directories that will be searched for the named executable (similar to a shell) when launching a process. *env* must be an environment variable dict or None. If *env* is None, os.environ will be used. """ # Use a local import instead of a global import to limit the number of # modules loaded at startup: the os module is always loaded at startup by # Python. It may also avoid a bootstrap issue. import warnings if env is None: env = environ # {b'PATH': ...}.get('PATH') and {'PATH': ...}.get(b'PATH') emit a # BytesWarning when using python -b or python -bb: ignore the warning with warnings.catch_warnings(): warnings.simplefilter("ignore", BytesWarning) try: path_list = env.get('PATH') except TypeError: path_list = None if supports_bytes_environ: try: path_listb = env[b'PATH'] except (KeyError, TypeError): pass else: if path_list is not None: raise ValueError( "env cannot contain 'PATH' and b'PATH' keys") path_list = path_listb if path_list is not None and isinstance(path_list, bytes): path_list = fsdecode(path_list) if path_list is None: path_list = defpath return path_list.split(pathsep) # Change environ to automatically call putenv(), unsetenv if they exist. from _collections_abc import MutableMapping class _Environ(MutableMapping): def __init__(self, data, encodekey, decodekey, encodevalue, decodevalue, putenv, unsetenv): self.encodekey = encodekey self.decodekey = decodekey self.encodevalue = encodevalue self.decodevalue = decodevalue self.putenv = putenv self.unsetenv = unsetenv self._data = data def __getitem__(self, key): try: value = self._data[self.encodekey(key)] except KeyError: # raise KeyError with the original key value raise KeyError(key) from None return self.decodevalue(value) def __setitem__(self, key, value): key = self.encodekey(key) value = self.encodevalue(value) self.putenv(key, value) self._data[key] = value def __delitem__(self, key): encodedkey = self.encodekey(key) self.unsetenv(encodedkey) try: del self._data[encodedkey] except KeyError: # raise KeyError with the original key value raise KeyError(key) from None def __iter__(self): # list() from dict object is an atomic operation keys = list(self._data) for key in keys: yield self.decodekey(key) def __len__(self): return len(self._data) def __repr__(self): return 'environ({{{}}})'.format(', '.join( ('{!r}: {!r}'.format(self.decodekey(key), self.decodevalue(value)) for key, value in self._data.items()))) def copy(self): return dict(self) def setdefault(self, key, value): if key not in self: self[key] = value return self[key] try: _putenv = putenv except NameError: _putenv = lambda key, value: None else: if "putenv" not in __all__: __all__.append("putenv") try: _unsetenv = unsetenv except NameError: _unsetenv = lambda key: _putenv(key, "") else: if "unsetenv" not in __all__: __all__.append("unsetenv") def _createenviron(): if name == 'nt': # Where Env Var Names Must Be UPPERCASE def check_str(value): if not isinstance(value, str): raise TypeError("str expected, not %s" % type(value).__name__) return value encode = check_str decode = str def encodekey(key): return encode(key).upper() data = {} for key, value in environ.items(): data[encodekey(key)] = value else: # Where Env Var Names Can Be Mixed Case encoding = sys.getfilesystemencoding() def encode(value): if not isinstance(value, str): raise TypeError("str expected, not %s" % type(value).__name__) return value.encode(encoding, 'surrogateescape') def decode(value): return value.decode(encoding, 'surrogateescape') encodekey = encode data = environ return _Environ(data, encodekey, decode, encode, decode, _putenv, _unsetenv) # unicode environ environ = _createenviron() del _createenviron def getenv(key, default=None): """Get an environment variable, return None if it doesn't exist. The optional second argument can specify an alternate default. key, default and the result are str.""" return environ.get(key, default) supports_bytes_environ = (name != 'nt') __all__.extend(("getenv", "supports_bytes_environ")) if supports_bytes_environ: def _check_bytes(value): if not isinstance(value, bytes): raise TypeError("bytes expected, not %s" % type(value).__name__) return value # bytes environ environb = _Environ(environ._data, _check_bytes, bytes, _check_bytes, bytes, _putenv, _unsetenv) del _check_bytes def getenvb(key, default=None): """Get an environment variable, return None if it doesn't exist. The optional second argument can specify an alternate default. key, default and the result are bytes.""" return environb.get(key, default) __all__.extend(("environb", "getenvb")) def _fscodec(): encoding = sys.getfilesystemencoding() errors = sys.getfilesystemencodeerrors() def fsencode(filename): """Encode filename (an os.PathLike, bytes, or str) to the filesystem encoding with 'surrogateescape' error handler, return bytes unchanged. On Windows, use 'strict' error handler if the file system encoding is 'mbcs' (which is the default encoding). """ filename = fspath(filename) # Does type-checking of `filename`. if isinstance(filename, str): return filename.encode(encoding, errors) else: return filename def fsdecode(filename): """Decode filename (an os.PathLike, bytes, or str) from the filesystem encoding with 'surrogateescape' error handler, return str unchanged. On Windows, use 'strict' error handler if the file system encoding is 'mbcs' (which is the default encoding). """ filename = fspath(filename) # Does type-checking of `filename`. if isinstance(filename, bytes): return filename.decode(encoding, errors) else: return filename return fsencode, fsdecode fsencode, fsdecode = _fscodec() del _fscodec # Supply spawn*() (probably only for Unix) if _exists("fork") and not _exists("spawnv") and _exists("execv"): P_WAIT = 0 P_NOWAIT = P_NOWAITO = 1 __all__.extend(["P_WAIT", "P_NOWAIT", "P_NOWAITO"]) # XXX Should we support P_DETACH? I suppose it could fork()**2 # and close the std I/O streams. Also, P_OVERLAY is the same # as execv*()? def _spawnvef(mode, file, args, env, func): # Internal helper; func is the exec*() function to use if not isinstance(args, (tuple, list)): raise TypeError('argv must be a tuple or a list') if not args or not args[0]: raise ValueError('argv first element cannot be empty') pid = fork() if not pid: # Child try: if env is None: func(file, args) else: func(file, args, env) except: _exit(127) else: # Parent if mode == P_NOWAIT: return pid # Caller is responsible for waiting! while 1: wpid, sts = waitpid(pid, 0) if WIFSTOPPED(sts): continue elif WIFSIGNALED(sts): return -WTERMSIG(sts) elif WIFEXITED(sts): return WEXITSTATUS(sts) else: raise OSError("Not stopped, signaled or exited???") def spawnv(mode, file, args): """spawnv(mode, file, args) -> integer Execute file with arguments from args in a subprocess. If mode == P_NOWAIT return the pid of the process. If mode == P_WAIT return the process's exit code if it exits normally; otherwise return -SIG, where SIG is the signal that killed it. """ return _spawnvef(mode, file, args, None, execv) def spawnve(mode, file, args, env): """spawnve(mode, file, args, env) -> integer Execute file with arguments from args in a subprocess with the specified environment. If mode == P_NOWAIT return the pid of the process. If mode == P_WAIT return the process's exit code if it exits normally; otherwise return -SIG, where SIG is the signal that killed it. """ return _spawnvef(mode, file, args, env, execve) # Note: spawnvp[e] isn't currently supported on Windows def spawnvp(mode, file, args): """spawnvp(mode, file, args) -> integer Execute file (which is looked for along $PATH) with arguments from args in a subprocess. If mode == P_NOWAIT return the pid of the process. If mode == P_WAIT return the process's exit code if it exits normally; otherwise return -SIG, where SIG is the signal that killed it. """ return _spawnvef(mode, file, args, None, execvp) def spawnvpe(mode, file, args, env): """spawnvpe(mode, file, args, env) -> integer Execute file (which is looked for along $PATH) with arguments from args in a subprocess with the supplied environment. If mode == P_NOWAIT return the pid of the process. If mode == P_WAIT return the process's exit code if it exits normally; otherwise return -SIG, where SIG is the signal that killed it. """ return _spawnvef(mode, file, args, env, execvpe) __all__.extend(["spawnv", "spawnve", "spawnvp", "spawnvpe"]) if _exists("spawnv"): # These aren't supplied by the basic Windows code # but can be easily implemented in Python def spawnl(mode, file, *args): """spawnl(mode, file, *args) -> integer Execute file with arguments from args in a subprocess. If mode == P_NOWAIT return the pid of the process. If mode == P_WAIT return the process's exit code if it exits normally; otherwise return -SIG, where SIG is the signal that killed it. """ return spawnv(mode, file, args) def spawnle(mode, file, *args): """spawnle(mode, file, *args, env) -> integer Execute file with arguments from args in a subprocess with the supplied environment. If mode == P_NOWAIT return the pid of the process. If mode == P_WAIT return the process's exit code if it exits normally; otherwise return -SIG, where SIG is the signal that killed it. """ env = args[-1] return spawnve(mode, file, args[:-1], env) __all__.extend(["spawnl", "spawnle"]) if _exists("spawnvp"): # At the moment, Windows doesn't implement spawnvp[e], # so it won't have spawnlp[e] either. def spawnlp(mode, file, *args): """spawnlp(mode, file, *args) -> integer Execute file (which is looked for along $PATH) with arguments from args in a subprocess with the supplied environment. If mode == P_NOWAIT return the pid of the process. If mode == P_WAIT return the process's exit code if it exits normally; otherwise return -SIG, where SIG is the signal that killed it. """ return spawnvp(mode, file, args) def spawnlpe(mode, file, *args): """spawnlpe(mode, file, *args, env) -> integer Execute file (which is looked for along $PATH) with arguments from args in a subprocess with the supplied environment. If mode == P_NOWAIT return the pid of the process. If mode == P_WAIT return the process's exit code if it exits normally; otherwise return -SIG, where SIG is the signal that killed it. """ env = args[-1] return spawnvpe(mode, file, args[:-1], env) __all__.extend(["spawnlp", "spawnlpe"]) # Supply os.popen() def popen(cmd, mode="r", buffering=-1): if not isinstance(cmd, str): raise TypeError("invalid cmd type (%s, expected string)" % type(cmd)) if mode not in ("r", "w"): raise ValueError("invalid mode %r" % mode) if buffering == 0 or buffering is None: raise ValueError("popen() does not support unbuffered streams") import subprocess, io if mode == "r": proc = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, bufsize=buffering) return _wrap_close(io.TextIOWrapper(proc.stdout), proc) else: proc = subprocess.Popen(cmd, shell=True, stdin=subprocess.PIPE, bufsize=buffering) return _wrap_close(io.TextIOWrapper(proc.stdin), proc) # Helper for popen() -- a proxy for a file whose close waits for the process class _wrap_close: def __init__(self, stream, proc): self._stream = stream self._proc = proc def close(self): self._stream.close() returncode = self._proc.wait() if returncode == 0: return None if name == 'nt': return returncode else: return returncode << 8 # Shift left to match old behavior def __enter__(self): return self def __exit__(self, *args): self.close() def __getattr__(self, name): return getattr(self._stream, name) def __iter__(self): return iter(self._stream) # Supply os.fdopen() def fdopen(fd, *args, **kwargs): if not isinstance(fd, int): raise TypeError("invalid fd type (%s, expected integer)" % type(fd)) import io return io.open(fd, *args, **kwargs) # For testing purposes, make sure the function is available when the C # implementation exists. def _fspath(path): """Return the path representation of a path-like object. If str or bytes is passed in, it is returned unchanged. Otherwise the os.PathLike interface is used to get the path representation. If the path representation is not str or bytes, TypeError is raised. If the provided path is not str, bytes, or os.PathLike, TypeError is raised. """ if isinstance(path, (str, bytes)): return path # Work from the object's type to match method resolution of other magic # methods. path_type = type(path) try: path_repr = path_type.__fspath__(path) except AttributeError: if hasattr(path_type, '__fspath__'): raise else: raise TypeError("expected str, bytes or os.PathLike object, " "not " + path_type.__name__) if isinstance(path_repr, (str, bytes)): return path_repr else: raise TypeError("expected {}.__fspath__() to return str or bytes, " "not {}".format(path_type.__name__, type(path_repr).__name__)) # If there is no C implementation, make the pure Python version the # implementation as transparently as possible. if not _exists('fspath'): fspath = _fspath fspath.__name__ = "fspath" class PathLike(abc.ABC): """Abstract base class for implementing the file system path protocol.""" @abc.abstractmethod def __fspath__(self): """Return the file system path representation of the object.""" raise NotImplementedError @classmethod def __subclasshook__(cls, subclass): if cls is PathLike: return _check_methods(subclass, '__fspath__') return NotImplemented
prefetchnta/questlab
bin/x64bin/python/37/Lib/os.py
Python
lgpl-2.1
38,984
[ "VisIt" ]
0d2e9b0c308d8120d3a459abcdfcee65d8c25d8197ecf84fe9107fa225a35580
# GromacsWrapper: core.py # Copyright (c) 2009 Oliver Beckstein <[email protected]> # Released under the GNU Public License 3 (or higher, your choice) # See the file COPYING for details. """ :mod:`gromacs.core` -- Core functionality ========================================= Here the basic command class :class:`GromacsCommand` is defined. All Gromacs command classes in :mod:`gromacs.tools` are automatically generated from it. The documentation of :class:`GromacsCommand` applies to all wrapped Gromacs commands and should be read by anyone using this package. .. _input-output-label: Input and Output ---------------- Each command wrapped by either :class:`GromacsCommand` or :class:`Command` takes three additional keyword arguments: *stdout*, *stderr*, and *input*. *stdout* and *stderr* determine how the command returns its own output. The *input* keyword is a string that is fed to the standard input of the command (actually, :attr:`subprocess.Popen.stdin`). Or, if it is not string-like then we assume it's actually a file-like object that we can read from, e.g. a :attr:`subprocess.Popen.stdout` or a :class:`File`. By setting the *stdout* and *stderr* keywords appropriately, one can have the output simply printed to the screen (use ``True``; this is the default, although see below for the use of the ``capture_output`` :mod:`gromacs.environment` flag), capture in a python variable as a string for further processing (use ``False``), write to a file (use a :class:`File` instance) or as input for another command (e.g. use the :attr:`subprocess.Popen.stdin`). When writing setup- and analysis pipelines it can be rather cumbersome to have the gromacs output on the screen. For these cases GromacsWrapper allows you to change its behaviour globally. By setting the value of the :mod:`gromacs.environment` :class:`~gromacs.environment.Flag` ``capture_output`` to ``True`` (in the GromacsWrapper :data:`gromacs.environment.flags` registry) :: import gromacs.environment gromacs.environment.flags['capture_output'] = True all commands will capture their output (like *stderr* = ``False`` and *stdout* = ``False``). Explicitly setting these keywords overrides the global default. The default value for ``flags['capture_output']`` is ``False``, i.e. output is directed through STDOUT and STDERR. .. Warning:: One downside of ``flags['capture_output'] = True`` is that it becomes much harder to debug scripts unless the script is written in such a way to show the output when the command fails. Therefore, it is advisable to only capture output on well-tested scripts. A third value of ``capture_output`` is the value ``"file"``:: gromacs.environment.flags['capture_output'] = "file" This writes the captured output to a file. The file name is specified in ``flags['capture_output_filename'`` and defaults to *"gromacs_captured_output.txt"*. This file is *over-written* for each command. In this way one can investigate the output from the last command (presumably because it failed). STDOUT and STDERR are captured into this file by default. STDERR is printed first and then STDOUT, which does not necessarily reflect the order of output one would see on the screen. If your code captures STDOUT for further processing then an uncaptured STDERR is written to the capture file. .. Note:: There are some commands for which capturing output (``flags['capture_output'] = True``) might be problematic. If the command produces a large or inifinite amount of data then a memory error will occur because Python nevertheless stores the output internally first. Thus one should avoid capturing progress output from e.g. :class:`~gromacs.tools.Mdrun` unless the output has been throttled appropriately. Classes ------- .. autoclass:: GromacsCommand :members: __call__, run, transform_args, Popen, help, check_failure, gmxdoc :inherited-members: .. autoclass:: Command :members: __call__, run, transform_args, Popen, help, command_name .. autoclass:: PopenWithInput :members: """ from __future__ import absolute_import, with_statement __docformat__ = "restructuredtext en" import sys import re import subprocess from subprocess import STDOUT, PIPE import warnings import errno import logging logger = logging.getLogger('gromacs.core') from .exceptions import GromacsError, GromacsFailureWarning from . import environment class Command(object): """Wrap simple script or command.""" #: Derive a class from command; typically one only has to set *command_name* #: to the name of the script or executable. The full path is required if it #: cannot be found by searching :envvar:`PATH`. command_name = None def __init__(self,*args,**kwargs): """Set up the command class. The arguments can always be provided as standard positional arguments such as ``"-c", "config.conf", "-o", "output.dat", "--repeats=3", "-v", "input.dat"`` In addition one can also use keyword arguments such as ``c="config.conf", o="output.dat", repeats=3, v=True`` These are automatically transformed appropriately according to simple rules: * Any single-character keywords are assumed to be POSIX-style options and will be prefixed with a single dash and the value separated by a space. * Any other keyword is assumed to be a GNU-style long option and thus will be prefixed with two dashes and the value will be joined directly with an equals sign and no space. If this does not work (as for instance for the options of the UNIX ``find`` command) then provide options and values in the sequence of positional arguments. """ self.args = args self.kwargs = kwargs def run(self,*args,**kwargs): """Run the command; args/kwargs are added or replace the ones given to the constructor.""" _args, _kwargs = self._combine_arglist(args, kwargs) results, p = self._run_command(*_args, **_kwargs) return results def _combine_arglist(self, args, kwargs): """Combine the default values and the supplied values.""" _args = self.args + args _kwargs = self.kwargs.copy() _kwargs.update(kwargs) return _args, _kwargs def _run_command(self,*args,**kwargs): """Execute the command; see the docs for __call__. :Returns: a tuple of the *results* tuple ``(rc, stdout, stderr)`` and the :class:`Popen` instance. """ # hack to run command WITHOUT input (-h...) even though user defined # input (should have named it "ignore_input" with opposite values...) use_input = kwargs.pop('use_input', True) # logic for capturing output (see docs on I/O and the flags) capturefile = None if environment.flags['capture_output'] is True: # capture into Python vars (see subprocess.Popen.communicate()) kwargs.setdefault('stderr', PIPE) kwargs.setdefault('stdout', PIPE) elif environment.flags['capture_output'] == "file": if 'stdout' in kwargs and 'stderr' in kwargs: pass else: # XXX: not race or thread proof; potentially many commands write to the same file fn = environment.flags['capture_output_filename'] capturefile = file(fn, "w") # overwrite (clobber) capture file if 'stdout' in kwargs and 'stderr' not in kwargs: # special case of stdout used by code but stderr should be captured to file kwargs.setdefault('stderr', capturefile) else: # merge stderr with stdout and write stdout to file # (stderr comes *before* stdout in capture file, could split...) kwargs.setdefault('stderr', STDOUT) kwargs.setdefault('stdout', capturefile) try: p = self.Popen(*args, **kwargs) out, err = p.communicate(use_input=use_input) # special Popen knows input! except: if capturefile is not None: logger.error("Use captured command output in %r for diagnosis.", capturefile) raise finally: if capturefile is not None: capturefile.close() rc = p.returncode return (rc, out, err), p def _commandline(self, *args, **kwargs): """Returns the command line (without pipes) as a list.""" # transform_args() is a hook (used in GromacsCommand very differently!) return [self.command_name] + self.transform_args(*args,**kwargs) def commandline(self, *args, **kwargs): """Returns the commandline that run() uses (without pipes).""" # this mirrors the setup in run() _args, _kwargs = self._combine_arglist(args, kwargs) return self._commandline(*_args, **_kwargs) def Popen(self, *args,**kwargs): """Returns a special Popen instance (:class:`PopenWithInput`). The instance has its input pre-set so that calls to :meth:`~PopenWithInput.communicate` will not need to supply input. This is necessary if one wants to chain the output from one command to an input from another. :TODO: Write example. """ stderr = kwargs.pop('stderr', None) # default: print to stderr (if STDOUT then merge) if stderr is False: # False: capture it stderr = PIPE elif stderr is True: stderr = None # use stderr stdout = kwargs.pop('stdout', None) # either set to PIPE for capturing output if stdout is False: # ... or to False stdout = PIPE elif stdout is True: stdout = None # for consistency, make True write to screen stdin = kwargs.pop('stdin', None) input = kwargs.pop('input', None) if input: stdin = PIPE if isinstance(input, basestring): # make sure that input is a simple string with \n line endings if not input.endswith('\n'): input += '\n' else: try: # make sure that input is a simple string with \n line endings # XXX: this is probably not unicode safe because of the suse of str() input = '\n'.join(map(str, input)) + '\n' except TypeError: # so maybe we are a file or something ... and hope for the best pass cmd = self._commandline(*args, **kwargs) # lots of magic happening here # (cannot move out of method because filtering of stdin etc) try: p = PopenWithInput(cmd, stdin=stdin, stderr=stderr, stdout=stdout, universal_newlines=True, input=input) except OSError,err: logger.error(" ".join(cmd)) # log command line if err.errno == errno.ENOENT: errmsg = "Failed to find Gromacs command %r, maybe its not on PATH or GMXRC must be sourced?" % self.command_name logger.fatal(errmsg) raise OSError(errmsg) else: logger.exception("Setting up Gromacs command %r raised an exception." % self.command_name) raise logger.debug(p.command_string) return p def transform_args(self, *args, **kwargs): """Transform arguments and return them as a list suitable for Popen.""" options = [] for option,value in kwargs.items(): if not option.startswith('-'): # heuristic for turning key=val pairs into options # (fails for commands such as 'find' -- then just use args) if len(option) == 1: option = '-' + option # POSIX style else: option = '--' + option # GNU option if value is True: options.append(option) continue elif value is False: raise ValueError('A False value is ambiguous for option %r' % option) if option[:2] == '--': options.append(option + '=' + str(value)) # GNU option else: options.extend((option, str(value))) # POSIX style return options + list(args) def help(self,long=False): """Print help; same as using ``?`` in ``ipython``. long=True also gives call signature.""" print "\ncommand: %s\n\n" % self.command_name print self.__doc__ if long: print "\ncall method: command():\n" print self.__call__.__doc__ def __call__(self,*args,**kwargs): """Run command with the given arguments:: rc,stdout,stderr = command(*args, input=None, **kwargs) All positional parameters *args* and all gromacs *kwargs* are passed on to the Gromacs command. input and output keywords allow communication with the process via the python subprocess module. :Arguments: *input* : string, sequence to be fed to the process' standard input; elements of a sequence are concatenated with newlines, including a trailing one [``None``] *stdin* ``None`` or automatically set to ``PIPE`` if input given [``None``] *stdout* how to handle the program's stdout stream [``None``] filehandle anything that behaves like a file object ``None`` or ``True`` to see output on screen ``False`` or ``PIPE`` returns the output as a string in the stdout parameter *stderr* how to handle the stderr stream [``None``] ``STDOUT`` merges standard error with the standard out stream ``False`` or ``PIPE`` returns the output as a string in the stderr return parameter ``None`` or ``True`` keeps it on stderr (and presumably on screen) Depending on the value of the GromacsWrapper flag :data:`gromacs.environment.flags```['capture_output']`` the above default behaviour can be different. All other kwargs are passed on to the Gromacs tool. :Returns: The shell return code rc of the command is always returned. Depending on the value of output, various strings are filled with output from the command. :Notes: In order to chain different commands via pipes one must use the special :class:`PopenWithInput` object (see :meth:`GromacsCommand.Popen` method) instead of the simple call described here and first construct the pipeline explicitly and then call the :meth:`PopenWithInput.communicate` method. ``STDOUT`` and ``PIPE`` are objects provided by the :mod:`subprocess` module. Any python stream can be provided and manipulated. This allows for chaining of commands. Use :: from subprocess import PIPE, STDOUT when requiring these special streams (and the special boolean switches ``True``/``False`` cannot do what you need.) (TODO: example for chaining commands) """ return self.run(*args,**kwargs) class GromacsCommand(Command): """Base class for wrapping a g_* command. Limitations: User must have sourced ``GMXRC`` so that the python script can inherit the environment and find the gromacs programs. The class doc string is dynamically replaced by the documentation of the gromacs command when an instance is created. """ # TODO: setup the environment from GMXRC (can use env=DICT in Popen/call) command_name = None doc_pattern = """.*?(?P<DOCS>DESCRIPTION.*)""" gmxfatal_pattern = """----+\n # ---- decorator line \s*Program\s+(?P<program_name>\w+), # Program name, \s+VERSION\s+(?P<version>[\w.]+)\s*\n # VERSION 4.0.5 (?P<message>.*?)\n # full message, multiple lines \s* # empty line (?) ----+\n # ---- decorator line """ # matches gmx_fatal() output # ------------------------------------------------------- # Program <program_name>, VERSION <version> # ... <message> # ------------------------------------------------------- #: Available failure modes. failuremodes = ('raise', 'warn', None) def __init__(self, *args, **kwargs): """Set up the command with gromacs flags as keyword arguments. The following are generic instructions; refer to the Gromacs command usage information that should have appeared before this generic documentation. As an example, a generic Gromacs command could use the following flags:: cmd = GromacsCommand('v', f=['md1.xtc','md2.xtc'], o='processed.xtc', t=200, ...) which would correspond to running the command in the shell as :: GromacsCommand -v -f md1.xtc md2.xtc -o processed.xtc -t 200 **Gromacs command line arguments** Gromacs boolean switches (such as ``-v``) are given as python positional arguments (``'v'``) or as keyword argument (``v=True``); note the quotes in the first case. Negating a boolean switch can be done with ``'nov'``, ``nov=True`` or ``v=False`` (and even ``nov=False`` works as expected: it is the same as ``v=True``). Any Gromacs options that take parameters are handled as keyword arguments. If an option takes multiple arguments (such as the multi-file input ``-f file1 file2 ...``) then the list of files must be supplied as a python list. If a keyword has the python value ``None`` then it will *not* be added to the Gromacs command line; this allows for flexible scripting if it is not known in advance if an input file is needed. In this case the default value of the gromacs tool is used. Keywords must be legal python keywords or the interpreter raises a :exc:`SyntaxError` but of course Gromacs commandline arguments are not required to be legal python. In this case "quote" the option with an underscore (``_``) and the underscore will be silently stripped. For instance, ``-or`` translates to the illegal keyword ``or`` so it must be underscore-quoted:: cmd(...., _or='mindistres.xvg') **Command execution** The command is executed with the :meth:`~GromacsCommand.run` method or by calling it as a function. The two next lines are equivalent:: cmd(...) cmd.run(...) When the command is run one can override options that were given at initialization or one can add additional ones. The same rules for supplying Gromacs flags apply as described above. **Non-Gromacs keyword arguments** The other keyword arguments (listed below) are not passed on to the Gromacs tool but determine how the command class behaves. *They are only useful when instantiating a class*, i.e. they determine how this tool behaves during all future invocations although it can be changed by setting :attr:`failuremode`. This is mostly of interest to developers. :Keywords: *failure* determines how a failure of the gromacs command is treated; it can be one of the following: 'raise' raises GromacsError if command fails 'warn' issue a :exc:`GromacsFailureWarning` ``None`` just continue silently *doc* : string additional documentation [] """ self.__failuremode = None self.failuremode = kwargs.pop('failure','raise') self.extra_doc = kwargs.pop('doc',None) self.gmxargs = self._combineargs(*args, **kwargs) self.__doc__ = self.gmxdoc def failuremode(): doc = """mode determines how the GromacsCommand behaves during failure It can be one of the following: 'raise' raises GromacsError if command fails 'warn' issue a :exc:`GromacsFailureWarning` ``None`` just continue silently """ def fget(self): return self.__failuremode def fset(self, mode): if not mode in self.failuremodes: raise ValueError('failuremode must be one of %r' % (self.failuremodes,)) self.__failuremode = mode return locals() failuremode = property(**failuremode()) def _combine_arglist(self, args, kwargs): """Combine the default values and the supplied values.""" gmxargs = self.gmxargs.copy() gmxargs.update(self._combineargs(*args,**kwargs)) return (), gmxargs # Gromacs tools don't have positional args --> args = () def check_failure(self, result, msg='Gromacs tool failed', command_string=None): rc, out, err = result if not command_string is None: msg += '\nCommand invocation: ' + str(command_string) had_success = (rc == 0) if not had_success: gmxoutput = "\n".join([x for x in [out, err] if not x is None]) m = re.search(self.gmxfatal_pattern, gmxoutput, re.VERBOSE | re.DOTALL) if m: formatted_message = ['GMX_FATAL '+line for line in m.group('message').split('\n')] msg = "\n".join(\ [msg, "Gromacs command %(program_name)r fatal error message:" % m.groupdict()] + formatted_message) if self.failuremode == 'raise': raise GromacsError(rc, msg) elif self.failuremode == 'warn': warnings.warn(msg + '\nError code: %r\n' % rc, category=GromacsFailureWarning) elif self.failuremode is None: pass else: raise ValueError('unknown failure mode %r' % self.failuremode) return had_success def _combineargs(self,*args,**kwargs): """Add switches as 'options' with value True to the options dict.""" d = {arg: True for arg in args} # switches are kwargs with value True d.update(kwargs) return d def _build_arg_list(self,**kwargs): """Build list of arguments from the dict; keys must be valid gromacs flags.""" arglist = [] for flag,value in kwargs.items(): # XXX: check flag against allowed values flag = str(flag) if flag.startswith('_'): flag = flag[1:] # python-illegal keywords are '_'-quoted if not flag.startswith('-'): flag = '-' + flag # now flag is guaranteed to start with '-' if value is True: arglist.append(flag) # simple command line flag elif value is False: if flag.startswith('-no'): # negate a negated flag ('noX=False' --> X=True --> -X ... but who uses that?) arglist.append('-'+flag[3:]) else: arglist.append('-no'+flag[1:]) # gromacs switches booleans by prefixing 'no' elif value is None: pass # ignore flag = None else: try: arglist.extend([flag] + value) # option with value list except TypeError: arglist.extend([flag, value]) # option with single value return map(str, arglist) # all arguments MUST be strings def _run_command(self,*args,**kwargs): """Execute the gromacs command; see the docs for __call__.""" result, p = super(GromacsCommand, self)._run_command(*args, **kwargs) self.check_failure(result, command_string=p.command_string) return result, p def transform_args(self,*args,**kwargs): """Combine arguments and turn them into gromacs tool arguments.""" newargs = self._combineargs(*args,**kwargs) return self._build_arg_list(**newargs) def _get_gmx_docs(self): """Extract standard gromacs doc by running the program and chopping the header. .. Note:: The header is on STDOUT and is ignored. The docs are read from STDERR. """ # Uses the class-wide arguments so that 'canned invocations' in cbook # are accurately reflected. Might be a problem when these invocations # supply wrong arguments... TODO: maybe check rc for that? # use_input=False needed for running commands in cbook that have input pre-defined # temporarily throttle logger to avoid reading about the help function invocation or not found logging.disable(logging.CRITICAL) try: rc,header,docs = self.run('h', stdout=PIPE, stderr=PIPE, use_input=False) finally: logging.disable(logging.NOTSET) # ALWAYS restore logging.... m = re.match(self.doc_pattern, docs, re.DOTALL) # keep from DESCRIPTION onwards if m is None: return "(No Gromacs documentation available)" return m.group('DOCS') @property def gmxdoc(self): """Usage for the underlying Gromacs tool (cached).""" if not (hasattr(self, '__doc_cache') and self.__doc_cache): self.__doc_cache = self._get_gmx_docs() docs = self.__doc_cache if self.extra_doc: docs = '\n'.join([self.extra_doc,'', "Documentation of the gromacs tool", 34*'=', docs]) return docs class GromacsGMXCommand(GromacsCommand): """Base class for wrapping a ``gmx <name>`` command. Limitations: User must have sourced ``GMXRC`` so that the python script can inherit the environment and find the gromacs programs. The class doc string is dynamically replaced by the documentation of the gromacs command when an instance is created. """ driver = "gmx" doc_pattern = """.*?(?P<DOCS>SYNOPSIS.*)""" def _commandline(self, *args, **kwargs): """Returns the command line (without pipes) as a list.""" # transform_args() is a hook (used in GromacsCommand very differently!) return [self.driver, self.command_name] + self.transform_args(*args,**kwargs) class PopenWithInput(subprocess.Popen): """Popen class that knows its input. 1. Set up the instance, including all the input it shoould receive. 2. Call :meth:`PopenWithInput.communicate` later. .. Note:: Some versions of python have a bug in the subprocess module ( `issue 5179`_ ) which does not clean up open file descriptors. Eventually code (such as this one) fails with the error: *OSError: [Errno 24] Too many open files* A weak workaround is to increase the available number of open file descriptors with ``ulimit -n 2048`` and run analysis in different scripts. .. _issue 5179: http://bugs.python.org/issue5179 """ def __init__(self,*args,**kwargs): """Initialize with the standard :class:`subprocess.Popen` arguments. :Keywords: *input* string that is piped into the command """ kwargs.setdefault('close_fds', True) # fixes 'Too many open fds' with 2.6 self.input = kwargs.pop('input',None) self.command = args[0] try: input_string = 'printf "' + \ self.input.replace('\n','\\n') + '" | ' # display newlines except (TypeError, AttributeError): input_string = "" self.command_string = input_string + " ".join(self.command) super(PopenWithInput,self).__init__(*args,**kwargs) def communicate(self, use_input=True): """Run the command, using the input that was set up on __init__ (for *use_input* = ``True``)""" if use_input: return super(PopenWithInput,self).communicate(self.input) else: return super(PopenWithInput,self).communicate() def __str__(self): return "<Popen on %r>" % self.command_string
pslacerda/GromacsWrapper
gromacs/core.py
Python
gpl-3.0
29,173
[ "Gromacs" ]
fd27e388c57bc84d66de1cbc8a644222508b9a178d18e380b248b59ca6119267
""" Unit tests for the module. Thomas Ogden <[email protected]> """ import os import unittest import numpy as np from maxwellbloch import mb_solve, t_funcs, spectral, utility # Absolute path of tests/json directory, so that tests can be called from # different directories. JSON_DIR = os.path.abspath(os.path.join(__file__, '../', 'json')) class TestInit(unittest.TestCase): def test_init_default(self): """ Test Default Initialise """ mb_solve_00 = mb_solve.MBSolve() self.assertEqual(mb_solve_00.atom.num_states, 1) # TODO: And the rest! def test_init_00(self): json_path = os.path.join(JSON_DIR, "mb_solve_01.json") mb_solve_01 = mb_solve.MBSolve().from_json(json_path) @unittest.skip("TODO") class TestSolveOverThermalDetunings(unittest.TestCase): def test_00(self): json_path = os.path.join(JSON_DIR, "mb_solve_01.json") mb_solve_00 = mb_solve.MBSolve().from_json(json_path) result_Delta = mb_solve_00.solve_over_thermal_detunings() self.assertEqual(len(result_Delta), len(mb_solve_00.thermal_delta_list)) class TestMBSolve(unittest.TestCase): def test_mb_solve(self): """ Basic test of mb_solve method. """ json_path = os.path.join(JSON_DIR, "mb_solve_01.json") mb_solve_00 = mb_solve.MBSolve().from_json(json_path) mb_solve_00.mbsolve() def test_no_atoms(self): """ Setting the number density ampl to 0.0, i.e. no atoms. The end pulse should be the same as the start. """ json_path = os.path.join(JSON_DIR, "mb_solve_no_atoms.json") mbs = mb_solve.MBSolve().from_json(json_path) mbs.mbsolve(step='euler') self.assertEqual(mbs.Omegas_zt.shape, (1, 5, 101)) # Check that the field at the end of the medium matches the field # at the start of the medium. self.assertTrue(np.allclose(mbs.Omegas_zt[:, 0, :], mbs.Omegas_zt[:, -1, :], rtol=1.0e-6)) def test_no_atoms_ab(self): """ Setting the number density to 0.0, i.e. no atoms, with AB step. """ json_path = os.path.join(JSON_DIR, "mb_solve_no_atoms.json") mbs = mb_solve.MBSolve().from_json(json_path) mbs.mbsolve(step='ab') # Check that the field at the end of the medium matches the field # at the start of the medium. self.assertTrue(np.allclose(mbs.Omegas_zt[:, 0, :], mbs.Omegas_zt[:, -1, :], rtol=1.0e-6)) def test_no_decays(self): """ Empty decay list. """ json_path = os.path.join(JSON_DIR, "mb_solve_no_decays.json") mb_solve_nd = mb_solve.MBSolve().from_json(json_path) mb_solve_nd.mbsolve() def test_no_rabi_freq_t_func(self): """ Empty decay list. TODO: No mbsolve, should be in init""" json_path = os.path.join(JSON_DIR, "mb_solve_no_rabi_freq_t_func.json") mbs = mb_solve.MBSolve().from_json(json_path) # self.assertEqual(mbs.ob_atom.fields[0].rabi_freq_t_func, # t_funcs.square_1) self.assertDictEqual(mbs.atom.fields[0].rabi_freq_t_args, {"ampl_0": 1.0, "on_0": 0.0, "off_0": 1.0}) def test_two_gaussian_2pi(self): """ Test of a gaussian input 2pi soliton propagating through a two-level system. """ json_path = os.path.join(JSON_DIR, "mbs_two_gaussian_2pi.json") mbs = mb_solve.MBSolve().from_json(json_path) mbs.mbsolve() # Input pulse is 2pi self.assertAlmostEqual(mbs.fields_area()[0][0]/(np.pi), 2.0, places=1) # Output pulse is 2pi self.assertAlmostEqual(mbs.fields_area()[0][-1]/(np.pi), 2.0, places=1) def test_two_gaussian_2pi_n_pi(self): """ Test of a gaussian input 2pi soliton propagating through a two-level system. """ json_path = os.path.join(JSON_DIR, "mbs_two_gaussian_2pi_n_pi.json") mbs = mb_solve.MBSolve().from_json(json_path) mbs.mbsolve() # Input pulse is 2pi self.assertAlmostEqual(mbs.fields_area()[0][0]/(np.pi), 2.0, places=1) # Output pulse is 2pi self.assertAlmostEqual(mbs.fields_area()[0][-1]/(np.pi), 2.0, places=1) def test_two_sech_2pi(self): """ Test of a 2pi soliton propagating through a two-level system. """ json_path = os.path.join(JSON_DIR, "mbs_two_sech_2pi.json") mbs = mb_solve.MBSolve().from_json(json_path) mbs.mbsolve() # Input pulse is 2pi self.assertAlmostEqual(mbs.fields_area()[0][0]/(np.pi), 2.0, places=1) # Output pulse is 2pi self.assertAlmostEqual(mbs.fields_area()[0][-1]/(np.pi), 2.0, places=1) def test_two_sech_2pi_n_pi(self): """ Test of a 2pi soliton propagating through a two-level system, passing n_pi. """ json_path = os.path.join(JSON_DIR, "mbs_two_sech_2pi_n_pi.json") mbs = mb_solve.MBSolve().from_json(json_path) mbs.mbsolve() # Input pulse is 2pi self.assertAlmostEqual(mbs.fields_area()[0][0]/(np.pi), 2.0, places=1) # Output pulse is 2pi self.assertAlmostEqual(mbs.fields_area()[0][-1]/(np.pi), 2.0, places=1) def test_no_vel_classes(self): """ Empty velocity class dict. """ json_path = os.path.join(JSON_DIR, "mb_solve_01.json") mbs = mb_solve.MBSolve().from_json(json_path) vc = {} mbs.build_velocity_classes(vc) mbs.mbsolve() def test_no_vel_classes_inner(self): """ No inner delta values in dict. TODO: No mbsolve, should be init""" json_path = os.path.join(JSON_DIR, "mb_solve_01.json") mbs = mb_solve.MBSolve().from_json(json_path) vc = { "thermal_delta_min": -1.0, "thermal_delta_max": 1.0, "thermal_delta_steps": 2, "thermal_width": 1.0 } mbs.build_velocity_classes(vc) mbs.mbsolve() def test_zero_thermal_width(self): """TODO: No mbsolve, should be in init""" json_path = os.path.join(JSON_DIR, "mb_solve_01.json") mbs = mb_solve.MBSolve().from_json(json_path) vc = { "thermal_delta_min": -1.0, "thermal_delta_max": 1.0, "thermal_delta_steps": 2, "thermal_delta_inner_min": 0.0, "thermal_delta_inner_max": 0.0, "thermal_delta_inner_steps": 0, "thermal_width": 0.0 } self.assertRaises(ValueError, mbs.build_velocity_classes, vc) def test_vel_classes(self): """Tests that for a linear two-level system with velocity classes, the absorption matches the known Voigt profile. """ json_path = os.path.join(JSON_DIR, "velocity-classes.json") mbs = mb_solve.MBSolve().from_json(json_path) mbs.mbsolve() freq_list = spectral.freq_list(mbs) abs = spectral.absorption(mbs, 0, -1) voigt = spectral.voigt_two_linear_known(freq_list, 1.0, 0.05).imag # Assert that the max of the abs residuals between the absorption # profile and the known broadened Voigt absorption profile for linear # two-level systems is below a tolerance self.assertTrue(np.max(np.abs(abs - voigt)) < 0.05) class TestSaveLoad(unittest.TestCase): """ Tests for the MBSolve save and load methods. """ def test_save_load_01(self): """ Solve a basic MBSolve problem. Save the results to file. Set the results in the MBSolve object to null. Load the results from file and check that they equal the original values. """ json_path = os.path.join(JSON_DIR, "mb_solve_01.json") mb_solve_01 = mb_solve.MBSolve().from_json(json_path) Omegas_zt, states_zt = mb_solve_01.mbsolve() mb_solve_01.save_results() mb_solve_01.Omegas_zt = None mb_solve_01.states_zt = None mb_solve_01.load_results() Omegas_zt_loaded = mb_solve_01.Omegas_zt states_zt_loaded = mb_solve_01.states_zt self.assertTrue((Omegas_zt == Omegas_zt_loaded).all()) self.assertTrue((states_zt == states_zt_loaded).all()) def test_save_load_no_recalc(self): json_path = os.path.join(JSON_DIR, "mb_solve_01.json") mb_solve_01 = mb_solve.MBSolve().from_json(json_path) Omegas_zt, states_zt = mb_solve_01.mbsolve() mb_solve_01.save_results() mb_solve_01.Omegas_zt = None mb_solve_01.states_zt = None Omegas_zt, states_zt = mb_solve_01.mbsolve(recalc=False) Omegas_zt_loaded = mb_solve_01.Omegas_zt states_zt_loaded = mb_solve_01.states_zt self.assertTrue((Omegas_zt == Omegas_zt_loaded).all()) self.assertTrue((states_zt == states_zt_loaded).all()) class TestBuildZlist(unittest.TestCase): def test_00(self): mb_solve_00 = mb_solve.MBSolve() zlist = np.array([0., .1, .2, .3, .4, .5, .6, .7, .8, .9, 1.]) self.assertTrue(np.allclose(mb_solve_00.zlist, zlist, rtol=1.0e-6)) class TestGetOmegasIntpTFuncs(unittest.TestCase): """ Unit tests of the get_Omegas_intp_t_funcs method """ def test_one_field(self): """ For the case of a single field """ json_path = os.path.join(JSON_DIR, "mb_solve_01.json") mb_solve_00 = mb_solve.MBSolve().from_json(json_path) self.assertEqual(mb_solve_00.get_Omegas_intp_t_funcs(), ['intp']) def test_two_fields(self): """ For the case of two fields """ json_path = os.path.join(JSON_DIR, "mb_solve_lamda.json") mb_solve_lamda = mb_solve.MBSolve().from_json(json_path) self.assertEqual(mb_solve_lamda.get_Omegas_intp_t_funcs(), ['intp', 'intp']) class TestGetOmegasIntpTArgs(unittest.TestCase): """ Unit tests of the get_Omegas_intp_t_args method """ def test_one_field(self): """ For the case of a single field """ json_path = os.path.join(JSON_DIR, "mb_solve_01.json") mb_solve_00 = mb_solve.MBSolve().from_json(json_path) Omegas_z = mb_solve_00.Omegas_zt[:, 0, :] t_args = mb_solve_00.get_Omegas_intp_t_args(Omegas_z) self.assertEqual(len(t_args), 1) self.assertTrue(np.all(t_args[0]['tlist'] == mb_solve_00.tlist)) self.assertTrue(np.all(t_args[0]['ylist'] == Omegas_z/(2.0*np.pi))) class TestPopulations(unittest.TestCase): def test_twolevel_shape(self): json_path = os.path.join(JSON_DIR, "mb_solve_01.json") mbs = mb_solve.MBSolve().from_json(json_path) pop_lower = mbs.populations([0]) pop_upper = mbs.populations([1]) np.testing.assert_allclose(pop_lower, np.zeros((mbs.z_steps+1, mbs.t_steps+1))) np.testing.assert_allclose(pop_upper, np.zeros((mbs.z_steps+1, mbs.t_steps+1))) class TestPopulationsField(unittest.TestCase): def test_twolevel_shape(self): json_path = os.path.join(JSON_DIR, "mb_solve_01.json") mbs = mb_solve.MBSolve().from_json(json_path) pop_upper = mbs.populations_field(field_idx=0, upper=True) pop_lower = mbs.populations_field(field_idx=0, upper=False) np.testing.assert_allclose(pop_lower, np.zeros((mbs.z_steps+1, mbs.t_steps+1))) np.testing.assert_allclose(pop_upper, np.zeros((mbs.z_steps+1, mbs.t_steps+1))) class TestCoherences(unittest.TestCase): def test_twolevel_shape(self): json_path = os.path.join(JSON_DIR, "mb_solve_01.json") mbs = mb_solve.MBSolve().from_json(json_path) coh = mbs.coherences([[0, 1]]) np.testing.assert_allclose(coh, np.zeros((mbs.z_steps+1, mbs.t_steps+1))) class TestCoherencesField(unittest.TestCase): def test_twolevel_shape(self): json_path = os.path.join(JSON_DIR, "mb_solve_01.json") mbs = mb_solve.MBSolve().from_json(json_path) coh = mbs.coherences_field(field_idx=0) np.testing.assert_allclose(coh, np.zeros((mbs.z_steps+1, mbs.t_steps+1)))
tommyogden/maxwellbloch
maxwellbloch/tests/test_mb_solve.py
Python
mit
12,255
[ "Gaussian" ]
da505c5672d383276369e2d681bba230df4a29edebbeb3b956bd1f47e0689899
# -*- coding: utf-8 -*- # Copyright 2018 IBM. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= import numpy as np import scipy from scipy.linalg import expm import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.decomposition import PCA def ad_hoc_data(training_size, test_size, n, gap, PLOT_DATA): class_labels = [r'A', r'B'] if n == 2: N = 100 elif n == 3: N = 20 # courseness of data seperation label_train = np.zeros(2*(training_size+test_size)) sample_train = [] sampleA = [[0 for x in range(n)] for y in range(training_size+test_size)] sampleB = [[0 for x in range(n)] for y in range(training_size+test_size)] sample_Total = [[[0 for x in range(N)] for y in range(N)] for z in range(N)] interactions = np.transpose(np.array([[1, 0], [0, 1], [1, 1]])) steps = 2*np.pi/N sx = np.array([[0, 1], [1, 0]]) X = np.asmatrix(sx) sy = np.array([[0, -1j], [1j, 0]]) Y = np.asmatrix(sy) sz = np.array([[1, 0], [0, -1]]) Z = np.asmatrix(sz) J = np.array([[1, 0], [0, 1]]) J = np.asmatrix(J) H = np.array([[1, 1], [1, -1]])/np.sqrt(2) H2 = np.kron(H, H) H3 = np.kron(H, H2) H = np.asmatrix(H) H2 = np.asmatrix(H2) H3 = np.asmatrix(H3) f = np.arange(2**n) my_array = [[0 for x in range(n)] for y in range(2**n)] for arindex in range(len(my_array)): temp_f = bin(f[arindex])[2:].zfill(n) for findex in range(n): my_array[arindex][findex] = int(temp_f[findex]) my_array = np.asarray(my_array) my_array = np.transpose(my_array) # Define decision functions maj = (-1)**(2*my_array.sum(axis=0) > n) parity = (-1)**(my_array.sum(axis=0)) dict1 = (-1)**(my_array[0]) if n == 2: D = np.diag(parity) elif n == 3: D = np.diag(maj) Basis = np.random.random((2**n, 2**n)) + 1j*np.random.random((2**n, 2**n)) Basis = np.asmatrix(Basis).getH()*np.asmatrix(Basis) [S, U] = np.linalg.eig(Basis) idx = S.argsort()[::-1] S = S[idx] U = U[:, idx] M = (np.asmatrix(U)).getH()*np.asmatrix(D)*np.asmatrix(U) psi_plus = np.transpose(np.ones(2))/np.sqrt(2) psi_0 = 1 for k in range(n): psi_0 = np.kron(np.asmatrix(psi_0), np.asmatrix(psi_plus)) sample_total_A = [] sample_total_B = [] sample_total_void = [] if n == 2: for n1 in range(N): for n2 in range(N): x1 = steps*n1 x2 = steps*n2 phi = x1*np.kron(Z, J) + x2*np.kron(J, Z) + (np.pi-x1)*(np.pi-x2)*np.kron(Z, Z) Uu = scipy.linalg.expm(1j*phi) psi = np.asmatrix(Uu)*H2*np.asmatrix(Uu)*np.transpose(psi_0) temp = np.asscalar(np.real(psi.getH()*M*psi)) if temp > gap: sample_Total[n1][n2] = +1 elif temp < -gap: sample_Total[n1][n2] = -1 else: sample_Total[n1][n2] = 0 # Now sample randomly from sample_Total a number of times training_size+testing_size tr = 0 while tr < (training_size+test_size): draw1 = np.random.choice(N) draw2 = np.random.choice(N) if sample_Total[draw1][draw2] == +1: sampleA[tr] = [2*np.pi*draw1/N, 2*np.pi*draw2/N] tr += 1 tr = 0 while tr < (training_size+test_size): draw1 = np.random.choice(N) draw2 = np.random.choice(N) if sample_Total[draw1][draw2] == -1: sampleB[tr] = [2*np.pi*draw1/N, 2*np.pi*draw2/N] tr += 1 sample_train = [sampleA, sampleB] for lindex in range(training_size+test_size): label_train[lindex] = 0 for lindex in range(training_size+test_size): label_train[training_size+test_size+lindex] = 1 label_train = label_train.astype(int) sample_train = np.reshape(sample_train, (2*(training_size+test_size), n)) training_input = {key: (sample_train[label_train == k, :])[:training_size] for k, key in enumerate(class_labels)} test_input = {key: (sample_train[label_train == k, :])[training_size:( training_size+test_size)] for k, key in enumerate(class_labels)} if PLOT_DATA: img = plt.imshow(np.asmatrix(sample_Total).T, interpolation='nearest', origin='lower', cmap='copper', extent=[0, 2*np.pi, 0, 2*np.pi]) plt.show() fig2 = plt.figure() for k in range(0, 2): plt.scatter(sample_train[label_train == k, 0][:training_size], sample_train[label_train == k, 1][:training_size]) plt.title("Ad-hoc Data") plt.show() elif n == 3: for n1 in range(N): for n2 in range(N): for n3 in range(N): x1 = steps*n1 x2 = steps*n2 x3 = steps*n3 phi = x1*np.kron(np.kron(Z, J), J) + x2*np.kron(np.kron(J, Z), J) + x3*np.kron(np.kron(J, J), Z) + \ (np.pi-x1)*(np.pi-x2)*np.kron(np.kron(Z, Z), J)+(np.pi-x2)*(np.pi-x3)*np.kron(np.kron(J, Z), Z) + \ (np.pi-x1)*(np.pi-x3)*np.kron(np.kron(Z, J), Z) Uu = scipy.linalg.expm(1j*phi) psi = np.asmatrix(Uu)*H3*np.asmatrix(Uu)*np.transpose(psi_0) temp = np.asscalar(np.real(psi.getH()*M*psi)) if temp > gap: sample_Total[n1][n2][n3] = +1 sample_total_A.append([n1, n2, n3]) elif temp < -gap: sample_Total[n1][n2][n3] = -1 sample_total_B.append([n1, n2, n3]) else: sample_Total[n1][n2][n3] = 0 sample_total_void.append([n1, n2, n3]) # Now sample randomly from sample_Total a number of times training_size+testing_size tr = 0 while tr < (training_size+test_size): draw1 = np.random.choice(N) draw2 = np.random.choice(N) draw3 = np.random.choice(N) if sample_Total[draw1][draw2][draw3] == +1: sampleA[tr] = [2*np.pi*draw1/N, 2*np.pi*draw2/N, 2*np.pi*draw3/N] tr += 1 tr = 0 while tr < (training_size+test_size): draw1 = np.random.choice(N) draw2 = np.random.choice(N) draw3 = np.random.choice(N) if sample_Total[draw1][draw2][draw3] == -1: sampleB[tr] = [2*np.pi*draw1/N, 2*np.pi*draw2/N, 2*np.pi*draw3/N] tr += 1 sample_train = [sampleA, sampleB] for lindex in range(training_size+test_size): label_train[lindex] = 0 for lindex in range(training_size+test_size): label_train[training_size+test_size+lindex] = 1 label_train = label_train.astype(int) sample_train = np.reshape(sample_train, (2*(training_size+test_size), n)) training_input = {key: (sample_train[label_train == k, :])[:training_size] for k, key in enumerate(class_labels)} test_input = {key: (sample_train[label_train == k, :])[training_size:( training_size+test_size)] for k, key in enumerate(class_labels)} if PLOT_DATA: sample_total_A = np.asarray(sample_total_A) sample_total_B = np.asarray(sample_total_B) x1 = sample_total_A[:, 0] y1 = sample_total_A[:, 1] z1 = sample_total_A[:, 2] x2 = sample_total_B[:, 0] y2 = sample_total_B[:, 1] z2 = sample_total_B[:, 2] fig1 = plt.figure() ax1 = fig1.add_subplot(1, 1, 1, projection='3d') ax1.scatter(x1, y1, z1, c='#8A360F') plt.show() # fig2 = plt.figure() ax2 = fig2.add_subplot(1, 1, 1, projection='3d') ax2.scatter(x2, y2, z2, c='#683FC8') plt.show() sample_training_A = training_input['A'] sample_training_B = training_input['B'] x1 = sample_training_A[:, 0] y1 = sample_training_A[:, 1] z1 = sample_training_A[:, 2] x2 = sample_training_B[:, 0] y2 = sample_training_B[:, 1] z2 = sample_training_B[:, 2] fig1 = plt.figure() ax1 = fig1.add_subplot(1, 1, 1, projection='3d') ax1.scatter(x1, y1, z1, c='#8A360F') ax1.scatter(x2, y2, z2, c='#683FC8') plt.show() return sample_Total, training_input, test_input, class_labels def sample_ad_hoc_data(sample_Total, test_size, n): tr = 0 class_labels = [r'A', r'B'] # copied from ad_hoc_data() if n == 2: N = 100 elif n == 3: N = 20 label_train = np.zeros(2*test_size) sampleA = [[0 for x in range(n)] for y in range(test_size)] sampleB = [[0 for x in range(n)] for y in range(test_size)] while tr < (test_size): draw1 = np.random.choice(N) draw2 = np.random.choice(N) if sample_Total[draw1][draw2] == +1: sampleA[tr] = [2*np.pi*draw1/N, 2*np.pi*draw2/N] tr += 1 tr = 0 while tr < (test_size): draw1 = np.random.choice(N) draw2 = np.random.choice(N) if sample_Total[draw1][draw2] == -1: sampleB[tr] = [2*np.pi*draw1/N, 2*np.pi*draw2/N] tr += 1 sample_train = [sampleA, sampleB] for lindex in range(test_size): label_train[lindex] = 0 for lindex in range(test_size): label_train[test_size+lindex] = 1 label_train = label_train.astype(int) sample_train = np.reshape(sample_train, (2 * test_size, n)) test_input = {key: (sample_train[label_train == k, :])[:] for k, key in enumerate(class_labels)} return test_input def Breast_cancer(training_size, test_size, n, PLOT_DATA): class_labels = [r'A', r'B'] data, target = datasets.load_breast_cancer(True) sample_train, sample_test, label_train, label_test = train_test_split(data, target, test_size=0.3, random_state=12) # Now we standarize for gaussian around 0 with unit variance std_scale = StandardScaler().fit(sample_train) sample_train = std_scale.transform(sample_train) sample_test = std_scale.transform(sample_test) # Now reduce number of features to number of qubits pca = PCA(n_components=n).fit(sample_train) sample_train = pca.transform(sample_train) sample_test = pca.transform(sample_test) # Scale to the range (-1,+1) samples = np.append(sample_train, sample_test, axis=0) minmax_scale = MinMaxScaler((-1, 1)).fit(samples) sample_train = minmax_scale.transform(sample_train) sample_test = minmax_scale.transform(sample_test) # Pick training size number of samples from each distro training_input = {key: (sample_train[label_train == k, :])[:training_size] for k, key in enumerate(class_labels)} test_input = {key: (sample_train[label_train == k, :])[training_size:( training_size+test_size)] for k, key in enumerate(class_labels)} if PLOT_DATA: for k in range(0, 2): plt.scatter(sample_train[label_train == k, 0][:training_size], sample_train[label_train == k, 1][:training_size]) plt.title("PCA dim. reduced Breast cancer dataset") plt.show() return sample_train, training_input, test_input, class_labels def Digits(training_size, test_size, n, PLOT_DATA): class_labels = [r'A', r'B', r'C', r'D', r'E', r'F', r'G', r'H', r'I', r'J'] data = datasets.load_digits() sample_train, sample_test, label_train, label_test = train_test_split( data.data, data.target, test_size=0.3, random_state=22) # Now we standarize for gaussian around 0 with unit variance std_scale = StandardScaler().fit(sample_train) sample_train = std_scale.transform(sample_train) sample_test = std_scale.transform(sample_test) # Now reduce number of features to number of qubits pca = PCA(n_components=n).fit(sample_train) sample_train = pca.transform(sample_train) sample_test = pca.transform(sample_test) # Scale to the range (-1,+1) samples = np.append(sample_train, sample_test, axis=0) minmax_scale = MinMaxScaler((-1, 1)).fit(samples) sample_train = minmax_scale.transform(sample_train) sample_test = minmax_scale.transform(sample_test) # Pick training size number of samples from each distro training_input = {key: (sample_train[label_train == k, :])[:training_size] for k, key in enumerate(class_labels)} test_input = {key: (sample_train[label_train == k, :])[training_size:( training_size+test_size)] for k, key in enumerate(class_labels)} if PLOT_DATA: for k in range(0, 9): plt.scatter(sample_train[label_train == k, 0][:training_size], sample_train[label_train == k, 1][:training_size]) plt.title("PCA dim. reduced Digits dataset") plt.show() return sample_train, training_input, test_input, class_labels def Iris(training_size, test_size, n, PLOT_DATA): class_labels = [r'A', r'B', r'C'] data, target = datasets.load_iris(True) sample_train, sample_test, label_train, label_test = train_test_split(data, target, test_size=1, random_state=42) # Now we standarize for gaussian around 0 with unit variance std_scale = StandardScaler().fit(sample_train) sample_train = std_scale.transform(sample_train) sample_test = std_scale.transform(sample_test) # Now reduce number of features to number of qubits pca = PCA(n_components=n).fit(sample_train) sample_train = pca.transform(sample_train) sample_test = pca.transform(sample_test) # Scale to the range (-1,+1) samples = np.append(sample_train, sample_test, axis=0) minmax_scale = MinMaxScaler((-1, 1)).fit(samples) sample_train = minmax_scale.transform(sample_train) sample_test = minmax_scale.transform(sample_test) # Pick training size number of samples from each distro training_input = {key: (sample_train[label_train == k, :])[:training_size] for k, key in enumerate(class_labels)} test_input = {key: (sample_train[label_train == k, :])[training_size:( training_size+test_size)] for k, key in enumerate(class_labels)} if PLOT_DATA: for k in range(0, 3): plt.scatter(sample_train[label_train == k, 0][:training_size], sample_train[label_train == k, 1][:training_size]) plt.title("Iris dataset") plt.show() return sample_train, training_input, test_input, class_labels def Wine(training_size, test_size, n, PLOT_DATA): class_labels = [r'A', r'B', r'C'] data, target = datasets.load_wine(True) sample_train, sample_test, label_train, label_test = train_test_split(data, target, test_size=test_size, random_state=7) # Now we standarize for gaussian around 0 with unit variance std_scale = StandardScaler().fit(sample_train) sample_train = std_scale.transform(sample_train) sample_test = std_scale.transform(sample_test) # Now reduce number of features to number of qubits pca = PCA(n_components=n).fit(sample_train) sample_train = pca.transform(sample_train) sample_test = pca.transform(sample_test) # Scale to the range (-1,+1) samples = np.append(sample_train, sample_test, axis=0) minmax_scale = MinMaxScaler((-1, 1)).fit(samples) sample_train = minmax_scale.transform(sample_train) sample_test = minmax_scale.transform(sample_test) # Pick training size number of samples from each distro training_input = {key: (sample_train[label_train == k, :])[:training_size] for k, key in enumerate(class_labels)} test_input = {key: (sample_train[label_train == k, :])[training_size:( training_size+test_size)] for k, key in enumerate(class_labels)} if PLOT_DATA: for k in range(0, 3): plt.scatter(sample_train[label_train == k, 0][:training_size], sample_train[label_train == k, 1][:training_size]) plt.title("PCA dim. reduced Wine dataset") plt.show() return sample_train, training_input, test_input, class_labels def Gaussian(training_size, test_size, n, PLOT_DATA): sigma = 1 if n == 2: class_labels = [r'A', r'B'] label_train = np.zeros(2*(training_size+test_size)) sample_train = [] sampleA = [[0 for x in range(n)] for y in range(training_size+test_size)] sampleB = [[0 for x in range(n)] for y in range(training_size+test_size)] randomized_vector1 = np.random.randint(2, size=n) randomized_vector2 = (randomized_vector1+1) % 2 for tr in range(training_size+test_size): for feat in range(n): if randomized_vector1[feat] == 0: sampleA[tr][feat] = np.random.normal(-1/2, sigma, None) elif randomized_vector1[feat] == 1: sampleA[tr][feat] = np.random.normal(1/2, sigma, None) else: print('Nope') if randomized_vector2[feat] == 0: sampleB[tr][feat] = np.random.normal(-1/2, sigma, None) elif randomized_vector2[feat] == 1: sampleB[tr][feat] = np.random.normal(1/2, sigma, None) else: print('Nope') sample_train = [sampleA, sampleB] for lindex in range(training_size+test_size): label_train[lindex] = 0 for lindex in range(training_size+test_size): label_train[training_size+test_size+lindex] = 1 label_train = label_train.astype(int) sample_train = np.reshape(sample_train, (2*(training_size+test_size), n)) training_input = {key: (sample_train[label_train == k, :])[:training_size] for k, key in enumerate(class_labels)} test_input = {key: (sample_train[label_train == k, :])[training_size:( training_size+test_size)] for k, key in enumerate(class_labels)} if PLOT_DATA: fig1 = plt.figure() for k in range(0, 2): plt.scatter(sample_train[label_train == k, 0][:training_size], sample_train[label_train == k, 1][:training_size]) plt.title("Gaussians") plt.show() return sample_train, training_input, test_input, class_labels elif n == 3: class_labels = [r'A', r'B', r'C'] label_train = np.zeros(3*(training_size+test_size)) sample_train = [] sampleA = [[0 for x in range(n)] for y in range(training_size+test_size)] sampleB = [[0 for x in range(n)] for y in range(training_size+test_size)] sampleC = [[0 for x in range(n)] for y in range(training_size+test_size)] randomized_vector1 = np.random.randint(3, size=n) randomized_vector2 = (randomized_vector1+1) % 3 randomized_vector3 = (randomized_vector2+1) % 3 for tr in range(training_size+test_size): for feat in range(n): if randomized_vector1[feat] == 0: sampleA[tr][feat] = np.random.normal(2*1*np.pi/6, sigma, None) elif randomized_vector1[feat] == 1: sampleA[tr][feat] = np.random.normal(2*3*np.pi/6, sigma, None) elif randomized_vector1[feat] == 2: sampleA[tr][feat] = np.random.normal(2*5*np.pi/6, sigma, None) else: print('Nope') if randomized_vector2[feat] == 0: sampleB[tr][feat] = np.random.normal(2*1*np.pi/6, sigma, None) elif randomized_vector2[feat] == 1: sampleB[tr][feat] = np.random.normal(2*3*np.pi/6, sigma, None) elif randomized_vector2[feat] == 2: sampleB[tr][feat] = np.random.normal(2*5*np.pi/6, sigma, None) else: print('Nope') if randomized_vector3[feat] == 0: sampleC[tr][feat] = np.random.normal(2*1*np.pi/6, sigma, None) elif randomized_vector3[feat] == 1: sampleC[tr][feat] = np.random.normal(2*3*np.pi/6, sigma, None) elif randomized_vector3[feat] == 2: sampleC[tr][feat] = np.random.normal(2*5*np.pi/6, sigma, None) else: print('Nope') sample_train = [sampleA, sampleB, sampleC] for lindex in range(training_size+test_size): label_train[lindex] = 0 for lindex in range(training_size+test_size): label_train[training_size+test_size+lindex] = 1 for lindex in range(training_size+test_size): label_train[training_size+test_size+training_size+test_size+lindex] = 2 label_train = label_train.astype(int) sample_train = np.reshape(sample_train, (3*(training_size+test_size), n)) training_input = {key: (sample_train[label_train == k, :])[:training_size] for k, key in enumerate(class_labels)} test_input = {key: (sample_train[label_train == k, :])[training_size:( training_size+test_size)] for k, key in enumerate(class_labels)} if PLOT_DATA: fig1 = plt.figure() for k in range(0, 3): plt.scatter(sample_train[label_train == k, 0][:training_size], sample_train[label_train == k, 1][:training_size]) plt.title("Gaussians") plt.show() return sample_train, training_input, test_input, class_labels else: print("Gaussian presently only supports 2 or 3 qubits")
antoniomezzacapo/qiskit-tutorial
community/aqua/artificial_intelligence/datasets.py
Python
apache-2.0
22,782
[ "Gaussian" ]
83ee06babdc0f5c11522cc2e9df559a42a8f7b6515c1c6a37440be639c8451fb
""" ============================================== Denoise images using Non-Local Means (NLMEANS) ============================================== Using the non-local means filter [Coupe08]_ and [Coupe11]_ and you can denoise 3D or 4D images and boost the SNR of your datasets. You can also decide between modeling the noise as Gaussian or Rician (default). """ import numpy as np import nibabel as nib import matplotlib.pyplot as plt from time import time from dipy.denoise.non_local_means import non_local_means from dipy.denoise.nlmeans import nlmeans from dipy.denoise.noise_estimate import estimate_sigma from dipy.data import fetch_sherbrooke_3shell, read_sherbrooke_3shell fetch_sherbrooke_3shell() img, gtab = read_sherbrooke_3shell() data = img.get_data() affine = img.affine mask = data[..., 0] > 80 # We select only one volume for the example to run quickly. data = data[..., 1] print("vol size", data.shape) # lets create a noisy data with gaussian data """ In order to call ``non_local_means`` first you need to estimate the standard deviation of the noise. We use N=4 since the Sherbrooke dataset was acquired on a 1.5T Siemens scanner with a 4 array head coil. """ sigma = estimate_sigma(data, N=4) t = time() """ Calling the main function ``non_local_means`` """ den = non_local_means( data, sigma=sigma, mask=mask, patch_radius=1, block_radius=1, rician=True) print("total time", time() - t) t = time() den = nlmeans(data, sigma=sigma, mask=mask, patch_radius= 1, block_radius = 1, rician= True) print("total time", time() - t) """ Let us plot the axial slice of the denoised output """ axial_middle = data.shape[2] / 2 before = data[:, :, axial_middle].T after = den[:, :, axial_middle].T difference = np.abs(after.astype('f8') - before.astype('f8')) difference[~mask[:, :, axial_middle].T] = 0 fig, ax = plt.subplots(1, 3) ax[0].imshow(before, cmap='gray', origin='lower') ax[0].set_title('before') ax[1].imshow(after, cmap='gray', origin='lower') ax[1].set_title('after') ax[2].imshow(difference, cmap='gray', origin='lower') ax[2].set_title('difference') plt.savefig('denoised.png', bbox_inches='tight') """ .. figure:: denoised.png :align: center **Showing axial slice before (left) and after (right) NLMEANS denoising** """ nib.save(nib.Nifti1Image(den, affine), 'denoised.nii.gz') """ An improved version of non-local means denoising is adaptive soft coefficient matching, please refer to :ref:`example_denoise_ascm` for more details. References ---------- .. [Coupe08] P. Coupe, P. Yger, S. Prima, P. Hellier, C. Kervrann, C. Barillot, "An Optimized Blockwise Non Local Means Denoising Filter for 3D Magnetic Resonance Images", IEEE Transactions on Medical Imaging, 27(4):425-441, 2008 .. [Coupe11] Pierrick Coupe, Jose Manjon, Montserrat Robles, Louis Collins. "Adaptive Multiresolution Non-Local Means Filter for 3D MR Image Denoising" IET Image Processing, Institution of Engineering and Technology, 2011 .. include:: ../links_names.inc """
villalonreina/dipy
doc/examples/denoise_nlmeans.py
Python
bsd-3-clause
3,046
[ "Gaussian" ]
156a7b2623b8173997821d7acf4ba32d300fec656bfb744be2dd9dda02ea4b33
############################################################################## # Copyright (c) 2013-2018, Lawrence Livermore National Security, LLC. # Produced at the Lawrence Livermore National Laboratory. # # This file is part of Spack. # Created by Todd Gamblin, [email protected], All rights reserved. # LLNL-CODE-647188 # # For details, see https://github.com/spack/spack # Please also see the NOTICE and LICENSE files for our notice and the LGPL. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License (as # published by the Free Software Foundation) version 2.1, February 1999. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the IMPLIED WARRANTY OF # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the terms and # conditions of the GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ############################################################################## from spack import * class Visit(CMakePackage): """VisIt is an Open Source, interactive, scalable, visualization, animation and analysis tool.""" homepage = "https://wci.llnl.gov/simulation/computer-codes/visit/" url = "http://portal.nersc.gov/project/visit/releases/2.10.1/visit2.10.1.tar.gz" version('2.13.0', '716644b8e78a00ff82691619d4d1e7a914965b6535884890b667b97ba08d6a0f') version('2.12.3', '2dd351a291ee3e79926bc00391ca89b202cfa4751331b0fdee1b960c7922161f') version('2.12.2', '355779b1dbf440cdd548526eecd77b60') version('2.10.3', 'a1082a6f6dab3e2dcb58993603456c2b') version('2.10.2', '253de0837a9d69fb689befc98ea4d068') version('2.10.1', '3cbca162fdb0249f17c4456605c4211e') depends_on('[email protected]:', type='build') depends_on('[email protected]~opengl2') depends_on('[email protected]') depends_on('qwt') depends_on('python') depends_on('silo+shared') depends_on('hdf5') root_cmakelists_dir = 'src' def cmake_args(self): spec = self.spec qt_bin = spec['qt'].prefix.bin args = [ '-DVTK_MAJOR_VERSION={0}'.format(spec['vtk'].version[0]), '-DVTK_MINOR_VERSION={0}'.format(spec['vtk'].version[1]), '-DVISIT_VTK_DIR:PATH={0}'.format(spec['vtk'].prefix), '-DVISIT_USE_GLEW=OFF', '-DVISIT_LOC_QMAKE_EXE:FILEPATH={0}/qmake-qt4'.format(qt_bin), '-DPYTHON_DIR:PATH={0}'.format(spec['python'].home), '-DVISIT_SILO_DIR:PATH={0}'.format(spec['silo'].prefix), '-DVISIT_HDF5_DIR:PATH={0}'.format(spec['hdf5'].prefix), '-DVISIT_QWT_DIR:PATH={0}'.format(spec['qwt'].prefix) ] if spec.satisfies('^hdf5+mpi', strict=True): args.append('-DVISIT_HDF5_MPI_DIR:PATH={0}'.format( spec['hdf5'].prefix)) return args
krafczyk/spack
var/spack/repos/builtin/packages/visit/package.py
Python
lgpl-2.1
3,084
[ "VTK", "VisIt" ]
7287066b4bc70d5890b68af17bdb8586e9fb4e4865a54465f0a779867339bc6d
from collections import defaultdict import datetime import sys import threading import tornado.ioloop import tornado.web import urllib import uuid from prisoner.workflow import PolicyProcessor, SocialObjectGateway SERVER_URL = "http://localhost:8888" class ExperimentBuilder(object): """ The ExperimentBuilder is the interface for bootstrapping an experiment with PRISONER. After instantiating an ExperimentBuilder, complete the following steps: - call provide_privacy_policy() with the path to your privacy policy XML file - call provide_experimental_design() with the path to your experimental design XML file - call authenticate_participant() with the id of the participant in this session - call authenticate_providers() with a list of services which the participant must authenticate with to participate - call build() to generate a pre-experiment flow, which allows participants to review a human-readable version of your privacy policy, and to authenticate themselves with providers as needed. """ def __init__(self): self.sog = SocialObjectGateway.SocialObjectsGateway() self.participant = None self.providers = None self.token = str(uuid.uuid4()) self.session = defaultdict(dict) self.title = None self.contact = None self.connection_string = None self.last_touch = None def get_props(self, who_for=None): """ Retrieve the props for a given target (eg. PRISONER or a provider) :param who_for: the target to retrieve props for :type who_for: str """ props = self.sog.persistence.props if not who_for: return props else: return props[who_for] def provide_db_string(self, db_string): """ Set connection string for this experiment. :param db_string: conncetion string :type db_string: str """ self.connection_string = db_string def provide_title(self, title): """ The title of the experiment as presented to your participants. :param title: Friendly experiment title :type title: str """ self.title = title def provide_contact(self, contact): """ How to contact someone in connection with this experiment, eg. an email address. This should be provided in a form that fits the following sentence construction: "Contact the researcher at <contact>." :param contact: Contact information :type contact: str """ self.contact = contact def provide_privacy_policy(self, policy): """ Provide the privacy policy for this experiment. :param policy: Path to privacy policy file :type policy: str """ self.sog.provide_privacy_policy(policy) def provide_experimental_design(self, exp_design): """ Provide the experimental design for this experiment. :param exp_design: Path to experimental design file :type exp_design: str """ self.sog.provide_experimental_design(exp_design, self.connection_string) def authenticate_participant(self, schema, participant_id): """ Provide the ID of the participant in this experiment. This participant must exist in the participant table for this experiment. :param participant_id: ID of participant :type participant_id: int """ participant = self.sog.persistence.get_participant(schema, participant_id) self.participant = participant self.sog.participant = participant return self.participant def authenticate_providers(self, providers): """ Provide a list of provider names this participant needs to be authenticated with to participate (eg. if they are only using a subset of providers all participants will be using, only include that subset in this list). When the experiment is built, each gateway will inject its own authentication logic. :param providers: List of providers to authenticate with :type providers: list[str] """ self.providers = providers def build_schema(self): """ Constructs the database schema (destroying whatever data might already exist). This places the database in a state in which participants may be registered, and experiments run, but does not return usable interfaces to the rest of the workflow (such as the SocialObjectGateway) """ self.sog.persistence.do_build_schema(drop_first=True) def build(self, callback_url): """ Using the information provided by the participation client, instigate the experiment consent process. This does the following: - parse the experimental design and privacy policy and generate a human-readable document, relevant to the participant, which also lists which providers the participant will be asked to authenticate with - creates a temporary web server - the participation client must access the returned URL using the cookie provided when the ExperimentBuilder was instantiated - when the user consents to the policies, each service gateway for which authentication is needed provides a URL to authenticate with which the participant is asked to visit in turn (decorated by additional context from PRISONER for participants' confidence). Note, this URL must contain the entire authentication flow, so you may need to host this yourself, particularly if this involves two (or more) factor authentication as users are bounced between URLs (many authentication flows expect a URL callback). This flow must return a token to persist alongside the Participant. : param callback_url: A callable to be invoked only when consent is confirmed - ie. the entrypoint for the participation client :type callback_url: callable : returns: URL participant must visit to begin consent flow """ # does authenticated participant already have a meta row? # if so, consent already given, so skip consent and load auth, for provider in self.providers: provider_auth = self.sog.persistence.get_existing_provider_auth(self.sog.participant[0], provider) if provider_auth: can_auth = self.sog.restore_authentication(provider, provider_auth) if can_auth: self.providers.remove(provider) # no providers to authenticate if not self.providers: return callback_url # indicate server needs to do a consent flow self.exp_callback = callback_url return True # start server # DEPRECATED: No more ad-hoc server - this is handled # by the PRISONER WS server now! application = tornado.web.Application([ (r"/", ConsentFlowHandler), (r"/confirm", ProviderAuthentHandler), (r"/complete", CompleteConsentHandler), (r".*",CallbackHandler), ], builder=self) application.listen(8888) t = threading.Thread(target=tornado.ioloop.IOLoop.instance().start) t.start() return "%s/?pctoken=%s" % (SERVER_URL, self.token) # serve human readable policies def consent_confirmed(cookie): """ Called when user with given cookie accepts consent. If cookie is valid, continue the authentication flow for that participant. """ pass class CompleteConsentHandler(tornado.web.RequestHandler): """ Called when the user has authenticated themselves with the last provider necessary. This completes the authentication flow and allows the experimental application to begin. """ def get(self): builder = self.application.settings["builder"] callback_provider = self.get_argument("cbprovider") builder.sog.complete_authentication(callback_provider, self.request) # evoke callback if "http" in builder.exp_callback: self.redirect(builder.exp_callback) else: self.write(builder.exp_callback) class ConsentFlowHandler(tornado.web.RequestHandler): """ This renders the human-readable representation of the privacy policy and ensures the participant understands the data requirements of the experimental application before providing consent. """ def get(self): builder = self.application.settings["builder"] token = self.get_argument("pctoken") self.write("Stand back. We're doing science.</br>") if(token != builder.token): self.write("Token %s is not %s" % (token, self.token)) return else: self.write("(human readable consent here) </br></br>" +\ "Go <a href='confirm?pctoken=%s'>here</a> if you agree to " %builder.token +\ "the invisible information here.") class CallbackHandler(tornado.web.RequestHandler): """ Takes a parameter (callback), and calls the unescaped version of that URL (useful for baking nested params in a callback URL) """ def get(self): url = urllib.unquote(self.request.uri) url = url.replace("?token","&token") # this is an insane shim for a bug in LFM url = url.replace("?state","&state") # temp FB shim self.redirect(url) class ProviderAuthentHandler(tornado.web.RequestHandler): """ Called during the authentication flow for each provider. Informs the participant about the service they are about to authenticate themselves with, then redirects to the appropriate URL for that service. """ def get(self): builder = self.application.settings["builder"] token = self.get_argument("pctoken") providers = builder.providers try: current_provider = self.get_argument("provider") if current_provider not in providers: self.write("Invalid provider.") return providers.pop() except: current_provider = None self.write("For this experiment, we need you to login to some services.</br>") provider = providers[len(providers)-1] self.write("<a href='confirm?provider=%s&pctoken=%s'>Login to"%(provider, token)+\ " %s</a>" % provider) return if providers: callback = "%s/confirm?pctoken=%s&provider=%s&cbprovider=%s" % (SERVER_URL, token, providers[len(providers)-1], current_provider) else: callback = "%s/complete?pctoken=%s&cbprovider=%s" % (SERVER_URL, token, current_provider) try: callback_provider = self.get_argument("cbprovider") builder.sog.complete_authentication(callback_provider, self.request) except: pass url = builder.sog.request_authentication(current_provider, callback=urllib.quote(callback,safe=":/")) self.redirect(url)
uoscompsci/PRISONER
prisoner/workflow/ExperimentBuilder.py
Python
bsd-3-clause
9,921
[ "VisIt" ]
a40c8b65628183bc02f6210e37fe04d05602d863dd4571781b54baaf47d6ab71
#!/usr/bin/python # -*- coding: UTF-8 -*- # Introduction: This script is used to get effective number of codons (ENC) from fasta # Input is a Seq format object (Bio.SeqIO) # Created by galaxy on 2017/3/10 0010 17:37 from collections import defaultdict from src.global_items import * def degenerated(): """ This function is used to load degenercy AAs. :return: """ degeneracy_dict = defaultdict() codon_dict = defaultdict() for amino_acid, codons in degenerated_codons.items(): degeneracy_class = len(codons) degeneracy_dict[amino_acid] = degeneracy_class for codon in codons: codon_dict[codon] = amino_acid return degeneracy_dict, codon_dict def read_seq(seq, codon_aa_dict): aa_dict = defaultdict(int) seq_codon_dict = defaultdict(int) max_seq = len(seq) query_codons = [seq[i:i + 3] for i in range(0, max_seq, 3)] for each_codon in query_codons: aa = codon_aa_dict[each_codon] aa_dict[aa] += 1 seq_codon_dict[each_codon] += 1 return aa_dict, seq_codon_dict def enc_calculation(aa_dict, codon_dict, seq_codon_dict, degeneracy_dict): totb = defaultdict(int) numaa = defaultdict(int) error_t = False fold = [0, 0, 0, 0, 0, 0, 0, 0, 0] for j in degeneracy_dict.keys(): deg = degeneracy_dict[j] if j == 'STOP': # skip STOP codon continue if aa_dict[j] <= 1: # aa_dict[j]: nnaa + i bb = 0 else: s2 = 0 for x in codon_dict.keys(): if codon_dict[x] != j: continue if seq_codon_dict[x] == 0: k2 = 0.0 else: k2 = pow((seq_codon_dict[x] / aa_dict[j]), 2) s2 += k2 bb = (aa_dict[j] * s2 - 1.0) / (aa_dict[j] - 1.0) # homozygosity if bb > 0.0000001: totb[deg] += bb numaa[deg] += 1 fold[deg] += 1 enc_tot = fold[1] for z in range(2, 9): if fold[z]: if numaa[z] and totb[z] > 0: averb = totb[z] / numaa[z] elif z == 3 and numaa[2] > 0 and numaa[4] > 0 and fold[z] == 1: averb = (totb[2] / numaa[2] + totb[4] / numaa[4]) * 0.5 else: error_t = True break enc_tot += fold[z] / averb if error_t: result = 0 elif enc_tot <= 61: result = enc_tot else: result = 61.00 return result def get_enc(query_seq, precision=2): (degeneracy_dict, codon_dict) = degenerated() seq_string = str(query_seq).upper().replace('U', 'T') (aa_dict, seq_codon_dict) = read_seq(seq_string, genetic_code) result = enc_calculation(aa_dict, codon_dict, seq_codon_dict, degeneracy_dict) return round(result, precision)
cvn001/codonPY
src/get_ENC_from_fasta.py
Python
mit
2,880
[ "Galaxy" ]
2ed881516e92ee4e0addf19ce7ad6e7e2bd439ac546694a1aeb5ba7113628f5d
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Tinker(CMakePackage): """The Tinker molecular modeling software is a complete and general package for molecular mechanics and dynamics, with some special features for biopolymers. """ homepage = "https://dasher.wustl.edu/tinker/" url = "https://dasher.wustl.edu/tinker/downloads/tinker-8.7.1.tar.gz" version('8.7.1', sha256='0d6eff8bbc9be0b37d62b6fd3da35bb5499958eafe67aa9c014c4648c8b46d0f') patch('tinker-8.7.1-cmake.patch') depends_on('fftw') root_cmakelists_dir = 'source'
LLNL/spack
var/spack/repos/builtin/packages/tinker/package.py
Python
lgpl-2.1
758
[ "TINKER" ]
e4920a6f0a73d35c262f517e490f412b092a869e2997880bfdb5808e89b30941
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ A base class of DataFrame/Column to behave similar to pandas DataFrame/Series. """ from abc import ABCMeta, abstractmethod from collections import Counter from collections.abc import Iterable from distutils.version import LooseVersion from functools import reduce from typing import Any, List, Optional, Tuple, Union, TYPE_CHECKING, cast import warnings import numpy as np # noqa: F401 import pandas as pd from pandas.api.types import is_list_like from pyspark.sql import functions as F from pyspark.sql.types import ( BooleanType, DoubleType, FloatType, IntegralType, LongType, NumericType, ) from pyspark import pandas as ps # For running doctests and reference resolution in PyCharm. from pyspark.pandas.indexing import AtIndexer, iAtIndexer, iLocIndexer, LocIndexer from pyspark.pandas.internal import InternalFrame from pyspark.pandas.typedef import Scalar, spark_type_to_pandas_dtype from pyspark.pandas.utils import ( is_name_like_tuple, is_name_like_value, name_like_string, scol_for, sql_conf, validate_arguments_and_invoke_function, validate_axis, SPARK_CONF_ARROW_ENABLED, ) from pyspark.pandas.window import Rolling, Expanding if TYPE_CHECKING: from pyspark.pandas.frame import DataFrame # noqa: F401 (SPARK-34943) from pyspark.pandas.groupby import DataFrameGroupBy, SeriesGroupBy # noqa: F401 (SPARK-34943) from pyspark.pandas.series import Series # noqa: F401 (SPARK-34943) class Frame(object, metaclass=ABCMeta): """ The base class for both DataFrame and Series. """ @abstractmethod def __getitem__(self, key): pass @property @abstractmethod def _internal(self) -> InternalFrame: pass @abstractmethod def _apply_series_op(self, op, should_resolve: bool = False): pass @abstractmethod def _reduce_for_stat_function(self, sfun, name, axis=None, numeric_only=True, **kwargs): pass @property @abstractmethod def dtypes(self): pass @abstractmethod def to_pandas(self): pass @property @abstractmethod def index(self): pass @abstractmethod def copy(self): pass @abstractmethod def _to_internal_pandas(self): pass @abstractmethod def head(self, n: int = 5): pass # TODO: add 'axis' parameter def cummin(self, skipna: bool = True) -> Union["Series", "DataFrame"]: """ Return cumulative minimum over a DataFrame or Series axis. Returns a DataFrame or Series of the same size containing the cumulative minimum. .. note:: the current implementation of cummin uses Spark's Window without specifying partition specification. This leads to move all data into single partition in single machine and could cause serious performance degradation. Avoid this method against very large dataset. Parameters ---------- skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. Returns ------- DataFrame or Series See Also -------- DataFrame.min : Return the minimum over DataFrame axis. DataFrame.cummax : Return cumulative maximum over DataFrame axis. DataFrame.cummin : Return cumulative minimum over DataFrame axis. DataFrame.cumsum : Return cumulative sum over DataFrame axis. Series.min : Return the minimum over Series axis. Series.cummax : Return cumulative maximum over Series axis. Series.cummin : Return cumulative minimum over Series axis. Series.cumsum : Return cumulative sum over Series axis. Series.cumprod : Return cumulative product over Series axis. Examples -------- >>> df = ps.DataFrame([[2.0, 1.0], [3.0, None], [1.0, 0.0]], columns=list('AB')) >>> df A B 0 2.0 1.0 1 3.0 NaN 2 1.0 0.0 By default, iterates over rows and finds the minimum in each column. >>> df.cummin() A B 0 2.0 1.0 1 2.0 NaN 2 1.0 0.0 It works identically in Series. >>> df.A.cummin() 0 2.0 1 2.0 2 1.0 Name: A, dtype: float64 """ return self._apply_series_op(lambda psser: psser._cum(F.min, skipna), should_resolve=True) # TODO: add 'axis' parameter def cummax(self, skipna: bool = True) -> Union["Series", "DataFrame"]: """ Return cumulative maximum over a DataFrame or Series axis. Returns a DataFrame or Series of the same size containing the cumulative maximum. .. note:: the current implementation of cummax uses Spark's Window without specifying partition specification. This leads to move all data into single partition in single machine and could cause serious performance degradation. Avoid this method against very large dataset. Parameters ---------- skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. Returns ------- DataFrame or Series See Also -------- DataFrame.max : Return the maximum over DataFrame axis. DataFrame.cummax : Return cumulative maximum over DataFrame axis. DataFrame.cummin : Return cumulative minimum over DataFrame axis. DataFrame.cumsum : Return cumulative sum over DataFrame axis. DataFrame.cumprod : Return cumulative product over DataFrame axis. Series.max : Return the maximum over Series axis. Series.cummax : Return cumulative maximum over Series axis. Series.cummin : Return cumulative minimum over Series axis. Series.cumsum : Return cumulative sum over Series axis. Series.cumprod : Return cumulative product over Series axis. Examples -------- >>> df = ps.DataFrame([[2.0, 1.0], [3.0, None], [1.0, 0.0]], columns=list('AB')) >>> df A B 0 2.0 1.0 1 3.0 NaN 2 1.0 0.0 By default, iterates over rows and finds the maximum in each column. >>> df.cummax() A B 0 2.0 1.0 1 3.0 NaN 2 3.0 1.0 It works identically in Series. >>> df.B.cummax() 0 1.0 1 NaN 2 1.0 Name: B, dtype: float64 """ return self._apply_series_op(lambda psser: psser._cum(F.max, skipna), should_resolve=True) # TODO: add 'axis' parameter def cumsum(self, skipna: bool = True) -> Union["Series", "DataFrame"]: """ Return cumulative sum over a DataFrame or Series axis. Returns a DataFrame or Series of the same size containing the cumulative sum. .. note:: the current implementation of cumsum uses Spark's Window without specifying partition specification. This leads to move all data into single partition in single machine and could cause serious performance degradation. Avoid this method against very large dataset. Parameters ---------- skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. Returns ------- DataFrame or Series See Also -------- DataFrame.sum : Return the sum over DataFrame axis. DataFrame.cummax : Return cumulative maximum over DataFrame axis. DataFrame.cummin : Return cumulative minimum over DataFrame axis. DataFrame.cumsum : Return cumulative sum over DataFrame axis. DataFrame.cumprod : Return cumulative product over DataFrame axis. Series.sum : Return the sum over Series axis. Series.cummax : Return cumulative maximum over Series axis. Series.cummin : Return cumulative minimum over Series axis. Series.cumsum : Return cumulative sum over Series axis. Series.cumprod : Return cumulative product over Series axis. Examples -------- >>> df = ps.DataFrame([[2.0, 1.0], [3.0, None], [1.0, 0.0]], columns=list('AB')) >>> df A B 0 2.0 1.0 1 3.0 NaN 2 1.0 0.0 By default, iterates over rows and finds the sum in each column. >>> df.cumsum() A B 0 2.0 1.0 1 5.0 NaN 2 6.0 1.0 It works identically in Series. >>> df.A.cumsum() 0 2.0 1 5.0 2 6.0 Name: A, dtype: float64 """ return self._apply_series_op(lambda psser: psser._cumsum(skipna), should_resolve=True) # TODO: add 'axis' parameter # TODO: use pandas_udf to support negative values and other options later # other window except unbounded ones is supported as of Spark 3.0. def cumprod(self, skipna: bool = True) -> Union["Series", "DataFrame"]: """ Return cumulative product over a DataFrame or Series axis. Returns a DataFrame or Series of the same size containing the cumulative product. .. note:: the current implementation of cumprod uses Spark's Window without specifying partition specification. This leads to move all data into single partition in single machine and could cause serious performance degradation. Avoid this method against very large dataset. .. note:: unlike pandas', pandas-on-Spark's emulates cumulative product by ``exp(sum(log(...)))`` trick. Therefore, it only works for positive numbers. Parameters ---------- skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. Returns ------- DataFrame or Series See Also -------- DataFrame.cummax : Return cumulative maximum over DataFrame axis. DataFrame.cummin : Return cumulative minimum over DataFrame axis. DataFrame.cumsum : Return cumulative sum over DataFrame axis. DataFrame.cumprod : Return cumulative product over DataFrame axis. Series.cummax : Return cumulative maximum over Series axis. Series.cummin : Return cumulative minimum over Series axis. Series.cumsum : Return cumulative sum over Series axis. Series.cumprod : Return cumulative product over Series axis. Raises ------ Exception : If the values is equal to or lower than 0. Examples -------- >>> df = ps.DataFrame([[2.0, 1.0], [3.0, None], [4.0, 10.0]], columns=list('AB')) >>> df A B 0 2.0 1.0 1 3.0 NaN 2 4.0 10.0 By default, iterates over rows and finds the sum in each column. >>> df.cumprod() A B 0 2.0 1.0 1 6.0 NaN 2 24.0 10.0 It works identically in Series. >>> df.A.cumprod() 0 2.0 1 6.0 2 24.0 Name: A, dtype: float64 """ return self._apply_series_op(lambda psser: psser._cumprod(skipna), should_resolve=True) # TODO: Although this has removed pandas >= 1.0.0, but we're keeping this as deprecated # since we're using this for `DataFrame.info` internally. # We can drop it once our minimal pandas version becomes 1.0.0. def get_dtype_counts(self) -> pd.Series: """ Return counts of unique dtypes in this object. .. deprecated:: 0.14.0 Returns ------- dtype : pd.Series Series with the count of columns with each dtype. See Also -------- dtypes : Return the dtypes in this object. Examples -------- >>> a = [['a', 1, 1], ['b', 2, 2], ['c', 3, 3]] >>> df = ps.DataFrame(a, columns=['str', 'int1', 'int2']) >>> df str int1 int2 0 a 1 1 1 b 2 2 2 c 3 3 >>> df.get_dtype_counts().sort_values() object 1 int64 2 dtype: int64 >>> df.str.get_dtype_counts().sort_values() object 1 dtype: int64 """ warnings.warn( "`get_dtype_counts` has been deprecated and will be " "removed in a future version. For DataFrames use " "`.dtypes.value_counts()", FutureWarning, ) if not isinstance(self.dtypes, Iterable): dtypes = [self.dtypes] else: dtypes = list(self.dtypes) return pd.Series(dict(Counter([d.name for d in dtypes]))) def pipe(self, func, *args, **kwargs) -> Any: r""" Apply func(self, \*args, \*\*kwargs). Parameters ---------- func : function function to apply to the DataFrame. ``args``, and ``kwargs`` are passed into ``func``. Alternatively a ``(callable, data_keyword)`` tuple where ``data_keyword`` is a string indicating the keyword of ``callable`` that expects the DataFrames. args : iterable, optional positional arguments passed into ``func``. kwargs : mapping, optional a dictionary of keyword arguments passed into ``func``. Returns ------- object : the return type of ``func``. Notes ----- Use ``.pipe`` when chaining together functions that expect Series, DataFrames or GroupBy objects. For example, given >>> df = ps.DataFrame({'category': ['A', 'A', 'B'], ... 'col1': [1, 2, 3], ... 'col2': [4, 5, 6]}, ... columns=['category', 'col1', 'col2']) >>> def keep_category_a(df): ... return df[df['category'] == 'A'] >>> def add_one(df, column): ... return df.assign(col3=df[column] + 1) >>> def multiply(df, column1, column2): ... return df.assign(col4=df[column1] * df[column2]) instead of writing >>> multiply(add_one(keep_category_a(df), column="col1"), column1="col2", column2="col3") category col1 col2 col3 col4 0 A 1 4 2 8 1 A 2 5 3 15 You can write >>> (df.pipe(keep_category_a) ... .pipe(add_one, column="col1") ... .pipe(multiply, column1="col2", column2="col3") ... ) category col1 col2 col3 col4 0 A 1 4 2 8 1 A 2 5 3 15 If you have a function that takes the data as (say) the second argument, pass a tuple indicating which keyword expects the data. For example, suppose ``f`` takes its data as ``df``: >>> def multiply_2(column1, df, column2): ... return df.assign(col4=df[column1] * df[column2]) Then you can write >>> (df.pipe(keep_category_a) ... .pipe(add_one, column="col1") ... .pipe((multiply_2, 'df'), column1="col2", column2="col3") ... ) category col1 col2 col3 col4 0 A 1 4 2 8 1 A 2 5 3 15 You can use lambda as wel >>> ps.Series([1, 2, 3]).pipe(lambda x: (x + 1).rename("value")) 0 2 1 3 2 4 Name: value, dtype: int64 """ if isinstance(func, tuple): func, target = func if target in kwargs: raise ValueError("%s is both the pipe target and a keyword " "argument" % target) kwargs[target] = self return func(*args, **kwargs) else: return func(self, *args, **kwargs) def to_numpy(self) -> np.ndarray: """ A NumPy ndarray representing the values in this DataFrame or Series. .. note:: This method should only be used if the resulting NumPy ndarray is expected to be small, as all the data is loaded into the driver's memory. Returns ------- numpy.ndarray Examples -------- >>> ps.DataFrame({"A": [1, 2], "B": [3, 4]}).to_numpy() array([[1, 3], [2, 4]]) With heterogeneous data, the lowest common type will have to be used. >>> ps.DataFrame({"A": [1, 2], "B": [3.0, 4.5]}).to_numpy() array([[1. , 3. ], [2. , 4.5]]) For a mix of numeric and non-numeric types, the output array will have object dtype. >>> df = ps.DataFrame({"A": [1, 2], "B": [3.0, 4.5], "C": pd.date_range('2000', periods=2)}) >>> df.to_numpy() array([[1, 3.0, Timestamp('2000-01-01 00:00:00')], [2, 4.5, Timestamp('2000-01-02 00:00:00')]], dtype=object) For Series, >>> ps.Series(['a', 'b', 'a']).to_numpy() array(['a', 'b', 'a'], dtype=object) """ return self.to_pandas().values @property def values(self) -> np.ndarray: """ Return a Numpy representation of the DataFrame or the Series. .. warning:: We recommend using `DataFrame.to_numpy()` or `Series.to_numpy()` instead. .. note:: This method should only be used if the resulting NumPy ndarray is expected to be small, as all the data is loaded into the driver's memory. Returns ------- numpy.ndarray Examples -------- A DataFrame where all columns are the same type (e.g., int64) results in an array of the same type. >>> df = ps.DataFrame({'age': [ 3, 29], ... 'height': [94, 170], ... 'weight': [31, 115]}) >>> df age height weight 0 3 94 31 1 29 170 115 >>> df.dtypes age int64 height int64 weight int64 dtype: object >>> df.values array([[ 3, 94, 31], [ 29, 170, 115]]) A DataFrame with mixed type columns(e.g., str/object, int64, float32) results in an ndarray of the broadest type that accommodates these mixed types (e.g., object). >>> df2 = ps.DataFrame([('parrot', 24.0, 'second'), ... ('lion', 80.5, 'first'), ... ('monkey', np.nan, None)], ... columns=('name', 'max_speed', 'rank')) >>> df2.dtypes name object max_speed float64 rank object dtype: object >>> df2.values array([['parrot', 24.0, 'second'], ['lion', 80.5, 'first'], ['monkey', nan, None]], dtype=object) For Series, >>> ps.Series([1, 2, 3]).values array([1, 2, 3]) >>> ps.Series(list('aabc')).values array(['a', 'a', 'b', 'c'], dtype=object) """ warnings.warn("We recommend using `{}.to_numpy()` instead.".format(type(self).__name__)) return self.to_numpy() def to_csv( self, path=None, sep=",", na_rep="", columns=None, header=True, quotechar='"', date_format=None, escapechar=None, num_files=None, mode: str = "overwrite", partition_cols: Optional[Union[str, List[str]]] = None, index_col: Optional[Union[str, List[str]]] = None, **options ) -> Optional[str]: r""" Write object to a comma-separated values (csv) file. .. note:: pandas-on-Spark `to_csv` writes files to a path or URI. Unlike pandas', pandas-on-Spark respects HDFS's property such as 'fs.default.name'. .. note:: pandas-on-Spark writes CSV files into the directory, `path`, and writes multiple `part-...` files in the directory when `path` is specified. This behaviour was inherited from Apache Spark. The number of files can be controlled by `num_files`. Parameters ---------- path : str, default None File path. If None is provided the result is returned as a string. sep : str, default ',' String of length 1. Field delimiter for the output file. na_rep : str, default '' Missing data representation. columns : sequence, optional Columns to write. header : bool or list of str, default True Write out the column names. If a list of strings is given it is assumed to be aliases for the column names. quotechar : str, default '\"' String of length 1. Character used to quote fields. date_format : str, default None Format string for datetime objects. escapechar : str, default None String of length 1. Character used to escape `sep` and `quotechar` when appropriate. num_files : the number of files to be written in `path` directory when this is a path. mode : str {'append', 'overwrite', 'ignore', 'error', 'errorifexists'}, default 'overwrite'. Specifies the behavior of the save operation when the destination exists already. - 'append': Append the new data to existing data. - 'overwrite': Overwrite existing data. - 'ignore': Silently ignore this operation if data already exists. - 'error' or 'errorifexists': Throw an exception if data already exists. partition_cols : str or list of str, optional, default None Names of partitioning columns index_col: str or list of str, optional, default: None Column names to be used in Spark to represent pandas-on-Spark's index. The index name in pandas-on-Spark is ignored. By default, the index is always lost. options: keyword arguments for additional options specific to PySpark. This kwargs are specific to PySpark's CSV options to pass. Check the options in PySpark's API documentation for spark.write.csv(...). It has higher priority and overwrites all other options. This parameter only works when `path` is specified. Returns ------- str or None See Also -------- read_csv DataFrame.to_delta DataFrame.to_table DataFrame.to_parquet DataFrame.to_spark_io Examples -------- >>> df = ps.DataFrame(dict( ... date=list(pd.date_range('2012-1-1 12:00:00', periods=3, freq='M')), ... country=['KR', 'US', 'JP'], ... code=[1, 2 ,3]), columns=['date', 'country', 'code']) >>> df.sort_values(by="date") # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE date country code ... 2012-01-31 12:00:00 KR 1 ... 2012-02-29 12:00:00 US 2 ... 2012-03-31 12:00:00 JP 3 >>> print(df.to_csv()) # doctest: +NORMALIZE_WHITESPACE date,country,code 2012-01-31 12:00:00,KR,1 2012-02-29 12:00:00,US,2 2012-03-31 12:00:00,JP,3 >>> df.cummax().to_csv(path=r'%s/to_csv/foo.csv' % path, num_files=1) >>> ps.read_csv( ... path=r'%s/to_csv/foo.csv' % path ... ).sort_values(by="date") # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE date country code ... 2012-01-31 12:00:00 KR 1 ... 2012-02-29 12:00:00 US 2 ... 2012-03-31 12:00:00 US 3 In case of Series, >>> print(df.date.to_csv()) # doctest: +NORMALIZE_WHITESPACE date 2012-01-31 12:00:00 2012-02-29 12:00:00 2012-03-31 12:00:00 >>> df.date.to_csv(path=r'%s/to_csv/foo.csv' % path, num_files=1) >>> ps.read_csv( ... path=r'%s/to_csv/foo.csv' % path ... ).sort_values(by="date") # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE date ... 2012-01-31 12:00:00 ... 2012-02-29 12:00:00 ... 2012-03-31 12:00:00 You can preserve the index in the roundtrip as below. >>> df.set_index("country", append=True, inplace=True) >>> df.date.to_csv( ... path=r'%s/to_csv/bar.csv' % path, ... num_files=1, ... index_col=["index1", "index2"]) >>> ps.read_csv( ... path=r'%s/to_csv/bar.csv' % path, index_col=["index1", "index2"] ... ).sort_values(by="date") # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE date index1 index2 ... ... 2012-01-31 12:00:00 ... ... 2012-02-29 12:00:00 ... ... 2012-03-31 12:00:00 """ if "options" in options and isinstance(options.get("options"), dict) and len(options) == 1: options = options.get("options") # type: ignore if path is None: # If path is none, just collect and use pandas's to_csv. psdf_or_ser = self if (LooseVersion("0.24") > LooseVersion(pd.__version__)) and isinstance( self, ps.Series ): # 0.23 seems not having 'columns' parameter in Series' to_csv. return psdf_or_ser.to_pandas().to_csv( # type: ignore None, sep=sep, na_rep=na_rep, header=header, date_format=date_format, index=False, ) else: return psdf_or_ser.to_pandas().to_csv( # type: ignore None, sep=sep, na_rep=na_rep, columns=columns, header=header, quotechar=quotechar, date_format=date_format, escapechar=escapechar, index=False, ) psdf = self if isinstance(self, ps.Series): psdf = self.to_frame() if columns is None: column_labels = psdf._internal.column_labels else: column_labels = [] for label in columns: if not is_name_like_tuple(label): label = (label,) if label not in psdf._internal.column_labels: raise KeyError(name_like_string(label)) column_labels.append(label) if isinstance(index_col, str): index_cols = [index_col] elif index_col is None: index_cols = [] else: index_cols = index_col if header is True and psdf._internal.column_labels_level > 1: raise ValueError("to_csv only support one-level index column now") elif isinstance(header, list): sdf = psdf.to_spark(index_col) # type: ignore sdf = sdf.select( [scol_for(sdf, name_like_string(label)) for label in index_cols] + [ scol_for(sdf, str(i) if label is None else name_like_string(label)).alias( new_name ) for i, (label, new_name) in enumerate(zip(column_labels, header)) ] ) header = True else: sdf = psdf.to_spark(index_col) # type: ignore sdf = sdf.select( [scol_for(sdf, name_like_string(label)) for label in index_cols] + [ scol_for(sdf, str(i) if label is None else name_like_string(label)) for i, label in enumerate(column_labels) ] ) if num_files is not None: sdf = sdf.repartition(num_files) builder = sdf.write.mode(mode) if partition_cols is not None: builder.partitionBy(partition_cols) builder._set_opts( sep=sep, nullValue=na_rep, header=header, quote=quotechar, dateFormat=date_format, charToEscapeQuoteEscaping=escapechar, ) builder.options(**options).format("csv").save(path) return None def to_json( self, path=None, compression="uncompressed", num_files=None, mode: str = "overwrite", orient="records", lines=True, partition_cols: Optional[Union[str, List[str]]] = None, index_col: Optional[Union[str, List[str]]] = None, **options ) -> Optional[str]: """ Convert the object to a JSON string. .. note:: pandas-on-Spark `to_json` writes files to a path or URI. Unlike pandas', pandas-on-Spark respects HDFS's property such as 'fs.default.name'. .. note:: pandas-on-Spark writes JSON files into the directory, `path`, and writes multiple `part-...` files in the directory when `path` is specified. This behaviour was inherited from Apache Spark. The number of files can be controlled by `num_files`. .. note:: output JSON format is different from pandas'. It always use `orient='records'` for its output. This behaviour might have to change in the near future. Note NaN's and None will be converted to null and datetime objects will be converted to UNIX timestamps. Parameters ---------- path : string, optional File path. If not specified, the result is returned as a string. lines : bool, default True If ‘orient’ is ‘records’ write out line delimited json format. Will throw ValueError if incorrect ‘orient’ since others are not list like. It should be always True for now. orient : str, default 'records' It should be always 'records' for now. compression : {'gzip', 'bz2', 'xz', None} A string representing the compression to use in the output file, only used when the first argument is a filename. By default, the compression is inferred from the filename. num_files : the number of files to be written in `path` directory when this is a path. mode : str {'append', 'overwrite', 'ignore', 'error', 'errorifexists'}, default 'overwrite'. Specifies the behavior of the save operation when the destination exists already. - 'append': Append the new data to existing data. - 'overwrite': Overwrite existing data. - 'ignore': Silently ignore this operation if data already exists. - 'error' or 'errorifexists': Throw an exception if data already exists. partition_cols : str or list of str, optional, default None Names of partitioning columns index_col: str or list of str, optional, default: None Column names to be used in Spark to represent pandas-on-Spark's index. The index name in pandas-on-Spark is ignored. By default, the index is always lost. options: keyword arguments for additional options specific to PySpark. It is specific to PySpark's JSON options to pass. Check the options in PySpark's API documentation for `spark.write.json(...)`. It has a higher priority and overwrites all other options. This parameter only works when `path` is specified. Returns -------- str or None Examples -------- >>> df = ps.DataFrame([['a', 'b'], ['c', 'd']], ... columns=['col 1', 'col 2']) >>> df.to_json() '[{"col 1":"a","col 2":"b"},{"col 1":"c","col 2":"d"}]' >>> df['col 1'].to_json() '[{"col 1":"a"},{"col 1":"c"}]' >>> df.to_json(path=r'%s/to_json/foo.json' % path, num_files=1) >>> ps.read_json( ... path=r'%s/to_json/foo.json' % path ... ).sort_values(by="col 1") col 1 col 2 0 a b 1 c d >>> df['col 1'].to_json(path=r'%s/to_json/foo.json' % path, num_files=1, index_col="index") >>> ps.read_json( ... path=r'%s/to_json/foo.json' % path, index_col="index" ... ).sort_values(by="col 1") # doctest: +NORMALIZE_WHITESPACE col 1 index 0 a 1 c """ if "options" in options and isinstance(options.get("options"), dict) and len(options) == 1: options = options.get("options") # type: ignore if not lines: raise NotImplementedError("lines=False is not implemented yet.") if orient != "records": raise NotImplementedError("orient='records' is supported only for now.") if path is None: # If path is none, just collect and use pandas's to_json. psdf_or_ser = self pdf = psdf_or_ser.to_pandas() # type: ignore if isinstance(self, ps.Series): pdf = pdf.to_frame() # To make the format consistent and readable by `read_json`, convert it to pandas' and # use 'records' orient for now. return pdf.to_json(orient="records") psdf = self if isinstance(self, ps.Series): psdf = self.to_frame() sdf = psdf.to_spark(index_col=index_col) # type: ignore if num_files is not None: sdf = sdf.repartition(num_files) builder = sdf.write.mode(mode) if partition_cols is not None: builder.partitionBy(partition_cols) builder._set_opts(compression=compression) builder.options(**options).format("json").save(path) return None def to_excel( self, excel_writer, sheet_name="Sheet1", na_rep="", float_format=None, columns=None, header=True, index=True, index_label=None, startrow=0, startcol=0, engine=None, merge_cells=True, encoding=None, inf_rep="inf", verbose=True, freeze_panes=None, ) -> None: """ Write object to an Excel sheet. .. note:: This method should only be used if the resulting DataFrame is expected to be small, as all the data is loaded into the driver's memory. To write a single object to an Excel .xlsx file it is only necessary to specify a target file name. To write to multiple sheets it is necessary to create an `ExcelWriter` object with a target file name, and specify a sheet in the file to write to. Multiple sheets may be written to by specifying unique `sheet_name`. With all data written to the file it is necessary to save the changes. Note that creating an `ExcelWriter` object with a file name that already exists will result in the contents of the existing file being erased. Parameters ---------- excel_writer : str or ExcelWriter object File path or existing ExcelWriter. sheet_name : str, default 'Sheet1' Name of sheet which will contain DataFrame. na_rep : str, default '' Missing data representation. float_format : str, optional Format string for floating point numbers. For example ``float_format="%%.2f"`` will format 0.1234 to 0.12. columns : sequence or list of str, optional Columns to write. header : bool or list of str, default True Write out the column names. If a list of string is given it is assumed to be aliases for the column names. index : bool, default True Write row names (index). index_label : str or sequence, optional Column label for index column(s) if desired. If not specified, and `header` and `index` are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. startrow : int, default 0 Upper left cell row to dump data frame. startcol : int, default 0 Upper left cell column to dump data frame. engine : str, optional Write engine to use, 'openpyxl' or 'xlsxwriter'. You can also set this via the options ``io.excel.xlsx.writer``, ``io.excel.xls.writer``, and ``io.excel.xlsm.writer``. merge_cells : bool, default True Write MultiIndex and Hierarchical Rows as merged cells. encoding : str, optional Encoding of the resulting excel file. Only necessary for xlwt, other writers support unicode natively. inf_rep : str, default 'inf' Representation for infinity (there is no native representation for infinity in Excel). verbose : bool, default True Display more information in the error logs. freeze_panes : tuple of int (length 2), optional Specifies the one-based bottommost row and rightmost column that is to be frozen. Notes ----- Once a workbook has been saved it is not possible write further data without rewriting the whole workbook. See Also -------- read_excel : Read Excel file. Examples -------- Create, write to and save a workbook: >>> df1 = ps.DataFrame([['a', 'b'], ['c', 'd']], ... index=['row 1', 'row 2'], ... columns=['col 1', 'col 2']) >>> df1.to_excel("output.xlsx") # doctest: +SKIP To specify the sheet name: >>> df1.to_excel("output.xlsx") # doctest: +SKIP >>> df1.to_excel("output.xlsx", ... sheet_name='Sheet_name_1') # doctest: +SKIP If you wish to write to more than one sheet in the workbook, it is necessary to specify an ExcelWriter object: >>> with pd.ExcelWriter('output.xlsx') as writer: # doctest: +SKIP ... df1.to_excel(writer, sheet_name='Sheet_name_1') ... df2.to_excel(writer, sheet_name='Sheet_name_2') To set the library that is used to write the Excel file, you can pass the `engine` keyword (the default engine is automatically chosen depending on the file extension): >>> df1.to_excel('output1.xlsx', engine='xlsxwriter') # doctest: +SKIP """ # Make sure locals() call is at the top of the function so we don't capture local variables. args = locals() psdf = self if isinstance(self, ps.DataFrame): f = pd.DataFrame.to_excel elif isinstance(self, ps.Series): f = pd.Series.to_excel else: raise TypeError( "Constructor expects DataFrame or Series; however, " "got [%s]" % (self,) ) return validate_arguments_and_invoke_function( psdf._to_internal_pandas(), self.to_excel, f, args ) def mean( self, axis: Union[int, str] = None, numeric_only: bool = None ) -> Union[Scalar, "Series"]: """ Return the mean of the values. Parameters ---------- axis : {index (0), columns (1)} Axis for the function to be applied on. numeric_only : bool, default None Include only float, int, boolean columns. False is not supported. This parameter is mainly for pandas compatibility. Returns ------- mean : scalar for a Series, and a Series for a DataFrame. Examples -------- >>> df = ps.DataFrame({'a': [1, 2, 3, np.nan], 'b': [0.1, 0.2, 0.3, np.nan]}, ... columns=['a', 'b']) On a DataFrame: >>> df.mean() a 2.0 b 0.2 dtype: float64 >>> df.mean(axis=1) 0 0.55 1 1.10 2 1.65 3 NaN dtype: float64 On a Series: >>> df['a'].mean() 2.0 """ axis = validate_axis(axis) if numeric_only is None and axis == 0: numeric_only = True def mean(spark_column, spark_type): if isinstance(spark_type, BooleanType): spark_column = spark_column.cast(LongType()) elif not isinstance(spark_type, NumericType): raise TypeError( "Could not convert {} ({}) to numeric".format( spark_type_to_pandas_dtype(spark_type), spark_type.simpleString() ) ) return F.mean(spark_column) return self._reduce_for_stat_function( mean, name="mean", axis=axis, numeric_only=numeric_only ) def sum( self, axis: Union[int, str] = None, numeric_only: bool = None, min_count: int = 0 ) -> Union[Scalar, "Series"]: """ Return the sum of the values. Parameters ---------- axis : {index (0), columns (1)} Axis for the function to be applied on. numeric_only : bool, default None Include only float, int, boolean columns. False is not supported. This parameter is mainly for pandas compatibility. min_count : int, default 0 The required number of valid values to perform the operation. If fewer than ``min_count`` non-NA values are present the result will be NA. Returns ------- sum : scalar for a Series, and a Series for a DataFrame. Examples -------- >>> df = ps.DataFrame({'a': [1, 2, 3, np.nan], 'b': [0.1, np.nan, 0.3, np.nan]}, ... columns=['a', 'b']) On a DataFrame: >>> df.sum() a 6.0 b 0.4 dtype: float64 >>> df.sum(axis=1) 0 1.1 1 2.0 2 3.3 3 0.0 dtype: float64 >>> df.sum(min_count=3) a 6.0 b NaN dtype: float64 >>> df.sum(axis=1, min_count=1) 0 1.1 1 2.0 2 3.3 3 NaN dtype: float64 On a Series: >>> df['a'].sum() 6.0 >>> df['a'].sum(min_count=3) 6.0 >>> df['b'].sum(min_count=3) nan """ axis = validate_axis(axis) if numeric_only is None and axis == 0: numeric_only = True elif numeric_only is True and axis == 1: numeric_only = None def sum(spark_column, spark_type): if isinstance(spark_type, BooleanType): spark_column = spark_column.cast(LongType()) elif not isinstance(spark_type, NumericType): raise TypeError( "Could not convert {} ({}) to numeric".format( spark_type_to_pandas_dtype(spark_type), spark_type.simpleString() ) ) return F.coalesce(F.sum(spark_column), F.lit(0)) return self._reduce_for_stat_function( sum, name="sum", axis=axis, numeric_only=numeric_only, min_count=min_count ) def product( self, axis: Union[int, str] = None, numeric_only: bool = None, min_count: int = 0 ) -> Union[Scalar, "Series"]: """ Return the product of the values. .. note:: unlike pandas', pandas-on-Spark's emulates product by ``exp(sum(log(...)))`` trick. Therefore, it only works for positive numbers. Parameters ---------- axis : {index (0), columns (1)} Axis for the function to be applied on. numeric_only : bool, default None Include only float, int, boolean columns. False is not supported. This parameter is mainly for pandas compatibility. min_count : int, default 0 The required number of valid values to perform the operation. If fewer than ``min_count`` non-NA values are present the result will be NA. Examples -------- On a DataFrame: Non-numeric type column is not included to the result. >>> psdf = ps.DataFrame({'A': [1, 2, 3, 4, 5], ... 'B': [10, 20, 30, 40, 50], ... 'C': ['a', 'b', 'c', 'd', 'e']}) >>> psdf A B C 0 1 10 a 1 2 20 b 2 3 30 c 3 4 40 d 4 5 50 e >>> psdf.prod() A 120 B 12000000 dtype: int64 If there is no numeric type columns, returns empty Series. >>> ps.DataFrame({"key": ['a', 'b', 'c'], "val": ['x', 'y', 'z']}).prod() Series([], dtype: float64) On a Series: >>> ps.Series([1, 2, 3, 4, 5]).prod() 120 By default, the product of an empty or all-NA Series is ``1`` >>> ps.Series([]).prod() 1.0 This can be controlled with the ``min_count`` parameter >>> ps.Series([]).prod(min_count=1) nan """ axis = validate_axis(axis) if numeric_only is None and axis == 0: numeric_only = True elif numeric_only is True and axis == 1: numeric_only = None def prod(spark_column, spark_type): if isinstance(spark_type, BooleanType): scol = F.min(F.coalesce(spark_column, F.lit(True))).cast(LongType()) elif isinstance(spark_type, NumericType): num_zeros = F.sum(F.when(spark_column == 0, 1).otherwise(0)) sign = F.when( F.sum(F.when(spark_column < 0, 1).otherwise(0)) % 2 == 0, 1 ).otherwise(-1) scol = F.when(num_zeros > 0, 0).otherwise( sign * F.exp(F.sum(F.log(F.abs(spark_column)))) ) if isinstance(spark_type, IntegralType): scol = F.round(scol).cast(LongType()) else: raise TypeError( "Could not convert {} ({}) to numeric".format( spark_type_to_pandas_dtype(spark_type), spark_type.simpleString() ) ) return F.coalesce(scol, F.lit(1)) return self._reduce_for_stat_function( prod, name="prod", axis=axis, numeric_only=numeric_only, min_count=min_count ) prod = product def skew( self, axis: Union[int, str] = None, numeric_only: bool = None ) -> Union[Scalar, "Series"]: """ Return unbiased skew normalized by N-1. Parameters ---------- axis : {index (0), columns (1)} Axis for the function to be applied on. numeric_only : bool, default None Include only float, int, boolean columns. False is not supported. This parameter is mainly for pandas compatibility. Returns ------- skew : scalar for a Series, and a Series for a DataFrame. Examples -------- >>> df = ps.DataFrame({'a': [1, 2, 3, np.nan], 'b': [0.1, 0.2, 0.3, np.nan]}, ... columns=['a', 'b']) On a DataFrame: >>> df.skew() # doctest: +SKIP a 0.000000e+00 b -3.319678e-16 dtype: float64 On a Series: >>> df['a'].skew() 0.0 """ axis = validate_axis(axis) if numeric_only is None and axis == 0: numeric_only = True def skew(spark_column, spark_type): if isinstance(spark_type, BooleanType): spark_column = spark_column.cast(LongType()) elif not isinstance(spark_type, NumericType): raise TypeError( "Could not convert {} ({}) to numeric".format( spark_type_to_pandas_dtype(spark_type), spark_type.simpleString() ) ) return F.skewness(spark_column) return self._reduce_for_stat_function( skew, name="skew", axis=axis, numeric_only=numeric_only ) def kurtosis( self, axis: Union[int, str] = None, numeric_only: bool = None ) -> Union[Scalar, "Series"]: """ Return unbiased kurtosis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1. Parameters ---------- axis : {index (0), columns (1)} Axis for the function to be applied on. numeric_only : bool, default None Include only float, int, boolean columns. False is not supported. This parameter is mainly for pandas compatibility. Returns ------- kurt : scalar for a Series, and a Series for a DataFrame. Examples -------- >>> df = ps.DataFrame({'a': [1, 2, 3, np.nan], 'b': [0.1, 0.2, 0.3, np.nan]}, ... columns=['a', 'b']) On a DataFrame: >>> df.kurtosis() a -1.5 b -1.5 dtype: float64 On a Series: >>> df['a'].kurtosis() -1.5 """ axis = validate_axis(axis) if numeric_only is None and axis == 0: numeric_only = True def kurtosis(spark_column, spark_type): if isinstance(spark_type, BooleanType): spark_column = spark_column.cast(LongType()) elif not isinstance(spark_type, NumericType): raise TypeError( "Could not convert {} ({}) to numeric".format( spark_type_to_pandas_dtype(spark_type), spark_type.simpleString() ) ) return F.kurtosis(spark_column) return self._reduce_for_stat_function( kurtosis, name="kurtosis", axis=axis, numeric_only=numeric_only ) kurt = kurtosis def min( self, axis: Union[int, str] = None, numeric_only: bool = None ) -> Union[Scalar, "Series"]: """ Return the minimum of the values. Parameters ---------- axis : {index (0), columns (1)} Axis for the function to be applied on. numeric_only : bool, default None If True, include only float, int, boolean columns. This parameter is mainly for pandas compatibility. False is supported; however, the columns should be all numeric or all non-numeric. Returns ------- min : scalar for a Series, and a Series for a DataFrame. Examples -------- >>> df = ps.DataFrame({'a': [1, 2, 3, np.nan], 'b': [0.1, 0.2, 0.3, np.nan]}, ... columns=['a', 'b']) On a DataFrame: >>> df.min() a 1.0 b 0.1 dtype: float64 >>> df.min(axis=1) 0 0.1 1 0.2 2 0.3 3 NaN dtype: float64 On a Series: >>> df['a'].min() 1.0 """ axis = validate_axis(axis) if numeric_only is None and axis == 0: numeric_only = True elif numeric_only is True and axis == 1: numeric_only = None return self._reduce_for_stat_function( F.min, name="min", axis=axis, numeric_only=numeric_only ) def max( self, axis: Union[int, str] = None, numeric_only: bool = None ) -> Union[Scalar, "Series"]: """ Return the maximum of the values. Parameters ---------- axis : {index (0), columns (1)} Axis for the function to be applied on. numeric_only : bool, default None If True, include only float, int, boolean columns. This parameter is mainly for pandas compatibility. False is supported; however, the columns should be all numeric or all non-numeric. Returns ------- max : scalar for a Series, and a Series for a DataFrame. Examples -------- >>> df = ps.DataFrame({'a': [1, 2, 3, np.nan], 'b': [0.1, 0.2, 0.3, np.nan]}, ... columns=['a', 'b']) On a DataFrame: >>> df.max() a 3.0 b 0.3 dtype: float64 >>> df.max(axis=1) 0 1.0 1 2.0 2 3.0 3 NaN dtype: float64 On a Series: >>> df['a'].max() 3.0 """ axis = validate_axis(axis) if numeric_only is None and axis == 0: numeric_only = True elif numeric_only is True and axis == 1: numeric_only = None return self._reduce_for_stat_function( F.max, name="max", axis=axis, numeric_only=numeric_only ) def count( self, axis: Union[int, str] = None, numeric_only: bool = False ) -> Union[Scalar, "Series"]: """ Count non-NA cells for each column. The values `None`, `NaN` are considered NA. Parameters ---------- axis : {0 or ‘index’, 1 or ‘columns’}, default 0 If 0 or ‘index’ counts are generated for each column. If 1 or ‘columns’ counts are generated for each row. numeric_only : bool, default False If True, include only float, int, boolean columns. This parameter is mainly for pandas compatibility. Returns ------- max : scalar for a Series, and a Series for a DataFrame. See Also -------- DataFrame.shape: Number of DataFrame rows and columns (including NA elements). DataFrame.isna: Boolean same-sized DataFrame showing places of NA elements. Examples -------- Constructing DataFrame from a dictionary: >>> df = ps.DataFrame({"Person": ... ["John", "Myla", "Lewis", "John", "Myla"], ... "Age": [24., np.nan, 21., 33, 26], ... "Single": [False, True, True, True, False]}, ... columns=["Person", "Age", "Single"]) >>> df Person Age Single 0 John 24.0 False 1 Myla NaN True 2 Lewis 21.0 True 3 John 33.0 True 4 Myla 26.0 False Notice the uncounted NA values: >>> df.count() Person 5 Age 4 Single 5 dtype: int64 >>> df.count(axis=1) 0 3 1 2 2 3 3 3 4 3 dtype: int64 On a Series: >>> df['Person'].count() 5 >>> df['Age'].count() 4 """ return self._reduce_for_stat_function( Frame._count_expr, name="count", axis=axis, numeric_only=numeric_only ) def std( self, axis: Union[int, str] = None, ddof: int = 1, numeric_only: bool = None ) -> Union[Scalar, "Series"]: """ Return sample standard deviation. Parameters ---------- axis : {index (0), columns (1)} Axis for the function to be applied on. ddof : int, default 1 Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. numeric_only : bool, default None Include only float, int, boolean columns. False is not supported. This parameter is mainly for pandas compatibility. Returns ------- std : scalar for a Series, and a Series for a DataFrame. Examples -------- >>> df = ps.DataFrame({'a': [1, 2, 3, np.nan], 'b': [0.1, 0.2, 0.3, np.nan]}, ... columns=['a', 'b']) On a DataFrame: >>> df.std() a 1.0 b 0.1 dtype: float64 >>> df.std(axis=1) 0 0.636396 1 1.272792 2 1.909188 3 NaN dtype: float64 >>> df.std(ddof=0) a 0.816497 b 0.081650 dtype: float64 On a Series: >>> df['a'].std() 1.0 >>> df['a'].std(ddof=0) 0.816496580927726 """ assert ddof in (0, 1) axis = validate_axis(axis) if numeric_only is None and axis == 0: numeric_only = True def std(spark_column, spark_type): if isinstance(spark_type, BooleanType): spark_column = spark_column.cast(LongType()) elif not isinstance(spark_type, NumericType): raise TypeError( "Could not convert {} ({}) to numeric".format( spark_type_to_pandas_dtype(spark_type), spark_type.simpleString() ) ) if ddof == 0: return F.stddev_pop(spark_column) else: return F.stddev_samp(spark_column) return self._reduce_for_stat_function( std, name="std", axis=axis, numeric_only=numeric_only, ddof=ddof ) def var( self, axis: Union[int, str] = None, ddof: int = 1, numeric_only: bool = None ) -> Union[Scalar, "Series"]: """ Return unbiased variance. Parameters ---------- axis : {index (0), columns (1)} Axis for the function to be applied on. ddof : int, default 1 Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. numeric_only : bool, default None Include only float, int, boolean columns. False is not supported. This parameter is mainly for pandas compatibility. Returns ------- var : scalar for a Series, and a Series for a DataFrame. Examples -------- >>> df = ps.DataFrame({'a': [1, 2, 3, np.nan], 'b': [0.1, 0.2, 0.3, np.nan]}, ... columns=['a', 'b']) On a DataFrame: >>> df.var() a 1.00 b 0.01 dtype: float64 >>> df.var(axis=1) 0 0.405 1 1.620 2 3.645 3 NaN dtype: float64 >>> df.var(ddof=0) a 0.666667 b 0.006667 dtype: float64 On a Series: >>> df['a'].var() 1.0 >>> df['a'].var(ddof=0) 0.6666666666666666 """ assert ddof in (0, 1) axis = validate_axis(axis) if numeric_only is None and axis == 0: numeric_only = True def var(spark_column, spark_type): if isinstance(spark_type, BooleanType): spark_column = spark_column.cast(LongType()) elif not isinstance(spark_type, NumericType): raise TypeError( "Could not convert {} ({}) to numeric".format( spark_type_to_pandas_dtype(spark_type), spark_type.simpleString() ) ) if ddof == 0: return F.var_pop(spark_column) else: return F.var_samp(spark_column) return self._reduce_for_stat_function( var, name="var", axis=axis, numeric_only=numeric_only, ddof=ddof ) def median( self, axis: Union[int, str] = None, numeric_only: bool = None, accuracy: int = 10000 ) -> Union[Scalar, "Series"]: """ Return the median of the values for the requested axis. .. note:: Unlike pandas', the median in pandas-on-Spark is an approximated median based upon approximate percentile computation because computing median across a large dataset is extremely expensive. Parameters ---------- axis : {index (0), columns (1)} Axis for the function to be applied on. numeric_only : bool, default None Include only float, int, boolean columns. False is not supported. This parameter is mainly for pandas compatibility. accuracy : int, optional Default accuracy of approximation. Larger value means better accuracy. The relative error can be deduced by 1.0 / accuracy. Returns ------- median : scalar or Series Examples -------- >>> df = ps.DataFrame({ ... 'a': [24., 21., 25., 33., 26.], 'b': [1, 2, 3, 4, 5]}, columns=['a', 'b']) >>> df a b 0 24.0 1 1 21.0 2 2 25.0 3 3 33.0 4 4 26.0 5 On a DataFrame: >>> df.median() a 25.0 b 3.0 dtype: float64 On a Series: >>> df['a'].median() 25.0 >>> (df['b'] + 100).median() 103.0 For multi-index columns, >>> df.columns = pd.MultiIndex.from_tuples([('x', 'a'), ('y', 'b')]) >>> df x y a b 0 24.0 1 1 21.0 2 2 25.0 3 3 33.0 4 4 26.0 5 On a DataFrame: >>> df.median() x a 25.0 y b 3.0 dtype: float64 >>> df.median(axis=1) 0 12.5 1 11.5 2 14.0 3 18.5 4 15.5 dtype: float64 On a Series: >>> df[('x', 'a')].median() 25.0 >>> (df[('y', 'b')] + 100).median() 103.0 """ axis = validate_axis(axis) if numeric_only is None and axis == 0: numeric_only = True if not isinstance(accuracy, int): raise TypeError( "accuracy must be an integer; however, got [%s]" % type(accuracy).__name__ ) def median(spark_column, spark_type): if isinstance(spark_type, (BooleanType, NumericType)): return F.percentile_approx(spark_column.cast(DoubleType()), 0.5, accuracy) else: raise TypeError( "Could not convert {} ({}) to numeric".format( spark_type_to_pandas_dtype(spark_type), spark_type.simpleString() ) ) return self._reduce_for_stat_function( median, name="median", numeric_only=numeric_only, axis=axis ) def sem( self, axis: Union[int, str] = None, ddof: int = 1, numeric_only: bool = None ) -> Union[Scalar, "Series"]: """ Return unbiased standard error of the mean over requested axis. Parameters ---------- axis : {index (0), columns (1)} Axis for the function to be applied on. ddof : int, default 1 Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. numeric_only : bool, default None Include only float, int, boolean columns. False is not supported. This parameter is mainly for pandas compatibility. Returns ------- scalar(for Series) or Series(for DataFrame) Examples -------- >>> psdf = ps.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) >>> psdf a b 0 1 4 1 2 5 2 3 6 >>> psdf.sem() a 0.57735 b 0.57735 dtype: float64 >>> psdf.sem(ddof=0) a 0.471405 b 0.471405 dtype: float64 >>> psdf.sem(axis=1) 0 1.5 1 1.5 2 1.5 dtype: float64 Support for Series >>> psser = psdf.a >>> psser 0 1 1 2 2 3 Name: a, dtype: int64 >>> psser.sem() 0.5773502691896258 >>> psser.sem(ddof=0) 0.47140452079103173 """ assert ddof in (0, 1) axis = validate_axis(axis) if numeric_only is None and axis == 0: numeric_only = True def std(spark_column, spark_type): if isinstance(spark_type, BooleanType): spark_column = spark_column.cast(LongType()) elif not isinstance(spark_type, NumericType): raise TypeError( "Could not convert {} ({}) to numeric".format( spark_type_to_pandas_dtype(spark_type), spark_type.simpleString() ) ) if ddof == 0: return F.stddev_pop(spark_column) else: return F.stddev_samp(spark_column) def sem(spark_column, spark_type): return std(spark_column, spark_type) / pow( Frame._count_expr(spark_column, spark_type), 0.5 ) return self._reduce_for_stat_function( sem, name="sem", numeric_only=numeric_only, axis=axis, ddof=ddof ) @property def size(self) -> int: """ Return an int representing the number of elements in this object. Return the number of rows if Series. Otherwise return the number of rows times number of columns if DataFrame. Examples -------- >>> s = ps.Series({'a': 1, 'b': 2, 'c': None}) >>> s.size 3 >>> df = ps.DataFrame({'col1': [1, 2, None], 'col2': [3, 4, None]}) >>> df.size 6 >>> df = ps.DataFrame(index=[1, 2, None]) >>> df.size 0 """ num_columns = len(self._internal.data_spark_columns) if num_columns == 0: return 0 else: return len(self) * num_columns # type: ignore def abs(self) -> Union["DataFrame", "Series"]: """ Return a Series/DataFrame with absolute numeric value of each element. Returns ------- abs : Series/DataFrame containing the absolute value of each element. Examples -------- Absolute numeric values in a Series. >>> s = ps.Series([-1.10, 2, -3.33, 4]) >>> s.abs() 0 1.10 1 2.00 2 3.33 3 4.00 dtype: float64 Absolute numeric values in a DataFrame. >>> df = ps.DataFrame({ ... 'a': [4, 5, 6, 7], ... 'b': [10, 20, 30, 40], ... 'c': [100, 50, -30, -50] ... }, ... columns=['a', 'b', 'c']) >>> df.abs() a b c 0 4 10 100 1 5 20 50 2 6 30 30 3 7 40 50 """ def abs(psser): if isinstance(psser.spark.data_type, BooleanType): return psser elif isinstance(psser.spark.data_type, NumericType): return psser.spark.transform(F.abs) else: raise TypeError( "bad operand type for abs(): {} ({})".format( spark_type_to_pandas_dtype(psser.spark.data_type), psser.spark.data_type.simpleString(), ) ) return self._apply_series_op(abs) # TODO: by argument only support the grouping name and as_index only for now. Documentation # should be updated when it's supported. def groupby( self, by, axis=0, as_index: bool = True, dropna: bool = True ) -> Union["DataFrameGroupBy", "SeriesGroupBy"]: """ Group DataFrame or Series using a Series of columns. A groupby operation involves some combination of splitting the object, applying a function, and combining the results. This can be used to group large amounts of data and compute operations on these groups. Parameters ---------- by : Series, label, or list of labels Used to determine the groups for the groupby. If Series is passed, the Series or dict VALUES will be used to determine the groups. A label or list of labels may be passed to group by the columns in ``self``. axis : int, default 0 or 'index' Can only be set to 0 at the moment. as_index : bool, default True For aggregated output, return object with group labels as the index. Only relevant for DataFrame input. as_index=False is effectively "SQL-style" grouped output. dropna : bool, default True If True, and if group keys contain NA values, NA values together with row/column will be dropped. If False, NA values will also be treated as the key in groups. Returns ------- DataFrameGroupBy or SeriesGroupBy Depends on the calling object and returns groupby object that contains information about the groups. See Also -------- pyspark.pandas.groupby.GroupBy Examples -------- >>> df = ps.DataFrame({'Animal': ['Falcon', 'Falcon', ... 'Parrot', 'Parrot'], ... 'Max Speed': [380., 370., 24., 26.]}, ... columns=['Animal', 'Max Speed']) >>> df Animal Max Speed 0 Falcon 380.0 1 Falcon 370.0 2 Parrot 24.0 3 Parrot 26.0 >>> df.groupby(['Animal']).mean().sort_index() # doctest: +NORMALIZE_WHITESPACE Max Speed Animal Falcon 375.0 Parrot 25.0 >>> df.groupby(['Animal'], as_index=False).mean().sort_values('Animal') ... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE Animal Max Speed ...Falcon 375.0 ...Parrot 25.0 We can also choose to include NA in group keys or not by setting dropna parameter, the default setting is True: >>> l = [[1, 2, 3], [1, None, 4], [2, 1, 3], [1, 2, 2]] >>> df = ps.DataFrame(l, columns=["a", "b", "c"]) >>> df.groupby(by=["b"]).sum().sort_index() # doctest: +NORMALIZE_WHITESPACE a c b 1.0 2 3 2.0 2 5 >>> df.groupby(by=["b"], dropna=False).sum().sort_index() # doctest: +NORMALIZE_WHITESPACE a c b 1.0 2 3 2.0 2 5 NaN 1 4 """ from pyspark.pandas.groupby import DataFrameGroupBy, SeriesGroupBy if isinstance(by, ps.DataFrame): raise ValueError("Grouper for '{}' not 1-dimensional".format(type(by).__name__)) elif isinstance(by, ps.Series): by = [by] elif is_name_like_tuple(by): if isinstance(self, ps.Series): raise KeyError(by) by = [by] elif is_name_like_value(by): if isinstance(self, ps.Series): raise KeyError(by) by = [(by,)] elif is_list_like(by): new_by = [] # type: List[Union[Tuple, ps.Series]] for key in by: if isinstance(key, ps.DataFrame): raise ValueError( "Grouper for '{}' not 1-dimensional".format(type(key).__name__) ) elif isinstance(key, ps.Series): new_by.append(key) elif is_name_like_tuple(key): if isinstance(self, ps.Series): raise KeyError(key) new_by.append(key) elif is_name_like_value(key): if isinstance(self, ps.Series): raise KeyError(key) new_by.append((key,)) else: raise ValueError( "Grouper for '{}' not 1-dimensional".format(type(key).__name__) ) by = new_by else: raise ValueError("Grouper for '{}' not 1-dimensional".format(type(by).__name__)) if not len(by): raise ValueError("No group keys passed!") axis = validate_axis(axis) if axis != 0: raise NotImplementedError('axis should be either 0 or "index" currently.') if isinstance(self, ps.DataFrame): return DataFrameGroupBy._build(self, by, as_index=as_index, dropna=dropna) elif isinstance(self, ps.Series): return SeriesGroupBy._build(self, by, as_index=as_index, dropna=dropna) else: raise TypeError( "Constructor expects DataFrame or Series; however, " "got [%s]" % (self,) ) def bool(self) -> bool: """ Return the bool of a single element in the current object. This must be a boolean scalar value, either True or False. Raise a ValueError if the object does not have exactly 1 element, or that element is not boolean Returns -------- bool Examples -------- >>> ps.DataFrame({'a': [True]}).bool() True >>> ps.Series([False]).bool() False If there are non-boolean or multiple values exist, it raises an exception in all cases as below. >>> ps.DataFrame({'a': ['a']}).bool() Traceback (most recent call last): ... ValueError: bool cannot act on a non-boolean single element DataFrame >>> ps.DataFrame({'a': [True], 'b': [False]}).bool() # doctest: +NORMALIZE_WHITESPACE Traceback (most recent call last): ... ValueError: The truth value of a DataFrame is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all(). >>> ps.Series([1]).bool() Traceback (most recent call last): ... ValueError: bool cannot act on a non-boolean single element DataFrame """ if isinstance(self, ps.DataFrame): df = self elif isinstance(self, ps.Series): df = self.to_dataframe() else: raise TypeError("bool() expects DataFrame or Series; however, " "got [%s]" % (self,)) return df.head(2)._to_internal_pandas().bool() def first_valid_index(self) -> Optional[Union[Scalar, Tuple[Scalar, ...]]]: """ Retrieves the index of the first valid value. Returns ------- scalar, tuple, or None Examples -------- Support for DataFrame >>> psdf = ps.DataFrame({'a': [None, 2, 3, 2], ... 'b': [None, 2.0, 3.0, 1.0], ... 'c': [None, 200, 400, 200]}, ... index=['Q', 'W', 'E', 'R']) >>> psdf a b c Q NaN NaN NaN W 2.0 2.0 200.0 E 3.0 3.0 400.0 R 2.0 1.0 200.0 >>> psdf.first_valid_index() 'W' Support for MultiIndex columns >>> psdf.columns = pd.MultiIndex.from_tuples([('a', 'x'), ('b', 'y'), ('c', 'z')]) >>> psdf a b c x y z Q NaN NaN NaN W 2.0 2.0 200.0 E 3.0 3.0 400.0 R 2.0 1.0 200.0 >>> psdf.first_valid_index() 'W' Support for Series. >>> s = ps.Series([None, None, 3, 4, 5], index=[100, 200, 300, 400, 500]) >>> s 100 NaN 200 NaN 300 3.0 400 4.0 500 5.0 dtype: float64 >>> s.first_valid_index() 300 Support for MultiIndex >>> midx = pd.MultiIndex([['lama', 'cow', 'falcon'], ... ['speed', 'weight', 'length']], ... [[0, 0, 0, 1, 1, 1, 2, 2, 2], ... [0, 1, 2, 0, 1, 2, 0, 1, 2]]) >>> s = ps.Series([None, None, None, None, 250, 1.5, 320, 1, 0.3], index=midx) >>> s lama speed NaN weight NaN length NaN cow speed NaN weight 250.0 length 1.5 falcon speed 320.0 weight 1.0 length 0.3 dtype: float64 >>> s.first_valid_index() ('cow', 'weight') """ data_spark_columns = self._internal.data_spark_columns if len(data_spark_columns) == 0: return None cond = reduce(lambda x, y: x & y, map(lambda x: x.isNotNull(), data_spark_columns)) with sql_conf({SPARK_CONF_ARROW_ENABLED: False}): # Disable Arrow to keep row ordering. first_valid_row = cast( pd.DataFrame, self._internal.spark_frame.filter(cond) .select(self._internal.index_spark_columns) .limit(1) .toPandas(), ) # For Empty Series or DataFrame, returns None. if len(first_valid_row) == 0: return None first_valid_row = first_valid_row.iloc[0] if len(first_valid_row) == 1: return first_valid_row.iloc[0] else: return tuple(first_valid_row) def last_valid_index(self) -> Optional[Union[Scalar, Tuple[Scalar, ...]]]: """ Return index for last non-NA/null value. Returns ------- scalar, tuple, or None Notes ----- This API only works with PySpark >= 3.0. Examples -------- Support for DataFrame >>> psdf = ps.DataFrame({'a': [1, 2, 3, None], ... 'b': [1.0, 2.0, 3.0, None], ... 'c': [100, 200, 400, None]}, ... index=['Q', 'W', 'E', 'R']) >>> psdf a b c Q 1.0 1.0 100.0 W 2.0 2.0 200.0 E 3.0 3.0 400.0 R NaN NaN NaN >>> psdf.last_valid_index() # doctest: +SKIP 'E' Support for MultiIndex columns >>> psdf.columns = pd.MultiIndex.from_tuples([('a', 'x'), ('b', 'y'), ('c', 'z')]) >>> psdf a b c x y z Q 1.0 1.0 100.0 W 2.0 2.0 200.0 E 3.0 3.0 400.0 R NaN NaN NaN >>> psdf.last_valid_index() # doctest: +SKIP 'E' Support for Series. >>> s = ps.Series([1, 2, 3, None, None], index=[100, 200, 300, 400, 500]) >>> s 100 1.0 200 2.0 300 3.0 400 NaN 500 NaN dtype: float64 >>> s.last_valid_index() # doctest: +SKIP 300 Support for MultiIndex >>> midx = pd.MultiIndex([['lama', 'cow', 'falcon'], ... ['speed', 'weight', 'length']], ... [[0, 0, 0, 1, 1, 1, 2, 2, 2], ... [0, 1, 2, 0, 1, 2, 0, 1, 2]]) >>> s = ps.Series([250, 1.5, 320, 1, 0.3, None, None, None, None], index=midx) >>> s lama speed 250.0 weight 1.5 length 320.0 cow speed 1.0 weight 0.3 length NaN falcon speed NaN weight NaN length NaN dtype: float64 >>> s.last_valid_index() # doctest: +SKIP ('cow', 'weight') """ data_spark_columns = self._internal.data_spark_columns if len(data_spark_columns) == 0: return None cond = reduce(lambda x, y: x & y, map(lambda x: x.isNotNull(), data_spark_columns)) last_valid_rows = ( self._internal.spark_frame.filter(cond) .select(self._internal.index_spark_columns) .tail(1) ) # For Empty Series or DataFrame, returns None. if len(last_valid_rows) == 0: return None last_valid_row = last_valid_rows[0] if len(last_valid_row) == 1: return last_valid_row[0] else: return tuple(last_valid_row) # TODO: 'center', 'win_type', 'on', 'axis' parameter should be implemented. def rolling(self, window, min_periods=None) -> Rolling: """ Provide rolling transformations. .. note:: 'min_periods' in pandas-on-Spark works as a fixed window size unlike pandas. Unlike pandas, NA is also counted as the period. This might be changed in the near future. Parameters ---------- window : int, or offset Size of the moving window. This is the number of observations used for calculating the statistic. Each window will be a fixed size. min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). For a window that is specified by an offset, min_periods will default to 1. Otherwise, min_periods will default to the size of the window. Returns ------- a Window sub-classed for the particular operation """ return Rolling(self, window=window, min_periods=min_periods) # TODO: 'center' and 'axis' parameter should be implemented. # 'axis' implementation, refer https://github.com/pyspark.pandas/pull/607 def expanding(self, min_periods=1) -> Expanding: """ Provide expanding transformations. .. note:: 'min_periods' in pandas-on-Spark works as a fixed window size unlike pandas. Unlike pandas, NA is also counted as the period. This might be changed in the near future. Parameters ---------- min_periods : int, default 1 Minimum number of observations in window required to have a value (otherwise result is NA). Returns ------- a Window sub-classed for the particular operation """ return Expanding(self, min_periods=min_periods) def get(self, key, default=None) -> Any: """ Get item from object for given key (DataFrame column, Panel slice, etc.). Returns default value if not found. Parameters ---------- key : object Returns ------- value : same type as items contained in object Examples -------- >>> df = ps.DataFrame({'x':range(3), 'y':['a','b','b'], 'z':['a','b','b']}, ... columns=['x', 'y', 'z'], index=[10, 20, 20]) >>> df x y z 10 0 a a 20 1 b b 20 2 b b >>> df.get('x') 10 0 20 1 20 2 Name: x, dtype: int64 >>> df.get(['x', 'y']) x y 10 0 a 20 1 b 20 2 b >>> df.x.get(10) 0 >>> df.x.get(20) 20 1 20 2 Name: x, dtype: int64 >>> df.x.get(15, -1) -1 """ try: return self[key] except (KeyError, ValueError, IndexError): return default def squeeze(self, axis=None) -> Union[Scalar, "DataFrame", "Series"]: """ Squeeze 1 dimensional axis objects into scalars. Series or DataFrames with a single element are squeezed to a scalar. DataFrames with a single column or a single row are squeezed to a Series. Otherwise the object is unchanged. This method is most useful when you don't know if your object is a Series or DataFrame, but you do know it has just a single column. In that case you can safely call `squeeze` to ensure you have a Series. Parameters ---------- axis : {0 or 'index', 1 or 'columns', None}, default None A specific axis to squeeze. By default, all length-1 axes are squeezed. Returns ------- DataFrame, Series, or scalar The projection after squeezing `axis` or all the axes. See Also -------- Series.iloc : Integer-location based indexing for selecting scalars. DataFrame.iloc : Integer-location based indexing for selecting Series. Series.to_frame : Inverse of DataFrame.squeeze for a single-column DataFrame. Examples -------- >>> primes = ps.Series([2, 3, 5, 7]) Slicing might produce a Series with a single value: >>> even_primes = primes[primes % 2 == 0] >>> even_primes 0 2 dtype: int64 >>> even_primes.squeeze() 2 Squeezing objects with more than one value in every axis does nothing: >>> odd_primes = primes[primes % 2 == 1] >>> odd_primes 1 3 2 5 3 7 dtype: int64 >>> odd_primes.squeeze() 1 3 2 5 3 7 dtype: int64 Squeezing is even more effective when used with DataFrames. >>> df = ps.DataFrame([[1, 2], [3, 4]], columns=['a', 'b']) >>> df a b 0 1 2 1 3 4 Slicing a single column will produce a DataFrame with the columns having only one value: >>> df_a = df[['a']] >>> df_a a 0 1 1 3 So the columns can be squeezed down, resulting in a Series: >>> df_a.squeeze('columns') 0 1 1 3 Name: a, dtype: int64 Slicing a single row from a single column will produce a single scalar DataFrame: >>> df_1a = df.loc[[1], ['a']] >>> df_1a a 1 3 Squeezing the rows produces a single scalar Series: >>> df_1a.squeeze('rows') a 3 Name: 1, dtype: int64 Squeezing all axes will project directly into a scalar: >>> df_1a.squeeze() 3 """ if axis is not None: axis = "index" if axis == "rows" else axis axis = validate_axis(axis) if isinstance(self, ps.DataFrame): from pyspark.pandas.series import first_series is_squeezable = len(self.columns[:2]) == 1 # If DataFrame has multiple columns, there is no change. if not is_squeezable: return self series_from_column = first_series(self) has_single_value = len(series_from_column.head(2)) == 1 # If DataFrame has only a single value, use pandas API directly. if has_single_value: result = self._to_internal_pandas().squeeze(axis) return ps.Series(result) if isinstance(result, pd.Series) else result elif axis == 0: return self else: return series_from_column else: # The case of Series is simple. # If Series has only a single value, just return it as a scalar. # Otherwise, there is no change. self_top_two = self.head(2) has_single_value = len(self_top_two) == 1 return cast(Union[Scalar, ps.Series], self_top_two[0] if has_single_value else self) def truncate( self, before=None, after=None, axis=None, copy=True ) -> Union["DataFrame", "Series"]: """ Truncate a Series or DataFrame before and after some index value. This is a useful shorthand for boolean indexing based on index values above or below certain thresholds. .. note:: This API is dependent on :meth:`Index.is_monotonic_increasing` which can be expensive. Parameters ---------- before : date, str, int Truncate all rows before this index value. after : date, str, int Truncate all rows after this index value. axis : {0 or 'index', 1 or 'columns'}, optional Axis to truncate. Truncates the index (rows) by default. copy : bool, default is True, Return a copy of the truncated section. Returns ------- type of caller The truncated Series or DataFrame. See Also -------- DataFrame.loc : Select a subset of a DataFrame by label. DataFrame.iloc : Select a subset of a DataFrame by position. Examples -------- >>> df = ps.DataFrame({'A': ['a', 'b', 'c', 'd', 'e'], ... 'B': ['f', 'g', 'h', 'i', 'j'], ... 'C': ['k', 'l', 'm', 'n', 'o']}, ... index=[1, 2, 3, 4, 5]) >>> df A B C 1 a f k 2 b g l 3 c h m 4 d i n 5 e j o >>> df.truncate(before=2, after=4) A B C 2 b g l 3 c h m 4 d i n The columns of a DataFrame can be truncated. >>> df.truncate(before="A", after="B", axis="columns") A B 1 a f 2 b g 3 c h 4 d i 5 e j For Series, only rows can be truncated. >>> df['A'].truncate(before=2, after=4) 2 b 3 c 4 d Name: A, dtype: object A Series has index that sorted integers. >>> s = ps.Series([10, 20, 30, 40, 50, 60, 70], ... index=[1, 2, 3, 4, 5, 6, 7]) >>> s 1 10 2 20 3 30 4 40 5 50 6 60 7 70 dtype: int64 >>> s.truncate(2, 5) 2 20 3 30 4 40 5 50 dtype: int64 A Series has index that sorted strings. >>> s = ps.Series([10, 20, 30, 40, 50, 60, 70], ... index=['a', 'b', 'c', 'd', 'e', 'f', 'g']) >>> s a 10 b 20 c 30 d 40 e 50 f 60 g 70 dtype: int64 >>> s.truncate('b', 'e') b 20 c 30 d 40 e 50 dtype: int64 """ from pyspark.pandas.series import first_series axis = validate_axis(axis) indexes = self.index indexes_increasing = indexes.is_monotonic_increasing if not indexes_increasing and not indexes.is_monotonic_decreasing: raise ValueError("truncate requires a sorted index") if (before is None) and (after is None): return cast(Union[ps.DataFrame, ps.Series], self.copy() if copy else self) if (before is not None and after is not None) and before > after: raise ValueError("Truncate: %s must be after %s" % (after, before)) if isinstance(self, ps.Series): if indexes_increasing: result = first_series(self.to_frame().loc[before:after]).rename(self.name) else: result = first_series(self.to_frame().loc[after:before]).rename(self.name) elif isinstance(self, ps.DataFrame): if axis == 0: if indexes_increasing: result = self.loc[before:after] else: result = self.loc[after:before] elif axis == 1: result = self.loc[:, before:after] return cast(Union[ps.DataFrame, ps.Series], result.copy() if copy else result) def to_markdown(self, buf=None, mode=None) -> str: """ Print Series or DataFrame in Markdown-friendly format. .. note:: This method should only be used if the resulting pandas object is expected to be small, as all the data is loaded into the driver's memory. Parameters ---------- buf : writable buffer, defaults to sys.stdout Where to send the output. By default, the output is printed to sys.stdout. Pass a writable buffer if you need to further process the output. mode : str, optional Mode in which file is opened. **kwargs These parameters will be passed to `tabulate`. Returns ------- str Series or DataFrame in Markdown-friendly format. Notes ----- Requires the `tabulate <https://pypi.org/project/tabulate>`_ package. Examples -------- >>> psser = ps.Series(["elk", "pig", "dog", "quetzal"], name="animal") >>> print(psser.to_markdown()) # doctest: +SKIP | | animal | |---:|:---------| | 0 | elk | | 1 | pig | | 2 | dog | | 3 | quetzal | >>> psdf = ps.DataFrame( ... data={"animal_1": ["elk", "pig"], "animal_2": ["dog", "quetzal"]} ... ) >>> print(psdf.to_markdown()) # doctest: +SKIP | | animal_1 | animal_2 | |---:|:-----------|:-----------| | 0 | elk | dog | | 1 | pig | quetzal | """ # `to_markdown` is supported in pandas >= 1.0.0 since it's newly added in pandas 1.0.0. if LooseVersion(pd.__version__) < LooseVersion("1.0.0"): raise NotImplementedError( "`to_markdown()` only supported in pandas-on-Spark with pandas >= 1.0.0" ) # Make sure locals() call is at the top of the function so we don't capture local variables. args = locals() psser_or_psdf = self internal_pandas = psser_or_psdf._to_internal_pandas() return validate_arguments_and_invoke_function( internal_pandas, self.to_markdown, type(internal_pandas).to_markdown, args ) @abstractmethod def fillna(self, value=None, method=None, axis=None, inplace=False, limit=None): pass # TODO: add 'downcast' when value parameter exists def bfill(self, axis=None, inplace=False, limit=None) -> Union["DataFrame", "Series"]: """ Synonym for `DataFrame.fillna()` or `Series.fillna()` with ``method=`bfill```. .. note:: the current implementation of 'bfill' uses Spark's Window without specifying partition specification. This leads to move all data into single partition in single machine and could cause serious performance degradation. Avoid this method against very large dataset. Parameters ---------- axis : {0 or `index`} 1 and `columns` are not supported. inplace : boolean, default False Fill in place (do not create a new object) limit : int, default None If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Must be greater than 0 if not None Returns ------- DataFrame or Series DataFrame or Series with NA entries filled. Examples -------- >>> psdf = ps.DataFrame({ ... 'A': [None, 3, None, None], ... 'B': [2, 4, None, 3], ... 'C': [None, None, None, 1], ... 'D': [0, 1, 5, 4] ... }, ... columns=['A', 'B', 'C', 'D']) >>> psdf A B C D 0 NaN 2.0 NaN 0 1 3.0 4.0 NaN 1 2 NaN NaN NaN 5 3 NaN 3.0 1.0 4 Propagate non-null values backward. >>> psdf.bfill() A B C D 0 3.0 2.0 1.0 0 1 3.0 4.0 1.0 1 2 NaN 3.0 1.0 5 3 NaN 3.0 1.0 4 For Series >>> psser = ps.Series([None, None, None, 1]) >>> psser 0 NaN 1 NaN 2 NaN 3 1.0 dtype: float64 >>> psser.bfill() 0 1.0 1 1.0 2 1.0 3 1.0 dtype: float64 """ return self.fillna(method="bfill", axis=axis, inplace=inplace, limit=limit) backfill = bfill # TODO: add 'downcast' when value parameter exists def ffill(self, axis=None, inplace=False, limit=None) -> Union["DataFrame", "Series"]: """ Synonym for `DataFrame.fillna()` or `Series.fillna()` with ``method=`ffill```. .. note:: the current implementation of 'ffill' uses Spark's Window without specifying partition specification. This leads to move all data into single partition in single machine and could cause serious performance degradation. Avoid this method against very large dataset. Parameters ---------- axis : {0 or `index`} 1 and `columns` are not supported. inplace : boolean, default False Fill in place (do not create a new object) limit : int, default None If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Must be greater than 0 if not None Returns ------- DataFrame or Series DataFrame or Series with NA entries filled. Examples -------- >>> psdf = ps.DataFrame({ ... 'A': [None, 3, None, None], ... 'B': [2, 4, None, 3], ... 'C': [None, None, None, 1], ... 'D': [0, 1, 5, 4] ... }, ... columns=['A', 'B', 'C', 'D']) >>> psdf A B C D 0 NaN 2.0 NaN 0 1 3.0 4.0 NaN 1 2 NaN NaN NaN 5 3 NaN 3.0 1.0 4 Propagate non-null values forward. >>> psdf.ffill() A B C D 0 NaN 2.0 NaN 0 1 3.0 4.0 NaN 1 2 3.0 4.0 NaN 5 3 3.0 3.0 1.0 4 For Series >>> psser = ps.Series([2, 4, None, 3]) >>> psser 0 2.0 1 4.0 2 NaN 3 3.0 dtype: float64 >>> psser.ffill() 0 2.0 1 4.0 2 4.0 3 3.0 dtype: float64 """ return self.fillna(method="ffill", axis=axis, inplace=inplace, limit=limit) pad = ffill @property def at(self) -> AtIndexer: return AtIndexer(self) # type: ignore at.__doc__ = AtIndexer.__doc__ @property def iat(self) -> iAtIndexer: return iAtIndexer(self) # type: ignore iat.__doc__ = iAtIndexer.__doc__ @property def iloc(self) -> iLocIndexer: return iLocIndexer(self) # type: ignore iloc.__doc__ = iLocIndexer.__doc__ @property def loc(self) -> LocIndexer: return LocIndexer(self) # type: ignore loc.__doc__ = LocIndexer.__doc__ def __bool__(self): raise ValueError( "The truth value of a {0} is ambiguous. " "Use a.empty, a.bool(), a.item(), a.any() or a.all().".format(self.__class__.__name__) ) @staticmethod def _count_expr(spark_column, spark_type): # Special handle floating point types because Spark's count treats nan as a valid value, # whereas pandas count doesn't include nan. if isinstance(spark_type, (FloatType, DoubleType)): return F.count(F.nanvl(spark_column, F.lit(None))) else: return F.count(spark_column) def _test(): import os import doctest import shutil import sys import tempfile from pyspark.sql import SparkSession import pyspark.pandas.generic os.chdir(os.environ["SPARK_HOME"]) globs = pyspark.pandas.generic.__dict__.copy() globs["ps"] = pyspark.pandas spark = ( SparkSession.builder.master("local[4]") .appName("pyspark.pandas.generic tests") .getOrCreate() ) path = tempfile.mkdtemp() globs["path"] = path (failure_count, test_count) = doctest.testmod( pyspark.pandas.generic, globs=globs, optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE, ) shutil.rmtree(path, ignore_errors=True) spark.stop() if failure_count: sys.exit(-1) if __name__ == "__main__": _test()
cloud-fan/spark
python/pyspark/pandas/generic.py
Python
apache-2.0
102,541
[ "Elk" ]
3e141125b1f153e6cc0dff52269cb92276f321d83f5c96ab3e2dd2d24cb572fb
import ConfigParser import datetime import Queue import logging import os import pickle import socket import sys import time import thread import traceback import modules.logger as logger import modules.protocol as protocol import modules.scrapping as scrapping sys.setrecursionlimit(10000) buffSize = 524288 delimiter = '\n\n12345ZEEK6789\n' class WorkingNode(): def __init__(self): # socket self.host = None self.port = None self.data = "" # general self.isActive = True self.masterNodeFormattedAddr = None self.crawlingType = None # data container self.outputQueue = Queue.Queue(0) self.infoQueue = Queue.Queue(0) self.urlToVisit = Queue.Queue(0) # object self.scrapper = None self.config = None def connect(self, host, port): """Sets up the connection to the server (max 6 attemps)""" self.host = host self.port = port self.masterNodeFormattedAddr = "[" + str(self.host) + ":" + str(self.port) + "]" logger.log(logging.DEBUG, "Socket initialization") self.s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) for connectionAttempt in range(6, 0, -1): if connectionAttempt == 1: logger.log(logging.CRITICAL, "Unable to connect to host " + self.masterNodeFormattedAddr) sys.exit() try: logger.log(logging.DEBUG, "Connecting to host... " + self.masterNodeFormattedAddr) self.s.connect((self.host, self.port)) logger.log(logging.INFO, "Connected to " + self.masterNodeFormattedAddr) break except socket.error: logger.log(logging.INFO, "Connection failed to " + self.masterNodeFormattedAddr) logger.log(logging.INFO, "Retrying in 3 seconds.") time.sleep(3) def readConfig(self): """Reads the configuration from the server""" logger.log(logging.DEBUG, "Waiting for configuration from the server.") if self.isActive: try: deserializedPacket = self.readSocket() logger.log(logging.DEBUG, "Configuration received.") if deserializedPacket.type == protocol.CONFIG: self.crawlingType = deserializedPacket.payload.crawlingType self.config = deserializedPacket.payload.config # dynamic module reload basePath = os.path.dirname(sys.argv[0]) if basePath: basePath = basePath + "/" # path building rulePath = basePath + "modules/rule.py" scrappingPath = basePath + "modules/scrapping.py" # re-writing source .py logger.log(logging.INFO, "Importing rule.py from server") ruleFd = open(rulePath, 'w') ruleFd.write(self.config.rule_py) ruleFd.close() logger.log(logging.INFO, "Importing scrapping.py from server") scrappingFd = open(scrappingPath, 'w') scrappingFd.write(self.config.scrapping_py) scrappingFd.close() # compilation test try: code=open(rulePath, 'rU').read() compile(code, "rule_test", "exec") except: exc_type, exc_value, exc_traceback = sys.exc_info() message = ''.join(traceback.format_exception(exc_type, exc_value, exc_traceback)) logger.log(logging.CRITICAL, message) logger.log(logging.ERROR, "Unable to compile rule.py (is the syntax right?)") sys.exit(0) try: code=open(scrappingPath, 'rb').read(os.path.getsize(scrappingPath)) compile(code, "scrapping_test", "exec") except: exc_type, exc_value, exc_traceback = sys.exc_info() message = ''.join(traceback.format_exception(exc_type, exc_value, exc_traceback)) logger.log(logging.CRITICAL, message) logger.log(logging.ERROR, "Unable to compile scrapping.py (is the syntax right?)") sys.exit(0) # dynamic reload of modules # TODO reloading of rule.py should eventually come here logger.log(logging.INFO, "Reloading modules imported for server") reload(sys.modules["modules.scrapping"]) payload = protocol.InfoPayload(protocol.InfoPayload.CLIENT_ACK) packet = protocol.Packet(protocol.INFO, payload) self.writeSocket(packet) logger.log(logging.DEBUG, "Sending ACK for configuration.") else: raise Exception("Unable to parse configuration.") except: exc_type, exc_value, exc_traceback = sys.exc_info() message = ''.join(traceback.format_exception(exc_type, exc_value, exc_traceback)) logger.log(logging.CRITICAL, message) self.isActive = False def run(self): """Launches main threads""" logger.log(logging.INFO, "\n\nStarting Crawling/Scrapping sequence...") if self.isActive: thread.start_new_thread(self.outputThread, ()) thread.start_new_thread(self.inputThread, ()) thread.start_new_thread(self.interpretingThread, ()) thread.start_new_thread(self.crawlingThread, ()) def inputThread(self): """Listens for inputs from the server""" logger.log(logging.DEBUG, "InputThread started") while self.isActive: try: deserializedPacket = self.readSocket() self.dispatcher(deserializedPacket) except EOFError: self.isActive = False except: exc_type, exc_value, exc_traceback = sys.exc_info() message = ''.join(traceback.format_exception(exc_type, exc_value, exc_traceback)) logger.log(logging.CRITICAL, message) self.isActive = False def outputThread(self): """Checks if there are messages to send to the server and sends them""" logger.log(logging.DEBUG, "OutputThread started") while self.isActive: try: obj = self.outputQueue.get(True) #fix with helper method to prevent block self.writeSocket(obj) logger.log(logging.DEBUG, "Sending obj of type " + str(obj.type)) except: exc_type, exc_value, exc_traceback = sys.exc_info() message = ''.join(traceback.format_exception(exc_type, exc_value, exc_traceback)) logger.log(logging.CRITICAL, message) self.isActive = False def interpretingThread(self): """Interprets message from the server other than type URL. (ie: INFO)""" logger.log(logging.DEBUG, "InterpretingThread started") while self.isActive: try: time.sleep(0.01) #temp - For testing packets = protocol.deQueue([self.infoQueue]) if not packets: continue for packet in packets: if packet.type == protocol.INFO: logger.log(logging.INFO, "Interpreting INFO packet : " + str(packet.payload.urlList)) except: exc_type, exc_value, exc_traceback = sys.exc_info() message = ''.join(traceback.format_exception(exc_type, exc_value, exc_traceback)) logger.log(logging.CRITICAL, message) self.isActive = False def crawlingThread(self): """Takes URL from the urlToVisit queue and visits them""" logger.log(logging.DEBUG, "CrawlingThread started") self.scrapper = scrapping.Scrapper(self.config.userAgent, self.config.robotParserEnabled, self.config.domainRestricted, self.config.crawling) while self.isActive: try: urlList = protocol.deQueue([self.urlToVisit]) if not urlList: time.sleep(0.2) #temp - For testing continue for url in urlList: session = self.scrapper.visit(url) logger.log(logging.DEBUG, "Session \n" + str(session.url) + "\nCode : " + str(session.returnCode) + "\nRequest time : " + str(session.requestTime) + "\nBs time : " + str(session.bsParsingTime)) if not session.failed: if self.crawlingType == protocol.ConfigurationPayload.DYNAMIC_CRAWLING: payload = protocol.URLPayload(session.scrappedURLs, protocol.URLPayload.SCRAPPED_URL) packet = protocol.Packet(protocol.URL, payload) self.outputQueue.put(packet) payload = protocol.URLPayload([url], protocol.URLPayload.VISITED, session=session) packet = protocol.Packet(protocol.URL, payload) self.outputQueue.put(packet) else: logger.log(logging.INFO, "Skipping URL : " + url) payload = protocol.URLPayload([url], protocol.URLPayload.SKIPPED, session) packet = protocol.Packet(protocol.URL, payload) self.outputQueue.put(packet) continue except: exc_type, exc_value, exc_traceback = sys.exc_info() message = ''.join(traceback.format_exception(exc_type, exc_value, exc_traceback)) logger.log(logging.CRITICAL, message) self.isActive = False def dispatcher(self, packet): """Dispatches packets to the right packet queue""" if packet is None: return elif packet.type == protocol.INFO: logger.log(logging.DEBUG, "Dispatching INFO packet") self.infoQueue.put(packet) elif packet.type == protocol.URL: logger.log(logging.DEBUG, "Dispatching url packet : " + str(packet.payload.urlList[0])) for site in packet.payload.urlList: self.urlToVisit.put(site) else: logger.log(logging.CRITICAL, "Unrecognized packet type : " + str(packet.type) + ". This packet was dropped") return logger.log(logging.DEBUG, "Dispatched packet of type: " + str(packet.type)) def writeSocket(self, obj): try: serializedObj = pickle.dumps(obj) logger.log(logging.DEBUG, "Sending " + str(len(serializedObj + delimiter)) + " bytes to server") self.s.sendall(serializedObj + delimiter) except: exc_type, exc_value, exc_traceback = sys.exc_info() message = ''.join(traceback.format_exception(exc_type, exc_value, exc_traceback)) logger.log(logging.CRITICAL, message) raise Exception("Unable to write to socket (lost connection to server)") def readSocket(self, timeOut=None): self.s.settimeout(timeOut) data = self.data if "\n\n12345ZEEK6789\n" in data: data = data.split("\n\n12345ZEEK6789\n") self.data = "\n\n12345ZEEK6789\n".join(data[1:]) return pickle.loads(data[0]) while self.isActive: buffer = self.s.recv(buffSize) data = data + buffer if not buffer: logger.log(logging.INFO, "\nLost connection to server " + self.masterNodeFormattedAddr) self.isActive = False if "\n\n12345ZEEK6789\n" in data: data = data.split("\n\n12345ZEEK6789\n") self.data = "\n\n12345ZEEK6789\n".join(data[1:]) break if self.isActive == False: return logger.log(logging.DEBUG, "Receiving " + str(len(data[0])) + " bytes from server") return pickle.loads(data[0]) def disconnect(self): """Disconnects from the server""" self.isActive = False self.s.close() def main(): path = os.path.dirname(sys.argv[0]) if path: path = path + "/" #config config = ConfigParser.RawConfigParser(allow_no_value=True) config.read(path + 'config') host = config.get('client', 'hostAddr') port = config.getint('client', 'hostPort') logPath = config.get('common', 'logPath') verbose = config.get('common', 'verbose') if verbose == "True" or verbose == "true": verbose = True else: verbose = False #setup logger.init(logPath, "client-" + str(datetime.datetime.now())) logger.debugFlag = verbose node = WorkingNode() node.connect(host, port) node.readConfig() node.run() while node.isActive: time.sleep(0.5) node.disconnect() if __name__ == "__main__": main()
Diastro/Zeek
src/client.py
Python
mit
13,765
[ "VisIt" ]
811ffb2583d036725443f20e4f336539cd0fa9768ddd32e26d5a160f6bdb995b
import requests import json import os import sys import re import traceback from adsputils import setup_logging, get_date, date2solrstamp from aip.classic import enforce_schema logger = setup_logging('solr_adapter') ARTICLE_TYPES = set(['eprint', 'article', 'inproceedings', 'inbook']) AUTHOR_TYPES = set(['regular', 'collaboration']) def get_date_by_datetype(ADS_record): """computes the standard pubdate by selecting the appropriate value from the ADS_record and formatting it as YYYY-MM-DD""" dates = ADS_record['metadata']['general']['publication']['dates'] for datetype in [ 'date-published', 'date-thesis', 'date-preprint' ]: try: return next(i['content'] for i in dates if i['type'].lower() == datetype) except StopIteration: pass return None def _normalize_author_name(strname): if not strname: return None return ' '.join(strname.split('.')).strip() class SolrAdapter(object): SCHEMA = { 'abstract': u'', 'ack': u'', 'aff': [u'',], 'alternate_bibcode': [u'',], 'alternate_title': [u'',], 'arxiv_class': [u'',], 'author': [u'',], 'author_count': 0, 'author_facet': [u'',], #'author_native': [u'',], Waiting for montysolr 'author_facet_hier': [u'',], 'author_norm': [u'',], 'book_author': [u'',], 'bibcode': u'', 'bibgroup': [u'', ], 'bibgroup_facet': [u'', ], 'bibstem': [u'', ], 'bibstem_facet': u'', 'comment': [u'',], 'copyright': [u'',], 'database': [u'',], 'date': u'YYYY-MM[-DD]', 'doctype': u'', 'doctype_facet_hier': [u''], 'doi':[u'',], 'editor': [u'',], 'eid':u'', 'email': [u'', ], 'entry_date': '', 'facility': [u'', ], 'first_author': u'', 'first_author_facet_hier': [u'',], 'first_author_norm':u'', 'id': 0, 'identifier': [u'',], 'isbn': [u'',], 'issn': [u'',], 'issue': u'', 'keyword': [u'', ], 'keyword_facet': [u'', ], 'keyword_norm': [u'', ], 'keyword_schema': [u'', ], 'lang': u'', 'links_data': [u'', ], 'orcid': [u''], 'orcid_pub': [u''], 'orcid_user': [u''], 'orcid_other': [u''], 'page': [u''], 'page_range': u'', 'page_count': 0, 'pub': u'', 'pubnote': [u'',], 'pub_raw': u'', 'pubdate': u'', 'recid': 0, 'series': u'', 'thesis': u'', 'title': [u'', ], 'vizier': [u'', ], 'vizier_facet':[u'', ], 'volume': u'', 'year': u'', } #------------------------------------------------ # Private methods; responsible for translating schema: ADS->Solr @staticmethod def _abstract(ADS_record): abstracts = ADS_record['metadata']['general'].get('abstracts', []) result = None for r in abstracts: if r['lang'] == "en": result = r['text'] if not result and abstracts: # attempt fallback to other language if en not present result = abstracts[0].get('text', '') return {'abstract': result} @staticmethod def _ack(ADS_record): result = ADS_record['text'].get('acknowledgement', {}).get('content') return {'ack': result} @staticmethod def _aff(ADS_record): authors = [i for i in ADS_record['metadata']['general'].get('authors', []) if i['type'] in AUTHOR_TYPES] authors = sorted(authors, key=lambda k: int(k['number'])) result = ['; '.join([j for j in i['affiliations'] if j]) if i['affiliations'] else u'-' for i in authors] return {'aff': result} @staticmethod def _alternate_bibcode(ADS_record): result = [i['content'] for i in ADS_record['metadata']['relations'].get('alternates', [])] result = list(set(result)) return {'alternate_bibcode': result} @staticmethod def _alternate_title(ADS_record): result = [] for r in ADS_record['metadata']['general'].get('titles', []): if not r['lang'] or r['lang'] != "en": result.append(r['text']) return {'alternate_title': result} @staticmethod def _arxiv_class(ADS_record): results = [i for i in ADS_record['metadata']['general'].get('arxivcategories', [])] return {'arxiv_class':results} @staticmethod def _author(ADS_record): authors = ADS_record['metadata']['general'].get('authors', []) authors = sorted(authors, key=lambda k: int(k['number'])) result = [i['name']['western'] for i in authors if i['name']['western'] and i['type'] in AUTHOR_TYPES] return {'author': result} @staticmethod def _author_count(ADS_record): authors = ADS_record['metadata']['general'].get('authors',[]) result = len([i['name']['western'] for i in authors if i['name']['western'] and i['type'] in AUTHOR_TYPES]) return {'author_count': result} @staticmethod def _author_norm(ADS_record): authors = ADS_record['metadata']['general'].get('authors', []) authors = sorted(authors, key=lambda k: int(k['number'])) result = [i['name']['normalized'] for i in authors if i['name']['normalized'] and i['type'] in AUTHOR_TYPES] return {'author_norm': result} @staticmethod def _book_author(ADS_record): author = ADS_record['metadata']['general'].get('book_author', []) author = sorted(author, key=lambda k: int(k['number'])) result = [i['name']['western'] for i in author if i['name']['western']] return {'book_author': result} @staticmethod def _editor(ADS_record): authors = ADS_record['metadata']['general'].get('authors', []) authors = sorted(authors, key=lambda k: int(k['number'])) result = [i['name']['western'] for i in authors if i['name']['western'] and i['type']=='editor'] return {'editor': result} @staticmethod def _author_facet(ADS_record): authors = ADS_record['metadata']['general'].get('authors', []) authors = sorted(authors, key=lambda k: int(k['number'])) result = [i['name']['normalized'] for i in authors if i['name']['normalized'] and i['type'] in AUTHOR_TYPES] return {'author_facet': result} @staticmethod def _author_facet_hier(ADS_record): authors = ADS_record['metadata']['general'].get('authors', []) authors = sorted(authors, key=lambda k: int(k['number'])) result = [] for author in authors: if author['type'] in AUTHOR_TYPES: if author['name']['normalized']: r = u"0/%s" % (_normalize_author_name(author['name']['normalized']),) result.append(r) if author['name']['western']: r = u"1/%s/%s" % (_normalize_author_name(author['name']['normalized']), _normalize_author_name(author['name']['western'])) result.append(r) return {'author_facet_hier': result} # waiting for montysolr # @staticmethod # def _author_native(ADS_record): # authors = ADS_record['metadata']['general'].get('authors',[]) # authors = sorted(authors,key=lambda k: int(k['number'])) # result = [i['name']['native'] if i['name']['native'] else u"-" for i in authors] # return {'author_native': result} @staticmethod def _bibcode(ADS_record): return {'bibcode': ADS_record['bibcode']} @staticmethod def _bibgroup(ADS_record): result = [i['content'] for i in ADS_record['metadata']['properties'].get('bibgroups', [])] result = list(set(result)) return {'bibgroup': result} @staticmethod def _bibgroup_facet(ADS_record): result = [i['content'] for i in ADS_record['metadata']['properties'].get('bibgroups', [])] result = list(set(result)) return {'bibgroup_facet': result} @staticmethod def _bibstem(ADS_record): b = ADS_record['bibcode'] short, long = bibstem_mapper(b) # index both long and short bibstems result = map(unicode, [re.sub(r'\.+$', '', short), long]) return {'bibstem':result} @staticmethod def _bibstem_facet(ADS_record): b = ADS_record['bibcode'] short, long = bibstem_mapper(b) if re.match(r'^[\.\d]+$', long[5:9]): # is a serial publication, use short bibstem result = short.replace('.', '') else: # is book/conference/arxiv, use long bibstem result = re.sub(r'\.+$', '', long) return {'bibstem_facet':unicode(result)} @staticmethod def _copyright(ADS_record): result = [i['content'] for i in ADS_record['metadata']['general'].get('copyright', [])] return {'copyright': result} @staticmethod def _comment(ADS_record): result = [i['content'] for i in ADS_record['metadata']['general'].get('comment', [])] result = list(set(result)) # XXX - Hack to avoid a re-indexing because of non-multivalued field 'comment' if len(result) > 1: result = [ '\n'.join(result) ] return {'comment': result} @staticmethod def _database(ADS_record): translation = { 'PHY': u'physics', 'AST': u'astronomy', 'GEN': u'general', } result = [translation[i['content'].upper()] for i in ADS_record['metadata']['properties'].get('databases', [])] result = list(set(result)) return {'database': result} @staticmethod def _entry_date(ADS_record): d = ADS_record.get('entry_date', None) return {'entry_date': date2solrstamp(d and get_date(d) or get_date())} @staticmethod def _year(ADS_record): dates = ADS_record['metadata']['general']['publication']['dates'] try: result = next(i['content'] for i in dates if i['type'].lower() == 'publication_year') # TODO: Catch StopIteration except StopIteration: result = None return {'year':result} @staticmethod def _date(ADS_record): result = get_date_by_datetype(ADS_record) if result: try: result = enforce_schema.Enforcer.parseDate(result) except ValueError: result = None # should we throw an exception if result is null? return {'date':result} @staticmethod def _doctype(ADS_record): result = ADS_record['metadata']['properties']\ .get('doctype', {})\ .get('content')\ .lower() return {'doctype': result} @staticmethod def _doctype_facet_hier(ADS_record): doctype = ADS_record['metadata']['properties']\ .get('doctype', {})\ .get('content')\ .lower() (top,type) = doctype_mapper(doctype) result = [ u"0/%s" % top, u"1/%s/%s" % (top, type) ] return {'doctype_facet_hier': result} @staticmethod def _doi(ADS_record): result = [i['content'] for i in ADS_record['metadata']['general'].get('doi', [])] return {'doi': result} @staticmethod def _eid(ADS_record): result = ADS_record['metadata']['general']['publication'].get('electronic_id') return {'eid': result} @staticmethod def _email(ADS_record): authors = ADS_record['metadata']['general'].get('authors', []) authors = sorted(authors, key=lambda k: int(k['number'])) result = ['; '.join([j for j in i['emails'] if j]) if i['emails'] else u'-' for i in authors] return {'email': result} @staticmethod def _first_author(ADS_record): authors = ADS_record['metadata']['general'].get('authors', []) authors = sorted(authors, key=lambda k: int(k['number'])) if not authors: result = None else: result = authors[0]['name']['western'] return {'first_author': result} @staticmethod def _first_author_facet_hier(ADS_record): authors = ADS_record['metadata']['general'].get('authors', []) authors = sorted(authors, key=lambda k: int(k['number'])) result = [] if authors: if authors[0]['name']['normalized']: r = u"0/%s" % (_normalize_author_name(authors[0]['name']['normalized']),) result.append(r) if authors[0]['name']['western']: r = u"1/%s/%s" % (_normalize_author_name(authors[0]['name']['normalized']), _normalize_author_name(authors[0]['name']['western'])) result.append(r) return {'first_author_facet_hier':result} @staticmethod def _first_author_norm(ADS_record): authors = ADS_record['metadata']['general'].get('authors', []) authors = sorted(authors, key=lambda k: int(k['number'])) if authors: result = authors[0]['name']['normalized'] else: result = None return {'first_author_norm': result} @staticmethod def _lang(ADS_record): return {'lang': ADS_record['metadata'].get('language', '')} @staticmethod def _links_data(ADS_record): result = [json.dumps({"title": i.get('title', "") or "", "type": i.get('type', "") or "", "instances": i.get('count', "") or "", "access": i.get('access', "") or "", "url": i.get("url", "") or ""}, sort_keys=True) \ for i in ADS_record['metadata']['relations'].get('links',[])] result = [unicode(i) for i in result] return {'links_data': result} @staticmethod def _id(ADS_record): return {'id': ADS_record['id']} @staticmethod def _identifier(ADS_record): result = [] result.extend([i['content'] for i in ADS_record['metadata']['relations'].get('preprints', [])]) result.extend([i['content'] for i in ADS_record['metadata']['general'].get('doi', [])]) result.extend([i['content'] for i in ADS_record['metadata']['relations'].get('alternates', [])]) result.extend([i['content'] for i in ADS_record['metadata']['relations'].get('identifiers', [])]) return {'identifier': list(set(result))} @staticmethod def _issn(ADS_record): result = [i['content'] for i in ADS_record['metadata']['general'].get('issns', [])] result = unroll_unique_list(result) return {'issn': result} @staticmethod def _isbn(ADS_record): result = [i['content'] for i in ADS_record['metadata']['general'].get('isbns', [])] result = unroll_unique_list(result) return {'isbn': result} @staticmethod def _issue(ADS_record): result = ADS_record['metadata']['general'].get('publication', {}).get('issue') return {'issue': result} @staticmethod def _page(ADS_record): result = [ADS_record['metadata']['general']['publication'].get('page')] if ADS_record['metadata']['general']['publication'].get('electronic_id'): result.append(ADS_record['metadata']['general']['publication']['electronic_id']) return {'page': filter(None, result)} @staticmethod # return page range only if found in source record def _page_range(ADS_record): result = ADS_record['metadata']['general']['publication'].get('page_range', u'') return {'page_range':result} @staticmethod def _page_count(ADS_record): result = ADS_record['metadata']['general']['publication'].get('page_count',0) try: result = int(result) except TypeError: result = 0 return {'page_count':result} @staticmethod def _pub(ADS_record): return {'pub': ADS_record['metadata']['general'].get('publication', {}).get('name', {}).get('canonical')} @staticmethod def _pub_raw(ADS_record): return {'pub_raw': ADS_record['metadata']['general'].get('publication', {}).get('name', {}).get('raw')} @staticmethod def _pubdate(ADS_record): result = get_date_by_datetype(ADS_record) return {'pubdate':result} @staticmethod def _pubnote(ADS_record): result = [i['content'] for i in ADS_record['metadata']['general'].get('pubnote',[])] return {'pubnote':result} @staticmethod def _series(ADS_record): return {'series': ADS_record['metadata']['general'].get('publication', {}).get('series')} @staticmethod def _keyword(ADS_record): """original keywords; must match one-to-one with _keyword_schema and _keyword_norm""" result = [i['original'] if i['original'] else u'-' for i in ADS_record['metadata']['general'].get('keywords', [])] return {'keyword': result} @staticmethod def _keyword_norm(ADS_record): """normalized keywords; must match one-to-one with _keyword and _keyword_schema""" result = [i['normalized'] if i['normalized'] else u'-' for i in ADS_record['metadata']['general'].get('keywords', [])] return {'keyword_norm': result} @staticmethod def _keyword_schema(ADS_record): """keyword system; must match one-to-one with _keyword and _keyword_norm""" result = [i['type'] if i['type'] else u'-' for i in ADS_record['metadata']['general'].get('keywords', [])] return {'keyword_schema': result} @staticmethod def _keyword_facet(ADS_record): # keep only non-empty normalized keywords result = filter(None, [i['normalized'] for i in ADS_record['metadata']['general'].get('keywords', [])]) return {'keyword_facet':result} @staticmethod def _orcid(ADS_record): authors = ADS_record['metadata']['general'].get('authors', []) authors = sorted(authors, key=lambda k: int(k['number'])) result = [i['orcid'] if i['orcid'] else u'-' for i in authors] out = {'orcid_pub': result} if 'orcid_claims' in ADS_record: for indexname, claimname in [('orcid_user', 'verified'), ('orcid_other', 'unverified')]: if claimname in ADS_record['orcid_claims']: claims = ADS_record['orcid_claims'][claimname] # basic check, the length should be equal if len(claims) != len(authors): logger.warn("Potential problem with orcid claims for: {0} (len(authors) != len(claims))" .format(ADS_record['bibcode'])) # TODO: in the grant scheme of things, we should trigger ADS orcid update (let the remote # pipeline processes know, that something is out of sync); for now we'll just truncate the # data if len(claims) > len(authors): claims = claims[0:len(authors)] else: claims = claims + [u'-'] * (len(authors) - len(claims)) out[indexname] = claims return out @staticmethod def _title(ADS_record): result = [i['text'] for i in ADS_record['metadata']['general'].get('titles', [])] return {'title':result} @staticmethod def _volume(ADS_record): return {'volume': ADS_record['metadata']['general'].get('publication', {}).get('volume')} @staticmethod def _vizier(ADS_record): result = [i['content'] for i in ADS_record['metadata']['properties'].get('vizier_tables', [])] return {'vizier': result} @staticmethod def _vizier_facet(ADS_record): result = [i['content'] for i in ADS_record['metadata']['properties'].get('vizier_tables', [])] return {'vizier_facet': result} #------------------------------------------------ # Public Entrypoints @classmethod def adapt(cls, ADS_record): assert isinstance(ADS_record, dict) result = {} for k in cls.SCHEMA: try: D = getattr(cls, '_%s' % k)(ADS_record) v = D.values() if not v or (len(v) == 1 and not isinstance(v[0], int) and not isinstance(v[0], float) and not v[0]): D = {} result.update(D) except AttributeError, e: logger.debug("NotImplementedWarning: %s" % e) if "type object 'SolrAdapter'" not in e.message: raise # raise NotImplementedError return result @classmethod def validate(cls, solr_record): ''' Validates types and keys of `record` against self.schema. Raises AssertionError if types or keys do not match ''' r = solr_record SCHEMA = cls.SCHEMA assert isinstance(r, dict) for k, v in r.iteritems(): assert k in SCHEMA, '{0}: not in schema'.format(k) assert isinstance(v, type(SCHEMA[k])), '{0}: has an unexpected type ({1}!={2}): {3}'.format(k, type(v), SCHEMA[k], v) if isinstance(v, list) and v: # No expectation of nested lists assert len(set([type(i) for i in v])) == 1, "{0}: multiple data-types in list: {1}".format(k, v) assert isinstance(v[0], type(SCHEMA[k][0])), "{0}: inner list element has unexpected type ({1}!={2}): {3}".format(k, type(v[0]), type(SCHEMA[k][0]), v) def unroll_unique_list(array): """ Takes a list in input, unpacks nested elements, uniques them, and returns a list. Used to normalize some fields such as isbns and issns for which different data structures may be created by the json import due to XML element multiplicity (or lack thereof). Yes, it's a hack that could be avoided if we tightened the Enforcer code. """ result = [] for i in array: if isinstance(i, list): result += i else: result.append(i) return filter(lambda x: x is not None, set(result)) doctype_dict = { 'article': 'Journal Article', 'proceedings': 'Proceedings', 'inproceedings': 'Proceedings Article', 'book': 'Book', 'inbook': 'Book Chapter', 'techreport': 'Tech Report', 'intechreport': 'In Tech Report', 'eprint': 'e-print', 'abstract': 'Abstract', 'mastersthesis': 'Masters Thesis', 'phdthesis': 'PhD Thesis', 'talk': 'Talk', 'software': 'Software', 'proposal': 'Proposal', 'pressrelease': 'Press Release', 'circular': 'Circular', 'newsletter': 'Newsletter', 'catalog': 'Catalog', 'editorial': 'Editorial', 'misc': 'Other' } def doctype_mapper(doctype): """ Maps a document type to pair of hierarchical entries which include the top-level type and the type used for facets """ htype = 'Article' if doctype in ARTICLE_TYPES else 'Non-Article' stype = doctype_dict.get(doctype, 'Other') return (htype, stype) def simbad_type_mapper(otype): """ Maps a native SIMBAD object type to a subset of basic classes used for searching and faceting. Based on Thomas Boch's mappings used in AladinLite """ if otype.startswith('G') or otype.endswith('G'): return u'Galaxy' elif otype == 'Star' or otype.find('*') >= 0: return u'Star' elif otype == 'Neb' or otype.startswith('PN') or otype.startswith('SNR'): return u'Nebula' elif otype == 'HII': return u'HII Region' elif otype == 'X': return u'X-ray' elif otype.startswith('Radio') or otype == 'Maser' or otype == 'HI': return u'Radio' elif otype == 'IR' or otype.startswith('Red'): return u'Infrared' elif otype == 'UV': return u'UV' else: return u'Other' _o_types = {} [_o_types.__setitem__(x, u'Galaxy') for x in ["G","GClstr","GGroup","GPair","GTrpl","G_Lens","PofG"]] [_o_types.__setitem__(x, u'Nebula') for x in ['Neb','PN','RfN']] [_o_types.__setitem__(x, u'HII Region') for x in ['HII']] [_o_types.__setitem__(x, u'X-ray') for x in ['X']] [_o_types.__setitem__(x, u'Radio') for x in ['Maser', 'HI']] [_o_types.__setitem__(x, u'Infrared') for x in ['IrS']] [_o_types.__setitem__(x, u'Star') for x in ['Blue*','C*','exG*','Flare*','Nova','Psr','Red*','SN','SNR','V*','VisS','WD*','WR*']] def ned_type_mapper(otype): """ Maps a native NED object type to a subset of basic classes used for searching and faceting. """ if otype.startswith('!'): return u'Galactic Object' elif otype.startswith('*'): return u'Star' elif otype.startswith('Uv'): return u'UV' elif otype.startswith('Radio'): return u'Radio' else: return _o_types.get(otype, u'Other') arxiv_categories = set(["acc.phys.", "adap.org.", "alg.geom.", "ao.sci...", "astro.ph.", "atom.ph..", "bayes.an.", "chao.dyn.", "chem.ph..", "cmp.lg...", "comp.gas.", "cond.mat.", "cs.......", "dg.ga....", "funct.an.", "gr.qc....", "hep.ex...", "hep.lat..", "hep.ph...", "hep.th...", "math.....", "math.ph..", "mtrl.th..", "nlin.....", "nucl.ex..", "nucl.th..", "patt.sol.", "physics..", "plasm.ph.", "q.alg....", "q.bio....", "quant.ph.", "solv.int.", "supr.con."]) # these are publications for which there may be a 5-digit volume # which "spills left" i.e. has its most significant digit in the # journal field PUB_VOLUME_SPILLS_LEFT = ( 'SPIE', 'ATel', 'GCN.', ) def bibstem_mapper(bibcode): short_stem = bibcode[4:9] long_stem = bibcode[4:13] vol_field = bibcode[9:13] # first take care of special cases # ApJL if short_stem == 'ApJ..' and bibcode[13:14] == 'L': short_stem = u'ApJL.' long_stem = short_stem + vol_field # MPECs have a letter in the journal field which should be ignored elif short_stem == 'MPEC.' and re.match(r'^[\.\w]+$', vol_field): vol_field = u'....' long_stem = short_stem + vol_field # map old arXiv bibcodes to arXiv only elif long_stem in arxiv_categories: short_stem = u'arXiv' vol_field = u'....' long_stem = short_stem + vol_field # 5th character could be volume digit, in whih case reset it elif short_stem[0:4] in PUB_VOLUME_SPILLS_LEFT and short_stem[4].isdigit(): short_stem = short_stem[0:4] + u'.' return (unicode(short_stem), unicode(long_stem))
adsabs/ADSimportpipeline
aip/classic/solr_adapter.py
Python
gpl-3.0
25,646
[ "Galaxy" ]
fed38c892335794f81b809163ff6dd9f761055a29bff6146badbf2f95c3ac425
# -*- coding: utf-8 -*- """ End-to-end tests for the Account Settings page. """ from common.test.acceptance.pages.common.auto_auth import AutoAuthPage from common.test.acceptance.pages.lms.account_settings import AccountSettingsPage from common.test.acceptance.tests.helpers import AcceptanceTest, EventsTestMixin class AccountSettingsTestMixin(EventsTestMixin, AcceptanceTest): """ Mixin with helper methods to test the account settings page. """ CHANGE_INITIATED_EVENT_NAME = u"edx.user.settings.change_initiated" USER_SETTINGS_CHANGED_EVENT_NAME = 'edx.user.settings.changed' ACCOUNT_SETTINGS_REFERER = u"/account/settings" shard = 23 def visit_account_settings_page(self, gdpr=False): """ Visit the account settings page for the current user, and store the page instance as self.account_settings_page. """ self.account_settings_page = AccountSettingsPage(self.browser) self.account_settings_page.visit() self.account_settings_page.wait_for_ajax() # TODO: LEARNER-4422 - delete when we clean up flags if gdpr: self.account_settings_page.browser.get(self.browser.current_url + "?course_experience.gdpr=1") self.account_settings_page.wait_for_page() def log_in_as_unique_user(self, email=None, full_name=None, password=None): """ Create a unique user and return the account's username and id. """ username = "test_{uuid}".format(uuid=self.unique_id[0:6]) auto_auth_page = AutoAuthPage( self.browser, username=username, email=email, full_name=full_name, password=password ).visit() user_id = auto_auth_page.get_user_id() return username, user_id class AccountSettingsA11yTest(AccountSettingsTestMixin, AcceptanceTest): """ Class to test account settings accessibility. """ a11y = True def test_account_settings_a11y(self): """ Test the accessibility of the account settings page. """ self.log_in_as_unique_user() self.visit_account_settings_page() self.account_settings_page.a11y_audit.config.set_rules({ "ignore": [ 'aria-valid-attr', # TODO: LEARNER-6611 & LEARNER-6865 'region', # TODO: AC-932 ] }) self.account_settings_page.a11y_audit.check_for_accessibility_errors()
stvstnfrd/edx-platform
common/test/acceptance/tests/lms/test_account_settings.py
Python
agpl-3.0
2,482
[ "VisIt" ]
2cb6c193b297d4e082fd061cadad8fcf5f2d33ee9aa21baca6780492547a6e90
#!/usr/bin/env python __author__ = 'Mike McCann' __copyright__ = '2013' __license__ = 'GPL v3' __contact__ = 'mccann at mbari.org' __doc__ = ''' Master loader for all October 2013 SIMZ activities. Mike McCann MBARI 24 October 2013 @var __date__: Date of last svn commit @undocumented: __doc__ parser @status: production @license: GPL ''' import os import sys import datetime parentDir = os.path.join(os.path.dirname(__file__), "../") sys.path.insert(0, parentDir) # So that CANON is found from CANON import CANONLoader cl = CANONLoader('stoqs_simz_oct2014', 'Sampling and Identification of Marine Zooplankton - October 2014', description = 'Rachel Carson and Dorado surveys in Northern Monterey Bay', # Assign a GeoOrigin in the middle of the terrain that is an appropriate # location for rotateYUp, making fly navigation work well. All other GCC # positions are in the GeoOrigin with rotateYUp='true' coordinate system x3dTerrains = { 'http://dods.mbari.org/terrain/x3d/Monterey25_10x/Monterey25_10x_scene.x3d': { 'position': '-5334.11754 77527.85269 57495.84643', 'orientation': '-0.99840 0.05415 0.01651 0.88794', 'centerOfRotation': '1973.702 -553.761 -10885.8333', 'VerticalExaggeration': '10', 'geoOrigin': '36.75 -122 0', 'speed': '0.1', } }, grdTerrain = os.path.join(parentDir, 'Monterey25.grd') ) startDatetime = datetime.datetime(2014, 10, 15) endDatetime = datetime.datetime(2014, 10, 23) # Aboard the Carson use zuma: ##cl.tdsBase = 'http://zuma.rc.mbari.org/thredds/' # On shore, use the odss server: cl.tdsBase = 'http://odss.mbari.org/thredds/' cl.dodsBase = cl.tdsBase + 'dodsC/' # 2-second decimated dorado data cl.dorado_base = 'http://dods.mbari.org/opendap/data/auvctd/surveys/2014/netcdf/' # Dorado archive cl.dorado_files = [ 'Dorado389_2014_289_04_289_04_decim.nc', 'Dorado389_2014_290_00_290_00_decim.nc', 'Dorado389_2014_293_00_293_00_decim.nc', 'Dorado389_2014_294_00_294_00_decim.nc', 'Dorado389_2014_295_00_295_00_decim.nc', ] cl.dorado_parms = [ 'temperature', 'oxygen', 'nitrate', 'bbp420', 'bbp700', 'fl700_uncorr', 'salinity', 'biolume', 'sepCountList', 'mepCountList' ] # Rachel Carson Underway CTD cl.rcuctd_base = cl.dodsBase + 'SIMZ/2014_Oct/carson/uctd/' cl.rcuctd_files = [ '28914plm01.nc', '29014plm01.nc', '29314plm01.nc', '29414plm01.nc', '29514plm01.nc', ] cl.rcuctd_parms = [ 'TEMP', 'PSAL', 'xmiss', 'wetstar' ] # Rachel Carson Profile CTD cl.pctdDir = 'SIMZ/2014_Oct/carson/pctd/' cl.rcpctd_base = cl.dodsBase + cl.pctdDir cl.rcpctd_files = [ 'SIMZ2014C40.nc', 'SIMZ2014C41.nc', 'SIMZ2014C42.nc', 'SIMZ2014C43.nc', 'SIMZ2014C44.nc', 'SIMZ2014C45.nc', 'SIMZ2014C46.nc', 'SIMZ2014C47.nc', 'SIMZ2014C48.nc', 'SIMZ2014C49.nc', 'SIMZ2014C50.nc', 'SIMZ2014C51.nc', 'SIMZ2014C52.nc', 'SIMZ2014C53.nc', 'SIMZ2014C54.nc', 'SIMZ2014C55.nc', 'SIMZ2014C56.nc', 'SIMZ2014C57.nc', 'SIMZ2014C58.nc', 'SIMZ2014C59.nc', 'SIMZ2014C60.nc', 'SIMZ2014C61.nc', 'SIMZ2014C62.nc', 'SIMZ2014C63.nc', 'SIMZ2014C64.nc', 'SIMZ2014C65.nc', 'SIMZ2014C66.nc', 'SIMZ2014C67.nc', 'SIMZ2014C68.nc', 'SIMZ2014C69.nc', ] cl.rcpctd_parms = [ 'TEMP', 'PSAL', 'xmiss', 'ecofl', 'oxygen' ] # Mooring M1 Combined file produced by DPforSSDS processing - for just the duration of the campaign cl.m1_base = 'http://dods.mbari.org/opendap/data/ssdsdata/deployments/m1/201407/' cl.m1_files = ['OS_M1_20140716hourly_CMSTV.nc'] cl.m1_parms = [ 'eastward_sea_water_velocity_HR', 'northward_sea_water_velocity_HR', 'SEA_WATER_SALINITY_HR', 'SEA_WATER_TEMPERATURE_HR', 'SW_FLUX_HR', 'AIR_TEMPERATURE_HR', 'EASTWARD_WIND_HR', 'NORTHWARD_WIND_HR', 'WIND_SPEED_HR' ] cl.m1_startDatetime = startDatetime cl.m1_endDatetime = endDatetime # SubSample data files from /mbari/BOG_Archive/ReportsForSTOQS/GOC12/ copied to local GOC12 dir cl.subsample_csv_base = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'SIMZOct2013') cl.subsample_csv_files = [ #'2013_SIMZ_AUV_STOQS.csv', #'2013_SIMZ_Niskins_STOQS.csv', ##'2013_SIMZ_TowNets_STOQS.csv', ] # Execute the load cl.process_command_line() if cl.args.test: ##cl.loadL_662(stride=1) cl.loadDorado(stride=100) cl.loadRCuctd(stride=100) cl.loadRCpctd(stride=1) cl.loadM1(stride=10) #cl.loadSubSamples() elif cl.args.optimal_stride: ##cl.loadL_662(stride=1) cl.loadDorado(stride=1) cl.loadRCuctd(stride=1) cl.loadRCpctd(stride=1) cl.loadM1(stride=1) #cl.loadSubSamples() else: cl.stride = cl.args.stride ##cl.loadL_662() cl.loadDorado() cl.loadRCuctd() cl.loadRCpctd() cl.loadM1() #cl.loadSubSamples() # Add any X3D Terrain information specified in the constructor to the database - must be done after a load is executed cl.addTerrainResources() print "All Done."
josephmfaulkner/stoqs
stoqs/loaders/MolecularEcology/loadSIMZ_oct2014.py
Python
gpl-3.0
5,630
[ "NetCDF" ]
a9907c788021dfeda7cb05a16764332e66360e1cf92900d6d52fd31ae25db6a7
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Conversion to A-normal form.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.autograph.pyct import transformer class DummyGensym(object): """A dumb gensym that suffixes a stem by sequential numbers from 1000.""" def __init__(self, entity_info): del entity_info # A proper implementation needs to account for: # * entity_info.namespace # * all the symbols defined in the AST # * the symbols generated so far self._idx = 0 def new_name(self, stem): self._idx += 1 return stem + '_' + str(1000 + self._idx) class AnfTransformer(transformer.Base): """Performs the actual conversion.""" # TODO(mdan): Link to a reference. # TODO(mdan): Implement. def __init__(self, entity_info): """Creates a transformer. Args: entity_info: transformer.EntityInfo """ super(AnfTransformer, self).__init__(entity_info) self._gensym = DummyGensym(entity_info) def transform(node, entity_info): return AnfTransformer(entity_info).visit(node)
drpngx/tensorflow
tensorflow/contrib/autograph/pyct/common_transformers/anf.py
Python
apache-2.0
1,791
[ "VisIt" ]
783395f0b79dd59ea5bd649c2c5707152e51e71b39d08169634acc6ec560cbc8
# -*- coding: utf-8 -*- # Copyright (c) 2010-2012 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import email.parser import logging import json import math import os import pickle import sys import unittest from contextlib import closing, contextmanager from gzip import GzipFile from shutil import rmtree import gc import time from textwrap import dedent from hashlib import md5 from pyeclib.ec_iface import ECDriverError from tempfile import mkdtemp, NamedTemporaryFile import weakref import operator import functools from swift.obj import diskfile import re import random from collections import defaultdict import mock from eventlet import sleep, spawn, wsgi, listen, Timeout, debug from eventlet.green import httplib from six import BytesIO from six import StringIO from six.moves import range from six.moves.urllib.parse import quote from swift.common.utils import hash_path, storage_directory, \ parse_content_type, parse_mime_headers, \ iter_multipart_mime_documents, public from test.unit import ( connect_tcp, readuntil2crlfs, FakeLogger, fake_http_connect, FakeRing, FakeMemcache, debug_logger, patch_policies, write_fake_ring, mocked_http_conn, DEFAULT_TEST_EC_TYPE) from swift.proxy import server as proxy_server from swift.proxy.controllers.obj import ReplicatedObjectController from swift.account import server as account_server from swift.container import server as container_server from swift.obj import server as object_server from swift.common.middleware import proxy_logging, versioned_writes from swift.common.middleware.acl import parse_acl, format_acl from swift.common.exceptions import ChunkReadTimeout, DiskFileNotExist, \ APIVersionError from swift.common import utils, constraints from swift.common.ring import RingData from swift.common.utils import mkdirs, normalize_timestamp, NullLogger from swift.common.wsgi import monkey_patch_mimetools, loadapp from swift.proxy.controllers import base as proxy_base from swift.proxy.controllers.base import get_container_memcache_key, \ get_account_memcache_key, cors_validation import swift.proxy.controllers import swift.proxy.controllers.obj from swift.common.swob import Request, Response, HTTPUnauthorized, \ HTTPException, HeaderKeyDict, HTTPBadRequest from swift.common import storage_policy from swift.common.storage_policy import StoragePolicy, ECStoragePolicy, \ StoragePolicyCollection, POLICIES from swift.common.request_helpers import get_sys_meta_prefix # mocks logging.getLogger().addHandler(logging.StreamHandler(sys.stdout)) STATIC_TIME = time.time() _test_coros = _test_servers = _test_sockets = _orig_container_listing_limit = \ _testdir = _orig_SysLogHandler = _orig_POLICIES = _test_POLICIES = None def do_setup(the_object_server): utils.HASH_PATH_SUFFIX = 'endcap' global _testdir, _test_servers, _test_sockets, \ _orig_container_listing_limit, _test_coros, _orig_SysLogHandler, \ _orig_POLICIES, _test_POLICIES _orig_POLICIES = storage_policy._POLICIES _orig_SysLogHandler = utils.SysLogHandler utils.SysLogHandler = mock.MagicMock() monkey_patch_mimetools() # Since we're starting up a lot here, we're going to test more than # just chunked puts; we're also going to test parts of # proxy_server.Application we couldn't get to easily otherwise. _testdir = \ os.path.join(mkdtemp(), 'tmp_test_proxy_server_chunked') mkdirs(_testdir) rmtree(_testdir) for drive in ('sda1', 'sdb1', 'sdc1', 'sdd1', 'sde1', 'sdf1', 'sdg1', 'sdh1', 'sdi1'): mkdirs(os.path.join(_testdir, drive, 'tmp')) conf = {'devices': _testdir, 'swift_dir': _testdir, 'mount_check': 'false', 'allowed_headers': 'content-encoding, x-object-manifest, content-disposition, foo', 'allow_versions': 't'} prolis = listen(('localhost', 0)) acc1lis = listen(('localhost', 0)) acc2lis = listen(('localhost', 0)) con1lis = listen(('localhost', 0)) con2lis = listen(('localhost', 0)) obj1lis = listen(('localhost', 0)) obj2lis = listen(('localhost', 0)) obj3lis = listen(('localhost', 0)) objsocks = [obj1lis, obj2lis, obj3lis] _test_sockets = \ (prolis, acc1lis, acc2lis, con1lis, con2lis, obj1lis, obj2lis, obj3lis) account_ring_path = os.path.join(_testdir, 'account.ring.gz') account_devs = [ {'port': acc1lis.getsockname()[1]}, {'port': acc2lis.getsockname()[1]}, ] write_fake_ring(account_ring_path, *account_devs) container_ring_path = os.path.join(_testdir, 'container.ring.gz') container_devs = [ {'port': con1lis.getsockname()[1]}, {'port': con2lis.getsockname()[1]}, ] write_fake_ring(container_ring_path, *container_devs) storage_policy._POLICIES = StoragePolicyCollection([ StoragePolicy(0, 'zero', True), StoragePolicy(1, 'one', False), StoragePolicy(2, 'two', False), ECStoragePolicy(3, 'ec', ec_type=DEFAULT_TEST_EC_TYPE, ec_ndata=2, ec_nparity=1, ec_segment_size=4096)]) obj_rings = { 0: ('sda1', 'sdb1'), 1: ('sdc1', 'sdd1'), 2: ('sde1', 'sdf1'), # sdg1, sdh1, sdi1 taken by policy 3 (see below) } for policy_index, devices in obj_rings.items(): policy = POLICIES[policy_index] obj_ring_path = os.path.join(_testdir, policy.ring_name + '.ring.gz') obj_devs = [ {'port': objsock.getsockname()[1], 'device': dev} for objsock, dev in zip(objsocks, devices)] write_fake_ring(obj_ring_path, *obj_devs) # write_fake_ring can't handle a 3-element ring, and the EC policy needs # at least 3 devs to work with, so we do it manually devs = [{'id': 0, 'zone': 0, 'device': 'sdg1', 'ip': '127.0.0.1', 'port': obj1lis.getsockname()[1]}, {'id': 1, 'zone': 0, 'device': 'sdh1', 'ip': '127.0.0.1', 'port': obj2lis.getsockname()[1]}, {'id': 2, 'zone': 0, 'device': 'sdi1', 'ip': '127.0.0.1', 'port': obj3lis.getsockname()[1]}] pol3_replica2part2dev_id = [[0, 1, 2, 0], [1, 2, 0, 1], [2, 0, 1, 2]] obj3_ring_path = os.path.join(_testdir, POLICIES[3].ring_name + '.ring.gz') part_shift = 30 with closing(GzipFile(obj3_ring_path, 'wb')) as fh: pickle.dump(RingData(pol3_replica2part2dev_id, devs, part_shift), fh) prosrv = proxy_server.Application(conf, FakeMemcacheReturnsNone(), logger=debug_logger('proxy')) for policy in POLICIES: # make sure all the rings are loaded prosrv.get_object_ring(policy.idx) # don't lose this one! _test_POLICIES = storage_policy._POLICIES acc1srv = account_server.AccountController( conf, logger=debug_logger('acct1')) acc2srv = account_server.AccountController( conf, logger=debug_logger('acct2')) con1srv = container_server.ContainerController( conf, logger=debug_logger('cont1')) con2srv = container_server.ContainerController( conf, logger=debug_logger('cont2')) obj1srv = the_object_server.ObjectController( conf, logger=debug_logger('obj1')) obj2srv = the_object_server.ObjectController( conf, logger=debug_logger('obj2')) obj3srv = the_object_server.ObjectController( conf, logger=debug_logger('obj3')) _test_servers = \ (prosrv, acc1srv, acc2srv, con1srv, con2srv, obj1srv, obj2srv, obj3srv) nl = NullLogger() logging_prosv = proxy_logging.ProxyLoggingMiddleware(prosrv, conf, logger=prosrv.logger) prospa = spawn(wsgi.server, prolis, logging_prosv, nl) acc1spa = spawn(wsgi.server, acc1lis, acc1srv, nl) acc2spa = spawn(wsgi.server, acc2lis, acc2srv, nl) con1spa = spawn(wsgi.server, con1lis, con1srv, nl) con2spa = spawn(wsgi.server, con2lis, con2srv, nl) obj1spa = spawn(wsgi.server, obj1lis, obj1srv, nl) obj2spa = spawn(wsgi.server, obj2lis, obj2srv, nl) obj3spa = spawn(wsgi.server, obj3lis, obj3srv, nl) _test_coros = \ (prospa, acc1spa, acc2spa, con1spa, con2spa, obj1spa, obj2spa, obj3spa) # Create account ts = normalize_timestamp(time.time()) partition, nodes = prosrv.account_ring.get_nodes('a') for node in nodes: conn = swift.proxy.controllers.obj.http_connect(node['ip'], node['port'], node['device'], partition, 'PUT', '/a', {'X-Timestamp': ts, 'x-trans-id': 'test'}) resp = conn.getresponse() assert(resp.status == 201) # Create another account # used for account-to-account tests ts = normalize_timestamp(time.time()) partition, nodes = prosrv.account_ring.get_nodes('a1') for node in nodes: conn = swift.proxy.controllers.obj.http_connect(node['ip'], node['port'], node['device'], partition, 'PUT', '/a1', {'X-Timestamp': ts, 'x-trans-id': 'test'}) resp = conn.getresponse() assert(resp.status == 201) # Create containers, 1 per test policy sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('PUT /v1/a/c HTTP/1.1\r\nHost: localhost\r\n' 'Connection: close\r\nX-Auth-Token: t\r\n' 'Content-Length: 0\r\n\r\n') fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 201' assert headers[:len(exp)] == exp, "Expected '%s', encountered '%s'" % ( exp, headers[:len(exp)]) # Create container in other account # used for account-to-account tests sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('PUT /v1/a1/c1 HTTP/1.1\r\nHost: localhost\r\n' 'Connection: close\r\nX-Auth-Token: t\r\n' 'Content-Length: 0\r\n\r\n') fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 201' assert headers[:len(exp)] == exp, "Expected '%s', encountered '%s'" % ( exp, headers[:len(exp)]) sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write( 'PUT /v1/a/c1 HTTP/1.1\r\nHost: localhost\r\n' 'Connection: close\r\nX-Auth-Token: t\r\nX-Storage-Policy: one\r\n' 'Content-Length: 0\r\n\r\n') fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 201' assert headers[:len(exp)] == exp, \ "Expected '%s', encountered '%s'" % (exp, headers[:len(exp)]) sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write( 'PUT /v1/a/c2 HTTP/1.1\r\nHost: localhost\r\n' 'Connection: close\r\nX-Auth-Token: t\r\nX-Storage-Policy: two\r\n' 'Content-Length: 0\r\n\r\n') fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 201' assert headers[:len(exp)] == exp, \ "Expected '%s', encountered '%s'" % (exp, headers[:len(exp)]) def unpatch_policies(f): """ This will unset a TestCase level patch_policies to use the module level policies setup for the _test_servers instead. N.B. You should NEVER modify the _test_server policies or rings during a test because they persist for the life of the entire module! """ @functools.wraps(f) def wrapper(*args, **kwargs): with patch_policies(_test_POLICIES): return f(*args, **kwargs) return wrapper def setup(): do_setup(object_server) def teardown(): for server in _test_coros: server.kill() rmtree(os.path.dirname(_testdir)) utils.SysLogHandler = _orig_SysLogHandler storage_policy._POLICIES = _orig_POLICIES def sortHeaderNames(headerNames): """ Return the given string of header names sorted. headerName: a comma-delimited list of header names """ headers = [a.strip() for a in headerNames.split(',') if a.strip()] headers.sort() return ', '.join(headers) def parse_headers_string(headers_str): headers_dict = HeaderKeyDict() for line in headers_str.split('\r\n'): if ': ' in line: header, value = line.split(': ', 1) headers_dict[header] = value return headers_dict def node_error_count(proxy_app, ring_node): # Reach into the proxy's internals to get the error count for a # particular node node_key = proxy_app._error_limit_node_key(ring_node) return proxy_app._error_limiting.get(node_key, {}).get('errors', 0) def node_last_error(proxy_app, ring_node): # Reach into the proxy's internals to get the last error for a # particular node node_key = proxy_app._error_limit_node_key(ring_node) return proxy_app._error_limiting.get(node_key, {}).get('last_error') def set_node_errors(proxy_app, ring_node, value, last_error): # Set the node's error count to value node_key = proxy_app._error_limit_node_key(ring_node) stats = proxy_app._error_limiting.setdefault(node_key, {}) stats['errors'] = value stats['last_error'] = last_error class FakeMemcacheReturnsNone(FakeMemcache): def get(self, key): # Returns None as the timestamp of the container; assumes we're only # using the FakeMemcache for container existence checks. return None @contextmanager def save_globals(): orig_http_connect = getattr(swift.proxy.controllers.base, 'http_connect', None) orig_account_info = getattr(swift.proxy.controllers.Controller, 'account_info', None) orig_container_info = getattr(swift.proxy.controllers.Controller, 'container_info', None) try: yield True finally: swift.proxy.controllers.Controller.account_info = orig_account_info swift.proxy.controllers.base.http_connect = orig_http_connect swift.proxy.controllers.obj.http_connect = orig_http_connect swift.proxy.controllers.account.http_connect = orig_http_connect swift.proxy.controllers.container.http_connect = orig_http_connect swift.proxy.controllers.Controller.container_info = orig_container_info def set_http_connect(*args, **kwargs): new_connect = fake_http_connect(*args, **kwargs) swift.proxy.controllers.base.http_connect = new_connect swift.proxy.controllers.obj.http_connect = new_connect swift.proxy.controllers.account.http_connect = new_connect swift.proxy.controllers.container.http_connect = new_connect return new_connect def _make_callback_func(calls): def callback(ipaddr, port, device, partition, method, path, headers=None, query_string=None, ssl=False): context = {} context['method'] = method context['path'] = path context['headers'] = headers or {} calls.append(context) return callback def _limit_max_file_size(f): """ This will limit constraints.MAX_FILE_SIZE for the duration of the wrapped function, based on whether MAX_FILE_SIZE exceeds the sys.maxsize limit on the system running the tests. This allows successful testing on 32 bit systems. """ @functools.wraps(f) def wrapper(*args, **kwargs): test_max_file_size = constraints.MAX_FILE_SIZE if constraints.MAX_FILE_SIZE >= sys.maxsize: test_max_file_size = (2 ** 30 + 2) with mock.patch.object(constraints, 'MAX_FILE_SIZE', test_max_file_size): return f(*args, **kwargs) return wrapper # tests class TestController(unittest.TestCase): def setUp(self): self.account_ring = FakeRing() self.container_ring = FakeRing() self.memcache = FakeMemcache() app = proxy_server.Application(None, self.memcache, account_ring=self.account_ring, container_ring=self.container_ring) self.controller = swift.proxy.controllers.Controller(app) class FakeReq(object): def __init__(self): self.url = "/foo/bar" self.method = "METHOD" def as_referer(self): return self.method + ' ' + self.url self.account = 'some_account' self.container = 'some_container' self.request = FakeReq() self.read_acl = 'read_acl' self.write_acl = 'write_acl' def test_transfer_headers(self): src_headers = {'x-remove-base-meta-owner': 'x', 'x-base-meta-size': '151M', 'new-owner': 'Kun'} dst_headers = {'x-base-meta-owner': 'Gareth', 'x-base-meta-size': '150M'} self.controller.transfer_headers(src_headers, dst_headers) expected_headers = {'x-base-meta-owner': '', 'x-base-meta-size': '151M'} self.assertEqual(dst_headers, expected_headers) def check_account_info_return(self, partition, nodes, is_none=False): if is_none: p, n = None, None else: p, n = self.account_ring.get_nodes(self.account) self.assertEqual(p, partition) self.assertEqual(n, nodes) def test_account_info_container_count(self): with save_globals(): set_http_connect(200, count=123) partition, nodes, count = \ self.controller.account_info(self.account) self.assertEqual(count, 123) with save_globals(): set_http_connect(200, count='123') partition, nodes, count = \ self.controller.account_info(self.account) self.assertEqual(count, 123) with save_globals(): cache_key = get_account_memcache_key(self.account) account_info = {'status': 200, 'container_count': 1234} self.memcache.set(cache_key, account_info) partition, nodes, count = \ self.controller.account_info(self.account) self.assertEqual(count, 1234) with save_globals(): cache_key = get_account_memcache_key(self.account) account_info = {'status': 200, 'container_count': '1234'} self.memcache.set(cache_key, account_info) partition, nodes, count = \ self.controller.account_info(self.account) self.assertEqual(count, 1234) def test_make_requests(self): with save_globals(): set_http_connect(200) partition, nodes, count = \ self.controller.account_info(self.account, self.request) set_http_connect(201, raise_timeout_exc=True) self.controller._make_request( nodes, partition, 'POST', '/', '', '', self.controller.app.logger.thread_locals) # tests if 200 is cached and used def test_account_info_200(self): with save_globals(): set_http_connect(200) partition, nodes, count = \ self.controller.account_info(self.account, self.request) self.check_account_info_return(partition, nodes) self.assertEqual(count, 12345) # Test the internal representation in memcache # 'container_count' changed from int to str cache_key = get_account_memcache_key(self.account) container_info = {'status': 200, 'container_count': '12345', 'total_object_count': None, 'bytes': None, 'meta': {}, 'sysmeta': {}} self.assertEqual(container_info, self.memcache.get(cache_key)) set_http_connect() partition, nodes, count = \ self.controller.account_info(self.account, self.request) self.check_account_info_return(partition, nodes) self.assertEqual(count, 12345) # tests if 404 is cached and used def test_account_info_404(self): with save_globals(): set_http_connect(404, 404, 404) partition, nodes, count = \ self.controller.account_info(self.account, self.request) self.check_account_info_return(partition, nodes, True) self.assertEqual(count, None) # Test the internal representation in memcache # 'container_count' changed from 0 to None cache_key = get_account_memcache_key(self.account) account_info = {'status': 404, 'container_count': None, # internally keep None 'total_object_count': None, 'bytes': None, 'meta': {}, 'sysmeta': {}} self.assertEqual(account_info, self.memcache.get(cache_key)) set_http_connect() partition, nodes, count = \ self.controller.account_info(self.account, self.request) self.check_account_info_return(partition, nodes, True) self.assertEqual(count, None) # tests if some http status codes are not cached def test_account_info_no_cache(self): def test(*status_list): set_http_connect(*status_list) partition, nodes, count = \ self.controller.account_info(self.account, self.request) self.assertEqual(len(self.memcache.keys()), 0) self.check_account_info_return(partition, nodes, True) self.assertEqual(count, None) with save_globals(): # We cache if we have two 404 responses - fail if only one test(503, 503, 404) test(504, 404, 503) test(404, 507, 503) test(503, 503, 503) def test_account_info_no_account(self): with save_globals(): self.memcache.store = {} set_http_connect(404, 404, 404) partition, nodes, count = \ self.controller.account_info(self.account, self.request) self.check_account_info_return(partition, nodes, is_none=True) self.assertEqual(count, None) def check_container_info_return(self, ret, is_none=False): if is_none: partition, nodes, read_acl, write_acl = None, None, None, None else: partition, nodes = self.container_ring.get_nodes(self.account, self.container) read_acl, write_acl = self.read_acl, self.write_acl self.assertEqual(partition, ret['partition']) self.assertEqual(nodes, ret['nodes']) self.assertEqual(read_acl, ret['read_acl']) self.assertEqual(write_acl, ret['write_acl']) def test_container_info_invalid_account(self): def account_info(self, account, request, autocreate=False): return None, None with save_globals(): swift.proxy.controllers.Controller.account_info = account_info ret = self.controller.container_info(self.account, self.container, self.request) self.check_container_info_return(ret, True) # tests if 200 is cached and used def test_container_info_200(self): with save_globals(): headers = {'x-container-read': self.read_acl, 'x-container-write': self.write_acl} set_http_connect(200, # account_info is found 200, headers=headers) # container_info is found ret = self.controller.container_info( self.account, self.container, self.request) self.check_container_info_return(ret) cache_key = get_container_memcache_key(self.account, self.container) cache_value = self.memcache.get(cache_key) self.assertTrue(isinstance(cache_value, dict)) self.assertEqual(200, cache_value.get('status')) set_http_connect() ret = self.controller.container_info( self.account, self.container, self.request) self.check_container_info_return(ret) # tests if 404 is cached and used def test_container_info_404(self): def account_info(self, account, request): return True, True, 0 with save_globals(): set_http_connect(503, 204, # account_info found 504, 404, 404) # container_info 'NotFound' ret = self.controller.container_info( self.account, self.container, self.request) self.check_container_info_return(ret, True) cache_key = get_container_memcache_key(self.account, self.container) cache_value = self.memcache.get(cache_key) self.assertTrue(isinstance(cache_value, dict)) self.assertEqual(404, cache_value.get('status')) set_http_connect() ret = self.controller.container_info( self.account, self.container, self.request) self.check_container_info_return(ret, True) set_http_connect(503, 404, 404) # account_info 'NotFound' ret = self.controller.container_info( self.account, self.container, self.request) self.check_container_info_return(ret, True) cache_key = get_container_memcache_key(self.account, self.container) cache_value = self.memcache.get(cache_key) self.assertTrue(isinstance(cache_value, dict)) self.assertEqual(404, cache_value.get('status')) set_http_connect() ret = self.controller.container_info( self.account, self.container, self.request) self.check_container_info_return(ret, True) # tests if some http status codes are not cached def test_container_info_no_cache(self): def test(*status_list): set_http_connect(*status_list) ret = self.controller.container_info( self.account, self.container, self.request) self.assertEqual(len(self.memcache.keys()), 0) self.check_container_info_return(ret, True) with save_globals(): # We cache if we have two 404 responses - fail if only one test(503, 503, 404) test(504, 404, 503) test(404, 507, 503) test(503, 503, 503) @patch_policies([StoragePolicy(0, 'zero', True, object_ring=FakeRing())]) class TestProxyServer(unittest.TestCase): def test_creation(self): # later config should be extended to assert more config options app = proxy_server.Application({'node_timeout': '3.5', 'recoverable_node_timeout': '1.5'}, FakeMemcache(), container_ring=FakeRing(), account_ring=FakeRing()) self.assertEqual(app.node_timeout, 3.5) self.assertEqual(app.recoverable_node_timeout, 1.5) def test_get_object_ring(self): baseapp = proxy_server.Application({}, FakeMemcache(), container_ring=FakeRing(), account_ring=FakeRing()) with patch_policies([ StoragePolicy(0, 'a', False, object_ring=123), StoragePolicy(1, 'b', True, object_ring=456), StoragePolicy(2, 'd', False, object_ring=789) ]): # None means legacy so always use policy 0 ring = baseapp.get_object_ring(None) self.assertEqual(ring, 123) ring = baseapp.get_object_ring('') self.assertEqual(ring, 123) ring = baseapp.get_object_ring('0') self.assertEqual(ring, 123) ring = baseapp.get_object_ring('1') self.assertEqual(ring, 456) ring = baseapp.get_object_ring('2') self.assertEqual(ring, 789) # illegal values self.assertRaises(ValueError, baseapp.get_object_ring, '99') self.assertRaises(ValueError, baseapp.get_object_ring, 'asdf') def test_unhandled_exception(self): class MyApp(proxy_server.Application): def get_controller(self, path): raise Exception('this shouldn\'t be caught') app = MyApp(None, FakeMemcache(), account_ring=FakeRing(), container_ring=FakeRing()) req = Request.blank('/v1/account', environ={'REQUEST_METHOD': 'HEAD'}) app.update_request(req) resp = app.handle_request(req) self.assertEqual(resp.status_int, 500) def test_internal_method_request(self): baseapp = proxy_server.Application({}, FakeMemcache(), container_ring=FakeRing(), account_ring=FakeRing()) resp = baseapp.handle_request( Request.blank('/v1/a', environ={'REQUEST_METHOD': '__init__'})) self.assertEqual(resp.status, '405 Method Not Allowed') def test_inexistent_method_request(self): baseapp = proxy_server.Application({}, FakeMemcache(), container_ring=FakeRing(), account_ring=FakeRing()) resp = baseapp.handle_request( Request.blank('/v1/a', environ={'REQUEST_METHOD': '!invalid'})) self.assertEqual(resp.status, '405 Method Not Allowed') def test_calls_authorize_allow(self): called = [False] def authorize(req): called[0] = True with save_globals(): set_http_connect(200) app = proxy_server.Application(None, FakeMemcache(), account_ring=FakeRing(), container_ring=FakeRing()) req = Request.blank('/v1/a') req.environ['swift.authorize'] = authorize app.update_request(req) app.handle_request(req) self.assertTrue(called[0]) def test_calls_authorize_deny(self): called = [False] def authorize(req): called[0] = True return HTTPUnauthorized(request=req) app = proxy_server.Application(None, FakeMemcache(), account_ring=FakeRing(), container_ring=FakeRing()) req = Request.blank('/v1/a') req.environ['swift.authorize'] = authorize app.update_request(req) app.handle_request(req) self.assertTrue(called[0]) def test_negative_content_length(self): swift_dir = mkdtemp() try: baseapp = proxy_server.Application({'swift_dir': swift_dir}, FakeMemcache(), FakeLogger(), FakeRing(), FakeRing()) resp = baseapp.handle_request( Request.blank('/', environ={'CONTENT_LENGTH': '-1'})) self.assertEqual(resp.status, '400 Bad Request') self.assertEqual(resp.body, 'Invalid Content-Length') resp = baseapp.handle_request( Request.blank('/', environ={'CONTENT_LENGTH': '-123'})) self.assertEqual(resp.status, '400 Bad Request') self.assertEqual(resp.body, 'Invalid Content-Length') finally: rmtree(swift_dir, ignore_errors=True) def test_adds_transaction_id(self): swift_dir = mkdtemp() try: logger = FakeLogger() baseapp = proxy_server.Application({'swift_dir': swift_dir}, FakeMemcache(), logger, container_ring=FakeLogger(), account_ring=FakeRing()) baseapp.handle_request( Request.blank('/info', environ={'HTTP_X_TRANS_ID_EXTRA': 'sardine', 'REQUEST_METHOD': 'GET'})) # This is kind of a hokey way to get the transaction ID; it'd be # better to examine response headers, but the catch_errors # middleware is what sets the X-Trans-Id header, and we don't have # that available here. self.assertTrue(logger.txn_id.endswith('-sardine')) finally: rmtree(swift_dir, ignore_errors=True) def test_adds_transaction_id_length_limit(self): swift_dir = mkdtemp() try: logger = FakeLogger() baseapp = proxy_server.Application({'swift_dir': swift_dir}, FakeMemcache(), logger, container_ring=FakeLogger(), account_ring=FakeRing()) baseapp.handle_request( Request.blank('/info', environ={'HTTP_X_TRANS_ID_EXTRA': 'a' * 1000, 'REQUEST_METHOD': 'GET'})) self.assertTrue(logger.txn_id.endswith( '-aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa')) finally: rmtree(swift_dir, ignore_errors=True) def test_denied_host_header(self): swift_dir = mkdtemp() try: baseapp = proxy_server.Application({'swift_dir': swift_dir, 'deny_host_headers': 'invalid_host.com'}, FakeMemcache(), container_ring=FakeLogger(), account_ring=FakeRing()) resp = baseapp.handle_request( Request.blank('/v1/a/c/o', environ={'HTTP_HOST': 'invalid_host.com'})) self.assertEqual(resp.status, '403 Forbidden') finally: rmtree(swift_dir, ignore_errors=True) def test_node_timing(self): baseapp = proxy_server.Application({'sorting_method': 'timing'}, FakeMemcache(), container_ring=FakeRing(), account_ring=FakeRing()) self.assertEqual(baseapp.node_timings, {}) req = Request.blank('/v1/account', environ={'REQUEST_METHOD': 'HEAD'}) baseapp.update_request(req) resp = baseapp.handle_request(req) self.assertEqual(resp.status_int, 503) # couldn't connect to anything exp_timings = {} self.assertEqual(baseapp.node_timings, exp_timings) times = [time.time()] exp_timings = {'127.0.0.1': (0.1, times[0] + baseapp.timing_expiry)} with mock.patch('swift.proxy.server.time', lambda: times.pop(0)): baseapp.set_node_timing({'ip': '127.0.0.1'}, 0.1) self.assertEqual(baseapp.node_timings, exp_timings) nodes = [{'ip': '127.0.0.1'}, {'ip': '127.0.0.2'}, {'ip': '127.0.0.3'}] with mock.patch('swift.proxy.server.shuffle', lambda l: l): res = baseapp.sort_nodes(nodes) exp_sorting = [{'ip': '127.0.0.2'}, {'ip': '127.0.0.3'}, {'ip': '127.0.0.1'}] self.assertEqual(res, exp_sorting) def test_node_affinity(self): baseapp = proxy_server.Application({'sorting_method': 'affinity', 'read_affinity': 'r1=1'}, FakeMemcache(), container_ring=FakeRing(), account_ring=FakeRing()) nodes = [{'region': 2, 'zone': 1, 'ip': '127.0.0.1'}, {'region': 1, 'zone': 2, 'ip': '127.0.0.2'}] with mock.patch('swift.proxy.server.shuffle', lambda x: x): app_sorted = baseapp.sort_nodes(nodes) exp_sorted = [{'region': 1, 'zone': 2, 'ip': '127.0.0.2'}, {'region': 2, 'zone': 1, 'ip': '127.0.0.1'}] self.assertEqual(exp_sorted, app_sorted) def test_info_defaults(self): app = proxy_server.Application({}, FakeMemcache(), account_ring=FakeRing(), container_ring=FakeRing()) self.assertTrue(app.expose_info) self.assertTrue(isinstance(app.disallowed_sections, list)) self.assertEqual(1, len(app.disallowed_sections)) self.assertEqual(['swift.valid_api_versions'], app.disallowed_sections) self.assertTrue(app.admin_key is None) def test_get_info_controller(self): req = Request.blank('/info') app = proxy_server.Application({}, FakeMemcache(), account_ring=FakeRing(), container_ring=FakeRing()) controller, path_parts = app.get_controller(req) self.assertTrue('version' in path_parts) self.assertTrue(path_parts['version'] is None) self.assertTrue('disallowed_sections' in path_parts) self.assertTrue('expose_info' in path_parts) self.assertTrue('admin_key' in path_parts) self.assertEqual(controller.__name__, 'InfoController') def test_error_limit_methods(self): logger = debug_logger('test') app = proxy_server.Application({}, FakeMemcache(), account_ring=FakeRing(), container_ring=FakeRing(), logger=logger) node = app.container_ring.get_part_nodes(0)[0] # error occurred app.error_occurred(node, 'test msg') self.assertTrue('test msg' in logger.get_lines_for_level('error')[-1]) self.assertEqual(1, node_error_count(app, node)) # exception occurred try: raise Exception('kaboom1!') except Exception as e1: app.exception_occurred(node, 'test1', 'test1 msg') line = logger.get_lines_for_level('error')[-1] self.assertTrue('test1 server' in line) self.assertTrue('test1 msg' in line) log_args, log_kwargs = logger.log_dict['error'][-1] self.assertTrue(log_kwargs['exc_info']) self.assertEqual(log_kwargs['exc_info'][1], e1) self.assertEqual(2, node_error_count(app, node)) # warning exception occurred try: raise Exception('kaboom2!') except Exception as e2: app.exception_occurred(node, 'test2', 'test2 msg', level=logging.WARNING) line = logger.get_lines_for_level('warning')[-1] self.assertTrue('test2 server' in line) self.assertTrue('test2 msg' in line) log_args, log_kwargs = logger.log_dict['warning'][-1] self.assertTrue(log_kwargs['exc_info']) self.assertEqual(log_kwargs['exc_info'][1], e2) self.assertEqual(3, node_error_count(app, node)) # custom exception occurred try: raise Exception('kaboom3!') except Exception as e3: e3_info = sys.exc_info() try: raise Exception('kaboom4!') except Exception: pass app.exception_occurred(node, 'test3', 'test3 msg', level=logging.WARNING, exc_info=e3_info) line = logger.get_lines_for_level('warning')[-1] self.assertTrue('test3 server' in line) self.assertTrue('test3 msg' in line) log_args, log_kwargs = logger.log_dict['warning'][-1] self.assertTrue(log_kwargs['exc_info']) self.assertEqual(log_kwargs['exc_info'][1], e3) self.assertEqual(4, node_error_count(app, node)) def test_valid_api_version(self): app = proxy_server.Application({}, FakeMemcache(), account_ring=FakeRing(), container_ring=FakeRing()) # The version string is only checked for account, container and object # requests; the raised APIVersionError returns a 404 to the client for path in [ '/v2/a', '/v2/a/c', '/v2/a/c/o']: req = Request.blank(path) self.assertRaises(APIVersionError, app.get_controller, req) # Default valid API versions are ok for path in [ '/v1/a', '/v1/a/c', '/v1/a/c/o', '/v1.0/a', '/v1.0/a/c', '/v1.0/a/c/o']: req = Request.blank(path) controller, path_parts = app.get_controller(req) self.assertTrue(controller is not None) # Ensure settings valid API version constraint works for version in ["42", 42]: try: with NamedTemporaryFile() as f: f.write('[swift-constraints]\n') f.write('valid_api_versions = %s\n' % version) f.flush() with mock.patch.object(utils, 'SWIFT_CONF_FILE', f.name): constraints.reload_constraints() req = Request.blank('/%s/a' % version) controller, _ = app.get_controller(req) self.assertTrue(controller is not None) # In this case v1 is invalid req = Request.blank('/v1/a') self.assertRaises(APIVersionError, app.get_controller, req) finally: constraints.reload_constraints() # Check that the valid_api_versions is not exposed by default req = Request.blank('/info') controller, path_parts = app.get_controller(req) self.assertTrue('swift.valid_api_versions' in path_parts.get('disallowed_sections')) @patch_policies([ StoragePolicy(0, 'zero', is_default=True), StoragePolicy(1, 'one'), ]) class TestProxyServerLoading(unittest.TestCase): def setUp(self): self._orig_hash_suffix = utils.HASH_PATH_SUFFIX utils.HASH_PATH_SUFFIX = 'endcap' self.tempdir = mkdtemp() def tearDown(self): rmtree(self.tempdir) utils.HASH_PATH_SUFFIX = self._orig_hash_suffix for policy in POLICIES: policy.object_ring = None def test_load_policy_rings(self): for policy in POLICIES: self.assertFalse(policy.object_ring) conf_path = os.path.join(self.tempdir, 'proxy-server.conf') conf_body = """ [DEFAULT] swift_dir = %s [pipeline:main] pipeline = catch_errors cache proxy-server [app:proxy-server] use = egg:swift#proxy [filter:cache] use = egg:swift#memcache [filter:catch_errors] use = egg:swift#catch_errors """ % self.tempdir with open(conf_path, 'w') as f: f.write(dedent(conf_body)) account_ring_path = os.path.join(self.tempdir, 'account.ring.gz') write_fake_ring(account_ring_path) container_ring_path = os.path.join(self.tempdir, 'container.ring.gz') write_fake_ring(container_ring_path) for policy in POLICIES: object_ring_path = os.path.join(self.tempdir, policy.ring_name + '.ring.gz') write_fake_ring(object_ring_path) app = loadapp(conf_path) # find the end of the pipeline while hasattr(app, 'app'): app = app.app # validate loaded rings self.assertEqual(app.account_ring.serialized_path, account_ring_path) self.assertEqual(app.container_ring.serialized_path, container_ring_path) for policy in POLICIES: self.assertEqual(policy.object_ring, app.get_object_ring(int(policy))) def test_missing_rings(self): conf_path = os.path.join(self.tempdir, 'proxy-server.conf') conf_body = """ [DEFAULT] swift_dir = %s [pipeline:main] pipeline = catch_errors cache proxy-server [app:proxy-server] use = egg:swift#proxy [filter:cache] use = egg:swift#memcache [filter:catch_errors] use = egg:swift#catch_errors """ % self.tempdir with open(conf_path, 'w') as f: f.write(dedent(conf_body)) ring_paths = [ os.path.join(self.tempdir, 'account.ring.gz'), os.path.join(self.tempdir, 'container.ring.gz'), ] for policy in POLICIES: self.assertFalse(policy.object_ring) object_ring_path = os.path.join(self.tempdir, policy.ring_name + '.ring.gz') ring_paths.append(object_ring_path) for policy in POLICIES: self.assertFalse(policy.object_ring) for ring_path in ring_paths: self.assertFalse(os.path.exists(ring_path)) self.assertRaises(IOError, loadapp, conf_path) write_fake_ring(ring_path) # all rings exist, app should load loadapp(conf_path) for policy in POLICIES: self.assertTrue(policy.object_ring) @patch_policies([StoragePolicy(0, 'zero', True, object_ring=FakeRing(base_port=3000))]) class TestObjectController(unittest.TestCase): def setUp(self): self.app = proxy_server.Application( None, FakeMemcache(), logger=debug_logger('proxy-ut'), account_ring=FakeRing(), container_ring=FakeRing()) # clear proxy logger result for each test _test_servers[0].logger._clear() def tearDown(self): self.app.account_ring.set_replicas(3) self.app.container_ring.set_replicas(3) for policy in POLICIES: policy.object_ring = FakeRing(base_port=3000) def put_container(self, policy_name, container_name): # Note: only works if called with unpatched policies prolis = _test_sockets[0] sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('PUT /v1/a/%s HTTP/1.1\r\n' 'Host: localhost\r\n' 'Connection: close\r\n' 'Content-Length: 0\r\n' 'X-Storage-Token: t\r\n' 'X-Storage-Policy: %s\r\n' '\r\n' % (container_name, policy_name)) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 2' self.assertEqual(headers[:len(exp)], exp) def assert_status_map(self, method, statuses, expected, raise_exc=False): with save_globals(): kwargs = {} if raise_exc: kwargs['raise_exc'] = raise_exc set_http_connect(*statuses, **kwargs) self.app.memcache.store = {} req = Request.blank('/v1/a/c/o', headers={'Content-Length': '0', 'Content-Type': 'text/plain'}) self.app.update_request(req) try: res = method(req) except HTTPException as res: pass self.assertEqual(res.status_int, expected) # repeat test set_http_connect(*statuses, **kwargs) self.app.memcache.store = {} req = Request.blank('/v1/a/c/o', headers={'Content-Length': '0', 'Content-Type': 'text/plain'}) self.app.update_request(req) try: res = method(req) except HTTPException as res: pass self.assertEqual(res.status_int, expected) @unpatch_policies def test_policy_IO(self): def check_file(policy, cont, devs, check_val): partition, nodes = policy.object_ring.get_nodes('a', cont, 'o') conf = {'devices': _testdir, 'mount_check': 'false'} df_mgr = diskfile.DiskFileManager(conf, FakeLogger()) for dev in devs: file = df_mgr.get_diskfile(dev, partition, 'a', cont, 'o', policy=policy) if check_val is True: file.open() prolis = _test_sockets[0] prosrv = _test_servers[0] # check policy 0: put file on c, read it back, check loc on disk sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() obj = 'test_object0' path = '/v1/a/c/o' fd.write('PUT %s HTTP/1.1\r\n' 'Host: localhost\r\n' 'Connection: close\r\n' 'X-Storage-Token: t\r\n' 'Content-Length: %s\r\n' 'Content-Type: text/plain\r\n' '\r\n%s' % (path, str(len(obj)), obj)) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 201' self.assertEqual(headers[:len(exp)], exp) req = Request.blank(path, environ={'REQUEST_METHOD': 'GET'}, headers={'Content-Type': 'text/plain'}) res = req.get_response(prosrv) self.assertEqual(res.status_int, 200) self.assertEqual(res.body, obj) check_file(POLICIES[0], 'c', ['sda1', 'sdb1'], True) check_file(POLICIES[0], 'c', ['sdc1', 'sdd1', 'sde1', 'sdf1'], False) # check policy 1: put file on c1, read it back, check loc on disk sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() path = '/v1/a/c1/o' obj = 'test_object1' fd.write('PUT %s HTTP/1.1\r\n' 'Host: localhost\r\n' 'Connection: close\r\n' 'X-Storage-Token: t\r\n' 'Content-Length: %s\r\n' 'Content-Type: text/plain\r\n' '\r\n%s' % (path, str(len(obj)), obj)) fd.flush() headers = readuntil2crlfs(fd) self.assertEqual(headers[:len(exp)], exp) req = Request.blank(path, environ={'REQUEST_METHOD': 'GET'}, headers={'Content-Type': 'text/plain'}) res = req.get_response(prosrv) self.assertEqual(res.status_int, 200) self.assertEqual(res.body, obj) check_file(POLICIES[1], 'c1', ['sdc1', 'sdd1'], True) check_file(POLICIES[1], 'c1', ['sda1', 'sdb1', 'sde1', 'sdf1'], False) # check policy 2: put file on c2, read it back, check loc on disk sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() path = '/v1/a/c2/o' obj = 'test_object2' fd.write('PUT %s HTTP/1.1\r\n' 'Host: localhost\r\n' 'Connection: close\r\n' 'X-Storage-Token: t\r\n' 'Content-Length: %s\r\n' 'Content-Type: text/plain\r\n' '\r\n%s' % (path, str(len(obj)), obj)) fd.flush() headers = readuntil2crlfs(fd) self.assertEqual(headers[:len(exp)], exp) req = Request.blank(path, environ={'REQUEST_METHOD': 'GET'}, headers={'Content-Type': 'text/plain'}) res = req.get_response(prosrv) self.assertEqual(res.status_int, 200) self.assertEqual(res.body, obj) check_file(POLICIES[2], 'c2', ['sde1', 'sdf1'], True) check_file(POLICIES[2], 'c2', ['sda1', 'sdb1', 'sdc1', 'sdd1'], False) @unpatch_policies def test_policy_IO_override(self): if hasattr(_test_servers[-1], '_filesystem'): # ironically, the _filesystem attribute on the object server means # the in-memory diskfile is in use, so this test does not apply return prosrv = _test_servers[0] # validate container policy is 1 req = Request.blank('/v1/a/c1', method='HEAD') res = req.get_response(prosrv) self.assertEqual(res.status_int, 204) # sanity check self.assertEqual(POLICIES[1].name, res.headers['x-storage-policy']) # check overrides: put it in policy 2 (not where the container says) req = Request.blank( '/v1/a/c1/wrong-o', environ={'REQUEST_METHOD': 'PUT', 'wsgi.input': BytesIO(b"hello")}, headers={'Content-Type': 'text/plain', 'Content-Length': '5', 'X-Backend-Storage-Policy-Index': '2'}) res = req.get_response(prosrv) self.assertEqual(res.status_int, 201) # sanity check # go to disk to make sure it's there partition, nodes = prosrv.get_object_ring(2).get_nodes( 'a', 'c1', 'wrong-o') node = nodes[0] conf = {'devices': _testdir, 'mount_check': 'false'} df_mgr = diskfile.DiskFileManager(conf, FakeLogger()) df = df_mgr.get_diskfile(node['device'], partition, 'a', 'c1', 'wrong-o', policy=POLICIES[2]) with df.open(): contents = ''.join(df.reader()) self.assertEqual(contents, "hello") # can't get it from the normal place req = Request.blank('/v1/a/c1/wrong-o', environ={'REQUEST_METHOD': 'GET'}, headers={'Content-Type': 'text/plain'}) res = req.get_response(prosrv) self.assertEqual(res.status_int, 404) # sanity check # but we can get it from policy 2 req = Request.blank('/v1/a/c1/wrong-o', environ={'REQUEST_METHOD': 'GET'}, headers={'Content-Type': 'text/plain', 'X-Backend-Storage-Policy-Index': '2'}) res = req.get_response(prosrv) self.assertEqual(res.status_int, 200) self.assertEqual(res.body, 'hello') # and we can delete it the same way req = Request.blank('/v1/a/c1/wrong-o', environ={'REQUEST_METHOD': 'DELETE'}, headers={'Content-Type': 'text/plain', 'X-Backend-Storage-Policy-Index': '2'}) res = req.get_response(prosrv) self.assertEqual(res.status_int, 204) df = df_mgr.get_diskfile(node['device'], partition, 'a', 'c1', 'wrong-o', policy=POLICIES[2]) try: df.open() except DiskFileNotExist as e: self.assertTrue(float(e.timestamp) > 0) else: self.fail('did not raise DiskFileNotExist') @unpatch_policies def test_GET_newest_large_file(self): prolis = _test_sockets[0] prosrv = _test_servers[0] sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() obj = 'a' * (1024 * 1024) path = '/v1/a/c/o.large' fd.write('PUT %s HTTP/1.1\r\n' 'Host: localhost\r\n' 'Connection: close\r\n' 'X-Storage-Token: t\r\n' 'Content-Length: %s\r\n' 'Content-Type: application/octet-stream\r\n' '\r\n%s' % (path, str(len(obj)), obj)) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 201' self.assertEqual(headers[:len(exp)], exp) req = Request.blank(path, environ={'REQUEST_METHOD': 'GET'}, headers={'Content-Type': 'application/octet-stream', 'X-Newest': 'true'}) res = req.get_response(prosrv) self.assertEqual(res.status_int, 200) self.assertEqual(res.body, obj) @unpatch_policies def test_GET_ranges(self): prolis = _test_sockets[0] prosrv = _test_servers[0] sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() obj = (''.join( ('beans lots of beans lots of beans lots of beans yeah %04d ' % i) for i in range(100))) path = '/v1/a/c/o.beans' fd.write('PUT %s HTTP/1.1\r\n' 'Host: localhost\r\n' 'Connection: close\r\n' 'X-Storage-Token: t\r\n' 'Content-Length: %s\r\n' 'Content-Type: application/octet-stream\r\n' '\r\n%s' % (path, str(len(obj)), obj)) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 201' self.assertEqual(headers[:len(exp)], exp) # one byte range req = Request.blank( path, environ={'REQUEST_METHOD': 'GET'}, headers={'Content-Type': 'application/octet-stream', 'Range': 'bytes=10-200'}) res = req.get_response(prosrv) self.assertEqual(res.status_int, 206) self.assertEqual(res.body, obj[10:201]) # multiple byte ranges req = Request.blank( path, environ={'REQUEST_METHOD': 'GET'}, headers={'Content-Type': 'application/octet-stream', 'Range': 'bytes=10-200,1000-1099,4123-4523'}) res = req.get_response(prosrv) self.assertEqual(res.status_int, 206) ct, params = parse_content_type(res.headers['Content-Type']) self.assertEqual(ct, 'multipart/byteranges') boundary = dict(params).get('boundary') self.assertTrue(boundary is not None) got_mime_docs = [] for mime_doc_fh in iter_multipart_mime_documents(StringIO(res.body), boundary): headers = parse_mime_headers(mime_doc_fh) body = mime_doc_fh.read() got_mime_docs.append((headers, body)) self.assertEqual(len(got_mime_docs), 3) first_range_headers = got_mime_docs[0][0] first_range_body = got_mime_docs[0][1] self.assertEqual(first_range_headers['Content-Range'], 'bytes 10-200/5800') self.assertEqual(first_range_body, obj[10:201]) second_range_headers = got_mime_docs[1][0] second_range_body = got_mime_docs[1][1] self.assertEqual(second_range_headers['Content-Range'], 'bytes 1000-1099/5800') self.assertEqual(second_range_body, obj[1000:1100]) second_range_headers = got_mime_docs[2][0] second_range_body = got_mime_docs[2][1] self.assertEqual(second_range_headers['Content-Range'], 'bytes 4123-4523/5800') self.assertEqual(second_range_body, obj[4123:4524]) @unpatch_policies def test_GET_bad_range_zero_byte(self): prolis = _test_sockets[0] prosrv = _test_servers[0] sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() path = '/v1/a/c/o.zerobyte' fd.write('PUT %s HTTP/1.1\r\n' 'Host: localhost\r\n' 'Connection: close\r\n' 'X-Storage-Token: t\r\n' 'Content-Length: 0\r\n' 'Content-Type: application/octet-stream\r\n' '\r\n' % (path,)) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 201' self.assertEqual(headers[:len(exp)], exp) # bad byte-range req = Request.blank( path, environ={'REQUEST_METHOD': 'GET'}, headers={'Content-Type': 'application/octet-stream', 'Range': 'bytes=spaghetti-carbonara'}) res = req.get_response(prosrv) self.assertEqual(res.status_int, 200) self.assertEqual(res.body, '') # not a byte-range req = Request.blank( path, environ={'REQUEST_METHOD': 'GET'}, headers={'Content-Type': 'application/octet-stream', 'Range': 'Kotta'}) res = req.get_response(prosrv) self.assertEqual(res.status_int, 200) self.assertEqual(res.body, '') @unpatch_policies def test_GET_ranges_resuming(self): prolis = _test_sockets[0] prosrv = _test_servers[0] sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() obj = (''.join( ('Smurf! The smurfing smurf is completely smurfed. %03d ' % i) for i in range(1000))) path = '/v1/a/c/o.smurfs' fd.write('PUT %s HTTP/1.1\r\n' 'Host: localhost\r\n' 'Connection: close\r\n' 'X-Storage-Token: t\r\n' 'Content-Length: %s\r\n' 'Content-Type: application/smurftet-stream\r\n' '\r\n%s' % (path, str(len(obj)), obj)) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 201' self.assertEqual(headers[:len(exp)], exp) kaboomed = [0] bytes_before_timeout = [None] class FileLikeKaboom(object): def __init__(self, inner_file_like): self.inner_file_like = inner_file_like # close(), etc. def __getattr__(self, attr): return getattr(self.inner_file_like, attr) def readline(self, *a, **kw): if bytes_before_timeout[0] <= 0: kaboomed[0] += 1 raise ChunkReadTimeout(None) result = self.inner_file_like.readline(*a, **kw) if len(result) > bytes_before_timeout[0]: result = result[:bytes_before_timeout[0]] bytes_before_timeout[0] -= len(result) return result def read(self, length=None): result = self.inner_file_like.read(length) if bytes_before_timeout[0] <= 0: kaboomed[0] += 1 raise ChunkReadTimeout(None) if len(result) > bytes_before_timeout[0]: result = result[:bytes_before_timeout[0]] bytes_before_timeout[0] -= len(result) return result orig_hrtdi = proxy_base.http_response_to_document_iters # Use this to mock out http_response_to_document_iters. On the first # call, the result will be sabotaged to blow up with # ChunkReadTimeout after some number of bytes are read. On # subsequent calls, no sabotage will be added. def sabotaged_hrtdi(*a, **kw): resp_parts = orig_hrtdi(*a, **kw) for sb, eb, l, h, range_file in resp_parts: if bytes_before_timeout[0] <= 0: # simulate being unable to read MIME part of # multipart/byteranges response kaboomed[0] += 1 raise ChunkReadTimeout(None) boomer = FileLikeKaboom(range_file) yield sb, eb, l, h, boomer sabotaged = [False] def single_sabotage_hrtdi(*a, **kw): if not sabotaged[0]: sabotaged[0] = True return sabotaged_hrtdi(*a, **kw) else: return orig_hrtdi(*a, **kw) # We want sort of an end-to-end test of object resuming, so what we # do is mock out stuff so the proxy thinks it only read a certain # number of bytes before it got a timeout. bytes_before_timeout[0] = 300 with mock.patch.object(proxy_base, 'http_response_to_document_iters', single_sabotage_hrtdi): req = Request.blank( path, environ={'REQUEST_METHOD': 'GET'}, headers={'Content-Type': 'application/octet-stream', 'Range': 'bytes=0-500'}) res = req.get_response(prosrv) body = res.body # read the whole thing self.assertEqual(kaboomed[0], 1) # sanity check self.assertEqual(res.status_int, 206) self.assertEqual(len(body), 501) self.assertEqual(body, obj[:501]) # Sanity-check for multi-range resume: make sure we actually break # in the middle of the second byterange. This test is partially # about what happens when all the object servers break at once, and # partially about validating all these mocks we do. After all, the # point of resuming is that the client can't tell anything went # wrong, so we need a test where we can't resume and something # *does* go wrong so we can observe it. bytes_before_timeout[0] = 700 kaboomed[0] = 0 sabotaged[0] = False prosrv._error_limiting = {} # clear out errors with mock.patch.object(proxy_base, 'http_response_to_document_iters', sabotaged_hrtdi): # perma-broken req = Request.blank( path, environ={'REQUEST_METHOD': 'GET'}, headers={'Range': 'bytes=0-500,1000-1500,2000-2500'}) res = req.get_response(prosrv) body = '' try: for chunk in res.app_iter: body += chunk except ChunkReadTimeout: pass self.assertEqual(res.status_int, 206) self.assertTrue(kaboomed[0] > 0) # sanity check ct, params = parse_content_type(res.headers['Content-Type']) self.assertEqual(ct, 'multipart/byteranges') # sanity check boundary = dict(params).get('boundary') self.assertTrue(boundary is not None) # sanity check got_byteranges = [] for mime_doc_fh in iter_multipart_mime_documents(StringIO(body), boundary): parse_mime_headers(mime_doc_fh) body = mime_doc_fh.read() got_byteranges.append(body) self.assertEqual(len(got_byteranges), 2) self.assertEqual(len(got_byteranges[0]), 501) self.assertEqual(len(got_byteranges[1]), 199) # partial # Multi-range resume, resuming in the middle of the first byterange bytes_before_timeout[0] = 300 kaboomed[0] = 0 sabotaged[0] = False prosrv._error_limiting = {} # clear out errors with mock.patch.object(proxy_base, 'http_response_to_document_iters', single_sabotage_hrtdi): req = Request.blank( path, environ={'REQUEST_METHOD': 'GET'}, headers={'Range': 'bytes=0-500,1000-1500,2000-2500'}) res = req.get_response(prosrv) body = ''.join(res.app_iter) self.assertEqual(res.status_int, 206) self.assertEqual(kaboomed[0], 1) # sanity check ct, params = parse_content_type(res.headers['Content-Type']) self.assertEqual(ct, 'multipart/byteranges') # sanity check boundary = dict(params).get('boundary') self.assertTrue(boundary is not None) # sanity check got_byteranges = [] for mime_doc_fh in iter_multipart_mime_documents(StringIO(body), boundary): parse_mime_headers(mime_doc_fh) body = mime_doc_fh.read() got_byteranges.append(body) self.assertEqual(len(got_byteranges), 3) self.assertEqual(len(got_byteranges[0]), 501) self.assertEqual(got_byteranges[0], obj[:501]) self.assertEqual(len(got_byteranges[1]), 501) self.assertEqual(got_byteranges[1], obj[1000:1501]) self.assertEqual(len(got_byteranges[2]), 501) self.assertEqual(got_byteranges[2], obj[2000:2501]) # Multi-range resume, first GET dies in the middle of the second set # of MIME headers bytes_before_timeout[0] = 501 kaboomed[0] = 0 sabotaged[0] = False prosrv._error_limiting = {} # clear out errors with mock.patch.object(proxy_base, 'http_response_to_document_iters', single_sabotage_hrtdi): req = Request.blank( path, environ={'REQUEST_METHOD': 'GET'}, headers={'Range': 'bytes=0-500,1000-1500,2000-2500'}) res = req.get_response(prosrv) body = ''.join(res.app_iter) self.assertEqual(res.status_int, 206) self.assertTrue(kaboomed[0] >= 1) # sanity check ct, params = parse_content_type(res.headers['Content-Type']) self.assertEqual(ct, 'multipart/byteranges') # sanity check boundary = dict(params).get('boundary') self.assertTrue(boundary is not None) # sanity check got_byteranges = [] for mime_doc_fh in iter_multipart_mime_documents(StringIO(body), boundary): parse_mime_headers(mime_doc_fh) body = mime_doc_fh.read() got_byteranges.append(body) self.assertEqual(len(got_byteranges), 3) self.assertEqual(len(got_byteranges[0]), 501) self.assertEqual(got_byteranges[0], obj[:501]) self.assertEqual(len(got_byteranges[1]), 501) self.assertEqual(got_byteranges[1], obj[1000:1501]) self.assertEqual(len(got_byteranges[2]), 501) self.assertEqual(got_byteranges[2], obj[2000:2501]) # Multi-range resume, first GET dies in the middle of the second # byterange bytes_before_timeout[0] = 750 kaboomed[0] = 0 sabotaged[0] = False prosrv._error_limiting = {} # clear out errors with mock.patch.object(proxy_base, 'http_response_to_document_iters', single_sabotage_hrtdi): req = Request.blank( path, environ={'REQUEST_METHOD': 'GET'}, headers={'Range': 'bytes=0-500,1000-1500,2000-2500'}) res = req.get_response(prosrv) body = ''.join(res.app_iter) self.assertEqual(res.status_int, 206) self.assertTrue(kaboomed[0] >= 1) # sanity check ct, params = parse_content_type(res.headers['Content-Type']) self.assertEqual(ct, 'multipart/byteranges') # sanity check boundary = dict(params).get('boundary') self.assertTrue(boundary is not None) # sanity check got_byteranges = [] for mime_doc_fh in iter_multipart_mime_documents(StringIO(body), boundary): parse_mime_headers(mime_doc_fh) body = mime_doc_fh.read() got_byteranges.append(body) self.assertEqual(len(got_byteranges), 3) self.assertEqual(len(got_byteranges[0]), 501) self.assertEqual(got_byteranges[0], obj[:501]) self.assertEqual(len(got_byteranges[1]), 501) self.assertEqual(got_byteranges[1], obj[1000:1501]) self.assertEqual(len(got_byteranges[2]), 501) self.assertEqual(got_byteranges[2], obj[2000:2501]) @unpatch_policies def test_PUT_ec(self): policy = POLICIES[3] self.put_container("ec", "ec-con") obj = 'abCD' * 10 # small, so we don't get multiple EC stripes prolis = _test_sockets[0] sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('PUT /v1/a/ec-con/o1 HTTP/1.1\r\n' 'Host: localhost\r\n' 'Connection: close\r\n' 'Etag: "%s"\r\n' 'Content-Length: %d\r\n' 'X-Storage-Token: t\r\n' 'Content-Type: application/octet-stream\r\n' '\r\n%s' % (md5(obj).hexdigest(), len(obj), obj)) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 201' self.assertEqual(headers[:len(exp)], exp) ecd = policy.pyeclib_driver expected_pieces = set(ecd.encode(obj)) # go to disk to make sure it's there and all erasure-coded partition, nodes = policy.object_ring.get_nodes('a', 'ec-con', 'o1') conf = {'devices': _testdir, 'mount_check': 'false'} df_mgr = diskfile.DiskFileRouter(conf, FakeLogger())[policy] got_pieces = set() got_indices = set() got_durable = [] for node_index, node in enumerate(nodes): df = df_mgr.get_diskfile(node['device'], partition, 'a', 'ec-con', 'o1', policy=policy) with df.open(): meta = df.get_metadata() contents = ''.join(df.reader()) got_pieces.add(contents) # check presence for a .durable file for the timestamp durable_file = os.path.join( _testdir, node['device'], storage_directory( diskfile.get_data_dir(policy), partition, hash_path('a', 'ec-con', 'o1')), utils.Timestamp(df.timestamp).internal + '.durable') if os.path.isfile(durable_file): got_durable.append(True) lmeta = dict((k.lower(), v) for k, v in meta.items()) got_indices.add( lmeta['x-object-sysmeta-ec-frag-index']) self.assertEqual( lmeta['x-object-sysmeta-ec-etag'], md5(obj).hexdigest()) self.assertEqual( lmeta['x-object-sysmeta-ec-content-length'], str(len(obj))) self.assertEqual( lmeta['x-object-sysmeta-ec-segment-size'], '4096') self.assertEqual( lmeta['x-object-sysmeta-ec-scheme'], '%s 2+1' % DEFAULT_TEST_EC_TYPE) self.assertEqual( lmeta['etag'], md5(contents).hexdigest()) self.assertEqual(expected_pieces, got_pieces) self.assertEqual(set(('0', '1', '2')), got_indices) # verify at least 2 puts made it all the way to the end of 2nd # phase, ie at least 2 .durable statuses were written num_durable_puts = sum(d is True for d in got_durable) self.assertTrue(num_durable_puts >= 2) @unpatch_policies def test_PUT_ec_multiple_segments(self): ec_policy = POLICIES[3] self.put_container("ec", "ec-con") pyeclib_header_size = len(ec_policy.pyeclib_driver.encode("")[0]) segment_size = ec_policy.ec_segment_size # Big enough to have multiple segments. Also a multiple of the # segment size to get coverage of that path too. obj = 'ABC' * segment_size prolis = _test_sockets[0] sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('PUT /v1/a/ec-con/o2 HTTP/1.1\r\n' 'Host: localhost\r\n' 'Connection: close\r\n' 'Content-Length: %d\r\n' 'X-Storage-Token: t\r\n' 'Content-Type: application/octet-stream\r\n' '\r\n%s' % (len(obj), obj)) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 201' self.assertEqual(headers[:len(exp)], exp) # it's a 2+1 erasure code, so each fragment archive should be half # the length of the object, plus three inline pyeclib metadata # things (one per segment) expected_length = (len(obj) / 2 + pyeclib_header_size * 3) partition, nodes = ec_policy.object_ring.get_nodes( 'a', 'ec-con', 'o2') conf = {'devices': _testdir, 'mount_check': 'false'} df_mgr = diskfile.DiskFileRouter(conf, FakeLogger())[ec_policy] got_durable = [] fragment_archives = [] for node in nodes: df = df_mgr.get_diskfile( node['device'], partition, 'a', 'ec-con', 'o2', policy=ec_policy) with df.open(): contents = ''.join(df.reader()) fragment_archives.append(contents) self.assertEqual(len(contents), expected_length) # check presence for a .durable file for the timestamp durable_file = os.path.join( _testdir, node['device'], storage_directory( diskfile.get_data_dir(ec_policy), partition, hash_path('a', 'ec-con', 'o2')), utils.Timestamp(df.timestamp).internal + '.durable') if os.path.isfile(durable_file): got_durable.append(True) # Verify that we can decode each individual fragment and that they # are all the correct size fragment_size = ec_policy.fragment_size nfragments = int( math.ceil(float(len(fragment_archives[0])) / fragment_size)) for fragment_index in range(nfragments): fragment_start = fragment_index * fragment_size fragment_end = (fragment_index + 1) * fragment_size try: frags = [fa[fragment_start:fragment_end] for fa in fragment_archives] seg = ec_policy.pyeclib_driver.decode(frags) except ECDriverError: self.fail("Failed to decode fragments %d; this probably " "means the fragments are not the sizes they " "should be" % fragment_index) segment_start = fragment_index * segment_size segment_end = (fragment_index + 1) * segment_size self.assertEqual(seg, obj[segment_start:segment_end]) # verify at least 2 puts made it all the way to the end of 2nd # phase, ie at least 2 .durable statuses were written num_durable_puts = sum(d is True for d in got_durable) self.assertTrue(num_durable_puts >= 2) @unpatch_policies def test_PUT_ec_object_etag_mismatch(self): ec_policy = POLICIES[3] self.put_container("ec", "ec-con") obj = '90:6A:02:60:B1:08-96da3e706025537fc42464916427727e' prolis = _test_sockets[0] prosrv = _test_servers[0] sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('PUT /v1/a/ec-con/o3 HTTP/1.1\r\n' 'Host: localhost\r\n' 'Connection: close\r\n' 'Etag: %s\r\n' 'Content-Length: %d\r\n' 'X-Storage-Token: t\r\n' 'Content-Type: application/octet-stream\r\n' '\r\n%s' % (md5('something else').hexdigest(), len(obj), obj)) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 422' self.assertEqual(headers[:len(exp)], exp) # nothing should have made it to disk on the object servers partition, nodes = prosrv.get_object_ring(3).get_nodes( 'a', 'ec-con', 'o3') conf = {'devices': _testdir, 'mount_check': 'false'} df_mgr = diskfile.DiskFileRouter(conf, FakeLogger())[ec_policy] for node in nodes: df = df_mgr.get_diskfile(node['device'], partition, 'a', 'ec-con', 'o3', policy=POLICIES[3]) self.assertRaises(DiskFileNotExist, df.open) @unpatch_policies def test_PUT_ec_fragment_archive_etag_mismatch(self): ec_policy = POLICIES[3] self.put_container("ec", "ec-con") # Cause a hash mismatch by feeding one particular MD5 hasher some # extra data. The goal here is to get exactly one of the hashers in # an object server. countdown = [1] def busted_md5_constructor(initial_str=""): hasher = md5(initial_str) if countdown[0] == 0: hasher.update('wrong') countdown[0] -= 1 return hasher obj = 'uvarovite-esurience-cerated-symphysic' prolis = _test_sockets[0] prosrv = _test_servers[0] sock = connect_tcp(('localhost', prolis.getsockname()[1])) with mock.patch('swift.obj.server.md5', busted_md5_constructor): fd = sock.makefile() fd.write('PUT /v1/a/ec-con/pimento HTTP/1.1\r\n' 'Host: localhost\r\n' 'Connection: close\r\n' 'Etag: %s\r\n' 'Content-Length: %d\r\n' 'X-Storage-Token: t\r\n' 'Content-Type: application/octet-stream\r\n' '\r\n%s' % (md5(obj).hexdigest(), len(obj), obj)) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 503' # no quorum self.assertEqual(headers[:len(exp)], exp) # 2/3 of the fragment archives should have landed on disk partition, nodes = prosrv.get_object_ring(3).get_nodes( 'a', 'ec-con', 'pimento') conf = {'devices': _testdir, 'mount_check': 'false'} df_mgr = diskfile.DiskFileRouter(conf, FakeLogger())[ec_policy] found = 0 for node in nodes: df = df_mgr.get_diskfile(node['device'], partition, 'a', 'ec-con', 'pimento', policy=POLICIES[3]) try: # diskfile open won't succeed because no durable was written, # so look under the hood for data files. files = os.listdir(df._datadir) num_data_files = len([f for f in files if f.endswith('.data')]) self.assertEqual(1, num_data_files) found += 1 except OSError: pass self.assertEqual(found, 2) @unpatch_policies def test_PUT_ec_fragment_quorum_archive_etag_mismatch(self): ec_policy = POLICIES[3] self.put_container("ec", "ec-con") def busted_md5_constructor(initial_str=""): hasher = md5(initial_str) hasher.update('wrong') return hasher obj = 'uvarovite-esurience-cerated-symphysic' prolis = _test_sockets[0] prosrv = _test_servers[0] sock = connect_tcp(('localhost', prolis.getsockname()[1])) call_count = [0] def mock_committer(self): call_count[0] += 1 commit_confirmation = \ 'swift.proxy.controllers.obj.ECPutter.send_commit_confirmation' with mock.patch('swift.obj.server.md5', busted_md5_constructor), \ mock.patch(commit_confirmation, mock_committer): fd = sock.makefile() fd.write('PUT /v1/a/ec-con/quorum HTTP/1.1\r\n' 'Host: localhost\r\n' 'Connection: close\r\n' 'Etag: %s\r\n' 'Content-Length: %d\r\n' 'X-Storage-Token: t\r\n' 'Content-Type: application/octet-stream\r\n' '\r\n%s' % (md5(obj).hexdigest(), len(obj), obj)) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 503' # no quorum self.assertEqual(headers[:len(exp)], exp) # Don't send commit to object-server if quorum responses consist of 4xx self.assertEqual(0, call_count[0]) # no fragment archives should have landed on disk partition, nodes = prosrv.get_object_ring(3).get_nodes( 'a', 'ec-con', 'quorum') conf = {'devices': _testdir, 'mount_check': 'false'} df_mgr = diskfile.DiskFileRouter(conf, FakeLogger())[ec_policy] for node in nodes: df = df_mgr.get_diskfile(node['device'], partition, 'a', 'ec-con', 'quorum', policy=POLICIES[3]) self.assertFalse(os.path.exists(df._datadir)) @unpatch_policies def test_PUT_ec_fragment_quorum_bad_request(self): ec_policy = POLICIES[3] self.put_container("ec", "ec-con") obj = 'uvarovite-esurience-cerated-symphysic' prolis = _test_sockets[0] prosrv = _test_servers[0] sock = connect_tcp(('localhost', prolis.getsockname()[1])) call_count = [0] def mock_committer(self): call_count[0] += 1 read_footer = \ 'swift.obj.server.ObjectController._read_metadata_footer' commit_confirmation = \ 'swift.proxy.controllers.obj.ECPutter.send_commit_confirmation' with mock.patch(read_footer) as read_footer_call, \ mock.patch(commit_confirmation, mock_committer): # Emulate missing footer MIME doc in all object-servers read_footer_call.side_effect = HTTPBadRequest( body="couldn't find footer MIME doc") fd = sock.makefile() fd.write('PUT /v1/a/ec-con/quorum HTTP/1.1\r\n' 'Host: localhost\r\n' 'Connection: close\r\n' 'Etag: %s\r\n' 'Content-Length: %d\r\n' 'X-Storage-Token: t\r\n' 'Content-Type: application/octet-stream\r\n' '\r\n%s' % (md5(obj).hexdigest(), len(obj), obj)) fd.flush() headers = readuntil2crlfs(fd) # Don't show a result of the bad conversation between proxy-server # and object-server exp = 'HTTP/1.1 503' self.assertEqual(headers[:len(exp)], exp) # Don't send commit to object-server if quorum responses consist of 4xx self.assertEqual(0, call_count[0]) # no fragment archives should have landed on disk partition, nodes = prosrv.get_object_ring(3).get_nodes( 'a', 'ec-con', 'quorum') conf = {'devices': _testdir, 'mount_check': 'false'} df_mgr = diskfile.DiskFileRouter(conf, FakeLogger())[ec_policy] for node in nodes: df = df_mgr.get_diskfile(node['device'], partition, 'a', 'ec-con', 'quorum', policy=POLICIES[3]) self.assertFalse(os.path.exists(df._datadir)) @unpatch_policies def test_PUT_ec_if_none_match(self): self.put_container("ec", "ec-con") obj = 'ananepionic-lepidophyllous-ropewalker-neglectful' prolis = _test_sockets[0] sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('PUT /v1/a/ec-con/inm HTTP/1.1\r\n' 'Host: localhost\r\n' 'Connection: close\r\n' 'Etag: "%s"\r\n' 'Content-Length: %d\r\n' 'X-Storage-Token: t\r\n' 'Content-Type: application/octet-stream\r\n' '\r\n%s' % (md5(obj).hexdigest(), len(obj), obj)) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 201' self.assertEqual(headers[:len(exp)], exp) sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('PUT /v1/a/ec-con/inm HTTP/1.1\r\n' 'Host: localhost\r\n' 'Connection: close\r\n' 'If-None-Match: *\r\n' 'Etag: "%s"\r\n' 'Content-Length: %d\r\n' 'X-Storage-Token: t\r\n' 'Content-Type: application/octet-stream\r\n' '\r\n%s' % (md5(obj).hexdigest(), len(obj), obj)) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 412' self.assertEqual(headers[:len(exp)], exp) @unpatch_policies def test_GET_ec(self): self.put_container("ec", "ec-con") obj = '0123456' * 11 * 17 prolis = _test_sockets[0] prosrv = _test_servers[0] sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('PUT /v1/a/ec-con/go-get-it HTTP/1.1\r\n' 'Host: localhost\r\n' 'Connection: close\r\n' 'Content-Length: %d\r\n' 'X-Storage-Token: t\r\n' 'X-Object-Meta-Color: chartreuse\r\n' 'Content-Type: application/octet-stream\r\n' '\r\n%s' % (len(obj), obj)) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 201' self.assertEqual(headers[:len(exp)], exp) sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('GET /v1/a/ec-con/go-get-it HTTP/1.1\r\n' 'Host: localhost\r\n' 'Connection: close\r\n' 'X-Storage-Token: t\r\n' '\r\n') fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 200' self.assertEqual(headers[:len(exp)], exp) headers = parse_headers_string(headers) self.assertEqual(str(len(obj)), headers['Content-Length']) self.assertEqual(md5(obj).hexdigest(), headers['Etag']) self.assertEqual('chartreuse', headers['X-Object-Meta-Color']) gotten_obj = '' while True: buf = fd.read(64) if not buf: break gotten_obj += buf self.assertEqual(gotten_obj, obj) error_lines = prosrv.logger.get_lines_for_level('error') warn_lines = prosrv.logger.get_lines_for_level('warning') self.assertEqual(len(error_lines), 0) # sanity self.assertEqual(len(warn_lines), 0) # sanity @unpatch_policies def test_conditional_GET_ec(self): self.put_container("ec", "ec-con") obj = 'this object has an etag and is otherwise unimportant' etag = md5(obj).hexdigest() not_etag = md5(obj + "blahblah").hexdigest() prolis = _test_sockets[0] prosrv = _test_servers[0] sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('PUT /v1/a/ec-con/conditionals HTTP/1.1\r\n' 'Host: localhost\r\n' 'Connection: close\r\n' 'Content-Length: %d\r\n' 'X-Storage-Token: t\r\n' 'Content-Type: application/octet-stream\r\n' '\r\n%s' % (len(obj), obj)) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 201' self.assertEqual(headers[:len(exp)], exp) for verb, body in (('GET', obj), ('HEAD', '')): # If-Match req = Request.blank( '/v1/a/ec-con/conditionals', environ={'REQUEST_METHOD': verb}, headers={'If-Match': etag}) resp = req.get_response(prosrv) self.assertEqual(resp.status_int, 200) self.assertEqual(resp.body, body) req = Request.blank( '/v1/a/ec-con/conditionals', environ={'REQUEST_METHOD': verb}, headers={'If-Match': not_etag}) resp = req.get_response(prosrv) self.assertEqual(resp.status_int, 412) req = Request.blank( '/v1/a/ec-con/conditionals', environ={'REQUEST_METHOD': verb}, headers={'If-Match': "*"}) resp = req.get_response(prosrv) self.assertEqual(resp.status_int, 200) self.assertEqual(resp.body, body) # If-None-Match req = Request.blank( '/v1/a/ec-con/conditionals', environ={'REQUEST_METHOD': verb}, headers={'If-None-Match': etag}) resp = req.get_response(prosrv) self.assertEqual(resp.status_int, 304) req = Request.blank( '/v1/a/ec-con/conditionals', environ={'REQUEST_METHOD': verb}, headers={'If-None-Match': not_etag}) resp = req.get_response(prosrv) self.assertEqual(resp.status_int, 200) self.assertEqual(resp.body, body) req = Request.blank( '/v1/a/ec-con/conditionals', environ={'REQUEST_METHOD': verb}, headers={'If-None-Match': "*"}) resp = req.get_response(prosrv) self.assertEqual(resp.status_int, 304) error_lines = prosrv.logger.get_lines_for_level('error') warn_lines = prosrv.logger.get_lines_for_level('warning') self.assertEqual(len(error_lines), 0) # sanity self.assertEqual(len(warn_lines), 0) # sanity @unpatch_policies def test_GET_ec_big(self): self.put_container("ec", "ec-con") # our EC segment size is 4 KiB, so this is multiple (3) segments; # we'll verify that with a sanity check obj = 'a moose once bit my sister' * 400 self.assertTrue( len(obj) > POLICIES.get_by_name("ec").ec_segment_size * 2, "object is too small for proper testing") prolis = _test_sockets[0] prosrv = _test_servers[0] sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('PUT /v1/a/ec-con/big-obj-get HTTP/1.1\r\n' 'Host: localhost\r\n' 'Connection: close\r\n' 'Content-Length: %d\r\n' 'X-Storage-Token: t\r\n' 'Content-Type: application/octet-stream\r\n' '\r\n%s' % (len(obj), obj)) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 201' self.assertEqual(headers[:len(exp)], exp) sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('GET /v1/a/ec-con/big-obj-get HTTP/1.1\r\n' 'Host: localhost\r\n' 'Connection: close\r\n' 'X-Storage-Token: t\r\n' '\r\n') fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 200' self.assertEqual(headers[:len(exp)], exp) headers = parse_headers_string(headers) self.assertEqual(str(len(obj)), headers['Content-Length']) self.assertEqual(md5(obj).hexdigest(), headers['Etag']) gotten_obj = '' while True: buf = fd.read(64) if not buf: break gotten_obj += buf # This may look like a redundant test, but when things fail, this # has a useful failure message while the subsequent one spews piles # of garbage and demolishes your terminal's scrollback buffer. self.assertEqual(len(gotten_obj), len(obj)) self.assertEqual(gotten_obj, obj) error_lines = prosrv.logger.get_lines_for_level('error') warn_lines = prosrv.logger.get_lines_for_level('warning') self.assertEqual(len(error_lines), 0) # sanity self.assertEqual(len(warn_lines), 0) # sanity @unpatch_policies def test_GET_ec_failure_handling(self): self.put_container("ec", "ec-con") obj = 'look at this object; it is simply amazing ' * 500 prolis = _test_sockets[0] sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('PUT /v1/a/ec-con/crash-test-dummy HTTP/1.1\r\n' 'Host: localhost\r\n' 'Connection: close\r\n' 'Content-Length: %d\r\n' 'X-Storage-Token: t\r\n' 'Content-Type: application/octet-stream\r\n' '\r\n%s' % (len(obj), obj)) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 201' self.assertEqual(headers[:len(exp)], exp) def explodey_iter(inner_iter): yield next(inner_iter) raise Exception("doom ba doom") def explodey_doc_parts_iter(inner_iter_iter): for item in inner_iter_iter: item = item.copy() # paranoia about mutable data item['part_iter'] = explodey_iter(item['part_iter']) yield item real_ec_app_iter = swift.proxy.controllers.obj.ECAppIter def explodey_ec_app_iter(path, policy, iterators, *a, **kw): # Each thing in `iterators` here is a document-parts iterator, # and we want to fail after getting a little into each part. # # That way, we ensure we've started streaming the response to # the client when things go wrong. return real_ec_app_iter( path, policy, [explodey_doc_parts_iter(i) for i in iterators], *a, **kw) with mock.patch("swift.proxy.controllers.obj.ECAppIter", explodey_ec_app_iter): sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('GET /v1/a/ec-con/crash-test-dummy HTTP/1.1\r\n' 'Host: localhost\r\n' 'Connection: close\r\n' 'X-Storage-Token: t\r\n' '\r\n') fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 200' self.assertEqual(headers[:len(exp)], exp) headers = parse_headers_string(headers) self.assertEqual(str(len(obj)), headers['Content-Length']) self.assertEqual(md5(obj).hexdigest(), headers['Etag']) gotten_obj = '' try: with Timeout(300): # don't hang the testrun when this fails while True: buf = fd.read(64) if not buf: break gotten_obj += buf except Timeout: self.fail("GET hung when connection failed") # Ensure we failed partway through, otherwise the mocks could # get out of date without anyone noticing self.assertTrue(0 < len(gotten_obj) < len(obj)) @unpatch_policies def test_HEAD_ec(self): self.put_container("ec", "ec-con") obj = '0123456' * 11 * 17 prolis = _test_sockets[0] prosrv = _test_servers[0] sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('PUT /v1/a/ec-con/go-head-it HTTP/1.1\r\n' 'Host: localhost\r\n' 'Connection: close\r\n' 'Content-Length: %d\r\n' 'X-Storage-Token: t\r\n' 'X-Object-Meta-Color: chartreuse\r\n' 'Content-Type: application/octet-stream\r\n' '\r\n%s' % (len(obj), obj)) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 201' self.assertEqual(headers[:len(exp)], exp) sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('HEAD /v1/a/ec-con/go-head-it HTTP/1.1\r\n' 'Host: localhost\r\n' 'Connection: close\r\n' 'X-Storage-Token: t\r\n' '\r\n') fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 200' self.assertEqual(headers[:len(exp)], exp) headers = parse_headers_string(headers) self.assertEqual(str(len(obj)), headers['Content-Length']) self.assertEqual(md5(obj).hexdigest(), headers['Etag']) self.assertEqual('chartreuse', headers['X-Object-Meta-Color']) error_lines = prosrv.logger.get_lines_for_level('error') warn_lines = prosrv.logger.get_lines_for_level('warning') self.assertEqual(len(error_lines), 0) # sanity self.assertEqual(len(warn_lines), 0) # sanity @unpatch_policies def test_GET_ec_404(self): self.put_container("ec", "ec-con") prolis = _test_sockets[0] prosrv = _test_servers[0] sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('GET /v1/a/ec-con/yes-we-have-no-bananas HTTP/1.1\r\n' 'Host: localhost\r\n' 'Connection: close\r\n' 'X-Storage-Token: t\r\n' '\r\n') fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 404' self.assertEqual(headers[:len(exp)], exp) error_lines = prosrv.logger.get_lines_for_level('error') warn_lines = prosrv.logger.get_lines_for_level('warning') self.assertEqual(len(error_lines), 0) # sanity self.assertEqual(len(warn_lines), 0) # sanity @unpatch_policies def test_HEAD_ec_404(self): self.put_container("ec", "ec-con") prolis = _test_sockets[0] prosrv = _test_servers[0] sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('HEAD /v1/a/ec-con/yes-we-have-no-bananas HTTP/1.1\r\n' 'Host: localhost\r\n' 'Connection: close\r\n' 'X-Storage-Token: t\r\n' '\r\n') fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 404' self.assertEqual(headers[:len(exp)], exp) error_lines = prosrv.logger.get_lines_for_level('error') warn_lines = prosrv.logger.get_lines_for_level('warning') self.assertEqual(len(error_lines), 0) # sanity self.assertEqual(len(warn_lines), 0) # sanity def test_PUT_expect_header_zero_content_length(self): test_errors = [] def test_connect(ipaddr, port, device, partition, method, path, headers=None, query_string=None): if path == '/a/c/o.jpg': if 'expect' in headers or 'Expect' in headers: test_errors.append('Expect was in headers for object ' 'server!') with save_globals(): controller = ReplicatedObjectController( self.app, 'account', 'container', 'object') # The (201, Exception('test')) tuples in there have the effect of # changing the status of the initial expect response. The default # expect response from FakeConn for 201 is 100. # But the object server won't send a 100 continue line if the # client doesn't send a expect 100 header (as is the case with # zero byte PUTs as validated by this test), nevertheless the # object controller calls getexpect without prejudice. In this # case the status from the response shows up early in getexpect # instead of having to wait until getresponse. The Exception is # in there to ensure that the object controller also *uses* the # result of getexpect instead of calling getresponse in which case # our FakeConn will blow up. success_codes = [(201, Exception('test'))] * 3 set_http_connect(200, 200, *success_codes, give_connect=test_connect) req = Request.blank('/v1/a/c/o.jpg', {}) req.content_length = 0 self.app.update_request(req) self.app.memcache.store = {} res = controller.PUT(req) self.assertEqual(test_errors, []) self.assertTrue(res.status.startswith('201 '), res.status) def test_PUT_expect_header_nonzero_content_length(self): test_errors = [] def test_connect(ipaddr, port, device, partition, method, path, headers=None, query_string=None): if path == '/a/c/o.jpg': if 'Expect' not in headers: test_errors.append('Expect was not in headers for ' 'non-zero byte PUT!') with save_globals(): controller = ReplicatedObjectController( self.app, 'a', 'c', 'o.jpg') # the (100, 201) tuples in there are just being extra explicit # about the FakeConn returning the 100 Continue status when the # object controller calls getexpect. Which is FakeConn's default # for 201 if no expect_status is specified. success_codes = [(100, 201)] * 3 set_http_connect(200, 200, *success_codes, give_connect=test_connect) req = Request.blank('/v1/a/c/o.jpg', {}) req.content_length = 1 req.body = 'a' self.app.update_request(req) self.app.memcache.store = {} res = controller.PUT(req) self.assertEqual(test_errors, []) self.assertTrue(res.status.startswith('201 ')) def test_PUT_respects_write_affinity(self): written_to = [] def test_connect(ipaddr, port, device, partition, method, path, headers=None, query_string=None): if path == '/a/c/o.jpg': written_to.append((ipaddr, port, device)) with save_globals(): def is_r0(node): return node['region'] == 0 object_ring = self.app.get_object_ring(None) object_ring.max_more_nodes = 100 self.app.write_affinity_is_local_fn = is_r0 self.app.write_affinity_node_count = lambda r: 3 controller = \ ReplicatedObjectController( self.app, 'a', 'c', 'o.jpg') set_http_connect(200, 200, 201, 201, 201, give_connect=test_connect) req = Request.blank('/v1/a/c/o.jpg', {}) req.content_length = 1 req.body = 'a' self.app.memcache.store = {} res = controller.PUT(req) self.assertTrue(res.status.startswith('201 ')) self.assertEqual(3, len(written_to)) for ip, port, device in written_to: # this is kind of a hokey test, but in FakeRing, the port is even # when the region is 0, and odd when the region is 1, so this test # asserts that we only wrote to nodes in region 0. self.assertEqual(0, port % 2) def test_PUT_respects_write_affinity_with_507s(self): written_to = [] def test_connect(ipaddr, port, device, partition, method, path, headers=None, query_string=None): if path == '/a/c/o.jpg': written_to.append((ipaddr, port, device)) with save_globals(): def is_r0(node): return node['region'] == 0 object_ring = self.app.get_object_ring(None) object_ring.max_more_nodes = 100 self.app.write_affinity_is_local_fn = is_r0 self.app.write_affinity_node_count = lambda r: 3 controller = \ ReplicatedObjectController( self.app, 'a', 'c', 'o.jpg') self.app.error_limit( object_ring.get_part_nodes(1)[0], 'test') set_http_connect(200, 200, # account, container 201, 201, 201, # 3 working backends give_connect=test_connect) req = Request.blank('/v1/a/c/o.jpg', {}) req.content_length = 1 req.body = 'a' self.app.memcache.store = {} res = controller.PUT(req) self.assertTrue(res.status.startswith('201 ')) self.assertEqual(3, len(written_to)) # this is kind of a hokey test, but in FakeRing, the port is even when # the region is 0, and odd when the region is 1, so this test asserts # that we wrote to 2 nodes in region 0, then went to 1 non-r0 node. self.assertEqual(0, written_to[0][1] % 2) # it's (ip, port, device) self.assertEqual(0, written_to[1][1] % 2) self.assertNotEqual(0, written_to[2][1] % 2) @unpatch_policies def test_PUT_no_etag_fallocate(self): with mock.patch('swift.obj.diskfile.fallocate') as mock_fallocate: prolis = _test_sockets[0] sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() obj = 'hemoleucocytic-surfactant' fd.write('PUT /v1/a/c/o HTTP/1.1\r\n' 'Host: localhost\r\n' 'Connection: close\r\n' 'Content-Length: %d\r\n' 'X-Storage-Token: t\r\n' 'Content-Type: application/octet-stream\r\n' '\r\n%s' % (len(obj), obj)) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 201' self.assertEqual(headers[:len(exp)], exp) # one for each obj server; this test has 2 self.assertEqual(len(mock_fallocate.mock_calls), 2) @unpatch_policies def test_PUT_message_length_using_content_length(self): prolis = _test_sockets[0] sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() obj = 'j' * 20 fd.write('PUT /v1/a/c/o.content-length HTTP/1.1\r\n' 'Host: localhost\r\n' 'Connection: close\r\n' 'X-Storage-Token: t\r\n' 'Content-Length: %s\r\n' 'Content-Type: application/octet-stream\r\n' '\r\n%s' % (str(len(obj)), obj)) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 201' self.assertEqual(headers[:len(exp)], exp) @unpatch_policies def test_PUT_message_length_using_transfer_encoding(self): prolis = _test_sockets[0] sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('PUT /v1/a/c/o.chunked HTTP/1.1\r\n' 'Host: localhost\r\n' 'Connection: close\r\n' 'X-Storage-Token: t\r\n' 'Content-Type: application/octet-stream\r\n' 'Transfer-Encoding: chunked\r\n\r\n' '2\r\n' 'oh\r\n' '4\r\n' ' say\r\n' '4\r\n' ' can\r\n' '4\r\n' ' you\r\n' '4\r\n' ' see\r\n' '3\r\n' ' by\r\n' '4\r\n' ' the\r\n' '8\r\n' ' dawns\'\n\r\n' '0\r\n\r\n') fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 201' self.assertEqual(headers[:len(exp)], exp) @unpatch_policies def test_PUT_message_length_using_both(self): prolis = _test_sockets[0] sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('PUT /v1/a/c/o.chunked HTTP/1.1\r\n' 'Host: localhost\r\n' 'Connection: close\r\n' 'X-Storage-Token: t\r\n' 'Content-Type: application/octet-stream\r\n' 'Content-Length: 33\r\n' 'Transfer-Encoding: chunked\r\n\r\n' '2\r\n' 'oh\r\n' '4\r\n' ' say\r\n' '4\r\n' ' can\r\n' '4\r\n' ' you\r\n' '4\r\n' ' see\r\n' '3\r\n' ' by\r\n' '4\r\n' ' the\r\n' '8\r\n' ' dawns\'\n\r\n' '0\r\n\r\n') fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 201' self.assertEqual(headers[:len(exp)], exp) @unpatch_policies def test_PUT_bad_message_length(self): prolis = _test_sockets[0] sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('PUT /v1/a/c/o.chunked HTTP/1.1\r\n' 'Host: localhost\r\n' 'Connection: close\r\n' 'X-Storage-Token: t\r\n' 'Content-Type: application/octet-stream\r\n' 'Content-Length: 33\r\n' 'Transfer-Encoding: gzip\r\n\r\n' '2\r\n' 'oh\r\n' '4\r\n' ' say\r\n' '4\r\n' ' can\r\n' '4\r\n' ' you\r\n' '4\r\n' ' see\r\n' '3\r\n' ' by\r\n' '4\r\n' ' the\r\n' '8\r\n' ' dawns\'\n\r\n' '0\r\n\r\n') fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 400' self.assertEqual(headers[:len(exp)], exp) @unpatch_policies def test_PUT_message_length_unsup_xfr_encoding(self): prolis = _test_sockets[0] sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('PUT /v1/a/c/o.chunked HTTP/1.1\r\n' 'Host: localhost\r\n' 'Connection: close\r\n' 'X-Storage-Token: t\r\n' 'Content-Type: application/octet-stream\r\n' 'Content-Length: 33\r\n' 'Transfer-Encoding: gzip,chunked\r\n\r\n' '2\r\n' 'oh\r\n' '4\r\n' ' say\r\n' '4\r\n' ' can\r\n' '4\r\n' ' you\r\n' '4\r\n' ' see\r\n' '3\r\n' ' by\r\n' '4\r\n' ' the\r\n' '8\r\n' ' dawns\'\n\r\n' '0\r\n\r\n') fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 501' self.assertEqual(headers[:len(exp)], exp) @unpatch_policies def test_PUT_message_length_too_large(self): with mock.patch('swift.common.constraints.MAX_FILE_SIZE', 10): prolis = _test_sockets[0] sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('PUT /v1/a/c/o.chunked HTTP/1.1\r\n' 'Host: localhost\r\n' 'Connection: close\r\n' 'X-Storage-Token: t\r\n' 'Content-Type: application/octet-stream\r\n' 'Content-Length: 33\r\n\r\n' 'oh say can you see by the dawns\'\n') fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 413' self.assertEqual(headers[:len(exp)], exp) @unpatch_policies def test_PUT_last_modified(self): prolis = _test_sockets[0] sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('PUT /v1/a/c/o.last_modified HTTP/1.1\r\n' 'Host: localhost\r\nConnection: close\r\n' 'X-Storage-Token: t\r\nContent-Length: 0\r\n\r\n') fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 201' lm_hdr = 'Last-Modified: ' self.assertEqual(headers[:len(exp)], exp) last_modified_put = [line for line in headers.split('\r\n') if lm_hdr in line][0][len(lm_hdr):] sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('HEAD /v1/a/c/o.last_modified HTTP/1.1\r\n' 'Host: localhost\r\nConnection: close\r\n' 'X-Storage-Token: t\r\n\r\n') fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 200' self.assertEqual(headers[:len(exp)], exp) last_modified_head = [line for line in headers.split('\r\n') if lm_hdr in line][0][len(lm_hdr):] self.assertEqual(last_modified_put, last_modified_head) sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('GET /v1/a/c/o.last_modified HTTP/1.1\r\n' 'Host: localhost\r\nConnection: close\r\n' 'If-Modified-Since: %s\r\n' 'X-Storage-Token: t\r\n\r\n' % last_modified_put) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 304' self.assertEqual(headers[:len(exp)], exp) sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('GET /v1/a/c/o.last_modified HTTP/1.1\r\n' 'Host: localhost\r\nConnection: close\r\n' 'If-Unmodified-Since: %s\r\n' 'X-Storage-Token: t\r\n\r\n' % last_modified_put) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 200' self.assertEqual(headers[:len(exp)], exp) def test_PUT_auto_content_type(self): with save_globals(): controller = ReplicatedObjectController( self.app, 'account', 'container', 'object') def test_content_type(filename, expected): # The three responses here are for account_info() (HEAD to # account server), container_info() (HEAD to container server) # and three calls to _connect_put_node() (PUT to three object # servers) set_http_connect(201, 201, 201, 201, 201, give_content_type=lambda content_type: self.assertEqual(content_type, next(expected))) # We need into include a transfer-encoding to get past # constraints.check_object_creation() req = Request.blank('/v1/a/c/%s' % filename, {}, headers={'transfer-encoding': 'chunked'}) self.app.update_request(req) self.app.memcache.store = {} res = controller.PUT(req) # If we don't check the response here we could miss problems # in PUT() self.assertEqual(res.status_int, 201) test_content_type('test.jpg', iter(['', '', 'image/jpeg', 'image/jpeg', 'image/jpeg'])) test_content_type('test.html', iter(['', '', 'text/html', 'text/html', 'text/html'])) test_content_type('test.css', iter(['', '', 'text/css', 'text/css', 'text/css'])) def test_custom_mime_types_files(self): swift_dir = mkdtemp() try: with open(os.path.join(swift_dir, 'mime.types'), 'w') as fp: fp.write('foo/bar foo\n') proxy_server.Application({'swift_dir': swift_dir}, FakeMemcache(), FakeLogger(), FakeRing(), FakeRing()) self.assertEqual(proxy_server.mimetypes.guess_type('blah.foo')[0], 'foo/bar') self.assertEqual(proxy_server.mimetypes.guess_type('blah.jpg')[0], 'image/jpeg') finally: rmtree(swift_dir, ignore_errors=True) def test_PUT(self): with save_globals(): controller = ReplicatedObjectController( self.app, 'account', 'container', 'object') def test_status_map(statuses, expected): set_http_connect(*statuses) req = Request.blank('/v1/a/c/o.jpg', {}) req.content_length = 0 self.app.update_request(req) self.app.memcache.store = {} res = controller.PUT(req) expected = str(expected) self.assertEqual(res.status[:len(expected)], expected) test_status_map((200, 200, 201, 201, 201), 201) test_status_map((200, 200, 201, 201, 500), 201) test_status_map((200, 200, 204, 404, 404), 404) test_status_map((200, 200, 204, 500, 404), 503) test_status_map((200, 200, 202, 202, 204), 204) def test_PUT_connect_exceptions(self): with save_globals(): controller = ReplicatedObjectController( self.app, 'account', 'container', 'object') def test_status_map(statuses, expected): set_http_connect(*statuses) self.app.memcache.store = {} req = Request.blank('/v1/a/c/o.jpg', {}) req.content_length = 0 self.app.update_request(req) try: res = controller.PUT(req) except HTTPException as res: pass expected = str(expected) self.assertEqual(res.status[:len(expected)], expected) test_status_map((200, 200, 201, 201, -1), 201) # connect exc # connect errors test_status_map((200, 200, Timeout(), 201, 201, ), 201) test_status_map((200, 200, 201, 201, Exception()), 201) # expect errors test_status_map((200, 200, (Timeout(), None), 201, 201), 201) test_status_map((200, 200, (Exception(), None), 201, 201), 201) # response errors test_status_map((200, 200, (100, Timeout()), 201, 201), 201) test_status_map((200, 200, (100, Exception()), 201, 201), 201) test_status_map((200, 200, 507, 201, 201), 201) # error limited test_status_map((200, 200, -1, 201, -1), 503) test_status_map((200, 200, 503, -1, 503), 503) def test_PUT_send_exceptions(self): with save_globals(): controller = ReplicatedObjectController( self.app, 'account', 'container', 'object') def test_status_map(statuses, expected): self.app.memcache.store = {} set_http_connect(*statuses) req = Request.blank('/v1/a/c/o.jpg', environ={'REQUEST_METHOD': 'PUT'}, body='some data') self.app.update_request(req) try: res = controller.PUT(req) except HTTPException as res: pass expected = str(expected) self.assertEqual(res.status[:len(expected)], expected) test_status_map((200, 200, 201, -1, 201), 201) test_status_map((200, 200, 201, -1, -1), 503) test_status_map((200, 200, 503, 503, -1), 503) def test_PUT_max_size(self): with save_globals(): set_http_connect(201, 201, 201) controller = ReplicatedObjectController( self.app, 'account', 'container', 'object') req = Request.blank('/v1/a/c/o', {}, headers={ 'Content-Length': str(constraints.MAX_FILE_SIZE + 1), 'Content-Type': 'foo/bar'}) self.app.update_request(req) res = controller.PUT(req) self.assertEqual(res.status_int, 413) def test_PUT_bad_content_type(self): with save_globals(): set_http_connect(201, 201, 201) controller = ReplicatedObjectController( self.app, 'account', 'container', 'object') req = Request.blank('/v1/a/c/o', {}, headers={ 'Content-Length': 0, 'Content-Type': 'foo/bar;swift_hey=45'}) self.app.update_request(req) res = controller.PUT(req) self.assertEqual(res.status_int, 400) def test_PUT_getresponse_exceptions(self): with save_globals(): controller = ReplicatedObjectController( self.app, 'account', 'container', 'object') def test_status_map(statuses, expected): self.app.memcache.store = {} set_http_connect(*statuses) req = Request.blank('/v1/a/c/o.jpg', {}) req.content_length = 0 self.app.update_request(req) try: res = controller.PUT(req) except HTTPException as res: pass expected = str(expected) self.assertEqual(res.status[:len(str(expected))], str(expected)) test_status_map((200, 200, 201, 201, -1), 201) test_status_map((200, 200, 201, -1, -1), 503) test_status_map((200, 200, 503, 503, -1), 503) def test_POST(self): with save_globals(): self.app.object_post_as_copy = False def test_status_map(statuses, expected): set_http_connect(*statuses) self.app.memcache.store = {} req = Request.blank('/v1/a/c/o', {}, method='POST', headers={'Content-Type': 'foo/bar'}) self.app.update_request(req) res = req.get_response(self.app) expected = str(expected) self.assertEqual(res.status[:len(expected)], expected) test_status_map((200, 200, 202, 202, 202), 202) test_status_map((200, 200, 202, 202, 500), 202) test_status_map((200, 200, 202, 500, 500), 503) test_status_map((200, 200, 202, 404, 500), 503) test_status_map((200, 200, 202, 404, 404), 404) test_status_map((200, 200, 404, 500, 500), 503) test_status_map((200, 200, 404, 404, 404), 404) @patch_policies([ StoragePolicy(0, 'zero', is_default=True, object_ring=FakeRing()), StoragePolicy(1, 'one', object_ring=FakeRing()), ]) def test_POST_backend_headers(self): # reset the router post patch_policies self.app.obj_controller_router = proxy_server.ObjectControllerRouter() self.app.object_post_as_copy = False self.app.sort_nodes = lambda nodes: nodes backend_requests = [] def capture_requests(ip, port, method, path, headers, *args, **kwargs): backend_requests.append((method, path, headers)) req = Request.blank('/v1/a/c/o', {}, method='POST', headers={'X-Object-Meta-Color': 'Blue'}) # we want the container_info response to says a policy index of 1 resp_headers = {'X-Backend-Storage-Policy-Index': 1} with mocked_http_conn( 200, 200, 202, 202, 202, headers=resp_headers, give_connect=capture_requests ) as fake_conn: resp = req.get_response(self.app) self.assertRaises(StopIteration, fake_conn.code_iter.next) self.assertEqual(resp.status_int, 202) self.assertEqual(len(backend_requests), 5) def check_request(req, method, path, headers=None): req_method, req_path, req_headers = req self.assertEqual(method, req_method) # caller can ignore leading path parts self.assertTrue(req_path.endswith(path), 'expected path to end with %s, it was %s' % ( path, req_path)) headers = headers or {} # caller can ignore some headers for k, v in headers.items(): self.assertEqual(req_headers[k], v) account_request = backend_requests.pop(0) check_request(account_request, method='HEAD', path='/sda/0/a') container_request = backend_requests.pop(0) check_request(container_request, method='HEAD', path='/sda/0/a/c') # make sure backend requests included expected container headers container_headers = {} for request in backend_requests: req_headers = request[2] device = req_headers['x-container-device'] host = req_headers['x-container-host'] container_headers[device] = host expectations = { 'method': 'POST', 'path': '/0/a/c/o', 'headers': { 'X-Container-Partition': '0', 'Connection': 'close', 'User-Agent': 'proxy-server %s' % os.getpid(), 'Host': 'localhost:80', 'Referer': 'POST http://localhost/v1/a/c/o', 'X-Object-Meta-Color': 'Blue', 'X-Backend-Storage-Policy-Index': '1' }, } check_request(request, **expectations) expected = {} for i, device in enumerate(['sda', 'sdb', 'sdc']): expected[device] = '10.0.0.%d:100%d' % (i, i) self.assertEqual(container_headers, expected) # and again with policy override self.app.memcache.store = {} backend_requests = [] req = Request.blank('/v1/a/c/o', {}, method='POST', headers={'X-Object-Meta-Color': 'Blue', 'X-Backend-Storage-Policy-Index': 0}) with mocked_http_conn( 200, 200, 202, 202, 202, headers=resp_headers, give_connect=capture_requests ) as fake_conn: resp = req.get_response(self.app) self.assertRaises(StopIteration, fake_conn.code_iter.next) self.assertEqual(resp.status_int, 202) self.assertEqual(len(backend_requests), 5) for request in backend_requests[2:]: expectations = { 'method': 'POST', 'path': '/0/a/c/o', # ignore device bit 'headers': { 'X-Object-Meta-Color': 'Blue', 'X-Backend-Storage-Policy-Index': '0', } } check_request(request, **expectations) # and this time with post as copy self.app.object_post_as_copy = True self.app.memcache.store = {} backend_requests = [] req = Request.blank('/v1/a/c/o', {}, method='POST', headers={'X-Object-Meta-Color': 'Blue', 'X-Backend-Storage-Policy-Index': 0}) with mocked_http_conn( 200, 200, 200, 200, 200, 201, 201, 201, headers=resp_headers, give_connect=capture_requests ) as fake_conn: resp = req.get_response(self.app) self.assertRaises(StopIteration, fake_conn.code_iter.next) self.assertEqual(resp.status_int, 202) self.assertEqual(len(backend_requests), 8) policy0 = {'X-Backend-Storage-Policy-Index': '0'} policy1 = {'X-Backend-Storage-Policy-Index': '1'} expected = [ # account info {'method': 'HEAD', 'path': '/0/a'}, # container info {'method': 'HEAD', 'path': '/0/a/c'}, # x-newests {'method': 'GET', 'path': '/0/a/c/o', 'headers': policy1}, {'method': 'GET', 'path': '/0/a/c/o', 'headers': policy1}, {'method': 'GET', 'path': '/0/a/c/o', 'headers': policy1}, # new writes {'method': 'PUT', 'path': '/0/a/c/o', 'headers': policy0}, {'method': 'PUT', 'path': '/0/a/c/o', 'headers': policy0}, {'method': 'PUT', 'path': '/0/a/c/o', 'headers': policy0}, ] for request, expectations in zip(backend_requests, expected): check_request(request, **expectations) def test_POST_as_copy(self): with save_globals(): def test_status_map(statuses, expected): set_http_connect(*statuses) self.app.memcache.store = {} req = Request.blank('/v1/a/c/o', {'REQUEST_METHOD': 'POST'}, headers={'Content-Type': 'foo/bar'}) self.app.update_request(req) res = req.get_response(self.app) expected = str(expected) self.assertEqual(res.status[:len(expected)], expected) test_status_map((200, 200, 200, 200, 200, 202, 202, 202), 202) test_status_map((200, 200, 200, 200, 200, 202, 202, 500), 202) test_status_map((200, 200, 200, 200, 200, 202, 500, 500), 503) test_status_map((200, 200, 200, 200, 200, 202, 404, 500), 503) test_status_map((200, 200, 200, 200, 200, 202, 404, 404), 404) test_status_map((200, 200, 200, 200, 200, 404, 500, 500), 503) test_status_map((200, 200, 200, 200, 200, 404, 404, 404), 404) def test_DELETE(self): with save_globals(): def test_status_map(statuses, expected): set_http_connect(*statuses) self.app.memcache.store = {} req = Request.blank('/v1/a/c/o', {'REQUEST_METHOD': 'DELETE'}) self.app.update_request(req) res = req.get_response(self.app) self.assertEqual(res.status[:len(str(expected))], str(expected)) test_status_map((200, 200, 204, 204, 204), 204) test_status_map((200, 200, 204, 204, 500), 204) test_status_map((200, 200, 204, 404, 404), 404) test_status_map((200, 204, 500, 500, 404), 503) test_status_map((200, 200, 404, 404, 404), 404) test_status_map((200, 200, 400, 400, 400), 400) def test_HEAD(self): with save_globals(): def test_status_map(statuses, expected): set_http_connect(*statuses) self.app.memcache.store = {} req = Request.blank('/v1/a/c/o', {'REQUEST_METHOD': 'HEAD'}) self.app.update_request(req) res = req.get_response(self.app) self.assertEqual(res.status[:len(str(expected))], str(expected)) if expected < 400: self.assertTrue('x-works' in res.headers) self.assertEqual(res.headers['x-works'], 'yes') self.assertTrue('accept-ranges' in res.headers) self.assertEqual(res.headers['accept-ranges'], 'bytes') test_status_map((200, 200, 200, 404, 404), 200) test_status_map((200, 200, 200, 500, 404), 200) test_status_map((200, 200, 304, 500, 404), 304) test_status_map((200, 200, 404, 404, 404), 404) test_status_map((200, 200, 404, 404, 500), 404) test_status_map((200, 200, 500, 500, 500), 503) def test_HEAD_newest(self): with save_globals(): def test_status_map(statuses, expected, timestamps, expected_timestamp): set_http_connect(*statuses, timestamps=timestamps) self.app.memcache.store = {} req = Request.blank('/v1/a/c/o', {'REQUEST_METHOD': 'HEAD'}, headers={'x-newest': 'true'}) self.app.update_request(req) res = req.get_response(self.app) self.assertEqual(res.status[:len(str(expected))], str(expected)) self.assertEqual(res.headers.get('last-modified'), expected_timestamp) # acct cont obj obj obj test_status_map((200, 200, 200, 200, 200), 200, ('0', '0', '1', '2', '3'), '3') test_status_map((200, 200, 200, 200, 200), 200, ('0', '0', '1', '3', '2'), '3') test_status_map((200, 200, 200, 200, 200), 200, ('0', '0', '1', '3', '1'), '3') test_status_map((200, 200, 200, 200, 200), 200, ('0', '0', '3', '3', '1'), '3') test_status_map((200, 200, 200, 200, 200), 200, ('0', '0', None, None, None), None) test_status_map((200, 200, 200, 200, 200), 200, ('0', '0', None, None, '1'), '1') test_status_map((200, 200, 404, 404, 200), 200, ('0', '0', None, None, '1'), '1') def test_GET_newest(self): with save_globals(): def test_status_map(statuses, expected, timestamps, expected_timestamp): set_http_connect(*statuses, timestamps=timestamps) self.app.memcache.store = {} req = Request.blank('/v1/a/c/o', {'REQUEST_METHOD': 'GET'}, headers={'x-newest': 'true'}) self.app.update_request(req) res = req.get_response(self.app) self.assertEqual(res.status[:len(str(expected))], str(expected)) self.assertEqual(res.headers.get('last-modified'), expected_timestamp) test_status_map((200, 200, 200, 200, 200), 200, ('0', '0', '1', '2', '3'), '3') test_status_map((200, 200, 200, 200, 200), 200, ('0', '0', '1', '3', '2'), '3') test_status_map((200, 200, 200, 200, 200), 200, ('0', '0', '1', '3', '1'), '3') test_status_map((200, 200, 200, 200, 200), 200, ('0', '0', '3', '3', '1'), '3') test_status_map((200, 200, 200, 200, 200), 200, ('0', '0', None, None, None), None) test_status_map((200, 200, 200, 200, 200), 200, ('0', '0', None, None, '1'), '1') with save_globals(): def test_status_map(statuses, expected, timestamps, expected_timestamp): set_http_connect(*statuses, timestamps=timestamps) self.app.memcache.store = {} req = Request.blank('/v1/a/c/o', {'REQUEST_METHOD': 'HEAD'}) self.app.update_request(req) res = req.get_response(self.app) self.assertEqual(res.status[:len(str(expected))], str(expected)) self.assertEqual(res.headers.get('last-modified'), expected_timestamp) test_status_map((200, 200, 200, 200, 200), 200, ('0', '0', '1', '2', '3'), '1') test_status_map((200, 200, 200, 200, 200), 200, ('0', '0', '1', '3', '2'), '1') test_status_map((200, 200, 200, 200, 200), 200, ('0', '0', '1', '3', '1'), '1') test_status_map((200, 200, 200, 200, 200), 200, ('0', '0', '3', '3', '1'), '3') test_status_map((200, 200, 200, 200, 200), 200, ('0', '0', None, '1', '2'), None) def test_POST_meta_val_len(self): with save_globals(): limit = constraints.MAX_META_VALUE_LENGTH self.app.object_post_as_copy = False ReplicatedObjectController( self.app, 'account', 'container', 'object') set_http_connect(200, 200, 202, 202, 202) # acct cont obj obj obj req = Request.blank('/v1/a/c/o', {'REQUEST_METHOD': 'POST'}, headers={'Content-Type': 'foo/bar', 'X-Object-Meta-Foo': 'x' * limit}) self.app.update_request(req) res = req.get_response(self.app) self.assertEqual(res.status_int, 202) set_http_connect(202, 202, 202) req = Request.blank( '/v1/a/c/o', {'REQUEST_METHOD': 'POST'}, headers={'Content-Type': 'foo/bar', 'X-Object-Meta-Foo': 'x' * (limit + 1)}) self.app.update_request(req) res = req.get_response(self.app) self.assertEqual(res.status_int, 400) def test_POST_as_copy_meta_val_len(self): with save_globals(): limit = constraints.MAX_META_VALUE_LENGTH set_http_connect(200, 200, 200, 200, 200, 202, 202, 202) # acct cont objc objc objc obj obj obj req = Request.blank('/v1/a/c/o', {'REQUEST_METHOD': 'POST'}, headers={'Content-Type': 'foo/bar', 'X-Object-Meta-Foo': 'x' * limit}) self.app.update_request(req) res = req.get_response(self.app) self.assertEqual(res.status_int, 202) set_http_connect(202, 202, 202) req = Request.blank( '/v1/a/c/o', {'REQUEST_METHOD': 'POST'}, headers={'Content-Type': 'foo/bar', 'X-Object-Meta-Foo': 'x' * (limit + 1)}) self.app.update_request(req) res = req.get_response(self.app) self.assertEqual(res.status_int, 400) def test_POST_meta_key_len(self): with save_globals(): limit = constraints.MAX_META_NAME_LENGTH self.app.object_post_as_copy = False set_http_connect(200, 200, 202, 202, 202) # acct cont obj obj obj req = Request.blank( '/v1/a/c/o', {'REQUEST_METHOD': 'POST'}, headers={'Content-Type': 'foo/bar', ('X-Object-Meta-' + 'x' * limit): 'x'}) self.app.update_request(req) res = req.get_response(self.app) self.assertEqual(res.status_int, 202) set_http_connect(202, 202, 202) req = Request.blank( '/v1/a/c/o', {'REQUEST_METHOD': 'POST'}, headers={'Content-Type': 'foo/bar', ('X-Object-Meta-' + 'x' * (limit + 1)): 'x'}) self.app.update_request(req) res = req.get_response(self.app) self.assertEqual(res.status_int, 400) def test_POST_as_copy_meta_key_len(self): with save_globals(): limit = constraints.MAX_META_NAME_LENGTH set_http_connect(200, 200, 200, 200, 200, 202, 202, 202) # acct cont objc objc objc obj obj obj req = Request.blank( '/v1/a/c/o', {'REQUEST_METHOD': 'POST'}, headers={'Content-Type': 'foo/bar', ('X-Object-Meta-' + 'x' * limit): 'x'}) self.app.update_request(req) res = req.get_response(self.app) self.assertEqual(res.status_int, 202) set_http_connect(202, 202, 202) req = Request.blank( '/v1/a/c/o', {'REQUEST_METHOD': 'POST'}, headers={'Content-Type': 'foo/bar', ('X-Object-Meta-' + 'x' * (limit + 1)): 'x'}) self.app.update_request(req) res = req.get_response(self.app) self.assertEqual(res.status_int, 400) def test_POST_meta_count(self): with save_globals(): limit = constraints.MAX_META_COUNT headers = dict( (('X-Object-Meta-' + str(i), 'a') for i in range(limit + 1))) headers.update({'Content-Type': 'foo/bar'}) set_http_connect(202, 202, 202) req = Request.blank('/v1/a/c/o', {'REQUEST_METHOD': 'POST'}, headers=headers) self.app.update_request(req) res = req.get_response(self.app) self.assertEqual(res.status_int, 400) def test_POST_meta_size(self): with save_globals(): limit = constraints.MAX_META_OVERALL_SIZE count = limit / 256 # enough to cause the limit to be reached headers = dict( (('X-Object-Meta-' + str(i), 'a' * 256) for i in range(count + 1))) headers.update({'Content-Type': 'foo/bar'}) set_http_connect(202, 202, 202) req = Request.blank('/v1/a/c/o', {'REQUEST_METHOD': 'POST'}, headers=headers) self.app.update_request(req) res = req.get_response(self.app) self.assertEqual(res.status_int, 400) def test_PUT_not_autodetect_content_type(self): with save_globals(): headers = {'Content-Type': 'something/right', 'Content-Length': 0} it_worked = [] def verify_content_type(ipaddr, port, device, partition, method, path, headers=None, query_string=None): if path == '/a/c/o.html': it_worked.append( headers['Content-Type'].startswith('something/right')) set_http_connect(204, 204, 201, 201, 201, give_connect=verify_content_type) req = Request.blank('/v1/a/c/o.html', {'REQUEST_METHOD': 'PUT'}, headers=headers) self.app.update_request(req) req.get_response(self.app) self.assertNotEqual(it_worked, []) self.assertTrue(all(it_worked)) def test_PUT_autodetect_content_type(self): with save_globals(): headers = {'Content-Type': 'something/wrong', 'Content-Length': 0, 'X-Detect-Content-Type': 'True'} it_worked = [] def verify_content_type(ipaddr, port, device, partition, method, path, headers=None, query_string=None): if path == '/a/c/o.html': it_worked.append( headers['Content-Type'].startswith('text/html')) set_http_connect(204, 204, 201, 201, 201, give_connect=verify_content_type) req = Request.blank('/v1/a/c/o.html', {'REQUEST_METHOD': 'PUT'}, headers=headers) self.app.update_request(req) req.get_response(self.app) self.assertNotEqual(it_worked, []) self.assertTrue(all(it_worked)) def test_client_timeout(self): with save_globals(): self.app.account_ring.get_nodes('account') for dev in self.app.account_ring.devs: dev['ip'] = '127.0.0.1' dev['port'] = 1 self.app.container_ring.get_nodes('account') for dev in self.app.container_ring.devs: dev['ip'] = '127.0.0.1' dev['port'] = 1 object_ring = self.app.get_object_ring(None) object_ring.get_nodes('account') for dev in object_ring.devs: dev['ip'] = '127.0.0.1' dev['port'] = 1 class SlowBody(object): def __init__(self): self.sent = 0 def read(self, size=-1): if self.sent < 4: sleep(0.1) self.sent += 1 return ' ' return '' req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'PUT', 'wsgi.input': SlowBody()}, headers={'Content-Length': '4', 'Content-Type': 'text/plain'}) self.app.update_request(req) set_http_connect(200, 200, 201, 201, 201) # acct cont obj obj obj resp = req.get_response(self.app) self.assertEqual(resp.status_int, 201) self.app.client_timeout = 0.05 req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'PUT', 'wsgi.input': SlowBody()}, headers={'Content-Length': '4', 'Content-Type': 'text/plain'}) self.app.update_request(req) set_http_connect(201, 201, 201) # obj obj obj resp = req.get_response(self.app) self.assertEqual(resp.status_int, 408) def test_client_disconnect(self): with save_globals(): self.app.account_ring.get_nodes('account') for dev in self.app.account_ring.devs: dev['ip'] = '127.0.0.1' dev['port'] = 1 self.app.container_ring.get_nodes('account') for dev in self.app.container_ring.devs: dev['ip'] = '127.0.0.1' dev['port'] = 1 object_ring = self.app.get_object_ring(None) object_ring.get_nodes('account') for dev in object_ring.devs: dev['ip'] = '127.0.0.1' dev['port'] = 1 class DisconnectedBody(object): def __init__(self): self.sent = 0 def read(self, size=-1): return '' req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'PUT', 'wsgi.input': DisconnectedBody()}, headers={'Content-Length': '4', 'Content-Type': 'text/plain'}) self.app.update_request(req) set_http_connect(200, 200, 201, 201, 201) # acct cont obj obj obj resp = req.get_response(self.app) self.assertEqual(resp.status_int, 499) def test_node_read_timeout(self): with save_globals(): self.app.account_ring.get_nodes('account') for dev in self.app.account_ring.devs: dev['ip'] = '127.0.0.1' dev['port'] = 1 self.app.container_ring.get_nodes('account') for dev in self.app.container_ring.devs: dev['ip'] = '127.0.0.1' dev['port'] = 1 object_ring = self.app.get_object_ring(None) object_ring.get_nodes('account') for dev in object_ring.devs: dev['ip'] = '127.0.0.1' dev['port'] = 1 req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'GET'}) self.app.update_request(req) set_http_connect(200, 200, 200, slow=0.1) req.sent_size = 0 resp = req.get_response(self.app) got_exc = False try: resp.body except ChunkReadTimeout: got_exc = True self.assertTrue(not got_exc) self.app.recoverable_node_timeout = 0.1 set_http_connect(200, 200, 200, slow=1.0) resp = req.get_response(self.app) got_exc = False try: resp.body except ChunkReadTimeout: got_exc = True self.assertTrue(got_exc) def test_node_read_timeout_retry(self): with save_globals(): self.app.account_ring.get_nodes('account') for dev in self.app.account_ring.devs: dev['ip'] = '127.0.0.1' dev['port'] = 1 self.app.container_ring.get_nodes('account') for dev in self.app.container_ring.devs: dev['ip'] = '127.0.0.1' dev['port'] = 1 object_ring = self.app.get_object_ring(None) object_ring.get_nodes('account') for dev in object_ring.devs: dev['ip'] = '127.0.0.1' dev['port'] = 1 req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'GET'}) self.app.update_request(req) self.app.recoverable_node_timeout = 0.1 set_http_connect(200, 200, 200, slow=[1.0, 1.0, 1.0]) resp = req.get_response(self.app) got_exc = False try: self.assertEqual('', resp.body) except ChunkReadTimeout: got_exc = True self.assertTrue(got_exc) set_http_connect(200, 200, 200, body='lalala', slow=[1.0, 1.0]) resp = req.get_response(self.app) got_exc = False try: self.assertEqual(resp.body, 'lalala') except ChunkReadTimeout: got_exc = True self.assertTrue(not got_exc) set_http_connect(200, 200, 200, body='lalala', slow=[1.0, 1.0], etags=['a', 'a', 'a']) resp = req.get_response(self.app) got_exc = False try: self.assertEqual(resp.body, 'lalala') except ChunkReadTimeout: got_exc = True self.assertTrue(not got_exc) set_http_connect(200, 200, 200, body='lalala', slow=[1.0, 1.0], etags=['a', 'b', 'a']) resp = req.get_response(self.app) got_exc = False try: self.assertEqual(resp.body, 'lalala') except ChunkReadTimeout: got_exc = True self.assertTrue(not got_exc) req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'GET'}) set_http_connect(200, 200, 200, body='lalala', slow=[1.0, 1.0], etags=['a', 'b', 'b']) resp = req.get_response(self.app) got_exc = False try: resp.body except ChunkReadTimeout: got_exc = True self.assertTrue(got_exc) def test_node_write_timeout(self): with save_globals(): self.app.account_ring.get_nodes('account') for dev in self.app.account_ring.devs: dev['ip'] = '127.0.0.1' dev['port'] = 1 self.app.container_ring.get_nodes('account') for dev in self.app.container_ring.devs: dev['ip'] = '127.0.0.1' dev['port'] = 1 object_ring = self.app.get_object_ring(None) object_ring.get_nodes('account') for dev in object_ring.devs: dev['ip'] = '127.0.0.1' dev['port'] = 1 req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'PUT'}, headers={'Content-Length': '4', 'Content-Type': 'text/plain'}, body=' ') self.app.update_request(req) set_http_connect(200, 200, 201, 201, 201, slow=0.1) resp = req.get_response(self.app) self.assertEqual(resp.status_int, 201) self.app.node_timeout = 0.1 req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'PUT'}, headers={'Content-Length': '4', 'Content-Type': 'text/plain'}, body=' ') self.app.update_request(req) set_http_connect(201, 201, 201, slow=1.0) resp = req.get_response(self.app) self.assertEqual(resp.status_int, 503) def test_node_request_setting(self): baseapp = proxy_server.Application({'request_node_count': '3'}, FakeMemcache(), container_ring=FakeRing(), account_ring=FakeRing()) self.assertEqual(baseapp.request_node_count(3), 3) def test_iter_nodes(self): with save_globals(): try: object_ring = self.app.get_object_ring(None) object_ring.max_more_nodes = 2 partition, nodes = object_ring.get_nodes('account', 'container', 'object') collected_nodes = [] for node in self.app.iter_nodes(object_ring, partition): collected_nodes.append(node) self.assertEqual(len(collected_nodes), 5) object_ring.max_more_nodes = 6 self.app.request_node_count = lambda r: 20 partition, nodes = object_ring.get_nodes('account', 'container', 'object') collected_nodes = [] for node in self.app.iter_nodes(object_ring, partition): collected_nodes.append(node) self.assertEqual(len(collected_nodes), 9) # zero error-limited primary nodes -> no handoff warnings self.app.log_handoffs = True self.app.logger = FakeLogger() self.app.request_node_count = lambda r: 7 object_ring.max_more_nodes = 20 partition, nodes = object_ring.get_nodes('account', 'container', 'object') collected_nodes = [] for node in self.app.iter_nodes(object_ring, partition): collected_nodes.append(node) self.assertEqual(len(collected_nodes), 7) self.assertEqual(self.app.logger.log_dict['warning'], []) self.assertEqual(self.app.logger.get_increments(), []) # one error-limited primary node -> one handoff warning self.app.log_handoffs = True self.app.logger = FakeLogger() self.app.request_node_count = lambda r: 7 self.app._error_limiting = {} # clear out errors set_node_errors(self.app, object_ring._devs[0], 999, last_error=(2 ** 63 - 1)) collected_nodes = [] for node in self.app.iter_nodes(object_ring, partition): collected_nodes.append(node) self.assertEqual(len(collected_nodes), 7) self.assertEqual(self.app.logger.log_dict['warning'], [ (('Handoff requested (5)',), {})]) self.assertEqual(self.app.logger.get_increments(), ['handoff_count']) # two error-limited primary nodes -> two handoff warnings self.app.log_handoffs = True self.app.logger = FakeLogger() self.app.request_node_count = lambda r: 7 self.app._error_limiting = {} # clear out errors for i in range(2): set_node_errors(self.app, object_ring._devs[i], 999, last_error=(2 ** 63 - 1)) collected_nodes = [] for node in self.app.iter_nodes(object_ring, partition): collected_nodes.append(node) self.assertEqual(len(collected_nodes), 7) self.assertEqual(self.app.logger.log_dict['warning'], [ (('Handoff requested (5)',), {}), (('Handoff requested (6)',), {})]) self.assertEqual(self.app.logger.get_increments(), ['handoff_count', 'handoff_count']) # all error-limited primary nodes -> four handoff warnings, # plus a handoff-all metric self.app.log_handoffs = True self.app.logger = FakeLogger() self.app.request_node_count = lambda r: 10 object_ring.set_replicas(4) # otherwise we run out of handoffs self.app._error_limiting = {} # clear out errors for i in range(4): set_node_errors(self.app, object_ring._devs[i], 999, last_error=(2 ** 63 - 1)) collected_nodes = [] for node in self.app.iter_nodes(object_ring, partition): collected_nodes.append(node) self.assertEqual(len(collected_nodes), 10) self.assertEqual(self.app.logger.log_dict['warning'], [ (('Handoff requested (7)',), {}), (('Handoff requested (8)',), {}), (('Handoff requested (9)',), {}), (('Handoff requested (10)',), {})]) self.assertEqual(self.app.logger.get_increments(), ['handoff_count', 'handoff_count', 'handoff_count', 'handoff_count', 'handoff_all_count']) finally: object_ring.max_more_nodes = 0 def test_iter_nodes_calls_sort_nodes(self): with mock.patch.object(self.app, 'sort_nodes') as sort_nodes: object_ring = self.app.get_object_ring(None) for node in self.app.iter_nodes(object_ring, 0): pass sort_nodes.assert_called_once_with( object_ring.get_part_nodes(0)) def test_iter_nodes_skips_error_limited(self): with mock.patch.object(self.app, 'sort_nodes', lambda n: n): object_ring = self.app.get_object_ring(None) first_nodes = list(self.app.iter_nodes(object_ring, 0)) second_nodes = list(self.app.iter_nodes(object_ring, 0)) self.assertTrue(first_nodes[0] in second_nodes) self.app.error_limit(first_nodes[0], 'test') second_nodes = list(self.app.iter_nodes(object_ring, 0)) self.assertTrue(first_nodes[0] not in second_nodes) def test_iter_nodes_gives_extra_if_error_limited_inline(self): object_ring = self.app.get_object_ring(None) with mock.patch.object(self.app, 'sort_nodes', lambda n: n), \ mock.patch.object(self.app, 'request_node_count', lambda r: 6), \ mock.patch.object(object_ring, 'max_more_nodes', 99): first_nodes = list(self.app.iter_nodes(object_ring, 0)) second_nodes = [] for node in self.app.iter_nodes(object_ring, 0): if not second_nodes: self.app.error_limit(node, 'test') second_nodes.append(node) self.assertEqual(len(first_nodes), 6) self.assertEqual(len(second_nodes), 7) def test_iter_nodes_with_custom_node_iter(self): object_ring = self.app.get_object_ring(None) node_list = [dict(id=n, ip='1.2.3.4', port=n, device='D') for n in range(10)] with mock.patch.object(self.app, 'sort_nodes', lambda n: n), \ mock.patch.object(self.app, 'request_node_count', lambda r: 3): got_nodes = list(self.app.iter_nodes(object_ring, 0, node_iter=iter(node_list))) self.assertEqual(node_list[:3], got_nodes) with mock.patch.object(self.app, 'sort_nodes', lambda n: n), \ mock.patch.object(self.app, 'request_node_count', lambda r: 1000000): got_nodes = list(self.app.iter_nodes(object_ring, 0, node_iter=iter(node_list))) self.assertEqual(node_list, got_nodes) def test_best_response_sets_headers(self): controller = ReplicatedObjectController( self.app, 'account', 'container', 'object') req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'GET'}) resp = controller.best_response(req, [200] * 3, ['OK'] * 3, [''] * 3, 'Object', headers=[{'X-Test': '1'}, {'X-Test': '2'}, {'X-Test': '3'}]) self.assertEqual(resp.headers['X-Test'], '1') def test_best_response_sets_etag(self): controller = ReplicatedObjectController( self.app, 'account', 'container', 'object') req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'GET'}) resp = controller.best_response(req, [200] * 3, ['OK'] * 3, [''] * 3, 'Object') self.assertEqual(resp.etag, None) resp = controller.best_response(req, [200] * 3, ['OK'] * 3, [''] * 3, 'Object', etag='68b329da9893e34099c7d8ad5cb9c940' ) self.assertEqual(resp.etag, '68b329da9893e34099c7d8ad5cb9c940') def test_proxy_passes_content_type(self): with save_globals(): req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'GET'}) self.app.update_request(req) set_http_connect(200, 200, 200) resp = req.get_response(self.app) self.assertEqual(resp.status_int, 200) self.assertEqual(resp.content_type, 'x-application/test') set_http_connect(200, 200, 200) resp = req.get_response(self.app) self.assertEqual(resp.status_int, 200) self.assertEqual(resp.content_length, 0) set_http_connect(200, 200, 200, slow=True) resp = req.get_response(self.app) self.assertEqual(resp.status_int, 200) self.assertEqual(resp.content_length, 4) def test_proxy_passes_content_length_on_head(self): with save_globals(): req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'HEAD'}) self.app.update_request(req) controller = ReplicatedObjectController( self.app, 'account', 'container', 'object') set_http_connect(200, 200, 200) resp = controller.HEAD(req) self.assertEqual(resp.status_int, 200) self.assertEqual(resp.content_length, 0) set_http_connect(200, 200, 200, slow=True) resp = controller.HEAD(req) self.assertEqual(resp.status_int, 200) self.assertEqual(resp.content_length, 4) def test_error_limiting(self): with save_globals(): controller = ReplicatedObjectController( self.app, 'account', 'container', 'object') controller.app.sort_nodes = lambda l: l object_ring = controller.app.get_object_ring(None) self.assert_status_map(controller.HEAD, (200, 200, 503, 200, 200), 200) self.assertEqual( node_error_count(controller.app, object_ring.devs[0]), 2) self.assertTrue( node_last_error(controller.app, object_ring.devs[0]) is not None) for _junk in range(self.app.error_suppression_limit): self.assert_status_map(controller.HEAD, (200, 200, 503, 503, 503), 503) self.assertEqual( node_error_count(controller.app, object_ring.devs[0]), self.app.error_suppression_limit + 1) self.assert_status_map(controller.HEAD, (200, 200, 200, 200, 200), 503) self.assertTrue( node_last_error(controller.app, object_ring.devs[0]) is not None) self.assert_status_map(controller.PUT, (200, 200, 200, 201, 201, 201), 503) self.assert_status_map(controller.POST, (200, 200, 200, 200, 200, 200, 202, 202, 202), 503) self.assert_status_map(controller.DELETE, (200, 200, 200, 204, 204, 204), 503) self.app.error_suppression_interval = -300 self.assert_status_map(controller.HEAD, (200, 200, 200, 200, 200), 200) self.assertRaises(BaseException, self.assert_status_map, controller.DELETE, (200, 200, 200, 204, 204, 204), 503, raise_exc=True) def test_error_limiting_survives_ring_reload(self): with save_globals(): controller = ReplicatedObjectController( self.app, 'account', 'container', 'object') controller.app.sort_nodes = lambda l: l object_ring = controller.app.get_object_ring(None) self.assert_status_map(controller.HEAD, (200, 200, 503, 200, 200), 200) self.assertEqual( node_error_count(controller.app, object_ring.devs[0]), 2) self.assertTrue( node_last_error(controller.app, object_ring.devs[0]) is not None) for _junk in range(self.app.error_suppression_limit): self.assert_status_map(controller.HEAD, (200, 200, 503, 503, 503), 503) self.assertEqual( node_error_count(controller.app, object_ring.devs[0]), self.app.error_suppression_limit + 1) # wipe out any state in the ring for policy in POLICIES: policy.object_ring = FakeRing(base_port=3000) # and we still get an error, which proves that the # error-limiting info survived a ring reload self.assert_status_map(controller.HEAD, (200, 200, 200, 200, 200), 503) def test_PUT_error_limiting(self): with save_globals(): controller = ReplicatedObjectController( self.app, 'account', 'container', 'object') controller.app.sort_nodes = lambda l: l object_ring = controller.app.get_object_ring(None) # acc con obj obj obj self.assert_status_map(controller.PUT, (200, 200, 503, 200, 200), 200) # 2, not 1, because assert_status_map() calls the method twice odevs = object_ring.devs self.assertEqual(node_error_count(controller.app, odevs[0]), 2) self.assertEqual(node_error_count(controller.app, odevs[1]), 0) self.assertEqual(node_error_count(controller.app, odevs[2]), 0) self.assertTrue( node_last_error(controller.app, odevs[0]) is not None) self.assertTrue(node_last_error(controller.app, odevs[1]) is None) self.assertTrue(node_last_error(controller.app, odevs[2]) is None) def test_PUT_error_limiting_last_node(self): with save_globals(): controller = ReplicatedObjectController( self.app, 'account', 'container', 'object') controller.app.sort_nodes = lambda l: l object_ring = controller.app.get_object_ring(None) # acc con obj obj obj self.assert_status_map(controller.PUT, (200, 200, 200, 200, 503), 200) # 2, not 1, because assert_status_map() calls the method twice odevs = object_ring.devs self.assertEqual(node_error_count(controller.app, odevs[0]), 0) self.assertEqual(node_error_count(controller.app, odevs[1]), 0) self.assertEqual(node_error_count(controller.app, odevs[2]), 2) self.assertTrue(node_last_error(controller.app, odevs[0]) is None) self.assertTrue(node_last_error(controller.app, odevs[1]) is None) self.assertTrue( node_last_error(controller.app, odevs[2]) is not None) def test_acc_or_con_missing_returns_404(self): with save_globals(): self.app.memcache = FakeMemcacheReturnsNone() self.app._error_limiting = {} controller = ReplicatedObjectController( self.app, 'account', 'container', 'object') set_http_connect(200, 200, 200, 200, 200, 200) req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'DELETE'}) self.app.update_request(req) resp = getattr(controller, 'DELETE')(req) self.assertEqual(resp.status_int, 200) set_http_connect(404, 404, 404) # acct acct acct # make sure to use a fresh request without cached env req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'DELETE'}) resp = getattr(controller, 'DELETE')(req) self.assertEqual(resp.status_int, 404) set_http_connect(503, 404, 404) # acct acct acct # make sure to use a fresh request without cached env req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'DELETE'}) resp = getattr(controller, 'DELETE')(req) self.assertEqual(resp.status_int, 404) set_http_connect(503, 503, 404) # acct acct acct # make sure to use a fresh request without cached env req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'DELETE'}) resp = getattr(controller, 'DELETE')(req) self.assertEqual(resp.status_int, 404) set_http_connect(503, 503, 503) # acct acct acct # make sure to use a fresh request without cached env req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'DELETE'}) resp = getattr(controller, 'DELETE')(req) self.assertEqual(resp.status_int, 404) set_http_connect(200, 200, 204, 204, 204) # acct cont obj obj obj # make sure to use a fresh request without cached env req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'DELETE'}) resp = getattr(controller, 'DELETE')(req) self.assertEqual(resp.status_int, 204) set_http_connect(200, 404, 404, 404) # acct cont cont cont # make sure to use a fresh request without cached env req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'DELETE'}) resp = getattr(controller, 'DELETE')(req) self.assertEqual(resp.status_int, 404) set_http_connect(200, 503, 503, 503) # acct cont cont cont # make sure to use a fresh request without cached env req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'DELETE'}) resp = getattr(controller, 'DELETE')(req) self.assertEqual(resp.status_int, 404) for dev in self.app.account_ring.devs: set_node_errors( self.app, dev, self.app.error_suppression_limit + 1, time.time()) set_http_connect(200) # acct [isn't actually called since everything # is error limited] # make sure to use a fresh request without cached env req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'DELETE'}) resp = getattr(controller, 'DELETE')(req) self.assertEqual(resp.status_int, 404) for dev in self.app.account_ring.devs: set_node_errors(self.app, dev, 0, last_error=None) for dev in self.app.container_ring.devs: set_node_errors(self.app, dev, self.app.error_suppression_limit + 1, time.time()) set_http_connect(200, 200) # acct cont [isn't actually called since # everything is error limited] # make sure to use a fresh request without cached env req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'DELETE'}) resp = getattr(controller, 'DELETE')(req) self.assertEqual(resp.status_int, 404) def test_PUT_POST_requires_container_exist(self): with save_globals(): self.app.object_post_as_copy = False self.app.memcache = FakeMemcacheReturnsNone() controller = ReplicatedObjectController( self.app, 'account', 'container', 'object') set_http_connect(200, 404, 404, 404, 200, 200, 200) req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'PUT'}) self.app.update_request(req) resp = controller.PUT(req) self.assertEqual(resp.status_int, 404) set_http_connect(200, 404, 404, 404, 200, 200) req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'POST'}, headers={'Content-Type': 'text/plain'}) self.app.update_request(req) resp = controller.POST(req) self.assertEqual(resp.status_int, 404) def test_PUT_POST_as_copy_requires_container_exist(self): with save_globals(): self.app.memcache = FakeMemcacheReturnsNone() controller = ReplicatedObjectController( self.app, 'account', 'container', 'object') set_http_connect(200, 404, 404, 404, 200, 200, 200) req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'PUT'}) self.app.update_request(req) resp = controller.PUT(req) self.assertEqual(resp.status_int, 404) set_http_connect(200, 404, 404, 404, 200, 200, 200, 200, 200, 200) req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'POST'}, headers={'Content-Type': 'text/plain'}) self.app.update_request(req) resp = controller.POST(req) self.assertEqual(resp.status_int, 404) def test_bad_metadata(self): with save_globals(): controller = ReplicatedObjectController( self.app, 'account', 'container', 'object') set_http_connect(200, 200, 201, 201, 201) # acct cont obj obj obj req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'PUT'}, headers={'Content-Length': '0'}) self.app.update_request(req) resp = controller.PUT(req) self.assertEqual(resp.status_int, 201) set_http_connect(201, 201, 201) req = Request.blank( '/v1/a/c/o', environ={'REQUEST_METHOD': 'PUT'}, headers={'Content-Length': '0', 'X-Object-Meta-' + ( 'a' * constraints.MAX_META_NAME_LENGTH): 'v'}) self.app.update_request(req) resp = controller.PUT(req) self.assertEqual(resp.status_int, 201) set_http_connect(201, 201, 201) req = Request.blank( '/v1/a/c/o', environ={'REQUEST_METHOD': 'PUT'}, headers={ 'Content-Length': '0', 'X-Object-Meta-' + ( 'a' * (constraints.MAX_META_NAME_LENGTH + 1)): 'v'}) self.app.update_request(req) resp = controller.PUT(req) self.assertEqual(resp.status_int, 400) set_http_connect(201, 201, 201) req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'PUT'}, headers={'Content-Length': '0', 'X-Object-Meta-Too-Long': 'a' * constraints.MAX_META_VALUE_LENGTH}) self.app.update_request(req) resp = controller.PUT(req) self.assertEqual(resp.status_int, 201) set_http_connect(201, 201, 201) req = Request.blank( '/v1/a/c/o', environ={'REQUEST_METHOD': 'PUT'}, headers={'Content-Length': '0', 'X-Object-Meta-Too-Long': 'a' * (constraints.MAX_META_VALUE_LENGTH + 1)}) self.app.update_request(req) resp = controller.PUT(req) self.assertEqual(resp.status_int, 400) set_http_connect(201, 201, 201) headers = {'Content-Length': '0'} for x in range(constraints.MAX_META_COUNT): headers['X-Object-Meta-%d' % x] = 'v' req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'PUT'}, headers=headers) self.app.update_request(req) resp = controller.PUT(req) self.assertEqual(resp.status_int, 201) set_http_connect(201, 201, 201) headers = {'Content-Length': '0'} for x in range(constraints.MAX_META_COUNT + 1): headers['X-Object-Meta-%d' % x] = 'v' req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'PUT'}, headers=headers) self.app.update_request(req) resp = controller.PUT(req) self.assertEqual(resp.status_int, 400) set_http_connect(201, 201, 201) headers = {'Content-Length': '0'} header_value = 'a' * constraints.MAX_META_VALUE_LENGTH size = 0 x = 0 while size < constraints.MAX_META_OVERALL_SIZE - 4 - \ constraints.MAX_META_VALUE_LENGTH: size += 4 + constraints.MAX_META_VALUE_LENGTH headers['X-Object-Meta-%04d' % x] = header_value x += 1 if constraints.MAX_META_OVERALL_SIZE - size > 1: headers['X-Object-Meta-a'] = \ 'a' * (constraints.MAX_META_OVERALL_SIZE - size - 1) req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'PUT'}, headers=headers) self.app.update_request(req) resp = controller.PUT(req) self.assertEqual(resp.status_int, 201) set_http_connect(201, 201, 201) headers['X-Object-Meta-a'] = \ 'a' * (constraints.MAX_META_OVERALL_SIZE - size) req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'PUT'}, headers=headers) self.app.update_request(req) resp = controller.PUT(req) self.assertEqual(resp.status_int, 400) @contextmanager def controller_context(self, req, *args, **kwargs): _v, account, container, obj = utils.split_path(req.path, 4, 4, True) controller = ReplicatedObjectController( self.app, account, container, obj) self.app.update_request(req) self.app.memcache.store = {} with save_globals(): new_connect = set_http_connect(*args, **kwargs) yield controller unused_status_list = [] while True: try: unused_status_list.append(next(new_connect.code_iter)) except StopIteration: break if unused_status_list: raise self.fail('UN-USED STATUS CODES: %r' % unused_status_list) def test_basic_put_with_x_copy_from(self): req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'PUT'}, headers={'Content-Length': '0', 'X-Copy-From': 'c/o'}) status_list = (200, 200, 200, 200, 200, 201, 201, 201) # acct cont objc objc objc obj obj obj with self.controller_context(req, *status_list) as controller: resp = controller.PUT(req) self.assertEqual(resp.status_int, 201) self.assertEqual(resp.headers['x-copied-from'], 'c/o') def test_basic_put_with_x_copy_from_account(self): req = Request.blank('/v1/a1/c1/o', environ={'REQUEST_METHOD': 'PUT'}, headers={'Content-Length': '0', 'X-Copy-From': 'c/o', 'X-Copy-From-Account': 'a'}) status_list = (200, 200, 200, 200, 200, 200, 200, 201, 201, 201) # acct cont acc1 con1 objc objc objc obj obj obj with self.controller_context(req, *status_list) as controller: resp = controller.PUT(req) self.assertEqual(resp.status_int, 201) self.assertEqual(resp.headers['x-copied-from'], 'c/o') self.assertEqual(resp.headers['x-copied-from-account'], 'a') def test_basic_put_with_x_copy_from_across_container(self): req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'PUT'}, headers={'Content-Length': '0', 'X-Copy-From': 'c2/o'}) status_list = (200, 200, 200, 200, 200, 200, 201, 201, 201) # acct cont conc objc objc objc obj obj obj with self.controller_context(req, *status_list) as controller: resp = controller.PUT(req) self.assertEqual(resp.status_int, 201) self.assertEqual(resp.headers['x-copied-from'], 'c2/o') def test_basic_put_with_x_copy_from_across_container_and_account(self): req = Request.blank('/v1/a1/c1/o', environ={'REQUEST_METHOD': 'PUT'}, headers={'Content-Length': '0', 'X-Copy-From': 'c2/o', 'X-Copy-From-Account': 'a'}) status_list = (200, 200, 200, 200, 200, 200, 200, 201, 201, 201) # acct cont acc1 con1 objc objc objc obj obj obj with self.controller_context(req, *status_list) as controller: resp = controller.PUT(req) self.assertEqual(resp.status_int, 201) self.assertEqual(resp.headers['x-copied-from'], 'c2/o') self.assertEqual(resp.headers['x-copied-from-account'], 'a') def test_copy_non_zero_content_length(self): req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'PUT'}, headers={'Content-Length': '5', 'X-Copy-From': 'c/o'}) status_list = (200, 200) # acct cont with self.controller_context(req, *status_list) as controller: resp = controller.PUT(req) self.assertEqual(resp.status_int, 400) def test_copy_non_zero_content_length_with_account(self): req = Request.blank('/v1/a1/c1/o', environ={'REQUEST_METHOD': 'PUT'}, headers={'Content-Length': '5', 'X-Copy-From': 'c/o', 'X-Copy-From-Account': 'a'}) status_list = (200, 200) # acct cont with self.controller_context(req, *status_list) as controller: resp = controller.PUT(req) self.assertEqual(resp.status_int, 400) def test_copy_with_slashes_in_x_copy_from(self): # extra source path parsing req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'PUT'}, headers={'Content-Length': '0', 'X-Copy-From': 'c/o/o2'}) status_list = (200, 200, 200, 200, 200, 201, 201, 201) # acct cont objc objc objc obj obj obj with self.controller_context(req, *status_list) as controller: resp = controller.PUT(req) self.assertEqual(resp.status_int, 201) self.assertEqual(resp.headers['x-copied-from'], 'c/o/o2') def test_copy_with_slashes_in_x_copy_from_and_account(self): # extra source path parsing req = Request.blank('/v1/a1/c1/o', environ={'REQUEST_METHOD': 'PUT'}, headers={'Content-Length': '0', 'X-Copy-From': 'c/o/o2', 'X-Copy-From-Account': 'a'}) status_list = (200, 200, 200, 200, 200, 200, 200, 201, 201, 201) # acct cont acc1 con1 objc objc objc obj obj obj with self.controller_context(req, *status_list) as controller: resp = controller.PUT(req) self.assertEqual(resp.status_int, 201) self.assertEqual(resp.headers['x-copied-from'], 'c/o/o2') self.assertEqual(resp.headers['x-copied-from-account'], 'a') def test_copy_with_spaces_in_x_copy_from(self): # space in soure path req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'PUT'}, headers={'Content-Length': '0', 'X-Copy-From': 'c/o%20o2'}) status_list = (200, 200, 200, 200, 200, 201, 201, 201) # acct cont objc objc objc obj obj obj with self.controller_context(req, *status_list) as controller: resp = controller.PUT(req) self.assertEqual(resp.status_int, 201) self.assertEqual(resp.headers['x-copied-from'], 'c/o%20o2') def test_copy_with_spaces_in_x_copy_from_and_account(self): # space in soure path req = Request.blank('/v1/a1/c1/o', environ={'REQUEST_METHOD': 'PUT'}, headers={'Content-Length': '0', 'X-Copy-From': 'c/o%20o2', 'X-Copy-From-Account': 'a'}) status_list = (200, 200, 200, 200, 200, 200, 200, 201, 201, 201) # acct cont acc1 con1 objc objc objc obj obj obj with self.controller_context(req, *status_list) as controller: resp = controller.PUT(req) self.assertEqual(resp.status_int, 201) self.assertEqual(resp.headers['x-copied-from'], 'c/o%20o2') self.assertEqual(resp.headers['x-copied-from-account'], 'a') def test_copy_with_leading_slash_in_x_copy_from(self): # repeat tests with leading / req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'PUT'}, headers={'Content-Length': '0', 'X-Copy-From': '/c/o'}) status_list = (200, 200, 200, 200, 200, 201, 201, 201) # acct cont objc objc objc obj obj obj with self.controller_context(req, *status_list) as controller: resp = controller.PUT(req) self.assertEqual(resp.status_int, 201) self.assertEqual(resp.headers['x-copied-from'], 'c/o') def test_copy_with_leading_slash_in_x_copy_from_and_account(self): # repeat tests with leading / req = Request.blank('/v1/a1/c1/o', environ={'REQUEST_METHOD': 'PUT'}, headers={'Content-Length': '0', 'X-Copy-From': '/c/o', 'X-Copy-From-Account': 'a'}) status_list = (200, 200, 200, 200, 200, 200, 200, 201, 201, 201) # acct cont acc1 con1 objc objc objc obj obj obj with self.controller_context(req, *status_list) as controller: resp = controller.PUT(req) self.assertEqual(resp.status_int, 201) self.assertEqual(resp.headers['x-copied-from'], 'c/o') self.assertEqual(resp.headers['x-copied-from-account'], 'a') def test_copy_with_leading_slash_and_slashes_in_x_copy_from(self): req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'PUT'}, headers={'Content-Length': '0', 'X-Copy-From': '/c/o/o2'}) status_list = (200, 200, 200, 200, 200, 201, 201, 201) # acct cont objc objc objc obj obj obj with self.controller_context(req, *status_list) as controller: resp = controller.PUT(req) self.assertEqual(resp.status_int, 201) self.assertEqual(resp.headers['x-copied-from'], 'c/o/o2') def test_copy_with_leading_slash_and_slashes_in_x_copy_from_acct(self): req = Request.blank('/v1/a1/c1/o', environ={'REQUEST_METHOD': 'PUT'}, headers={'Content-Length': '0', 'X-Copy-From': '/c/o/o2', 'X-Copy-From-Account': 'a'}) status_list = (200, 200, 200, 200, 200, 200, 200, 201, 201, 201) # acct cont acc1 con1 objc objc objc obj obj obj with self.controller_context(req, *status_list) as controller: resp = controller.PUT(req) self.assertEqual(resp.status_int, 201) self.assertEqual(resp.headers['x-copied-from'], 'c/o/o2') self.assertEqual(resp.headers['x-copied-from-account'], 'a') def test_copy_with_no_object_in_x_copy_from(self): req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'PUT'}, headers={'Content-Length': '0', 'X-Copy-From': '/c'}) status_list = (200, 200) # acct cont with self.controller_context(req, *status_list) as controller: try: controller.PUT(req) except HTTPException as resp: self.assertEqual(resp.status_int // 100, 4) # client error else: raise self.fail('Invalid X-Copy-From did not raise ' 'client error') def test_copy_with_no_object_in_x_copy_from_and_account(self): req = Request.blank('/v1/a1/c1/o', environ={'REQUEST_METHOD': 'PUT'}, headers={'Content-Length': '0', 'X-Copy-From': '/c', 'X-Copy-From-Account': 'a'}) status_list = (200, 200) # acct cont with self.controller_context(req, *status_list) as controller: try: controller.PUT(req) except HTTPException as resp: self.assertEqual(resp.status_int // 100, 4) # client error else: raise self.fail('Invalid X-Copy-From did not raise ' 'client error') def test_copy_server_error_reading_source(self): req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'PUT'}, headers={'Content-Length': '0', 'X-Copy-From': '/c/o'}) status_list = (200, 200, 503, 503, 503) # acct cont objc objc objc with self.controller_context(req, *status_list) as controller: resp = controller.PUT(req) self.assertEqual(resp.status_int, 503) def test_copy_server_error_reading_source_and_account(self): req = Request.blank('/v1/a1/c1/o', environ={'REQUEST_METHOD': 'PUT'}, headers={'Content-Length': '0', 'X-Copy-From': '/c/o', 'X-Copy-From-Account': 'a'}) status_list = (200, 200, 200, 200, 503, 503, 503) # acct cont acct cont objc objc objc with self.controller_context(req, *status_list) as controller: resp = controller.PUT(req) self.assertEqual(resp.status_int, 503) def test_copy_not_found_reading_source(self): req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'PUT'}, headers={'Content-Length': '0', 'X-Copy-From': '/c/o'}) # not found status_list = (200, 200, 404, 404, 404) # acct cont objc objc objc with self.controller_context(req, *status_list) as controller: resp = controller.PUT(req) self.assertEqual(resp.status_int, 404) def test_copy_not_found_reading_source_and_account(self): req = Request.blank('/v1/a1/c1/o', environ={'REQUEST_METHOD': 'PUT'}, headers={'Content-Length': '0', 'X-Copy-From': '/c/o', 'X-Copy-From-Account': 'a'}) # not found status_list = (200, 200, 200, 200, 404, 404, 404) # acct cont acct cont objc objc objc with self.controller_context(req, *status_list) as controller: resp = controller.PUT(req) self.assertEqual(resp.status_int, 404) def test_copy_with_some_missing_sources(self): req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'PUT'}, headers={'Content-Length': '0', 'X-Copy-From': '/c/o'}) status_list = (200, 200, 404, 404, 200, 201, 201, 201) # acct cont objc objc objc obj obj obj with self.controller_context(req, *status_list) as controller: resp = controller.PUT(req) self.assertEqual(resp.status_int, 201) def test_copy_with_some_missing_sources_and_account(self): req = Request.blank('/v1/a1/c1/o', environ={'REQUEST_METHOD': 'PUT'}, headers={'Content-Length': '0', 'X-Copy-From': '/c/o', 'X-Copy-From-Account': 'a'}) status_list = (200, 200, 200, 200, 404, 404, 200, 201, 201, 201) # acct cont acct cont objc objc objc obj obj obj with self.controller_context(req, *status_list) as controller: resp = controller.PUT(req) self.assertEqual(resp.status_int, 201) def test_copy_with_object_metadata(self): req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'PUT'}, headers={'Content-Length': '0', 'X-Copy-From': '/c/o', 'X-Object-Meta-Ours': 'okay'}) # test object metadata status_list = (200, 200, 200, 200, 200, 201, 201, 201) # acct cont objc objc objc obj obj obj with self.controller_context(req, *status_list) as controller: resp = controller.PUT(req) self.assertEqual(resp.status_int, 201) self.assertEqual(resp.headers.get('x-object-meta-test'), 'testing') self.assertEqual(resp.headers.get('x-object-meta-ours'), 'okay') self.assertEqual(resp.headers.get('x-delete-at'), '9876543210') def test_copy_with_object_metadata_and_account(self): req = Request.blank('/v1/a1/c1/o', environ={'REQUEST_METHOD': 'PUT'}, headers={'Content-Length': '0', 'X-Copy-From': '/c/o', 'X-Object-Meta-Ours': 'okay', 'X-Copy-From-Account': 'a'}) # test object metadata status_list = (200, 200, 200, 200, 200, 200, 200, 201, 201, 201) # acct cont acct cont objc objc objc obj obj obj with self.controller_context(req, *status_list) as controller: resp = controller.PUT(req) self.assertEqual(resp.status_int, 201) self.assertEqual(resp.headers.get('x-object-meta-test'), 'testing') self.assertEqual(resp.headers.get('x-object-meta-ours'), 'okay') self.assertEqual(resp.headers.get('x-delete-at'), '9876543210') @_limit_max_file_size def test_copy_source_larger_than_max_file_size(self): req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'PUT'}, headers={'Content-Length': '0', 'X-Copy-From': '/c/o'}) # copy-from object is too large to fit in target object class LargeResponseBody(object): def __len__(self): return constraints.MAX_FILE_SIZE + 1 def __getitem__(self, key): return '' copy_from_obj_body = LargeResponseBody() status_list = (200, 200, 200, 200, 200) # acct cont objc objc objc kwargs = dict(body=copy_from_obj_body) with self.controller_context(req, *status_list, **kwargs) as controller: self.app.update_request(req) self.app.memcache.store = {} try: resp = controller.PUT(req) except HTTPException as resp: pass self.assertEqual(resp.status_int, 413) def test_basic_COPY(self): req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'COPY'}, headers={'Destination': 'c/o2'}) status_list = (200, 200, 200, 200, 200, 201, 201, 201) # acct cont objc objc objc obj obj obj with self.controller_context(req, *status_list) as controller: resp = controller.COPY(req) self.assertEqual(resp.status_int, 201) self.assertEqual(resp.headers['x-copied-from'], 'c/o') def test_basic_COPY_account(self): req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'COPY'}, headers={'Destination': 'c1/o2', 'Destination-Account': 'a1'}) status_list = (200, 200, 200, 200, 200, 200, 200, 201, 201, 201) # acct cont acct cont objc objc objc obj obj obj with self.controller_context(req, *status_list) as controller: resp = controller.COPY(req) self.assertEqual(resp.status_int, 201) self.assertEqual(resp.headers['x-copied-from'], 'c/o') self.assertEqual(resp.headers['x-copied-from-account'], 'a') def test_COPY_across_containers(self): req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'COPY'}, headers={'Destination': 'c2/o'}) status_list = (200, 200, 200, 200, 200, 200, 201, 201, 201) # acct cont c2 objc objc objc obj obj obj with self.controller_context(req, *status_list) as controller: resp = controller.COPY(req) self.assertEqual(resp.status_int, 201) self.assertEqual(resp.headers['x-copied-from'], 'c/o') def test_COPY_source_with_slashes_in_name(self): req = Request.blank('/v1/a/c/o/o2', environ={'REQUEST_METHOD': 'COPY'}, headers={'Destination': 'c/o'}) status_list = (200, 200, 200, 200, 200, 201, 201, 201) # acct cont objc objc objc obj obj obj with self.controller_context(req, *status_list) as controller: resp = controller.COPY(req) self.assertEqual(resp.status_int, 201) self.assertEqual(resp.headers['x-copied-from'], 'c/o/o2') def test_COPY_account_source_with_slashes_in_name(self): req = Request.blank('/v1/a/c/o/o2', environ={'REQUEST_METHOD': 'COPY'}, headers={'Destination': 'c1/o', 'Destination-Account': 'a1'}) status_list = (200, 200, 200, 200, 200, 200, 200, 201, 201, 201) # acct cont acct cont objc objc objc obj obj obj with self.controller_context(req, *status_list) as controller: resp = controller.COPY(req) self.assertEqual(resp.status_int, 201) self.assertEqual(resp.headers['x-copied-from'], 'c/o/o2') self.assertEqual(resp.headers['x-copied-from-account'], 'a') def test_COPY_destination_leading_slash(self): req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'COPY'}, headers={'Destination': '/c/o'}) status_list = (200, 200, 200, 200, 200, 201, 201, 201) # acct cont objc objc objc obj obj obj with self.controller_context(req, *status_list) as controller: resp = controller.COPY(req) self.assertEqual(resp.status_int, 201) self.assertEqual(resp.headers['x-copied-from'], 'c/o') def test_COPY_account_destination_leading_slash(self): req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'COPY'}, headers={'Destination': '/c1/o', 'Destination-Account': 'a1'}) status_list = (200, 200, 200, 200, 200, 200, 200, 201, 201, 201) # acct cont acct cont objc objc objc obj obj obj with self.controller_context(req, *status_list) as controller: resp = controller.COPY(req) self.assertEqual(resp.status_int, 201) self.assertEqual(resp.headers['x-copied-from'], 'c/o') self.assertEqual(resp.headers['x-copied-from-account'], 'a') def test_COPY_source_with_slashes_destination_leading_slash(self): req = Request.blank('/v1/a/c/o/o2', environ={'REQUEST_METHOD': 'COPY'}, headers={'Destination': '/c/o'}) status_list = (200, 200, 200, 200, 200, 201, 201, 201) # acct cont objc objc objc obj obj obj with self.controller_context(req, *status_list) as controller: resp = controller.COPY(req) self.assertEqual(resp.status_int, 201) self.assertEqual(resp.headers['x-copied-from'], 'c/o/o2') def test_COPY_account_source_with_slashes_destination_leading_slash(self): req = Request.blank('/v1/a/c/o/o2', environ={'REQUEST_METHOD': 'COPY'}, headers={'Destination': '/c1/o', 'Destination-Account': 'a1'}) status_list = (200, 200, 200, 200, 200, 200, 200, 201, 201, 201) # acct cont acct cont objc objc objc obj obj obj with self.controller_context(req, *status_list) as controller: resp = controller.COPY(req) self.assertEqual(resp.status_int, 201) self.assertEqual(resp.headers['x-copied-from'], 'c/o/o2') self.assertEqual(resp.headers['x-copied-from-account'], 'a') def test_COPY_no_object_in_destination(self): req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'COPY'}, headers={'Destination': 'c_o'}) status_list = [] # no requests needed with self.controller_context(req, *status_list) as controller: self.assertRaises(HTTPException, controller.COPY, req) def test_COPY_account_no_object_in_destination(self): req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'COPY'}, headers={'Destination': 'c_o', 'Destination-Account': 'a1'}) status_list = [] # no requests needed with self.controller_context(req, *status_list) as controller: self.assertRaises(HTTPException, controller.COPY, req) def test_COPY_server_error_reading_source(self): req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'COPY'}, headers={'Destination': '/c/o'}) status_list = (200, 200, 503, 503, 503) # acct cont objc objc objc with self.controller_context(req, *status_list) as controller: resp = controller.COPY(req) self.assertEqual(resp.status_int, 503) def test_COPY_account_server_error_reading_source(self): req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'COPY'}, headers={'Destination': '/c1/o', 'Destination-Account': 'a1'}) status_list = (200, 200, 200, 200, 503, 503, 503) # acct cont acct cont objc objc objc with self.controller_context(req, *status_list) as controller: resp = controller.COPY(req) self.assertEqual(resp.status_int, 503) def test_COPY_not_found_reading_source(self): req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'COPY'}, headers={'Destination': '/c/o'}) status_list = (200, 200, 404, 404, 404) # acct cont objc objc objc with self.controller_context(req, *status_list) as controller: resp = controller.COPY(req) self.assertEqual(resp.status_int, 404) def test_COPY_account_not_found_reading_source(self): req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'COPY'}, headers={'Destination': '/c1/o', 'Destination-Account': 'a1'}) status_list = (200, 200, 200, 200, 404, 404, 404) # acct cont acct cont objc objc objc with self.controller_context(req, *status_list) as controller: resp = controller.COPY(req) self.assertEqual(resp.status_int, 404) def test_COPY_with_some_missing_sources(self): req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'COPY'}, headers={'Destination': '/c/o'}) status_list = (200, 200, 404, 404, 200, 201, 201, 201) # acct cont objc objc objc obj obj obj with self.controller_context(req, *status_list) as controller: resp = controller.COPY(req) self.assertEqual(resp.status_int, 201) def test_COPY_account_with_some_missing_sources(self): req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'COPY'}, headers={'Destination': '/c1/o', 'Destination-Account': 'a1'}) status_list = (200, 200, 200, 200, 404, 404, 200, 201, 201, 201) # acct cont acct cont objc objc objc obj obj obj with self.controller_context(req, *status_list) as controller: resp = controller.COPY(req) self.assertEqual(resp.status_int, 201) def test_COPY_with_metadata(self): req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'COPY'}, headers={'Destination': '/c/o', 'X-Object-Meta-Ours': 'okay'}) status_list = (200, 200, 200, 200, 200, 201, 201, 201) # acct cont objc objc objc obj obj obj with self.controller_context(req, *status_list) as controller: resp = controller.COPY(req) self.assertEqual(resp.status_int, 201) self.assertEqual(resp.headers.get('x-object-meta-test'), 'testing') self.assertEqual(resp.headers.get('x-object-meta-ours'), 'okay') self.assertEqual(resp.headers.get('x-delete-at'), '9876543210') def test_COPY_account_with_metadata(self): req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'COPY'}, headers={'Destination': '/c1/o', 'X-Object-Meta-Ours': 'okay', 'Destination-Account': 'a1'}) status_list = (200, 200, 200, 200, 200, 200, 200, 201, 201, 201) # acct cont acct cont objc objc objc obj obj obj with self.controller_context(req, *status_list) as controller: resp = controller.COPY(req) self.assertEqual(resp.status_int, 201) self.assertEqual(resp.headers.get('x-object-meta-test'), 'testing') self.assertEqual(resp.headers.get('x-object-meta-ours'), 'okay') self.assertEqual(resp.headers.get('x-delete-at'), '9876543210') @_limit_max_file_size def test_COPY_source_larger_than_max_file_size(self): req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'COPY'}, headers={'Destination': '/c/o'}) class LargeResponseBody(object): def __len__(self): return constraints.MAX_FILE_SIZE + 1 def __getitem__(self, key): return '' copy_from_obj_body = LargeResponseBody() status_list = (200, 200, 200, 200, 200) # acct cont objc objc objc kwargs = dict(body=copy_from_obj_body) with self.controller_context(req, *status_list, **kwargs) as controller: try: resp = controller.COPY(req) except HTTPException as resp: pass self.assertEqual(resp.status_int, 413) @_limit_max_file_size def test_COPY_account_source_larger_than_max_file_size(self): req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'COPY'}, headers={'Destination': '/c1/o', 'Destination-Account': 'a1'}) class LargeResponseBody(object): def __len__(self): return constraints.MAX_FILE_SIZE + 1 def __getitem__(self, key): return '' copy_from_obj_body = LargeResponseBody() status_list = (200, 200, 200, 200, 200) # acct cont objc objc objc kwargs = dict(body=copy_from_obj_body) with self.controller_context(req, *status_list, **kwargs) as controller: try: resp = controller.COPY(req) except HTTPException as resp: pass self.assertEqual(resp.status_int, 413) def test_COPY_newest(self): with save_globals(): controller = ReplicatedObjectController( self.app, 'a', 'c', 'o') req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'COPY'}, headers={'Destination': '/c/o'}) req.account = 'a' controller.object_name = 'o' set_http_connect(200, 200, 200, 200, 200, 201, 201, 201, # act cont objc objc objc obj obj obj timestamps=('1', '1', '1', '3', '2', '4', '4', '4')) self.app.memcache.store = {} resp = controller.COPY(req) self.assertEqual(resp.status_int, 201) self.assertEqual(resp.headers['x-copied-from-last-modified'], '3') def test_COPY_account_newest(self): with save_globals(): controller = ReplicatedObjectController( self.app, 'a', 'c', 'o') req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'COPY'}, headers={'Destination': '/c1/o', 'Destination-Account': 'a1'}) req.account = 'a' controller.object_name = 'o' set_http_connect(200, 200, 200, 200, 200, 200, 200, 201, 201, 201, # act cont acct cont objc objc objc obj obj obj timestamps=('1', '1', '1', '1', '3', '2', '1', '4', '4', '4')) self.app.memcache.store = {} resp = controller.COPY(req) self.assertEqual(resp.status_int, 201) self.assertEqual(resp.headers['x-copied-from-last-modified'], '3') def test_COPY_delete_at(self): with save_globals(): backend_requests = [] def capture_requests(ipaddr, port, device, partition, method, path, headers=None, query_string=None): backend_requests.append((method, path, headers)) controller = ReplicatedObjectController( self.app, 'a', 'c', 'o') set_http_connect(200, 200, 200, 200, 200, 201, 201, 201, give_connect=capture_requests) self.app.memcache.store = {} req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'COPY'}, headers={'Destination': '/c/o'}) self.app.update_request(req) resp = controller.COPY(req) self.assertEqual(201, resp.status_int) # sanity for method, path, given_headers in backend_requests: if method != 'PUT': continue self.assertEqual(given_headers.get('X-Delete-At'), '9876543210') self.assertTrue('X-Delete-At-Host' in given_headers) self.assertTrue('X-Delete-At-Device' in given_headers) self.assertTrue('X-Delete-At-Partition' in given_headers) self.assertTrue('X-Delete-At-Container' in given_headers) def test_COPY_account_delete_at(self): with save_globals(): backend_requests = [] def capture_requests(ipaddr, port, device, partition, method, path, headers=None, query_string=None): backend_requests.append((method, path, headers)) controller = ReplicatedObjectController( self.app, 'a', 'c', 'o') set_http_connect(200, 200, 200, 200, 200, 200, 200, 201, 201, 201, give_connect=capture_requests) self.app.memcache.store = {} req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'COPY'}, headers={'Destination': '/c1/o', 'Destination-Account': 'a1'}) self.app.update_request(req) resp = controller.COPY(req) self.assertEqual(201, resp.status_int) # sanity for method, path, given_headers in backend_requests: if method != 'PUT': continue self.assertEqual(given_headers.get('X-Delete-At'), '9876543210') self.assertTrue('X-Delete-At-Host' in given_headers) self.assertTrue('X-Delete-At-Device' in given_headers) self.assertTrue('X-Delete-At-Partition' in given_headers) self.assertTrue('X-Delete-At-Container' in given_headers) def test_chunked_put(self): class ChunkedFile(object): def __init__(self, bytes): self.bytes = bytes self.read_bytes = 0 @property def bytes_left(self): return self.bytes - self.read_bytes def read(self, amt=None): if self.read_bytes >= self.bytes: raise StopIteration() if not amt: amt = self.bytes_left data = 'a' * min(amt, self.bytes_left) self.read_bytes += len(data) return data with save_globals(): set_http_connect(201, 201, 201, 201) controller = ReplicatedObjectController( self.app, 'account', 'container', 'object') req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'COPY'}, headers={'Transfer-Encoding': 'chunked', 'Content-Type': 'foo/bar'}) req.body_file = ChunkedFile(10) self.app.memcache.store = {} self.app.update_request(req) res = controller.PUT(req) self.assertEqual(res.status_int // 100, 2) # success # test 413 entity to large set_http_connect(201, 201, 201, 201) req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'COPY'}, headers={'Transfer-Encoding': 'chunked', 'Content-Type': 'foo/bar'}) req.body_file = ChunkedFile(11) self.app.memcache.store = {} self.app.update_request(req) with mock.patch('swift.common.constraints.MAX_FILE_SIZE', 10): res = controller.PUT(req) self.assertEqual(res.status_int, 413) @unpatch_policies def test_chunked_put_bad_version(self): # Check bad version (prolis, acc1lis, acc2lis, con1lis, con2lis, obj1lis, obj2lis, obj3lis) = _test_sockets sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('GET /v0 HTTP/1.1\r\nHost: localhost\r\n' 'Connection: close\r\nContent-Length: 0\r\n\r\n') fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 412' self.assertEqual(headers[:len(exp)], exp) @unpatch_policies def test_chunked_put_bad_path(self): # Check bad path (prolis, acc1lis, acc2lis, con1lis, con2lis, obj1lis, obj2lis, obj3lis) = _test_sockets sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('GET invalid HTTP/1.1\r\nHost: localhost\r\n' 'Connection: close\r\nContent-Length: 0\r\n\r\n') fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 404' self.assertEqual(headers[:len(exp)], exp) @unpatch_policies def test_chunked_put_bad_utf8(self): # Check invalid utf-8 (prolis, acc1lis, acc2lis, con1lis, con2lis, obj1lis, obj2lis, obj3lis) = _test_sockets sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('GET /v1/a%80 HTTP/1.1\r\nHost: localhost\r\n' 'Connection: close\r\nX-Auth-Token: t\r\n' 'Content-Length: 0\r\n\r\n') fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 412' self.assertEqual(headers[:len(exp)], exp) @unpatch_policies def test_chunked_put_bad_path_no_controller(self): # Check bad path, no controller (prolis, acc1lis, acc2lis, con1lis, con2lis, obj1lis, obj2lis, obj3lis) = _test_sockets sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('GET /v1 HTTP/1.1\r\nHost: localhost\r\n' 'Connection: close\r\nX-Auth-Token: t\r\n' 'Content-Length: 0\r\n\r\n') fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 412' self.assertEqual(headers[:len(exp)], exp) @unpatch_policies def test_chunked_put_bad_method(self): # Check bad method (prolis, acc1lis, acc2lis, con1lis, con2lis, obj1lis, obj2lis, obj3lis) = _test_sockets sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('LICK /v1/a HTTP/1.1\r\nHost: localhost\r\n' 'Connection: close\r\nX-Auth-Token: t\r\n' 'Content-Length: 0\r\n\r\n') fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 405' self.assertEqual(headers[:len(exp)], exp) @unpatch_policies def test_chunked_put_unhandled_exception(self): # Check unhandled exception (prosrv, acc1srv, acc2srv, con1srv, con2srv, obj1srv, obj2srv, obj3srv) = _test_servers (prolis, acc1lis, acc2lis, con1lis, con2lis, obj1lis, obj2lis, obj3lis) = _test_sockets orig_update_request = prosrv.update_request def broken_update_request(*args, **kwargs): raise Exception('fake: this should be printed') prosrv.update_request = broken_update_request sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('HEAD /v1/a HTTP/1.1\r\nHost: localhost\r\n' 'Connection: close\r\nX-Auth-Token: t\r\n' 'Content-Length: 0\r\n\r\n') fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 500' self.assertEqual(headers[:len(exp)], exp) prosrv.update_request = orig_update_request @unpatch_policies def test_chunked_put_head_account(self): # Head account, just a double check and really is here to test # the part Application.log_request that 'enforces' a # content_length on the response. (prolis, acc1lis, acc2lis, con1lis, con2lis, obj1lis, obj2lis, obj3lis) = _test_sockets sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('HEAD /v1/a HTTP/1.1\r\nHost: localhost\r\n' 'Connection: close\r\nX-Auth-Token: t\r\n' 'Content-Length: 0\r\n\r\n') fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 204' self.assertEqual(headers[:len(exp)], exp) self.assertTrue('\r\nContent-Length: 0\r\n' in headers) @unpatch_policies def test_chunked_put_utf8_all_the_way_down(self): # Test UTF-8 Unicode all the way through the system ustr = '\xe1\xbc\xb8\xce\xbf\xe1\xbd\xba \xe1\xbc\xb0\xce' \ '\xbf\xe1\xbd\xbb\xce\x87 \xcf\x84\xe1\xbd\xb0 \xcf' \ '\x80\xe1\xbd\xb1\xce\xbd\xcf\x84\xca\xbc \xe1\xbc' \ '\x82\xce\xbd \xe1\xbc\x90\xce\xbe\xe1\xbd\xb5\xce' \ '\xba\xce\xbf\xce\xb9 \xcf\x83\xce\xb1\xcf\x86\xe1' \ '\xbf\x86.Test' ustr_short = '\xe1\xbc\xb8\xce\xbf\xe1\xbd\xbatest' # Create ustr container (prolis, acc1lis, acc2lis, con1lis, con2lis, obj1lis, obj2lis, obj3lis) = _test_sockets sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('PUT /v1/a/%s HTTP/1.1\r\nHost: localhost\r\n' 'Connection: close\r\nX-Storage-Token: t\r\n' 'Content-Length: 0\r\n\r\n' % quote(ustr)) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 201' self.assertEqual(headers[:len(exp)], exp) # List account with ustr container (test plain) sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('GET /v1/a HTTP/1.1\r\nHost: localhost\r\n' 'Connection: close\r\nX-Storage-Token: t\r\n' 'Content-Length: 0\r\n\r\n') fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 200' self.assertEqual(headers[:len(exp)], exp) containers = fd.read().split('\n') self.assertTrue(ustr in containers) # List account with ustr container (test json) sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('GET /v1/a?format=json HTTP/1.1\r\n' 'Host: localhost\r\nConnection: close\r\n' 'X-Storage-Token: t\r\nContent-Length: 0\r\n\r\n') fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 200' self.assertEqual(headers[:len(exp)], exp) listing = json.loads(fd.read()) self.assertTrue(ustr.decode('utf8') in [l['name'] for l in listing]) # List account with ustr container (test xml) sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('GET /v1/a?format=xml HTTP/1.1\r\n' 'Host: localhost\r\nConnection: close\r\n' 'X-Storage-Token: t\r\nContent-Length: 0\r\n\r\n') fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 200' self.assertEqual(headers[:len(exp)], exp) self.assertTrue('<name>%s</name>' % ustr in fd.read()) # Create ustr object with ustr metadata in ustr container sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('PUT /v1/a/%s/%s HTTP/1.1\r\nHost: localhost\r\n' 'Connection: close\r\nX-Storage-Token: t\r\n' 'X-Object-Meta-%s: %s\r\nContent-Length: 0\r\n\r\n' % (quote(ustr), quote(ustr), quote(ustr_short), quote(ustr))) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 201' self.assertEqual(headers[:len(exp)], exp) # List ustr container with ustr object (test plain) sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('GET /v1/a/%s HTTP/1.1\r\nHost: localhost\r\n' 'Connection: close\r\nX-Storage-Token: t\r\n' 'Content-Length: 0\r\n\r\n' % quote(ustr)) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 200' self.assertEqual(headers[:len(exp)], exp) objects = fd.read().split('\n') self.assertTrue(ustr in objects) # List ustr container with ustr object (test json) sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('GET /v1/a/%s?format=json HTTP/1.1\r\n' 'Host: localhost\r\nConnection: close\r\n' 'X-Storage-Token: t\r\nContent-Length: 0\r\n\r\n' % quote(ustr)) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 200' self.assertEqual(headers[:len(exp)], exp) listing = json.loads(fd.read()) self.assertEqual(listing[0]['name'], ustr.decode('utf8')) # List ustr container with ustr object (test xml) sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('GET /v1/a/%s?format=xml HTTP/1.1\r\n' 'Host: localhost\r\nConnection: close\r\n' 'X-Storage-Token: t\r\nContent-Length: 0\r\n\r\n' % quote(ustr)) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 200' self.assertEqual(headers[:len(exp)], exp) self.assertTrue('<name>%s</name>' % ustr in fd.read()) # Retrieve ustr object with ustr metadata sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('GET /v1/a/%s/%s HTTP/1.1\r\nHost: localhost\r\n' 'Connection: close\r\nX-Storage-Token: t\r\n' 'Content-Length: 0\r\n\r\n' % (quote(ustr), quote(ustr))) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 200' self.assertEqual(headers[:len(exp)], exp) self.assertTrue('\r\nX-Object-Meta-%s: %s\r\n' % (quote(ustr_short).lower(), quote(ustr)) in headers) @unpatch_policies def test_chunked_put_chunked_put(self): # Do chunked object put (prolis, acc1lis, acc2lis, con1lis, con2lis, obj1lis, obj2lis, obj3lis) = _test_sockets sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() # Also happens to assert that x-storage-token is taken as a # replacement for x-auth-token. fd.write('PUT /v1/a/c/o/chunky HTTP/1.1\r\nHost: localhost\r\n' 'Connection: close\r\nX-Storage-Token: t\r\n' 'Transfer-Encoding: chunked\r\n\r\n' '2\r\noh\r\n4\r\n hai\r\nf\r\n123456789abcdef\r\n' '0\r\n\r\n') fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 201' self.assertEqual(headers[:len(exp)], exp) # Ensure we get what we put sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('GET /v1/a/c/o/chunky HTTP/1.1\r\nHost: localhost\r\n' 'Connection: close\r\nX-Auth-Token: t\r\n\r\n') fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 200' self.assertEqual(headers[:len(exp)], exp) body = fd.read() self.assertEqual(body, 'oh hai123456789abcdef') @unpatch_policies def test_conditional_range_get(self): (prolis, acc1lis, acc2lis, con1lis, con2lis, obj1lis, obj2lis, obj3lis) = _test_sockets sock = connect_tcp(('localhost', prolis.getsockname()[1])) # make a container fd = sock.makefile() fd.write('PUT /v1/a/con HTTP/1.1\r\nHost: localhost\r\n' 'Connection: close\r\nX-Storage-Token: t\r\n' 'Content-Length: 0\r\n\r\n') fd.flush() exp = 'HTTP/1.1 201' headers = readuntil2crlfs(fd) self.assertEqual(headers[:len(exp)], exp) # put an object in it sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('PUT /v1/a/con/o HTTP/1.1\r\n' 'Host: localhost\r\n' 'Connection: close\r\n' 'X-Storage-Token: t\r\n' 'Content-Length: 10\r\n' 'Content-Type: text/plain\r\n' '\r\n' 'abcdefghij\r\n') fd.flush() exp = 'HTTP/1.1 201' headers = readuntil2crlfs(fd) self.assertEqual(headers[:len(exp)], exp) # request with both If-None-Match and Range etag = md5("abcdefghij").hexdigest() sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('GET /v1/a/con/o HTTP/1.1\r\n' + 'Host: localhost\r\n' + 'Connection: close\r\n' + 'X-Storage-Token: t\r\n' + 'If-None-Match: "' + etag + '"\r\n' + 'Range: bytes=3-8\r\n' + '\r\n') fd.flush() exp = 'HTTP/1.1 304' headers = readuntil2crlfs(fd) self.assertEqual(headers[:len(exp)], exp) def test_mismatched_etags(self): with save_globals(): # no etag supplied, object servers return success w/ diff values controller = ReplicatedObjectController( self.app, 'account', 'container', 'object') req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'PUT'}, headers={'Content-Length': '0'}) self.app.update_request(req) set_http_connect(200, 201, 201, 201, etags=[None, '68b329da9893e34099c7d8ad5cb9c940', '68b329da9893e34099c7d8ad5cb9c940', '68b329da9893e34099c7d8ad5cb9c941']) resp = controller.PUT(req) self.assertEqual(resp.status_int // 100, 5) # server error # req supplies etag, object servers return 422 - mismatch headers = {'Content-Length': '0', 'ETag': '68b329da9893e34099c7d8ad5cb9c940'} req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'PUT'}, headers=headers) self.app.update_request(req) set_http_connect(200, 422, 422, 503, etags=['68b329da9893e34099c7d8ad5cb9c940', '68b329da9893e34099c7d8ad5cb9c941', None, None]) resp = controller.PUT(req) self.assertEqual(resp.status_int // 100, 4) # client error def test_response_get_accept_ranges_header(self): with save_globals(): req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'GET'}) self.app.update_request(req) controller = ReplicatedObjectController( self.app, 'account', 'container', 'object') set_http_connect(200, 200, 200) resp = controller.GET(req) self.assertTrue('accept-ranges' in resp.headers) self.assertEqual(resp.headers['accept-ranges'], 'bytes') def test_response_head_accept_ranges_header(self): with save_globals(): req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'HEAD'}) self.app.update_request(req) controller = ReplicatedObjectController( self.app, 'account', 'container', 'object') set_http_connect(200, 200, 200) resp = controller.HEAD(req) self.assertTrue('accept-ranges' in resp.headers) self.assertEqual(resp.headers['accept-ranges'], 'bytes') def test_GET_calls_authorize(self): called = [False] def authorize(req): called[0] = True return HTTPUnauthorized(request=req) with save_globals(): set_http_connect(200, 200, 201, 201, 201) controller = ReplicatedObjectController( self.app, 'account', 'container', 'object') req = Request.blank('/v1/a/c/o') req.environ['swift.authorize'] = authorize self.app.update_request(req) controller.GET(req) self.assertTrue(called[0]) def test_HEAD_calls_authorize(self): called = [False] def authorize(req): called[0] = True return HTTPUnauthorized(request=req) with save_globals(): set_http_connect(200, 200, 201, 201, 201) controller = ReplicatedObjectController( self.app, 'account', 'container', 'object') req = Request.blank('/v1/a/c/o', {'REQUEST_METHOD': 'HEAD'}) req.environ['swift.authorize'] = authorize self.app.update_request(req) controller.HEAD(req) self.assertTrue(called[0]) def test_POST_calls_authorize(self): called = [False] def authorize(req): called[0] = True return HTTPUnauthorized(request=req) with save_globals(): self.app.object_post_as_copy = False set_http_connect(200, 200, 201, 201, 201) controller = ReplicatedObjectController( self.app, 'account', 'container', 'object') req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'POST'}, headers={'Content-Length': '5'}, body='12345') req.environ['swift.authorize'] = authorize self.app.update_request(req) controller.POST(req) self.assertTrue(called[0]) def test_POST_as_copy_calls_authorize(self): called = [False] def authorize(req): called[0] = True return HTTPUnauthorized(request=req) with save_globals(): set_http_connect(200, 200, 200, 200, 200, 201, 201, 201) controller = ReplicatedObjectController( self.app, 'account', 'container', 'object') req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'POST'}, headers={'Content-Length': '5'}, body='12345') req.environ['swift.authorize'] = authorize self.app.update_request(req) controller.POST(req) self.assertTrue(called[0]) def test_PUT_calls_authorize(self): called = [False] def authorize(req): called[0] = True return HTTPUnauthorized(request=req) with save_globals(): set_http_connect(200, 200, 201, 201, 201) controller = ReplicatedObjectController( self.app, 'account', 'container', 'object') req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'PUT'}, headers={'Content-Length': '5'}, body='12345') req.environ['swift.authorize'] = authorize self.app.update_request(req) controller.PUT(req) self.assertTrue(called[0]) def test_COPY_calls_authorize(self): called = [False] def authorize(req): called[0] = True return HTTPUnauthorized(request=req) with save_globals(): set_http_connect(200, 200, 200, 200, 200, 201, 201, 201) controller = ReplicatedObjectController( self.app, 'account', 'container', 'object') req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'COPY'}, headers={'Destination': 'c/o'}) req.environ['swift.authorize'] = authorize self.app.update_request(req) controller.COPY(req) self.assertTrue(called[0]) def test_POST_converts_delete_after_to_delete_at(self): with save_globals(): self.app.object_post_as_copy = False controller = ReplicatedObjectController( self.app, 'account', 'container', 'object') set_http_connect(200, 200, 202, 202, 202) self.app.memcache.store = {} orig_time = time.time try: t = time.time() time.time = lambda: t req = Request.blank('/v1/a/c/o', {}, headers={'Content-Type': 'foo/bar', 'X-Delete-After': '60'}) self.app.update_request(req) res = controller.POST(req) self.assertEqual(res.status, '202 Fake') self.assertEqual(req.headers.get('x-delete-at'), str(int(t + 60))) finally: time.time = orig_time @unpatch_policies def test_ec_client_disconnect(self): prolis = _test_sockets[0] # create connection sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() # create container fd.write('PUT /v1/a/ec-discon HTTP/1.1\r\n' 'Host: localhost\r\n' 'Content-Length: 0\r\n' 'X-Storage-Token: t\r\n' 'X-Storage-Policy: ec\r\n' '\r\n') fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 2' self.assertEqual(headers[:len(exp)], exp) # create object obj = 'a' * 4 * 64 * 2 ** 10 fd.write('PUT /v1/a/ec-discon/test HTTP/1.1\r\n' 'Host: localhost\r\n' 'Content-Length: %d\r\n' 'X-Storage-Token: t\r\n' 'Content-Type: donuts\r\n' '\r\n%s' % (len(obj), obj)) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 201' self.assertEqual(headers[:len(exp)], exp) # get object fd.write('GET /v1/a/ec-discon/test HTTP/1.1\r\n' 'Host: localhost\r\n' 'Connection: close\r\n' 'X-Storage-Token: t\r\n' '\r\n') fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 200' self.assertEqual(headers[:len(exp)], exp) # read most of the object, and disconnect fd.read(10) sock.fd._sock.close() sleep(0.1) # check for disconnect message! expected = ['Client disconnected on read'] * 2 self.assertEqual( _test_servers[0].logger.get_lines_for_level('warning'), expected) @unpatch_policies def test_ec_client_put_disconnect(self): prolis = _test_sockets[0] # create connection sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() # create container fd.write('PUT /v1/a/ec-discon HTTP/1.1\r\n' 'Host: localhost\r\n' 'Content-Length: 0\r\n' 'X-Storage-Token: t\r\n' 'X-Storage-Policy: ec\r\n' '\r\n') fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 2' self.assertEqual(headers[:len(exp)], exp) # create object obj = 'a' * 4 * 64 * 2 ** 10 fd.write('PUT /v1/a/ec-discon/test HTTP/1.1\r\n' 'Host: localhost\r\n' 'Content-Length: %d\r\n' 'X-Storage-Token: t\r\n' 'Content-Type: donuts\r\n' '\r\n%s' % (len(obj), obj[:-10])) fd.flush() fd.close() sock.close() # sleep to trampoline enough sleep(0.1) expected = ['Client disconnected without sending enough data'] warns = _test_servers[0].logger.get_lines_for_level('warning') self.assertEqual(expected, warns) errors = _test_servers[0].logger.get_lines_for_level('error') self.assertEqual([], errors) @unpatch_policies def test_leak_1(self): _request_instances = weakref.WeakKeyDictionary() _orig_init = Request.__init__ def request_init(self, *args, **kwargs): _orig_init(self, *args, **kwargs) _request_instances[self] = None with mock.patch.object(Request, "__init__", request_init): prolis = _test_sockets[0] prosrv = _test_servers[0] obj_len = prosrv.client_chunk_size * 2 # PUT test file sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('PUT /v1/a/c/test_leak_1 HTTP/1.1\r\n' 'Host: localhost\r\n' 'Connection: close\r\n' 'X-Auth-Token: t\r\n' 'Content-Length: %s\r\n' 'Content-Type: application/octet-stream\r\n' '\r\n%s' % (obj_len, 'a' * obj_len)) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 201' self.assertEqual(headers[:len(exp)], exp) # Remember Request instance count, make sure the GC is run for # pythons without reference counting. for i in range(4): sleep(0) # let eventlet do its thing gc.collect() else: sleep(0) before_request_instances = len(_request_instances) # GET test file, but disconnect early sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('GET /v1/a/c/test_leak_1 HTTP/1.1\r\n' 'Host: localhost\r\n' 'Connection: close\r\n' 'X-Auth-Token: t\r\n' '\r\n') fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 200' self.assertEqual(headers[:len(exp)], exp) fd.read(1) sock.fd._sock.close() # Make sure the GC is run again for pythons without reference # counting for i in range(4): sleep(0) # let eventlet do its thing gc.collect() else: sleep(0) self.assertEqual( before_request_instances, len(_request_instances)) def test_OPTIONS(self): with save_globals(): controller = ReplicatedObjectController( self.app, 'a', 'c', 'o.jpg') def my_empty_container_info(*args): return {} controller.container_info = my_empty_container_info req = Request.blank( '/v1/a/c/o.jpg', {'REQUEST_METHOD': 'OPTIONS'}, headers={'Origin': 'http://foo.com', 'Access-Control-Request-Method': 'GET'}) resp = controller.OPTIONS(req) self.assertEqual(401, resp.status_int) def my_empty_origin_container_info(*args): return {'cors': {'allow_origin': None}} controller.container_info = my_empty_origin_container_info req = Request.blank( '/v1/a/c/o.jpg', {'REQUEST_METHOD': 'OPTIONS'}, headers={'Origin': 'http://foo.com', 'Access-Control-Request-Method': 'GET'}) resp = controller.OPTIONS(req) self.assertEqual(401, resp.status_int) def my_container_info(*args): return { 'cors': { 'allow_origin': 'http://foo.bar:8080 https://foo.bar', 'max_age': '999', } } controller.container_info = my_container_info req = Request.blank( '/v1/a/c/o.jpg', {'REQUEST_METHOD': 'OPTIONS'}, headers={'Origin': 'https://foo.bar', 'Access-Control-Request-Method': 'GET'}) req.content_length = 0 resp = controller.OPTIONS(req) self.assertEqual(200, resp.status_int) self.assertEqual( 'https://foo.bar', resp.headers['access-control-allow-origin']) for verb in 'OPTIONS COPY GET POST PUT DELETE HEAD'.split(): self.assertTrue( verb in resp.headers['access-control-allow-methods']) self.assertEqual( len(resp.headers['access-control-allow-methods'].split(', ')), 7) self.assertEqual('999', resp.headers['access-control-max-age']) req = Request.blank( '/v1/a/c/o.jpg', {'REQUEST_METHOD': 'OPTIONS'}, headers={'Origin': 'https://foo.bar'}) req.content_length = 0 resp = controller.OPTIONS(req) self.assertEqual(401, resp.status_int) req = Request.blank('/v1/a/c/o.jpg', {'REQUEST_METHOD': 'OPTIONS'}) req.content_length = 0 resp = controller.OPTIONS(req) self.assertEqual(200, resp.status_int) for verb in 'OPTIONS COPY GET POST PUT DELETE HEAD'.split(): self.assertTrue( verb in resp.headers['Allow']) self.assertEqual(len(resp.headers['Allow'].split(', ')), 7) req = Request.blank( '/v1/a/c/o.jpg', {'REQUEST_METHOD': 'OPTIONS'}, headers={'Origin': 'http://foo.com'}) resp = controller.OPTIONS(req) self.assertEqual(401, resp.status_int) req = Request.blank( '/v1/a/c/o.jpg', {'REQUEST_METHOD': 'OPTIONS'}, headers={'Origin': 'http://foo.bar', 'Access-Control-Request-Method': 'GET'}) controller.app.cors_allow_origin = ['http://foo.bar', ] resp = controller.OPTIONS(req) self.assertEqual(200, resp.status_int) def my_container_info_wildcard(*args): return { 'cors': { 'allow_origin': '*', 'max_age': '999', } } controller.container_info = my_container_info_wildcard req = Request.blank( '/v1/a/c/o.jpg', {'REQUEST_METHOD': 'OPTIONS'}, headers={'Origin': 'https://bar.baz', 'Access-Control-Request-Method': 'GET'}) req.content_length = 0 resp = controller.OPTIONS(req) self.assertEqual(200, resp.status_int) self.assertEqual('*', resp.headers['access-control-allow-origin']) for verb in 'OPTIONS COPY GET POST PUT DELETE HEAD'.split(): self.assertTrue( verb in resp.headers['access-control-allow-methods']) self.assertEqual( len(resp.headers['access-control-allow-methods'].split(', ')), 7) self.assertEqual('999', resp.headers['access-control-max-age']) def test_CORS_valid(self): with save_globals(): controller = ReplicatedObjectController( self.app, 'a', 'c', 'o') def stubContainerInfo(*args): return { 'cors': { 'allow_origin': 'http://not.foo.bar' } } controller.container_info = stubContainerInfo controller.app.strict_cors_mode = False def objectGET(controller, req): return Response(headers={ 'X-Object-Meta-Color': 'red', 'X-Super-Secret': 'hush', }) req = Request.blank( '/v1/a/c/o.jpg', {'REQUEST_METHOD': 'GET'}, headers={'Origin': 'http://foo.bar'}) resp = cors_validation(objectGET)(controller, req) self.assertEqual(200, resp.status_int) self.assertEqual('http://foo.bar', resp.headers['access-control-allow-origin']) self.assertEqual('red', resp.headers['x-object-meta-color']) # X-Super-Secret is in the response, but not "exposed" self.assertEqual('hush', resp.headers['x-super-secret']) self.assertTrue('access-control-expose-headers' in resp.headers) exposed = set( h.strip() for h in resp.headers['access-control-expose-headers'].split(',')) expected_exposed = set(['cache-control', 'content-language', 'content-type', 'expires', 'last-modified', 'pragma', 'etag', 'x-timestamp', 'x-trans-id', 'x-object-meta-color']) self.assertEqual(expected_exposed, exposed) controller.app.strict_cors_mode = True req = Request.blank( '/v1/a/c/o.jpg', {'REQUEST_METHOD': 'GET'}, headers={'Origin': 'http://foo.bar'}) resp = cors_validation(objectGET)(controller, req) self.assertEqual(200, resp.status_int) self.assertTrue('access-control-allow-origin' not in resp.headers) def test_CORS_valid_with_obj_headers(self): with save_globals(): controller = ReplicatedObjectController( self.app, 'a', 'c', 'o') def stubContainerInfo(*args): return { 'cors': { 'allow_origin': 'http://foo.bar' } } controller.container_info = stubContainerInfo def objectGET(controller, req): return Response(headers={ 'X-Object-Meta-Color': 'red', 'X-Super-Secret': 'hush', 'Access-Control-Allow-Origin': 'http://obj.origin', 'Access-Control-Expose-Headers': 'x-trans-id' }) req = Request.blank( '/v1/a/c/o.jpg', {'REQUEST_METHOD': 'GET'}, headers={'Origin': 'http://foo.bar'}) resp = cors_validation(objectGET)(controller, req) self.assertEqual(200, resp.status_int) self.assertEqual('http://obj.origin', resp.headers['access-control-allow-origin']) self.assertEqual('x-trans-id', resp.headers['access-control-expose-headers']) def _gather_x_container_headers(self, controller_call, req, *connect_args, **kwargs): header_list = kwargs.pop('header_list', ['X-Container-Device', 'X-Container-Host', 'X-Container-Partition']) seen_headers = [] def capture_headers(ipaddr, port, device, partition, method, path, headers=None, query_string=None): captured = {} for header in header_list: captured[header] = headers.get(header) seen_headers.append(captured) with save_globals(): self.app.allow_account_management = True set_http_connect(*connect_args, give_connect=capture_headers, **kwargs) resp = controller_call(req) self.assertEqual(2, resp.status_int // 100) # sanity check # don't care about the account/container HEADs, so chuck # the first two requests return sorted(seen_headers[2:], key=lambda d: d.get(header_list[0]) or 'z') def test_PUT_x_container_headers_with_equal_replicas(self): req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'PUT'}, headers={'Content-Length': '5'}, body='12345') controller = ReplicatedObjectController( self.app, 'a', 'c', 'o') seen_headers = self._gather_x_container_headers( controller.PUT, req, 200, 200, 201, 201, 201) # HEAD HEAD PUT PUT PUT self.assertEqual( seen_headers, [ {'X-Container-Host': '10.0.0.0:1000', 'X-Container-Partition': '0', 'X-Container-Device': 'sda'}, {'X-Container-Host': '10.0.0.1:1001', 'X-Container-Partition': '0', 'X-Container-Device': 'sdb'}, {'X-Container-Host': '10.0.0.2:1002', 'X-Container-Partition': '0', 'X-Container-Device': 'sdc'}]) def test_PUT_x_container_headers_with_fewer_container_replicas(self): self.app.container_ring.set_replicas(2) req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'PUT'}, headers={'Content-Length': '5'}, body='12345') controller = ReplicatedObjectController( self.app, 'a', 'c', 'o') seen_headers = self._gather_x_container_headers( controller.PUT, req, 200, 200, 201, 201, 201) # HEAD HEAD PUT PUT PUT self.assertEqual( seen_headers, [ {'X-Container-Host': '10.0.0.0:1000', 'X-Container-Partition': '0', 'X-Container-Device': 'sda'}, {'X-Container-Host': '10.0.0.0:1000', 'X-Container-Partition': '0', 'X-Container-Device': 'sda'}, {'X-Container-Host': '10.0.0.1:1001', 'X-Container-Partition': '0', 'X-Container-Device': 'sdb'}]) def test_PUT_x_container_headers_with_more_container_replicas(self): self.app.container_ring.set_replicas(4) req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'PUT'}, headers={'Content-Length': '5'}, body='12345') controller = ReplicatedObjectController( self.app, 'a', 'c', 'o') seen_headers = self._gather_x_container_headers( controller.PUT, req, 200, 200, 201, 201, 201) # HEAD HEAD PUT PUT PUT self.assertEqual( seen_headers, [ {'X-Container-Host': '10.0.0.0:1000,10.0.0.3:1003', 'X-Container-Partition': '0', 'X-Container-Device': 'sda,sdd'}, {'X-Container-Host': '10.0.0.1:1001', 'X-Container-Partition': '0', 'X-Container-Device': 'sdb'}, {'X-Container-Host': '10.0.0.2:1002', 'X-Container-Partition': '0', 'X-Container-Device': 'sdc'}]) def test_POST_x_container_headers_with_more_container_replicas(self): self.app.container_ring.set_replicas(4) self.app.object_post_as_copy = False req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'POST'}, headers={'Content-Type': 'application/stuff'}) controller = ReplicatedObjectController( self.app, 'a', 'c', 'o') seen_headers = self._gather_x_container_headers( controller.POST, req, 200, 200, 200, 200, 200) # HEAD HEAD POST POST POST self.assertEqual( seen_headers, [ {'X-Container-Host': '10.0.0.0:1000,10.0.0.3:1003', 'X-Container-Partition': '0', 'X-Container-Device': 'sda,sdd'}, {'X-Container-Host': '10.0.0.1:1001', 'X-Container-Partition': '0', 'X-Container-Device': 'sdb'}, {'X-Container-Host': '10.0.0.2:1002', 'X-Container-Partition': '0', 'X-Container-Device': 'sdc'}]) def test_DELETE_x_container_headers_with_more_container_replicas(self): self.app.container_ring.set_replicas(4) req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'DELETE'}, headers={'Content-Type': 'application/stuff'}) controller = ReplicatedObjectController( self.app, 'a', 'c', 'o') seen_headers = self._gather_x_container_headers( controller.DELETE, req, 200, 200, 200, 200, 200) # HEAD HEAD DELETE DELETE DELETE self.assertEqual(seen_headers, [ {'X-Container-Host': '10.0.0.0:1000,10.0.0.3:1003', 'X-Container-Partition': '0', 'X-Container-Device': 'sda,sdd'}, {'X-Container-Host': '10.0.0.1:1001', 'X-Container-Partition': '0', 'X-Container-Device': 'sdb'}, {'X-Container-Host': '10.0.0.2:1002', 'X-Container-Partition': '0', 'X-Container-Device': 'sdc'} ]) @mock.patch('time.time', new=lambda: STATIC_TIME) def test_PUT_x_delete_at_with_fewer_container_replicas(self): self.app.container_ring.set_replicas(2) delete_at_timestamp = int(time.time()) + 100000 delete_at_container = utils.get_expirer_container( delete_at_timestamp, self.app.expiring_objects_container_divisor, 'a', 'c', 'o') req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'PUT'}, headers={'Content-Type': 'application/stuff', 'Content-Length': '0', 'X-Delete-At': str(delete_at_timestamp)}) controller = ReplicatedObjectController( self.app, 'a', 'c', 'o') seen_headers = self._gather_x_container_headers( controller.PUT, req, 200, 200, 201, 201, 201, # HEAD HEAD PUT PUT PUT header_list=('X-Delete-At-Host', 'X-Delete-At-Device', 'X-Delete-At-Partition', 'X-Delete-At-Container')) self.assertEqual(seen_headers, [ {'X-Delete-At-Host': '10.0.0.0:1000', 'X-Delete-At-Container': delete_at_container, 'X-Delete-At-Partition': '0', 'X-Delete-At-Device': 'sda'}, {'X-Delete-At-Host': '10.0.0.1:1001', 'X-Delete-At-Container': delete_at_container, 'X-Delete-At-Partition': '0', 'X-Delete-At-Device': 'sdb'}, {'X-Delete-At-Host': None, 'X-Delete-At-Container': None, 'X-Delete-At-Partition': None, 'X-Delete-At-Device': None} ]) @mock.patch('time.time', new=lambda: STATIC_TIME) def test_PUT_x_delete_at_with_more_container_replicas(self): self.app.container_ring.set_replicas(4) self.app.expiring_objects_account = 'expires' self.app.expiring_objects_container_divisor = 60 delete_at_timestamp = int(time.time()) + 100000 delete_at_container = utils.get_expirer_container( delete_at_timestamp, self.app.expiring_objects_container_divisor, 'a', 'c', 'o') req = Request.blank('/v1/a/c/o', environ={'REQUEST_METHOD': 'PUT'}, headers={'Content-Type': 'application/stuff', 'Content-Length': 0, 'X-Delete-At': str(delete_at_timestamp)}) controller = ReplicatedObjectController( self.app, 'a', 'c', 'o') seen_headers = self._gather_x_container_headers( controller.PUT, req, 200, 200, 201, 201, 201, # HEAD HEAD PUT PUT PUT header_list=('X-Delete-At-Host', 'X-Delete-At-Device', 'X-Delete-At-Partition', 'X-Delete-At-Container')) self.assertEqual(seen_headers, [ {'X-Delete-At-Host': '10.0.0.0:1000,10.0.0.3:1003', 'X-Delete-At-Container': delete_at_container, 'X-Delete-At-Partition': '0', 'X-Delete-At-Device': 'sda,sdd'}, {'X-Delete-At-Host': '10.0.0.1:1001', 'X-Delete-At-Container': delete_at_container, 'X-Delete-At-Partition': '0', 'X-Delete-At-Device': 'sdb'}, {'X-Delete-At-Host': '10.0.0.2:1002', 'X-Delete-At-Container': delete_at_container, 'X-Delete-At-Partition': '0', 'X-Delete-At-Device': 'sdc'} ]) class TestECMismatchedFA(unittest.TestCase): def tearDown(self): prosrv = _test_servers[0] # don't leak error limits and poison other tests prosrv._error_limiting = {} def test_mixing_different_objects_fragment_archives(self): (prosrv, acc1srv, acc2srv, con1srv, con2srv, obj1srv, obj2srv, obj3srv) = _test_servers ec_policy = POLICIES[3] @public def bad_disk(req): return Response(status=507, body="borken") ensure_container = Request.blank( "/v1/a/ec-crazytown", environ={"REQUEST_METHOD": "PUT"}, headers={"X-Storage-Policy": "ec", "X-Auth-Token": "t"}) resp = ensure_container.get_response(prosrv) self.assertTrue(resp.status_int in (201, 202)) obj1 = "first version..." put_req1 = Request.blank( "/v1/a/ec-crazytown/obj", environ={"REQUEST_METHOD": "PUT"}, headers={"X-Auth-Token": "t"}) put_req1.body = obj1 obj2 = u"versión segundo".encode("utf-8") put_req2 = Request.blank( "/v1/a/ec-crazytown/obj", environ={"REQUEST_METHOD": "PUT"}, headers={"X-Auth-Token": "t"}) put_req2.body = obj2 # pyeclib has checks for unequal-length; we don't want to trip those self.assertEqual(len(obj1), len(obj2)) # Server obj1 will have the first version of the object (obj2 also # gets it, but that gets stepped on later) prosrv._error_limiting = {} with mock.patch.object(obj3srv, 'PUT', bad_disk), \ mock.patch( 'swift.common.storage_policy.ECStoragePolicy.quorum'): type(ec_policy).quorum = mock.PropertyMock(return_value=2) resp = put_req1.get_response(prosrv) self.assertEqual(resp.status_int, 201) # Servers obj2 and obj3 will have the second version of the object. prosrv._error_limiting = {} with mock.patch.object(obj1srv, 'PUT', bad_disk), \ mock.patch( 'swift.common.storage_policy.ECStoragePolicy.quorum'): type(ec_policy).quorum = mock.PropertyMock(return_value=2) resp = put_req2.get_response(prosrv) self.assertEqual(resp.status_int, 201) # A GET that only sees 1 fragment archive should fail get_req = Request.blank("/v1/a/ec-crazytown/obj", environ={"REQUEST_METHOD": "GET"}, headers={"X-Auth-Token": "t"}) prosrv._error_limiting = {} with mock.patch.object(obj1srv, 'GET', bad_disk), \ mock.patch.object(obj2srv, 'GET', bad_disk): resp = get_req.get_response(prosrv) self.assertEqual(resp.status_int, 503) # A GET that sees 2 matching FAs will work get_req = Request.blank("/v1/a/ec-crazytown/obj", environ={"REQUEST_METHOD": "GET"}, headers={"X-Auth-Token": "t"}) prosrv._error_limiting = {} with mock.patch.object(obj1srv, 'GET', bad_disk): resp = get_req.get_response(prosrv) self.assertEqual(resp.status_int, 200) self.assertEqual(resp.body, obj2) # A GET that sees 2 mismatching FAs will fail get_req = Request.blank("/v1/a/ec-crazytown/obj", environ={"REQUEST_METHOD": "GET"}, headers={"X-Auth-Token": "t"}) prosrv._error_limiting = {} with mock.patch.object(obj2srv, 'GET', bad_disk): resp = get_req.get_response(prosrv) self.assertEqual(resp.status_int, 503) class TestObjectDisconnectCleanup(unittest.TestCase): # update this if you need to make more different devices in do_setup device_pattern = re.compile('sd[a-z][0-9]') def _cleanup_devices(self): # make sure all the object data is cleaned up for dev in os.listdir(_testdir): if not self.device_pattern.match(dev): continue device_path = os.path.join(_testdir, dev) for datadir in os.listdir(device_path): if 'object' not in datadir: continue data_path = os.path.join(device_path, datadir) rmtree(data_path, ignore_errors=True) mkdirs(data_path) def setUp(self): debug.hub_exceptions(False) self._cleanup_devices() def tearDown(self): debug.hub_exceptions(True) self._cleanup_devices() def _check_disconnect_cleans_up(self, policy_name, is_chunked=False): proxy_port = _test_sockets[0].getsockname()[1] def put(path, headers=None, body=None): conn = httplib.HTTPConnection('localhost', proxy_port) try: conn.connect() conn.putrequest('PUT', path) for k, v in (headers or {}).items(): conn.putheader(k, v) conn.endheaders() body = body or [''] for chunk in body: if is_chunked: chunk = '%x\r\n%s\r\n' % (len(chunk), chunk) conn.send(chunk) resp = conn.getresponse() body = resp.read() finally: # seriously - shut this mother down if conn.sock: conn.sock.fd._sock.close() return resp, body # ensure container container_path = '/v1/a/%s-disconnect-test' % policy_name resp, _body = put(container_path, headers={ 'Connection': 'close', 'X-Storage-Policy': policy_name, 'Content-Length': '0', }) self.assertIn(resp.status, (201, 202)) def exploding_body(): for i in range(3): yield '\x00' * (64 * 2 ** 10) raise Exception('kaboom!') headers = {} if is_chunked: headers['Transfer-Encoding'] = 'chunked' else: headers['Content-Length'] = 64 * 2 ** 20 obj_path = container_path + '/disconnect-data' try: resp, _body = put(obj_path, headers=headers, body=exploding_body()) except Exception as e: if str(e) != 'kaboom!': raise else: self.fail('obj put connection did not ka-splod') sleep(0.1) def find_files(self): found_files = defaultdict(list) for root, dirs, files in os.walk(_testdir): for fname in files: filename, ext = os.path.splitext(fname) found_files[ext].append(os.path.join(root, fname)) return found_files def test_repl_disconnect_cleans_up(self): self._check_disconnect_cleans_up('zero') found_files = self.find_files() self.assertEqual(found_files['.data'], []) def test_ec_disconnect_cleans_up(self): self._check_disconnect_cleans_up('ec') found_files = self.find_files() self.assertEqual(found_files['.durable'], []) self.assertEqual(found_files['.data'], []) def test_repl_chunked_transfer_disconnect_cleans_up(self): self._check_disconnect_cleans_up('zero', is_chunked=True) found_files = self.find_files() self.assertEqual(found_files['.data'], []) def test_ec_chunked_transfer_disconnect_cleans_up(self): self._check_disconnect_cleans_up('ec', is_chunked=True) found_files = self.find_files() self.assertEqual(found_files['.durable'], []) self.assertEqual(found_files['.data'], []) class TestObjectECRangedGET(unittest.TestCase): def setUp(self): _test_servers[0].logger._clear() self.app = proxy_server.Application( None, FakeMemcache(), logger=debug_logger('proxy-ut'), account_ring=FakeRing(), container_ring=FakeRing()) def tearDown(self): prosrv = _test_servers[0] self.assertFalse(prosrv.logger.get_lines_for_level('error')) self.assertFalse(prosrv.logger.get_lines_for_level('warning')) @classmethod def setUpClass(cls): cls.obj_name = 'range-get-test' cls.tiny_obj_name = 'range-get-test-tiny' cls.aligned_obj_name = 'range-get-test-aligned' # Note: only works if called with unpatched policies prolis = _test_sockets[0] sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('PUT /v1/a/ec-con HTTP/1.1\r\n' 'Host: localhost\r\n' 'Connection: close\r\n' 'Content-Length: 0\r\n' 'X-Storage-Token: t\r\n' 'X-Storage-Policy: ec\r\n' '\r\n') fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 2' assert headers[:len(exp)] == exp, "container PUT failed" seg_size = POLICIES.get_by_name("ec").ec_segment_size cls.seg_size = seg_size # EC segment size is 4 KiB, hence this gives 4 segments, which we # then verify with a quick sanity check cls.obj = ' my hovercraft is full of eels '.join( str(s) for s in range(431)) assert seg_size * 4 > len(cls.obj) > seg_size * 3, \ "object is wrong number of segments" cls.tiny_obj = 'tiny, tiny object' assert len(cls.tiny_obj) < seg_size, "tiny_obj too large" cls.aligned_obj = "".join( "abcdEFGHijkl%04d" % x for x in range(512)) assert len(cls.aligned_obj) % seg_size == 0, "aligned obj not aligned" for obj_name, obj in ((cls.obj_name, cls.obj), (cls.tiny_obj_name, cls.tiny_obj), (cls.aligned_obj_name, cls.aligned_obj)): sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('PUT /v1/a/ec-con/%s HTTP/1.1\r\n' 'Host: localhost\r\n' 'Connection: close\r\n' 'Content-Length: %d\r\n' 'X-Storage-Token: t\r\n' 'Content-Type: donuts\r\n' '\r\n%s' % (obj_name, len(obj), obj)) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 201' assert headers[:len(exp)] == exp, \ "object PUT failed %s" % obj_name def _get_obj(self, range_value, obj_name=None): if obj_name is None: obj_name = self.obj_name prolis = _test_sockets[0] sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('GET /v1/a/ec-con/%s HTTP/1.1\r\n' 'Host: localhost\r\n' 'Connection: close\r\n' 'X-Storage-Token: t\r\n' 'Range: %s\r\n' '\r\n' % (obj_name, range_value)) fd.flush() headers = readuntil2crlfs(fd) # e.g. "HTTP/1.1 206 Partial Content\r\n..." status_code = int(headers[9:12]) headers = parse_headers_string(headers) gotten_obj = '' while True: buf = fd.read(64) if not buf: break gotten_obj += buf # if we get this wrong, clients will either get truncated data or # they'll hang waiting for bytes that aren't coming, so it warrants # being asserted for every test case if 'Content-Length' in headers: self.assertEqual(int(headers['Content-Length']), len(gotten_obj)) # likewise, if we say MIME and don't send MIME or vice versa, # clients will be horribly confused if headers.get('Content-Type', '').startswith('multipart/byteranges'): self.assertEqual(gotten_obj[:2], "--") else: # In general, this isn't true, as you can start an object with # "--". However, in this test, we don't start any objects with # "--", or even include "--" in their contents anywhere. self.assertNotEqual(gotten_obj[:2], "--") return (status_code, headers, gotten_obj) def _parse_multipart(self, content_type, body): parser = email.parser.FeedParser() parser.feed("Content-Type: %s\r\n\r\n" % content_type) parser.feed(body) root_message = parser.close() self.assertTrue(root_message.is_multipart()) byteranges = root_message.get_payload() self.assertFalse(root_message.defects) for i, message in enumerate(byteranges): self.assertFalse(message.defects, "Part %d had defects" % i) self.assertFalse(message.is_multipart(), "Nested multipart at %d" % i) return byteranges def test_bogus(self): status, headers, gotten_obj = self._get_obj("tacos=3-5") self.assertEqual(status, 200) self.assertEqual(len(gotten_obj), len(self.obj)) self.assertEqual(gotten_obj, self.obj) def test_unaligned(self): # One segment's worth of data, but straddling two segment boundaries # (so it has data from three segments) status, headers, gotten_obj = self._get_obj("bytes=3783-7878") self.assertEqual(status, 206) self.assertEqual(headers['Content-Length'], "4096") self.assertEqual(headers['Content-Range'], "bytes 3783-7878/14513") self.assertEqual(len(gotten_obj), 4096) self.assertEqual(gotten_obj, self.obj[3783:7879]) def test_aligned_left(self): # First byte is aligned to a segment boundary, last byte is not status, headers, gotten_obj = self._get_obj("bytes=0-5500") self.assertEqual(status, 206) self.assertEqual(headers['Content-Length'], "5501") self.assertEqual(headers['Content-Range'], "bytes 0-5500/14513") self.assertEqual(len(gotten_obj), 5501) self.assertEqual(gotten_obj, self.obj[:5501]) def test_aligned_range(self): # Ranged GET that wants exactly one segment status, headers, gotten_obj = self._get_obj("bytes=4096-8191") self.assertEqual(status, 206) self.assertEqual(headers['Content-Length'], "4096") self.assertEqual(headers['Content-Range'], "bytes 4096-8191/14513") self.assertEqual(len(gotten_obj), 4096) self.assertEqual(gotten_obj, self.obj[4096:8192]) def test_aligned_range_end(self): # Ranged GET that wants exactly the last segment status, headers, gotten_obj = self._get_obj("bytes=12288-14512") self.assertEqual(status, 206) self.assertEqual(headers['Content-Length'], "2225") self.assertEqual(headers['Content-Range'], "bytes 12288-14512/14513") self.assertEqual(len(gotten_obj), 2225) self.assertEqual(gotten_obj, self.obj[12288:]) def test_aligned_range_aligned_obj(self): # Ranged GET that wants exactly the last segment, which is full-size status, headers, gotten_obj = self._get_obj("bytes=4096-8191", self.aligned_obj_name) self.assertEqual(status, 206) self.assertEqual(headers['Content-Length'], "4096") self.assertEqual(headers['Content-Range'], "bytes 4096-8191/8192") self.assertEqual(len(gotten_obj), 4096) self.assertEqual(gotten_obj, self.aligned_obj[4096:8192]) def test_byte_0(self): # Just the first byte, but it's index 0, so that's easy to get wrong status, headers, gotten_obj = self._get_obj("bytes=0-0") self.assertEqual(status, 206) self.assertEqual(headers['Content-Length'], "1") self.assertEqual(headers['Content-Range'], "bytes 0-0/14513") self.assertEqual(gotten_obj, self.obj[0]) def test_unsatisfiable(self): # Goes just one byte too far off the end of the object, so it's # unsatisfiable status, _junk, _junk = self._get_obj( "bytes=%d-%d" % (len(self.obj), len(self.obj) + 100)) self.assertEqual(status, 416) def test_off_end(self): # Ranged GET that's mostly off the end of the object, but overlaps # it in just the last byte status, headers, gotten_obj = self._get_obj( "bytes=%d-%d" % (len(self.obj) - 1, len(self.obj) + 100)) self.assertEqual(status, 206) self.assertEqual(headers['Content-Length'], '1') self.assertEqual(headers['Content-Range'], 'bytes 14512-14512/14513') self.assertEqual(gotten_obj, self.obj[-1]) def test_aligned_off_end(self): # Ranged GET that starts on a segment boundary but asks for a whole lot status, headers, gotten_obj = self._get_obj( "bytes=%d-%d" % (8192, len(self.obj) + 100)) self.assertEqual(status, 206) self.assertEqual(headers['Content-Length'], '6321') self.assertEqual(headers['Content-Range'], 'bytes 8192-14512/14513') self.assertEqual(gotten_obj, self.obj[8192:]) def test_way_off_end(self): # Ranged GET that's mostly off the end of the object, but overlaps # it in just the last byte, and wants multiple segments' worth off # the end status, headers, gotten_obj = self._get_obj( "bytes=%d-%d" % (len(self.obj) - 1, len(self.obj) * 1000)) self.assertEqual(status, 206) self.assertEqual(headers['Content-Length'], '1') self.assertEqual(headers['Content-Range'], 'bytes 14512-14512/14513') self.assertEqual(gotten_obj, self.obj[-1]) def test_boundaries(self): # Wants the last byte of segment 1 + the first byte of segment 2 status, headers, gotten_obj = self._get_obj("bytes=4095-4096") self.assertEqual(status, 206) self.assertEqual(headers['Content-Length'], '2') self.assertEqual(headers['Content-Range'], 'bytes 4095-4096/14513') self.assertEqual(gotten_obj, self.obj[4095:4097]) def test_until_end(self): # Wants the last byte of segment 1 + the rest status, headers, gotten_obj = self._get_obj("bytes=4095-") self.assertEqual(status, 206) self.assertEqual(headers['Content-Length'], '10418') self.assertEqual(headers['Content-Range'], 'bytes 4095-14512/14513') self.assertEqual(gotten_obj, self.obj[4095:]) def test_small_suffix(self): # Small range-suffix GET: the last 100 bytes (less than one segment) status, headers, gotten_obj = self._get_obj("bytes=-100") self.assertEqual(status, 206) self.assertEqual(headers['Content-Length'], '100') self.assertEqual(headers['Content-Range'], 'bytes 14413-14512/14513') self.assertEqual(len(gotten_obj), 100) self.assertEqual(gotten_obj, self.obj[-100:]) def test_small_suffix_aligned(self): # Small range-suffix GET: the last 100 bytes, last segment is # full-size status, headers, gotten_obj = self._get_obj("bytes=-100", self.aligned_obj_name) self.assertEqual(status, 206) self.assertEqual(headers['Content-Length'], '100') self.assertEqual(headers['Content-Range'], 'bytes 8092-8191/8192') self.assertEqual(len(gotten_obj), 100) def test_suffix_two_segs(self): # Ask for enough data that we need the last two segments. The last # segment is short, though, so this ensures we compensate for that. # # Note that the total range size is less than one full-size segment. suffix_len = len(self.obj) % self.seg_size + 1 status, headers, gotten_obj = self._get_obj("bytes=-%d" % suffix_len) self.assertEqual(status, 206) self.assertEqual(headers['Content-Length'], str(suffix_len)) self.assertEqual(headers['Content-Range'], 'bytes %d-%d/%d' % (len(self.obj) - suffix_len, len(self.obj) - 1, len(self.obj))) self.assertEqual(len(gotten_obj), suffix_len) def test_large_suffix(self): # Large range-suffix GET: the last 5000 bytes (more than one segment) status, headers, gotten_obj = self._get_obj("bytes=-5000") self.assertEqual(status, 206) self.assertEqual(headers['Content-Length'], '5000') self.assertEqual(headers['Content-Range'], 'bytes 9513-14512/14513') self.assertEqual(len(gotten_obj), 5000) self.assertEqual(gotten_obj, self.obj[-5000:]) def test_overlarge_suffix(self): # The last N+1 bytes of an N-byte object status, headers, gotten_obj = self._get_obj( "bytes=-%d" % (len(self.obj) + 1)) self.assertEqual(status, 206) self.assertEqual(headers['Content-Length'], '14513') self.assertEqual(headers['Content-Range'], 'bytes 0-14512/14513') self.assertEqual(len(gotten_obj), len(self.obj)) self.assertEqual(gotten_obj, self.obj) def test_small_suffix_tiny_object(self): status, headers, gotten_obj = self._get_obj( "bytes=-5", self.tiny_obj_name) self.assertEqual(status, 206) self.assertEqual(headers['Content-Length'], '5') self.assertEqual(headers['Content-Range'], 'bytes 12-16/17') self.assertEqual(gotten_obj, self.tiny_obj[12:]) def test_overlarge_suffix_tiny_object(self): status, headers, gotten_obj = self._get_obj( "bytes=-1234567890", self.tiny_obj_name) self.assertEqual(status, 206) self.assertEqual(headers['Content-Length'], '17') self.assertEqual(headers['Content-Range'], 'bytes 0-16/17') self.assertEqual(len(gotten_obj), len(self.tiny_obj)) self.assertEqual(gotten_obj, self.tiny_obj) def test_multiple_ranges(self): status, headers, gotten_obj = self._get_obj( "bytes=0-100,4490-5010", self.obj_name) self.assertEqual(status, 206) self.assertEqual(headers["Content-Length"], str(len(gotten_obj))) content_type, content_type_params = parse_content_type( headers['Content-Type']) content_type_params = dict(content_type_params) self.assertEqual(content_type, 'multipart/byteranges') boundary = content_type_params.get('boundary') self.assertTrue(boundary is not None) got_byteranges = self._parse_multipart(headers['Content-Type'], gotten_obj) self.assertEqual(len(got_byteranges), 2) first_byterange, second_byterange = got_byteranges self.assertEqual(first_byterange['Content-Range'], 'bytes 0-100/14513') self.assertEqual(first_byterange.get_payload(), self.obj[:101]) self.assertEqual(second_byterange['Content-Range'], 'bytes 4490-5010/14513') self.assertEqual(second_byterange.get_payload(), self.obj[4490:5011]) def test_multiple_ranges_overlapping_in_segment(self): status, headers, gotten_obj = self._get_obj( "bytes=0-9,20-29,40-49,60-69,80-89") self.assertEqual(status, 206) got_byteranges = self._parse_multipart(headers['Content-Type'], gotten_obj) self.assertEqual(len(got_byteranges), 5) def test_multiple_ranges_off_end(self): status, headers, gotten_obj = self._get_obj( "bytes=0-10,14500-14513") # there is no byte 14513, only 0-14512 self.assertEqual(status, 206) got_byteranges = self._parse_multipart(headers['Content-Type'], gotten_obj) self.assertEqual(len(got_byteranges), 2) self.assertEqual(got_byteranges[0]['Content-Range'], "bytes 0-10/14513") self.assertEqual(got_byteranges[1]['Content-Range'], "bytes 14500-14512/14513") def test_multiple_ranges_suffix_off_end(self): status, headers, gotten_obj = self._get_obj( "bytes=0-10,-13") self.assertEqual(status, 206) got_byteranges = self._parse_multipart(headers['Content-Type'], gotten_obj) self.assertEqual(len(got_byteranges), 2) self.assertEqual(got_byteranges[0]['Content-Range'], "bytes 0-10/14513") self.assertEqual(got_byteranges[1]['Content-Range'], "bytes 14500-14512/14513") def test_multiple_ranges_one_barely_unsatisfiable(self): # The thing about 14515-14520 is that it comes from the last segment # in the object. When we turn this range into a fragment range, # it'll be for the last fragment, so the object servers see # something satisfiable. # # Basically, we'll get 3 byteranges from the object server, but we # have to filter out the unsatisfiable one on our own. status, headers, gotten_obj = self._get_obj( "bytes=0-10,14515-14520,40-50") self.assertEqual(status, 206) got_byteranges = self._parse_multipart(headers['Content-Type'], gotten_obj) self.assertEqual(len(got_byteranges), 2) self.assertEqual(got_byteranges[0]['Content-Range'], "bytes 0-10/14513") self.assertEqual(got_byteranges[0].get_payload(), self.obj[0:11]) self.assertEqual(got_byteranges[1]['Content-Range'], "bytes 40-50/14513") self.assertEqual(got_byteranges[1].get_payload(), self.obj[40:51]) def test_multiple_ranges_some_unsatisfiable(self): status, headers, gotten_obj = self._get_obj( "bytes=0-100,4090-5010,999999-9999999", self.obj_name) self.assertEqual(status, 206) content_type, content_type_params = parse_content_type( headers['Content-Type']) content_type_params = dict(content_type_params) self.assertEqual(content_type, 'multipart/byteranges') boundary = content_type_params.get('boundary') self.assertTrue(boundary is not None) got_byteranges = self._parse_multipart(headers['Content-Type'], gotten_obj) self.assertEqual(len(got_byteranges), 2) first_byterange, second_byterange = got_byteranges self.assertEqual(first_byterange['Content-Range'], 'bytes 0-100/14513') self.assertEqual(first_byterange.get_payload(), self.obj[:101]) self.assertEqual(second_byterange['Content-Range'], 'bytes 4090-5010/14513') self.assertEqual(second_byterange.get_payload(), self.obj[4090:5011]) def test_two_ranges_one_unsatisfiable(self): status, headers, gotten_obj = self._get_obj( "bytes=0-100,999999-9999999", self.obj_name) self.assertEqual(status, 206) content_type, content_type_params = parse_content_type( headers['Content-Type']) # According to RFC 7233, this could be either a multipart/byteranges # response with one part or it could be a single-part response (just # the bytes, no MIME). We're locking it down here: single-part # response. That's what replicated objects do, and we don't want any # client-visible differences between EC objects and replicated ones. self.assertEqual(content_type, 'donuts') self.assertEqual(gotten_obj, self.obj[:101]) def test_two_ranges_one_unsatisfiable_same_segment(self): # Like test_two_ranges_one_unsatisfiable(), but where both ranges # fall within the same EC segment. status, headers, gotten_obj = self._get_obj( "bytes=14500-14510,14520-14530") self.assertEqual(status, 206) content_type, content_type_params = parse_content_type( headers['Content-Type']) self.assertEqual(content_type, 'donuts') self.assertEqual(gotten_obj, self.obj[14500:14511]) def test_multiple_ranges_some_unsatisfiable_out_of_order(self): status, headers, gotten_obj = self._get_obj( "bytes=0-100,99999998-99999999,4090-5010", self.obj_name) self.assertEqual(status, 206) content_type, content_type_params = parse_content_type( headers['Content-Type']) content_type_params = dict(content_type_params) self.assertEqual(content_type, 'multipart/byteranges') boundary = content_type_params.get('boundary') self.assertTrue(boundary is not None) got_byteranges = self._parse_multipart(headers['Content-Type'], gotten_obj) self.assertEqual(len(got_byteranges), 2) first_byterange, second_byterange = got_byteranges self.assertEqual(first_byterange['Content-Range'], 'bytes 0-100/14513') self.assertEqual(first_byterange.get_payload(), self.obj[:101]) self.assertEqual(second_byterange['Content-Range'], 'bytes 4090-5010/14513') self.assertEqual(second_byterange.get_payload(), self.obj[4090:5011]) @patch_policies([ StoragePolicy(0, 'zero', True, object_ring=FakeRing(base_port=3000)), StoragePolicy(1, 'one', False, object_ring=FakeRing(base_port=3000)), StoragePolicy(2, 'two', False, True, object_ring=FakeRing(base_port=3000)) ]) class TestContainerController(unittest.TestCase): "Test swift.proxy_server.ContainerController" def setUp(self): self.app = proxy_server.Application( None, FakeMemcache(), account_ring=FakeRing(), container_ring=FakeRing(base_port=2000), logger=debug_logger()) def test_convert_policy_to_index(self): controller = swift.proxy.controllers.ContainerController(self.app, 'a', 'c') expected = { 'zero': 0, 'ZeRo': 0, 'one': 1, 'OnE': 1, } for name, index in expected.items(): req = Request.blank('/a/c', headers={'Content-Length': '0', 'Content-Type': 'text/plain', 'X-Storage-Policy': name}) self.assertEqual(controller._convert_policy_to_index(req), index) # default test req = Request.blank('/a/c', headers={'Content-Length': '0', 'Content-Type': 'text/plain'}) self.assertEqual(controller._convert_policy_to_index(req), None) # negative test req = Request.blank('/a/c', headers={'Content-Length': '0', 'Content-Type': 'text/plain', 'X-Storage-Policy': 'nada'}) self.assertRaises(HTTPException, controller._convert_policy_to_index, req) # storage policy two is deprecated req = Request.blank('/a/c', headers={'Content-Length': '0', 'Content-Type': 'text/plain', 'X-Storage-Policy': 'two'}) self.assertRaises(HTTPException, controller._convert_policy_to_index, req) def test_convert_index_to_name(self): policy = random.choice(list(POLICIES)) req = Request.blank('/v1/a/c') with mocked_http_conn( 200, 200, headers={'X-Backend-Storage-Policy-Index': int(policy)}, ) as fake_conn: resp = req.get_response(self.app) self.assertRaises(StopIteration, fake_conn.code_iter.next) self.assertEqual(resp.status_int, 200) self.assertEqual(resp.headers['X-Storage-Policy'], policy.name) def test_no_convert_index_to_name_when_container_not_found(self): policy = random.choice(list(POLICIES)) req = Request.blank('/v1/a/c') with mocked_http_conn( 200, 404, 404, 404, headers={'X-Backend-Storage-Policy-Index': int(policy)}) as fake_conn: resp = req.get_response(self.app) self.assertRaises(StopIteration, fake_conn.code_iter.next) self.assertEqual(resp.status_int, 404) self.assertEqual(resp.headers['X-Storage-Policy'], None) def test_error_convert_index_to_name(self): req = Request.blank('/v1/a/c') with mocked_http_conn( 200, 200, headers={'X-Backend-Storage-Policy-Index': '-1'}) as fake_conn: resp = req.get_response(self.app) self.assertRaises(StopIteration, fake_conn.code_iter.next) self.assertEqual(resp.status_int, 200) self.assertEqual(resp.headers['X-Storage-Policy'], None) error_lines = self.app.logger.get_lines_for_level('error') self.assertEqual(2, len(error_lines)) for msg in error_lines: expected = "Could not translate " \ "X-Backend-Storage-Policy-Index ('-1')" self.assertTrue(expected in msg) def test_transfer_headers(self): src_headers = {'x-remove-versions-location': 'x', 'x-container-read': '*:user', 'x-remove-container-sync-key': 'x'} dst_headers = {'x-versions-location': 'backup'} controller = swift.proxy.controllers.ContainerController(self.app, 'a', 'c') controller.transfer_headers(src_headers, dst_headers) expected_headers = {'x-versions-location': '', 'x-container-read': '*:user', 'x-container-sync-key': ''} self.assertEqual(dst_headers, expected_headers) def assert_status_map(self, method, statuses, expected, raise_exc=False, missing_container=False): with save_globals(): kwargs = {} if raise_exc: kwargs['raise_exc'] = raise_exc kwargs['missing_container'] = missing_container set_http_connect(*statuses, **kwargs) self.app.memcache.store = {} req = Request.blank('/v1/a/c', headers={'Content-Length': '0', 'Content-Type': 'text/plain'}) self.app.update_request(req) res = method(req) self.assertEqual(res.status_int, expected) set_http_connect(*statuses, **kwargs) self.app.memcache.store = {} req = Request.blank('/v1/a/c/', headers={'Content-Length': '0', 'Content-Type': 'text/plain'}) self.app.update_request(req) res = method(req) self.assertEqual(res.status_int, expected) def test_HEAD_GET(self): with save_globals(): controller = proxy_server.ContainerController(self.app, 'a', 'c') def test_status_map(statuses, expected, c_expected=None, a_expected=None, **kwargs): set_http_connect(*statuses, **kwargs) self.app.memcache.store = {} req = Request.blank('/v1/a/c', {}) self.app.update_request(req) res = controller.HEAD(req) self.assertEqual(res.status[:len(str(expected))], str(expected)) if expected < 400: self.assertTrue('x-works' in res.headers) self.assertEqual(res.headers['x-works'], 'yes') if c_expected: self.assertTrue('swift.container/a/c' in res.environ) self.assertEqual( res.environ['swift.container/a/c']['status'], c_expected) else: self.assertTrue('swift.container/a/c' not in res.environ) if a_expected: self.assertTrue('swift.account/a' in res.environ) self.assertEqual(res.environ['swift.account/a']['status'], a_expected) else: self.assertTrue('swift.account/a' not in res.environ) set_http_connect(*statuses, **kwargs) self.app.memcache.store = {} req = Request.blank('/v1/a/c', {}) self.app.update_request(req) res = controller.GET(req) self.assertEqual(res.status[:len(str(expected))], str(expected)) if expected < 400: self.assertTrue('x-works' in res.headers) self.assertEqual(res.headers['x-works'], 'yes') if c_expected: self.assertTrue('swift.container/a/c' in res.environ) self.assertEqual( res.environ['swift.container/a/c']['status'], c_expected) else: self.assertTrue('swift.container/a/c' not in res.environ) if a_expected: self.assertTrue('swift.account/a' in res.environ) self.assertEqual(res.environ['swift.account/a']['status'], a_expected) else: self.assertTrue('swift.account/a' not in res.environ) # In all the following tests cache 200 for account # return and ache vary for container # return 200 and cache 200 for and container test_status_map((200, 200, 404, 404), 200, 200, 200) test_status_map((200, 200, 500, 404), 200, 200, 200) # return 304 don't cache container test_status_map((200, 304, 500, 404), 304, None, 200) # return 404 and cache 404 for container test_status_map((200, 404, 404, 404), 404, 404, 200) test_status_map((200, 404, 404, 500), 404, 404, 200) # return 503, don't cache container test_status_map((200, 500, 500, 500), 503, None, 200) self.assertFalse(self.app.account_autocreate) # In all the following tests cache 404 for account # return 404 (as account is not found) and don't cache container test_status_map((404, 404, 404), 404, None, 404) # This should make no difference self.app.account_autocreate = True test_status_map((404, 404, 404), 404, None, 404) def test_PUT_policy_headers(self): backend_requests = [] def capture_requests(ipaddr, port, device, partition, method, path, headers=None, query_string=None): if method == 'PUT': backend_requests.append(headers) def test_policy(requested_policy): with save_globals(): mock_conn = set_http_connect(200, 201, 201, 201, give_connect=capture_requests) self.app.memcache.store = {} req = Request.blank('/v1/a/test', method='PUT', headers={'Content-Length': 0}) if requested_policy: expected_policy = requested_policy req.headers['X-Storage-Policy'] = policy.name else: expected_policy = POLICIES.default res = req.get_response(self.app) if expected_policy.is_deprecated: self.assertEqual(res.status_int, 400) self.assertEqual(0, len(backend_requests)) expected = 'is deprecated' self.assertTrue(expected in res.body, '%r did not include %r' % ( res.body, expected)) return self.assertEqual(res.status_int, 201) self.assertEqual( expected_policy.object_ring.replicas, len(backend_requests)) for headers in backend_requests: if not requested_policy: self.assertFalse('X-Backend-Storage-Policy-Index' in headers) self.assertTrue( 'X-Backend-Storage-Policy-Default' in headers) self.assertEqual( int(expected_policy), int(headers['X-Backend-Storage-Policy-Default'])) else: self.assertTrue('X-Backend-Storage-Policy-Index' in headers) self.assertEqual(int(headers ['X-Backend-Storage-Policy-Index']), int(policy)) # make sure all mocked responses are consumed self.assertRaises(StopIteration, mock_conn.code_iter.next) test_policy(None) # no policy header for policy in POLICIES: backend_requests = [] # reset backend requests test_policy(policy) def test_PUT(self): with save_globals(): controller = proxy_server.ContainerController(self.app, 'account', 'container') def test_status_map(statuses, expected, **kwargs): set_http_connect(*statuses, **kwargs) self.app.memcache.store = {} req = Request.blank('/v1/a/c', {}) req.content_length = 0 self.app.update_request(req) res = controller.PUT(req) expected = str(expected) self.assertEqual(res.status[:len(expected)], expected) test_status_map((200, 201, 201, 201), 201, missing_container=True) test_status_map((200, 201, 201, 500), 201, missing_container=True) test_status_map((200, 204, 404, 404), 404, missing_container=True) test_status_map((200, 204, 500, 404), 503, missing_container=True) self.assertFalse(self.app.account_autocreate) test_status_map((404, 404, 404), 404, missing_container=True) self.app.account_autocreate = True # fail to retrieve account info test_status_map( (503, 503, 503), # account_info fails on 503 404, missing_container=True) # account fail after creation test_status_map( (404, 404, 404, # account_info fails on 404 201, 201, 201, # PUT account 404, 404, 404), # account_info fail 404, missing_container=True) test_status_map( (503, 503, 404, # account_info fails on 404 503, 503, 503, # PUT account 503, 503, 404), # account_info fail 404, missing_container=True) # put fails test_status_map( (404, 404, 404, # account_info fails on 404 201, 201, 201, # PUT account 200, # account_info success 503, 503, 201), # put container fail 503, missing_container=True) # all goes according to plan test_status_map( (404, 404, 404, # account_info fails on 404 201, 201, 201, # PUT account 200, # account_info success 201, 201, 201), # put container success 201, missing_container=True) test_status_map( (503, 404, 404, # account_info fails on 404 503, 201, 201, # PUT account 503, 200, # account_info success 503, 201, 201), # put container success 201, missing_container=True) def test_PUT_autocreate_account_with_sysmeta(self): # x-account-sysmeta headers in a container PUT request should be # transferred to the account autocreate PUT request with save_globals(): controller = proxy_server.ContainerController(self.app, 'account', 'container') def test_status_map(statuses, expected, headers=None, **kwargs): set_http_connect(*statuses, **kwargs) self.app.memcache.store = {} req = Request.blank('/v1/a/c', {}, headers=headers) req.content_length = 0 self.app.update_request(req) res = controller.PUT(req) expected = str(expected) self.assertEqual(res.status[:len(expected)], expected) self.app.account_autocreate = True calls = [] callback = _make_callback_func(calls) key, value = 'X-Account-Sysmeta-Blah', 'something' headers = {key: value} # all goes according to plan test_status_map( (404, 404, 404, # account_info fails on 404 201, 201, 201, # PUT account 200, # account_info success 201, 201, 201), # put container success 201, missing_container=True, headers=headers, give_connect=callback) self.assertEqual(10, len(calls)) for call in calls[3:6]: self.assertEqual('/account', call['path']) self.assertTrue(key in call['headers'], '%s call, key %s missing in headers %s' % (call['method'], key, call['headers'])) self.assertEqual(value, call['headers'][key]) def test_POST(self): with save_globals(): controller = proxy_server.ContainerController(self.app, 'account', 'container') def test_status_map(statuses, expected, **kwargs): set_http_connect(*statuses, **kwargs) self.app.memcache.store = {} req = Request.blank('/v1/a/c', {}) req.content_length = 0 self.app.update_request(req) res = controller.POST(req) expected = str(expected) self.assertEqual(res.status[:len(expected)], expected) test_status_map((200, 201, 201, 201), 201, missing_container=True) test_status_map((200, 201, 201, 500), 201, missing_container=True) test_status_map((200, 204, 404, 404), 404, missing_container=True) test_status_map((200, 204, 500, 404), 503, missing_container=True) self.assertFalse(self.app.account_autocreate) test_status_map((404, 404, 404), 404, missing_container=True) self.app.account_autocreate = True test_status_map((404, 404, 404), 404, missing_container=True) def test_PUT_max_containers_per_account(self): with save_globals(): self.app.max_containers_per_account = 12346 controller = proxy_server.ContainerController(self.app, 'account', 'container') self.assert_status_map(controller.PUT, (200, 201, 201, 201), 201, missing_container=True) self.app.max_containers_per_account = 12345 controller = proxy_server.ContainerController(self.app, 'account', 'container') self.assert_status_map(controller.PUT, (200, 200, 201, 201, 201), 201, missing_container=True) controller = proxy_server.ContainerController(self.app, 'account', 'container_new') self.assert_status_map(controller.PUT, (200, 404, 404, 404), 403, missing_container=True) self.app.max_containers_per_account = 12345 self.app.max_containers_whitelist = ['account'] controller = proxy_server.ContainerController(self.app, 'account', 'container') self.assert_status_map(controller.PUT, (200, 201, 201, 201), 201, missing_container=True) def test_PUT_max_container_name_length(self): with save_globals(): limit = constraints.MAX_CONTAINER_NAME_LENGTH controller = proxy_server.ContainerController(self.app, 'account', '1' * limit) self.assert_status_map(controller.PUT, (200, 201, 201, 201), 201, missing_container=True) controller = proxy_server.ContainerController(self.app, 'account', '2' * (limit + 1)) self.assert_status_map(controller.PUT, (201, 201, 201), 400, missing_container=True) def test_PUT_connect_exceptions(self): with save_globals(): controller = proxy_server.ContainerController(self.app, 'account', 'container') self.assert_status_map(controller.PUT, (200, 201, 201, -1), 201, missing_container=True) self.assert_status_map(controller.PUT, (200, 201, -1, -1), 503, missing_container=True) self.assert_status_map(controller.PUT, (200, 503, 503, -1), 503, missing_container=True) def test_acc_missing_returns_404(self): for meth in ('DELETE', 'PUT'): with save_globals(): self.app.memcache = FakeMemcacheReturnsNone() self.app._error_limiting = {} controller = proxy_server.ContainerController(self.app, 'account', 'container') if meth == 'PUT': set_http_connect(200, 200, 200, 200, 200, 200, missing_container=True) else: set_http_connect(200, 200, 200, 200) self.app.memcache.store = {} req = Request.blank('/v1/a/c', environ={'REQUEST_METHOD': meth}) self.app.update_request(req) resp = getattr(controller, meth)(req) self.assertEqual(resp.status_int, 200) set_http_connect(404, 404, 404, 200, 200, 200) # Make sure it is a blank request wthout env caching req = Request.blank('/v1/a/c', environ={'REQUEST_METHOD': meth}) resp = getattr(controller, meth)(req) self.assertEqual(resp.status_int, 404) set_http_connect(503, 404, 404) # Make sure it is a blank request wthout env caching req = Request.blank('/v1/a/c', environ={'REQUEST_METHOD': meth}) resp = getattr(controller, meth)(req) self.assertEqual(resp.status_int, 404) set_http_connect(503, 404, raise_exc=True) # Make sure it is a blank request wthout env caching req = Request.blank('/v1/a/c', environ={'REQUEST_METHOD': meth}) resp = getattr(controller, meth)(req) self.assertEqual(resp.status_int, 404) for dev in self.app.account_ring.devs: set_node_errors(self.app, dev, self.app.error_suppression_limit + 1, time.time()) set_http_connect(200, 200, 200, 200, 200, 200) # Make sure it is a blank request wthout env caching req = Request.blank('/v1/a/c', environ={'REQUEST_METHOD': meth}) resp = getattr(controller, meth)(req) self.assertEqual(resp.status_int, 404) def test_put_locking(self): class MockMemcache(FakeMemcache): def __init__(self, allow_lock=None): self.allow_lock = allow_lock super(MockMemcache, self).__init__() @contextmanager def soft_lock(self, key, timeout=0, retries=5): if self.allow_lock: yield True else: raise NotImplementedError with save_globals(): controller = proxy_server.ContainerController(self.app, 'account', 'container') self.app.memcache = MockMemcache(allow_lock=True) set_http_connect(200, 201, 201, 201, missing_container=True) req = Request.blank('/v1/a/c', environ={'REQUEST_METHOD': 'PUT'}) self.app.update_request(req) res = controller.PUT(req) self.assertEqual(res.status_int, 201) def test_error_limiting(self): with save_globals(): controller = proxy_server.ContainerController(self.app, 'account', 'container') container_ring = controller.app.container_ring controller.app.sort_nodes = lambda l: l self.assert_status_map(controller.HEAD, (200, 503, 200, 200), 200, missing_container=False) self.assertEqual( node_error_count(controller.app, container_ring.devs[0]), 2) self.assertTrue( node_last_error(controller.app, container_ring.devs[0]) is not None) for _junk in range(self.app.error_suppression_limit): self.assert_status_map(controller.HEAD, (200, 503, 503, 503), 503) self.assertEqual( node_error_count(controller.app, container_ring.devs[0]), self.app.error_suppression_limit + 1) self.assert_status_map(controller.HEAD, (200, 200, 200, 200), 503) self.assertTrue( node_last_error(controller.app, container_ring.devs[0]) is not None) self.assert_status_map(controller.PUT, (200, 201, 201, 201), 503, missing_container=True) self.assert_status_map(controller.DELETE, (200, 204, 204, 204), 503) self.app.error_suppression_interval = -300 self.assert_status_map(controller.HEAD, (200, 200, 200, 200), 200) self.assert_status_map(controller.DELETE, (200, 204, 204, 204), 404, raise_exc=True) def test_DELETE(self): with save_globals(): controller = proxy_server.ContainerController(self.app, 'account', 'container') self.assert_status_map(controller.DELETE, (200, 204, 204, 204), 204) self.assert_status_map(controller.DELETE, (200, 204, 204, 503), 204) self.assert_status_map(controller.DELETE, (200, 204, 503, 503), 503) self.assert_status_map(controller.DELETE, (200, 204, 404, 404), 404) self.assert_status_map(controller.DELETE, (200, 404, 404, 404), 404) self.assert_status_map(controller.DELETE, (200, 204, 503, 404), 503) self.app.memcache = FakeMemcacheReturnsNone() # 200: Account check, 404x3: Container check self.assert_status_map(controller.DELETE, (200, 404, 404, 404), 404) def test_response_get_accept_ranges_header(self): with save_globals(): set_http_connect(200, 200, body='{}') controller = proxy_server.ContainerController(self.app, 'account', 'container') req = Request.blank('/v1/a/c?format=json') self.app.update_request(req) res = controller.GET(req) self.assertTrue('accept-ranges' in res.headers) self.assertEqual(res.headers['accept-ranges'], 'bytes') def test_response_head_accept_ranges_header(self): with save_globals(): set_http_connect(200, 200, body='{}') controller = proxy_server.ContainerController(self.app, 'account', 'container') req = Request.blank('/v1/a/c?format=json') self.app.update_request(req) res = controller.HEAD(req) self.assertTrue('accept-ranges' in res.headers) self.assertEqual(res.headers['accept-ranges'], 'bytes') def test_PUT_metadata(self): self.metadata_helper('PUT') def test_POST_metadata(self): self.metadata_helper('POST') def metadata_helper(self, method): for test_header, test_value in ( ('X-Container-Meta-TestHeader', 'TestValue'), ('X-Container-Meta-TestHeader', ''), ('X-Remove-Container-Meta-TestHeader', 'anything'), ('X-Container-Read', '.r:*'), ('X-Remove-Container-Read', 'anything'), ('X-Container-Write', 'anyone'), ('X-Remove-Container-Write', 'anything')): test_errors = [] def test_connect(ipaddr, port, device, partition, method, path, headers=None, query_string=None): if path == '/a/c': find_header = test_header find_value = test_value if find_header.lower().startswith('x-remove-'): find_header = \ find_header.lower().replace('-remove', '', 1) find_value = '' for k, v in headers.items(): if k.lower() == find_header.lower() and \ v == find_value: break else: test_errors.append('%s: %s not in %s' % (find_header, find_value, headers)) with save_globals(): controller = \ proxy_server.ContainerController(self.app, 'a', 'c') set_http_connect(200, 201, 201, 201, give_connect=test_connect) req = Request.blank( '/v1/a/c', environ={'REQUEST_METHOD': method, 'swift_owner': True}, headers={test_header: test_value}) self.app.update_request(req) getattr(controller, method)(req) self.assertEqual(test_errors, []) def test_PUT_bad_metadata(self): self.bad_metadata_helper('PUT') def test_POST_bad_metadata(self): self.bad_metadata_helper('POST') def bad_metadata_helper(self, method): with save_globals(): controller = proxy_server.ContainerController(self.app, 'a', 'c') set_http_connect(200, 201, 201, 201) req = Request.blank('/v1/a/c', environ={'REQUEST_METHOD': method}) self.app.update_request(req) resp = getattr(controller, method)(req) self.assertEqual(resp.status_int, 201) set_http_connect(201, 201, 201) req = Request.blank('/v1/a/c', environ={'REQUEST_METHOD': method}, headers={'X-Container-Meta-' + ('a' * constraints.MAX_META_NAME_LENGTH): 'v'}) self.app.update_request(req) resp = getattr(controller, method)(req) self.assertEqual(resp.status_int, 201) set_http_connect(201, 201, 201) req = Request.blank( '/v1/a/c', environ={'REQUEST_METHOD': method}, headers={'X-Container-Meta-' + ('a' * (constraints.MAX_META_NAME_LENGTH + 1)): 'v'}) self.app.update_request(req) resp = getattr(controller, method)(req) self.assertEqual(resp.status_int, 400) set_http_connect(201, 201, 201) req = Request.blank('/v1/a/c', environ={'REQUEST_METHOD': method}, headers={'X-Container-Meta-Too-Long': 'a' * constraints.MAX_META_VALUE_LENGTH}) self.app.update_request(req) resp = getattr(controller, method)(req) self.assertEqual(resp.status_int, 201) set_http_connect(201, 201, 201) req = Request.blank('/v1/a/c', environ={'REQUEST_METHOD': method}, headers={'X-Container-Meta-Too-Long': 'a' * (constraints.MAX_META_VALUE_LENGTH + 1)}) self.app.update_request(req) resp = getattr(controller, method)(req) self.assertEqual(resp.status_int, 400) set_http_connect(201, 201, 201) headers = {} for x in range(constraints.MAX_META_COUNT): headers['X-Container-Meta-%d' % x] = 'v' req = Request.blank('/v1/a/c', environ={'REQUEST_METHOD': method}, headers=headers) self.app.update_request(req) resp = getattr(controller, method)(req) self.assertEqual(resp.status_int, 201) set_http_connect(201, 201, 201) headers = {} for x in range(constraints.MAX_META_COUNT + 1): headers['X-Container-Meta-%d' % x] = 'v' req = Request.blank('/v1/a/c', environ={'REQUEST_METHOD': method}, headers=headers) self.app.update_request(req) resp = getattr(controller, method)(req) self.assertEqual(resp.status_int, 400) set_http_connect(201, 201, 201) headers = {} header_value = 'a' * constraints.MAX_META_VALUE_LENGTH size = 0 x = 0 while size < (constraints.MAX_META_OVERALL_SIZE - 4 - constraints.MAX_META_VALUE_LENGTH): size += 4 + constraints.MAX_META_VALUE_LENGTH headers['X-Container-Meta-%04d' % x] = header_value x += 1 if constraints.MAX_META_OVERALL_SIZE - size > 1: headers['X-Container-Meta-a'] = \ 'a' * (constraints.MAX_META_OVERALL_SIZE - size - 1) req = Request.blank('/v1/a/c', environ={'REQUEST_METHOD': method}, headers=headers) self.app.update_request(req) resp = getattr(controller, method)(req) self.assertEqual(resp.status_int, 201) set_http_connect(201, 201, 201) headers['X-Container-Meta-a'] = \ 'a' * (constraints.MAX_META_OVERALL_SIZE - size) req = Request.blank('/v1/a/c', environ={'REQUEST_METHOD': method}, headers=headers) self.app.update_request(req) resp = getattr(controller, method)(req) self.assertEqual(resp.status_int, 400) def test_POST_calls_clean_acl(self): called = [False] def clean_acl(header, value): called[0] = True raise ValueError('fake error') with save_globals(): set_http_connect(200, 201, 201, 201) controller = proxy_server.ContainerController(self.app, 'account', 'container') req = Request.blank('/v1/a/c', environ={'REQUEST_METHOD': 'POST'}, headers={'X-Container-Read': '.r:*'}) req.environ['swift.clean_acl'] = clean_acl self.app.update_request(req) controller.POST(req) self.assertTrue(called[0]) called[0] = False with save_globals(): set_http_connect(200, 201, 201, 201) controller = proxy_server.ContainerController(self.app, 'account', 'container') req = Request.blank('/v1/a/c', environ={'REQUEST_METHOD': 'POST'}, headers={'X-Container-Write': '.r:*'}) req.environ['swift.clean_acl'] = clean_acl self.app.update_request(req) controller.POST(req) self.assertTrue(called[0]) def test_PUT_calls_clean_acl(self): called = [False] def clean_acl(header, value): called[0] = True raise ValueError('fake error') with save_globals(): set_http_connect(200, 201, 201, 201) controller = proxy_server.ContainerController(self.app, 'account', 'container') req = Request.blank('/v1/a/c', environ={'REQUEST_METHOD': 'PUT'}, headers={'X-Container-Read': '.r:*'}) req.environ['swift.clean_acl'] = clean_acl self.app.update_request(req) controller.PUT(req) self.assertTrue(called[0]) called[0] = False with save_globals(): set_http_connect(200, 201, 201, 201) controller = proxy_server.ContainerController(self.app, 'account', 'container') req = Request.blank('/v1/a/c', environ={'REQUEST_METHOD': 'PUT'}, headers={'X-Container-Write': '.r:*'}) req.environ['swift.clean_acl'] = clean_acl self.app.update_request(req) controller.PUT(req) self.assertTrue(called[0]) def test_GET_no_content(self): with save_globals(): set_http_connect(200, 204, 204, 204) controller = proxy_server.ContainerController(self.app, 'account', 'container') req = Request.blank('/v1/a/c') self.app.update_request(req) res = controller.GET(req) self.assertEqual(res.status_int, 204) self.assertEqual( res.environ['swift.container/a/c']['status'], 204) self.assertEqual(res.content_length, 0) self.assertTrue('transfer-encoding' not in res.headers) def test_GET_calls_authorize(self): called = [False] def authorize(req): called[0] = True return HTTPUnauthorized(request=req) with save_globals(): set_http_connect(200, 201, 201, 201) controller = proxy_server.ContainerController(self.app, 'account', 'container') req = Request.blank('/v1/a/c') req.environ['swift.authorize'] = authorize self.app.update_request(req) res = controller.GET(req) self.assertEqual(res.environ['swift.container/a/c']['status'], 201) self.assertTrue(called[0]) def test_HEAD_calls_authorize(self): called = [False] def authorize(req): called[0] = True return HTTPUnauthorized(request=req) with save_globals(): set_http_connect(200, 201, 201, 201) controller = proxy_server.ContainerController(self.app, 'account', 'container') req = Request.blank('/v1/a/c', {'REQUEST_METHOD': 'HEAD'}) req.environ['swift.authorize'] = authorize self.app.update_request(req) controller.HEAD(req) self.assertTrue(called[0]) def test_unauthorized_requests_when_account_not_found(self): # verify unauthorized container requests always return response # from swift.authorize called = [0, 0] def authorize(req): called[0] += 1 return HTTPUnauthorized(request=req) def account_info(*args): called[1] += 1 return None, None, None def _do_test(method): with save_globals(): swift.proxy.controllers.Controller.account_info = account_info app = proxy_server.Application(None, FakeMemcache(), account_ring=FakeRing(), container_ring=FakeRing()) set_http_connect(201, 201, 201) req = Request.blank('/v1/a/c', {'REQUEST_METHOD': method}) req.environ['swift.authorize'] = authorize self.app.update_request(req) res = app.handle_request(req) return res for method in ('PUT', 'POST', 'DELETE'): # no delay_denial on method, expect one call to authorize called = [0, 0] res = _do_test(method) self.assertEqual(401, res.status_int) self.assertEqual([1, 0], called) for method in ('HEAD', 'GET'): # delay_denial on method, expect two calls to authorize called = [0, 0] res = _do_test(method) self.assertEqual(401, res.status_int) self.assertEqual([2, 1], called) def test_authorized_requests_when_account_not_found(self): # verify authorized container requests always return 404 when # account not found called = [0, 0] def authorize(req): called[0] += 1 def account_info(*args): called[1] += 1 return None, None, None def _do_test(method): with save_globals(): swift.proxy.controllers.Controller.account_info = account_info app = proxy_server.Application(None, FakeMemcache(), account_ring=FakeRing(), container_ring=FakeRing()) set_http_connect(201, 201, 201) req = Request.blank('/v1/a/c', {'REQUEST_METHOD': method}) req.environ['swift.authorize'] = authorize self.app.update_request(req) res = app.handle_request(req) return res for method in ('PUT', 'POST', 'DELETE', 'HEAD', 'GET'): # expect one call to authorize called = [0, 0] res = _do_test(method) self.assertEqual(404, res.status_int) self.assertEqual([1, 1], called) def test_OPTIONS_get_info_drops_origin(self): with save_globals(): controller = proxy_server.ContainerController(self.app, 'a', 'c') count = [0] def my_get_info(app, env, account, container=None, ret_not_found=False, swift_source=None): if count[0] > 11: return {} count[0] += 1 if not container: return {'some': 'stuff'} return proxy_base.was_get_info( app, env, account, container, ret_not_found, swift_source) proxy_base.was_get_info = proxy_base.get_info with mock.patch.object(proxy_base, 'get_info', my_get_info): proxy_base.get_info = my_get_info req = Request.blank( '/v1/a/c', {'REQUEST_METHOD': 'OPTIONS'}, headers={'Origin': 'http://foo.com', 'Access-Control-Request-Method': 'GET'}) controller.OPTIONS(req) self.assertTrue(count[0] < 11) def test_OPTIONS(self): with save_globals(): controller = proxy_server.ContainerController(self.app, 'a', 'c') def my_empty_container_info(*args): return {} controller.container_info = my_empty_container_info req = Request.blank( '/v1/a/c', {'REQUEST_METHOD': 'OPTIONS'}, headers={'Origin': 'http://foo.com', 'Access-Control-Request-Method': 'GET'}) resp = controller.OPTIONS(req) self.assertEqual(401, resp.status_int) def my_empty_origin_container_info(*args): return {'cors': {'allow_origin': None}} controller.container_info = my_empty_origin_container_info req = Request.blank( '/v1/a/c', {'REQUEST_METHOD': 'OPTIONS'}, headers={'Origin': 'http://foo.com', 'Access-Control-Request-Method': 'GET'}) resp = controller.OPTIONS(req) self.assertEqual(401, resp.status_int) def my_container_info(*args): return { 'cors': { 'allow_origin': 'http://foo.bar:8080 https://foo.bar', 'max_age': '999', } } controller.container_info = my_container_info req = Request.blank( '/v1/a/c', {'REQUEST_METHOD': 'OPTIONS'}, headers={'Origin': 'https://foo.bar', 'Access-Control-Request-Method': 'GET'}) req.content_length = 0 resp = controller.OPTIONS(req) self.assertEqual(200, resp.status_int) self.assertEqual( 'https://foo.bar', resp.headers['access-control-allow-origin']) for verb in 'OPTIONS GET POST PUT DELETE HEAD'.split(): self.assertTrue( verb in resp.headers['access-control-allow-methods']) self.assertEqual( len(resp.headers['access-control-allow-methods'].split(', ')), 6) self.assertEqual('999', resp.headers['access-control-max-age']) req = Request.blank( '/v1/a/c', {'REQUEST_METHOD': 'OPTIONS'}, headers={'Origin': 'https://foo.bar'}) req.content_length = 0 resp = controller.OPTIONS(req) self.assertEqual(401, resp.status_int) req = Request.blank('/v1/a/c', {'REQUEST_METHOD': 'OPTIONS'}) req.content_length = 0 resp = controller.OPTIONS(req) self.assertEqual(200, resp.status_int) for verb in 'OPTIONS GET POST PUT DELETE HEAD'.split(): self.assertTrue( verb in resp.headers['Allow']) self.assertEqual(len(resp.headers['Allow'].split(', ')), 6) req = Request.blank( '/v1/a/c', {'REQUEST_METHOD': 'OPTIONS'}, headers={'Origin': 'http://foo.bar', 'Access-Control-Request-Method': 'GET'}) resp = controller.OPTIONS(req) self.assertEqual(401, resp.status_int) req = Request.blank( '/v1/a/c', {'REQUEST_METHOD': 'OPTIONS'}, headers={'Origin': 'http://foo.bar', 'Access-Control-Request-Method': 'GET'}) controller.app.cors_allow_origin = ['http://foo.bar', ] resp = controller.OPTIONS(req) self.assertEqual(200, resp.status_int) def my_container_info_wildcard(*args): return { 'cors': { 'allow_origin': '*', 'max_age': '999', } } controller.container_info = my_container_info_wildcard req = Request.blank( '/v1/a/c/o.jpg', {'REQUEST_METHOD': 'OPTIONS'}, headers={'Origin': 'https://bar.baz', 'Access-Control-Request-Method': 'GET'}) req.content_length = 0 resp = controller.OPTIONS(req) self.assertEqual(200, resp.status_int) self.assertEqual('*', resp.headers['access-control-allow-origin']) for verb in 'OPTIONS GET POST PUT DELETE HEAD'.split(): self.assertTrue( verb in resp.headers['access-control-allow-methods']) self.assertEqual( len(resp.headers['access-control-allow-methods'].split(', ')), 6) self.assertEqual('999', resp.headers['access-control-max-age']) req = Request.blank( '/v1/a/c/o.jpg', {'REQUEST_METHOD': 'OPTIONS'}, headers={'Origin': 'https://bar.baz', 'Access-Control-Request-Headers': 'x-foo, x-bar, x-auth-token', 'Access-Control-Request-Method': 'GET'} ) req.content_length = 0 resp = controller.OPTIONS(req) self.assertEqual(200, resp.status_int) self.assertEqual( sortHeaderNames('x-foo, x-bar, x-auth-token'), sortHeaderNames(resp.headers['access-control-allow-headers'])) def test_CORS_valid(self): with save_globals(): controller = proxy_server.ContainerController(self.app, 'a', 'c') def stubContainerInfo(*args): return { 'cors': { 'allow_origin': 'http://foo.bar' } } controller.container_info = stubContainerInfo def containerGET(controller, req): return Response(headers={ 'X-Container-Meta-Color': 'red', 'X-Super-Secret': 'hush', }) req = Request.blank( '/v1/a/c', {'REQUEST_METHOD': 'GET'}, headers={'Origin': 'http://foo.bar'}) resp = cors_validation(containerGET)(controller, req) self.assertEqual(200, resp.status_int) self.assertEqual('http://foo.bar', resp.headers['access-control-allow-origin']) self.assertEqual('red', resp.headers['x-container-meta-color']) # X-Super-Secret is in the response, but not "exposed" self.assertEqual('hush', resp.headers['x-super-secret']) self.assertTrue('access-control-expose-headers' in resp.headers) exposed = set( h.strip() for h in resp.headers['access-control-expose-headers'].split(',')) expected_exposed = set(['cache-control', 'content-language', 'content-type', 'expires', 'last-modified', 'pragma', 'etag', 'x-timestamp', 'x-trans-id', 'x-container-meta-color']) self.assertEqual(expected_exposed, exposed) def _gather_x_account_headers(self, controller_call, req, *connect_args, **kwargs): seen_headers = [] to_capture = ('X-Account-Partition', 'X-Account-Host', 'X-Account-Device') def capture_headers(ipaddr, port, device, partition, method, path, headers=None, query_string=None): captured = {} for header in to_capture: captured[header] = headers.get(header) seen_headers.append(captured) with save_globals(): self.app.allow_account_management = True set_http_connect(*connect_args, give_connect=capture_headers, **kwargs) resp = controller_call(req) self.assertEqual(2, resp.status_int // 100) # sanity check # don't care about the account HEAD, so throw away the # first element return sorted(seen_headers[1:], key=lambda d: d['X-Account-Host'] or 'Z') def test_PUT_x_account_headers_with_fewer_account_replicas(self): self.app.account_ring.set_replicas(2) req = Request.blank('/v1/a/c', headers={'': ''}) controller = proxy_server.ContainerController(self.app, 'a', 'c') seen_headers = self._gather_x_account_headers( controller.PUT, req, 200, 201, 201, 201) # HEAD PUT PUT PUT self.assertEqual(seen_headers, [ {'X-Account-Host': '10.0.0.0:1000', 'X-Account-Partition': '0', 'X-Account-Device': 'sda'}, {'X-Account-Host': '10.0.0.1:1001', 'X-Account-Partition': '0', 'X-Account-Device': 'sdb'}, {'X-Account-Host': None, 'X-Account-Partition': None, 'X-Account-Device': None} ]) def test_PUT_x_account_headers_with_more_account_replicas(self): self.app.account_ring.set_replicas(4) req = Request.blank('/v1/a/c', headers={'': ''}) controller = proxy_server.ContainerController(self.app, 'a', 'c') seen_headers = self._gather_x_account_headers( controller.PUT, req, 200, 201, 201, 201) # HEAD PUT PUT PUT self.assertEqual(seen_headers, [ {'X-Account-Host': '10.0.0.0:1000,10.0.0.3:1003', 'X-Account-Partition': '0', 'X-Account-Device': 'sda,sdd'}, {'X-Account-Host': '10.0.0.1:1001', 'X-Account-Partition': '0', 'X-Account-Device': 'sdb'}, {'X-Account-Host': '10.0.0.2:1002', 'X-Account-Partition': '0', 'X-Account-Device': 'sdc'} ]) def test_DELETE_x_account_headers_with_fewer_account_replicas(self): self.app.account_ring.set_replicas(2) req = Request.blank('/v1/a/c', headers={'': ''}) controller = proxy_server.ContainerController(self.app, 'a', 'c') seen_headers = self._gather_x_account_headers( controller.DELETE, req, 200, 204, 204, 204) # HEAD DELETE DELETE DELETE self.assertEqual(seen_headers, [ {'X-Account-Host': '10.0.0.0:1000', 'X-Account-Partition': '0', 'X-Account-Device': 'sda'}, {'X-Account-Host': '10.0.0.1:1001', 'X-Account-Partition': '0', 'X-Account-Device': 'sdb'}, {'X-Account-Host': None, 'X-Account-Partition': None, 'X-Account-Device': None} ]) def test_DELETE_x_account_headers_with_more_account_replicas(self): self.app.account_ring.set_replicas(4) req = Request.blank('/v1/a/c', headers={'': ''}) controller = proxy_server.ContainerController(self.app, 'a', 'c') seen_headers = self._gather_x_account_headers( controller.DELETE, req, 200, 204, 204, 204) # HEAD DELETE DELETE DELETE self.assertEqual(seen_headers, [ {'X-Account-Host': '10.0.0.0:1000,10.0.0.3:1003', 'X-Account-Partition': '0', 'X-Account-Device': 'sda,sdd'}, {'X-Account-Host': '10.0.0.1:1001', 'X-Account-Partition': '0', 'X-Account-Device': 'sdb'}, {'X-Account-Host': '10.0.0.2:1002', 'X-Account-Partition': '0', 'X-Account-Device': 'sdc'} ]) def test_PUT_backed_x_timestamp_header(self): timestamps = [] def capture_timestamps(*args, **kwargs): headers = kwargs['headers'] timestamps.append(headers.get('X-Timestamp')) req = Request.blank('/v1/a/c', method='PUT', headers={'': ''}) with save_globals(): new_connect = set_http_connect(200, # account existence check 201, 201, 201, give_connect=capture_timestamps) resp = self.app.handle_request(req) # sanity self.assertRaises(StopIteration, new_connect.code_iter.next) self.assertEqual(2, resp.status_int // 100) timestamps.pop(0) # account existence check self.assertEqual(3, len(timestamps)) for timestamp in timestamps: self.assertEqual(timestamp, timestamps[0]) self.assertTrue(re.match('[0-9]{10}\.[0-9]{5}', timestamp)) def test_DELETE_backed_x_timestamp_header(self): timestamps = [] def capture_timestamps(*args, **kwargs): headers = kwargs['headers'] timestamps.append(headers.get('X-Timestamp')) req = Request.blank('/v1/a/c', method='DELETE', headers={'': ''}) self.app.update_request(req) with save_globals(): new_connect = set_http_connect(200, # account existence check 201, 201, 201, give_connect=capture_timestamps) resp = self.app.handle_request(req) # sanity self.assertRaises(StopIteration, new_connect.code_iter.next) self.assertEqual(2, resp.status_int // 100) timestamps.pop(0) # account existence check self.assertEqual(3, len(timestamps)) for timestamp in timestamps: self.assertEqual(timestamp, timestamps[0]) self.assertTrue(re.match('[0-9]{10}\.[0-9]{5}', timestamp)) def test_node_read_timeout_retry_to_container(self): with save_globals(): req = Request.blank('/v1/a/c', environ={'REQUEST_METHOD': 'GET'}) self.app.node_timeout = 0.1 set_http_connect(200, 200, 200, body='abcdef', slow=[1.0, 1.0]) resp = req.get_response(self.app) got_exc = False try: resp.body except ChunkReadTimeout: got_exc = True self.assertTrue(got_exc) @patch_policies([StoragePolicy(0, 'zero', True, object_ring=FakeRing())]) class TestAccountController(unittest.TestCase): def setUp(self): self.app = proxy_server.Application(None, FakeMemcache(), account_ring=FakeRing(), container_ring=FakeRing()) def assert_status_map(self, method, statuses, expected, env_expected=None, headers=None, **kwargs): headers = headers or {} with save_globals(): set_http_connect(*statuses, **kwargs) req = Request.blank('/v1/a', {}, headers=headers) self.app.update_request(req) res = method(req) self.assertEqual(res.status_int, expected) if env_expected: self.assertEqual(res.environ['swift.account/a']['status'], env_expected) set_http_connect(*statuses) req = Request.blank('/v1/a/', {}) self.app.update_request(req) res = method(req) self.assertEqual(res.status_int, expected) if env_expected: self.assertEqual(res.environ['swift.account/a']['status'], env_expected) def test_OPTIONS(self): with save_globals(): self.app.allow_account_management = False controller = proxy_server.AccountController(self.app, 'account') req = Request.blank('/v1/account', {'REQUEST_METHOD': 'OPTIONS'}) req.content_length = 0 resp = controller.OPTIONS(req) self.assertEqual(200, resp.status_int) for verb in 'OPTIONS GET POST HEAD'.split(): self.assertTrue( verb in resp.headers['Allow']) self.assertEqual(len(resp.headers['Allow'].split(', ')), 4) # Test a CORS OPTIONS request (i.e. including Origin and # Access-Control-Request-Method headers) self.app.allow_account_management = False controller = proxy_server.AccountController(self.app, 'account') req = Request.blank( '/v1/account', {'REQUEST_METHOD': 'OPTIONS'}, headers={'Origin': 'http://foo.com', 'Access-Control-Request-Method': 'GET'}) req.content_length = 0 resp = controller.OPTIONS(req) self.assertEqual(200, resp.status_int) for verb in 'OPTIONS GET POST HEAD'.split(): self.assertTrue( verb in resp.headers['Allow']) self.assertEqual(len(resp.headers['Allow'].split(', ')), 4) self.app.allow_account_management = True controller = proxy_server.AccountController(self.app, 'account') req = Request.blank('/v1/account', {'REQUEST_METHOD': 'OPTIONS'}) req.content_length = 0 resp = controller.OPTIONS(req) self.assertEqual(200, resp.status_int) for verb in 'OPTIONS GET POST PUT DELETE HEAD'.split(): self.assertTrue( verb in resp.headers['Allow']) self.assertEqual(len(resp.headers['Allow'].split(', ')), 6) def test_GET(self): with save_globals(): controller = proxy_server.AccountController(self.app, 'account') # GET returns after the first successful call to an Account Server self.assert_status_map(controller.GET, (200,), 200, 200) self.assert_status_map(controller.GET, (503, 200), 200, 200) self.assert_status_map(controller.GET, (503, 503, 200), 200, 200) self.assert_status_map(controller.GET, (204,), 204, 204) self.assert_status_map(controller.GET, (503, 204), 204, 204) self.assert_status_map(controller.GET, (503, 503, 204), 204, 204) self.assert_status_map(controller.GET, (404, 200), 200, 200) self.assert_status_map(controller.GET, (404, 404, 200), 200, 200) self.assert_status_map(controller.GET, (404, 503, 204), 204, 204) # If Account servers fail, if autocreate = False, return majority # response self.assert_status_map(controller.GET, (404, 404, 404), 404, 404) self.assert_status_map(controller.GET, (404, 404, 503), 404, 404) self.assert_status_map(controller.GET, (404, 503, 503), 503) self.app.memcache = FakeMemcacheReturnsNone() self.assert_status_map(controller.GET, (404, 404, 404), 404, 404) def test_GET_autocreate(self): with save_globals(): controller = proxy_server.AccountController(self.app, 'account') self.app.memcache = FakeMemcacheReturnsNone() self.assertFalse(self.app.account_autocreate) # Repeat the test for autocreate = False and 404 by all self.assert_status_map(controller.GET, (404, 404, 404), 404) self.assert_status_map(controller.GET, (404, 503, 404), 404) # When autocreate is True, if none of the nodes respond 2xx # And quorum of the nodes responded 404, # ALL nodes are asked to create the account # If successful, the GET request is repeated. controller.app.account_autocreate = True self.assert_status_map(controller.GET, (404, 404, 404), 204) self.assert_status_map(controller.GET, (404, 503, 404), 204) # We always return 503 if no majority between 4xx, 3xx or 2xx found self.assert_status_map(controller.GET, (500, 500, 400), 503) def test_HEAD(self): # Same behaviour as GET with save_globals(): controller = proxy_server.AccountController(self.app, 'account') self.assert_status_map(controller.HEAD, (200,), 200, 200) self.assert_status_map(controller.HEAD, (503, 200), 200, 200) self.assert_status_map(controller.HEAD, (503, 503, 200), 200, 200) self.assert_status_map(controller.HEAD, (204,), 204, 204) self.assert_status_map(controller.HEAD, (503, 204), 204, 204) self.assert_status_map(controller.HEAD, (204, 503, 503), 204, 204) self.assert_status_map(controller.HEAD, (204,), 204, 204) self.assert_status_map(controller.HEAD, (404, 404, 404), 404, 404) self.assert_status_map(controller.HEAD, (404, 404, 200), 200, 200) self.assert_status_map(controller.HEAD, (404, 200), 200, 200) self.assert_status_map(controller.HEAD, (404, 404, 503), 404, 404) self.assert_status_map(controller.HEAD, (404, 503, 503), 503) self.assert_status_map(controller.HEAD, (404, 503, 204), 204, 204) def test_HEAD_autocreate(self): # Same behaviour as GET with save_globals(): controller = proxy_server.AccountController(self.app, 'account') self.app.memcache = FakeMemcacheReturnsNone() self.assertFalse(self.app.account_autocreate) self.assert_status_map(controller.HEAD, (404, 404, 404), 404) controller.app.account_autocreate = True self.assert_status_map(controller.HEAD, (404, 404, 404), 204) self.assert_status_map(controller.HEAD, (500, 404, 404), 204) # We always return 503 if no majority between 4xx, 3xx or 2xx found self.assert_status_map(controller.HEAD, (500, 500, 400), 503) def test_POST_autocreate(self): with save_globals(): controller = proxy_server.AccountController(self.app, 'account') self.app.memcache = FakeMemcacheReturnsNone() # first test with autocreate being False self.assertFalse(self.app.account_autocreate) self.assert_status_map(controller.POST, (404, 404, 404), 404) # next turn it on and test account being created than updated controller.app.account_autocreate = True self.assert_status_map( controller.POST, (404, 404, 404, 202, 202, 202, 201, 201, 201), 201) # account_info PUT account POST account self.assert_status_map( controller.POST, (404, 404, 503, 201, 201, 503, 204, 204, 504), 204) # what if create fails self.assert_status_map( controller.POST, (404, 404, 404, 403, 403, 403, 400, 400, 400), 400) def test_POST_autocreate_with_sysmeta(self): with save_globals(): controller = proxy_server.AccountController(self.app, 'account') self.app.memcache = FakeMemcacheReturnsNone() # first test with autocreate being False self.assertFalse(self.app.account_autocreate) self.assert_status_map(controller.POST, (404, 404, 404), 404) # next turn it on and test account being created than updated controller.app.account_autocreate = True calls = [] callback = _make_callback_func(calls) key, value = 'X-Account-Sysmeta-Blah', 'something' headers = {key: value} self.assert_status_map( controller.POST, (404, 404, 404, 202, 202, 202, 201, 201, 201), 201, # POST , autocreate PUT, POST again headers=headers, give_connect=callback) self.assertEqual(9, len(calls)) for call in calls: self.assertTrue(key in call['headers'], '%s call, key %s missing in headers %s' % (call['method'], key, call['headers'])) self.assertEqual(value, call['headers'][key]) def test_connection_refused(self): self.app.account_ring.get_nodes('account') for dev in self.app.account_ring.devs: dev['ip'] = '127.0.0.1' dev['port'] = 1 # can't connect on this port controller = proxy_server.AccountController(self.app, 'account') req = Request.blank('/v1/account', environ={'REQUEST_METHOD': 'HEAD'}) self.app.update_request(req) resp = controller.HEAD(req) self.assertEqual(resp.status_int, 503) def test_other_socket_error(self): self.app.account_ring.get_nodes('account') for dev in self.app.account_ring.devs: dev['ip'] = '127.0.0.1' dev['port'] = -1 # invalid port number controller = proxy_server.AccountController(self.app, 'account') req = Request.blank('/v1/account', environ={'REQUEST_METHOD': 'HEAD'}) self.app.update_request(req) resp = controller.HEAD(req) self.assertEqual(resp.status_int, 503) def test_response_get_accept_ranges_header(self): with save_globals(): set_http_connect(200, 200, body='{}') controller = proxy_server.AccountController(self.app, 'account') req = Request.blank('/v1/a?format=json') self.app.update_request(req) res = controller.GET(req) self.assertTrue('accept-ranges' in res.headers) self.assertEqual(res.headers['accept-ranges'], 'bytes') def test_response_head_accept_ranges_header(self): with save_globals(): set_http_connect(200, 200, body='{}') controller = proxy_server.AccountController(self.app, 'account') req = Request.blank('/v1/a?format=json') self.app.update_request(req) res = controller.HEAD(req) res.body self.assertTrue('accept-ranges' in res.headers) self.assertEqual(res.headers['accept-ranges'], 'bytes') def test_PUT(self): with save_globals(): controller = proxy_server.AccountController(self.app, 'account') def test_status_map(statuses, expected, **kwargs): set_http_connect(*statuses, **kwargs) self.app.memcache.store = {} req = Request.blank('/v1/a', {}) req.content_length = 0 self.app.update_request(req) res = controller.PUT(req) expected = str(expected) self.assertEqual(res.status[:len(expected)], expected) test_status_map((201, 201, 201), 405) self.app.allow_account_management = True test_status_map((201, 201, 201), 201) test_status_map((201, 201, 500), 201) test_status_map((201, 500, 500), 503) test_status_map((204, 500, 404), 503) def test_PUT_max_account_name_length(self): with save_globals(): self.app.allow_account_management = True limit = constraints.MAX_ACCOUNT_NAME_LENGTH controller = proxy_server.AccountController(self.app, '1' * limit) self.assert_status_map(controller.PUT, (201, 201, 201), 201) controller = proxy_server.AccountController( self.app, '2' * (limit + 1)) self.assert_status_map(controller.PUT, (201, 201, 201), 400) def test_PUT_connect_exceptions(self): with save_globals(): self.app.allow_account_management = True controller = proxy_server.AccountController(self.app, 'account') self.assert_status_map(controller.PUT, (201, 201, -1), 201) self.assert_status_map(controller.PUT, (201, -1, -1), 503) self.assert_status_map(controller.PUT, (503, 503, -1), 503) def test_PUT_status(self): with save_globals(): self.app.allow_account_management = True controller = proxy_server.AccountController(self.app, 'account') self.assert_status_map(controller.PUT, (201, 201, 202), 202) def test_PUT_metadata(self): self.metadata_helper('PUT') def test_POST_metadata(self): self.metadata_helper('POST') def metadata_helper(self, method): for test_header, test_value in ( ('X-Account-Meta-TestHeader', 'TestValue'), ('X-Account-Meta-TestHeader', ''), ('X-Remove-Account-Meta-TestHeader', 'anything')): test_errors = [] def test_connect(ipaddr, port, device, partition, method, path, headers=None, query_string=None): if path == '/a': find_header = test_header find_value = test_value if find_header.lower().startswith('x-remove-'): find_header = \ find_header.lower().replace('-remove', '', 1) find_value = '' for k, v in headers.items(): if k.lower() == find_header.lower() and \ v == find_value: break else: test_errors.append('%s: %s not in %s' % (find_header, find_value, headers)) with save_globals(): self.app.allow_account_management = True controller = \ proxy_server.AccountController(self.app, 'a') set_http_connect(201, 201, 201, give_connect=test_connect) req = Request.blank('/v1/a/c', environ={'REQUEST_METHOD': method}, headers={test_header: test_value}) self.app.update_request(req) getattr(controller, method)(req) self.assertEqual(test_errors, []) def test_PUT_bad_metadata(self): self.bad_metadata_helper('PUT') def test_POST_bad_metadata(self): self.bad_metadata_helper('POST') def bad_metadata_helper(self, method): with save_globals(): self.app.allow_account_management = True controller = proxy_server.AccountController(self.app, 'a') set_http_connect(200, 201, 201, 201) req = Request.blank('/v1/a/c', environ={'REQUEST_METHOD': method}) self.app.update_request(req) resp = getattr(controller, method)(req) self.assertEqual(resp.status_int, 201) set_http_connect(201, 201, 201) req = Request.blank('/v1/a/c', environ={'REQUEST_METHOD': method}, headers={'X-Account-Meta-' + ('a' * constraints.MAX_META_NAME_LENGTH): 'v'}) self.app.update_request(req) resp = getattr(controller, method)(req) self.assertEqual(resp.status_int, 201) set_http_connect(201, 201, 201) req = Request.blank( '/v1/a/c', environ={'REQUEST_METHOD': method}, headers={'X-Account-Meta-' + ('a' * (constraints.MAX_META_NAME_LENGTH + 1)): 'v'}) self.app.update_request(req) resp = getattr(controller, method)(req) self.assertEqual(resp.status_int, 400) set_http_connect(201, 201, 201) req = Request.blank('/v1/a/c', environ={'REQUEST_METHOD': method}, headers={'X-Account-Meta-Too-Long': 'a' * constraints.MAX_META_VALUE_LENGTH}) self.app.update_request(req) resp = getattr(controller, method)(req) self.assertEqual(resp.status_int, 201) set_http_connect(201, 201, 201) req = Request.blank('/v1/a/c', environ={'REQUEST_METHOD': method}, headers={'X-Account-Meta-Too-Long': 'a' * (constraints.MAX_META_VALUE_LENGTH + 1)}) self.app.update_request(req) resp = getattr(controller, method)(req) self.assertEqual(resp.status_int, 400) set_http_connect(201, 201, 201) headers = {} for x in range(constraints.MAX_META_COUNT): headers['X-Account-Meta-%d' % x] = 'v' req = Request.blank('/v1/a/c', environ={'REQUEST_METHOD': method}, headers=headers) self.app.update_request(req) resp = getattr(controller, method)(req) self.assertEqual(resp.status_int, 201) set_http_connect(201, 201, 201) headers = {} for x in range(constraints.MAX_META_COUNT + 1): headers['X-Account-Meta-%d' % x] = 'v' req = Request.blank('/v1/a/c', environ={'REQUEST_METHOD': method}, headers=headers) self.app.update_request(req) resp = getattr(controller, method)(req) self.assertEqual(resp.status_int, 400) set_http_connect(201, 201, 201) headers = {} header_value = 'a' * constraints.MAX_META_VALUE_LENGTH size = 0 x = 0 while size < (constraints.MAX_META_OVERALL_SIZE - 4 - constraints.MAX_META_VALUE_LENGTH): size += 4 + constraints.MAX_META_VALUE_LENGTH headers['X-Account-Meta-%04d' % x] = header_value x += 1 if constraints.MAX_META_OVERALL_SIZE - size > 1: headers['X-Account-Meta-a'] = \ 'a' * (constraints.MAX_META_OVERALL_SIZE - size - 1) req = Request.blank('/v1/a/c', environ={'REQUEST_METHOD': method}, headers=headers) self.app.update_request(req) resp = getattr(controller, method)(req) self.assertEqual(resp.status_int, 201) set_http_connect(201, 201, 201) headers['X-Account-Meta-a'] = \ 'a' * (constraints.MAX_META_OVERALL_SIZE - size) req = Request.blank('/v1/a/c', environ={'REQUEST_METHOD': method}, headers=headers) self.app.update_request(req) resp = getattr(controller, method)(req) self.assertEqual(resp.status_int, 400) def test_DELETE(self): with save_globals(): controller = proxy_server.AccountController(self.app, 'account') def test_status_map(statuses, expected, **kwargs): set_http_connect(*statuses, **kwargs) self.app.memcache.store = {} req = Request.blank('/v1/a', {'REQUEST_METHOD': 'DELETE'}) req.content_length = 0 self.app.update_request(req) res = controller.DELETE(req) expected = str(expected) self.assertEqual(res.status[:len(expected)], expected) test_status_map((201, 201, 201), 405) self.app.allow_account_management = True test_status_map((201, 201, 201), 201) test_status_map((201, 201, 500), 201) test_status_map((201, 500, 500), 503) test_status_map((204, 500, 404), 503) def test_DELETE_with_query_string(self): # Extra safety in case someone typos a query string for an # account-level DELETE request that was really meant to be caught by # some middleware. with save_globals(): controller = proxy_server.AccountController(self.app, 'account') def test_status_map(statuses, expected, **kwargs): set_http_connect(*statuses, **kwargs) self.app.memcache.store = {} req = Request.blank('/v1/a?whoops', environ={'REQUEST_METHOD': 'DELETE'}) req.content_length = 0 self.app.update_request(req) res = controller.DELETE(req) expected = str(expected) self.assertEqual(res.status[:len(expected)], expected) test_status_map((201, 201, 201), 400) self.app.allow_account_management = True test_status_map((201, 201, 201), 400) test_status_map((201, 201, 500), 400) test_status_map((201, 500, 500), 400) test_status_map((204, 500, 404), 400) @patch_policies([StoragePolicy(0, 'zero', True, object_ring=FakeRing())]) class TestAccountControllerFakeGetResponse(unittest.TestCase): """ Test all the faked-out GET responses for accounts that don't exist. They have to match the responses for empty accounts that really exist. """ def setUp(self): conf = {'account_autocreate': 'yes'} self.app = proxy_server.Application(conf, FakeMemcache(), account_ring=FakeRing(), container_ring=FakeRing()) self.app.memcache = FakeMemcacheReturnsNone() def test_GET_autocreate_accept_json(self): with save_globals(): set_http_connect(*([404] * 100)) # nonexistent: all backends 404 req = Request.blank( '/v1/a', headers={'Accept': 'application/json'}, environ={'REQUEST_METHOD': 'GET', 'PATH_INFO': '/v1/a'}) resp = req.get_response(self.app) self.assertEqual(200, resp.status_int) self.assertEqual('application/json; charset=utf-8', resp.headers['Content-Type']) self.assertEqual("[]", resp.body) def test_GET_autocreate_format_json(self): with save_globals(): set_http_connect(*([404] * 100)) # nonexistent: all backends 404 req = Request.blank('/v1/a?format=json', environ={'REQUEST_METHOD': 'GET', 'PATH_INFO': '/v1/a', 'QUERY_STRING': 'format=json'}) resp = req.get_response(self.app) self.assertEqual(200, resp.status_int) self.assertEqual('application/json; charset=utf-8', resp.headers['Content-Type']) self.assertEqual("[]", resp.body) def test_GET_autocreate_accept_xml(self): with save_globals(): set_http_connect(*([404] * 100)) # nonexistent: all backends 404 req = Request.blank('/v1/a', headers={"Accept": "text/xml"}, environ={'REQUEST_METHOD': 'GET', 'PATH_INFO': '/v1/a'}) resp = req.get_response(self.app) self.assertEqual(200, resp.status_int) self.assertEqual('text/xml; charset=utf-8', resp.headers['Content-Type']) empty_xml_listing = ('<?xml version="1.0" encoding="UTF-8"?>\n' '<account name="a">\n</account>') self.assertEqual(empty_xml_listing, resp.body) def test_GET_autocreate_format_xml(self): with save_globals(): set_http_connect(*([404] * 100)) # nonexistent: all backends 404 req = Request.blank('/v1/a?format=xml', environ={'REQUEST_METHOD': 'GET', 'PATH_INFO': '/v1/a', 'QUERY_STRING': 'format=xml'}) resp = req.get_response(self.app) self.assertEqual(200, resp.status_int) self.assertEqual('application/xml; charset=utf-8', resp.headers['Content-Type']) empty_xml_listing = ('<?xml version="1.0" encoding="UTF-8"?>\n' '<account name="a">\n</account>') self.assertEqual(empty_xml_listing, resp.body) def test_GET_autocreate_accept_unknown(self): with save_globals(): set_http_connect(*([404] * 100)) # nonexistent: all backends 404 req = Request.blank('/v1/a', headers={"Accept": "mystery/meat"}, environ={'REQUEST_METHOD': 'GET', 'PATH_INFO': '/v1/a'}) resp = req.get_response(self.app) self.assertEqual(406, resp.status_int) def test_GET_autocreate_format_invalid_utf8(self): with save_globals(): set_http_connect(*([404] * 100)) # nonexistent: all backends 404 req = Request.blank('/v1/a?format=\xff\xfe', environ={'REQUEST_METHOD': 'GET', 'PATH_INFO': '/v1/a', 'QUERY_STRING': 'format=\xff\xfe'}) resp = req.get_response(self.app) self.assertEqual(400, resp.status_int) def test_account_acl_header_access(self): acl = { 'admin': ['AUTH_alice'], 'read-write': ['AUTH_bob'], 'read-only': ['AUTH_carol'], } prefix = get_sys_meta_prefix('account') privileged_headers = {(prefix + 'core-access-control'): format_acl( version=2, acl_dict=acl)} app = proxy_server.Application( None, FakeMemcache(), account_ring=FakeRing(), container_ring=FakeRing()) with save_globals(): # Mock account server will provide privileged information (ACLs) set_http_connect(200, 200, 200, headers=privileged_headers) req = Request.blank('/v1/a', environ={'REQUEST_METHOD': 'GET'}) resp = app.handle_request(req) # Not a swift_owner -- ACLs should NOT be in response header = 'X-Account-Access-Control' self.assertTrue(header not in resp.headers, '%r was in %r' % ( header, resp.headers)) # Same setup -- mock acct server will provide ACLs set_http_connect(200, 200, 200, headers=privileged_headers) req = Request.blank('/v1/a', environ={'REQUEST_METHOD': 'GET', 'swift_owner': True}) resp = app.handle_request(req) # For a swift_owner, the ACLs *should* be in response self.assertTrue(header in resp.headers, '%r not in %r' % ( header, resp.headers)) def test_account_acls_through_delegation(self): # Define a way to grab the requests sent out from the AccountController # to the Account Server, and a way to inject responses we'd like the # Account Server to return. resps_to_send = [] @contextmanager def patch_account_controller_method(verb): old_method = getattr(proxy_server.AccountController, verb) new_method = lambda self, req, *_, **__: resps_to_send.pop(0) try: setattr(proxy_server.AccountController, verb, new_method) yield finally: setattr(proxy_server.AccountController, verb, old_method) def make_test_request(http_method, swift_owner=True): env = { 'REQUEST_METHOD': http_method, 'swift_owner': swift_owner, } acl = { 'admin': ['foo'], 'read-write': ['bar'], 'read-only': ['bas'], } headers = {} if http_method in ('GET', 'HEAD') else { 'x-account-access-control': format_acl(version=2, acl_dict=acl) } return Request.blank('/v1/a', environ=env, headers=headers) # Our AccountController will invoke methods to communicate with the # Account Server, and they will return responses like these: def make_canned_response(http_method): acl = { 'admin': ['foo'], 'read-write': ['bar'], 'read-only': ['bas'], } headers = {'x-account-sysmeta-core-access-control': format_acl( version=2, acl_dict=acl)} canned_resp = Response(headers=headers) canned_resp.environ = { 'PATH_INFO': '/acct', 'REQUEST_METHOD': http_method, } resps_to_send.append(canned_resp) app = proxy_server.Application( None, FakeMemcache(), account_ring=FakeRing(), container_ring=FakeRing()) app.allow_account_management = True ext_header = 'x-account-access-control' with patch_account_controller_method('GETorHEAD_base'): # GET/HEAD requests should remap sysmeta headers from acct server for verb in ('GET', 'HEAD'): make_canned_response(verb) req = make_test_request(verb) resp = app.handle_request(req) h = parse_acl(version=2, data=resp.headers.get(ext_header)) self.assertEqual(h['admin'], ['foo']) self.assertEqual(h['read-write'], ['bar']) self.assertEqual(h['read-only'], ['bas']) # swift_owner = False: GET/HEAD shouldn't return sensitive info make_canned_response(verb) req = make_test_request(verb, swift_owner=False) resp = app.handle_request(req) h = resp.headers self.assertEqual(None, h.get(ext_header)) # swift_owner unset: GET/HEAD shouldn't return sensitive info make_canned_response(verb) req = make_test_request(verb, swift_owner=False) del req.environ['swift_owner'] resp = app.handle_request(req) h = resp.headers self.assertEqual(None, h.get(ext_header)) # Verify that PUT/POST requests remap sysmeta headers from acct server with patch_account_controller_method('make_requests'): make_canned_response('PUT') req = make_test_request('PUT') resp = app.handle_request(req) h = parse_acl(version=2, data=resp.headers.get(ext_header)) self.assertEqual(h['admin'], ['foo']) self.assertEqual(h['read-write'], ['bar']) self.assertEqual(h['read-only'], ['bas']) make_canned_response('POST') req = make_test_request('POST') resp = app.handle_request(req) h = parse_acl(version=2, data=resp.headers.get(ext_header)) self.assertEqual(h['admin'], ['foo']) self.assertEqual(h['read-write'], ['bar']) self.assertEqual(h['read-only'], ['bas']) class FakeObjectController(object): def __init__(self): self.app = self self.logger = self self.account_name = 'a' self.container_name = 'c' self.object_name = 'o' self.trans_id = 'tx1' self.object_ring = FakeRing() self.node_timeout = 1 self.rate_limit_after_segment = 3 self.rate_limit_segments_per_sec = 2 self.GETorHEAD_base_args = [] def exception(self, *args): self.exception_args = args self.exception_info = sys.exc_info() def GETorHEAD_base(self, *args): self.GETorHEAD_base_args.append(args) req = args[0] path = args[4] body = data = path[-1] * int(path[-1]) if req.range: r = req.range.ranges_for_length(len(data)) if r: (start, stop) = r[0] body = data[start:stop] resp = Response(app_iter=iter(body)) return resp def iter_nodes(self, ring, partition): for node in ring.get_part_nodes(partition): yield node for node in ring.get_more_nodes(partition): yield node def sort_nodes(self, nodes): return nodes def set_node_timing(self, node, timing): return class TestProxyObjectPerformance(unittest.TestCase): def setUp(self): # This is just a simple test that can be used to verify and debug the # various data paths between the proxy server and the object # server. Used as a play ground to debug buffer sizes for sockets. prolis = _test_sockets[0] sock = connect_tcp(('localhost', prolis.getsockname()[1])) # Client is transmitting in 2 MB chunks fd = sock.makefile('wb', 2 * 1024 * 1024) # Small, fast for testing obj_len = 2 * 64 * 1024 # Use 1 GB or more for measurements # obj_len = 2 * 512 * 1024 * 1024 self.path = '/v1/a/c/o.large' fd.write('PUT %s HTTP/1.1\r\n' 'Host: localhost\r\n' 'Connection: close\r\n' 'X-Storage-Token: t\r\n' 'Content-Length: %s\r\n' 'Content-Type: application/octet-stream\r\n' '\r\n' % (self.path, str(obj_len))) fd.write('a' * obj_len) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 201' self.assertEqual(headers[:len(exp)], exp) self.obj_len = obj_len def test_GET_debug_large_file(self): for i in range(10): start = time.time() prolis = _test_sockets[0] sock = connect_tcp(('localhost', prolis.getsockname()[1])) # Client is reading in 2 MB chunks fd = sock.makefile('wb', 2 * 1024 * 1024) fd.write('GET %s HTTP/1.1\r\n' 'Host: localhost\r\n' 'Connection: close\r\n' 'X-Storage-Token: t\r\n' '\r\n' % self.path) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 200' self.assertEqual(headers[:len(exp)], exp) total = 0 while True: buf = fd.read(100000) if not buf: break total += len(buf) self.assertEqual(total, self.obj_len) end = time.time() print("Run %02d took %07.03f" % (i, end - start)) @patch_policies([StoragePolicy(0, 'migrated', object_ring=FakeRing()), StoragePolicy(1, 'ernie', True, object_ring=FakeRing()), StoragePolicy(2, 'deprecated', is_deprecated=True, object_ring=FakeRing()), StoragePolicy(3, 'bert', object_ring=FakeRing())]) class TestSwiftInfo(unittest.TestCase): def setUp(self): utils._swift_info = {} utils._swift_admin_info = {} def test_registered_defaults(self): proxy_server.Application({}, FakeMemcache(), account_ring=FakeRing(), container_ring=FakeRing()) si = utils.get_swift_info()['swift'] self.assertTrue('version' in si) self.assertEqual(si['max_file_size'], constraints.MAX_FILE_SIZE) self.assertEqual(si['max_meta_name_length'], constraints.MAX_META_NAME_LENGTH) self.assertEqual(si['max_meta_value_length'], constraints.MAX_META_VALUE_LENGTH) self.assertEqual(si['max_meta_count'], constraints.MAX_META_COUNT) self.assertEqual(si['max_header_size'], constraints.MAX_HEADER_SIZE) self.assertEqual(si['max_meta_overall_size'], constraints.MAX_META_OVERALL_SIZE) self.assertEqual(si['account_listing_limit'], constraints.ACCOUNT_LISTING_LIMIT) self.assertEqual(si['container_listing_limit'], constraints.CONTAINER_LISTING_LIMIT) self.assertEqual(si['max_account_name_length'], constraints.MAX_ACCOUNT_NAME_LENGTH) self.assertEqual(si['max_container_name_length'], constraints.MAX_CONTAINER_NAME_LENGTH) self.assertEqual(si['max_object_name_length'], constraints.MAX_OBJECT_NAME_LENGTH) self.assertTrue('strict_cors_mode' in si) self.assertEqual(si['allow_account_management'], False) self.assertEqual(si['account_autocreate'], False) # This setting is by default excluded by disallowed_sections self.assertEqual(si['valid_api_versions'], constraints.VALID_API_VERSIONS) # this next test is deliberately brittle in order to alert if # other items are added to swift info self.assertEqual(len(si), 18) self.assertTrue('policies' in si) sorted_pols = sorted(si['policies'], key=operator.itemgetter('name')) self.assertEqual(len(sorted_pols), 3) for policy in sorted_pols: self.assertNotEqual(policy['name'], 'deprecated') self.assertEqual(sorted_pols[0]['name'], 'bert') self.assertEqual(sorted_pols[1]['name'], 'ernie') self.assertEqual(sorted_pols[2]['name'], 'migrated') class TestSocketObjectVersions(unittest.TestCase): def setUp(self): global _test_sockets self.prolis = prolis = listen(('localhost', 0)) self._orig_prolis = _test_sockets[0] allowed_headers = ', '.join([ 'content-encoding', 'x-object-manifest', 'content-disposition', 'foo' ]) conf = {'devices': _testdir, 'swift_dir': _testdir, 'mount_check': 'false', 'allowed_headers': allowed_headers} prosrv = versioned_writes.VersionedWritesMiddleware( proxy_logging.ProxyLoggingMiddleware( _test_servers[0], conf, logger=_test_servers[0].logger), {}) self.coro = spawn(wsgi.server, prolis, prosrv, NullLogger()) # replace global prosrv with one that's filtered with version # middleware self.sockets = list(_test_sockets) self.sockets[0] = prolis _test_sockets = tuple(self.sockets) def tearDown(self): self.coro.kill() # put the global state back global _test_sockets self.sockets[0] = self._orig_prolis _test_sockets = tuple(self.sockets) def test_version_manifest(self, oc='versions', vc='vers', o='name'): versions_to_create = 3 # Create a container for our versioned object testing (prolis, acc1lis, acc2lis, con1lis, con2lis, obj1lis, obj2lis, obj3lis) = _test_sockets pre = quote('%03x' % len(o)) osub = '%s/sub' % o presub = quote('%03x' % len(osub)) osub = quote(osub) presub = quote(presub) oc = quote(oc) vc = quote(vc) def put_container(): sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('PUT /v1/a/%s HTTP/1.1\r\nHost: localhost\r\n' 'Connection: close\r\nX-Storage-Token: t\r\n' 'Content-Length: 0\r\nX-Versions-Location: %s\r\n\r\n' % (oc, vc)) fd.flush() headers = readuntil2crlfs(fd) fd.read() return headers headers = put_container() exp = 'HTTP/1.1 201' self.assertEqual(headers[:len(exp)], exp) def get_container(): sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('GET /v1/a/%s HTTP/1.1\r\nHost: localhost\r\n' 'Connection: close\r\n' 'X-Storage-Token: t\r\n\r\n\r\n' % oc) fd.flush() headers = readuntil2crlfs(fd) body = fd.read() return headers, body # check that the header was set headers, body = get_container() exp = 'HTTP/1.1 2' # 2xx series response self.assertEqual(headers[:len(exp)], exp) self.assertIn('X-Versions-Location: %s' % vc, headers) def put_version_container(): sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('PUT /v1/a/%s HTTP/1.1\r\nHost: localhost\r\n' 'Connection: close\r\nX-Storage-Token: t\r\n' 'Content-Length: 0\r\n\r\n' % vc) fd.flush() headers = readuntil2crlfs(fd) fd.read() return headers # make the container for the object versions headers = put_version_container() exp = 'HTTP/1.1 201' self.assertEqual(headers[:len(exp)], exp) def put(version): sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('PUT /v1/a/%s/%s HTTP/1.1\r\nHost: ' 'localhost\r\nConnection: close\r\nX-Storage-Token: ' 't\r\nContent-Length: 5\r\nContent-Type: text/jibberish%s' '\r\n\r\n%05d\r\n' % (oc, o, version, version)) fd.flush() headers = readuntil2crlfs(fd) fd.read() return headers def get(container=oc, obj=o): sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('GET /v1/a/%s/%s HTTP/1.1\r\nHost: ' 'localhost\r\nConnection: close\r\nX-Auth-Token: t\r\n' '\r\n' % (container, obj)) fd.flush() headers = readuntil2crlfs(fd) body = fd.read() return headers, body # Create the versioned file headers = put(0) exp = 'HTTP/1.1 201' self.assertEqual(headers[:len(exp)], exp) # Create the object versions for version in range(1, versions_to_create): sleep(.01) # guarantee that the timestamp changes headers = put(version) exp = 'HTTP/1.1 201' self.assertEqual(headers[:len(exp)], exp) # Ensure retrieving the manifest file gets the latest version headers, body = get() exp = 'HTTP/1.1 200' self.assertEqual(headers[:len(exp)], exp) self.assertIn('Content-Type: text/jibberish%s' % version, headers) self.assertNotIn('X-Object-Meta-Foo: barbaz', headers) self.assertEqual(body, '%05d' % version) def get_version_container(): sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('GET /v1/a/%s HTTP/1.1\r\nHost: localhost\r\n' 'Connection: close\r\n' 'X-Storage-Token: t\r\n\r\n' % vc) fd.flush() headers = readuntil2crlfs(fd) body = fd.read() return headers, body # Ensure we have the right number of versions saved headers, body = get_version_container() exp = 'HTTP/1.1 200' self.assertEqual(headers[:len(exp)], exp) versions = [x for x in body.split('\n') if x] self.assertEqual(len(versions), versions_to_create - 1) def delete(): sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('DELETE /v1/a/%s/%s HTTP/1.1\r\nHost: localhost\r' '\nConnection: close\r\nX-Storage-Token: t\r\n\r\n' % (oc, o)) fd.flush() headers = readuntil2crlfs(fd) fd.read() return headers def copy(): sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('COPY /v1/a/%s/%s HTTP/1.1\r\nHost: ' 'localhost\r\nConnection: close\r\nX-Auth-Token: ' 't\r\nDestination: %s/copied_name\r\n' 'Content-Length: 0\r\n\r\n' % (oc, o, oc)) fd.flush() headers = readuntil2crlfs(fd) fd.read() return headers # copy a version and make sure the version info is stripped headers = copy() exp = 'HTTP/1.1 2' # 2xx series response to the COPY self.assertEqual(headers[:len(exp)], exp) def get_copy(): sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('GET /v1/a/%s/copied_name HTTP/1.1\r\nHost: ' 'localhost\r\nConnection: close\r\n' 'X-Auth-Token: t\r\n\r\n' % oc) fd.flush() headers = readuntil2crlfs(fd) body = fd.read() return headers, body headers, body = get_copy() exp = 'HTTP/1.1 200' self.assertEqual(headers[:len(exp)], exp) self.assertEqual(body, '%05d' % version) def post(): sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('POST /v1/a/%s/%s HTTP/1.1\r\nHost: ' 'localhost\r\nConnection: close\r\nX-Auth-Token: ' 't\r\nContent-Type: foo/bar\r\nContent-Length: 0\r\n' 'X-Object-Meta-Bar: foo\r\n\r\n' % (oc, o)) fd.flush() headers = readuntil2crlfs(fd) fd.read() return headers # post and make sure it's updated headers = post() exp = 'HTTP/1.1 2' # 2xx series response to the POST self.assertEqual(headers[:len(exp)], exp) headers, body = get() self.assertIn('Content-Type: foo/bar', headers) self.assertIn('X-Object-Meta-Bar: foo', headers) self.assertEqual(body, '%05d' % version) # check container listing headers, body = get_container() exp = 'HTTP/1.1 200' self.assertEqual(headers[:len(exp)], exp) # Delete the object versions for segment in range(versions_to_create - 1, 0, -1): headers = delete() exp = 'HTTP/1.1 2' # 2xx series response self.assertEqual(headers[:len(exp)], exp) # Ensure retrieving the manifest file gets the latest version headers, body = get() exp = 'HTTP/1.1 200' self.assertEqual(headers[:len(exp)], exp) self.assertIn('Content-Type: text/jibberish%s' % (segment - 1), headers) self.assertEqual(body, '%05d' % (segment - 1)) # Ensure we have the right number of versions saved sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('GET /v1/a/%s?prefix=%s%s/ HTTP/1.1\r\nHost: ' 'localhost\r\nConnection: close\r\nX-Auth-Token: t\r\n\r' '\n' % (vc, pre, o)) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 2' # 2xx series response self.assertEqual(headers[:len(exp)], exp) body = fd.read() versions = [x for x in body.split('\n') if x] self.assertEqual(len(versions), segment - 1) # there is now one version left (in the manifest) # Ensure we have no saved versions sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('GET /v1/a/%s?prefix=%s%s/ HTTP/1.1\r\nHost: ' 'localhost\r\nConnection: close\r\nX-Auth-Token: t\r\n\r\n' % (vc, pre, o)) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 204 No Content' self.assertEqual(headers[:len(exp)], exp) # delete the last version sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('DELETE /v1/a/%s/%s HTTP/1.1\r\nHost: localhost\r\n' 'Connection: close\r\nX-Storage-Token: t\r\n\r\n' % (oc, o)) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 2' # 2xx series response self.assertEqual(headers[:len(exp)], exp) # Ensure it's all gone sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('GET /v1/a/%s/%s HTTP/1.1\r\nHost: ' 'localhost\r\nConnection: close\r\nX-Auth-Token: t\r\n\r\n' % (oc, o)) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 404' self.assertEqual(headers[:len(exp)], exp) # make sure manifest files will be ignored for _junk in range(1, versions_to_create): sleep(.01) # guarantee that the timestamp changes sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('PUT /v1/a/%s/%s HTTP/1.1\r\nHost: ' 'localhost\r\nConnection: close\r\nX-Storage-Token: ' 't\r\nContent-Length: 0\r\n' 'Content-Type: text/jibberish0\r\n' 'Foo: barbaz\r\nX-Object-Manifest: %s/%s/\r\n\r\n' % (oc, o, oc, o)) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 201' self.assertEqual(headers[:len(exp)], exp) sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('GET /v1/a/%s?prefix=%s%s/ HTTP/1.1\r\nhost: ' 'localhost\r\nconnection: close\r\nx-auth-token: t\r\n\r\n' % (vc, pre, o)) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 204 No Content' self.assertEqual(headers[:len(exp)], exp) # DELETE v1/a/c/obj shouldn't delete v1/a/c/obj/sub versions sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('PUT /v1/a/%s/%s HTTP/1.1\r\nHost: ' 'localhost\r\nConnection: close\r\nX-Storage-Token: ' 't\r\nContent-Length: 5\r\nContent-Type: text/jibberish0\r\n' 'Foo: barbaz\r\n\r\n00000\r\n' % (oc, o)) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 201' self.assertEqual(headers[:len(exp)], exp) sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('PUT /v1/a/%s/%s HTTP/1.1\r\nHost: ' 'localhost\r\nConnection: close\r\nX-Storage-Token: ' 't\r\nContent-Length: 5\r\nContent-Type: text/jibberish0\r\n' 'Foo: barbaz\r\n\r\n00001\r\n' % (oc, o)) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 201' self.assertEqual(headers[:len(exp)], exp) sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('PUT /v1/a/%s/%s HTTP/1.1\r\nHost: ' 'localhost\r\nConnection: close\r\nX-Storage-Token: ' 't\r\nContent-Length: 4\r\nContent-Type: text/jibberish0\r\n' 'Foo: barbaz\r\n\r\nsub1\r\n' % (oc, osub)) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 201' self.assertEqual(headers[:len(exp)], exp) sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('PUT /v1/a/%s/%s HTTP/1.1\r\nHost: ' 'localhost\r\nConnection: close\r\nX-Storage-Token: ' 't\r\nContent-Length: 4\r\nContent-Type: text/jibberish0\r\n' 'Foo: barbaz\r\n\r\nsub2\r\n' % (oc, osub)) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 201' self.assertEqual(headers[:len(exp)], exp) sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('DELETE /v1/a/%s/%s HTTP/1.1\r\nHost: localhost\r\n' 'Connection: close\r\nX-Storage-Token: t\r\n\r\n' % (oc, o)) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 2' # 2xx series response self.assertEqual(headers[:len(exp)], exp) sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('GET /v1/a/%s?prefix=%s%s/ HTTP/1.1\r\nHost: ' 'localhost\r\nConnection: close\r\nX-Auth-Token: t\r\n\r\n' % (vc, presub, osub)) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 2' # 2xx series response self.assertEqual(headers[:len(exp)], exp) body = fd.read() versions = [x for x in body.split('\n') if x] self.assertEqual(len(versions), 1) # Check for when the versions target container doesn't exist sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('PUT /v1/a/%swhoops HTTP/1.1\r\nHost: localhost\r\n' 'Connection: close\r\nX-Storage-Token: t\r\n' 'Content-Length: 0\r\nX-Versions-Location: none\r\n\r\n' % oc) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 201' self.assertEqual(headers[:len(exp)], exp) # Create the versioned file sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('PUT /v1/a/%swhoops/foo HTTP/1.1\r\nHost: ' 'localhost\r\nConnection: close\r\nX-Storage-Token: ' 't\r\nContent-Length: 5\r\n\r\n00000\r\n' % oc) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 201' self.assertEqual(headers[:len(exp)], exp) # Create another version sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('PUT /v1/a/%swhoops/foo HTTP/1.1\r\nHost: ' 'localhost\r\nConnection: close\r\nX-Storage-Token: ' 't\r\nContent-Length: 5\r\n\r\n00001\r\n' % oc) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 412' self.assertEqual(headers[:len(exp)], exp) # Delete the object sock = connect_tcp(('localhost', prolis.getsockname()[1])) fd = sock.makefile() fd.write('DELETE /v1/a/%swhoops/foo HTTP/1.1\r\nHost: localhost\r\n' 'Connection: close\r\nX-Storage-Token: t\r\n\r\n' % oc) fd.flush() headers = readuntil2crlfs(fd) exp = 'HTTP/1.1 2' # 2xx response self.assertEqual(headers[:len(exp)], exp) def test_version_manifest_utf8(self): oc = '0_oc_non_ascii\xc2\xa3' vc = '0_vc_non_ascii\xc2\xa3' o = '0_o_non_ascii\xc2\xa3' self.test_version_manifest(oc, vc, o) def test_version_manifest_utf8_container(self): oc = '1_oc_non_ascii\xc2\xa3' vc = '1_vc_ascii' o = '1_o_ascii' self.test_version_manifest(oc, vc, o) def test_version_manifest_utf8_version_container(self): oc = '2_oc_ascii' vc = '2_vc_non_ascii\xc2\xa3' o = '2_o_ascii' self.test_version_manifest(oc, vc, o) def test_version_manifest_utf8_containers(self): oc = '3_oc_non_ascii\xc2\xa3' vc = '3_vc_non_ascii\xc2\xa3' o = '3_o_ascii' self.test_version_manifest(oc, vc, o) def test_version_manifest_utf8_object(self): oc = '4_oc_ascii' vc = '4_vc_ascii' o = '4_o_non_ascii\xc2\xa3' self.test_version_manifest(oc, vc, o) def test_version_manifest_utf8_version_container_utf_object(self): oc = '5_oc_ascii' vc = '5_vc_non_ascii\xc2\xa3' o = '5_o_non_ascii\xc2\xa3' self.test_version_manifest(oc, vc, o) def test_version_manifest_utf8_container_utf_object(self): oc = '6_oc_non_ascii\xc2\xa3' vc = '6_vc_ascii' o = '6_o_non_ascii\xc2\xa3' self.test_version_manifest(oc, vc, o) if __name__ == '__main__': setup() try: unittest.main() finally: teardown()
thiagodasilva/swift
test/unit/proxy/test_server.py
Python
apache-2.0
417,412
[ "MOOSE" ]
df3e150f8c114cfe59d9b21103de0aa3d2337a0bfa64cb03a6b8a06abd197a74
# # Gramps - a GTK+/GNOME based genealogy program # # Copyright (C) 2000-2006 Donald N. Allingham # Copyright (C) 2008 Brian G. Matherly # Copyright (C) 2010 Jakim Friant # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # """Tools/Database Processing/Extract Information from Names""" #------------------------------------------------------------------------- # # python modules # #------------------------------------------------------------------------- import re #------------------------------------------------------------------------- # # gnome/gtk # #------------------------------------------------------------------------- from gi.repository import Gtk from gi.repository import GObject #------------------------------------------------------------------------- # # gramps modules # #------------------------------------------------------------------------- from gramps.gen.const import URL_MANUAL_PAGE from gramps.gui.utils import ProgressMeter from gramps.gui.plug import tool from gramps.gui.dialog import OkDialog from gramps.gui.managedwindow import ManagedWindow from gramps.gui.display import display_help from gramps.gui.glade import Glade from gramps.gen.lib import NameOriginType, Surname from gramps.gen.db import DbTxn from gramps.gen.const import GRAMPS_LOCALE as glocale _ = glocale.translation.sgettext #------------------------------------------------------------------------- # # Constants # #------------------------------------------------------------------------- WIKI_HELP_PAGE = '%s_-_Tools' % URL_MANUAL_PAGE WIKI_HELP_SEC = _('manual|Extract_Information_from_Names') #------------------------------------------------------------------------- # # constants # #------------------------------------------------------------------------- # List of possible surname prefixes. Notice that you must run the tool # multiple times for prefixes such as "van der". PREFIX_LIST = [ "de", "van", "von", "di", "le", "du", "dela", "della", "des", "vande", "ten", "da", "af", "den", "das", "dello", "del", "en", "ein", "el" "et", "les", "lo", "los", "un", "um", "una", "uno", "der", "ter", "te", "die"] CONNECTOR_LIST = ['e', 'y', ] CONNECTOR_LIST_NONSPLIT = ['de', 'van'] _title_re = re.compile(r"^ ([A-Za-z][A-Za-z]+\.) \s+ (.+) $", re.VERBOSE) _nick_re = re.compile(r"(.+) \s* [(\"] (.+) [)\"]", re.VERBOSE) #------------------------------------------------------------------------- # # Search each name in the database, and compare the firstname against the # form of "Name (Nickname)". If it matches, change the first name entry # to "Name" and add "Nickname" into the nickname field. Also, search for # surname prefixes. If found, change the name entry and put the prefix in # the name prefix field. # #------------------------------------------------------------------------- class PatchNames(tool.BatchTool, ManagedWindow): titleid = 1 nickid = 2 pref1id = 3 compid = 4 def __init__(self, dbstate, user, options_class, name, callback=None): uistate = user.uistate self.label = _('Name and title extraction tool') ManagedWindow.__init__(self, uistate, [], self.__class__) self.set_window(Gtk.Window(), Gtk.Label(), '') tool.BatchTool.__init__(self, dbstate, user, options_class, name) if self.fail: self.close() return winprefix = Gtk.Dialog( title=_("Default prefix and connector settings"), transient_for=self.uistate.window, modal=True, destroy_with_parent=True) winprefix.add_button(_('_OK'), Gtk.ResponseType.ACCEPT) winprefix.vbox.set_spacing(5) hboxpref = Gtk.Box() label = Gtk.Label(label=_('Prefixes to search for:')) hboxpref.pack_start(label, False, False, 5) self.prefixbox = Gtk.Entry() self.prefixbox.set_text(', '.join(PREFIX_LIST)) hboxpref.pack_start(self.prefixbox, True, True, 0) winprefix.vbox.pack_start(hboxpref, True, True, 0) hboxcon = Gtk.Box() label = Gtk.Label(label=_('Connectors splitting surnames:')) hboxcon.pack_start(label, False, False, 5) self.conbox = Gtk.Entry() self.conbox.set_text(', '.join(CONNECTOR_LIST)) hboxcon.pack_start(self.conbox, True, True, 0) winprefix.vbox.pack_start(hboxcon, True, True, 0) hboxconns = Gtk.Box() label = Gtk.Label(label=_('Connectors not splitting surnames:')) hboxconns.pack_start(label, False, False, 5) self.connsbox = Gtk.Entry() self.connsbox.set_text(', '.join(CONNECTOR_LIST_NONSPLIT)) hboxconns.pack_start(self.connsbox, True, True, 0) winprefix.vbox.pack_start(hboxconns, True, True, 0) winprefix.resize(700, 100) winprefix.show_all() response = winprefix.run() self.prefix_list = self.prefixbox.get_text().split(',') self.prefix_list = list(map(strip, self.prefix_list)) self.prefixbox = None self.connector_list = self.conbox.get_text().split(',') self.connector_list = list(map(strip, self.connector_list)) self.conbox = None self.connector_list_nonsplit = self.connsbox.get_text().split(',') self.connector_list_nonsplit = list( map(strip, self.connector_list_nonsplit)) self.connsbox = None # Find a prefix in the first_name self._fn_prefix_re = re.compile( r"(\S+)\s+(%s)\s*$" % '|'.join(self.prefix_list), re.IGNORECASE) # Find a prefix in the surname self._sn_prefix_re = re.compile( r"^\s*(%s)\s+(.+)" % '|'.join(self.prefix_list), re.IGNORECASE) # Find a connector in the surname self._sn_con_re = re.compile( r"^\s*(.+)\s+(%s)\s+(.+)" % '|'.join(self.connector_list), re.IGNORECASE) winprefix.destroy() self.cb = callback self.handle_to_action = {} self.progress = ProgressMeter( _('Extracting Information from Names'), '', parent=self.uistate.window) self.progress.set_pass(_('Analyzing names'), self.db.get_number_of_people()) for person in self.db.iter_people(): key = person.handle name = person.get_primary_name() first = name.get_first_name() sname = name.get_surname() old_prefix = [] old_surn = [] old_con = [] old_prim = [] old_orig = [] for surn in name.get_surname_list(): old_prefix.append(surn.get_prefix()) old_surn.append(surn.get_surname()) old_con.append(surn.get_connector()) old_prim.append(surn.get_primary()) old_orig.append(surn.get_origintype()) if name.get_title(): old_title = [name.get_title()] else: old_title = [] new_title = [] match = _title_re.match(first) while match: groups = match.groups() first = groups[1] new_title.append(groups[0]) match = _title_re.match(first) matchnick = _nick_re.match(first) if new_title: titleval = (" ".join(old_title + new_title), first) if key in self.handle_to_action: self.handle_to_action[key][self.titleid] = titleval else: self.handle_to_action[key] = {self.titleid: titleval} elif matchnick: # we check for nick, which changes given name like title groups = matchnick.groups() nickval = (groups[0], groups[1]) if key in self.handle_to_action: self.handle_to_action[key][self.nickid] = nickval else: self.handle_to_action[key] = {self.nickid: nickval} else: # Try to find the name prefix in the given name, also this # changes given name match = self._fn_prefix_re.match(first) if match: groups = match.groups() if old_prefix[0]: # Put the found prefix before the old prefix new_prefix = " ".join([groups[1], old_prefix[0]]) else: new_prefix = groups[1] pref1val = (groups[0], new_prefix, groups[1]) if key in self.handle_to_action: self.handle_to_action[key][self.pref1id] = pref1val else: self.handle_to_action[key] = {self.pref1id: pref1val} #check for Gedcom import of compound surnames if len(old_surn) == 1 and old_con[0] == '': prefixes = old_prefix[0].split(',') surnames = old_surn[0].split(',') if len(prefixes) > 1 and len(prefixes) == len(surnames): #assume a list of prefix and a list of surnames prefixes = list(map(strip, prefixes)) surnames = list(map(strip, surnames)) primaries = [False] * len(prefixes) primaries[0] = True origs = [] for ind in range(len(prefixes)): origs.append(NameOriginType()) origs[0] = old_orig[0] compoundval = (surnames, prefixes, [''] * len(prefixes), primaries, origs) if key in self.handle_to_action: self.handle_to_action[key][self.compid] = compoundval else: self.handle_to_action[key] = {self.compid: compoundval} #we cannot check compound surnames, so continue the loop continue # Next, try to split surname in compounds: prefix surname connector found = False new_prefix_list = [] new_surname_list = [] new_connector_list = [] new_prim_list = [] new_orig_list = [] ind = 0 cont = True for pref, surn, con, prim, orig in zip( old_prefix, old_surn, old_con, old_prim, old_orig): surnval = surn.split() if surnval == []: new_prefix_list.append(pref) new_surname_list.append('') new_connector_list.append(con) new_prim_list.append(prim) new_orig_list.append(orig) cont = False continue val = surnval.pop(0) while cont: new_prefix_list.append(pref) new_surname_list.append('') new_connector_list.append(con) new_prim_list.append(prim) new_orig_list.append(orig) while cont and (val.lower() in self.prefix_list): found = True if new_prefix_list[-1]: new_prefix_list[-1] += ' ' + val else: new_prefix_list[-1] = val try: val = surnval.pop(0) except IndexError: val = '' cont = False #after prefix we have a surname if cont: new_surname_list[-1] = val try: val = surnval.pop(0) except IndexError: val = '' cont = False #if value after surname indicates continue, then continue while cont and ( val.lower() in self.connector_list_nonsplit): #add this val to the current surname new_surname_list[-1] += ' ' + val try: val = surnval.pop(0) except IndexError: val = '' cont = False # if previous is non-splitting connector, then add new val # to current surname if cont and (new_surname_list[-1].split()[-1].lower() in self.connector_list_nonsplit): new_surname_list[-1] += ' ' + val try: val = surnval.pop(0) except IndexError: val = '' cont = False #if next is a connector, add it to the surname if cont and val.lower() in self.connector_list: found = True if new_connector_list[-1]: new_connector_list[-1] = ' ' + val else: new_connector_list[-1] = val try: val = surnval.pop(0) except IndexError: val = '' cont = False # initialize for a next surname in case there are still # val if cont: found = True # we split surname pref = '' con = '' prim = False orig = NameOriginType() ind += 1 if found: compoundval = (new_surname_list, new_prefix_list, new_connector_list, new_prim_list, new_orig_list) if key in self.handle_to_action: self.handle_to_action[key][self.compid] = compoundval else: self.handle_to_action[key] = {self.compid: compoundval} self.progress.step() if self.handle_to_action: self.display() else: self.progress.close() self.close() OkDialog(_('No modifications made'), _("No titles, nicknames or prefixes were found"), parent=self.uistate.window) def build_menu_names(self, obj): return (self.label, None) def toggled(self, cell, path_string): path = tuple(map(int, path_string.split(':'))) row = self.model[path] row[0] = not row[0] self.model.row_changed(path, row.iter) def display(self): self.top = Glade() window = self.top.toplevel self.top.connect_signals({ "destroy_passed_object": self.close, "on_ok_clicked": self.on_ok_clicked, "on_help_clicked": self.on_help_clicked, "on_delete_event": self.close}) self.list = self.top.get_object("list") self.set_window(window, self.top.get_object('title'), self.label) self.setup_configs("interface.patchnames", 680, 400) self.model = Gtk.ListStore(GObject.TYPE_BOOLEAN, GObject.TYPE_STRING, GObject.TYPE_STRING, GObject.TYPE_STRING, GObject.TYPE_STRING) r = Gtk.CellRendererToggle() r.connect('toggled', self.toggled) c = Gtk.TreeViewColumn(_('Select'), r, active=0) self.list.append_column(c) c = Gtk.TreeViewColumn(_('ID'), Gtk.CellRendererText(), text=1) self.list.append_column(c) c = Gtk.TreeViewColumn(_('Type'), Gtk.CellRendererText(), text=2) self.list.append_column(c) c = Gtk.TreeViewColumn(_('Value'), Gtk.CellRendererText(), text=3) self.list.append_column(c) c = Gtk.TreeViewColumn(_('Current Name'), Gtk.CellRendererText(), text=4) self.list.append_column(c) self.list.set_model(self.model) self.nick_hash = {} self.title_hash = {} self.prefix1_hash = {} self.compound_hash = {} self.progress.set_pass(_('Building display'), len(list(self.handle_to_action.keys()))) for key, data in self.handle_to_action.items(): p = self.db.get_person_from_handle(key) gid = p.get_gramps_id() if self.nickid in data: given, nick = data[self.nickid] handle = self.model.append() self.model.set_value(handle, 0, 1) self.model.set_value(handle, 1, gid) self.model.set_value(handle, 2, _('Nickname')) self.model.set_value(handle, 3, nick) self.model.set_value(handle, 4, p.get_primary_name().get_name()) self.nick_hash[key] = handle if self.titleid in data: title, given = data[self.titleid] handle = self.model.append() self.model.set_value(handle, 0, 1) self.model.set_value(handle, 1, gid) self.model.set_value(handle, 2, _('Person|Title')) self.model.set_value(handle, 3, title) self.model.set_value( handle, 4, p.get_primary_name().get_name()) self.title_hash[key] = handle if self.pref1id in data: given, prefixtotal, new_prefix = data[self.pref1id] handle = self.model.append() self.model.set_value(handle, 0, 1) self.model.set_value(handle, 1, gid) self.model.set_value(handle, 2, _('Prefix in given name')) self.model.set_value(handle, 3, prefixtotal) self.model.set_value( handle, 4, p.get_primary_name().get_name()) self.prefix1_hash[key] = handle if self.compid in data: surn_list, pref_list, con_list, prims, origs =\ data[self.compid] handle = self.model.append() self.model.set_value(handle, 0, 1) self.model.set_value(handle, 1, gid) self.model.set_value(handle, 2, _('Compound surname')) newval = '' for sur, pre, con in zip(surn_list, pref_list, con_list): if newval: newval += '-[' else: newval = '[' newval += pre + ',' + sur if con: newval += ',' + con + ']' else: newval += ']' self.model.set_value(handle, 3, newval) self.model.set_value(handle, 4, p.get_primary_name().get_name()) self.compound_hash[key] = handle self.progress.step() self.progress.close() self.show() def on_help_clicked(self, obj): """Display the relevant portion of GRAMPS manual""" display_help(webpage=WIKI_HELP_PAGE, section=WIKI_HELP_SEC) def on_ok_clicked(self, obj): with DbTxn(_("Extract information from names"), self.db, batch=True ) as trans: self.db.disable_signals() for key, data in self.handle_to_action.items(): p = self.db.get_person_from_handle(key) if self.nickid in data: modelhandle = self.nick_hash[key] val = self.model.get_value(modelhandle, 0) if val: given, nick = data[self.nickid] name = p.get_primary_name() name.set_first_name(given.strip()) name.set_nick_name(nick.strip()) if self.titleid in data: modelhandle = self.title_hash[key] val = self.model.get_value(modelhandle, 0) if val: title, given = data[self.titleid] name = p.get_primary_name() name.set_first_name(given.strip()) name.set_title(title.strip()) if self.pref1id in data: modelhandle = self.prefix1_hash[key] val = self.model.get_value(modelhandle, 0) if val: given, prefixtotal, prefix = data[self.pref1id] name = p.get_primary_name() name.set_first_name(given.strip()) oldpref = name.get_surname_list()[0].get_prefix().strip() if oldpref == '' or oldpref == prefix.strip(): name.get_surname_list()[0].set_prefix(prefix) else: name.get_surname_list()[0].set_prefix( '%s %s' % (prefix, oldpref)) if self.compid in data: modelhandle = self.compound_hash[key] val = self.model.get_value(modelhandle, 0) if val: surns, prefs, cons, prims, origs = data[self.compid] name = p.get_primary_name() new_surn_list = [] for surn, pref, con, prim, orig in zip( surns, prefs, cons, prims, origs): new_surn_list.append(Surname()) new_surn_list[-1].set_surname(surn.strip()) new_surn_list[-1].set_prefix(pref.strip()) new_surn_list[-1].set_connector(con.strip()) new_surn_list[-1].set_primary(prim) new_surn_list[-1].set_origintype(orig) name.set_surname_list(new_surn_list) self.db.commit_person(p, trans) self.db.enable_signals() self.db.request_rebuild() self.close() self.cb() class PatchNamesOptions(tool.ToolOptions): """ Defines options and provides handling interface. """ def __init__(self, name, person_id=None): tool.ToolOptions.__init__(self, name, person_id) def strip(arg): return arg.strip()
beernarrd/gramps
gramps/plugins/tool/patchnames.py
Python
gpl-2.0
23,530
[ "Brian" ]
9cbcb17580b052d2083007f47b15529e20799bc591ae11a683470c0d336c6405
"""Header value parser implementing various email-related RFC parsing rules. The parsing methods defined in this module implement various email related parsing rules. Principal among them is RFC 5322, which is the followon to RFC 2822 and primarily a clarification of the former. It also implements RFC 2047 encoded word decoding. RFC 5322 goes to considerable trouble to maintain backward compatibility with RFC 822 in the parse phase, while cleaning up the structure on the generation phase. This parser supports correct RFC 5322 generation by tagging white space as folding white space only when folding is allowed in the non-obsolete rule sets. Actually, the parser is even more generous when accepting input than RFC 5322 mandates, following the spirit of Postel's Law, which RFC 5322 encourages. Where possible deviations from the standard are annotated on the 'defects' attribute of tokens that deviate. The general structure of the parser follows RFC 5322, and uses its terminology where there is a direct correspondence. Where the implementation requires a somewhat different structure than that used by the formal grammar, new terms that mimic the closest existing terms are used. Thus, it really helps to have a copy of RFC 5322 handy when studying this code. Input to the parser is a string that has already been unfolded according to RFC 5322 rules. According to the RFC this unfolding is the very first step, and this parser leaves the unfolding step to a higher level message parser, which will have already detected the line breaks that need unfolding while determining the beginning and end of each header. The output of the parser is a TokenList object, which is a list subclass. A TokenList is a recursive data structure. The terminal nodes of the structure are Terminal objects, which are subclasses of str. These do not correspond directly to terminal objects in the formal grammar, but are instead more practical higher level combinations of true terminals. All TokenList and Terminal objects have a 'value' attribute, which produces the semantically meaningful value of that part of the parse subtree. The value of all whitespace tokens (no matter how many sub-tokens they may contain) is a single space, as per the RFC rules. This includes 'CFWS', which is herein included in the general class of whitespace tokens. There is one exception to the rule that whitespace tokens are collapsed into single spaces in values: in the value of a 'bare-quoted-string' (a quoted-string with no leading or trailing whitespace), any whitespace that appeared between the quotation marks is preserved in the returned value. Note that in all Terminal strings quoted pairs are turned into their unquoted values. All TokenList and Terminal objects also have a string value, which attempts to be a "canonical" representation of the RFC-compliant form of the substring that produced the parsed subtree, including minimal use of quoted pair quoting. Whitespace runs are not collapsed. Comment tokens also have a 'content' attribute providing the string found between the parens (including any nested comments) with whitespace preserved. All TokenList and Terminal objects have a 'defects' attribute which is a possibly empty list all of the defects found while creating the token. Defects may appear on any token in the tree, and a composite list of all defects in the subtree is available through the 'all_defects' attribute of any node. (For Terminal notes x.defects == x.all_defects.) Each object in a parse tree is called a 'token', and each has a 'token_type' attribute that gives the name from the RFC 5322 grammar that it represents. Not all RFC 5322 nodes are produced, and there is one non-RFC 5322 node that may be produced: 'ptext'. A 'ptext' is a string of printable ascii characters. It is returned in place of lists of (ctext/quoted-pair) and (qtext/quoted-pair). XXX: provide complete list of token types. """ import re import sys import urllib # For urllib.parse.unquote from string import hexdigits from operator import itemgetter from email import _encoded_words as _ew from email import errors from email import utils # # Useful constants and functions # WSP = set(' \t') CFWS_LEADER = WSP | set('(') SPECIALS = set(r'()<>@,:;.\"[]') ATOM_ENDS = SPECIALS | WSP DOT_ATOM_ENDS = ATOM_ENDS - set('.') # '.', '"', and '(' do not end phrases in order to support obs-phrase PHRASE_ENDS = SPECIALS - set('."(') TSPECIALS = (SPECIALS | set('/?=')) - set('.') TOKEN_ENDS = TSPECIALS | WSP ASPECIALS = TSPECIALS | set("*'%") ATTRIBUTE_ENDS = ASPECIALS | WSP EXTENDED_ATTRIBUTE_ENDS = ATTRIBUTE_ENDS - set('%') def quote_string(value): return '"'+str(value).replace('\\', '\\\\').replace('"', r'\"')+'"' # Match a RFC 2047 word, looks like =?utf-8?q?someword?= rfc2047_matcher = re.compile(r''' =\? # literal =? [^?]* # charset \? # literal ? [qQbB] # literal 'q' or 'b', case insensitive \? # literal ? .*? # encoded word \?= # literal ?= ''', re.VERBOSE | re.MULTILINE) # # TokenList and its subclasses # class TokenList(list): token_type = None syntactic_break = True ew_combine_allowed = True def __init__(self, *args, **kw): super().__init__(*args, **kw) self.defects = [] def __str__(self): return ''.join(str(x) for x in self) def __repr__(self): return '{}({})'.format(self.__class__.__name__, super().__repr__()) @property def value(self): return ''.join(x.value for x in self if x.value) @property def all_defects(self): return sum((x.all_defects for x in self), self.defects) def startswith_fws(self): return self[0].startswith_fws() @property def as_ew_allowed(self): """True if all top level tokens of this part may be RFC2047 encoded.""" return all(part.as_ew_allowed for part in self) @property def comments(self): comments = [] for token in self: comments.extend(token.comments) return comments def fold(self, *, policy): return _refold_parse_tree(self, policy=policy) def pprint(self, indent=''): print(self.ppstr(indent=indent)) def ppstr(self, indent=''): return '\n'.join(self._pp(indent=indent)) def _pp(self, indent=''): yield '{}{}/{}('.format( indent, self.__class__.__name__, self.token_type) for token in self: if not hasattr(token, '_pp'): yield (indent + ' !! invalid element in token ' 'list: {!r}'.format(token)) else: yield from token._pp(indent+' ') if self.defects: extra = ' Defects: {}'.format(self.defects) else: extra = '' yield '{}){}'.format(indent, extra) class WhiteSpaceTokenList(TokenList): @property def value(self): return ' ' @property def comments(self): return [x.content for x in self if x.token_type=='comment'] class UnstructuredTokenList(TokenList): token_type = 'unstructured' class Phrase(TokenList): token_type = 'phrase' class Word(TokenList): token_type = 'word' class CFWSList(WhiteSpaceTokenList): token_type = 'cfws' class Atom(TokenList): token_type = 'atom' class Token(TokenList): token_type = 'token' encode_as_ew = False class EncodedWord(TokenList): token_type = 'encoded-word' cte = None charset = None lang = None class QuotedString(TokenList): token_type = 'quoted-string' @property def content(self): for x in self: if x.token_type == 'bare-quoted-string': return x.value @property def quoted_value(self): res = [] for x in self: if x.token_type == 'bare-quoted-string': res.append(str(x)) else: res.append(x.value) return ''.join(res) @property def stripped_value(self): for token in self: if token.token_type == 'bare-quoted-string': return token.value class BareQuotedString(QuotedString): token_type = 'bare-quoted-string' def __str__(self): return quote_string(''.join(str(x) for x in self)) @property def value(self): return ''.join(str(x) for x in self) class Comment(WhiteSpaceTokenList): token_type = 'comment' def __str__(self): return ''.join(sum([ ["("], [self.quote(x) for x in self], [")"], ], [])) def quote(self, value): if value.token_type == 'comment': return str(value) return str(value).replace('\\', '\\\\').replace( '(', r'\(').replace( ')', r'\)') @property def content(self): return ''.join(str(x) for x in self) @property def comments(self): return [self.content] class AddressList(TokenList): token_type = 'address-list' @property def addresses(self): return [x for x in self if x.token_type=='address'] @property def mailboxes(self): return sum((x.mailboxes for x in self if x.token_type=='address'), []) @property def all_mailboxes(self): return sum((x.all_mailboxes for x in self if x.token_type=='address'), []) class Address(TokenList): token_type = 'address' @property def display_name(self): if self[0].token_type == 'group': return self[0].display_name @property def mailboxes(self): if self[0].token_type == 'mailbox': return [self[0]] elif self[0].token_type == 'invalid-mailbox': return [] return self[0].mailboxes @property def all_mailboxes(self): if self[0].token_type == 'mailbox': return [self[0]] elif self[0].token_type == 'invalid-mailbox': return [self[0]] return self[0].all_mailboxes class MailboxList(TokenList): token_type = 'mailbox-list' @property def mailboxes(self): return [x for x in self if x.token_type=='mailbox'] @property def all_mailboxes(self): return [x for x in self if x.token_type in ('mailbox', 'invalid-mailbox')] class GroupList(TokenList): token_type = 'group-list' @property def mailboxes(self): if not self or self[0].token_type != 'mailbox-list': return [] return self[0].mailboxes @property def all_mailboxes(self): if not self or self[0].token_type != 'mailbox-list': return [] return self[0].all_mailboxes class Group(TokenList): token_type = "group" @property def mailboxes(self): if self[2].token_type != 'group-list': return [] return self[2].mailboxes @property def all_mailboxes(self): if self[2].token_type != 'group-list': return [] return self[2].all_mailboxes @property def display_name(self): return self[0].display_name class NameAddr(TokenList): token_type = 'name-addr' @property def display_name(self): if len(self) == 1: return None return self[0].display_name @property def local_part(self): return self[-1].local_part @property def domain(self): return self[-1].domain @property def route(self): return self[-1].route @property def addr_spec(self): return self[-1].addr_spec class AngleAddr(TokenList): token_type = 'angle-addr' @property def local_part(self): for x in self: if x.token_type == 'addr-spec': return x.local_part @property def domain(self): for x in self: if x.token_type == 'addr-spec': return x.domain @property def route(self): for x in self: if x.token_type == 'obs-route': return x.domains @property def addr_spec(self): for x in self: if x.token_type == 'addr-spec': if x.local_part: return x.addr_spec else: return quote_string(x.local_part) + x.addr_spec else: return '<>' class ObsRoute(TokenList): token_type = 'obs-route' @property def domains(self): return [x.domain for x in self if x.token_type == 'domain'] class Mailbox(TokenList): token_type = 'mailbox' @property def display_name(self): if self[0].token_type == 'name-addr': return self[0].display_name @property def local_part(self): return self[0].local_part @property def domain(self): return self[0].domain @property def route(self): if self[0].token_type == 'name-addr': return self[0].route @property def addr_spec(self): return self[0].addr_spec class InvalidMailbox(TokenList): token_type = 'invalid-mailbox' @property def display_name(self): return None local_part = domain = route = addr_spec = display_name class Domain(TokenList): token_type = 'domain' as_ew_allowed = False @property def domain(self): return ''.join(super().value.split()) class DotAtom(TokenList): token_type = 'dot-atom' class DotAtomText(TokenList): token_type = 'dot-atom-text' as_ew_allowed = True class NoFoldLiteral(TokenList): token_type = 'no-fold-literal' as_ew_allowed = False class AddrSpec(TokenList): token_type = 'addr-spec' as_ew_allowed = False @property def local_part(self): return self[0].local_part @property def domain(self): if len(self) < 3: return None return self[-1].domain @property def value(self): if len(self) < 3: return self[0].value return self[0].value.rstrip()+self[1].value+self[2].value.lstrip() @property def addr_spec(self): nameset = set(self.local_part) if len(nameset) > len(nameset-DOT_ATOM_ENDS): lp = quote_string(self.local_part) else: lp = self.local_part if self.domain is not None: return lp + '@' + self.domain return lp class ObsLocalPart(TokenList): token_type = 'obs-local-part' as_ew_allowed = False class DisplayName(Phrase): token_type = 'display-name' ew_combine_allowed = False @property def display_name(self): res = TokenList(self) if len(res) == 0: return res.value if res[0].token_type == 'cfws': res.pop(0) else: if res[0][0].token_type == 'cfws': res[0] = TokenList(res[0][1:]) if res[-1].token_type == 'cfws': res.pop() else: if res[-1][-1].token_type == 'cfws': res[-1] = TokenList(res[-1][:-1]) return res.value @property def value(self): quote = False if self.defects: quote = True else: for x in self: if x.token_type == 'quoted-string': quote = True if len(self) != 0 and quote: pre = post = '' if self[0].token_type=='cfws' or self[0][0].token_type=='cfws': pre = ' ' if self[-1].token_type=='cfws' or self[-1][-1].token_type=='cfws': post = ' ' return pre+quote_string(self.display_name)+post else: return super().value class LocalPart(TokenList): token_type = 'local-part' as_ew_allowed = False @property def value(self): if self[0].token_type == "quoted-string": return self[0].quoted_value else: return self[0].value @property def local_part(self): # Strip whitespace from front, back, and around dots. res = [DOT] last = DOT last_is_tl = False for tok in self[0] + [DOT]: if tok.token_type == 'cfws': continue if (last_is_tl and tok.token_type == 'dot' and last[-1].token_type == 'cfws'): res[-1] = TokenList(last[:-1]) is_tl = isinstance(tok, TokenList) if (is_tl and last.token_type == 'dot' and tok[0].token_type == 'cfws'): res.append(TokenList(tok[1:])) else: res.append(tok) last = res[-1] last_is_tl = is_tl res = TokenList(res[1:-1]) return res.value class DomainLiteral(TokenList): token_type = 'domain-literal' as_ew_allowed = False @property def domain(self): return ''.join(super().value.split()) @property def ip(self): for x in self: if x.token_type == 'ptext': return x.value class MIMEVersion(TokenList): token_type = 'mime-version' major = None minor = None class Parameter(TokenList): token_type = 'parameter' sectioned = False extended = False charset = 'us-ascii' @property def section_number(self): # Because the first token, the attribute (name) eats CFWS, the second # token is always the section if there is one. return self[1].number if self.sectioned else 0 @property def param_value(self): # This is part of the "handle quoted extended parameters" hack. for token in self: if token.token_type == 'value': return token.stripped_value if token.token_type == 'quoted-string': for token in token: if token.token_type == 'bare-quoted-string': for token in token: if token.token_type == 'value': return token.stripped_value return '' class InvalidParameter(Parameter): token_type = 'invalid-parameter' class Attribute(TokenList): token_type = 'attribute' @property def stripped_value(self): for token in self: if token.token_type.endswith('attrtext'): return token.value class Section(TokenList): token_type = 'section' number = None class Value(TokenList): token_type = 'value' @property def stripped_value(self): token = self[0] if token.token_type == 'cfws': token = self[1] if token.token_type.endswith( ('quoted-string', 'attribute', 'extended-attribute')): return token.stripped_value return self.value class MimeParameters(TokenList): token_type = 'mime-parameters' syntactic_break = False @property def params(self): # The RFC specifically states that the ordering of parameters is not # guaranteed and may be reordered by the transport layer. So we have # to assume the RFC 2231 pieces can come in any order. However, we # output them in the order that we first see a given name, which gives # us a stable __str__. params = {} # Using order preserving dict from Python 3.7+ for token in self: if not token.token_type.endswith('parameter'): continue if token[0].token_type != 'attribute': continue name = token[0].value.strip() if name not in params: params[name] = [] params[name].append((token.section_number, token)) for name, parts in params.items(): parts = sorted(parts, key=itemgetter(0)) first_param = parts[0][1] charset = first_param.charset # Our arbitrary error recovery is to ignore duplicate parameters, # to use appearance order if there are duplicate rfc 2231 parts, # and to ignore gaps. This mimics the error recovery of get_param. if not first_param.extended and len(parts) > 1: if parts[1][0] == 0: parts[1][1].defects.append(errors.InvalidHeaderDefect( 'duplicate parameter name; duplicate(s) ignored')) parts = parts[:1] # Else assume the *0* was missing...note that this is different # from get_param, but we registered a defect for this earlier. value_parts = [] i = 0 for section_number, param in parts: if section_number != i: # We could get fancier here and look for a complete # duplicate extended parameter and ignore the second one # seen. But we're not doing that. The old code didn't. if not param.extended: param.defects.append(errors.InvalidHeaderDefect( 'duplicate parameter name; duplicate ignored')) continue else: param.defects.append(errors.InvalidHeaderDefect( "inconsistent RFC2231 parameter numbering")) i += 1 value = param.param_value if param.extended: try: value = urllib.parse.unquote_to_bytes(value) except UnicodeEncodeError: # source had surrogate escaped bytes. What we do now # is a bit of an open question. I'm not sure this is # the best choice, but it is what the old algorithm did value = urllib.parse.unquote(value, encoding='latin-1') else: try: value = value.decode(charset, 'surrogateescape') except LookupError: # XXX: there should really be a custom defect for # unknown character set to make it easy to find, # because otherwise unknown charset is a silent # failure. value = value.decode('us-ascii', 'surrogateescape') if utils._has_surrogates(value): param.defects.append(errors.UndecodableBytesDefect()) value_parts.append(value) value = ''.join(value_parts) yield name, value def __str__(self): params = [] for name, value in self.params: if value: params.append('{}={}'.format(name, quote_string(value))) else: params.append(name) params = '; '.join(params) return ' ' + params if params else '' class ParameterizedHeaderValue(TokenList): # Set this false so that the value doesn't wind up on a new line even # if it and the parameters would fit there but not on the first line. syntactic_break = False @property def params(self): for token in reversed(self): if token.token_type == 'mime-parameters': return token.params return {} class ContentType(ParameterizedHeaderValue): token_type = 'content-type' as_ew_allowed = False maintype = 'text' subtype = 'plain' class ContentDisposition(ParameterizedHeaderValue): token_type = 'content-disposition' as_ew_allowed = False content_disposition = None class ContentTransferEncoding(TokenList): token_type = 'content-transfer-encoding' as_ew_allowed = False cte = '7bit' class HeaderLabel(TokenList): token_type = 'header-label' as_ew_allowed = False class MsgID(TokenList): token_type = 'msg-id' as_ew_allowed = False def fold(self, policy): # message-id tokens may not be folded. return str(self) + policy.linesep class MessageID(MsgID): token_type = 'message-id' class InvalidMessageID(MessageID): token_type = 'invalid-message-id' class Header(TokenList): token_type = 'header' # # Terminal classes and instances # class Terminal(str): as_ew_allowed = True ew_combine_allowed = True syntactic_break = True def __new__(cls, value, token_type): self = super().__new__(cls, value) self.token_type = token_type self.defects = [] return self def __repr__(self): return "{}({})".format(self.__class__.__name__, super().__repr__()) def pprint(self): print(self.__class__.__name__ + '/' + self.token_type) @property def all_defects(self): return list(self.defects) def _pp(self, indent=''): return ["{}{}/{}({}){}".format( indent, self.__class__.__name__, self.token_type, super().__repr__(), '' if not self.defects else ' {}'.format(self.defects), )] def pop_trailing_ws(self): # This terminates the recursion. return None @property def comments(self): return [] def __getnewargs__(self): return(str(self), self.token_type) class WhiteSpaceTerminal(Terminal): @property def value(self): return ' ' def startswith_fws(self): return True class ValueTerminal(Terminal): @property def value(self): return self def startswith_fws(self): return False class EWWhiteSpaceTerminal(WhiteSpaceTerminal): @property def value(self): return '' def __str__(self): return '' class _InvalidEwError(errors.HeaderParseError): """Invalid encoded word found while parsing headers.""" # XXX these need to become classes and used as instances so # that a program can't change them in a parse tree and screw # up other parse trees. Maybe should have tests for that, too. DOT = ValueTerminal('.', 'dot') ListSeparator = ValueTerminal(',', 'list-separator') RouteComponentMarker = ValueTerminal('@', 'route-component-marker') # # Parser # # Parse strings according to RFC822/2047/2822/5322 rules. # # This is a stateless parser. Each get_XXX function accepts a string and # returns either a Terminal or a TokenList representing the RFC object named # by the method and a string containing the remaining unparsed characters # from the input. Thus a parser method consumes the next syntactic construct # of a given type and returns a token representing the construct plus the # unparsed remainder of the input string. # # For example, if the first element of a structured header is a 'phrase', # then: # # phrase, value = get_phrase(value) # # returns the complete phrase from the start of the string value, plus any # characters left in the string after the phrase is removed. _wsp_splitter = re.compile(r'([{}]+)'.format(''.join(WSP))).split _non_atom_end_matcher = re.compile(r"[^{}]+".format( re.escape(''.join(ATOM_ENDS)))).match _non_printable_finder = re.compile(r"[\x00-\x20\x7F]").findall _non_token_end_matcher = re.compile(r"[^{}]+".format( re.escape(''.join(TOKEN_ENDS)))).match _non_attribute_end_matcher = re.compile(r"[^{}]+".format( re.escape(''.join(ATTRIBUTE_ENDS)))).match _non_extended_attribute_end_matcher = re.compile(r"[^{}]+".format( re.escape(''.join(EXTENDED_ATTRIBUTE_ENDS)))).match def _validate_xtext(xtext): """If input token contains ASCII non-printables, register a defect.""" non_printables = _non_printable_finder(xtext) if non_printables: xtext.defects.append(errors.NonPrintableDefect(non_printables)) if utils._has_surrogates(xtext): xtext.defects.append(errors.UndecodableBytesDefect( "Non-ASCII characters found in header token")) def _get_ptext_to_endchars(value, endchars): """Scan printables/quoted-pairs until endchars and return unquoted ptext. This function turns a run of qcontent, ccontent-without-comments, or dtext-with-quoted-printables into a single string by unquoting any quoted printables. It returns the string, the remaining value, and a flag that is True iff there were any quoted printables decoded. """ fragment, *remainder = _wsp_splitter(value, 1) vchars = [] escape = False had_qp = False for pos in range(len(fragment)): if fragment[pos] == '\\': if escape: escape = False had_qp = True else: escape = True continue if escape: escape = False elif fragment[pos] in endchars: break vchars.append(fragment[pos]) else: pos = pos + 1 return ''.join(vchars), ''.join([fragment[pos:]] + remainder), had_qp def get_fws(value): """FWS = 1*WSP This isn't the RFC definition. We're using fws to represent tokens where folding can be done, but when we are parsing the *un*folding has already been done so we don't need to watch out for CRLF. """ newvalue = value.lstrip() fws = WhiteSpaceTerminal(value[:len(value)-len(newvalue)], 'fws') return fws, newvalue def get_encoded_word(value): """ encoded-word = "=?" charset "?" encoding "?" encoded-text "?=" """ ew = EncodedWord() if not value.startswith('=?'): raise errors.HeaderParseError( "expected encoded word but found {}".format(value)) tok, *remainder = value[2:].split('?=', 1) if tok == value[2:]: raise errors.HeaderParseError( "expected encoded word but found {}".format(value)) remstr = ''.join(remainder) if (len(remstr) > 1 and remstr[0] in hexdigits and remstr[1] in hexdigits and tok.count('?') < 2): # The ? after the CTE was followed by an encoded word escape (=XX). rest, *remainder = remstr.split('?=', 1) tok = tok + '?=' + rest if len(tok.split()) > 1: ew.defects.append(errors.InvalidHeaderDefect( "whitespace inside encoded word")) ew.cte = value value = ''.join(remainder) try: text, charset, lang, defects = _ew.decode('=?' + tok + '?=') except (ValueError, KeyError): raise _InvalidEwError( "encoded word format invalid: '{}'".format(ew.cte)) ew.charset = charset ew.lang = lang ew.defects.extend(defects) while text: if text[0] in WSP: token, text = get_fws(text) ew.append(token) continue chars, *remainder = _wsp_splitter(text, 1) vtext = ValueTerminal(chars, 'vtext') _validate_xtext(vtext) ew.append(vtext) text = ''.join(remainder) # Encoded words should be followed by a WS if value and value[0] not in WSP: ew.defects.append(errors.InvalidHeaderDefect( "missing trailing whitespace after encoded-word")) return ew, value def get_unstructured(value): """unstructured = (*([FWS] vchar) *WSP) / obs-unstruct obs-unstruct = *((*LF *CR *(obs-utext) *LF *CR)) / FWS) obs-utext = %d0 / obs-NO-WS-CTL / LF / CR obs-NO-WS-CTL is control characters except WSP/CR/LF. So, basically, we have printable runs, plus control characters or nulls in the obsolete syntax, separated by whitespace. Since RFC 2047 uses the obsolete syntax in its specification, but requires whitespace on either side of the encoded words, I can see no reason to need to separate the non-printable-non-whitespace from the printable runs if they occur, so we parse this into xtext tokens separated by WSP tokens. Because an 'unstructured' value must by definition constitute the entire value, this 'get' routine does not return a remaining value, only the parsed TokenList. """ # XXX: but what about bare CR and LF? They might signal the start or # end of an encoded word. YAGNI for now, since our current parsers # will never send us strings with bare CR or LF. unstructured = UnstructuredTokenList() while value: if value[0] in WSP: token, value = get_fws(value) unstructured.append(token) continue valid_ew = True if value.startswith('=?'): try: token, value = get_encoded_word(value) except _InvalidEwError: valid_ew = False except errors.HeaderParseError: # XXX: Need to figure out how to register defects when # appropriate here. pass else: have_ws = True if len(unstructured) > 0: if unstructured[-1].token_type != 'fws': unstructured.defects.append(errors.InvalidHeaderDefect( "missing whitespace before encoded word")) have_ws = False if have_ws and len(unstructured) > 1: if unstructured[-2].token_type == 'encoded-word': unstructured[-1] = EWWhiteSpaceTerminal( unstructured[-1], 'fws') unstructured.append(token) continue tok, *remainder = _wsp_splitter(value, 1) # Split in the middle of an atom if there is a rfc2047 encoded word # which does not have WSP on both sides. The defect will be registered # the next time through the loop. # This needs to only be performed when the encoded word is valid; # otherwise, performing it on an invalid encoded word can cause # the parser to go in an infinite loop. if valid_ew and rfc2047_matcher.search(tok): tok, *remainder = value.partition('=?') vtext = ValueTerminal(tok, 'vtext') _validate_xtext(vtext) unstructured.append(vtext) value = ''.join(remainder) return unstructured def get_qp_ctext(value): r"""ctext = <printable ascii except \ ( )> This is not the RFC ctext, since we are handling nested comments in comment and unquoting quoted-pairs here. We allow anything except the '()' characters, but if we find any ASCII other than the RFC defined printable ASCII, a NonPrintableDefect is added to the token's defects list. Since quoted pairs are converted to their unquoted values, what is returned is a 'ptext' token. In this case it is a WhiteSpaceTerminal, so it's value is ' '. """ ptext, value, _ = _get_ptext_to_endchars(value, '()') ptext = WhiteSpaceTerminal(ptext, 'ptext') _validate_xtext(ptext) return ptext, value def get_qcontent(value): """qcontent = qtext / quoted-pair We allow anything except the DQUOTE character, but if we find any ASCII other than the RFC defined printable ASCII, a NonPrintableDefect is added to the token's defects list. Any quoted pairs are converted to their unquoted values, so what is returned is a 'ptext' token. In this case it is a ValueTerminal. """ ptext, value, _ = _get_ptext_to_endchars(value, '"') ptext = ValueTerminal(ptext, 'ptext') _validate_xtext(ptext) return ptext, value def get_atext(value): """atext = <matches _atext_matcher> We allow any non-ATOM_ENDS in atext, but add an InvalidATextDefect to the token's defects list if we find non-atext characters. """ m = _non_atom_end_matcher(value) if not m: raise errors.HeaderParseError( "expected atext but found '{}'".format(value)) atext = m.group() value = value[len(atext):] atext = ValueTerminal(atext, 'atext') _validate_xtext(atext) return atext, value def get_bare_quoted_string(value): """bare-quoted-string = DQUOTE *([FWS] qcontent) [FWS] DQUOTE A quoted-string without the leading or trailing white space. Its value is the text between the quote marks, with whitespace preserved and quoted pairs decoded. """ if value[0] != '"': raise errors.HeaderParseError( "expected '\"' but found '{}'".format(value)) bare_quoted_string = BareQuotedString() value = value[1:] if value and value[0] == '"': token, value = get_qcontent(value) bare_quoted_string.append(token) while value and value[0] != '"': if value[0] in WSP: token, value = get_fws(value) elif value[:2] == '=?': try: token, value = get_encoded_word(value) bare_quoted_string.defects.append(errors.InvalidHeaderDefect( "encoded word inside quoted string")) except errors.HeaderParseError: token, value = get_qcontent(value) else: token, value = get_qcontent(value) bare_quoted_string.append(token) if not value: bare_quoted_string.defects.append(errors.InvalidHeaderDefect( "end of header inside quoted string")) return bare_quoted_string, value return bare_quoted_string, value[1:] def get_comment(value): """comment = "(" *([FWS] ccontent) [FWS] ")" ccontent = ctext / quoted-pair / comment We handle nested comments here, and quoted-pair in our qp-ctext routine. """ if value and value[0] != '(': raise errors.HeaderParseError( "expected '(' but found '{}'".format(value)) comment = Comment() value = value[1:] while value and value[0] != ")": if value[0] in WSP: token, value = get_fws(value) elif value[0] == '(': token, value = get_comment(value) else: token, value = get_qp_ctext(value) comment.append(token) if not value: comment.defects.append(errors.InvalidHeaderDefect( "end of header inside comment")) return comment, value return comment, value[1:] def get_cfws(value): """CFWS = (1*([FWS] comment) [FWS]) / FWS """ cfws = CFWSList() while value and value[0] in CFWS_LEADER: if value[0] in WSP: token, value = get_fws(value) else: token, value = get_comment(value) cfws.append(token) return cfws, value def get_quoted_string(value): """quoted-string = [CFWS] <bare-quoted-string> [CFWS] 'bare-quoted-string' is an intermediate class defined by this parser and not by the RFC grammar. It is the quoted string without any attached CFWS. """ quoted_string = QuotedString() if value and value[0] in CFWS_LEADER: token, value = get_cfws(value) quoted_string.append(token) token, value = get_bare_quoted_string(value) quoted_string.append(token) if value and value[0] in CFWS_LEADER: token, value = get_cfws(value) quoted_string.append(token) return quoted_string, value def get_atom(value): """atom = [CFWS] 1*atext [CFWS] An atom could be an rfc2047 encoded word. """ atom = Atom() if value and value[0] in CFWS_LEADER: token, value = get_cfws(value) atom.append(token) if value and value[0] in ATOM_ENDS: raise errors.HeaderParseError( "expected atom but found '{}'".format(value)) if value.startswith('=?'): try: token, value = get_encoded_word(value) except errors.HeaderParseError: # XXX: need to figure out how to register defects when # appropriate here. token, value = get_atext(value) else: token, value = get_atext(value) atom.append(token) if value and value[0] in CFWS_LEADER: token, value = get_cfws(value) atom.append(token) return atom, value def get_dot_atom_text(value): """ dot-text = 1*atext *("." 1*atext) """ dot_atom_text = DotAtomText() if not value or value[0] in ATOM_ENDS: raise errors.HeaderParseError("expected atom at a start of " "dot-atom-text but found '{}'".format(value)) while value and value[0] not in ATOM_ENDS: token, value = get_atext(value) dot_atom_text.append(token) if value and value[0] == '.': dot_atom_text.append(DOT) value = value[1:] if dot_atom_text[-1] is DOT: raise errors.HeaderParseError("expected atom at end of dot-atom-text " "but found '{}'".format('.'+value)) return dot_atom_text, value def get_dot_atom(value): """ dot-atom = [CFWS] dot-atom-text [CFWS] Any place we can have a dot atom, we could instead have an rfc2047 encoded word. """ dot_atom = DotAtom() if value[0] in CFWS_LEADER: token, value = get_cfws(value) dot_atom.append(token) if value.startswith('=?'): try: token, value = get_encoded_word(value) except errors.HeaderParseError: # XXX: need to figure out how to register defects when # appropriate here. token, value = get_dot_atom_text(value) else: token, value = get_dot_atom_text(value) dot_atom.append(token) if value and value[0] in CFWS_LEADER: token, value = get_cfws(value) dot_atom.append(token) return dot_atom, value def get_word(value): """word = atom / quoted-string Either atom or quoted-string may start with CFWS. We have to peel off this CFWS first to determine which type of word to parse. Afterward we splice the leading CFWS, if any, into the parsed sub-token. If neither an atom or a quoted-string is found before the next special, a HeaderParseError is raised. The token returned is either an Atom or a QuotedString, as appropriate. This means the 'word' level of the formal grammar is not represented in the parse tree; this is because having that extra layer when manipulating the parse tree is more confusing than it is helpful. """ if value[0] in CFWS_LEADER: leader, value = get_cfws(value) else: leader = None if not value: raise errors.HeaderParseError( "Expected 'atom' or 'quoted-string' but found nothing.") if value[0]=='"': token, value = get_quoted_string(value) elif value[0] in SPECIALS: raise errors.HeaderParseError("Expected 'atom' or 'quoted-string' " "but found '{}'".format(value)) else: token, value = get_atom(value) if leader is not None: token[:0] = [leader] return token, value def get_phrase(value): """ phrase = 1*word / obs-phrase obs-phrase = word *(word / "." / CFWS) This means a phrase can be a sequence of words, periods, and CFWS in any order as long as it starts with at least one word. If anything other than words is detected, an ObsoleteHeaderDefect is added to the token's defect list. We also accept a phrase that starts with CFWS followed by a dot; this is registered as an InvalidHeaderDefect, since it is not supported by even the obsolete grammar. """ phrase = Phrase() try: token, value = get_word(value) phrase.append(token) except errors.HeaderParseError: phrase.defects.append(errors.InvalidHeaderDefect( "phrase does not start with word")) while value and value[0] not in PHRASE_ENDS: if value[0]=='.': phrase.append(DOT) phrase.defects.append(errors.ObsoleteHeaderDefect( "period in 'phrase'")) value = value[1:] else: try: token, value = get_word(value) except errors.HeaderParseError: if value[0] in CFWS_LEADER: token, value = get_cfws(value) phrase.defects.append(errors.ObsoleteHeaderDefect( "comment found without atom")) else: raise phrase.append(token) return phrase, value def get_local_part(value): """ local-part = dot-atom / quoted-string / obs-local-part """ local_part = LocalPart() leader = None if value[0] in CFWS_LEADER: leader, value = get_cfws(value) if not value: raise errors.HeaderParseError( "expected local-part but found '{}'".format(value)) try: token, value = get_dot_atom(value) except errors.HeaderParseError: try: token, value = get_word(value) except errors.HeaderParseError: if value[0] != '\\' and value[0] in PHRASE_ENDS: raise token = TokenList() if leader is not None: token[:0] = [leader] local_part.append(token) if value and (value[0]=='\\' or value[0] not in PHRASE_ENDS): obs_local_part, value = get_obs_local_part(str(local_part) + value) if obs_local_part.token_type == 'invalid-obs-local-part': local_part.defects.append(errors.InvalidHeaderDefect( "local-part is not dot-atom, quoted-string, or obs-local-part")) else: local_part.defects.append(errors.ObsoleteHeaderDefect( "local-part is not a dot-atom (contains CFWS)")) local_part[0] = obs_local_part try: local_part.value.encode('ascii') except UnicodeEncodeError: local_part.defects.append(errors.NonASCIILocalPartDefect( "local-part contains non-ASCII characters)")) return local_part, value def get_obs_local_part(value): """ obs-local-part = word *("." word) """ obs_local_part = ObsLocalPart() last_non_ws_was_dot = False while value and (value[0]=='\\' or value[0] not in PHRASE_ENDS): if value[0] == '.': if last_non_ws_was_dot: obs_local_part.defects.append(errors.InvalidHeaderDefect( "invalid repeated '.'")) obs_local_part.append(DOT) last_non_ws_was_dot = True value = value[1:] continue elif value[0]=='\\': obs_local_part.append(ValueTerminal(value[0], 'misplaced-special')) value = value[1:] obs_local_part.defects.append(errors.InvalidHeaderDefect( "'\\' character outside of quoted-string/ccontent")) last_non_ws_was_dot = False continue if obs_local_part and obs_local_part[-1].token_type != 'dot': obs_local_part.defects.append(errors.InvalidHeaderDefect( "missing '.' between words")) try: token, value = get_word(value) last_non_ws_was_dot = False except errors.HeaderParseError: if value[0] not in CFWS_LEADER: raise token, value = get_cfws(value) obs_local_part.append(token) if (obs_local_part[0].token_type == 'dot' or obs_local_part[0].token_type=='cfws' and obs_local_part[1].token_type=='dot'): obs_local_part.defects.append(errors.InvalidHeaderDefect( "Invalid leading '.' in local part")) if (obs_local_part[-1].token_type == 'dot' or obs_local_part[-1].token_type=='cfws' and obs_local_part[-2].token_type=='dot'): obs_local_part.defects.append(errors.InvalidHeaderDefect( "Invalid trailing '.' in local part")) if obs_local_part.defects: obs_local_part.token_type = 'invalid-obs-local-part' return obs_local_part, value def get_dtext(value): r""" dtext = <printable ascii except \ [ ]> / obs-dtext obs-dtext = obs-NO-WS-CTL / quoted-pair We allow anything except the excluded characters, but if we find any ASCII other than the RFC defined printable ASCII, a NonPrintableDefect is added to the token's defects list. Quoted pairs are converted to their unquoted values, so what is returned is a ptext token, in this case a ValueTerminal. If there were quoted-printables, an ObsoleteHeaderDefect is added to the returned token's defect list. """ ptext, value, had_qp = _get_ptext_to_endchars(value, '[]') ptext = ValueTerminal(ptext, 'ptext') if had_qp: ptext.defects.append(errors.ObsoleteHeaderDefect( "quoted printable found in domain-literal")) _validate_xtext(ptext) return ptext, value def _check_for_early_dl_end(value, domain_literal): if value: return False domain_literal.append(errors.InvalidHeaderDefect( "end of input inside domain-literal")) domain_literal.append(ValueTerminal(']', 'domain-literal-end')) return True def get_domain_literal(value): """ domain-literal = [CFWS] "[" *([FWS] dtext) [FWS] "]" [CFWS] """ domain_literal = DomainLiteral() if value[0] in CFWS_LEADER: token, value = get_cfws(value) domain_literal.append(token) if not value: raise errors.HeaderParseError("expected domain-literal") if value[0] != '[': raise errors.HeaderParseError("expected '[' at start of domain-literal " "but found '{}'".format(value)) value = value[1:] if _check_for_early_dl_end(value, domain_literal): return domain_literal, value domain_literal.append(ValueTerminal('[', 'domain-literal-start')) if value[0] in WSP: token, value = get_fws(value) domain_literal.append(token) token, value = get_dtext(value) domain_literal.append(token) if _check_for_early_dl_end(value, domain_literal): return domain_literal, value if value[0] in WSP: token, value = get_fws(value) domain_literal.append(token) if _check_for_early_dl_end(value, domain_literal): return domain_literal, value if value[0] != ']': raise errors.HeaderParseError("expected ']' at end of domain-literal " "but found '{}'".format(value)) domain_literal.append(ValueTerminal(']', 'domain-literal-end')) value = value[1:] if value and value[0] in CFWS_LEADER: token, value = get_cfws(value) domain_literal.append(token) return domain_literal, value def get_domain(value): """ domain = dot-atom / domain-literal / obs-domain obs-domain = atom *("." atom)) """ domain = Domain() leader = None if value[0] in CFWS_LEADER: leader, value = get_cfws(value) if not value: raise errors.HeaderParseError( "expected domain but found '{}'".format(value)) if value[0] == '[': token, value = get_domain_literal(value) if leader is not None: token[:0] = [leader] domain.append(token) return domain, value try: token, value = get_dot_atom(value) except errors.HeaderParseError: token, value = get_atom(value) if value and value[0] == '@': raise errors.HeaderParseError('Invalid Domain') if leader is not None: token[:0] = [leader] domain.append(token) if value and value[0] == '.': domain.defects.append(errors.ObsoleteHeaderDefect( "domain is not a dot-atom (contains CFWS)")) if domain[0].token_type == 'dot-atom': domain[:] = domain[0] while value and value[0] == '.': domain.append(DOT) token, value = get_atom(value[1:]) domain.append(token) return domain, value def get_addr_spec(value): """ addr-spec = local-part "@" domain """ addr_spec = AddrSpec() token, value = get_local_part(value) addr_spec.append(token) if not value or value[0] != '@': addr_spec.defects.append(errors.InvalidHeaderDefect( "addr-spec local part with no domain")) return addr_spec, value addr_spec.append(ValueTerminal('@', 'address-at-symbol')) token, value = get_domain(value[1:]) addr_spec.append(token) return addr_spec, value def get_obs_route(value): """ obs-route = obs-domain-list ":" obs-domain-list = *(CFWS / ",") "@" domain *("," [CFWS] ["@" domain]) Returns an obs-route token with the appropriate sub-tokens (that is, there is no obs-domain-list in the parse tree). """ obs_route = ObsRoute() while value and (value[0]==',' or value[0] in CFWS_LEADER): if value[0] in CFWS_LEADER: token, value = get_cfws(value) obs_route.append(token) elif value[0] == ',': obs_route.append(ListSeparator) value = value[1:] if not value or value[0] != '@': raise errors.HeaderParseError( "expected obs-route domain but found '{}'".format(value)) obs_route.append(RouteComponentMarker) token, value = get_domain(value[1:]) obs_route.append(token) while value and value[0]==',': obs_route.append(ListSeparator) value = value[1:] if not value: break if value[0] in CFWS_LEADER: token, value = get_cfws(value) obs_route.append(token) if value[0] == '@': obs_route.append(RouteComponentMarker) token, value = get_domain(value[1:]) obs_route.append(token) if not value: raise errors.HeaderParseError("end of header while parsing obs-route") if value[0] != ':': raise errors.HeaderParseError( "expected ':' marking end of " "obs-route but found '{}'".format(value)) obs_route.append(ValueTerminal(':', 'end-of-obs-route-marker')) return obs_route, value[1:] def get_angle_addr(value): """ angle-addr = [CFWS] "<" addr-spec ">" [CFWS] / obs-angle-addr obs-angle-addr = [CFWS] "<" obs-route addr-spec ">" [CFWS] """ angle_addr = AngleAddr() if value[0] in CFWS_LEADER: token, value = get_cfws(value) angle_addr.append(token) if not value or value[0] != '<': raise errors.HeaderParseError( "expected angle-addr but found '{}'".format(value)) angle_addr.append(ValueTerminal('<', 'angle-addr-start')) value = value[1:] # Although it is not legal per RFC5322, SMTP uses '<>' in certain # circumstances. if value[0] == '>': angle_addr.append(ValueTerminal('>', 'angle-addr-end')) angle_addr.defects.append(errors.InvalidHeaderDefect( "null addr-spec in angle-addr")) value = value[1:] return angle_addr, value try: token, value = get_addr_spec(value) except errors.HeaderParseError: try: token, value = get_obs_route(value) angle_addr.defects.append(errors.ObsoleteHeaderDefect( "obsolete route specification in angle-addr")) except errors.HeaderParseError: raise errors.HeaderParseError( "expected addr-spec or obs-route but found '{}'".format(value)) angle_addr.append(token) token, value = get_addr_spec(value) angle_addr.append(token) if value and value[0] == '>': value = value[1:] else: angle_addr.defects.append(errors.InvalidHeaderDefect( "missing trailing '>' on angle-addr")) angle_addr.append(ValueTerminal('>', 'angle-addr-end')) if value and value[0] in CFWS_LEADER: token, value = get_cfws(value) angle_addr.append(token) return angle_addr, value def get_display_name(value): """ display-name = phrase Because this is simply a name-rule, we don't return a display-name token containing a phrase, but rather a display-name token with the content of the phrase. """ display_name = DisplayName() token, value = get_phrase(value) display_name.extend(token[:]) display_name.defects = token.defects[:] return display_name, value def get_name_addr(value): """ name-addr = [display-name] angle-addr """ name_addr = NameAddr() # Both the optional display name and the angle-addr can start with cfws. leader = None if value[0] in CFWS_LEADER: leader, value = get_cfws(value) if not value: raise errors.HeaderParseError( "expected name-addr but found '{}'".format(leader)) if value[0] != '<': if value[0] in PHRASE_ENDS: raise errors.HeaderParseError( "expected name-addr but found '{}'".format(value)) token, value = get_display_name(value) if not value: raise errors.HeaderParseError( "expected name-addr but found '{}'".format(token)) if leader is not None: token[0][:0] = [leader] leader = None name_addr.append(token) token, value = get_angle_addr(value) if leader is not None: token[:0] = [leader] name_addr.append(token) return name_addr, value def get_mailbox(value): """ mailbox = name-addr / addr-spec """ # The only way to figure out if we are dealing with a name-addr or an # addr-spec is to try parsing each one. mailbox = Mailbox() try: token, value = get_name_addr(value) except errors.HeaderParseError: try: token, value = get_addr_spec(value) except errors.HeaderParseError: raise errors.HeaderParseError( "expected mailbox but found '{}'".format(value)) if any(isinstance(x, errors.InvalidHeaderDefect) for x in token.all_defects): mailbox.token_type = 'invalid-mailbox' mailbox.append(token) return mailbox, value def get_invalid_mailbox(value, endchars): """ Read everything up to one of the chars in endchars. This is outside the formal grammar. The InvalidMailbox TokenList that is returned acts like a Mailbox, but the data attributes are None. """ invalid_mailbox = InvalidMailbox() while value and value[0] not in endchars: if value[0] in PHRASE_ENDS: invalid_mailbox.append(ValueTerminal(value[0], 'misplaced-special')) value = value[1:] else: token, value = get_phrase(value) invalid_mailbox.append(token) return invalid_mailbox, value def get_mailbox_list(value): """ mailbox-list = (mailbox *("," mailbox)) / obs-mbox-list obs-mbox-list = *([CFWS] ",") mailbox *("," [mailbox / CFWS]) For this routine we go outside the formal grammar in order to improve error handling. We recognize the end of the mailbox list only at the end of the value or at a ';' (the group terminator). This is so that we can turn invalid mailboxes into InvalidMailbox tokens and continue parsing any remaining valid mailboxes. We also allow all mailbox entries to be null, and this condition is handled appropriately at a higher level. """ mailbox_list = MailboxList() while value and value[0] != ';': try: token, value = get_mailbox(value) mailbox_list.append(token) except errors.HeaderParseError: leader = None if value[0] in CFWS_LEADER: leader, value = get_cfws(value) if not value or value[0] in ',;': mailbox_list.append(leader) mailbox_list.defects.append(errors.ObsoleteHeaderDefect( "empty element in mailbox-list")) else: token, value = get_invalid_mailbox(value, ',;') if leader is not None: token[:0] = [leader] mailbox_list.append(token) mailbox_list.defects.append(errors.InvalidHeaderDefect( "invalid mailbox in mailbox-list")) elif value[0] == ',': mailbox_list.defects.append(errors.ObsoleteHeaderDefect( "empty element in mailbox-list")) else: token, value = get_invalid_mailbox(value, ',;') if leader is not None: token[:0] = [leader] mailbox_list.append(token) mailbox_list.defects.append(errors.InvalidHeaderDefect( "invalid mailbox in mailbox-list")) if value and value[0] not in ',;': # Crap after mailbox; treat it as an invalid mailbox. # The mailbox info will still be available. mailbox = mailbox_list[-1] mailbox.token_type = 'invalid-mailbox' token, value = get_invalid_mailbox(value, ',;') mailbox.extend(token) mailbox_list.defects.append(errors.InvalidHeaderDefect( "invalid mailbox in mailbox-list")) if value and value[0] == ',': mailbox_list.append(ListSeparator) value = value[1:] return mailbox_list, value def get_group_list(value): """ group-list = mailbox-list / CFWS / obs-group-list obs-group-list = 1*([CFWS] ",") [CFWS] """ group_list = GroupList() if not value: group_list.defects.append(errors.InvalidHeaderDefect( "end of header before group-list")) return group_list, value leader = None if value and value[0] in CFWS_LEADER: leader, value = get_cfws(value) if not value: # This should never happen in email parsing, since CFWS-only is a # legal alternative to group-list in a group, which is the only # place group-list appears. group_list.defects.append(errors.InvalidHeaderDefect( "end of header in group-list")) group_list.append(leader) return group_list, value if value[0] == ';': group_list.append(leader) return group_list, value token, value = get_mailbox_list(value) if len(token.all_mailboxes)==0: if leader is not None: group_list.append(leader) group_list.extend(token) group_list.defects.append(errors.ObsoleteHeaderDefect( "group-list with empty entries")) return group_list, value if leader is not None: token[:0] = [leader] group_list.append(token) return group_list, value def get_group(value): """ group = display-name ":" [group-list] ";" [CFWS] """ group = Group() token, value = get_display_name(value) if not value or value[0] != ':': raise errors.HeaderParseError("expected ':' at end of group " "display name but found '{}'".format(value)) group.append(token) group.append(ValueTerminal(':', 'group-display-name-terminator')) value = value[1:] if value and value[0] == ';': group.append(ValueTerminal(';', 'group-terminator')) return group, value[1:] token, value = get_group_list(value) group.append(token) if not value: group.defects.append(errors.InvalidHeaderDefect( "end of header in group")) elif value[0] != ';': raise errors.HeaderParseError( "expected ';' at end of group but found {}".format(value)) group.append(ValueTerminal(';', 'group-terminator')) value = value[1:] if value and value[0] in CFWS_LEADER: token, value = get_cfws(value) group.append(token) return group, value def get_address(value): """ address = mailbox / group Note that counter-intuitively, an address can be either a single address or a list of addresses (a group). This is why the returned Address object has a 'mailboxes' attribute which treats a single address as a list of length one. When you need to differentiate between to two cases, extract the single element, which is either a mailbox or a group token. """ # The formal grammar isn't very helpful when parsing an address. mailbox # and group, especially when allowing for obsolete forms, start off very # similarly. It is only when you reach one of @, <, or : that you know # what you've got. So, we try each one in turn, starting with the more # likely of the two. We could perhaps make this more efficient by looking # for a phrase and then branching based on the next character, but that # would be a premature optimization. address = Address() try: token, value = get_group(value) except errors.HeaderParseError: try: token, value = get_mailbox(value) except errors.HeaderParseError: raise errors.HeaderParseError( "expected address but found '{}'".format(value)) address.append(token) return address, value def get_address_list(value): """ address_list = (address *("," address)) / obs-addr-list obs-addr-list = *([CFWS] ",") address *("," [address / CFWS]) We depart from the formal grammar here by continuing to parse until the end of the input, assuming the input to be entirely composed of an address-list. This is always true in email parsing, and allows us to skip invalid addresses to parse additional valid ones. """ address_list = AddressList() while value: try: token, value = get_address(value) address_list.append(token) except errors.HeaderParseError as err: leader = None if value[0] in CFWS_LEADER: leader, value = get_cfws(value) if not value or value[0] == ',': address_list.append(leader) address_list.defects.append(errors.ObsoleteHeaderDefect( "address-list entry with no content")) else: token, value = get_invalid_mailbox(value, ',') if leader is not None: token[:0] = [leader] address_list.append(Address([token])) address_list.defects.append(errors.InvalidHeaderDefect( "invalid address in address-list")) elif value[0] == ',': address_list.defects.append(errors.ObsoleteHeaderDefect( "empty element in address-list")) else: token, value = get_invalid_mailbox(value, ',') if leader is not None: token[:0] = [leader] address_list.append(Address([token])) address_list.defects.append(errors.InvalidHeaderDefect( "invalid address in address-list")) if value and value[0] != ',': # Crap after address; treat it as an invalid mailbox. # The mailbox info will still be available. mailbox = address_list[-1][0] mailbox.token_type = 'invalid-mailbox' token, value = get_invalid_mailbox(value, ',') mailbox.extend(token) address_list.defects.append(errors.InvalidHeaderDefect( "invalid address in address-list")) if value: # Must be a , at this point. address_list.append(ValueTerminal(',', 'list-separator')) value = value[1:] return address_list, value def get_no_fold_literal(value): """ no-fold-literal = "[" *dtext "]" """ no_fold_literal = NoFoldLiteral() if not value: raise errors.HeaderParseError( "expected no-fold-literal but found '{}'".format(value)) if value[0] != '[': raise errors.HeaderParseError( "expected '[' at the start of no-fold-literal " "but found '{}'".format(value)) no_fold_literal.append(ValueTerminal('[', 'no-fold-literal-start')) value = value[1:] token, value = get_dtext(value) no_fold_literal.append(token) if not value or value[0] != ']': raise errors.HeaderParseError( "expected ']' at the end of no-fold-literal " "but found '{}'".format(value)) no_fold_literal.append(ValueTerminal(']', 'no-fold-literal-end')) return no_fold_literal, value[1:] def get_msg_id(value): """msg-id = [CFWS] "<" id-left '@' id-right ">" [CFWS] id-left = dot-atom-text / obs-id-left id-right = dot-atom-text / no-fold-literal / obs-id-right no-fold-literal = "[" *dtext "]" """ msg_id = MsgID() if value and value[0] in CFWS_LEADER: token, value = get_cfws(value) msg_id.append(token) if not value or value[0] != '<': raise errors.HeaderParseError( "expected msg-id but found '{}'".format(value)) msg_id.append(ValueTerminal('<', 'msg-id-start')) value = value[1:] # Parse id-left. try: token, value = get_dot_atom_text(value) except errors.HeaderParseError: try: # obs-id-left is same as local-part of add-spec. token, value = get_obs_local_part(value) msg_id.defects.append(errors.ObsoleteHeaderDefect( "obsolete id-left in msg-id")) except errors.HeaderParseError: raise errors.HeaderParseError( "expected dot-atom-text or obs-id-left" " but found '{}'".format(value)) msg_id.append(token) if not value or value[0] != '@': msg_id.defects.append(errors.InvalidHeaderDefect( "msg-id with no id-right")) # Even though there is no id-right, if the local part # ends with `>` let's just parse it too and return # along with the defect. if value and value[0] == '>': msg_id.append(ValueTerminal('>', 'msg-id-end')) value = value[1:] return msg_id, value msg_id.append(ValueTerminal('@', 'address-at-symbol')) value = value[1:] # Parse id-right. try: token, value = get_dot_atom_text(value) except errors.HeaderParseError: try: token, value = get_no_fold_literal(value) except errors.HeaderParseError as e: try: token, value = get_domain(value) msg_id.defects.append(errors.ObsoleteHeaderDefect( "obsolete id-right in msg-id")) except errors.HeaderParseError: raise errors.HeaderParseError( "expected dot-atom-text, no-fold-literal or obs-id-right" " but found '{}'".format(value)) msg_id.append(token) if value and value[0] == '>': value = value[1:] else: msg_id.defects.append(errors.InvalidHeaderDefect( "missing trailing '>' on msg-id")) msg_id.append(ValueTerminal('>', 'msg-id-end')) if value and value[0] in CFWS_LEADER: token, value = get_cfws(value) msg_id.append(token) return msg_id, value def parse_message_id(value): """message-id = "Message-ID:" msg-id CRLF """ message_id = MessageID() try: token, value = get_msg_id(value) message_id.append(token) except errors.HeaderParseError as ex: token = get_unstructured(value) message_id = InvalidMessageID(token) message_id.defects.append( errors.InvalidHeaderDefect("Invalid msg-id: {!r}".format(ex))) else: # Value after parsing a valid msg_id should be None. if value: message_id.defects.append(errors.InvalidHeaderDefect( "Unexpected {!r}".format(value))) return message_id # # XXX: As I begin to add additional header parsers, I'm realizing we probably # have two level of parser routines: the get_XXX methods that get a token in # the grammar, and parse_XXX methods that parse an entire field value. So # get_address_list above should really be a parse_ method, as probably should # be get_unstructured. # def parse_mime_version(value): """ mime-version = [CFWS] 1*digit [CFWS] "." [CFWS] 1*digit [CFWS] """ # The [CFWS] is implicit in the RFC 2045 BNF. # XXX: This routine is a bit verbose, should factor out a get_int method. mime_version = MIMEVersion() if not value: mime_version.defects.append(errors.HeaderMissingRequiredValue( "Missing MIME version number (eg: 1.0)")) return mime_version if value[0] in CFWS_LEADER: token, value = get_cfws(value) mime_version.append(token) if not value: mime_version.defects.append(errors.HeaderMissingRequiredValue( "Expected MIME version number but found only CFWS")) digits = '' while value and value[0] != '.' and value[0] not in CFWS_LEADER: digits += value[0] value = value[1:] if not digits.isdigit(): mime_version.defects.append(errors.InvalidHeaderDefect( "Expected MIME major version number but found {!r}".format(digits))) mime_version.append(ValueTerminal(digits, 'xtext')) else: mime_version.major = int(digits) mime_version.append(ValueTerminal(digits, 'digits')) if value and value[0] in CFWS_LEADER: token, value = get_cfws(value) mime_version.append(token) if not value or value[0] != '.': if mime_version.major is not None: mime_version.defects.append(errors.InvalidHeaderDefect( "Incomplete MIME version; found only major number")) if value: mime_version.append(ValueTerminal(value, 'xtext')) return mime_version mime_version.append(ValueTerminal('.', 'version-separator')) value = value[1:] if value and value[0] in CFWS_LEADER: token, value = get_cfws(value) mime_version.append(token) if not value: if mime_version.major is not None: mime_version.defects.append(errors.InvalidHeaderDefect( "Incomplete MIME version; found only major number")) return mime_version digits = '' while value and value[0] not in CFWS_LEADER: digits += value[0] value = value[1:] if not digits.isdigit(): mime_version.defects.append(errors.InvalidHeaderDefect( "Expected MIME minor version number but found {!r}".format(digits))) mime_version.append(ValueTerminal(digits, 'xtext')) else: mime_version.minor = int(digits) mime_version.append(ValueTerminal(digits, 'digits')) if value and value[0] in CFWS_LEADER: token, value = get_cfws(value) mime_version.append(token) if value: mime_version.defects.append(errors.InvalidHeaderDefect( "Excess non-CFWS text after MIME version")) mime_version.append(ValueTerminal(value, 'xtext')) return mime_version def get_invalid_parameter(value): """ Read everything up to the next ';'. This is outside the formal grammar. The InvalidParameter TokenList that is returned acts like a Parameter, but the data attributes are None. """ invalid_parameter = InvalidParameter() while value and value[0] != ';': if value[0] in PHRASE_ENDS: invalid_parameter.append(ValueTerminal(value[0], 'misplaced-special')) value = value[1:] else: token, value = get_phrase(value) invalid_parameter.append(token) return invalid_parameter, value def get_ttext(value): """ttext = <matches _ttext_matcher> We allow any non-TOKEN_ENDS in ttext, but add defects to the token's defects list if we find non-ttext characters. We also register defects for *any* non-printables even though the RFC doesn't exclude all of them, because we follow the spirit of RFC 5322. """ m = _non_token_end_matcher(value) if not m: raise errors.HeaderParseError( "expected ttext but found '{}'".format(value)) ttext = m.group() value = value[len(ttext):] ttext = ValueTerminal(ttext, 'ttext') _validate_xtext(ttext) return ttext, value def get_token(value): """token = [CFWS] 1*ttext [CFWS] The RFC equivalent of ttext is any US-ASCII chars except space, ctls, or tspecials. We also exclude tabs even though the RFC doesn't. The RFC implies the CFWS but is not explicit about it in the BNF. """ mtoken = Token() if value and value[0] in CFWS_LEADER: token, value = get_cfws(value) mtoken.append(token) if value and value[0] in TOKEN_ENDS: raise errors.HeaderParseError( "expected token but found '{}'".format(value)) token, value = get_ttext(value) mtoken.append(token) if value and value[0] in CFWS_LEADER: token, value = get_cfws(value) mtoken.append(token) return mtoken, value def get_attrtext(value): """attrtext = 1*(any non-ATTRIBUTE_ENDS character) We allow any non-ATTRIBUTE_ENDS in attrtext, but add defects to the token's defects list if we find non-attrtext characters. We also register defects for *any* non-printables even though the RFC doesn't exclude all of them, because we follow the spirit of RFC 5322. """ m = _non_attribute_end_matcher(value) if not m: raise errors.HeaderParseError( "expected attrtext but found {!r}".format(value)) attrtext = m.group() value = value[len(attrtext):] attrtext = ValueTerminal(attrtext, 'attrtext') _validate_xtext(attrtext) return attrtext, value def get_attribute(value): """ [CFWS] 1*attrtext [CFWS] This version of the BNF makes the CFWS explicit, and as usual we use a value terminal for the actual run of characters. The RFC equivalent of attrtext is the token characters, with the subtraction of '*', "'", and '%'. We include tab in the excluded set just as we do for token. """ attribute = Attribute() if value and value[0] in CFWS_LEADER: token, value = get_cfws(value) attribute.append(token) if value and value[0] in ATTRIBUTE_ENDS: raise errors.HeaderParseError( "expected token but found '{}'".format(value)) token, value = get_attrtext(value) attribute.append(token) if value and value[0] in CFWS_LEADER: token, value = get_cfws(value) attribute.append(token) return attribute, value def get_extended_attrtext(value): """attrtext = 1*(any non-ATTRIBUTE_ENDS character plus '%') This is a special parsing routine so that we get a value that includes % escapes as a single string (which we decode as a single string later). """ m = _non_extended_attribute_end_matcher(value) if not m: raise errors.HeaderParseError( "expected extended attrtext but found {!r}".format(value)) attrtext = m.group() value = value[len(attrtext):] attrtext = ValueTerminal(attrtext, 'extended-attrtext') _validate_xtext(attrtext) return attrtext, value def get_extended_attribute(value): """ [CFWS] 1*extended_attrtext [CFWS] This is like the non-extended version except we allow % characters, so that we can pick up an encoded value as a single string. """ # XXX: should we have an ExtendedAttribute TokenList? attribute = Attribute() if value and value[0] in CFWS_LEADER: token, value = get_cfws(value) attribute.append(token) if value and value[0] in EXTENDED_ATTRIBUTE_ENDS: raise errors.HeaderParseError( "expected token but found '{}'".format(value)) token, value = get_extended_attrtext(value) attribute.append(token) if value and value[0] in CFWS_LEADER: token, value = get_cfws(value) attribute.append(token) return attribute, value def get_section(value): """ '*' digits The formal BNF is more complicated because leading 0s are not allowed. We check for that and add a defect. We also assume no CFWS is allowed between the '*' and the digits, though the RFC is not crystal clear on that. The caller should already have dealt with leading CFWS. """ section = Section() if not value or value[0] != '*': raise errors.HeaderParseError("Expected section but found {}".format( value)) section.append(ValueTerminal('*', 'section-marker')) value = value[1:] if not value or not value[0].isdigit(): raise errors.HeaderParseError("Expected section number but " "found {}".format(value)) digits = '' while value and value[0].isdigit(): digits += value[0] value = value[1:] if digits[0] == '0' and digits != '0': section.defects.append(errors.InvalidHeaderError( "section number has an invalid leading 0")) section.number = int(digits) section.append(ValueTerminal(digits, 'digits')) return section, value def get_value(value): """ quoted-string / attribute """ v = Value() if not value: raise errors.HeaderParseError("Expected value but found end of string") leader = None if value[0] in CFWS_LEADER: leader, value = get_cfws(value) if not value: raise errors.HeaderParseError("Expected value but found " "only {}".format(leader)) if value[0] == '"': token, value = get_quoted_string(value) else: token, value = get_extended_attribute(value) if leader is not None: token[:0] = [leader] v.append(token) return v, value def get_parameter(value): """ attribute [section] ["*"] [CFWS] "=" value The CFWS is implied by the RFC but not made explicit in the BNF. This simplified form of the BNF from the RFC is made to conform with the RFC BNF through some extra checks. We do it this way because it makes both error recovery and working with the resulting parse tree easier. """ # It is possible CFWS would also be implicitly allowed between the section # and the 'extended-attribute' marker (the '*') , but we've never seen that # in the wild and we will therefore ignore the possibility. param = Parameter() token, value = get_attribute(value) param.append(token) if not value or value[0] == ';': param.defects.append(errors.InvalidHeaderDefect("Parameter contains " "name ({}) but no value".format(token))) return param, value if value[0] == '*': try: token, value = get_section(value) param.sectioned = True param.append(token) except errors.HeaderParseError: pass if not value: raise errors.HeaderParseError("Incomplete parameter") if value[0] == '*': param.append(ValueTerminal('*', 'extended-parameter-marker')) value = value[1:] param.extended = True if value[0] != '=': raise errors.HeaderParseError("Parameter not followed by '='") param.append(ValueTerminal('=', 'parameter-separator')) value = value[1:] leader = None if value and value[0] in CFWS_LEADER: token, value = get_cfws(value) param.append(token) remainder = None appendto = param if param.extended and value and value[0] == '"': # Now for some serious hackery to handle the common invalid case of # double quotes around an extended value. We also accept (with defect) # a value marked as encoded that isn't really. qstring, remainder = get_quoted_string(value) inner_value = qstring.stripped_value semi_valid = False if param.section_number == 0: if inner_value and inner_value[0] == "'": semi_valid = True else: token, rest = get_attrtext(inner_value) if rest and rest[0] == "'": semi_valid = True else: try: token, rest = get_extended_attrtext(inner_value) except: pass else: if not rest: semi_valid = True if semi_valid: param.defects.append(errors.InvalidHeaderDefect( "Quoted string value for extended parameter is invalid")) param.append(qstring) for t in qstring: if t.token_type == 'bare-quoted-string': t[:] = [] appendto = t break value = inner_value else: remainder = None param.defects.append(errors.InvalidHeaderDefect( "Parameter marked as extended but appears to have a " "quoted string value that is non-encoded")) if value and value[0] == "'": token = None else: token, value = get_value(value) if not param.extended or param.section_number > 0: if not value or value[0] != "'": appendto.append(token) if remainder is not None: assert not value, value value = remainder return param, value param.defects.append(errors.InvalidHeaderDefect( "Apparent initial-extended-value but attribute " "was not marked as extended or was not initial section")) if not value: # Assume the charset/lang is missing and the token is the value. param.defects.append(errors.InvalidHeaderDefect( "Missing required charset/lang delimiters")) appendto.append(token) if remainder is None: return param, value else: if token is not None: for t in token: if t.token_type == 'extended-attrtext': break t.token_type == 'attrtext' appendto.append(t) param.charset = t.value if value[0] != "'": raise errors.HeaderParseError("Expected RFC2231 char/lang encoding " "delimiter, but found {!r}".format(value)) appendto.append(ValueTerminal("'", 'RFC2231-delimiter')) value = value[1:] if value and value[0] != "'": token, value = get_attrtext(value) appendto.append(token) param.lang = token.value if not value or value[0] != "'": raise errors.HeaderParseError("Expected RFC2231 char/lang encoding " "delimiter, but found {}".format(value)) appendto.append(ValueTerminal("'", 'RFC2231-delimiter')) value = value[1:] if remainder is not None: # Treat the rest of value as bare quoted string content. v = Value() while value: if value[0] in WSP: token, value = get_fws(value) elif value[0] == '"': token = ValueTerminal('"', 'DQUOTE') value = value[1:] else: token, value = get_qcontent(value) v.append(token) token = v else: token, value = get_value(value) appendto.append(token) if remainder is not None: assert not value, value value = remainder return param, value def parse_mime_parameters(value): """ parameter *( ";" parameter ) That BNF is meant to indicate this routine should only be called after finding and handling the leading ';'. There is no corresponding rule in the formal RFC grammar, but it is more convenient for us for the set of parameters to be treated as its own TokenList. This is 'parse' routine because it consumes the remaining value, but it would never be called to parse a full header. Instead it is called to parse everything after the non-parameter value of a specific MIME header. """ mime_parameters = MimeParameters() while value: try: token, value = get_parameter(value) mime_parameters.append(token) except errors.HeaderParseError as err: leader = None if value[0] in CFWS_LEADER: leader, value = get_cfws(value) if not value: mime_parameters.append(leader) return mime_parameters if value[0] == ';': if leader is not None: mime_parameters.append(leader) mime_parameters.defects.append(errors.InvalidHeaderDefect( "parameter entry with no content")) else: token, value = get_invalid_parameter(value) if leader: token[:0] = [leader] mime_parameters.append(token) mime_parameters.defects.append(errors.InvalidHeaderDefect( "invalid parameter {!r}".format(token))) if value and value[0] != ';': # Junk after the otherwise valid parameter. Mark it as # invalid, but it will have a value. param = mime_parameters[-1] param.token_type = 'invalid-parameter' token, value = get_invalid_parameter(value) param.extend(token) mime_parameters.defects.append(errors.InvalidHeaderDefect( "parameter with invalid trailing text {!r}".format(token))) if value: # Must be a ';' at this point. mime_parameters.append(ValueTerminal(';', 'parameter-separator')) value = value[1:] return mime_parameters def _find_mime_parameters(tokenlist, value): """Do our best to find the parameters in an invalid MIME header """ while value and value[0] != ';': if value[0] in PHRASE_ENDS: tokenlist.append(ValueTerminal(value[0], 'misplaced-special')) value = value[1:] else: token, value = get_phrase(value) tokenlist.append(token) if not value: return tokenlist.append(ValueTerminal(';', 'parameter-separator')) tokenlist.append(parse_mime_parameters(value[1:])) def parse_content_type_header(value): """ maintype "/" subtype *( ";" parameter ) The maintype and substype are tokens. Theoretically they could be checked against the official IANA list + x-token, but we don't do that. """ ctype = ContentType() recover = False if not value: ctype.defects.append(errors.HeaderMissingRequiredValue( "Missing content type specification")) return ctype try: token, value = get_token(value) except errors.HeaderParseError: ctype.defects.append(errors.InvalidHeaderDefect( "Expected content maintype but found {!r}".format(value))) _find_mime_parameters(ctype, value) return ctype ctype.append(token) # XXX: If we really want to follow the formal grammar we should make # mantype and subtype specialized TokenLists here. Probably not worth it. if not value or value[0] != '/': ctype.defects.append(errors.InvalidHeaderDefect( "Invalid content type")) if value: _find_mime_parameters(ctype, value) return ctype ctype.maintype = token.value.strip().lower() ctype.append(ValueTerminal('/', 'content-type-separator')) value = value[1:] try: token, value = get_token(value) except errors.HeaderParseError: ctype.defects.append(errors.InvalidHeaderDefect( "Expected content subtype but found {!r}".format(value))) _find_mime_parameters(ctype, value) return ctype ctype.append(token) ctype.subtype = token.value.strip().lower() if not value: return ctype if value[0] != ';': ctype.defects.append(errors.InvalidHeaderDefect( "Only parameters are valid after content type, but " "found {!r}".format(value))) # The RFC requires that a syntactically invalid content-type be treated # as text/plain. Perhaps we should postel this, but we should probably # only do that if we were checking the subtype value against IANA. del ctype.maintype, ctype.subtype _find_mime_parameters(ctype, value) return ctype ctype.append(ValueTerminal(';', 'parameter-separator')) ctype.append(parse_mime_parameters(value[1:])) return ctype def parse_content_disposition_header(value): """ disposition-type *( ";" parameter ) """ disp_header = ContentDisposition() if not value: disp_header.defects.append(errors.HeaderMissingRequiredValue( "Missing content disposition")) return disp_header try: token, value = get_token(value) except errors.HeaderParseError: disp_header.defects.append(errors.InvalidHeaderDefect( "Expected content disposition but found {!r}".format(value))) _find_mime_parameters(disp_header, value) return disp_header disp_header.append(token) disp_header.content_disposition = token.value.strip().lower() if not value: return disp_header if value[0] != ';': disp_header.defects.append(errors.InvalidHeaderDefect( "Only parameters are valid after content disposition, but " "found {!r}".format(value))) _find_mime_parameters(disp_header, value) return disp_header disp_header.append(ValueTerminal(';', 'parameter-separator')) disp_header.append(parse_mime_parameters(value[1:])) return disp_header def parse_content_transfer_encoding_header(value): """ mechanism """ # We should probably validate the values, since the list is fixed. cte_header = ContentTransferEncoding() if not value: cte_header.defects.append(errors.HeaderMissingRequiredValue( "Missing content transfer encoding")) return cte_header try: token, value = get_token(value) except errors.HeaderParseError: cte_header.defects.append(errors.InvalidHeaderDefect( "Expected content transfer encoding but found {!r}".format(value))) else: cte_header.append(token) cte_header.cte = token.value.strip().lower() if not value: return cte_header while value: cte_header.defects.append(errors.InvalidHeaderDefect( "Extra text after content transfer encoding")) if value[0] in PHRASE_ENDS: cte_header.append(ValueTerminal(value[0], 'misplaced-special')) value = value[1:] else: token, value = get_phrase(value) cte_header.append(token) return cte_header # # Header folding # # Header folding is complex, with lots of rules and corner cases. The # following code does its best to obey the rules and handle the corner # cases, but you can be sure there are few bugs:) # # This folder generally canonicalizes as it goes, preferring the stringified # version of each token. The tokens contain information that supports the # folder, including which tokens can be encoded in which ways. # # Folded text is accumulated in a simple list of strings ('lines'), each # one of which should be less than policy.max_line_length ('maxlen'). # def _steal_trailing_WSP_if_exists(lines): wsp = '' if lines and lines[-1] and lines[-1][-1] in WSP: wsp = lines[-1][-1] lines[-1] = lines[-1][:-1] return wsp def _refold_parse_tree(parse_tree, *, policy): """Return string of contents of parse_tree folded according to RFC rules. """ # max_line_length 0/None means no limit, ie: infinitely long. maxlen = policy.max_line_length or sys.maxsize encoding = 'utf-8' if policy.utf8 else 'us-ascii' lines = [''] last_ew = None wrap_as_ew_blocked = 0 want_encoding = False end_ew_not_allowed = Terminal('', 'wrap_as_ew_blocked') parts = list(parse_tree) while parts: part = parts.pop(0) if part is end_ew_not_allowed: wrap_as_ew_blocked -= 1 continue tstr = str(part) if part.token_type == 'ptext' and set(tstr) & SPECIALS: # Encode if tstr contains special characters. want_encoding = True try: tstr.encode(encoding) charset = encoding except UnicodeEncodeError: if any(isinstance(x, errors.UndecodableBytesDefect) for x in part.all_defects): charset = 'unknown-8bit' else: # If policy.utf8 is false this should really be taken from a # 'charset' property on the policy. charset = 'utf-8' want_encoding = True if part.token_type == 'mime-parameters': # Mime parameter folding (using RFC2231) is extra special. _fold_mime_parameters(part, lines, maxlen, encoding) continue if want_encoding and not wrap_as_ew_blocked: if not part.as_ew_allowed: want_encoding = False last_ew = None if part.syntactic_break: encoded_part = part.fold(policy=policy)[:-len(policy.linesep)] if policy.linesep not in encoded_part: # It fits on a single line if len(encoded_part) > maxlen - len(lines[-1]): # But not on this one, so start a new one. newline = _steal_trailing_WSP_if_exists(lines) # XXX what if encoded_part has no leading FWS? lines.append(newline) lines[-1] += encoded_part continue # Either this is not a major syntactic break, so we don't # want it on a line by itself even if it fits, or it # doesn't fit on a line by itself. Either way, fall through # to unpacking the subparts and wrapping them. if not hasattr(part, 'encode'): # It's not a Terminal, do each piece individually. parts = list(part) + parts else: # It's a terminal, wrap it as an encoded word, possibly # combining it with previously encoded words if allowed. last_ew = _fold_as_ew(tstr, lines, maxlen, last_ew, part.ew_combine_allowed, charset) want_encoding = False continue if len(tstr) <= maxlen - len(lines[-1]): lines[-1] += tstr continue # This part is too long to fit. The RFC wants us to break at # "major syntactic breaks", so unless we don't consider this # to be one, check if it will fit on the next line by itself. if (part.syntactic_break and len(tstr) + 1 <= maxlen): newline = _steal_trailing_WSP_if_exists(lines) if newline or part.startswith_fws(): lines.append(newline + tstr) last_ew = None continue if not hasattr(part, 'encode'): # It's not a terminal, try folding the subparts. newparts = list(part) if not part.as_ew_allowed: wrap_as_ew_blocked += 1 newparts.append(end_ew_not_allowed) parts = newparts + parts continue if part.as_ew_allowed and not wrap_as_ew_blocked: # It doesn't need CTE encoding, but encode it anyway so we can # wrap it. parts.insert(0, part) want_encoding = True continue # We can't figure out how to wrap, it, so give up. newline = _steal_trailing_WSP_if_exists(lines) if newline or part.startswith_fws(): lines.append(newline + tstr) else: # We can't fold it onto the next line either... lines[-1] += tstr return policy.linesep.join(lines) + policy.linesep def _fold_as_ew(to_encode, lines, maxlen, last_ew, ew_combine_allowed, charset): """Fold string to_encode into lines as encoded word, combining if allowed. Return the new value for last_ew, or None if ew_combine_allowed is False. If there is already an encoded word in the last line of lines (indicated by a non-None value for last_ew) and ew_combine_allowed is true, decode the existing ew, combine it with to_encode, and re-encode. Otherwise, encode to_encode. In either case, split to_encode as necessary so that the encoded segments fit within maxlen. """ if last_ew is not None and ew_combine_allowed: to_encode = str( get_unstructured(lines[-1][last_ew:] + to_encode)) lines[-1] = lines[-1][:last_ew] if to_encode[0] in WSP: # We're joining this to non-encoded text, so don't encode # the leading blank. leading_wsp = to_encode[0] to_encode = to_encode[1:] if (len(lines[-1]) == maxlen): lines.append(_steal_trailing_WSP_if_exists(lines)) lines[-1] += leading_wsp trailing_wsp = '' if to_encode[-1] in WSP: # Likewise for the trailing space. trailing_wsp = to_encode[-1] to_encode = to_encode[:-1] new_last_ew = len(lines[-1]) if last_ew is None else last_ew encode_as = 'utf-8' if charset == 'us-ascii' else charset # The RFC2047 chrome takes up 7 characters plus the length # of the charset name. chrome_len = len(encode_as) + 7 if (chrome_len + 1) >= maxlen: raise errors.HeaderParseError( "max_line_length is too small to fit an encoded word") while to_encode: remaining_space = maxlen - len(lines[-1]) text_space = remaining_space - chrome_len if text_space <= 0: lines.append(' ') continue to_encode_word = to_encode[:text_space] encoded_word = _ew.encode(to_encode_word, charset=encode_as) excess = len(encoded_word) - remaining_space while excess > 0: # Since the chunk to encode is guaranteed to fit into less than 100 characters, # shrinking it by one at a time shouldn't take long. to_encode_word = to_encode_word[:-1] encoded_word = _ew.encode(to_encode_word, charset=encode_as) excess = len(encoded_word) - remaining_space lines[-1] += encoded_word to_encode = to_encode[len(to_encode_word):] if to_encode: lines.append(' ') new_last_ew = len(lines[-1]) lines[-1] += trailing_wsp return new_last_ew if ew_combine_allowed else None def _fold_mime_parameters(part, lines, maxlen, encoding): """Fold TokenList 'part' into the 'lines' list as mime parameters. Using the decoded list of parameters and values, format them according to the RFC rules, including using RFC2231 encoding if the value cannot be expressed in 'encoding' and/or the parameter+value is too long to fit within 'maxlen'. """ # Special case for RFC2231 encoding: start from decoded values and use # RFC2231 encoding iff needed. # # Note that the 1 and 2s being added to the length calculations are # accounting for the possibly-needed spaces and semicolons we'll be adding. # for name, value in part.params: # XXX What if this ';' puts us over maxlen the first time through the # loop? We should split the header value onto a newline in that case, # but to do that we need to recognize the need earlier or reparse the # header, so I'm going to ignore that bug for now. It'll only put us # one character over. if not lines[-1].rstrip().endswith(';'): lines[-1] += ';' charset = encoding error_handler = 'strict' try: value.encode(encoding) encoding_required = False except UnicodeEncodeError: encoding_required = True if utils._has_surrogates(value): charset = 'unknown-8bit' error_handler = 'surrogateescape' else: charset = 'utf-8' if encoding_required: encoded_value = urllib.parse.quote( value, safe='', errors=error_handler) tstr = "{}*={}''{}".format(name, charset, encoded_value) else: tstr = '{}={}'.format(name, quote_string(value)) if len(lines[-1]) + len(tstr) + 1 < maxlen: lines[-1] = lines[-1] + ' ' + tstr continue elif len(tstr) + 2 <= maxlen: lines.append(' ' + tstr) continue # We need multiple sections. We are allowed to mix encoded and # non-encoded sections, but we aren't going to. We'll encode them all. section = 0 extra_chrome = charset + "''" while value: chrome_len = len(name) + len(str(section)) + 3 + len(extra_chrome) if maxlen <= chrome_len + 3: # We need room for the leading blank, the trailing semicolon, # and at least one character of the value. If we don't # have that, we'd be stuck, so in that case fall back to # the RFC standard width. maxlen = 78 splitpoint = maxchars = maxlen - chrome_len - 2 while True: partial = value[:splitpoint] encoded_value = urllib.parse.quote( partial, safe='', errors=error_handler) if len(encoded_value) <= maxchars: break splitpoint -= 1 lines.append(" {}*{}*={}{}".format( name, section, extra_chrome, encoded_value)) extra_chrome = '' section += 1 value = value[splitpoint:] if value: lines[-1] += ';'
xyuanmu/XX-Net
python3.8.2/Lib/email/_header_value_parser.py
Python
bsd-2-clause
106,460
[ "CRYSTAL" ]
033ade7a9948d073b07e4f9d3dedfe0662ae1ce865b62cda317741e57728c449
#Turbomole converter #Converts basis files in turbomole format to C++ files readable by Fermion Mingle import glob import os def extract_m_basisinfo(filename, printing = False): #Extract multiple basises from a turbomole file swtch = 0 f = open(filename) comments = [] basis_sets = [] #list containing all basis sets basis = [] basisW = [] basisE = [] basisT = [] contractedtype = [] activecontracted = -1 for i in f: I = i.split() if len(I)==0: continue if I[0] == "*": continue #ignore wildcards if I[0] == '#': comments.append("//") comments[-1] += i #for e in I: # comments[-1] += e + " " continue #print I if I[0][0] == "$": continue if I[0] in ["h", "he", "li", "be", "b", "c", "n", "o", "f", "ne", "na" ,"mg", "al", "si", "p", "s", "cl", "ar", "k", "ca", "sc", "ti", "v", "cr", "mn", "fe", "co", "ni", "cu", "zn", "ga", "ge", "as", "se","br", "kr", "rb", "sr", "y", "zr", "nb", "mo", "tc", "ru", "rh", "pd", "ag", "cd", "in", "sn", "sb", "te", "i", "xe"]: #If not first time here, put current basis into list if swtch == 1: basis_sets.append([bT, basisW, basisE, contractedtype, len(contractedtype)]) basisW = [] basisE = [] contractedtype = [] activecontracted = -1 swtch = 1 #Begin collecting data bT = I[1]+"_"+I[0] bT = bT.replace("-", "_") #basistype bT = bT.replace("(", "") #basistype bT = bT.replace(")", "") #basistype bT = bT.replace(",", "") #basistype continue if I[0] in "123456789": if I[1] == "s": #print "Identified an s orbital." contractedtype.append(0) if I[1] == "p": #print "Identified an p orbital." contractedtype.append(1) if I[1] == "d": #print "Identified an d orbital." contractedtype.append(2) if I[1] == "f": #print "Identified an f orbital." contractedtype.append(3) #Create contracted basis.append([]) basisE.append([]) basisW.append([]) activecontracted += 1 #print I else: try: w = float(I[0].replace("D", "E")) e = float(I[1].replace("D", "E")) basisE[activecontracted].append(e) basisW[activecontracted].append(w) #basisE[activecontracted].append(float(I[1])) #basisW[activecontracted].append(float(I[0])) except: comments.append("//Ignored the following information from file:") for e in I: comments[-1] += e + " " #comments[-1] += "Ignored the following information:" + I #print "Failed to read weigths and exponents." #print I #print I if printing: print comments print contractedtype print len(contractedtype) print basisE print basisW f.close() #return comments, contractedtype, len(contractedtype), basisE, basisW return comments, basis_sets def extract_basisinfo(filename, printing = False): swtch = 0 f = open(filename) comments = [] basis = [] basisW = [] basisE = [] basisT = [] contractedtype = [] activecontracted = -1 for i in f: I = i.split() if len(I)==0: continue if I[0] == "*": continue #ignore wildcards if I[0] == '#': comments.append("//") for e in I: comments[-1] += e + " " continue #print I if I[0][0] == "$": swtch += 1 swtch = swtch %2 #if swtch == 1: #Add new function continue if I[0] in ["h", "he", "li", "be", "b", "c", "n", "o", "f", "ne", "na" ,"mg", "al", "si", "p", "s", "cl", "ar", "k", "ca", "sc", "ti", "v", "cr", "mn", "fe", "co", "ni", "cu", "zn", "ga", "ge", "as", "se","br", "kr", "rb", "sr", "y", "zr", "nb", "mo", "tc", "ru", "rh", "pd", "ag", "cd", "in", "sn", "sb", "te", "i", "xe"]: bT = I[1]+"_"+I[0] bT = bT.replace("-", "_") basisT.append(bT) print basisT[-1] continue if I[0] in "123456789": if I[1] == "s": #print "Identified an s orbital." contractedtype.append(0) if I[1] == "p": #print "Identified an p orbital." contractedtype.append(1) if I[1] == "d": #print "Identified an d orbital." contractedtype.append(2) if I[1] == "f": #print "Identified an f orbital." contractedtype.append(3) #Create contracted basis.append([]) basisE.append([]) basisW.append([]) activecontracted += 1 #print I else: try: w = float(I[0].replace("D", "E")) e = float(I[1].replace("D", "E")) basisE[activecontracted].append(e) basisW[activecontracted].append(w) except: comments.append("//Ignored the following information from file:") for e in I: comments[-1] += e + " " #comments[-1] += "Ignored the following information:" + I #print "Failed to read weigths and exponents." #print I #print I if printing: print comments print contractedtype print len(contractedtype) print basisE print basisW f.close() return comments, contractedtype, len(contractedtype), basisE, basisW def createfunction(fname, comments, orbital_types, N_orbitals, exponents, weights): endline = ["\n"] cppclass = [] cppheader = [] for i in comments: cppclass.append(i) #cppheader.append(i) #cppclass.append(endline) #cppheader.append(endline) #writing to header cppheader.append(" void add_"+fname+"(vec3 corePos);") cppclass.append("void basisbank::add_"+fname+"(vec3 corePos){\n") for i in range(N_orbitals): if orbital_types[i] == 0: #create an s-orbital cppclass.append(" bs.add_state();") for e in range(len(exponents[i])): cppclass.append(" Primitive S%iA%i = bs.turbomolePrimitive(%.8f,%.8f,0,0,0,corePos);" % (e, i,exponents[i][e], weights[i][e])) cppclass.append(" bs.add_primitive_to_state(bs.Nstates-1, S%iA%i);" % (e,i)) if orbital_types[i] == 1: #create an p-orbital cppclass.append(" bs.add_state();") for e in range(len(exponents[i])): cppclass.append(" Primitive P%iA%i = bs.turbomolePrimitive(%.8f,%.8f,1,0,0,corePos);" % (e,i, exponents[i][e], weights[i][e])) cppclass.append(" bs.add_primitive_to_state(bs.Nstates-1, P%iA%i);" %( e,i)) cppclass.append(" Primitive P%iB%i = bs.turbomolePrimitive(%.8f,%.8f,0,1,0,corePos);" % (e,i, exponents[i][e], weights[i][e])) cppclass.append(" bs.add_primitive_to_state(bs.Nstates-1, P%iB%i);" % (e,i)) cppclass.append(" Primitive P%iC%i = bs.turbomolePrimitive(%.8f,%.8f,0,0,1,corePos);" % (e,i, exponents[i][e], weights[i][e])) cppclass.append(" bs.add_primitive_to_state(bs.Nstates-1, P%iC%i);" % (e,i)) if orbital_types[i] == 2: #create an d-orbital cppclass.append(" bs.add_state();") for e in range(len(exponents[i])): cppclass.append(" Primitive D%iA%i = bs.turbomolePrimitive(%.8f,%.8f,2,0,0,corePos);" % (e, i,exponents[i][e], weights[i][e])) cppclass.append(" bs.add_primitive_to_state(bs.Nstates-1, D%iA%i);" % (e,i)) cppclass.append(" Primitive D%iB%i = bs.turbomolePrimitive(%.8f,%.8f,0,2,0,corePos);" % (e,i, exponents[i][e], weights[i][e])) cppclass.append(" bs.add_primitive_to_state(bs.Nstates-1, D%iB%i);" %(e,i)) cppclass.append(" Primitive D%iC%i = bs.turbomolePrimitive(%.8f,%.8f,0,0,2,corePos);" % (e,i, exponents[i][e], weights[i][e])) cppclass.append(" bs.add_primitive_to_state(bs.Nstates-1, D%iC%i);" %( e,i)) cppclass.append(" Primitive D%iD%i = bs.turbomolePrimitive(%.8f,%.8f,1,1,0,corePos);" % (e, i,exponents[i][e], weights[i][e])) cppclass.append(" bs.add_primitive_to_state(bs.Nstates-1, D%iD%i);" % (e,i)) cppclass.append(" Primitive D%iE%i = bs.turbomolePrimitive(%.8f,%.8f,0,1,1,corePos);" % (e,i, exponents[i][e], weights[i][e])) cppclass.append(" bs.add_primitive_to_state(bs.Nstates-1, D%iE%i);" % (e,i)) cppclass.append(" Primitive D%iF%i = bs.turbomolePrimitive(%.8f,%.8f,1,0,1,corePos);" % (e, i,exponents[i][e], weights[i][e])) cppclass.append(" bs.add_primitive_to_state(bs.Nstates-1, D%iF%i);" %( e,i)) if orbital_types[i] == 3: #create an d-orbital cppclass.append(" bs.add_state();") for e in range(len(exponents[i])): cppclass.append(" Primitive E%iA%i = bs.turbomolePrimitive(%.8f,%.8f,3,0,0,corePos);" % (e, i,exponents[i][e], weights[i][e])) cppclass.append(" bs.add_primitive_to_state(bs.Nstates-1, E%iA%i);" % (e,i)) cppclass.append(" Primitive E%iB%i = bs.turbomolePrimitive(%.8f,%.8f,0,3,0,corePos);" % (e,i, exponents[i][e], weights[i][e])) cppclass.append(" bs.add_primitive_to_state(bs.Nstates-1, E%iB%i);" %(e,i)) cppclass.append(" Primitive E%iC%i = bs.turbomolePrimitive(%.8f,%.8f,0,0,3,corePos);" % (e,i, exponents[i][e], weights[i][e])) cppclass.append(" bs.add_primitive_to_state(bs.Nstates-1, E%iC%i);" %( e,i)) cppclass.append(" Primitive E%iD%i = bs.turbomolePrimitive(%.8f,%.8f,1,2,0,corePos);" % (e, i,exponents[i][e], weights[i][e])) cppclass.append(" bs.add_primitive_to_state(bs.Nstates-1, E%iD%i);" % (e,i)) cppclass.append(" Primitive E%iE%i = bs.turbomolePrimitive(%.8f,%.8f,0,1,2,corePos);" % (e,i, exponents[i][e], weights[i][e])) cppclass.append(" bs.add_primitive_to_state(bs.Nstates-1, E%iE%i);" % (e,i)) cppclass.append(" Primitive E%iF%i = bs.turbomolePrimitive(%.8f,%.8f,1,0,2,corePos);" % (e, i,exponents[i][e], weights[i][e])) cppclass.append(" bs.add_primitive_to_state(bs.Nstates-1, E%iF%i);" %( e,i)) cppclass.append(" Primitive E%iG%i = bs.turbomolePrimitive(%.8f,%.8f,2,1,0,corePos);" % (e, i,exponents[i][e], weights[i][e])) cppclass.append(" bs.add_primitive_to_state(bs.Nstates-1, E%iG%i);" % (e,i)) cppclass.append(" Primitive E%iH%i = bs.turbomolePrimitive(%.8f,%.8f,0,2,1,corePos);" % (e,i, exponents[i][e], weights[i][e])) cppclass.append(" bs.add_primitive_to_state(bs.Nstates-1, E%iH%i);" % (e,i)) cppclass.append(" Primitive E%iI%i = bs.turbomolePrimitive(%.8f,%.8f,2,0,1,corePos);" % (e, i,exponents[i][e], weights[i][e])) cppclass.append(" bs.add_primitive_to_state(bs.Nstates-1, E%iI%i);" %( e,i)) cppclass.append(" Primitive E%iJ%i = bs.turbomolePrimitive(%.8f,%.8f,1,1,1,corePos);" % (e, i,exponents[i][e], weights[i][e])) cppclass.append(" bs.add_primitive_to_state(bs.Nstates-1, E%iJ%i);" %( e,i)) cppclass.append("}\n") return cppheader, cppclass def saveclass(cppclasses, cppheaders): cppfile = "//This file is maintained by an external python script and should not be edited manually.\n#include <basisbank.h>\n#include <armadillo>\n#include <basis.h>\n#include <primitive.h>\nusing namespace std;\nusing namespace arma;\nbasisbank::basisbank(basis BS){\n bs = BS;} \nbasisbank::basisbank(){} \n \n" for i in cppclasses: for e in i: cppfile += e+ "\n" cppfile += "\n" #print cppfile cppheader = "//This file is maintained by an external python script and should not be edited manually.\n#ifndef BASISBANK_H\n#define BASISBANK_H\n#include <armadillo>\n#include <basis.h>\n#include <primitive.h>\nusing namespace std;\nusing namespace arma;\n \nclass basisbank{\npublic:\n basisbank(basis BS);\n basisbank();\n basis bs;\n string basistype;" for i in cppheaders: for e in i: cppheader += e + "\n" cppheader += "};\n" cppheader += "#endif // BASISBANK_H" #print cppheader #Write files cpp_header = open("basisbank.h", "w") cpp_class = open("basisbank.cpp", "w") cpp_header.write(cppheader) cpp_class.write(cppfile) cpp_header.close() cpp_class.close() def convertfolder(): cppclasses = [] cppheaders = [] folder = [] #a list containing all files in folder #os.chdir("/") #print os.getcwd() for filename in os.listdir(os.getcwd()): if filename.endswith(".txt"): try: #comments, orbital_types, N_orbitals, exponents, weigths = extract_basisinfo(filename) comments, I = extract_m_basisinfo(filename) commented = 0 #print comments for i in I: #i = [bT, basisW, basisE, contractedtype, len(contractedtype)] if commented == 0: cppheader, cppclass = createfunction(i[0], comments, i[3], i[4], i[2], i[1]) cppclasses.append(cppclass) cppheaders.append(cppheader) commented = 1 else: cppheader, cppclass = createfunction(i[0], [""], i[3], i[4], i[2], i[1]) cppclasses.append(cppclass) cppheaders.append(cppheader) except: print "Failed to import file:", filename saveclass(cppclasses, cppheaders) #filename = "STO6G_H.txt" #comments, orbital_types, N_orbitals, exponents, weigths = extract_basisinfo(filename) #cppheader, cppclass = createfunction(filename, comments, orbital_types, N_orbitals, exponents, weigths) convertfolder() #converts all .txt files in current folder #saveclass([cppclass],[cppheader]) #filename = "sto3g_all.txt" #comm, info = extract_m_basisinfo(filename) #for i in info: # print i[0] #print exponents convertfolder() #converts all .txt files in current folder
CompPhysics/ThesisProjects
doc/MSc/msc_students/former/AudunHansen/Audun/Pythonscripts/TurbomoleConverter/TurbomoleConverter.py
Python
cc0-1.0
15,786
[ "TURBOMOLE" ]
8d491cb6a67df6c33eb84bb9f720eaf073fe6322c1c3e2d52f24159e31de0b6d
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations def initial_data(apps, schema_editor): TC = apps.get_model('tech', 'TechCategory') T = apps.get_model('tech', 'Tech') tc = TC(name='Physics', cost=50, category='PH') tc.save() T(name='Laser Cannon', categ=tc, desc="""Highly focused, coherent beams of light which deliver 1-4 points of damage. Modifications: autofire, armor piercing, heavy mount, continuous, point defense, no range dissipation.""").save() T(name='Laser Rifle', categ=tc, desc="""A hand-held weapon that increases the combat rating of militia, troops, and armor by +5. The bonus is not cumulative with other rifles.""").save() T(name='Space Scanner', categ=tc, desc="""Detects enemy ships. Base detection range is 1 parsec. Ships in transit can be detected 1 parsec further per size class of ship.""").save() tc = TC(name='Fusion Physics', cost=150, category='PH') tc.save() T(name='Fusion Beam', categ=tc, desc="""Projects a tetrium stream of charged particles, inflicting 2-6 points of damage Modifications: heavy mount, continuous, point defense, enveloping.""").save() T(name='Fusion Rifle', categ=tc, desc="""A powerful hand-held rifle that increases the combat rating of militia, troops, and armor by +10. The bonus is not cumulative with other rifles.""").save() tc = TC(name='Tachyon Physics', cost=250, category='PH') tc.save() T(name='Tachyon Communication', categ=tc, desc="""Integrated into star bases, battlestations and star fortresses. Emits signals which penetrate hyperspace. Ships within 3 parsecs can recieve your orders. Increases the command points of these bases by +1.""").save() T(name='Tachyon Scanner', categ=tc, desc="""Detects enemy ships. Has a base detection range of 3 parsecs. Ships in transit can be detected 1 parsec further per size class of ship. Tachyon scanners reduce enemy ship's missile evasion by -20.""").save() T(name='Battle Scanner', categ=tc, desc="""Increases a ship's chance to hit with beam weapons by +50%. Adds +2 parsecs to galactic scanning range.""").save() tc = TC(name='Neutrino Physics', cost=900, category='PH') tc.save() T(name='Neutron Blaster', categ=tc, desc="""Fires an intense beam of lethal radiation. Inflicts 3-12 points of damage to shields. Any damage that penetrates the shields kills 1 marine unit for every 5 points of internal damage. Modifications: heavy mount, continuous.""").save() T(name='Neutron Scanner', categ=tc, desc="""Detects enemy ships. Has a base detection range of 5 parsecs. Ships in transit can be detected at 1 parsec per size class of ship greater range. Neutron scanners reduce enemy ship's missile evasion by -40.""").save() tc = TC(name='Artificial Gravity', cost=1150, category='PH') tc.save() T(name='Tractor Beam', categ=tc, desc="""It requires 1 tractor beam per size class of target ship to completely stop the target. Ships not held completely lose a portion of movement. Motionless ships can be boarded and are easy targets to hit.""").save() T(name='Graviton Beam', categ=tc, desc="""Gravitic waves that tear a target apart. Inflicts 3-15 points of damage. Any damage penetrating the ship's shields inflicts extra structural damage. Modifications: heavy mount, continuous.""").save() T(name='Planetary Gravity Generator', categ=tc, desc="""Creates artificial gravity to normalize a planet to standard gravity limits. Gravity generators eliminate the negative effects of low and high gravity fields.""").save() tc = TC(name='Subspace Physics', cost=1500, category='PH') tc.save() T(name='Subspace Communication', categ=tc, desc="""Allows you to issue orders to any ship within 6 squares of a star system with a starbase, battlestation, or star fortress. Increases the command points given by a base by +2 points.""").save() T(name='Jump Gate', categ=tc, desc="""Forms a controlled wormhole between two points, increasing the speed of ships moving through it by 3 parsecs a turn. Once discovered, all colonies will automatically be equipped with one.""").save() tc = TC(name='Multi-Phased Physics', cost=2000, category='PH') tc.save() T(name='Phasor', categ=tc, desc="""Fires a trans-warp beam of phased energy that actually exists in several dimensions simultaneously, inflicting 5-20 points of damage. Modifications: autofire, continuous, heavy mount, point defense, shield piercing.""").save() T(name='Phasor Rifle', categ=tc, desc="""A hand-held rifle that can almost disintegrate an opponent with one blast, increasing the combat rating of militia, troops and armor by +20. The bonus is not cumulative with other rifles.""").save() T(name='Multi-Phased Shields', categ=tc, desc="""Allow ships to rapidly change the frequency of their shields, increasing the maximum strength by +50%.""").save() tc = TC(name='Plasma Physics', cost=3500, category='PH') tc.save() T(name='Plasma Cannon', categ=tc, desc="""Fires a blast of plasma energy inflicting 6-30 poitns of damage to all 4 shields of the target. Only focuses well over a short range, doubling all range penalties. Modifications: heavy mount, and continuous fire.""").save() T(name='Plasma Rifle', categ=tc, desc="""The most powerful held weapon, increasing the combat rating of militia, troops, and armor by +30. The bonus is not cumulative with other rifle bonuses.""").save() T(name='Plasma Web', categ=tc, desc="""An energy web that envelopes a target within a 15 square range. Inflicts 5-25 points of damage per turn. Thsi damage persists, dissipating at a rate of 5 points per turn.""").save() tc = TC(name='Multi-Dimensiomal Physics', cost=4500, category='PH') tc.save() T(name='Disruptor Cannon', categ=tc, desc="""Fires intense bolts of energy that inflicts 40 points of damage. Damage from disrupter bolts is not reduced by range. Modifications: autofire, heavy mount.""").save() T(name='Dimensional Portal', categ=tc, desc="""Allows ships to cross into the dimension of the Antaran home world. To use it, select a fleet in the same system as the portal and press the 'Attack Antarans' button on the fleet pop-up.""").save() tc = TC(name='Hyper-Dimensional Physics', cost=6000, category='PH') tc.save() T(name='Hyperspace Communication', categ=tc, desc="""Allows you to communicate with any ship already in hyperspace so you can change its destination. Increases the command points of star bases, battle stations and star fortresses by +3 points.""").save() T(name='Sensors', categ=tc, desc="""Detects enemy ships. Has a base detection range of 8 parsecs. Ships in transit can be detected 1 parsec further per size class of ship. Sensors reduce enemy ship's missile evasion by -70.""").save() T(name='Mauler Device', categ=tc, desc="""Fires a bolt of pure energy that always hits. Inflicts 100 points of damage, but with double the range penalties for dissipation. Modifications: heavy mount.""").save() tc = TC(name='Temporal Physics', cost=15000, category='PH') tc.save() T(name='Time Warp Facilitator', categ=tc, desc="""Allows a ship to shift in and out of the time-space continuum, enabling it to take an additional turn at the end of every combat turn.""").save() T(name='Stellar Converter', categ=tc, desc="""A plasma cannon that can be mounted on a ship or planet. Automatically inflicts 400 hits to all shields of any ship, regardless of range and defense. Completely destroys a planet when used for orbital bombardment.""").save() T(name='Star Gate', categ=tc, desc="""Allows instantaneous movement between any of your colonies. All colonies are automatically equipped with one once the technology is researched.""").save() class Migration(migrations.Migration): dependencies = [ ('tech', '0008_biology_techs'), ] operations = [ migrations.RunPython(initial_data), ] # EOF
dwagon/pymoo
moo/tech/migrations/0009_physics_techs.py
Python
gpl-2.0
7,981
[ "BLAST" ]
e67103871ebf7d93cc0c27126bfe732c3304eed720219e8f17c9cb49690f75c2
''' Some tests for filters ''' from __future__ import division, print_function, absolute_import import sys import numpy as np from numpy.testing import (assert_equal, assert_raises, assert_allclose, assert_array_equal, assert_almost_equal, TestCase, run_module_suite) import scipy.ndimage as sndi def test_ticket_701(): # Test generic filter sizes arr = np.arange(4).reshape((2,2)) func = lambda x: np.min(x) res = sndi.generic_filter(arr, func, size=(1,1)) # The following raises an error unless ticket 701 is fixed res2 = sndi.generic_filter(arr, func, size=1) assert_equal(res, res2) def test_gh_5430(): # At least one of these raises an error unless gh-5430 is # fixed. In py2k an int is implemented using a C long, so # which one fails depends on your system. In py3k there is only # one arbitrary precision integer type, so both should fail. sigma = np.int32(1) out = sndi._ni_support._normalize_sequence(sigma, 1) assert_equal(out, [sigma]) sigma = np.int64(1) out = sndi._ni_support._normalize_sequence(sigma, 1) assert_equal(out, [sigma]) # This worked before; make sure it still works sigma = 1 out = sndi._ni_support._normalize_sequence(sigma, 1) assert_equal(out, [sigma]) # This worked before; make sure it still works sigma = [1, 1] out = sndi._ni_support._normalize_sequence(sigma, 2) assert_equal(out, sigma) # Also include the OPs original example to make sure we fixed the issue x = np.random.normal(size=(256, 256)) perlin = np.zeros_like(x) for i in 2**np.arange(6): perlin += sndi.filters.gaussian_filter(x, i, mode="wrap") * i**2 # This also fixes gh-4106, show that the OPs example now runs. x = np.int64(21) sndi._ni_support._normalize_sequence(x, 0) def test_orders_gauss(): # Check order inputs to Gaussians arr = np.zeros((1,)) yield assert_equal, 0, sndi.gaussian_filter(arr, 1, order=0) yield assert_equal, 0, sndi.gaussian_filter(arr, 1, order=3) yield assert_raises, ValueError, sndi.gaussian_filter, arr, 1, -1 yield assert_raises, ValueError, sndi.gaussian_filter, arr, 1, 4 yield assert_equal, 0, sndi.gaussian_filter1d(arr, 1, axis=-1, order=0) yield assert_equal, 0, sndi.gaussian_filter1d(arr, 1, axis=-1, order=3) yield assert_raises, ValueError, sndi.gaussian_filter1d, arr, 1, -1, -1 yield assert_raises, ValueError, sndi.gaussian_filter1d, arr, 1, -1, 4 def test_valid_origins(): """Regression test for #1311.""" func = lambda x: np.mean(x) data = np.array([1,2,3,4,5], dtype=np.float64) assert_raises(ValueError, sndi.generic_filter, data, func, size=3, origin=2) func2 = lambda x, y: np.mean(x + y) assert_raises(ValueError, sndi.generic_filter1d, data, func, filter_size=3, origin=2) assert_raises(ValueError, sndi.percentile_filter, data, 0.2, size=3, origin=2) for filter in [sndi.uniform_filter, sndi.minimum_filter, sndi.maximum_filter, sndi.maximum_filter1d, sndi.median_filter, sndi.minimum_filter1d]: # This should work, since for size == 3, the valid range for origin is # -1 to 1. list(filter(data, 3, origin=-1)) list(filter(data, 3, origin=1)) # Just check this raises an error instead of silently accepting or # segfaulting. assert_raises(ValueError, filter, data, 3, origin=2) def test_multiple_modes(): # Test that the filters with multiple mode cababilities for different # dimensions give the same result as applying a single mode. arr = np.array([[1., 0., 0.], [1., 1., 0.], [0., 0., 0.]]) mode1 = 'reflect' mode2 = ['reflect', 'reflect'] assert_equal(sndi.gaussian_filter(arr, 1, mode=mode1), sndi.gaussian_filter(arr, 1, mode=mode2)) assert_equal(sndi.prewitt(arr, mode=mode1), sndi.prewitt(arr, mode=mode2)) assert_equal(sndi.sobel(arr, mode=mode1), sndi.sobel(arr, mode=mode2)) assert_equal(sndi.laplace(arr, mode=mode1), sndi.laplace(arr, mode=mode2)) assert_equal(sndi.gaussian_laplace(arr, 1, mode=mode1), sndi.gaussian_laplace(arr, 1, mode=mode2)) assert_equal(sndi.maximum_filter(arr, size=5, mode=mode1), sndi.maximum_filter(arr, size=5, mode=mode2)) assert_equal(sndi.minimum_filter(arr, size=5, mode=mode1), sndi.minimum_filter(arr, size=5, mode=mode2)) assert_equal(sndi.gaussian_gradient_magnitude(arr, 1, mode=mode1), sndi.gaussian_gradient_magnitude(arr, 1, mode=mode2)) assert_equal(sndi.uniform_filter(arr, 5, mode=mode1), sndi.uniform_filter(arr, 5, mode=mode2)) def test_multiple_modes_sequentially(): # Test that the filters with multiple mode cababilities for different # dimensions give the same result as applying the filters with # different modes sequentially arr = np.array([[1., 0., 0.], [1., 1., 0.], [0., 0., 0.]]) modes = ['reflect', 'wrap'] expected = sndi.gaussian_filter1d(arr, 1, axis=0, mode=modes[0]) expected = sndi.gaussian_filter1d(expected, 1, axis=1, mode=modes[1]) assert_equal(expected, sndi.gaussian_filter(arr, 1, mode=modes)) expected = sndi.uniform_filter1d(arr, 5, axis=0, mode=modes[0]) expected = sndi.uniform_filter1d(expected, 5, axis=1, mode=modes[1]) assert_equal(expected, sndi.uniform_filter(arr, 5, mode=modes)) expected = sndi.maximum_filter1d(arr, size=5, axis=0, mode=modes[0]) expected = sndi.maximum_filter1d(expected, size=5, axis=1, mode=modes[1]) assert_equal(expected, sndi.maximum_filter(arr, size=5, mode=modes)) expected = sndi.minimum_filter1d(arr, size=5, axis=0, mode=modes[0]) expected = sndi.minimum_filter1d(expected, size=5, axis=1, mode=modes[1]) assert_equal(expected, sndi.minimum_filter(arr, size=5, mode=modes)) def test_multiple_modes_prewitt(): # Test prewitt filter for multiple extrapolation modes arr = np.array([[1., 0., 0.], [1., 1., 0.], [0., 0., 0.]]) expected = np.array([[1., -3., 2.], [1., -2., 1.], [1., -1., 0.]]) modes = ['reflect', 'wrap'] assert_equal(expected, sndi.prewitt(arr, mode=modes)) def test_multiple_modes_sobel(): # Test sobel filter for multiple extrapolation modes arr = np.array([[1., 0., 0.], [1., 1., 0.], [0., 0., 0.]]) expected = np.array([[1., -4., 3.], [2., -3., 1.], [1., -1., 0.]]) modes = ['reflect', 'wrap'] assert_equal(expected, sndi.sobel(arr, mode=modes)) def test_multiple_modes_laplace(): # Test laplace filter for multiple extrapolation modes arr = np.array([[1., 0., 0.], [1., 1., 0.], [0., 0., 0.]]) expected = np.array([[-2., 2., 1.], [-2., -3., 2.], [1., 1., 0.]]) modes = ['reflect', 'wrap'] assert_equal(expected, sndi.laplace(arr, mode=modes)) def test_multiple_modes_gaussian_laplace(): # Test gaussian_laplace filter for multiple extrapolation modes arr = np.array([[1., 0., 0.], [1., 1., 0.], [0., 0., 0.]]) expected = np.array([[-0.28438687, 0.01559809, 0.19773499], [-0.36630503, -0.20069774, 0.07483620], [0.15849176, 0.18495566, 0.21934094]]) modes = ['reflect', 'wrap'] assert_almost_equal(expected, sndi.gaussian_laplace(arr, 1, mode=modes)) def test_multiple_modes_gaussian_gradient_magnitude(): # Test gaussian_gradient_magnitude filter for multiple # extrapolation modes arr = np.array([[1., 0., 0.], [1., 1., 0.], [0., 0., 0.]]) expected = np.array([[0.04928965, 0.09745625, 0.06405368], [0.23056905, 0.14025305, 0.04550846], [0.19894369, 0.14950060, 0.06796850]]) modes = ['reflect', 'wrap'] calculated = sndi.gaussian_gradient_magnitude(arr, 1, mode=modes) assert_almost_equal(expected, calculated) def test_multiple_modes_uniform(): # Test uniform filter for multiple extrapolation modes arr = np.array([[1., 0., 0.], [1., 1., 0.], [0., 0., 0.]]) expected = np.array([[0.32, 0.40, 0.48], [0.20, 0.28, 0.32], [0.28, 0.32, 0.40]]) modes = ['reflect', 'wrap'] assert_almost_equal(expected, sndi.uniform_filter(arr, 5, mode=modes)) def test_gaussian_truncate(): # Test that Gaussian filters can be truncated at different widths. # These tests only check that the result has the expected number # of nonzero elements. arr = np.zeros((100, 100), float) arr[50, 50] = 1 num_nonzeros_2 = (sndi.gaussian_filter(arr, 5, truncate=2) > 0).sum() assert_equal(num_nonzeros_2, 21**2) num_nonzeros_5 = (sndi.gaussian_filter(arr, 5, truncate=5) > 0).sum() assert_equal(num_nonzeros_5, 51**2) # Test truncate when sigma is a sequence. f = sndi.gaussian_filter(arr, [0.5, 2.5], truncate=3.5) fpos = f > 0 n0 = fpos.any(axis=0).sum() # n0 should be 2*int(2.5*3.5 + 0.5) + 1 assert_equal(n0, 19) n1 = fpos.any(axis=1).sum() # n1 should be 2*int(0.5*3.5 + 0.5) + 1 assert_equal(n1, 5) # Test gaussian_filter1d. x = np.zeros(51) x[25] = 1 f = sndi.gaussian_filter1d(x, sigma=2, truncate=3.5) n = (f > 0).sum() assert_equal(n, 15) # Test gaussian_laplace y = sndi.gaussian_laplace(x, sigma=2, truncate=3.5) nonzero_indices = np.where(y != 0)[0] n = nonzero_indices.ptp() + 1 assert_equal(n, 15) # Test gaussian_gradient_magnitude y = sndi.gaussian_gradient_magnitude(x, sigma=2, truncate=3.5) nonzero_indices = np.where(y != 0)[0] n = nonzero_indices.ptp() + 1 assert_equal(n, 15) class TestThreading(TestCase): def check_func_thread(self, n, fun, args, out): from threading import Thread thrds = [Thread(target=fun, args=args, kwargs={'output': out[x]}) for x in range(n)] [t.start() for t in thrds] [t.join() for t in thrds] def check_func_serial(self, n, fun, args, out): for i in range(n): fun(*args, output=out[i]) def test_correlate1d(self): d = np.random.randn(5000) os = np.empty((4, d.size)) ot = np.empty_like(os) self.check_func_serial(4, sndi.correlate1d, (d, np.arange(5)), os) self.check_func_thread(4, sndi.correlate1d, (d, np.arange(5)), ot) assert_array_equal(os, ot) def test_correlate(self): d = np.random.randn(500, 500) k = np.random.randn(10, 10) os = np.empty([4] + list(d.shape)) ot = np.empty_like(os) self.check_func_serial(4, sndi.correlate, (d, k), os) self.check_func_thread(4, sndi.correlate, (d, k), ot) assert_array_equal(os, ot) def test_median_filter(self): d = np.random.randn(500, 500) os = np.empty([4] + list(d.shape)) ot = np.empty_like(os) self.check_func_serial(4, sndi.median_filter, (d, 3), os) self.check_func_thread(4, sndi.median_filter, (d, 3), ot) assert_array_equal(os, ot) def test_uniform_filter1d(self): d = np.random.randn(5000) os = np.empty((4, d.size)) ot = np.empty_like(os) self.check_func_serial(4, sndi.uniform_filter1d, (d, 5), os) self.check_func_thread(4, sndi.uniform_filter1d, (d, 5), ot) assert_array_equal(os, ot) def test_minmax_filter(self): d = np.random.randn(500, 500) os = np.empty([4] + list(d.shape)) ot = np.empty_like(os) self.check_func_serial(4, sndi.maximum_filter, (d, 3), os) self.check_func_thread(4, sndi.maximum_filter, (d, 3), ot) assert_array_equal(os, ot) self.check_func_serial(4, sndi.minimum_filter, (d, 3), os) self.check_func_thread(4, sndi.minimum_filter, (d, 3), ot) assert_array_equal(os, ot) def test_minmaximum_filter1d(): # Regression gh-3898 in_ = np.arange(10) out = sndi.minimum_filter1d(in_, 1) assert_equal(in_, out) out = sndi.maximum_filter1d(in_, 1) assert_equal(in_, out) # Test reflect out = sndi.minimum_filter1d(in_, 5, mode='reflect') assert_equal([0, 0, 0, 1, 2, 3, 4, 5, 6, 7], out) out = sndi.maximum_filter1d(in_, 5, mode='reflect') assert_equal([2, 3, 4, 5, 6, 7, 8, 9, 9, 9], out) #Test constant out = sndi.minimum_filter1d(in_, 5, mode='constant', cval=-1) assert_equal([-1, -1, 0, 1, 2, 3, 4, 5, -1, -1], out) out = sndi.maximum_filter1d(in_, 5, mode='constant', cval=10) assert_equal([10, 10, 4, 5, 6, 7, 8, 9, 10, 10], out) # Test nearest out = sndi.minimum_filter1d(in_, 5, mode='nearest') assert_equal([0, 0, 0, 1, 2, 3, 4, 5, 6, 7], out) out = sndi.maximum_filter1d(in_, 5, mode='nearest') assert_equal([2, 3, 4, 5, 6, 7, 8, 9, 9, 9], out) # Test wrap out = sndi.minimum_filter1d(in_, 5, mode='wrap') assert_equal([0, 0, 0, 1, 2, 3, 4, 5, 0, 0], out) out = sndi.maximum_filter1d(in_, 5, mode='wrap') assert_equal([9, 9, 4, 5, 6, 7, 8, 9, 9, 9], out) def test_footprint_all_zeros(): # regression test for gh-6876: footprint of all zeros segfaults arr = np.random.randint(0, 100, (100, 100)) kernel = np.zeros((3, 3), bool) with assert_raises(ValueError): sndi.maximum_filter(arr, footprint=kernel) if __name__ == "__main__": run_module_suite(argv=sys.argv)
asnorkin/sentiment_analysis
site/lib/python2.7/site-packages/scipy/ndimage/tests/test_filters.py
Python
mit
14,168
[ "Gaussian" ]
d08d63c3a206179a591249dfd700f0d0f112b2cda15847b41c4592f5d2761f37
""" This class brings together a L{solve.Solver} to choose a set of implmentations, a L{fetch.Fetcher} to download additional components, and the user's configuration settings. @since: 0.53 """ # Copyright (C) 2011, Thomas Leonard # See the README file for details, or visit http://0install.net. from zeroinstall import _ import os from logging import info, debug from zeroinstall.injector import arch, model from zeroinstall.injector.model import network_offline from zeroinstall.support import tasks class Driver(object): """Chooses a set of implementations based on a policy. Typical use: 1. Create a Driver object, giving it the requirements about the program to be run. 2. Call L{solve_with_downloads}. If more information is needed, a L{fetch.Fetcher} will be used to download it. 3. When all downloads are complete, the L{solver} contains the chosen versions. 4. Use L{get_uncached_implementations} to find where to get these versions and download them using L{download_uncached_implementations}. @ivar target_arch: target architecture for binaries (deprecated) @type target_arch: L{arch.Architecture} @ivar solver: solver used to choose a set of implementations @type solver: L{solve.Solver} @ivar watchers: callbacks to invoke after solving """ __slots__ = ['watchers', 'requirements', 'config', 'target_arch', 'solver'] def __init__(self, config, requirements): """ @param config: The configuration settings to use @type config: L{config.Config} @param requirements: Details about the program we want to run @type requirements: L{requirements.Requirements} @since: 0.53 """ self.watchers = [] assert config self.config = config assert requirements self.requirements = requirements self.target_arch = arch.get_architecture(requirements.os, requirements.cpu) from zeroinstall.injector.solver import DefaultSolver self.solver = DefaultSolver(self.config) debug(_("Supported systems: '%s'"), arch.os_ranks) debug(_("Supported processors: '%s'"), arch.machine_ranks) if requirements.before or requirements.not_before: self.solver.extra_restrictions[config.iface_cache.get_interface(requirements.interface_uri)] = [ model.VersionRangeRestriction(model.parse_version(requirements.before), model.parse_version(requirements.not_before))] def get_uncached_implementations(self): """List all chosen implementations which aren't yet available locally. @rtype: [(L{model.Interface}, L{model.Implementation})]""" iface_cache = self.config.iface_cache stores = self.config.stores uncached = [] for uri, selection in self.solver.selections.selections.iteritems(): impl = selection.impl assert impl, self.solver.selections if not impl.is_available(stores): uncached.append((iface_cache.get_interface(uri), impl)) return uncached @tasks.async def solve_with_downloads(self, force = False, update_local = False): """Run the solver, then download any feeds that are missing or that need to be updated. Each time a new feed is imported into the cache, the solver is run again, possibly adding new downloads. @param force: whether to download even if we're already ready to run. @param update_local: fetch PackageKit feeds even if we're ready to run.""" downloads_finished = set() # Successful or otherwise downloads_in_progress = {} # URL -> Download # There are three cases: # 1. We want to run immediately if possible. If not, download all the information we can. # (force = False, update_local = False) # 2. We're in no hurry, but don't want to use the network unnecessarily. # We should still update local information (from PackageKit). # (force = False, update_local = True) # 3. The user explicitly asked us to refresh everything. # (force = True) try_quick_exit = not (force or update_local) while True: self.solver.solve_for(self.requirements) for w in self.watchers: w() if try_quick_exit and self.solver.ready: break try_quick_exit = False if not self.solver.ready: force = True for f in self.solver.feeds_used: if f in downloads_finished or f in downloads_in_progress: continue if os.path.isabs(f): if force: self.config.iface_cache.get_feed(f, force = True) downloads_in_progress[f] = tasks.IdleBlocker('Refresh local feed') continue elif f.startswith('distribution:'): if force or update_local: downloads_in_progress[f] = self.config.fetcher.download_and_import_feed(f, self.config.iface_cache) elif force and self.config.network_use != network_offline: downloads_in_progress[f] = self.config.fetcher.download_and_import_feed(f, self.config.iface_cache) # Once we've starting downloading some things, # we might as well get them all. force = True if not downloads_in_progress: if self.config.network_use == network_offline: info(_("Can't choose versions and in off-line mode, so aborting")) break # Wait for at least one download to finish blockers = downloads_in_progress.values() yield blockers tasks.check(blockers, self.config.handler.report_error) for f in downloads_in_progress.keys(): if f in downloads_in_progress and downloads_in_progress[f].happened: del downloads_in_progress[f] downloads_finished.add(f) # Need to refetch any "distribution" feed that # depends on this one distro_feed_url = 'distribution:' + f if distro_feed_url in downloads_finished: downloads_finished.remove(distro_feed_url) if distro_feed_url in downloads_in_progress: del downloads_in_progress[distro_feed_url] @tasks.async def solve_and_download_impls(self, refresh = False, select_only = False): """Run L{solve_with_downloads} and then get the selected implementations too. @raise SafeException: if we couldn't select a set of implementations @since: 0.40""" refreshed = self.solve_with_downloads(refresh) if refreshed: yield refreshed tasks.check(refreshed) if not self.solver.ready: raise self.solver.get_failure_reason() if not select_only: downloaded = self.download_uncached_implementations() if downloaded: yield downloaded tasks.check(downloaded) def need_download(self): """Decide whether we need to download anything (but don't do it!) @return: true if we MUST download something (feeds or implementations) @rtype: bool""" self.solver.solve_for(self.requirements) for w in self.watchers: w() if not self.solver.ready: return True # Maybe a newer version will work? if self.get_uncached_implementations(): return True return False def download_uncached_implementations(self): """Download all implementations chosen by the solver that are missing from the cache.""" assert self.solver.ready, "Solver is not ready!\n%s" % self.solver.selections stores = self.config.stores return self.config.fetcher.download_impls([impl for impl in self.solver.selections.values() if not impl.is_available(stores)], stores)
dabrahams/zeroinstall
zeroinstall/injector/driver.py
Python
lgpl-2.1
7,058
[ "VisIt" ]
00fb21a9a22477aa506d412ac294ca2fe2fd95a322bed847e2bef7386f67dc4a
# -*- coding: utf-8 -*- # Copyright (c) 2007, 2008, Benoît Chesneau # Copyright (c) 2007 Simon Willison, original work on django-openid # # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # * notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # * notice, this list of conditions and the following disclaimer in the # * documentation and/or other materials provided with the # * distribution. Neither the name of the <ORGANIZATION> nor the names # * of its contributors may be used to endorse or promote products # * derived from this software without specific prior written # * permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, # OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF # THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import cgi import datetime from django.http import HttpResponseRedirect, Http404 from django.http import HttpResponse from django.http import HttpResponseBadRequest from django.template import RequestContext, Context from django.conf import settings as django_settings from askbot.conf import settings as askbot_settings from django.contrib.auth.models import User from django.contrib.auth.decorators import login_required from django.contrib.auth import authenticate from django.core.urlresolvers import reverse from django.forms.util import ErrorList from django.shortcuts import render from django.template.loader import get_template from django.views.decorators import csrf from django.utils.encoding import smart_unicode from askbot.utils.functions import generate_random_key from django.utils.html import escape from django.utils.translation import ugettext as _ from django.utils.safestring import mark_safe from django.utils import simplejson from askbot.mail import send_mail from askbot.utils import decorators as askbot_decorators from askbot.utils.html import site_url from recaptcha_works.decorators import fix_recaptcha_remote_ip from askbot.deps.django_authopenid.ldap_auth import ldap_create_user from askbot.deps.django_authopenid.ldap_auth import ldap_authenticate from askbot.utils.loading import load_module from sanction.client import Client as OAuth2Client from urlparse import urlparse from openid.consumer.consumer import Consumer, \ SUCCESS, CANCEL, FAILURE, SETUP_NEEDED from openid.consumer.discover import DiscoveryFailure from openid.extensions import sreg # needed for some linux distributions like debian try: from openid.yadis import xri except ImportError: from yadis import xri try: from xmlrpclib import Fault as WpFault from wordpress_xmlrpc import Client from wordpress_xmlrpc.methods.users import GetUserInfo except ImportError: pass import urllib from askbot import forms as askbot_forms from askbot.deps.django_authopenid import util from askbot.deps.django_authopenid import decorators from askbot.deps.django_authopenid.models import UserAssociation, UserEmailVerifier from askbot.deps.django_authopenid import forms from askbot.deps.django_authopenid.backends import AuthBackend import logging from askbot.utils.forms import get_next_url from askbot.utils.http import get_request_info from askbot.models.signals import user_logged_in, user_registered def create_authenticated_user_account( username=None, email=None, password=None, user_identifier=None, login_provider_name=None ): """creates a user account, user association with the login method and the the default email subscriptions """ user = User.objects.create_user(username, email) user_registered.send(None, user=user) logging.debug('creating new openid user association for %s', username) if password: user.set_password(password) user.save() else: UserAssociation( openid_url = user_identifier, user = user, provider_name = login_provider_name, last_used_timestamp = datetime.datetime.now() ).save() subscribe_form = askbot_forms.SimpleEmailSubscribeForm({'subscribe': 'y'}) subscribe_form.full_clean() logging.debug('saving email feed settings') subscribe_form.save(user) logging.debug('logging the user in') user = authenticate(method='force', user_id=user.id) if user is None: error_message = 'please make sure that ' + \ 'askbot.deps.django_authopenid.backends.AuthBackend' + \ 'is in your settings.AUTHENTICATION_BACKENDS' raise Exception(error_message) return user def cleanup_post_register_session(request): """delete keys from session after registration is complete""" keys = ( 'user_identifier', 'login_provider_name', 'username', 'email', 'password', 'validation_code' ) for key in keys: if key in request.session: del request.session[key] #todo: decouple from askbot def login(request, user): from django.contrib.auth import login as _login # get old session key session_key = request.session.session_key # login and get new session key _login(request, user) # send signal with old session key as argument logging.debug('logged in user %s with session key %s' % (user.username, session_key)) #todo: move to auth app user_logged_in.send( request = request, user = user, session_key=session_key, sender=None ) #todo: uncouple this from askbot def logout(request): from django.contrib.auth import logout as _logout#for login I've added wrapper below - called login _logout(request) def logout_page(request): data = { 'page_class': 'meta', 'have_federated_login_methods': util.have_enabled_federated_login_methods() } return render(request, 'authopenid/logout.html', data) def get_url_host(request): if request.is_secure(): protocol = 'https' else: protocol = 'http' host = escape(request.get_host()) return '%s://%s' % (protocol, host) def get_full_url(request): return get_url_host(request) + request.get_full_path() def ask_openid( request, openid_url, redirect_to, on_failure=None, sreg_request=None ): """ basic function to ask openid and return response """ on_failure = on_failure or signin_failure trust_root = getattr( django_settings, 'OPENID_TRUST_ROOT', get_url_host(request) + '/' ) if xri.identifierScheme(openid_url) == 'XRI' and getattr( django_settings, 'OPENID_DISALLOW_INAMES', False ): msg = _("i-names are not supported") logging.debug('openid failed because i-names are not supported') return on_failure(request, msg) consumer = Consumer(request.session, util.DjangoOpenIDStore()) try: auth_request = consumer.begin(openid_url) except DiscoveryFailure: openid_url = cgi.escape(openid_url) msg = _(u"OpenID %(openid_url)s is invalid" % {'openid_url':openid_url}) logging.debug(msg) return on_failure(request, msg) logging.debug('openid seemed to work') if sreg_request: logging.debug('adding sreg_request - wtf it is?') auth_request.addExtension(sreg_request) redirect_url = auth_request.redirectURL(trust_root, redirect_to) logging.debug('redirecting to %s' % redirect_url) return HttpResponseRedirect(redirect_url) def complete(request, on_success=None, on_failure=None, return_to=None): """ complete openid signin """ assert(on_success is not None) assert(on_failure is not None) logging.debug('in askbot.deps.django_authopenid.complete') consumer = Consumer(request.session, util.DjangoOpenIDStore()) # make sure params are encoded in utf8 params = dict((k,smart_unicode(v)) for k, v in request.GET.items()) openid_response = consumer.complete(params, return_to) try: logging.debug(u'returned openid parameters were: %s' % unicode(params)) except Exception, e: logging.critical(u'fix logging statement above ' + unicode(e)) if openid_response.status == SUCCESS: logging.debug('openid response status is SUCCESS') return on_success( request, openid_response.identity_url, openid_response ) elif openid_response.status == CANCEL: logging.debug('CANCEL') return on_failure(request, 'The request was canceled') elif openid_response.status == FAILURE: logging.debug('FAILURE') return on_failure(request, openid_response.message) elif openid_response.status == SETUP_NEEDED: logging.debug('SETUP NEEDED') return on_failure(request, 'Setup needed') else: logging.debug('BAD OPENID STATUS') assert False, "Bad openid status: %s" % openid_response.status def not_authenticated(func): """ decorator that redirect user to next page if he/she is already logged in.""" def decorated(request, *args, **kwargs): if request.user.is_authenticated(): return HttpResponseRedirect(get_next_url(request)) return func(request, *args, **kwargs) return decorated def complete_oauth2_signin(request): if 'next_url' in request.session: next_url = request.session['next_url'] del request.session['next_url'] else: next_url = reverse('index') if 'error' in request.GET: return HttpResponseRedirect(reverse('index')) csrf_token = request.GET.get('state', None) oauth2_csrf_token = request.session.pop('oauth2_csrf_token', None) if csrf_token is None or csrf_token != oauth2_csrf_token: return HttpResponseBadRequest() providers = util.get_enabled_login_providers() provider_name = request.session.pop('provider_name') params = providers[provider_name] assert(params['type'] == 'oauth2') client_id = getattr( askbot_settings, provider_name.upper() + '_KEY', ) client_secret = getattr( askbot_settings, provider_name.upper() + '_SECRET', ) client = OAuth2Client( token_endpoint=params['token_endpoint'], resource_endpoint=params['resource_endpoint'], redirect_uri=site_url(reverse('user_complete_oauth2_signin')), client_id=client_id, client_secret=client_secret, token_transport=params.get('token_transport', None) ) client.request_token( code=request.GET['code'], parser=params.get('response_parser', None) ) #todo: possibly set additional parameters here user_id = params['get_user_id_function'](client) user = authenticate( oauth_user_id = user_id, provider_name = provider_name, method = 'oauth' ) logging.debug('finalizing oauth signin') request.session['email'] = ''#todo: pull from profile request.session['username'] = ''#todo: pull from profile if (provider_name == 'facebook'): profile = client.request("me") request.session['email'] = profile.get('email', '') request.session['username'] = profile.get('username', '') return finalize_generic_signin( request = request, user = user, user_identifier = user_id, login_provider_name = provider_name, redirect_url = next_url ) def complete_oauth_signin(request): if 'next_url' in request.session: next_url = request.session['next_url'] del request.session['next_url'] else: next_url = reverse('index') if 'denied' in request.GET: return HttpResponseRedirect(next_url) if 'oauth_problem' in request.GET: return HttpResponseRedirect(next_url) try: oauth_token = request.GET['oauth_token'] logging.debug('have token %s' % oauth_token) oauth_verifier = request.GET['oauth_verifier'] logging.debug('have verifier %s' % oauth_verifier) session_oauth_token = request.session['oauth_token'] logging.debug('have token from session') assert(oauth_token == session_oauth_token['oauth_token']) oauth_provider_name = request.session['oauth_provider_name'] logging.debug('have saved provider name') del request.session['oauth_provider_name'] oauth = util.OAuthConnection(oauth_provider_name) user_id = oauth.get_user_id( oauth_token = session_oauth_token, oauth_verifier = oauth_verifier ) logging.debug('have %s user id=%s' % (oauth_provider_name, user_id)) user = authenticate( oauth_user_id = user_id, provider_name = oauth_provider_name, method = 'oauth' ) logging.debug('finalizing oauth signin') request.session['email'] = ''#todo: pull from profile request.session['username'] = ''#todo: pull from profile return finalize_generic_signin( request = request, user = user, user_identifier = user_id, login_provider_name = oauth_provider_name, redirect_url = next_url ) except Exception, e: logging.critical(e) msg = _('Sorry, there was some problem ' 'connecting to the login provider, please try again ' 'or use another login method' ) request.user.message_set.create(message = msg) return HttpResponseRedirect(next_url) #@not_authenticated @csrf.csrf_protect def signin(request, template_name='authopenid/signin.html'): """ signin page. It manages the legacy authentification (user/password) and openid authentification url: /signin/ template : authopenid/signin.htm """ logging.debug('in signin view') on_failure = signin_failure #we need a special priority on where to redirect on successful login #here: #1) url parameter "next" - if explicitly set #2) url from django setting LOGIN_REDIRECT_URL #3) home page of the forum login_redirect_url = getattr(django_settings, 'LOGIN_REDIRECT_URL', None) next_url = get_next_url(request, default = login_redirect_url) logging.debug('next url is %s' % next_url) if askbot_settings.ALLOW_ADD_REMOVE_LOGIN_METHODS == False \ and request.user.is_authenticated(): return HttpResponseRedirect(next_url) if next_url == reverse('user_signin'): next_url = '%(next)s?next=%(next)s' % {'next': next_url} login_form = forms.LoginForm(initial = {'next': next_url}) #todo: get next url make it sticky if next is 'user_signin' if request.method == 'POST': login_form = forms.LoginForm(request.POST) if login_form.is_valid(): provider_name = login_form.cleaned_data['login_provider_name'] if login_form.cleaned_data['login_type'] == 'password': password_action = login_form.cleaned_data['password_action'] if askbot_settings.USE_LDAP_FOR_PASSWORD_LOGIN: assert(password_action == 'login') username = login_form.cleaned_data['username'] password = login_form.cleaned_data['password'] user = authenticate( username=username, password=password, method = 'ldap' ) if user: login(request, user) return HttpResponseRedirect(next_url) else: #try to login again via LDAP user_info = ldap_authenticate(username, password) if user_info['success']: if askbot_settings.LDAP_AUTOCREATE_USERS: #create new user or user = ldap_create_user(user_info).user user = authenticate(method='force', user_id=user.id) assert(user is not None) login(request, user) return HttpResponseRedirect(next_url) else: #continue with proper registration ldap_username = user_info['ldap_username'] request.session['email'] = user_info['email'] request.session['ldap_user_info'] = user_info if askbot_settings.AUTOFILL_USER_DATA: request.session['username'] = ldap_username request.session['first_name'] = \ user_info['first_name'] request.session['last_name'] = \ user_info['last_name'] return finalize_generic_signin( request, login_provider_name = 'ldap', user_identifier = ldap_username + '@ldap', redirect_url = next_url ) else: auth_fail_func_path = getattr( django_settings, 'LDAP_AUTHENTICATE_FAILURE_FUNCTION', None ) if auth_fail_func_path: auth_fail_func = load_module(auth_fail_func_path) auth_fail_func(user_info, login_form) else: login_form.set_password_login_error() #return HttpResponseRedirect(request.path) else: if password_action == 'login': user = authenticate( username = login_form.cleaned_data['username'], password = login_form.cleaned_data['password'], provider_name = provider_name, method = 'password' ) if user is None: login_form.set_password_login_error() else: login(request, user) #todo: here we might need to set cookies #for external login sites return HttpResponseRedirect(next_url) elif password_action == 'change_password': if request.user.is_authenticated(): new_password = \ login_form.cleaned_data['new_password'] AuthBackend.set_password( user=request.user, password=new_password, provider_name=provider_name ) request.user.message_set.create( message = _('Your new password is saved') ) return HttpResponseRedirect(next_url) else: logging.critical( 'unknown password action %s' % password_action ) raise Http404 elif login_form.cleaned_data['login_type'] == 'mozilla-persona': assertion = login_form.cleaned_data['persona_assertion'] email = util.mozilla_persona_get_email_from_assertion(assertion) if email: user = authenticate(email=email, method='mozilla-persona') if user is None: user = authenticate(email=email, method='valid_email') if user: #create mozilla persona user association #because we trust the given email address belongs #to the same user UserAssociation( openid_url=email, user=user, provider_name='mozilla-persona', last_used_timestamp=datetime.datetime.now() ).save() if user: login(request, user) return HttpResponseRedirect(next_url) #else - create new user account #pre-fill email address with persona registration request.session['email'] = email return finalize_generic_signin( request, login_provider_name = 'mozilla-persona', user_identifier = email, redirect_url = next_url ) elif login_form.cleaned_data['login_type'] == 'openid': #initiate communication process logging.debug('processing signin with openid submission') #todo: make a simple-use wrapper for openid protocol sreg_req = sreg.SRegRequest(optional=['nickname', 'email']) redirect_to = "%s%s?%s" % ( get_url_host(request), reverse('user_complete_signin'), urllib.urlencode({'next':next_url}) ) return ask_openid( request, login_form.cleaned_data['openid_url'], redirect_to, on_failure=signin_failure, sreg_request=sreg_req ) elif login_form.cleaned_data['login_type'] == 'oauth': try: #this url may need to have "next" piggibacked onto connection = util.OAuthConnection( provider_name, callback_url=reverse('user_complete_oauth_signin') ) connection.start() request.session['oauth_token'] = connection.get_token() request.session['oauth_provider_name'] = provider_name request.session['next_url'] = next_url#special case for oauth oauth_url = connection.get_auth_url(login_only=True) return HttpResponseRedirect(oauth_url) except util.OAuthError, e: logging.critical(unicode(e)) msg = _('Unfortunately, there was some problem when ' 'connecting to %(provider)s, please try again ' 'or use another provider' ) % {'provider': provider_name} request.user.message_set.create(message = msg) elif login_form.cleaned_data['login_type'] == 'oauth2': try: csrf_token = generate_random_key(length=32) redirect_url = util.get_oauth2_starter_url(provider_name, csrf_token) request.session['oauth2_csrf_token'] = csrf_token request.session['provider_name'] = provider_name return HttpResponseRedirect(redirect_url) except util.OAuthError, e: logging.critical(unicode(e)) msg = _('Unfortunately, there was some problem when ' 'connecting to %(provider)s, please try again ' 'or use another provider' ) % {'provider': provider_name} request.user.message_set.create(message = msg) elif login_form.cleaned_data['login_type'] == 'wordpress_site': #here wordpress_site means for a self hosted wordpress blog not a wordpress.com blog wp = Client( askbot_settings.WORDPRESS_SITE_URL, login_form.cleaned_data['username'], login_form.cleaned_data['password'] ) try: wp_user = wp.call(GetUserInfo()) custom_wp_openid_url = '%s?user_id=%s' % (wp.url, wp_user.user_id) user = authenticate( method = 'wordpress_site', wordpress_url = wp.url, wp_user_id = wp_user.user_id ) return finalize_generic_signin( request = request, user = user, user_identifier = custom_wp_openid_url, login_provider_name = provider_name, redirect_url = next_url ) except WpFault, e: logging.critical(unicode(e)) msg = _('The login password combination was not correct') request.user.message_set.create(message = msg) else: #raise 500 error - unknown login type pass else: logging.debug('login form is not valid') logging.debug(login_form.errors) logging.debug(request.REQUEST) if request.method == 'GET' and request.user.is_authenticated(): view_subtype = 'change_openid' else: view_subtype = 'default' return show_signin_view( request, login_form = login_form, view_subtype = view_subtype, template_name=template_name ) @csrf.csrf_protect def show_signin_view( request, login_form = None, account_recovery_form = None, account_recovery_message = None, sticky = False, view_subtype = 'default', template_name='authopenid/signin.html' ): """url-less utility function that populates context of template 'authopenid/signin.html' and returns its rendered output """ allowed_subtypes = ( 'default', 'add_openid', 'email_sent', 'change_openid', 'bad_key' ) assert(view_subtype in allowed_subtypes) if sticky: next_url = reverse('user_signin') else: next_url = get_next_url(request) if login_form is None: login_form = forms.LoginForm(initial = {'next': next_url}) if account_recovery_form is None: account_recovery_form = forms.AccountRecoveryForm()#initial = initial_data) #if request is GET if request.method == 'GET': logging.debug('request method was GET') #todo: this sthuff must be executed on some signal #because askbot should have nothing to do with the login app from askbot.models import AnonymousQuestion as AQ session_key = request.session.session_key logging.debug('retrieving anonymously posted question associated with session %s' % session_key) qlist = AQ.objects.filter(session_key=session_key).order_by('-added_at') if len(qlist) > 0: question = qlist[0] else: question = None from askbot.models import AnonymousAnswer as AA session_key = request.session.session_key logging.debug('retrieving posted answer associated with session %s' % session_key) alist = AA.objects.filter(session_key=session_key).order_by('-added_at') if len(alist) > 0: answer = alist[0] else: answer = None if request.user.is_authenticated(): existing_login_methods = UserAssociation.objects.filter(user = request.user) #annotate objects with extra data providers = util.get_enabled_login_providers() for login_method in existing_login_methods: try: provider_data = providers[login_method.provider_name] if provider_data['type'] == 'password': #only external password logins will not be deletable #this is because users with those can lose access to their accounts permanently login_method.is_deletable = provider_data.get('password_changeable', False) else: login_method.is_deletable = True except KeyError: logging.critical( 'login method %s is no longer available ' 'please delete records for this login method ' 'from the UserAssociation table', login_method.provider_name ) continue if view_subtype == 'default': page_title = _('Please click any of the icons below to sign in') elif view_subtype == 'email_sent': page_title = _('Account recovery email sent') elif view_subtype == 'change_openid': if len(existing_login_methods) == 0: page_title = _('Please add one or more login methods.') else: page_title = _('If you wish, please add, remove or re-validate your login methods') elif view_subtype == 'add_openid': page_title = _('Please wait a second! Your account is recovered, but ...') elif view_subtype == 'bad_key': page_title = _('Sorry, this account recovery key has expired or is invalid') logging.debug('showing signin view') data = { 'page_class': 'openid-signin', 'view_subtype': view_subtype, #add_openid|default 'page_title': page_title, 'question': question, 'answer': answer, 'login_form': login_form, 'use_password_login': util.use_password_login(), 'account_recovery_form': account_recovery_form, 'openid_error_message': request.REQUEST.get('msg',''), 'account_recovery_message': account_recovery_message, 'use_password_login': util.use_password_login(), } major_login_providers = util.get_enabled_major_login_providers() minor_login_providers = util.get_enabled_minor_login_providers() #determine if we are only using password login active_provider_names = [p['name'] for p in major_login_providers.values()] active_provider_names.extend([p['name'] for p in minor_login_providers.values()]) have_buttons = True if (len(active_provider_names) == 1 and active_provider_names[0] == 'local'): if askbot_settings.SIGNIN_ALWAYS_SHOW_LOCAL_LOGIN == True: #in this case the form is not using javascript, so set initial values #here have_buttons = False login_form.initial['login_provider_name'] = 'local' if request.user.is_authenticated(): login_form.initial['password_action'] = 'change_password' else: login_form.initial['password_action'] = 'login' data['have_buttons'] = have_buttons if request.user.is_authenticated(): data['existing_login_methods'] = existing_login_methods active_provider_names = [ item.provider_name for item in existing_login_methods ] util.set_login_provider_tooltips( major_login_providers, active_provider_names = active_provider_names ) util.set_login_provider_tooltips( minor_login_providers, active_provider_names = active_provider_names ) data['major_login_providers'] = major_login_providers.values() data['minor_login_providers'] = minor_login_providers.values() return render(request, template_name, data) @csrf.csrf_exempt @askbot_decorators.post_only @askbot_decorators.ajax_login_required def change_password(request): form = forms.ChangePasswordForm(request.POST) data = dict() if form.is_valid(): request.user.set_password(form.cleaned_data['new_password']) request.user.save() data['message'] = _('Your new password is saved') else: data['errors'] = form.errors return HttpResponse(simplejson.dumps(data), content_type='application/json') @login_required def delete_login_method(request): if askbot_settings.ALLOW_ADD_REMOVE_LOGIN_METHODS == False: raise Http404 if request.is_ajax() and request.method == 'POST': provider_name = request.POST['provider_name'] try: login_method = UserAssociation.objects.get( user = request.user, provider_name = provider_name ) login_method.delete() return HttpResponse('', mimetype = 'application/json') except UserAssociation.DoesNotExist: #error response message = _('Login method %(provider_name)s does not exist') return HttpResponse(message, status=500, mimetype = 'application/json') except UserAssociation.MultipleObjectsReturned: logging.critical( 'have multiple %(provider)s logins for user %(id)s' ) % {'provider':provider_name, 'id': request.user.id} message = _('Oops, sorry - there was some error - please try again') return HttpResponse(message, status=500, mimetype = 'application/json') else: raise Http404 def complete_signin(request): """ in case of complete signin with openid """ logging.debug('')#blank log just for the trace return complete( request, on_success = signin_success, on_failure = signin_failure, return_to = get_url_host(request) + reverse('user_complete_signin') ) def signin_success(request, identity_url, openid_response): """ this is not a view, has no url pointing to this this function is called when OpenID provider returns successful response to user authentication Does actual authentication in Django site and redirects to the registration page, if necessary or adds another login method. """ logging.debug('') openid_data = util.from_openid_response(openid_response) #create janrain OpenID object request.session['openid'] = openid_data openid_url = str(openid_data) user = authenticate( openid_url = openid_url, method = 'openid' ) next_url = get_next_url(request) provider_name = util.get_provider_name(openid_url) request.session['email'] = openid_data.sreg.get('email', '') request.session['username'] = openid_data.sreg.get('nickname', '') return finalize_generic_signin( request = request, user = user, user_identifier = openid_url, login_provider_name = provider_name, redirect_url = next_url ) def finalize_generic_signin( request = None, user = None, login_provider_name = None, user_identifier = None, redirect_url = None ): """non-view function generic signin, run after all protocol-dependent details have been resolved """ if 'in_recovery' in request.session: del request.session['in_recovery'] redirect_url = getattr(django_settings, 'LOGIN_REDIRECT_URL', None) if redirect_url is None: redirect_url = reverse('questions') if request.user.is_authenticated(): #this branch is for adding a new association if user is None: try: #see if currently logged in user has login with the given provider assoc = UserAssociation.objects.get( user=request.user, provider_name=login_provider_name ) logging.info('switching account or open id changed???') #did openid url change? or we are dealing with a brand new open id? message = _( 'If you are trying to sign in to another account, ' 'please sign out first. Otherwise, please report the incident ' 'to the site administrator.' ) request.user.message_set.create(message=message) return HttpResponseRedirect(redirect_url) except UserAssociation.DoesNotExist: #register new association UserAssociation( user=request.user, provider_name=login_provider_name, openid_url=user_identifier, last_used_timestamp=datetime.datetime.now() ).save() return HttpResponseRedirect(redirect_url) elif user != request.user: #prevent theft of account by another pre-existing user logging.critical( 'possible account theft attempt by %s,%d to %s %d' % \ ( request.user.username, request.user.id, user.username, user.id ) ) logout(request)#log out current user login(request, user)#login freshly authenticated user return HttpResponseRedirect(redirect_url) else: #user just checks if another login still works msg = _('Your %(provider)s login works fine') % \ {'provider': login_provider_name} request.user.message_set.create(message = msg) return HttpResponseRedirect(redirect_url) elif user: #login branch login(request, user) logging.debug('login success') return HttpResponseRedirect(redirect_url) else: #need to register request.method = 'GET'#this is not a good thing to do #but necessary at the moment to reuse the register() #method return register( request, login_provider_name=login_provider_name, user_identifier=user_identifier ) @not_authenticated @csrf.csrf_protect @fix_recaptcha_remote_ip def register(request, login_provider_name=None, user_identifier=None): """ this function is used via it's own url with request.method=POST or as a simple function call from "finalize_generic_signin" in which case request.method must ge 'GET' and login_provider_name and user_identifier arguments must not be None user_identifier will be stored in the UserAssociation as openid_url login_provider_name - as provider_name this function may need to be refactored to simplify the usage pattern template : authopenid/complete.html """ logging.debug('') next_url = get_next_url(request) user = None username = request.session.get('username', '') email = request.session.get('email', '') logging.debug('request method is %s' % request.method) form_class = forms.get_registration_form_class() register_form = form_class( initial={ 'next': next_url, 'username': request.session.get('username', ''), 'email': request.session.get('email', ''), } ) if request.method == 'GET': assert(login_provider_name is not None) assert(user_identifier is not None) #store this data into the session #to persist for the post request request.session['login_provider_name'] = login_provider_name request.session['user_identifier'] = user_identifier elif request.method == 'POST': if 'login_provider_name' not in request.session \ or 'user_identifier' not in request.session: logging.critical('illegal attempt to register') return HttpResponseRedirect(reverse('user_signin')) #load this data from the session user_identifier = request.session['user_identifier'] login_provider_name = request.session['login_provider_name'] logging.debug('trying to create new account associated with openid') form_class = forms.get_registration_form_class() register_form = form_class(request.POST) if not register_form.is_valid(): logging.debug('registration form is INVALID') else: username = register_form.cleaned_data['username'] email = register_form.cleaned_data['email'] if 'ldap_user_info' in request.session: user_info = request.session['ldap_user_info'] #we take this info from the user input where #they can override the default provided by LDAP user_info['django_username'] = username user_info['email'] = email user = ldap_create_user(user_info).user user = authenticate(user_id=user.id, method='force') del request.session['ldap_user_info'] login(request, user) cleanup_post_register_session(request) return HttpResponseRedirect(next_url) elif askbot_settings.REQUIRE_VALID_EMAIL_FOR == 'nothing': user = create_authenticated_user_account( username=username, email=email, user_identifier=user_identifier, login_provider_name=login_provider_name, ) login(request, user) cleanup_post_register_session(request) return HttpResponseRedirect(next_url) else: email_verifier = UserEmailVerifier(key=generate_random_key()) email_verifier.value = {'username': username, 'email': email, 'user_identifier': user_identifier, 'login_provider_name': login_provider_name} email_verifier.save() send_email_key(email, email_verifier.key, handler_url_name='verify_email_and_register') redirect_url = reverse('verify_email_and_register') + '?next=' + next_url return HttpResponseRedirect(redirect_url) providers = { 'yahoo':'<font color="purple">Yahoo!</font>', 'flickr':'<font color="#0063dc">flick</font><font color="#ff0084">r</font>&trade;', 'google':'Google&trade;', 'aol':'<font color="#31658e">AOL</font>', 'myopenid':'MyOpenID', } if login_provider_name not in providers: provider_logo = login_provider_name else: provider_logo = providers[login_provider_name] logging.debug('printing authopenid/complete.html output') data = { 'openid_register_form': register_form, 'default_form_action': django_settings.LOGIN_URL, 'provider':mark_safe(provider_logo), 'username': username, 'email': email, 'login_type':'openid', 'gravatar_faq_url':reverse('faq') + '#gravatar', } return render(request, 'authopenid/complete.html', data) def signin_failure(request, message): """ falure with openid signin. Go back to signin page. """ request.user.message_set.create(message = message) return show_signin_view(request) @not_authenticated @csrf.csrf_protect def verify_email_and_register(request): """for POST request - check the validation code, and if correct - create an account an log in the user for GET - give a field to paste the activation code and a button to send another validation email. """ presented_code = request.REQUEST.get('validation_code', None) if presented_code: try: #we get here with post if button is pushed #or with "get" if emailed link is clicked email_verifier = UserEmailVerifier.objects.get(key=presented_code) #verifies that the code has not been used already assert(email_verifier.verified == False) assert(email_verifier.has_expired() == False) username = email_verifier.value['username'] email = email_verifier.value['email'] password = email_verifier.value.get('password', None) user_identifier = email_verifier.value.get('user_identifier', None) login_provider_name = email_verifier.value.get('login_provider_name', None) if password: user = create_authenticated_user_account( username=username, email=email, password=password, ) elif user_identifier and login_provider_name: user = create_authenticated_user_account( username=username, email=email, user_identifier=user_identifier, login_provider_name=login_provider_name, ) else: raise NotImplementedError() login(request, user) email_verifier.verified = True email_verifier.save() cleanup_post_register_session(request) return HttpResponseRedirect(get_next_url(request)) except Exception, e: message = _( 'Sorry, registration failed. ' 'The token can be already used or has expired. Please try again' ) request.user.message_set.create(message=message) return HttpResponseRedirect(reverse('index')) else: data = {'page_class': 'validate-email-page'} return render(request, 'authopenid/verify_email.html', data) @not_authenticated @decorators.valid_password_login_provider_required @csrf.csrf_protect @fix_recaptcha_remote_ip def signup_with_password(request): """Create a password-protected account template: authopenid/signup_with_password.html """ logging.debug(get_request_info(request)) login_form = forms.LoginForm(initial = {'next': get_next_url(request)}) #this is safe because second decorator cleans this field provider_name = request.REQUEST['login_provider'] if askbot_settings.USE_RECAPTCHA: RegisterForm = forms.SafeClassicRegisterForm else: RegisterForm = forms.ClassicRegisterForm logging.debug('request method was %s' % request.method) if request.method == 'POST': form = RegisterForm(request.POST) #validation outside if to remember form values logging.debug('validating classic register form') form1_is_valid = form.is_valid() if form1_is_valid: logging.debug('classic register form validated') else: logging.debug('classic register form is not valid') if form1_is_valid: logging.debug('both forms are valid') next = form.cleaned_data['next'] username = form.cleaned_data['username'] password = form.cleaned_data['password1'] email = form.cleaned_data['email'] if askbot_settings.REQUIRE_VALID_EMAIL_FOR == 'nothing': user = create_authenticated_user_account( username=username, email=email, password=password, ) login(request, user) cleanup_post_register_session(request) return HttpResponseRedirect(get_next_url(request)) else: email_verifier = UserEmailVerifier(key=generate_random_key()) email_verifier.value = {'username': username, 'login_provider_name': provider_name, 'email': email, 'password': password} email_verifier.save() send_email_key(email, email_verifier.key, handler_url_name='verify_email_and_register') redirect_url = reverse('verify_email_and_register') + \ '?next=' + get_next_url(request) return HttpResponseRedirect(redirect_url) else: #todo: this can be solved with a decorator, maybe form.initial['login_provider'] = provider_name logging.debug('create classic account forms were invalid') else: #todo: here we have duplication of get_password_login_provider... form = RegisterForm( initial={ 'next': get_next_url(request), 'login_provider': provider_name } ) logging.debug('printing legacy signup form') major_login_providers = util.get_enabled_major_login_providers() minor_login_providers = util.get_enabled_minor_login_providers() context_data = { 'form': form, 'page_class': 'openid-signin', 'major_login_providers': major_login_providers.values(), 'minor_login_providers': minor_login_providers.values(), 'login_form': login_form } return render( request, 'authopenid/signup_with_password.html', context_data ) #what if request is not posted? @login_required def signout(request): """ signout from the website. Remove openid from session and kill it. url : /signout/" """ logging.debug('') try: logging.debug('deleting openid session var') del request.session['openid'] except KeyError: logging.debug('failed') pass logout(request) logging.debug('user logged out') return HttpResponseRedirect(get_next_url(request)) XRDF_TEMPLATE = """<?xml version='1.0' encoding='UTF-8'?> <xrds:XRDS xmlns:xrds='xri://$xrds' xmlns:openid='http://openid.net/xmlns/1.0' xmlns='xri://$xrd*($v*2.0)'> <XRD> <Service> <Type>http://specs.openid.net/auth/2.0/return_to</Type> <URI>%(return_to)s</URI> </Service> </XRD> </xrds:XRDS>""" def xrdf(request): url_host = get_url_host(request) return_to = "%s%s" % (url_host, reverse('user_complete_signin')) return HttpResponse(XRDF_TEMPLATE % {'return_to': return_to}) def set_new_email(user, new_email): if new_email != user.email: user.email = new_email user.email_isvalid = False user.save() def send_email_key(email, key, handler_url_name='user_account_recover'): """private function. sends email containing validation key to user's email address """ subject = _("Recover your %(site)s account") % \ {'site': askbot_settings.APP_SHORT_NAME} data = { 'site_name': askbot_settings.APP_SHORT_NAME, 'validation_link': site_url(reverse(handler_url_name)) + \ '?validation_code=' + key } template = get_template('authopenid/email_validation.html') message = template.render(data)#todo: inject language preference send_mail(subject, message, django_settings.DEFAULT_FROM_EMAIL, [email]) def send_user_new_email_key(user): user.email_key = generate_random_key() user.save() send_email_key(user.email, user.email_key) def account_recover(request): """view similar to send_email_key, except it allows user to recover an account by entering his/her email address this view will both - send the recover link and process it url name 'user_account_recover' """ if not askbot_settings.ALLOW_ACCOUNT_RECOVERY_BY_EMAIL: raise Http404 if request.method == 'POST': form = forms.AccountRecoveryForm(request.POST) if form.is_valid(): user = form.cleaned_data['user'] send_user_new_email_key(user) message = _( 'Please check your email and visit the enclosed link.' ) return show_signin_view( request, account_recovery_message = message, view_subtype = 'email_sent' ) else: return show_signin_view( request, account_recovery_form = form ) else: key = request.GET.get('validation_code', None) if key is None: return HttpResponseRedirect(reverse('user_signin')) user = authenticate(email_key = key, method = 'email') if user: if request.user.is_authenticated(): if user != request.user: logout(request) login(request, user) else: login(request, user) from askbot.models import greet_new_user greet_new_user(user) #need to show "sticky" signin view here request.session['in_recovery'] = True return show_signin_view( request, view_subtype = 'add_openid', sticky = True ) else: return show_signin_view(request, view_subtype = 'bad_key') return HttpResponseRedirect(get_next_url(request))
coffenbacher/askbot-devel
askbot/deps/django_authopenid/views.py
Python
gpl-3.0
56,136
[ "VisIt" ]
d150af7d91a6b46eafedad91b2cf48dec13315a1971f72c6d60dc303f466e8f9
#!/usr/bin/env python # -*- coding: utf-8 -*- # Example script, part of MDAnalysis """ Example: Comparing a trajectories from different methods ======================================================== Example implementation of Path Similarity Analysis that shows how to read in a set of trajectories, compute (discrete) Fréchet distances, and plot a heat map-dendrogram. This example uses the apo AdK transition between its open and closed crystal structures as a testbed system (see [Seyler2014]). Trajectories are generated given the known structural endpoints. A selection of ten different sampling methods (three transitions each), plus the path of linear interpolation, were used to generate a total of 31 transitions closed to open transition paths. The (discrete) Fréchet distances are computed (between each unique pair of trajectories) and stored in a distance matrix. (See [Seyler2015] for further applications of and information on PSA. The distance matrix is stored in a data file `discrete_frechet.dat` and a numpy file `discrete_frechet.npy`, and the heat map-dendrogram showing Ward hierarchical clustering of the distance matrix is also written to `psadata/plots/df_war_psa-short.pdf` (requires :mod:`matplotlib`). [Seyler2014] S.L. Seyler and O. Beckstein, Sampling large conformational transitions: adenylate kinase as a testing ground. Mol Simul 40 (2014), 855–877, doi:10.1080/08927022.2014.919497 [Seyler2015] S.L. Seyler, A. Kumar, M.F. Thorpe, and O. Beckstein, Path Similarity Analysis: a Method for Quantifying Macromolecular Pathways. `arXiv:1505.04807v1`_ [q-bio.QM], 2015. .. SeeAlso:: :mod:`MDAnalysis.analysis.psa` """ from MDAnalysis import Universe from MDAnalysis.analysis.psa import PSAnalysis from pair_id import PairID if __name__ == '__main__': print("Building collection of simulations...") method_names = ['DIMS', 'FRODA', 'GOdMD', 'MDdMD', 'rTMD-F', 'rTMD-S', \ 'ANMP', 'iENM', 'MAP', 'MENM-SD', 'MENM-SP', \ 'Morph', 'LinInt'] labels = [] # Heat map labels simulations = [] # List of simulation topology/trajectory filename pairs universes = [] # List of MDAnalysis Universes representing simulations # Build list of simulations, each represented by a pair of filenames # ([topology filename], [trajectory filename]). Generate corresponding label # list. for method in method_names: # Note: DIMS uses the PSF topology format topname = 'top.psf' if 'DIMS' in method or 'TMD' in method else 'top.pdb' pathname = 'fitted_psa.dcd' method_dir = 'methods/{}'.format(method) if method is not 'LinInt': for run in xrange(1, 4): # 3 runs per method run_dir = '{}/{:03n}'.format(method_dir, run) topology = '{}/{}'.format(method_dir, topname) trajectory = '{}/{}'.format(run_dir, pathname) labels.append(method + '(' + str(run) + ')') simulations.append((topology, trajectory)) else: # only one LinInt trajectory topology = '{}/{}'.format(method_dir, topname) trajectory = '{}/{}'.format(method_dir, pathname) labels.append(method) simulations.append((topology, trajectory)) # Generate simulation list represented as Universes. Each item, sim, in # simulations is a topology/trajectory filename pair that is unpacked into # an argument list with the "splat" ("*") operator. for sim in simulations: universes.append(Universe(*sim)) print("Initializing Path Similarity Analysis...") psa_hpa = PSAnalysis(universes, path_select='name CA', labels=labels) print("Generating Path objects from trajectories...") psa_hpa.generate_paths() print("Performing full Hausdorff pairs analysis for all pairs of paths...") psa_hpa.run_pairs_analysis(neighbors=True, hausdorff_pairs=True) #------------------------------------------------ # Generate nearest neighbor distance plots #------------------------------------------------ # Add three runs per method, except for LinInt (only has one) identifier = PairID() for name in method_names: run_ids = [1] if 'LinInt' in name else [1,2,3] identifier.add_sim(name, run_ids) # Get the PairID: # The comparison between a pair of simulations is assigned a unique # PairID. Given the order in which simulations are added to PSA, the # comparison between a pair of simulations can be identified by # (distance) matrix indices. The PairID is the index in the corresponding # distance vector of a given pair of simulations. s1, s2, s3 = 'DIMS 1', 'DIMS 2', 'rTMD-F 3' pid1 = identifier.get_pair_id(s1, s2) pid2 = identifier.get_pair_id(s2, s3) print("Plotting nearest neighbors as a function of normalized progress (by" \ + " frame for:") print(" 1. comparison {:d}, {} to {}...".format(pid1, s1, s2)) psa_hpa.plot_nearest_neighbors(filename='nn_dims1_dims2.pdf', idx=pid1, \ labels=(s1, s2)) print(" 2. comparison {:d}, {} to {}...".format(pid2, s2, s3)) psa_hpa.plot_nearest_neighbors(filename='nn_dims2_tmds3.pdf', idx=pid2, \ labels=(s2, s3))
Becksteinlab/PSAnalysisTutorial
psa_hausdorff-pairs.py
Python
gpl-3.0
5,431
[ "CRYSTAL", "MDAnalysis" ]
767cc82b4cd05836007fd59c897e6c105a735819c48d916d263b2a11e7639364
#! /usr/bin/env python import os, sys, glob, subprocess from setuptools import setup, find_packages, Command PACKAGENAME = 'spiralgalaxygame' INSTALL_REQUIRES = [ 'preconditions >= 0.1', 'twisted >= 14.0', 'txpostgres >= 1.2.0', 'psycopg2 >= 2.5.2', 'mock >= 1.0.1', ] def main(args = sys.argv[1:]): setup( name=PACKAGENAME, description='Spiral Galaxy Game', url='https://github.com/nejucomo/{0}'.format(PACKAGENAME), license='GPLv3', version='0.1.dev0', author='Nathan Wilcox', author_email='[email protected]', packages=find_packages(), install_requires=INSTALL_REQUIRES, entry_points = { 'console_scripts': [ 'sgg-{1} = {0}.app.{2}:main'.format(PACKAGENAME, n.replace('_', '-'), n) for n in [ os.path.basename(n)[:-3] for n in glob.glob('{0}/app/*.py'.format(PACKAGENAME)) if not n.endswith('__init__.py') ] ], }, package_data = { PACKAGENAME: [ 'web/static/*', 'sql/*', ] }, cmdclass={ 'test': TestWithCoverageAndTrialInAVirtualEnvCommand, 'test_integration': TestIntegrationCommand, }, ) class VirtualEnvCommandBase (Command): """A base command class for setup subcommands to be run within a virtual env.""" TestToolRequirements = [] # Subclasses should override this with tools they require. user_options = [ ] def __init__(self, dist): Command.__init__(self, dist) join = os.path.join self.basedir = os.path.dirname(os.path.abspath(__file__)) self.pymod = join(self.basedir, PACKAGENAME) self.testdir = join(self.basedir, 'build', 'test') self.venvdir = join(self.testdir, 'venv') self.bindir = os.path.join(self.venvdir, 'bin') self.trial = os.path.join(self.bindir, 'trial') self.pip = os.path.join(self.bindir, 'pip') self.coverage = os.path.join(self.bindir, 'coverage') def initialize_options(self): pass def finalize_options(self): pass def run(self): self._initialize_virtualenv() self._install_testing_tools() # Coverage and trial dump things into cwd, so cd: os.chdir(self.testdir) self.run_within_virtualenv() def _initialize_virtualenv(self): run('virtualenv', '--no-site-packages', self.venvdir) def _install_testing_tools(self): reqspath = os.path.join(self.testdir, 'test-tool-requirements.txt') with file(reqspath, 'w') as f: for req in INSTALL_REQUIRES + self.TestToolRequirements: f.write(req + '\n') run(self.pip, 'install', '--use-mirrors', '--requirement', reqspath) class TestWithCoverageAndTrialInAVirtualEnvCommand (VirtualEnvCommandBase): """Run unit tests with coverage analysis and reporting in a virtualenv. Note: A design goal of this is that all generated files (except for .pyc files) will appear under ./build so that .gitignore can contain only ./build and *.pyc, and a clean operation is merely 'rm -r ./build'. """ description = __doc__ # Internal settings: TestToolRequirements = [ 'coverage == 3.7.1', ] def run_within_virtualenv(self): self._update_python_path() try: run(self.coverage, 'run', '--branch', '--source', self.pymod, self.trial, PACKAGENAME) finally: run(self.coverage, 'html') def _update_python_path(self): if 'PYTHONPATH' in os.environ: os.environ['PYTHONPATH'] = '{0}:{1}'.format(self.basedir, os.environ['PYTHONPATH']) else: os.environ['PYTHONPATH'] = self.basedir class TestIntegrationCommand (VirtualEnvCommandBase): """Run live git with an installed git-remote-lafs on the commandline against a lafs-giab configuration.""" description = __doc__ def run_within_virtualenv(self): url = 'lafs::foo-not-yet-implemented' run(self.pip, 'uninstall', '--yes', 'git-remote-lafs') run(self.pip, 'install', self.basedir) os.environ['PATH'] = '{0}:{1}'.format(self.bindir, os.environ['PATH']) run('git', 'push', url, url) def run(*args): print 'Running: {0!r}'.format(args) try: subprocess.check_call(args, shell=False) except subprocess.CalledProcessError, e: print 'Process exited with {0!r} exit status.'.format(e.returncode) raise if __name__ == '__main__': main()
nejucomo/sgg
setup.py
Python
agpl-3.0
4,730
[ "Galaxy" ]
a5b0fdc4f70379580296b794c883425b25ee2c0ec453773d82f91d60d59eb34d
#!/usr/bin/env python """ This file reads arguments and generate vacancy and antisite structures in intermetallics. """ __author__ = "Bharat Medasani, Enze Chen" __data__ = "Aug 10, 2020" import os from argparse import ArgumentParser from pymatgen.io.vasp.sets import MPMetalRelaxSet from pymatgen.ext.matproj import MPRester from pymatgen.symmetry.analyzer import SpacegroupAnalyzer from pymatgen.core.periodic_table import Element from pymatgen.core.sites import Site from pymatgen.core.structure import Structure from pymatgen.analysis.defects.core import Vacancy from pymatgen.io.vasp.inputs import Kpoints def get_sc_scale(inp_struct, final_site_no): lengths = inp_struct.lattice.abc no_sites = inp_struct.num_sites mult = (final_site_no/no_sites*lengths[0]*lengths[1]*lengths[2]) ** (1./3) num_mult = [int(round(mult/l)) for l in lengths] num_mult = [i if i > 0 else 1 for i in num_mult] return num_mult def vac_antisite_def_struct_gen(mpid, mapi_key, cellmax, struct_file=None): if not mpid and not struct_file: print ("============\nERROR: Provide an mpid\n============") return # Get primitive structure from the Materials Project DB if not struct_file: if not mapi_key: with MPRester() as mp: struct = mp.get_structure_by_material_id(mpid) else: with MPRester(mapi_key) as mp: struct = mp.get_structure_by_material_id(mpid) else: struct = Structure.from_file(struct_file) sga = SpacegroupAnalyzer(struct) prim_struct = sga.find_primitive() #prim_struct_sites = len(prim_struct.sites) #conv_struct = sga.get_conventional_standard_structure() #conv_struct_sites = len(conv_struct.sites) #conv_prim_ratio = int(conv_struct_sites / prim_struct_sites) # Default VASP settings def_vasp_incar_param = {'ISIF':2, 'EDIFF':1e-6, 'EDIFFG':0.001,} kpoint_den = 15000 # Create bulk structure and associated VASP files sc_scale = get_sc_scale(inp_struct=prim_struct, final_site_no=cellmax) blk_sc = prim_struct.copy() blk_sc.make_supercell(scaling_matrix=sc_scale) site_no = blk_sc.num_sites # Rescale if needed while site_no > cellmax: max_sc_dim = max(sc_scale) i = sc_scale.index(max_sc_dim) sc_scale[i] -= 1 blk_sc = prim_struct.copy() blk_sc.make_supercell(scaling_matrix=sc_scale) site_no = blk_sc.num_sites blk_str_sites = set(blk_sc.sites) custom_kpoints = Kpoints.automatic_density(blk_sc, kppa=kpoint_den) mpvis = MPMetalRelaxSet(blk_sc, user_incar_settings=def_vasp_incar_param, user_kpoints_settings=custom_kpoints) if mpid: root_fldr = mpid else: root_fldr = struct.composition.reduced_formula fin_dir = os.path.join(root_fldr, 'bulk') mpvis.write_input(fin_dir) if not mpid: # write the input structure if mpid is not used struct.to(fmt='poscar', filename=os.path.join(fin_dir, 'POSCAR.uc')) # Create each defect structure and associated VASP files # First find all unique defect sites symm_struct = SpacegroupAnalyzer(prim_struct).get_symmetrized_structure() unique_sites = sorted([site[0] for site in symm_struct.equivalent_sites], \ key=lambda s: s.species_string) for i, site in enumerate(unique_sites): vac = Vacancy(structure=prim_struct, defect_site=site) vac_sc = vac.generate_defect_structure(supercell=sc_scale) # Get vacancy site information vac_str_sites = set(vac_sc.sites) vac_sites = blk_str_sites - vac_str_sites vac_site = next(iter(vac_sites)) site_mult = vac.get_multiplicity() vac_site_specie = vac_site.specie vac_symbol = vac_site_specie.symbol custom_kpoints = Kpoints.automatic_density(vac_sc, kppa=kpoint_den) mpvis = MPMetalRelaxSet(vac_sc, user_incar_settings=def_vasp_incar_param, user_kpoints_settings=custom_kpoints) vac_dir = 'vacancy_{}_mult-{}_sitespecie-{}'.format( str(i+1), site_mult, vac_symbol) fin_dir = os.path.join(root_fldr, vac_dir) mpvis.write_input(fin_dir) # Antisites generation at the vacancy site struct_species = blk_sc.species for specie in set(struct_species) - set([vac_site_specie]): specie_symbol = specie.symbol anti_sc = vac_sc.copy() anti_sc.append(specie, vac_site.frac_coords) mpvis = MPMetalRelaxSet(anti_sc, user_incar_settings=def_vasp_incar_param, user_kpoints_settings=custom_kpoints) anti_dir = 'antisite_{}_mult-{}_sitespecie-{}_subspecie-{}'.format( str(i+1), site_mult, vac_symbol, specie_symbol) fin_dir = os.path.join(root_fldr, anti_dir) mpvis.write_input(fin_dir) def substitute_def_struct_gen(mpid, solute, mapi_key, cellmax, struct_file=None): if not mpid and not struct_file: print ("============\nERROR: Provide an mpid\n============") return if not solute: print ("============\nERROR: Provide solute atom\n============") return # Get primitive structure from the Materials Project DB if not struct_file: if not mapi_key: with MPRester() as mp: struct = mp.get_structure_by_material_id(mpid) else: with MPRester(mapi_key) as mp: struct = mp.get_structure_by_material_id(mpid) else: struct = Structure.from_file(struct_file) if mpid: root_fldr = mpid else: root_fldr = struct.composition.reduced_formula sga = SpacegroupAnalyzer(struct) prim_struct = sga.find_primitive() #prim_struct_sites = len(prim_struct.sites) #conv_struct = sga.get_conventional_standard_structure() #conv_struct_sites = len(conv_struct.sites) #conv_prim_ratio = int(conv_struct_sites / prim_struct_sites) # Default VASP settings def_vasp_incar_param = {'ISIF':2, 'EDIFF':1e-6, 'EDIFFG':0.001,} kpoint_den = 15000 # Create each substitutional defect structure and associated VASP files sc_scale = get_sc_scale(inp_struct=prim_struct, final_site_no=cellmax) blk_sc = prim_struct.copy() blk_sc.make_supercell(scaling_matrix=sc_scale) site_no = blk_sc.num_sites # Rescale if needed while site_no > cellmax: max_sc_dim = max(sc_scale) i = sc_scale.index(max_sc_dim) sc_scale[i] -= 1 blk_sc = prim_struct.copy() blk_sc.make_supercell(scaling_matrix=sc_scale) site_no = blk_sc.num_sites # Create solute structures at vacancy sites # First find all unique defect sites blk_str_sites = set(blk_sc.sites) symm_struct = SpacegroupAnalyzer(prim_struct).get_symmetrized_structure() unique_sites = sorted([site[0] for site in symm_struct.equivalent_sites], \ key=lambda s: s.species_string) for i, site in enumerate(unique_sites): vac = Vacancy(structure=prim_struct, defect_site=site) vac_sc = vac.generate_defect_structure(supercell=sc_scale) # Get vacancy site information vac_str_sites = set(vac_sc.sites) vac_sites = blk_str_sites - vac_str_sites vac_site = next(iter(vac_sites)) vac_specie = vac_site.specie.symbol site_mult = vac.get_multiplicity() # Solute substitution defect generation at the vacancy site solute_struct = vac_sc.copy() solute_struct.append(solute, vac_site.frac_coords) custom_kpoints = Kpoints.automatic_density(solute_struct, kppa=kpoint_den) mpvis = MPMetalRelaxSet(solute_struct, user_incar_settings=def_vasp_incar_param, user_kpoints_settings=custom_kpoints) # Generate VASP directory sub_def_dir ='solute_{}_mult-{}_sitespecie-{}_subspecie-{}'.format( str(i+1), site_mult, vac_specie, solute) fin_dir = os.path.join(root_fldr, sub_def_dir) mpvis.write_input(fin_dir) def im_vac_antisite_def_struct_gen(): m_description = 'Command to generate vacancy and antisite defect ' \ 'structures for intermetallics.' parser = ArgumentParser(description=m_description) parser.add_argument( "--mpid", default=None, type=str.lower, help="Materials Project id of the intermetallic structure.\n" \ "For more info on Materials Project, please refer to " \ "www.materialsproject.org") parser.add_argument( "--struct", default=None, type=str, help="Filename of the intermetallic structure.") parser.add_argument( "--mapi_key", default=None, help="Your Materials Project REST API key.\n" \ "For more info, please refer to " \ "www.materialsproject.org/open") parser.add_argument( "--cellmax", type=int, default=128, help="Maximum number of atoms in supercell.\n" \ "The default is 128\n" \ "Keep in mind the number of atoms in the supercell" \ "may vary from the provided number including the default.") args = parser.parse_args() vac_antisite_def_struct_gen(args.mpid, args.mapi_key, args.cellmax, struct_file=args.struct) def im_sol_sub_def_struct_gen(): m_description = 'Command to generate solute substitution defect ' \ 'structures for intermetallics.' parser = ArgumentParser(description=m_description) parser.add_argument( "--mpid", default=None, type=str.lower, help="Materials Project id of the intermetallic structure.\n" \ "For more info on Materials Project, please refer to " \ "www.materialsproject.org") parser.add_argument( "--struct", default=None, type=str, help="Filename of the intermetallic structure." \ "Supported file types include CIF, POSCAR/CONTCAR," \ "CHGCAR, LOCPOT, vasprun.xml, CSSR, Netcdf, and pymatgen JSONs.") parser.add_argument( "--solute", type=str, help="Solute Element") parser.add_argument( "--mapi_key", default=None, help="Your Materials Project REST API key.\n" \ "For more info, please refer to " \ "www.materialsproject.org/open") parser.add_argument( "--cellmax", type=int, default=128, help="Maximum number of atoms in supercell.\n" \ "The default is 128\n" \ "Keep in mind the number of atoms in the supercell" \ "may vary from the provided number including the default.") args = parser.parse_args() substitute_def_struct_gen(args.mpid, args.solute, args.mapi_key, args.cellmax, struct_file=args.struct) if __name__ == '__main__': im_vac_antisite_def_struct_gen() # im_sol_sub_def_struct_gen()
pydii/pydii
pydii/scripts/gen_def_structure.py
Python
mit
11,604
[ "NetCDF", "VASP", "pymatgen" ]
d8e7ee45e80ea8d0d50302b2b4f8076edb2f751d9a608a53bcbc7ce45e8cb62e
# Python module import itertools # Python extension modules (require extension installations) import numpy as np from scipy.stats import futil from scipy.sparse.csgraph import _validation from scipy.stats import uniform, norm, triang, lognorm, beta ## Sample generator ## * Generates sample multipliers from the specified distribution or bounds for the: ## * Latin Hypercube sampling method for the following distributions: ## 1. Uniform distribution ## 2. Normal (Gaussian) distribution ## 3. Triangular distribution ## 4. Lognormal distribution ## 5. Beta distribution ## * Random (uniform distribution) sampling method ## * Full factorial of low, mid and high values ## * Applies the multipliers to modify a mapped parameter set class SampleGenerator : # Method generates Latin Hypercube sampled multipliers for the selected distribution specified for each parameter (via dictionary) def generateLatinHypercubeSampledMultipliers(self, specification_map, number_samples) : # Construct sets of random sampled multipliers from the selected distribution for each parameter multiplier_sets = {} for key, specification in specification_map.items() : # Generate stratified random probability values for distribution generation via inverse CDF stratified_random_probabilities = ((np.array(range(number_samples)) + np.random.random(number_samples))/number_samples) # Use stratified random probability values to generate stratified samples from selected distribution via inverse CDF distribution = specification['distribution'] if distribution == 'uniform' : lower = specification['settings']['lower'] base = specification['settings']['upper'] - lower multiplier_sets[key] = uniform.ppf(stratified_random_probabilities, loc=lower, scale=base).tolist() elif distribution == 'normal' : mean = specification['settings']['mean'] std_dev = specification['settings']['std_dev'] multiplier_sets[key] = norm.ppf(stratified_random_probabilities, loc=mean, scale=std_dev).tolist() elif distribution == 'triangular' : a = specification['settings']['a'] base = specification['settings']['b'] - a c_std = (specification['settings']['c'] - a)/base multiplier_sets[key] = triang.ppf(stratified_random_probabilities, c_std, loc=a, scale=base).tolist() elif distribution == 'lognormal' : lower = specification['settings']['lower'] scale = specification['settings']['scale'] sigma = specification['settings']['sigma'] multiplier_sets[key] = lognorm.ppf(stratified_random_probabilities, sigma, loc=lower, scale=scale).tolist() elif distribution == 'beta' : lower = specification['settings']['lower'] base = specification['settings']['upper'] - lower a = specification['settings']['alpha'] b = specification['settings']['beta'] multiplier_sets[key] = beta.ppf(stratified_random_probabilities, a, b, loc=lower, scale=base).tolist() # Randomly select from sampled multiplier sets without replacement to form multipliers (dictionaries) sampled_multipliers = [] for i in range(number_samples) : sampled_multiplier = {} for key, multiplier_set in multiplier_sets.items() : random_index = np.random.randint(len(multiplier_set)) sampled_multiplier[key] = multiplier_set.pop(random_index) sampled_multipliers.append(sampled_multiplier) return sampled_multipliers # Method generates Random sampled multipliers for specified bounds (dictionary) def generateRandomSampledMultipliers(self, specification_map, number_samples) : # Generate samples of random multipliers sampled_multipliers = [] for i in range(number_samples) : sampled_multiplier = {} for key, specification in specification_map.items() : lower_bound = 1 - specification['bound'] upper_bound = 1 + specification['bound'] sampled_multiplier[key] = np.random.uniform(lower_bound, upper_bound) sampled_multipliers.append(sampled_multiplier) return sampled_multipliers # Method generates Full Factorial multipliers (from lower, mid, upper) for specified bounds (dictionary) def generateFullFactorialMultipliers(self, specification_map) : # Construct sets of lower, mid, and upper multipliers lower_mid_upper_sets = [] key_set = [] # maintains key order for key, specification in specification_map.items() : lower_bound = 1 - specification['bound'] upper_bound = 1 + specification['bound'] lower_mid_upper_sets.append([lower_bound, 1, upper_bound]) key_set.append(key) # Generate the cartesian product of the multiplier sets cartesian_product = list(itertools.product(*lower_mid_upper_sets)) # Map the multiplier sets back to their parameter keys factorial_multipliers = [] for multiplier_set in cartesian_product : key_mapped_multiplier = {} for index, key in enumerate(key_set) : key_mapped_multiplier[key] = multiplier_set[index] factorial_multipliers.append(key_mapped_multiplier) return factorial_multipliers # Method calculates the lower threshold value given a tail probability for a specified distribution def lowerThreshold(self, distribution, specification, tail_probability) : if distribution == 'normal' : mean = specification['mean'] std_dev = specification['std_dev'] return norm.ppf(tail_probability, loc=mean, scale=std_dev) elif distribution == 'lognormal' : lower = specification['lower'] scale = specification['scale'] sigma = specification['sigma'] return lognorm.ppf(tail_probability, sigma, loc=lower, scale=scale) # Method calculates the upper threshold value given a tail probability for a specified distribution def upperThreshold(self, distribution, specification, tail_probability) : return self.lowerThreshold(distribution, specification, 1-tail_probability) # Method utilises a multiplier to modify parameter values def multipy(self, parameter_values, multipliers, parameter_data_types={}) : modified_parameter_values = {} # Multiply each keyed parameter value by the corresponding multiplier where supplied for key, multiplier in multipliers.items() : if type(parameter_values[key]) is dict : # nested modified_parameter_values[key] = {} for nested_key, nested_value in parameter_values[key].items() : modified_parameter_values[key][nested_key] = nested_value*multiplier if parameter_data_types.has_key(key) : if parameter_data_types[key] == 'integer' : modified_parameter_values[key][nested_key] = modified_parameter_values[key][nested_key].round().astype(int) else : modified_parameter_values[key] = parameter_values[key]*multiplier if parameter_data_types.has_key(key) : if parameter_data_types[key] == 'integer' : modified_parameter_values[key] = modified_parameter_values[key].round().astype(int) return modified_parameter_values # Method generates plot values for the selected distribution specified for each parameter (via dictionary) def generateDistributionPlotValues(self, specification) : sample_number = 1000 x_values = [] y_values = [] # Generate plot values from selected distribution via PDF distribution = specification['distribution'] if distribution == 'uniform' : lower = specification['settings']['lower'] upper = specification['settings']['upper'] base = upper - lower incr = base/sample_number for i in range(sample_number) : x_values.append(lower+i*incr) y_values = uniform.pdf(x_values, loc=lower, scale=base).tolist() elif distribution == 'normal' : mean = specification['settings']['mean'] std_dev = specification['settings']['std_dev'] x_min = mean - 3*std_dev x_max = mean + 3*std_dev incr = (x_max - x_min)/sample_number for i in range(sample_number) : x_values.append(x_min+i*incr) y_values = norm.pdf(x_values, loc=mean, scale=std_dev).tolist() elif distribution == 'triangular' : a = specification['settings']['a'] base = specification['settings']['b'] - a c_std = (specification['settings']['c'] - a)/base incr = base/sample_number for i in range(sample_number) : x_values.append(a+i*incr) y_values = triang.pdf(x_values, c_std, loc=a, scale=base).tolist() elif distribution == 'lognormal' : lower = specification['settings']['lower'] scale = specification['settings']['scale'] sigma = specification['settings']['sigma'] x_max = lognorm.isf(0.01, sigma, loc=lower, scale=scale) incr = (x_max - lower)/sample_number for i in range(sample_number) : x_values.append(lower+i*incr) y_values = lognorm.pdf(x_values, sigma, loc=lower, scale=scale).tolist() elif distribution == 'beta' : lower = specification['settings']['lower'] base = specification['settings']['upper'] - lower incr = base/sample_number for i in range(sample_number) : x_values.append(lower+i*incr) a = specification['settings']['alpha'] b = specification['settings']['beta'] y_values = beta.pdf(x_values, a, b, loc=lower, scale=base).tolist() # Remove any nan/inf values remove_indexes = [] for i in range(sample_number) : if not np.isfinite(y_values[i]) : remove_indexes.append(i) for i in range(len(remove_indexes)) : x_values = np.delete(x_values, i) y_values = np.delete(y_values, i) return { 'x_values' : x_values, 'y_values' : y_values } # END SampleGenerator
GlobalEcologyLab/SARDM
SampleGenerator.py
Python
gpl-3.0
11,017
[ "Gaussian" ]
73a61629b776cd486d71c57ed8014f2833f2c7d10a9c93fa2cd063512958a55c
from scipy.ndimage import filters from PIL import Image #from numpy import * from pylab import * def Gausian_response(img,sigma=1): """ Compute Gaussian response function for each pixel in a graylevel image. """ # Gausian response img_sigma = zeros(img.shape) filters.gaussian_filter(img, (sigma,sigma), (0,0), img_sigma) return img_sigma img = array(Image.open('img/graffiti.jpg').convert('L')) sigma1=1 keypoints=ones(img.shape, dtype=bool) img_sigma1=Gausian_response(img,sigma1) for i in range(4): img_sigma1=Gausian_response(img,sigma1) sigma2=sigma1*1.414 img_sigma2=Gausian_response(img,sigma2) keypoints[keypoints]=(img_sigma2[keypoints]-img_sigma1[keypoints])>25 subplot(1,2,1) set_cmap('gray') imshow(img) title('original image') subplot(1,2,2) imshow(keypoints) title('stable keypoints') show()
wasit7/cs634
2016/lab3_find_stable_keypoints.py
Python
bsd-2-clause
878
[ "Gaussian" ]
1de22a443d075f6b62347bb3b715c8e245eb0cb8f4de4f8a2b3ff386bf9174b7
# -*- coding: utf-8 -*- # coding=utf-8 __author__ = 'ben' import os from os import walk import boto.mturk.connection from boto.s3.connection import S3Connection from boto.mturk.qualification import LocaleRequirement, Qualifications, Requirement import datetime import csv import yaml import sys import datetime import pandas as pd import codecs from pprint import pprint sandbox_host = 'mechanicalturk.sandbox.amazonaws.com' real_host = 'mechanicalturk.amazonaws.com' host = os.environ['MODA_MTURK_HOST'] hosts={ 'sandbox':'mechanicalturk.sandbox.amazonaws.com', 'real':'mechanicalturk.amazonaws.com' } phasesQualID = { 'sandbox': { 'practice': '3LJ6LLBDMBQTWUTLG75O5EUQMZM6A6', 'phase1': '3OFCXZK7I1YMQQ45Q5LPJ2OOHCHK93' }, 'real': { 'practice': '3EOSKS3N0DQYQTMKNK1E0HHQOWRVU1', 'phase1': '3874R5DF6Q5C7TEUP9O1NNJXLRMPJ6' } } myWorkerID = { 'sandbox': 'A2SI2XQA7HPR8V', 'real': 'A2SI2XQA7HPR8V' } testingQual = '35NJKTSSL0Z7GHLPTM145UTQ6PFZXY' class MturkTools: """Tools for mturk""" def __init__(self): self.phase = 'phase1experts4' self.expert_only = True self.phase_to_save = {'phase1'} self.date_str = datetime.date.today().isoformat() self.path = '/mnt/c/Users/bdyet/GoogleDrive/MODA/DownloadUserData/' if not os.path.exists(self.path+self.phase): os.makedirs(self.path+self.phase) self.url = "https://shrouded-plains-8041.herokuapp.com/" self.mturk = boto.mturk.connection.MTurkConnection( aws_access_key_id=os.environ['AWS_ACCESS_KEY_ID'], aws_secret_access_key=os.environ['AWS_SECRET_ACCESS_KEY'], host=hosts[host], debug=1 # debug = 2 prints out all requests. ) self.titles_to_remove = ['Find patterns in sleeping brainwaves (Training HIT)', 'Find patterns in sleeping brainwaves'] print("Welcome to mturk tools, your balance is:") accountBal = self.mturk.get_account_balance() # [$10,000.00] print(accountBal) if self.phase=='sandbox' and accountBal[0] != '10,000.00': print('Error, your meant to be in sandbox but you are not!') sys.exit() def get_all_user_data_from_aws(self): s3 = S3Connection(os.environ['AWS_ACCESS_KEY_ID'], os.environ['AWS_SECRET_ACCESS_KEY']) bucket = s3.get_bucket('moss-assets') bucket_list = bucket.list() i=0 for l in bucket_list: key_string = str(l.key) if self.expert_only: str2check = 'UserData_expert' else: str2check = 'UserData' if key_string.find(str2check) != -1: print('Downloading ' + key_string) l.get_contents_to_filename(self.path+self.phase + '/' +key_string) i += 1 print("%i user data files downloaded" % i) def parse_aws_to_csv(self): mypath = self.path+self.phase + '/' for (dirpath, dirnames, filenames) in walk(mypath): break with open(mypath+'EventLocations' + self.date_str + '.csv', 'w') as event_loc_csv_file: event_loc_csv_writer = csv.writer(event_loc_csv_file) event_loc_csv_writer.writerow(['filename', 'phase', 'subID', 'epochNum', 'blockNum', 'annotatorID', 'MODA_batchNum', 'annotatorEventIndex', 'startPercent', 'durationPercent', 'startSecs', 'durationSecs', 'scoreConfidence', 'TimeWindowFirstShown', 'TimeMarkerCreated', 'TimeMarkerLastModified', 'turkHitId', 'turkAssignmentId']) with open(mypath+'EpochViews' + self.date_str + '.csv', 'w') as epoch_csv_file: epoch_csv_writer = csv.writer(epoch_csv_file) epoch_csv_writer.writerow(['filename', 'epochNum', 'blockNum', 'phase', 'annotatorID', 'hitId', 'assignmentId']) with open(mypath+'UserStats' + self.date_str + '.csv', 'w') as user_stats_csv_file: user_stats_csv_writer = csv.writer(user_stats_csv_file) user_stats_csv_writer.writerow(['userName', 'email', 'fname', 'lname', 'userType', 'userSubType', 'totalSetsScored', 'totalEpochsScored', 'totalMarkersScored', 'RPSGT', 'yearsExperience', 'spindleHoursOverLifetime', 'whyQualified', 'otherComments']) for userFile in filenames: # collate markers, and collate batches try: if not (userFile.find('UserData') > -1): continue with open(mypath + '/' + userFile) as userFileHandle: if userFile == "UserData_preview": continue user_data = yaml.safe_load(userFileHandle) try: if 'userName' not in user_data: continue print("working on user %s" % user_data['userName']) dataExists = False epochs_complete = 0 markers_complete = 0 except: print(userFile) for phase in user_data['batches']: if phase not in self.phase_to_save: continue sets_comp = user_data['setsCompleted'][phase] print(" Sets completed in {0}: {1}".format(phase, sets_comp)) for batch in user_data['batches'][phase]: if batch == 'batchMeta': continue for img in user_data['batches'][phase][batch]['imgs']: img_data = user_data['batches'][phase][batch]['imgs'][img] if len(img_data['markers']) > 0 or img_data['noMarkers'] == 'true' or ('mturkInfo' in img_data): dataExists = True epochs_complete += 1 if user_data['userType'] == 'mturker': assignment_id = img_data['mturkInfo']['assignmentId'] hit_id = img_data['mturkInfo']['hitId'] else: hit_id = None assignment_id = None epoch_csv_writer.writerow([img_data['filename'], img_data['epoch'], img_data['batch'],phase, user_data['userName'], hit_id, assignment_id]) for marker in img_data['markers']: if marker['gs'] == 'true' or marker['deleted'] == 'true': continue markers_complete += 1 event_loc_csv_writer.writerow([img_data['filename'], phase, img_data['subID'], img_data['epoch'], img_data['batch'], user_data['userName'], batch, marker['markerIndex'], marker['xP'], marker['wP'], marker['xSecs'], marker['wSecs'], marker['conf'], marker['imgFirstShown'], marker['markerCreated'], marker['timeStamp'], hit_id, assignment_id]) if not dataExists: print("ERROR, %s has a file but did not complete any images. " % user_data['userName']) except: print("Massive Error somewhere with {0}".format(user_data['userName'])) if user_data['userType'] == 'mturker': user_subtype = None rpsgt = None email = None years_experience = None spindle_hours_over_lifetime = None why_qualified = None other_comments = None else: email = user_data['registerData']['email'] other_comments = user_data['registerData']['comments'] if 'RPSGTNum' in user_data['registerData']: user_subtype = 'psgTech' rpsgt = user_data['registerData']['RPSGTNum'] years_experience = user_data['registerData']['yearsExperience'] spindle_hours_over_lifetime = None why_qualified = None elif 'other' in user_data['registerData']: user_subtype = 'other' why_qualified = user_data['registerData']['other'] rpsgt = None years_experience = user_data['registerData']['yearsExperience'] spindle_hours_over_lifetime = user_data['registerData']['timeWorked'] else: user_subtype = 'researcher' spindle_hours_over_lifetime = user_data['registerData']['timeWorked'] rpsgt = None years_experience = user_data['registerData']['yearsExperience'] why_qualified = None if spindle_hours_over_lifetime is not None: try: spindle_hours_over_lifetime = unicode(spindle_hours_over_lifetime.strip(codecs.BOM_UTF8),'utf-8') except: spindle_hours_over_lifetime = 'conversion error' if why_qualified is not None: try: why_qualified = unicode(why_qualified.strip(codecs.BOM_UTF8), 'utf-8') except: why_qualified = 'conversion error' if other_comments is not None: try: other_comments = unicode(other_comments.strip(codecs.BOM_UTF8), 'utf-8') except: other_comments = 'conversion error' if 'fname' in user_data: fname = user_data['fname'] else: fname = 'missing' if 'lname' in user_data: lname = user_data['lname'] else: lname = 'missing' user_stats_csv_writer.writerow([user_data['userName'], email, fname, lname, user_data['userType'], user_subtype, sets_comp, epochs_complete, markers_complete, rpsgt, years_experience, spindle_hours_over_lifetime, why_qualified, other_comments]) user_stats_csv_file.close() epoch_csv_file.close() event_loc_csv_file.close() def save_mturk_data(self): hits = self.get_all_reviewable_hits() try: workerResultData = pd.read_csv(self.path+self.phase + "/WorkerResultData.csv", sep=',') except: workerResultData = pd.DataFrame(columns={'workerId', 'viewedImgs', 'numViewed', 'numHits', 'browser'}) for hit in hits: assignments = self.mturk.get_assignments(hit.HITId) for assignment in assignments: print("Answers of the worker %s" % assignment.WorkerId) for answer in assignment.answers: for idx, ans in enumerate(answer): if idx == 2: for viewedImg in ans.fields: browser = viewedImg print(browser) elif idx == 3: for viewedImg in ans.fields: print(viewedImg) viewedImg = viewedImg.split(',') if len(viewedImg)<1 or viewedImg==None: print("Missing DATA for {0}".format(assignment.WorkerId)) print(viewedImg) continue if assignment.WorkerId not in workerResultData['workerId'].values: ser = pd.Series([assignment.WorkerId, viewedImg, len(viewedImg), 1, browser], index=['workerId','viewedImgs','numViewed','numHits','browser']) workerResultData = workerResultData.append(ser, ignore_index=True) else: currentData = workerResultData.loc[workerResultData['workerId']==assignment.WorkerId, 'viewedImgs'] currentNumViewed = workerResultData.loc[workerResultData['workerId']==assignment.WorkerId, 'numViewed'] currentNumHits = workerResultData.loc[workerResultData['workerId']==assignment.WorkerId, 'numHits'] if not set(viewedImg).issubset(currentData.values[0]): currentDataValue = currentData.values[0] if isinstance(currentDataValue, basestring): currentDataValue = currentDataValue.split(',') workerLoc = workerResultData['workerId']==assignment.WorkerId currentDataValue.extend(viewedImg) workerResultData.loc[workerLoc, 'viewedImgs'] = [currentDataValue] workerResultData.loc[workerLoc, 'numViewed'] = currentNumViewed+len(viewedImg) workerResultData.loc[workerLoc, 'numHits'] = currentNumHits+1 workerResultData.to_csv(self.path+self.phase + "/WorkerResultData.csv") def get_all_reviewable_hits(self): page_size = 50 hits = self.mturk.get_reviewable_hits(page_size=page_size) print("Total results to fetch %s " % hits.TotalNumResults) print("Request hits page %i" % 1) total_pages = float(hits.TotalNumResults)/page_size int_total = int(total_pages) if total_pages - int_total > 0: total_pages = int_total+1 else: total_pages = int_total pn = 1 while pn < total_pages: pn += 1 print("Request hits page %i" % pn) temp_hits = self.mturk.get_reviewable_hits(page_size=page_size,page_number=pn) hits.extend(temp_hits) return hits def get_all_hits(self): return self.mturk.get_all_hits() def approve_hits(self): reviewable_hits = self.get_all_reviewable_hits() for hit in reviewable_hits: assignments = self.mturk.get_assignments(hit.HITId) for assignment in assignments: print("Worker %s" % assignment.WorkerId) try: self.mturk.approve_assignment(assignment.AssignmentId) except: print("already approved") print("--------------------") self.mturk.disable_hit(hit.HITId) def disable_all_hits(self): allHits = self.mturk.get_all_hits() for hit in allHits: if hit.Title in self.titles_to_remove: print('deleting') self.mturk.disable_hit(hit.HITId) def dispose_reviewed_hits(self): allHits = self.mturk.get_all_hits() for hit in allHits: if hit.Title in self.titles_to_remove: print('disposing') self.mturk.dispose_hit(hit.HITId) def expire_remaining_hits(self): allHits = self.mturk.get_all_hits() for hit in allHits: if hit.Title in self.titles_to_remove: print('expiring {0}'.format(hit.Title)) self.mturk.expire_hit(hit.HITId) def remove_qualifications(self, phase_type, workers_to_remove='me'): if workers_to_remove != 'me': qual_data= self.mturk.get_all_qualifications_for_qual_type(phasesQualID[host][phase_type]) workers = [] for worker in qual_data: workers.append(worker.SubjectId) else: workers = [myWorkerID[host]] for workerID in workers: try: self.mturk.revoke_qualification(workerID, phasesQualID[host][phase_type], reason='Granted in error') except: print('worker %s does not have qual' % workerID) def post_prac_hits(self, num_hits, amount, testing=False): title = "Find patterns in sleeping brainwaves (Training HIT)" description = "This is a training hit which will grant you a qualification to complete more HITs." \ "Expected HIT completion time is 12mins (because you have to read instructions etc)," \ " BUT future HITs will be shorter!!!" \ "Your job is to find patterns in recordings of the sleeping brain! Help science understand " \ "sleep and its memory benefits. \n" \ "This project is run by the MODA team at University of California, Riverside." \ "If you would like to find out more about this project please visit our Open Science Project" \ "at https://osf.io/8bma7/ or consider backing our project on " \ "Experiment: https://experiment.com/projects/crowdsourcing-the-analysis-of-sleep-can-the-public-be-sleep-scientists" keywords = ["sleep", "scoring","spindles","spindle","brainwaves", "MODA", "psych", "annotation"] frame_height = 800 # the height of the iframe holding the external hit questionform = boto.mturk.question.ExternalQuestion(self.url + '?currentPhase=practice', frame_height) quals = Qualifications() quals.add(Requirement('000000000000000000L0', 'GreaterThanOrEqualTo', '95')) #'Worker_​PercentHITsApproved' quals.add(Requirement(phasesQualID[host]['practice'], 'DoesNotExist')) quals.add(Requirement(phasesQualID[host]['phase1'], 'DoesNotExist')) if host != 'sandbox': if testing: quals.add(Requirement(testingQual, 'Exists')) else: quals.add(Requirement('00000000000000000040', 'GreaterThanOrEqualTo', '100')) #'Worker_​NumberHITsApproved' i=0 for i in range(1, num_hits+1): self.mturk.create_hit( title=title, description=description, keywords=keywords, question=questionform, reward=boto.mturk.price.Price(amount=amount), lifetime=datetime.timedelta(4), duration=datetime.timedelta(minutes=30), qualifications=quals, response_groups=('Minimal', 'HITDetail'), # I don't know what response groups are ) print('Posted ' + str(i) + ' practice HITS @ $' + str(amount)) def post_futher_hits(self, num_hits, amount, testing=False): url = "https://shrouded-plains-8041.herokuapp.com/" title = "Find patterns in sleeping brainwaves" description = "Expected HIT completion time is ~3 mins.\n\n" \ "Your job is to find patterns in recordings of the sleeping brain! Help science understand " \ "sleep and its memory benefits. \n" \ "This project is run by the MODA team at University of California, Riverside." \ "If you would like to find out more about this project please visit our Open Science Project" \ "at https://osf.io/8bma7/ or consider backing our project on " \ "Experiment: https://experiment.com/projects/crowdsourcing-the-analysis-of-sleep-can-the-public-be-sleep-scientists" keywords = ["sleep", "scoring", "spindles", "spindle", "brainwaves", "MODA", "psych", "annotation"] frame_height = 800 # the height of the iframe holding the external hit questionform = boto.mturk.question.ExternalQuestion(url + '?currentPhase=phase1', frame_height) quals = Qualifications() quals.add(Requirement('000000000000000000L0', 'GreaterThanOrEqualTo', '95')) #'Worker_​PercentHITsApproved' quals.add(Requirement(phasesQualID[host]['practice'], 'Exists')) quals.add(Requirement(phasesQualID[host]['phase1'], 'DoesNotExist')) if host != 'sandbox': if testing: quals.add(Requirement(testingQual, 'Exists')) else: quals.add(Requirement('00000000000000000040', 'GreaterThanOrEqualTo', '100')) #'Worker_​NumberHITsApproved' # quals.add(LocaleRequirement('In', ['US','IN'])) #locale # quals.add(LocaleRequirement('EqualTo', 'IN')) #locale i = 0 for i in range(1, num_hits+1): create_hit_result = self.mturk.create_hit( title=title, description=description, keywords=keywords, question=questionform, reward=boto.mturk.price.Price(amount=amount), lifetime=datetime.timedelta(4), duration=datetime.timedelta(minutes=30), qualifications=quals, response_groups=('Minimal', 'HITDetail'), # I don't know what response groups are ) print('Posted ' + str(i) + ' further HITS @ $' + str(amount)) mtt = MturkTools() #mtt.post_prac_hits(100, 0.20) #mtt.post_futher_hits(100, 0.13) # mtt.expire_remaining_hits() # mtt.save_mturk_data() mtt.get_all_user_data_from_aws() mtt.parse_aws_to_csv() #mtt.approve_hits() #mtt.remove_qualifications('practice') # mtt.mturk.notify_workers('AR72L0JX4D03W', # 'Spindle Detection on MODA', # 'Hi There!,' # 'Thanks for completing spindle detection HITs. ' # 'Unfortunately the data for you HITs is missing. ' # 'This is most likely an error with the spindle detection program. ' # 'Can you help me debug this by replying with your operating system, browser type and version' # 'and if you saw any strange behaviour in the spindle detection program.')
bdyetton/MODA
Tools/MturkTools.py
Python
mit
27,434
[ "VisIt" ]
ab927917a1e3f2d3695d11297f243949ebb9de9fa029fe3a5c85b35a8f2d670d
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import os import re import sys sys.path.insert(0, os.path.abspath('../../src')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.intersphinx', 'sphinx.ext.coverage', 'sphinx.ext.mathjax', 'sphinx.ext.viewcode', 'sphinx_click.ext', 'sphinx_autodoc_typehints', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # General information about the project. project = 'pybel-tools' copyright = '2016-2019, Charles Tapley Hoyt' author = 'Charles Tapley Hoyt' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The full version, including alpha/beta/rc tags. release = '0.9.2-dev' parsed_version = re.match( r'(?P<major>\d+)\.(?P<minor>\d+)\.(?P<patch>\d+)(?:-(?P<release>[0-9A-Za-z-]+(?:\.[0-9A-Za-z-]+)*))?(?:\+(?P<build>[0-9A-Za-z-]+(?:\.[0-9A-Za-z-]+)*))?', release ) version = parsed_version.expand(r'\g<major>.\g<minor>.\g<patch>') if parsed_version.group('release'): tags.add('prerelease') # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = [] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = [] # -- Options for HTMLHelp output ------------------------------------------ # Output file base name for HTML help builder. htmlhelp_basename = 'pybel-toolsdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'pybel-tools.tex', 'PyBEL-Tools Documentation', 'Charles Tapley Hoyt', 'manual'), ] # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'pybel-tools', 'PyBEL-Tools Documentation', [author], 1) ] # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'pybel-tools', 'PyBEL-Tools Documentation', author, 'pybel-tools', 'Algorithms and tools for PyBEL.', 'Miscellaneous'), ] # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = { 'python': ('https://docs.python.org/3', None), 'pybel': ('https://pybel.readthedocs.io/en/latest/', None), 'pandas': ('https://pandas-docs.github.io/pandas-docs-travis/', None) } autodoc_member_order = 'bysource' autoclass_content = 'both' if os.environ.get('READTHEDOCS', None): tags.add('readthedocs')
pybel/pybel-tools
docs/source/conf.py
Python
mit
4,949
[ "Pybel" ]
26bcdd0dd51573997bf9662db84c88476628f77f6aa796400db1f19f48139cc7
# Module adapting imagen classes for use with boxflow # # from __future__ import absolute_import import os import base64 from PIL import Image from io import BytesIO import imagen from imagen import PatternGenerator, Gaussian from imagen import image from imagen import random from imagen.random import RandomGenerator from imagen.transferfn import TransferFn import numpy as np import copy import param import fractions from numbergen import TimeAware param.Dynamic.time_fn(val=0.0, time_type=fractions.Fraction) param.Dynamic.time_dependent = True TimeAware.time_dependent = True # Why can't I set it on RandomGenerator? from .inventory import Inventory, BoxType class Viewport(PatternGenerator): """ Trivial wrapper around a pattern generator used to define a viewport node. """ input = param.ClassSelector(class_=PatternGenerator, default=imagen.Constant(), precedence=1) x = param.Number(default=0.0,softbounds=(-1.0,1.0),precedence=-1) y = param.Number(default=0.0,softbounds=(-1.0,1.0),precedence=-1) orientation = param.Number(default=0.0,precedence=-1) size = param.Number(default=1.0, precedence=-1) scale = param.Number(default=1.0, precedence=-1) offset = param.Number(default=0.0,precedence=-1) output_fns = param.HookList(default=[], precedence=-1) mask_shape = param.ClassSelector(param.Parameterized, default=None, precedence=-1) def function(self,p): return p.input() class BinaryOp(PatternGenerator): lhs = param.ClassSelector(class_=PatternGenerator, default=imagen.Constant(), precedence=1) rhs = param.ClassSelector(class_=PatternGenerator, default=imagen.Constant(), precedence=1) x = param.Number(default=0.0,softbounds=(-1.0,1.0),precedence=-1) y = param.Number(default=0.0,softbounds=(-1.0,1.0),precedence=-1) orientation = param.Number(default=0.0,precedence=-1) size = param.Number(default=1.0, precedence=-1) scale = param.Number(default=1.0, precedence=-1) offset = param.Number(default=0.0,precedence=-1) output_fns = param.HookList(default=[], precedence=-1) mask_shape = param.ClassSelector(param.Parameterized, default=None, precedence=-1) class Add(BinaryOp): def function(self,p): return (p.lhs + p.rhs)() class Sub(BinaryOp): def function(self,p): return (p.lhs - p.rhs)() class Mul(BinaryOp): def function(self,p): return (p.lhs * p.rhs)() def image_to_base64(arr): im = Image.fromarray((arr * 255)) buff = BytesIO() im.convert('RGBA').save(buff, format='png') buff.seek(0) b64 = base64.b64encode(buff.read()) return 'data:image/png;base64,' + b64.decode('utf8') def imagen_display(instance): """ Similar to a display hook. Returns a dictionary of extra content if applicable. """ return {'b64':image_to_base64(instance())} fpath, _ = os.path.split(__file__) manhattan_path = os.path.abspath(os.path.join(fpath, '..', 'assets', 'manhattan.png')) class FileImage(image.FileImage): def __init__(self, *args, **kwargs): super(FileImage, self).__init__(*args, **dict(kwargs, filename=manhattan_path)) class Convolve(TransferFn): """ Imagen transfer function adapted to work without need sheet coordinates. """ kernel_pattern = param.ClassSelector(PatternGenerator, default=Gaussian(size=0.05,aspect_ratio=1.0), doc=""" The kernel pattern used in the convolution. The default kernel results in an isotropic Gaussian blur.""") init_keys = param.List(default=[], constant=True) def __init__(self, **params): super(Convolve,self).__init__(**params) def initialize(self, kernel_xdensity, kernel_ydensity, **kwargs): super(Convolve, self).initialize(**kwargs) pattern_copy = copy.deepcopy(self.kernel_pattern) pattern_copy.set_matrix_dimensions(self.kernel_pattern.bounds, kernel_xdensity, kernel_ydensity) self.kernel = pattern_copy() def __call__(self, x): if not hasattr(self, 'kernel'): raise Exception("Convolve must be initialized before being called.") fft1 = np.fft.fft2(x) fft2 = np.fft.fft2(self.kernel, s=x.shape) convolved_raw = np.fft.ifft2( fft1 * fft2).real k_rows, k_cols = self.kernel.shape # ORIGINAL rolled = np.roll(np.roll(convolved_raw, -(k_cols//2), axis=-1), -(k_rows//2), axis=-2) convolved = rolled / float(self.kernel.sum()) x.fill(0.0) x+=convolved class Blur(PatternGenerator): """ Trivial wrapper around a pattern generator used to define a viewport node. """ input = param.ClassSelector(class_=PatternGenerator, default=imagen.Constant(), precedence=1) blur_amount = param.Integer(default=10,softbounds=(10, 1000),precedence=1) kernel = param.ClassSelector(PatternGenerator, default=Gaussian(size=0.05,aspect_ratio=1.0), precedence=-1, doc=""" The kernel pattern used in the convolution. The default kernel results in an isotropic Gaussian blur.""") x = param.Number(default=0.0,softbounds=(-1.0,1.0),precedence=-1) y = param.Number(default=0.0,softbounds=(-1.0,1.0),precedence=-1) orientation = param.Number(default=0.0,precedence=-1) size = param.Number(default=1.0, precedence=-1) scale = param.Number(default=1.0, precedence=-1) offset = param.Number(default=0.0,precedence=-1) output_fns = param.HookList(default=[], precedence=-1) mask_shape = param.ClassSelector(param.Parameterized, default=None, precedence=-1) def function(self,p): arr = p.input() conv = Convolve(kernel_pattern=p.kernel) conv.initialize(p.blur_amount, p.blur_amount, kernel_pattern=p.kernel) conv(arr) return arr class Invert(PatternGenerator): """ Trivial wrapper around a pattern generator used to define a viewport node. """ input = param.ClassSelector(class_=PatternGenerator, default=imagen.Constant(), precedence=1) x = param.Number(default=0.0,softbounds=(-1.0,1.0),precedence=-1) y = param.Number(default=0.0,softbounds=(-1.0,1.0),precedence=-1) orientation = param.Number(default=0.0,precedence=-1) size = param.Number(default=1.0, precedence=-1) scale = param.Number(default=1.0, precedence=-1) offset = param.Number(default=0.0,precedence=-1) output_fns = param.HookList(default=[], precedence=-1) mask_shape = param.ClassSelector(param.Parameterized, default=None, precedence=-1) def function(self,p): arr = p.input() mina, maxa = arr.min(), arr.max() zeros = np.zeros(arr.shape) return (zeros - arr) + maxa binary_ops = [ BoxType(Sub, untyped=['lhs','rhs']), BoxType(Mul, untyped = ['lhs','rhs'])] patterngenerators = [imagen.Disk, imagen.Gaussian, imagen.Line, imagen.Spiral, imagen.Gabor, imagen.SineGrating, imagen.ConcentricRings, imagen.Asterisk, FileImage, imagen.random.GaussianRandom, imagen.random.GaussianCloud, imagen.random.UniformRandom, imagen.random.UniformRandomInt] vanilla_classes = [ BoxType(patgen, nodetype='ImageNode', display_fn=imagen_display) for patgen in patterngenerators ] imageops = [BoxType(Blur, nodetype='ImageNode', untyped=['input'], display_fn=imagen_display), BoxType(Invert, untyped=['input'])] def load_imagen(): Inventory.add('imagen', vanilla_classes + binary_ops + imageops ) Inventory.add('imagen', BoxType(Viewport, nodetype='Viewport', untyped=['input'], display_fn=imagen_display))
ioam/boxflow
boxflow/interface/imagen.py
Python
bsd-3-clause
8,311
[ "Gaussian" ]
c963bc611605176c6ab0600b2ae8eb1da236734d12f2853103773a24c23a8190
""" .. See the NOTICE file distributed with this work for additional information regarding copyright ownership. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from __future__ import print_function import os import shutil import sys import tarfile from utils import logger try: if hasattr(sys, '_run_from_cmdl') is True: raise ImportError from pycompss.api.parameter import FILE_IN, FILE_OUT from pycompss.api.task import task # from pycompss.api.api import compss_wait_on except ImportError: logger.warn("[Warning] Cannot import \"pycompss\" API packages.") logger.warn(" Using mock decorators.") from utils.dummy_pycompss import FILE_IN, FILE_OUT # pylint: disable=ungrouped-imports from utils.dummy_pycompss import task # pylint: disable=ungrouped-imports # from utils.dummy_pycompss import compss_wait_on # pylint: disable=ungrouped-imports from basic_modules.tool import Tool from basic_modules.metadata import Metadata from tool.aligner_utils import alignerUtils from tool.common import common # ------------------------------------------------------------------------------ class bwaIndexerTool(Tool): """ Tool for running indexers over a genome FASTA file """ def __init__(self, configuration=None): """ Initialise the tool with its configuration. Parameters ---------- configuration : dict a dictionary containing parameters that define how the operation should be carried out, which are specific to each Tool. """ logger.info("BWA Indexer") Tool.__init__(self) if configuration is None: configuration = {} self.configuration.update(configuration) @task(file_loc=FILE_IN, idx_out=FILE_OUT) def bwa_indexer(self, file_loc, idx_out): # pylint: disable=no-self-use """ BWA Indexer Parameters ---------- file_loc : str Location of the genome assebly FASTA file idx_out : str Location of the output index file Returns ------- bool """ au_handler = alignerUtils() amb_loc, ann_loc, bwt_loc, pac_loc, sa_loc = au_handler.bwa_index_genome(file_loc) try: # tar.gz the index logger.info("BWA - idx_out", idx_out, idx_out.replace('.tar.gz', '')) idx_out_pregz = idx_out.replace('.tar.gz', '.tar') index_dir = idx_out.replace('.tar.gz', '') os.mkdir(index_dir) shutil.move(amb_loc, index_dir) shutil.move(ann_loc, index_dir) shutil.move(bwt_loc, index_dir) shutil.move(pac_loc, index_dir) shutil.move(sa_loc, index_dir) tar = tarfile.open(idx_out_pregz, "w") tar.add(index_dir, arcname=os.path.split(index_dir)[1]) tar.close() except (IOError, OSError) as msg: logger.fatal("I/O error({0}) - BWA INDEXER: {1}".format( msg.errno, msg.strerror)) return False common.zip_file(idx_out_pregz) shutil.rmtree(index_dir) return True def run(self, input_files, input_metadata, output_files): """ Function to run the BWA over a genome assembly FASTA file to generate the matching index for use with the aligner Parameters ---------- input_files : dict List containing the location of the genome assembly FASTA file meta_data : dict output_files : dict List of outpout files generated Returns ------- output_files : dict index : str Location of the index file defined in the input parameters output_metadata : dict index : Metadata Metadata relating to the index file """ self.bwa_indexer( input_files["genome"], output_files["index"] ) output_metadata = { "index": Metadata( data_type="sequence_mapping_index_bwa", file_type="TAR", file_path=output_files["index"], sources=[input_metadata["genome"].file_path], taxon_id=input_metadata["genome"].taxon_id, meta_data={ "assembly": input_metadata["genome"].meta_data["assembly"], "tool": "bwa_indexer" } ) } return (output_files, output_metadata) # ------------------------------------------------------------------------------
Multiscale-Genomics/mg-process-fastq
tool/bwa_indexer.py
Python
apache-2.0
5,186
[ "BWA" ]
12bca1721455d88dbfe99c3c5bedc6c03015942d582a3c78ea7846b64b1e8645
######################################################################## # $HeadURL $ # File: RemoveFile.py # Author: [email protected] # Date: 2013/03/25 07:44:19 ######################################################################## """ :mod: RemoveFile ================ .. module: RemoveFile :synopsis: removeFile operation handler .. moduleauthor:: [email protected] removeFile operation handler """ __RCSID__ = "$Id $" # # # @file RemoveFile.py # @author [email protected] # @date 2013/03/25 07:44:27 # @brief Definition of RemoveFile class. # # imports import os import re # # from DIRAC from DIRAC import S_OK, S_ERROR from DIRAC.FrameworkSystem.Client.MonitoringClient import gMonitor from DIRAC.DataManagementSystem.Agent.RequestOperations.DMSRequestOperationsBase import DMSRequestOperationsBase from DIRAC.Resources.Catalog.FileCatalog import FileCatalog ######################################################################## class RemoveFile( DMSRequestOperationsBase ): """ .. class:: RemoveFile remove file operation handler """ def __init__( self, operation = None, csPath = None ): """c'tor :param self: self reference :param Operation operation: Operation to execute :param str csPath: CS path for this handler """ # # call base class ctor DMSRequestOperationsBase.__init__( self, operation, csPath ) # # gMOnitor stuff goes here gMonitor.registerActivity( "RemoveFileAtt", "File removals attempted", "RequestExecutingAgent", "Files/min", gMonitor.OP_SUM ) gMonitor.registerActivity( "RemoveFileOK", "Successful file removals", "RequestExecutingAgent", "Files/min", gMonitor.OP_SUM ) gMonitor.registerActivity( "RemoveFileFail", "Failed file removals", "RequestExecutingAgent", "Files/min", gMonitor.OP_SUM ) # # re pattern for not existing files self.reNotExisting = re.compile( r"(no|not) such file.*", re.IGNORECASE ) def __call__( self ): """ action for 'removeFile' operation """ # # get waiting files waitingFiles = self.getWaitingFilesList() fc = FileCatalog( self.operation.catalogList ) res = fc.getReplicas( [wf.LFN for wf in waitingFiles] ) if not res['OK']: gMonitor.addMark( "RemoveFileAtt" ) gMonitor.addMark( "RemoveFileFail" ) return res # We check the status of the SE from the LFN that are successful # No idea what to do with the others... succ = res['Value']['Successful'] targetSEs = set( [se for lfn in succ for se in succ[lfn] ] ) if targetSEs: bannedTargets = self.checkSEsRSS( targetSEs, access = 'RemoveAccess' ) if not bannedTargets['OK']: gMonitor.addMark( "RemoveFileAtt" ) gMonitor.addMark( "RemoveFileFail" ) return bannedTargets if bannedTargets['Value']: return S_OK( "%s targets are banned for removal" % ",".join( bannedTargets['Value'] ) ) # # prepare waiting file dict toRemoveDict = dict( [ ( opFile.LFN, opFile ) for opFile in waitingFiles ] ) gMonitor.addMark( "RemoveFileAtt", len( toRemoveDict ) ) # # 1st step - bulk removal self.log.debug( "bulk removal of %s files" % len( toRemoveDict ) ) bulkRemoval = self.bulkRemoval( toRemoveDict ) if not bulkRemoval["OK"]: self.log.error( "Bulk file removal failed", bulkRemoval["Message"] ) else: gMonitor.addMark( "RemoveFileOK", len( toRemoveDict ) - len( bulkRemoval["Value"] ) ) toRemoveDict = bulkRemoval["Value"] # # 2nd step - single file removal for lfn, opFile in toRemoveDict.items(): self.log.info( "removing single file %s" % lfn ) singleRemoval = self.singleRemoval( opFile ) if not singleRemoval["OK"]: self.log.error( 'Error removing single file', singleRemoval["Message"] ) gMonitor.addMark( "RemoveFileFail", 1 ) else: self.log.info( "file %s has been removed" % lfn ) gMonitor.addMark( "RemoveFileOK", 1 ) # # set failedFiles = [ ( lfn, opFile ) for ( lfn, opFile ) in toRemoveDict.items() if opFile.Status in ( "Failed", "Waiting" ) ] if failedFiles: self.operation.Error = "failed to remove %d files" % len( failedFiles ) return S_OK() def bulkRemoval( self, toRemoveDict ): """ bulk removal using request owner DN :param dict toRemoveDict: { lfn: opFile, ... } :return: S_ERROR or S_OK( { lfn: opFile, ... } ) -- dict with files still waiting to be removed """ bulkRemoval = self.dm.removeFile( toRemoveDict.keys(), force = True ) if not bulkRemoval["OK"]: error = bulkRemoval["Message"] self.log.error( "Bulk file removal failed", error ) self.operation.Error = error for opFile in self.operation: opFile.Error = error return bulkRemoval bulkRemoval = bulkRemoval["Value"] # # filter results for lfn, opFile in toRemoveDict.items(): if lfn in bulkRemoval["Successful"]: opFile.Status = "Done" elif lfn in bulkRemoval["Failed"]: error = bulkRemoval["Failed"][lfn] if type( error ) == dict: error = ";".join( [ "%s-%s" % ( k, v ) for k, v in error.items() ] ) opFile.Error = error if self.reNotExisting.search( opFile.Error ): opFile.Status = "Done" # # return files still waiting toRemoveDict = dict( [ ( opFile.LFN, opFile ) for opFile in self.operation if opFile.Status == "Waiting" ] ) return S_OK( toRemoveDict ) def singleRemoval( self, opFile ): """ remove single file :param opFile: File instance """ # # try to remove with owner proxy proxyFile = None if "Write access not permitted for this credential" in opFile.Error: if "DataManager" in self.shifter: # # you're a data manager - get proxy for LFN and retry saveProxy = os.environ["X509_USER_PROXY"] try: fileProxy = self.getProxyForLFN( opFile.LFN ) if not fileProxy["OK"]: opFile.Error = "Error getting owner's proxy : %s" % fileProxy['Message'] else: proxyFile = fileProxy["Value"] self.log.info( "Trying to remove file with owner's proxy (file %s)" % proxyFile ) removeFile = self.dm.removeFile( opFile.LFN, force = True ) self.log.always( str( removeFile ) ) if not removeFile["OK"]: opFile.Error = str( removeFile["Message"] ) if self.reNotExisting.search( str( removeFile["Message"] ).lower() ): opFile.Status = "Done" else: removeFile = removeFile["Value"] if opFile.LFN in removeFile["Failed"]: error = removeFile["Failed"][opFile.LFN] if type( error ) == dict: error = ";".join( [ "%s-%s" % ( k, v ) for k, v in error.items() ] ) if self.reNotExisting.search( error ): # This should never happen due to the "force" flag opFile.Status = "Done" else: opFile.Error = error else: opFile.Status = "Done" finally: if proxyFile: os.unlink( proxyFile ) # # put back request owner proxy to env os.environ["X509_USER_PROXY"] = saveProxy # # file removed? update its status to 'Done' if opFile.Status == "Done": return S_OK() return S_ERROR( opFile.Error )
vmendez/DIRAC
DataManagementSystem/Agent/RequestOperations/RemoveFile.py
Python
gpl-3.0
7,595
[ "DIRAC" ]
3f45b997f7d8f0ee48940e4e8235a32659e455f83366efa10e24bb781b7803d2
#!/usr/bin/env python3 # encoding: utf-8 from qcl.ccdata_xyz import ccData_xyz from qcl.stretch import stretch from cclib.parser import ccopen def main(): stretch('product.out') rfiles = ['r1.out', 'r2.out'] reactants = [] for rfile in rfiles: tmp = ccopen(rfile).parse() reactants.append(ccData_xyz(tmp.getattributes(), ccdataconvert=True)) for reactant in reactants: reactant.build_zmatrix() reactant.print_gzmat() if __name__ == '__main__': main()
ben-albrecht/qcl
test/tree/a.py
Python
mit
514
[ "cclib" ]
935adf2ad82db1426985e45c4b4aac0397a847807d4783aa2e40b8cdbc82bd8e
# (c) 2013-2014, Michael DeHaan <[email protected]> # (c) 2015 Toshio Kuratomi <[email protected]> # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # Make coding more python3-ish from __future__ import (absolute_import, division, print_function) __metaclass__ = type import ast import base64 import datetime import json import os import shlex import zipfile import re import pkgutil from io import BytesIO from ansible.release import __version__, __author__ from ansible import constants as C from ansible.errors import AnsibleError from ansible.executor.interpreter_discovery import InterpreterDiscoveryRequiredError from ansible.executor.powershell import module_manifest as ps_manifest from ansible.module_utils._text import to_bytes, to_text, to_native from ansible.module_utils.compat.importlib import import_module from ansible.plugins.loader import module_utils_loader # Must import strategy and use write_locks from there # If we import write_locks directly then we end up binding a # variable to the object and then it never gets updated. from ansible.executor import action_write_locks from ansible.utils.display import Display try: import importlib.util import importlib.machinery imp = None except ImportError: import imp # if we're on a Python that doesn't have FNFError, redefine it as IOError (since that's what we'll see) try: FileNotFoundError except NameError: FileNotFoundError = IOError display = Display() REPLACER = b"#<<INCLUDE_ANSIBLE_MODULE_COMMON>>" REPLACER_VERSION = b"\"<<ANSIBLE_VERSION>>\"" REPLACER_COMPLEX = b"\"<<INCLUDE_ANSIBLE_MODULE_COMPLEX_ARGS>>\"" REPLACER_WINDOWS = b"# POWERSHELL_COMMON" REPLACER_JSONARGS = b"<<INCLUDE_ANSIBLE_MODULE_JSON_ARGS>>" REPLACER_SELINUX = b"<<SELINUX_SPECIAL_FILESYSTEMS>>" # We could end up writing out parameters with unicode characters so we need to # specify an encoding for the python source file ENCODING_STRING = u'# -*- coding: utf-8 -*-' b_ENCODING_STRING = b'# -*- coding: utf-8 -*-' # module_common is relative to module_utils, so fix the path _MODULE_UTILS_PATH = os.path.join(os.path.dirname(__file__), '..', 'module_utils') # ****************************************************************************** ANSIBALLZ_TEMPLATE = u'''%(shebang)s %(coding)s _ANSIBALLZ_WRAPPER = True # For test-module.py script to tell this is a ANSIBALLZ_WRAPPER # This code is part of Ansible, but is an independent component. # The code in this particular templatable string, and this templatable string # only, is BSD licensed. Modules which end up using this snippet, which is # dynamically combined together by Ansible still belong to the author of the # module, and they may assign their own license to the complete work. # # Copyright (c), James Cammarata, 2016 # Copyright (c), Toshio Kuratomi, 2016 # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE # USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. def _ansiballz_main(): %(rlimit)s import os import os.path import sys import __main__ # For some distros and python versions we pick up this script in the temporary # directory. This leads to problems when the ansible module masks a python # library that another import needs. We have not figured out what about the # specific distros and python versions causes this to behave differently. # # Tested distros: # Fedora23 with python3.4 Works # Ubuntu15.10 with python2.7 Works # Ubuntu15.10 with python3.4 Fails without this # Ubuntu16.04.1 with python3.5 Fails without this # To test on another platform: # * use the copy module (since this shadows the stdlib copy module) # * Turn off pipelining # * Make sure that the destination file does not exist # * ansible ubuntu16-test -m copy -a 'src=/etc/motd dest=/var/tmp/m' # This will traceback in shutil. Looking at the complete traceback will show # that shutil is importing copy which finds the ansible module instead of the # stdlib module scriptdir = None try: scriptdir = os.path.dirname(os.path.realpath(__main__.__file__)) except (AttributeError, OSError): # Some platforms don't set __file__ when reading from stdin # OSX raises OSError if using abspath() in a directory we don't have # permission to read (realpath calls abspath) pass if scriptdir is not None: sys.path = [p for p in sys.path if p != scriptdir] import base64 import runpy import shutil import tempfile import zipfile if sys.version_info < (3,): PY3 = False else: PY3 = True ZIPDATA = """%(zipdata)s""" # Note: temp_path isn't needed once we switch to zipimport def invoke_module(modlib_path, temp_path, json_params): # When installed via setuptools (including python setup.py install), # ansible may be installed with an easy-install.pth file. That file # may load the system-wide install of ansible rather than the one in # the module. sitecustomize is the only way to override that setting. z = zipfile.ZipFile(modlib_path, mode='a') # py3: modlib_path will be text, py2: it's bytes. Need bytes at the end sitecustomize = u'import sys\\nsys.path.insert(0,"%%s")\\n' %% modlib_path sitecustomize = sitecustomize.encode('utf-8') # Use a ZipInfo to work around zipfile limitation on hosts with # clocks set to a pre-1980 year (for instance, Raspberry Pi) zinfo = zipfile.ZipInfo() zinfo.filename = 'sitecustomize.py' zinfo.date_time = ( %(year)i, %(month)i, %(day)i, %(hour)i, %(minute)i, %(second)i) z.writestr(zinfo, sitecustomize) z.close() # Put the zipped up module_utils we got from the controller first in the python path so that we # can monkeypatch the right basic sys.path.insert(0, modlib_path) # Monkeypatch the parameters into basic from ansible.module_utils import basic basic._ANSIBLE_ARGS = json_params %(coverage)s # Run the module! By importing it as '__main__', it thinks it is executing as a script runpy.run_module(mod_name='%(module_fqn)s', init_globals=None, run_name='__main__', alter_sys=True) # Ansible modules must exit themselves print('{"msg": "New-style module did not handle its own exit", "failed": true}') sys.exit(1) def debug(command, zipped_mod, json_params): # The code here normally doesn't run. It's only used for debugging on the # remote machine. # # The subcommands in this function make it easier to debug ansiballz # modules. Here's the basic steps: # # Run ansible with the environment variable: ANSIBLE_KEEP_REMOTE_FILES=1 and -vvv # to save the module file remotely:: # $ ANSIBLE_KEEP_REMOTE_FILES=1 ansible host1 -m ping -a 'data=october' -vvv # # Part of the verbose output will tell you where on the remote machine the # module was written to:: # [...] # <host1> SSH: EXEC ssh -C -q -o ControlMaster=auto -o ControlPersist=60s -o KbdInteractiveAuthentication=no -o # PreferredAuthentications=gssapi-with-mic,gssapi-keyex,hostbased,publickey -o PasswordAuthentication=no -o ConnectTimeout=10 -o # ControlPath=/home/badger/.ansible/cp/ansible-ssh-%%h-%%p-%%r -tt rhel7 '/bin/sh -c '"'"'LANG=en_US.UTF-8 LC_ALL=en_US.UTF-8 # LC_MESSAGES=en_US.UTF-8 /usr/bin/python /home/badger/.ansible/tmp/ansible-tmp-1461173013.93-9076457629738/ping'"'"'' # [...] # # Login to the remote machine and run the module file via from the previous # step with the explode subcommand to extract the module payload into # source files:: # $ ssh host1 # $ /usr/bin/python /home/badger/.ansible/tmp/ansible-tmp-1461173013.93-9076457629738/ping explode # Module expanded into: # /home/badger/.ansible/tmp/ansible-tmp-1461173408.08-279692652635227/ansible # # You can now edit the source files to instrument the code or experiment with # different parameter values. When you're ready to run the code you've modified # (instead of the code from the actual zipped module), use the execute subcommand like this:: # $ /usr/bin/python /home/badger/.ansible/tmp/ansible-tmp-1461173013.93-9076457629738/ping execute # Okay to use __file__ here because we're running from a kept file basedir = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'debug_dir') args_path = os.path.join(basedir, 'args') if command == 'excommunicate': print('The excommunicate debug command is deprecated and will be removed in 2.11. Use execute instead.') command = 'execute' if command == 'explode': # transform the ZIPDATA into an exploded directory of code and then # print the path to the code. This is an easy way for people to look # at the code on the remote machine for debugging it in that # environment z = zipfile.ZipFile(zipped_mod) for filename in z.namelist(): if filename.startswith('/'): raise Exception('Something wrong with this module zip file: should not contain absolute paths') dest_filename = os.path.join(basedir, filename) if dest_filename.endswith(os.path.sep) and not os.path.exists(dest_filename): os.makedirs(dest_filename) else: directory = os.path.dirname(dest_filename) if not os.path.exists(directory): os.makedirs(directory) f = open(dest_filename, 'wb') f.write(z.read(filename)) f.close() # write the args file f = open(args_path, 'wb') f.write(json_params) f.close() print('Module expanded into:') print('%%s' %% basedir) exitcode = 0 elif command == 'execute': # Execute the exploded code instead of executing the module from the # embedded ZIPDATA. This allows people to easily run their modified # code on the remote machine to see how changes will affect it. # Set pythonpath to the debug dir sys.path.insert(0, basedir) # read in the args file which the user may have modified with open(args_path, 'rb') as f: json_params = f.read() # Monkeypatch the parameters into basic from ansible.module_utils import basic basic._ANSIBLE_ARGS = json_params # Run the module! By importing it as '__main__', it thinks it is executing as a script runpy.run_module(mod_name='%(module_fqn)s', init_globals=None, run_name='__main__', alter_sys=True) # Ansible modules must exit themselves print('{"msg": "New-style module did not handle its own exit", "failed": true}') sys.exit(1) else: print('WARNING: Unknown debug command. Doing nothing.') exitcode = 0 return exitcode # # See comments in the debug() method for information on debugging # ANSIBALLZ_PARAMS = %(params)s if PY3: ANSIBALLZ_PARAMS = ANSIBALLZ_PARAMS.encode('utf-8') try: # There's a race condition with the controller removing the # remote_tmpdir and this module executing under async. So we cannot # store this in remote_tmpdir (use system tempdir instead) # Only need to use [ansible_module]_payload_ in the temp_path until we move to zipimport # (this helps ansible-test produce coverage stats) temp_path = tempfile.mkdtemp(prefix='ansible_%(ansible_module)s_payload_') zipped_mod = os.path.join(temp_path, 'ansible_%(ansible_module)s_payload.zip') with open(zipped_mod, 'wb') as modlib: modlib.write(base64.b64decode(ZIPDATA)) if len(sys.argv) == 2: exitcode = debug(sys.argv[1], zipped_mod, ANSIBALLZ_PARAMS) else: # Note: temp_path isn't needed once we switch to zipimport invoke_module(zipped_mod, temp_path, ANSIBALLZ_PARAMS) finally: try: shutil.rmtree(temp_path) except (NameError, OSError): # tempdir creation probably failed pass sys.exit(exitcode) if __name__ == '__main__': _ansiballz_main() ''' ANSIBALLZ_COVERAGE_TEMPLATE = ''' # Access to the working directory is required by coverage. # Some platforms, such as macOS, may not allow querying the working directory when using become to drop privileges. try: os.getcwd() except OSError: os.chdir('/') os.environ['COVERAGE_FILE'] = '%(coverage_output)s' import atexit try: import coverage except ImportError: print('{"msg": "Could not import `coverage` module.", "failed": true}') sys.exit(1) cov = coverage.Coverage(config_file='%(coverage_config)s') def atexit_coverage(): cov.stop() cov.save() atexit.register(atexit_coverage) cov.start() ''' ANSIBALLZ_COVERAGE_CHECK_TEMPLATE = ''' try: if PY3: import importlib.util if importlib.util.find_spec('coverage') is None: raise ImportError else: import imp imp.find_module('coverage') except ImportError: print('{"msg": "Could not find `coverage` module.", "failed": true}') sys.exit(1) ''' ANSIBALLZ_RLIMIT_TEMPLATE = ''' import resource existing_soft, existing_hard = resource.getrlimit(resource.RLIMIT_NOFILE) # adjust soft limit subject to existing hard limit requested_soft = min(existing_hard, %(rlimit_nofile)d) if requested_soft != existing_soft: try: resource.setrlimit(resource.RLIMIT_NOFILE, (requested_soft, existing_hard)) except ValueError: # some platforms (eg macOS) lie about their hard limit pass ''' def _strip_comments(source): # Strip comments and blank lines from the wrapper buf = [] for line in source.splitlines(): l = line.strip() if not l or l.startswith(u'#'): continue buf.append(line) return u'\n'.join(buf) if C.DEFAULT_KEEP_REMOTE_FILES: # Keep comments when KEEP_REMOTE_FILES is set. That way users will see # the comments with some nice usage instructions ACTIVE_ANSIBALLZ_TEMPLATE = ANSIBALLZ_TEMPLATE else: # ANSIBALLZ_TEMPLATE stripped of comments for smaller over the wire size ACTIVE_ANSIBALLZ_TEMPLATE = _strip_comments(ANSIBALLZ_TEMPLATE) # dirname(dirname(dirname(site-packages/ansible/executor/module_common.py) == site-packages # Do this instead of getting site-packages from distutils.sysconfig so we work when we # haven't been installed site_packages = os.path.dirname(os.path.dirname(os.path.dirname(__file__))) CORE_LIBRARY_PATH_RE = re.compile(r'%s/(?P<path>ansible/modules/.*)\.(py|ps1)$' % site_packages) COLLECTION_PATH_RE = re.compile(r'/(?P<path>ansible_collections/[^/]+/[^/]+/plugins/modules/.*)\.(py|ps1)$') # Detect new-style Python modules by looking for required imports: # import ansible_collections.[my_ns.my_col.plugins.module_utils.my_module_util] # from ansible_collections.[my_ns.my_col.plugins.module_utils import my_module_util] # import ansible.module_utils[.basic] # from ansible.module_utils[ import basic] # from ansible.module_utils[.basic import AnsibleModule] # from ..module_utils[ import basic] # from ..module_utils[.basic import AnsibleModule] NEW_STYLE_PYTHON_MODULE_RE = re.compile( # Relative imports br'(?:from +\.{2,} *module_utils.* +import |' # Collection absolute imports: br'from +ansible_collections\.[^.]+\.[^.]+\.plugins\.module_utils.* +import |' br'import +ansible_collections\.[^.]+\.[^.]+\.plugins\.module_utils.*|' # Core absolute imports br'from +ansible\.module_utils.* +import |' br'import +ansible\.module_utils\.)' ) class ModuleDepFinder(ast.NodeVisitor): def __init__(self, module_fqn, *args, **kwargs): """ Walk the ast tree for the python module. :arg module_fqn: The fully qualified name to reach this module in dotted notation. example: ansible.module_utils.basic Save submodule[.submoduleN][.identifier] into self.submodules when they are from ansible.module_utils or ansible_collections packages self.submodules will end up with tuples like: - ('ansible', 'module_utils', 'basic',) - ('ansible', 'module_utils', 'urls', 'fetch_url') - ('ansible', 'module_utils', 'database', 'postgres') - ('ansible', 'module_utils', 'database', 'postgres', 'quote') - ('ansible', 'module_utils', 'database', 'postgres', 'quote') - ('ansible_collections', 'my_ns', 'my_col', 'plugins', 'module_utils', 'foo') It's up to calling code to determine whether the final element of the tuple are module names or something else (function, class, or variable names) .. seealso:: :python3:class:`ast.NodeVisitor` """ super(ModuleDepFinder, self).__init__(*args, **kwargs) self.submodules = set() self.module_fqn = module_fqn def visit_Import(self, node): """ Handle import ansible.module_utils.MODLIB[.MODLIBn] [as asname] We save these as interesting submodules when the imported library is in ansible.module_utils or ansible.collections """ for alias in node.names: if (alias.name.startswith('ansible.module_utils.') or alias.name.startswith('ansible_collections.')): py_mod = tuple(alias.name.split('.')) self.submodules.add(py_mod) self.generic_visit(node) def visit_ImportFrom(self, node): """ Handle from ansible.module_utils.MODLIB import [.MODLIBn] [as asname] Also has to handle relative imports We save these as interesting submodules when the imported library is in ansible.module_utils or ansible.collections """ # FIXME: These should all get skipped: # from ansible.executor import module_common # from ...executor import module_common # from ... import executor (Currently it gives a non-helpful error) if node.level > 0: if self.module_fqn: parts = tuple(self.module_fqn.split('.')) if node.module: # relative import: from .module import x node_module = '.'.join(parts[:-node.level] + (node.module,)) else: # relative import: from . import x node_module = '.'.join(parts[:-node.level]) else: # fall back to an absolute import node_module = node.module else: # absolute import: from module import x node_module = node.module # Specialcase: six is a special case because of its # import logic py_mod = None if node.names[0].name == '_six': self.submodules.add(('_six',)) elif node_module.startswith('ansible.module_utils'): # from ansible.module_utils.MODULE1[.MODULEn] import IDENTIFIER [as asname] # from ansible.module_utils.MODULE1[.MODULEn] import MODULEn+1 [as asname] # from ansible.module_utils.MODULE1[.MODULEn] import MODULEn+1 [,IDENTIFIER] [as asname] # from ansible.module_utils import MODULE1 [,MODULEn] [as asname] py_mod = tuple(node_module.split('.')) elif node_module.startswith('ansible_collections.'): if node_module.endswith('plugins.module_utils') or '.plugins.module_utils.' in node_module: # from ansible_collections.ns.coll.plugins.module_utils import MODULE [as aname] [,MODULE2] [as aname] # from ansible_collections.ns.coll.plugins.module_utils.MODULE import IDENTIFIER [as aname] # FIXME: Unhandled cornercase (needs to be ignored): # from ansible_collections.ns.coll.plugins.[!module_utils].[FOO].plugins.module_utils import IDENTIFIER py_mod = tuple(node_module.split('.')) else: # Not from module_utils so ignore. for instance: # from ansible_collections.ns.coll.plugins.lookup import IDENTIFIER pass if py_mod: for alias in node.names: self.submodules.add(py_mod + (alias.name,)) self.generic_visit(node) def _slurp(path): if not os.path.exists(path): raise AnsibleError("imported module support code does not exist at %s" % os.path.abspath(path)) with open(path, 'rb') as fd: data = fd.read() return data def _get_shebang(interpreter, task_vars, templar, args=tuple()): """ Note not stellar API: Returns None instead of always returning a shebang line. Doing it this way allows the caller to decide to use the shebang it read from the file rather than trust that we reformatted what they already have correctly. """ interpreter_name = os.path.basename(interpreter).strip() # FUTURE: add logical equivalence for python3 in the case of py3-only modules # check for first-class interpreter config interpreter_config_key = "INTERPRETER_%s" % interpreter_name.upper() if C.config.get_configuration_definitions().get(interpreter_config_key): # a config def exists for this interpreter type; consult config for the value interpreter_out = C.config.get_config_value(interpreter_config_key, variables=task_vars) discovered_interpreter_config = u'discovered_interpreter_%s' % interpreter_name interpreter_out = templar.template(interpreter_out.strip()) facts_from_task_vars = task_vars.get('ansible_facts', {}) # handle interpreter discovery if requested if interpreter_out in ['auto', 'auto_legacy', 'auto_silent', 'auto_legacy_silent']: if discovered_interpreter_config not in facts_from_task_vars: # interpreter discovery is desired, but has not been run for this host raise InterpreterDiscoveryRequiredError("interpreter discovery needed", interpreter_name=interpreter_name, discovery_mode=interpreter_out) else: interpreter_out = facts_from_task_vars[discovered_interpreter_config] else: # a config def does not exist for this interpreter type; consult vars for a possible direct override interpreter_config = u'ansible_%s_interpreter' % interpreter_name if interpreter_config not in task_vars: return None, interpreter interpreter_out = templar.template(task_vars[interpreter_config].strip()) shebang = u'#!' + interpreter_out if args: shebang = shebang + u' ' + u' '.join(args) return shebang, interpreter_out class ModuleInfo: def __init__(self, name, paths): self.py_src = False self.pkg_dir = False path = None if imp is None: self._info = info = importlib.machinery.PathFinder.find_spec(name, paths) if info is not None: self.py_src = os.path.splitext(info.origin)[1] in importlib.machinery.SOURCE_SUFFIXES self.pkg_dir = info.origin.endswith('/__init__.py') path = info.origin else: raise ImportError("No module named '%s'" % name) else: self._info = info = imp.find_module(name, paths) self.py_src = info[2][2] == imp.PY_SOURCE self.pkg_dir = info[2][2] == imp.PKG_DIRECTORY if self.pkg_dir: path = os.path.join(info[1], '__init__.py') else: path = info[1] self.path = path def get_source(self): if imp and self.py_src: try: return self._info[0].read() finally: self._info[0].close() return _slurp(self.path) def __repr__(self): return 'ModuleInfo: py_src=%s, pkg_dir=%s, path=%s' % (self.py_src, self.pkg_dir, self.path) class CollectionModuleInfo(ModuleInfo): def __init__(self, name, paths): self._mod_name = name self.py_src = True # FIXME: Implement pkg_dir so that we can place __init__.py files self.pkg_dir = False for path in paths: self._package_name = '.'.join(path.split('/')) try: self.get_source() except FileNotFoundError: pass else: self.path = os.path.join(path, self._mod_name) + '.py' break else: # FIXME (nitz): implement package fallback code raise ImportError('unable to load collection-hosted module_util' ' {0}.{1}'.format(to_native(self._package_name), to_native(name))) def get_source(self): # FIXME (nitz): need this in py2 for some reason TBD, but we shouldn't (get_data delegates # to wrong loader without it) pkg = import_module(self._package_name) data = pkgutil.get_data(to_native(self._package_name), to_native(self._mod_name + '.py')) return data def recursive_finder(name, module_fqn, data, py_module_names, py_module_cache, zf): """ Using ModuleDepFinder, make sure we have all of the module_utils files that the module and its module_utils files needs. :arg name: Name of the python module we're examining :arg module_fqn: Fully qualified name of the python module we're scanning :arg py_module_names: set of the fully qualified module names represented as a tuple of their FQN with __init__ appended if the module is also a python package). Presence of a FQN in this set means that we've already examined it for module_util deps. :arg py_module_cache: map python module names (represented as a tuple of their FQN with __init__ appended if the module is also a python package) to a tuple of the code in the module and the pathname the module would have inside of a Python toplevel (like site-packages) :arg zf: An open :python:class:`zipfile.ZipFile` object that holds the Ansible module payload which we're assembling """ # Parse the module and find the imports of ansible.module_utils try: tree = ast.parse(data) except (SyntaxError, IndentationError) as e: raise AnsibleError("Unable to import %s due to %s" % (name, e.msg)) finder = ModuleDepFinder(module_fqn) finder.visit(tree) # # Determine what imports that we've found are modules (vs class, function. # variable names) for packages # module_utils_paths = [p for p in module_utils_loader._get_paths(subdirs=False) if os.path.isdir(p)] # FIXME: Do we still need this? It feels like module-utils_loader should include # _MODULE_UTILS_PATH module_utils_paths.append(_MODULE_UTILS_PATH) normalized_modules = set() # Loop through the imports that we've found to normalize them # Exclude paths that match with paths we've already processed # (Have to exclude them a second time once the paths are processed) for py_module_name in finder.submodules.difference(py_module_names): module_info = None if py_module_name[0:3] == ('ansible', 'module_utils', 'six'): # Special case the python six library because it messes with the # import process in an incompatible way module_info = ModuleInfo('six', module_utils_paths) py_module_name = ('ansible', 'module_utils', 'six') idx = 0 elif py_module_name[0:3] == ('ansible', 'module_utils', '_six'): # Special case the python six library because it messes with the # import process in an incompatible way module_info = ModuleInfo('_six', [os.path.join(p, 'six') for p in module_utils_paths]) py_module_name = ('ansible', 'module_utils', 'six', '_six') idx = 0 elif py_module_name[0] == 'ansible_collections': # FIXME (nitz): replicate module name resolution like below for granular imports for idx in (1, 2): if len(py_module_name) < idx: break try: # this is a collection-hosted MU; look it up with pkgutil.get_data() module_info = CollectionModuleInfo(py_module_name[-idx], [os.path.join(*py_module_name[:-idx])]) break except ImportError: continue elif py_module_name[0:2] == ('ansible', 'module_utils'): # Need to remove ansible.module_utils because PluginLoader may find different paths # for us to look in relative_module_utils_dir = py_module_name[2:] # Check whether either the last or the second to last identifier is # a module name for idx in (1, 2): if len(relative_module_utils_dir) < idx: break try: module_info = ModuleInfo(py_module_name[-idx], [os.path.join(p, *relative_module_utils_dir[:-idx]) for p in module_utils_paths]) break except ImportError: continue else: # If we get here, it's because of a bug in ModuleDepFinder. If we get a reproducer we # should then fix ModuleDepFinder display.warning('ModuleDepFinder improperly found a non-module_utils import %s' % [py_module_name]) continue # Could not find the module. Construct a helpful error message. if module_info is None: msg = ['Could not find imported module support code for %s. Looked for' % (name,)] if idx == 2: msg.append('either %s.py or %s.py' % (py_module_name[-1], py_module_name[-2])) else: msg.append(py_module_name[-1]) raise AnsibleError(' '.join(msg)) if isinstance(module_info, CollectionModuleInfo): if idx == 2: # We've determined that the last portion was an identifier and # thus, not part of the module name py_module_name = py_module_name[:-1] # HACK: maybe surface collection dirs in here and use existing find_module code? normalized_name = py_module_name normalized_data = module_info.get_source() normalized_path = os.path.join(*py_module_name) py_module_cache[normalized_name] = (normalized_data, normalized_path) normalized_modules.add(normalized_name) # HACK: walk back up the package hierarchy to pick up package inits; this won't do the right thing # for actual packages yet... accumulated_pkg_name = [] for pkg in py_module_name[:-1]: accumulated_pkg_name.append(pkg) # we're accumulating this across iterations normalized_name = tuple(accumulated_pkg_name[:] + ['__init__']) # extra machinations to get a hashable type (list is not) if normalized_name not in py_module_cache: normalized_path = os.path.join(*accumulated_pkg_name) # HACK: possibly preserve some of the actual package file contents; problematic for extend_paths and others though? normalized_data = '' py_module_cache[normalized_name] = (normalized_data, normalized_path) normalized_modules.add(normalized_name) else: # Found a byte compiled file rather than source. We cannot send byte # compiled over the wire as the python version might be different. # imp.find_module seems to prefer to return source packages so we just # error out if imp.find_module returns byte compiled files (This is # fragile as it depends on undocumented imp.find_module behaviour) if not module_info.pkg_dir and not module_info.py_src: msg = ['Could not find python source for imported module support code for %s. Looked for' % name] if idx == 2: msg.append('either %s.py or %s.py' % (py_module_name[-1], py_module_name[-2])) else: msg.append(py_module_name[-1]) raise AnsibleError(' '.join(msg)) if idx == 2: # We've determined that the last portion was an identifier and # thus, not part of the module name py_module_name = py_module_name[:-1] # If not already processed then we've got work to do # If not in the cache, then read the file into the cache # We already have a file handle for the module open so it makes # sense to read it now if py_module_name not in py_module_cache: if module_info.pkg_dir: # Read the __init__.py instead of the module file as this is # a python package normalized_name = py_module_name + ('__init__',) if normalized_name not in py_module_names: normalized_data = module_info.get_source() py_module_cache[normalized_name] = (normalized_data, module_info.path) normalized_modules.add(normalized_name) else: normalized_name = py_module_name if normalized_name not in py_module_names: normalized_data = module_info.get_source() py_module_cache[normalized_name] = (normalized_data, module_info.path) normalized_modules.add(normalized_name) # # Make sure that all the packages that this module is a part of # are also added # for i in range(1, len(py_module_name)): py_pkg_name = py_module_name[:-i] + ('__init__',) if py_pkg_name not in py_module_names: # Need to remove ansible.module_utils because PluginLoader may find # different paths for us to look in relative_module_utils = py_pkg_name[2:] pkg_dir_info = ModuleInfo(relative_module_utils[-1], [os.path.join(p, *relative_module_utils[:-1]) for p in module_utils_paths]) normalized_modules.add(py_pkg_name) py_module_cache[py_pkg_name] = (pkg_dir_info.get_source(), pkg_dir_info.path) # FIXME: Currently the AnsiBallZ wrapper monkeypatches module args into a global # variable in basic.py. If a module doesn't import basic.py, then the AnsiBallZ wrapper will # traceback when it tries to monkypatch. So, for now, we have to unconditionally include # basic.py. # # In the future we need to change the wrapper to monkeypatch the args into a global variable in # their own, separate python module. That way we won't require basic.py. Modules which don't # want basic.py can import that instead. AnsibleModule will need to change to import the vars # from the separate python module and mirror the args into its global variable for backwards # compatibility. if ('ansible', 'module_utils', 'basic',) not in py_module_names: pkg_dir_info = ModuleInfo('basic', module_utils_paths) normalized_modules.add(('ansible', 'module_utils', 'basic',)) py_module_cache[('ansible', 'module_utils', 'basic',)] = (pkg_dir_info.get_source(), pkg_dir_info.path) # End of AnsiballZ hack # # iterate through all of the ansible.module_utils* imports that we haven't # already checked for new imports # # set of modules that we haven't added to the zipfile unprocessed_py_module_names = normalized_modules.difference(py_module_names) for py_module_name in unprocessed_py_module_names: py_module_path = os.path.join(*py_module_name) py_module_file_name = '%s.py' % py_module_path zf.writestr(py_module_file_name, py_module_cache[py_module_name][0]) display.vvvvv("Using module_utils file %s" % py_module_cache[py_module_name][1]) # Add the names of the files we're scheduling to examine in the loop to # py_module_names so that we don't re-examine them in the next pass # through recursive_finder() py_module_names.update(unprocessed_py_module_names) for py_module_file in unprocessed_py_module_names: next_fqn = '.'.join(py_module_file) recursive_finder(py_module_file[-1], next_fqn, py_module_cache[py_module_file][0], py_module_names, py_module_cache, zf) # Save memory; the file won't have to be read again for this ansible module. del py_module_cache[py_module_file] def _is_binary(b_module_data): textchars = bytearray(set([7, 8, 9, 10, 12, 13, 27]) | set(range(0x20, 0x100)) - set([0x7f])) start = b_module_data[:1024] return bool(start.translate(None, textchars)) def _get_ansible_module_fqn(module_path): """ Get the fully qualified name for an ansible module based on its pathname remote_module_fqn is the fully qualified name. Like ansible.modules.system.ping Or ansible_collections.Namespace.Collection_name.plugins.modules.ping .. warning:: This function is for ansible modules only. It won't work for other things (non-module plugins, etc) """ remote_module_fqn = None # Is this a core module? match = CORE_LIBRARY_PATH_RE.search(module_path) if not match: # Is this a module in a collection? match = COLLECTION_PATH_RE.search(module_path) # We can tell the FQN for core modules and collection modules if match: path = match.group('path') if '.' in path: # FQNs must be valid as python identifiers. This sanity check has failed. # we could check other things as well raise ValueError('Module name (or path) was not a valid python identifier') remote_module_fqn = '.'.join(path.split('/')) else: # Currently we do not handle modules in roles so we can end up here for that reason raise ValueError("Unable to determine module's fully qualified name") return remote_module_fqn def _add_module_to_zip(zf, remote_module_fqn, b_module_data): """Add a module from ansible or from an ansible collection into the module zip""" module_path_parts = remote_module_fqn.split('.') # Write the module module_path = '/'.join(module_path_parts) + '.py' zf.writestr(module_path, b_module_data) # Write the __init__.py's necessary to get there if module_path_parts[0] == 'ansible': # The ansible namespace is setup as part of the module_utils setup... start = 2 existing_paths = frozenset() else: # ... but ansible_collections and other toplevels are not start = 1 existing_paths = frozenset(zf.namelist()) for idx in range(start, len(module_path_parts)): package_path = '/'.join(module_path_parts[:idx]) + '/__init__.py' # If a collections module uses module_utils from a collection then most packages will have already been added by recursive_finder. if package_path in existing_paths: continue # Note: We don't want to include more than one ansible module in a payload at this time # so no need to fill the __init__.py with namespace code zf.writestr(package_path, b'') def _find_module_utils(module_name, b_module_data, module_path, module_args, task_vars, templar, module_compression, async_timeout, become, become_method, become_user, become_password, become_flags, environment): """ Given the source of the module, convert it to a Jinja2 template to insert module code and return whether it's a new or old style module. """ module_substyle = module_style = 'old' # module_style is something important to calling code (ActionBase). It # determines how arguments are formatted (json vs k=v) and whether # a separate arguments file needs to be sent over the wire. # module_substyle is extra information that's useful internally. It tells # us what we have to look to substitute in the module files and whether # we're using module replacer or ansiballz to format the module itself. if _is_binary(b_module_data): module_substyle = module_style = 'binary' elif REPLACER in b_module_data: # Do REPLACER before from ansible.module_utils because we need make sure # we substitute "from ansible.module_utils basic" for REPLACER module_style = 'new' module_substyle = 'python' b_module_data = b_module_data.replace(REPLACER, b'from ansible.module_utils.basic import *') elif NEW_STYLE_PYTHON_MODULE_RE.search(b_module_data): module_style = 'new' module_substyle = 'python' elif REPLACER_WINDOWS in b_module_data: module_style = 'new' module_substyle = 'powershell' b_module_data = b_module_data.replace(REPLACER_WINDOWS, b'#Requires -Module Ansible.ModuleUtils.Legacy') elif re.search(b'#Requires -Module', b_module_data, re.IGNORECASE) \ or re.search(b'#Requires -Version', b_module_data, re.IGNORECASE)\ or re.search(b'#AnsibleRequires -OSVersion', b_module_data, re.IGNORECASE) \ or re.search(b'#AnsibleRequires -Powershell', b_module_data, re.IGNORECASE) \ or re.search(b'#AnsibleRequires -CSharpUtil', b_module_data, re.IGNORECASE): module_style = 'new' module_substyle = 'powershell' elif REPLACER_JSONARGS in b_module_data: module_style = 'new' module_substyle = 'jsonargs' elif b'WANT_JSON' in b_module_data: module_substyle = module_style = 'non_native_want_json' shebang = None # Neither old-style, non_native_want_json nor binary modules should be modified # except for the shebang line (Done by modify_module) if module_style in ('old', 'non_native_want_json', 'binary'): return b_module_data, module_style, shebang output = BytesIO() py_module_names = set() try: remote_module_fqn = _get_ansible_module_fqn(module_path) except ValueError: # Modules in roles currently are not found by the fqn heuristic so we # fallback to this. This means that relative imports inside a module from # a role may fail. Absolute imports should be used for future-proofness. # People should start writing collections instead of modules in roles so we # may never fix this display.debug('ANSIBALLZ: Could not determine module FQN') remote_module_fqn = 'ansible.modules.%s' % module_name if module_substyle == 'python': params = dict(ANSIBLE_MODULE_ARGS=module_args,) try: python_repred_params = repr(json.dumps(params)) except TypeError as e: raise AnsibleError("Unable to pass options to module, they must be JSON serializable: %s" % to_native(e)) try: compression_method = getattr(zipfile, module_compression) except AttributeError: display.warning(u'Bad module compression string specified: %s. Using ZIP_STORED (no compression)' % module_compression) compression_method = zipfile.ZIP_STORED lookup_path = os.path.join(C.DEFAULT_LOCAL_TMP, 'ansiballz_cache') cached_module_filename = os.path.join(lookup_path, "%s-%s" % (module_name, module_compression)) zipdata = None # Optimization -- don't lock if the module has already been cached if os.path.exists(cached_module_filename): display.debug('ANSIBALLZ: using cached module: %s' % cached_module_filename) with open(cached_module_filename, 'rb') as module_data: zipdata = module_data.read() else: if module_name in action_write_locks.action_write_locks: display.debug('ANSIBALLZ: Using lock for %s' % module_name) lock = action_write_locks.action_write_locks[module_name] else: # If the action plugin directly invokes the module (instead of # going through a strategy) then we don't have a cross-process # Lock specifically for this module. Use the "unexpected # module" lock instead display.debug('ANSIBALLZ: Using generic lock for %s' % module_name) lock = action_write_locks.action_write_locks[None] display.debug('ANSIBALLZ: Acquiring lock') with lock: display.debug('ANSIBALLZ: Lock acquired: %s' % id(lock)) # Check that no other process has created this while we were # waiting for the lock if not os.path.exists(cached_module_filename): display.debug('ANSIBALLZ: Creating module') # Create the module zip data zipoutput = BytesIO() zf = zipfile.ZipFile(zipoutput, mode='w', compression=compression_method) # py_module_cache maps python module names to a tuple of the code in the module # and the pathname to the module. See the recursive_finder() documentation for # more info. # Here we pre-load it with modules which we create without bothering to # read from actual files (In some cases, these need to differ from what ansible # ships because they're namespace packages in the module) py_module_cache = { ('ansible', '__init__',): ( b'from pkgutil import extend_path\n' b'__path__=extend_path(__path__,__name__)\n' b'__version__="' + to_bytes(__version__) + b'"\n__author__="' + to_bytes(__author__) + b'"\n', 'ansible/__init__.py'), ('ansible', 'module_utils', '__init__',): ( b'from pkgutil import extend_path\n' b'__path__=extend_path(__path__,__name__)\n', 'ansible/module_utils/__init__.py')} for (py_module_name, (file_data, filename)) in py_module_cache.items(): zf.writestr(filename, file_data) # py_module_names keeps track of which modules we've already scanned for # module_util dependencies py_module_names.add(py_module_name) # Returning the ast tree is a temporary hack. We need to know if the module has # a main() function or not as we are deprecating new-style modules without # main(). Because parsing the ast is expensive, return it from recursive_finder # instead of reparsing. Once the deprecation is over and we remove that code, # also remove returning of the ast tree. recursive_finder(module_name, remote_module_fqn, b_module_data, py_module_names, py_module_cache, zf) display.debug('ANSIBALLZ: Writing module into payload') _add_module_to_zip(zf, remote_module_fqn, b_module_data) zf.close() zipdata = base64.b64encode(zipoutput.getvalue()) # Write the assembled module to a temp file (write to temp # so that no one looking for the file reads a partially # written file) if not os.path.exists(lookup_path): # Note -- if we have a global function to setup, that would # be a better place to run this os.makedirs(lookup_path) display.debug('ANSIBALLZ: Writing module') with open(cached_module_filename + '-part', 'wb') as f: f.write(zipdata) # Rename the file into its final position in the cache so # future users of this module can read it off the # filesystem instead of constructing from scratch. display.debug('ANSIBALLZ: Renaming module') os.rename(cached_module_filename + '-part', cached_module_filename) display.debug('ANSIBALLZ: Done creating module') if zipdata is None: display.debug('ANSIBALLZ: Reading module after lock') # Another process wrote the file while we were waiting for # the write lock. Go ahead and read the data from disk # instead of re-creating it. try: with open(cached_module_filename, 'rb') as f: zipdata = f.read() except IOError: raise AnsibleError('A different worker process failed to create module file. ' 'Look at traceback for that process for debugging information.') zipdata = to_text(zipdata, errors='surrogate_or_strict') shebang, interpreter = _get_shebang(u'/usr/bin/python', task_vars, templar) if shebang is None: shebang = u'#!/usr/bin/python' # FUTURE: the module cache entry should be invalidated if we got this value from a host-dependent source rlimit_nofile = C.config.get_config_value('PYTHON_MODULE_RLIMIT_NOFILE', variables=task_vars) if not isinstance(rlimit_nofile, int): rlimit_nofile = int(templar.template(rlimit_nofile)) if rlimit_nofile: rlimit = ANSIBALLZ_RLIMIT_TEMPLATE % dict( rlimit_nofile=rlimit_nofile, ) else: rlimit = '' coverage_config = os.environ.get('_ANSIBLE_COVERAGE_CONFIG') if coverage_config: coverage_output = os.environ['_ANSIBLE_COVERAGE_OUTPUT'] if coverage_output: # Enable code coverage analysis of the module. # This feature is for internal testing and may change without notice. coverage = ANSIBALLZ_COVERAGE_TEMPLATE % dict( coverage_config=coverage_config, coverage_output=coverage_output, ) else: # Verify coverage is available without importing it. # This will detect when a module would fail with coverage enabled with minimal overhead. coverage = ANSIBALLZ_COVERAGE_CHECK_TEMPLATE else: coverage = '' now = datetime.datetime.utcnow() output.write(to_bytes(ACTIVE_ANSIBALLZ_TEMPLATE % dict( zipdata=zipdata, ansible_module=module_name, module_fqn=remote_module_fqn, params=python_repred_params, shebang=shebang, coding=ENCODING_STRING, year=now.year, month=now.month, day=now.day, hour=now.hour, minute=now.minute, second=now.second, coverage=coverage, rlimit=rlimit, ))) b_module_data = output.getvalue() elif module_substyle == 'powershell': # Powershell/winrm don't actually make use of shebang so we can # safely set this here. If we let the fallback code handle this # it can fail in the presence of the UTF8 BOM commonly added by # Windows text editors shebang = u'#!powershell' # create the common exec wrapper payload and set that as the module_data # bytes b_module_data = ps_manifest._create_powershell_wrapper( b_module_data, module_path, module_args, environment, async_timeout, become, become_method, become_user, become_password, become_flags, module_substyle, task_vars, remote_module_fqn ) elif module_substyle == 'jsonargs': module_args_json = to_bytes(json.dumps(module_args)) # these strings could be included in a third-party module but # officially they were included in the 'basic' snippet for new-style # python modules (which has been replaced with something else in # ansiballz) If we remove them from jsonargs-style module replacer # then we can remove them everywhere. python_repred_args = to_bytes(repr(module_args_json)) b_module_data = b_module_data.replace(REPLACER_VERSION, to_bytes(repr(__version__))) b_module_data = b_module_data.replace(REPLACER_COMPLEX, python_repred_args) b_module_data = b_module_data.replace(REPLACER_SELINUX, to_bytes(','.join(C.DEFAULT_SELINUX_SPECIAL_FS))) # The main event -- substitute the JSON args string into the module b_module_data = b_module_data.replace(REPLACER_JSONARGS, module_args_json) facility = b'syslog.' + to_bytes(task_vars.get('ansible_syslog_facility', C.DEFAULT_SYSLOG_FACILITY), errors='surrogate_or_strict') b_module_data = b_module_data.replace(b'syslog.LOG_USER', facility) return (b_module_data, module_style, shebang) def modify_module(module_name, module_path, module_args, templar, task_vars=None, module_compression='ZIP_STORED', async_timeout=0, become=False, become_method=None, become_user=None, become_password=None, become_flags=None, environment=None): """ Used to insert chunks of code into modules before transfer rather than doing regular python imports. This allows for more efficient transfer in a non-bootstrapping scenario by not moving extra files over the wire and also takes care of embedding arguments in the transferred modules. This version is done in such a way that local imports can still be used in the module code, so IDEs don't have to be aware of what is going on. Example: from ansible.module_utils.basic import * ... will result in the insertion of basic.py into the module from the module_utils/ directory in the source tree. For powershell, this code effectively no-ops, as the exec wrapper requires access to a number of properties not available here. """ task_vars = {} if task_vars is None else task_vars environment = {} if environment is None else environment with open(module_path, 'rb') as f: # read in the module source b_module_data = f.read() (b_module_data, module_style, shebang) = _find_module_utils(module_name, b_module_data, module_path, module_args, task_vars, templar, module_compression, async_timeout=async_timeout, become=become, become_method=become_method, become_user=become_user, become_password=become_password, become_flags=become_flags, environment=environment) if module_style == 'binary': return (b_module_data, module_style, to_text(shebang, nonstring='passthru')) elif shebang is None: b_lines = b_module_data.split(b"\n", 1) if b_lines[0].startswith(b"#!"): b_shebang = b_lines[0].strip() # shlex.split on python-2.6 needs bytes. On python-3.x it needs text args = shlex.split(to_native(b_shebang[2:], errors='surrogate_or_strict')) # _get_shebang() takes text strings args = [to_text(a, errors='surrogate_or_strict') for a in args] interpreter = args[0] b_new_shebang = to_bytes(_get_shebang(interpreter, task_vars, templar, args[1:])[0], errors='surrogate_or_strict', nonstring='passthru') if b_new_shebang: b_lines[0] = b_shebang = b_new_shebang if os.path.basename(interpreter).startswith(u'python'): b_lines.insert(1, b_ENCODING_STRING) shebang = to_text(b_shebang, nonstring='passthru', errors='surrogate_or_strict') else: # No shebang, assume a binary module? pass b_module_data = b"\n".join(b_lines) return (b_module_data, module_style, shebang) def get_action_args_with_defaults(action, args, defaults, templar): tmp_args = {} module_defaults = {} # Merge latest defaults into dict, since they are a list of dicts if isinstance(defaults, list): for default in defaults: module_defaults.update(default) # if I actually have defaults, template and merge if module_defaults: module_defaults = templar.template(module_defaults) # deal with configured group defaults first if action in C.config.module_defaults_groups: for group in C.config.module_defaults_groups.get(action, []): tmp_args.update((module_defaults.get('group/{0}'.format(group)) or {}).copy()) # handle specific action defaults if action in module_defaults: tmp_args.update(module_defaults[action].copy()) # direct args override all tmp_args.update(args) return tmp_args
ilpianista/ansible
lib/ansible/executor/module_common.py
Python
gpl-3.0
60,557
[ "VisIt" ]
9b8818ef015edf7c45884b92840dc1cd6da1e71dc40e648a53fec777ff104b3f
""" Perform Levenberg-Marquardt least-squares minimization, based on MINPACK-1. AUTHORS The original version of this software, called LMFIT, was written in FORTRAN as part of the MINPACK-1 package by XXX. Craig Markwardt converted the FORTRAN code to IDL. The information for the IDL version is: Craig B. Markwardt, NASA/GSFC Code 662, Greenbelt, MD 20770 [email protected] UPDATED VERSIONs can be found on my WEB PAGE: http://cow.physics.wisc.edu/~craigm/idl/idl.html Mark Rivers created this Python version from Craig's IDL version. Mark Rivers, University of Chicago Building 434A, Argonne National Laboratory 9700 South Cass Avenue, Argonne, IL 60439 [email protected] Updated versions can be found at http://cars.uchicago.edu/software Sergey Koposov converted the Mark's Python version from Numeric to numpy Sergey Koposov, University of Cambridge, Institute of Astronomy, Madingley road, CB3 0HA, Cambridge, UK [email protected] Updated versions can be found at http://code.google.com/p/astrolibpy/source/browse/trunk/ Bug Fixes: 2011-08-26 NPMKuin (MSSL/UCL) some clarification in the documentation. 2013-11-19 NPMKuin (MSSL/UCL) changed import scipy.lib.blas[deprecated] to scipy.linalg.blas changed trace of array in qrsolve() to a copy since it needs to be writeable. Known bugs: DESCRIPTION MPFIT uses the Levenberg-Marquardt technique to solve the least-squares problem. In its typical use, MPFIT will be used to fit a user-supplied function (the "model") to user-supplied data points (the "data") by adjusting a set of parameters. MPFIT is based upon MINPACK-1 (LMDIF.F) by More' and collaborators. For example, a researcher may think that a set of observed data points is best modelled with a Gaussian curve. A Gaussian curve is parameterized by its mean, standard deviation and normalization. MPFIT will, within certain constraints, find the set of parameters which best fits the data. The fit is "best" in the least-squares sense; that is, the sum of the weighted squared differences between the model and data is minimized. The Levenberg-Marquardt technique is a particular strategy for iteratively searching for the best fit. This particular implementation is drawn from MINPACK-1 (see NETLIB), and is much faster and more accurate than the version provided in the Scientific Python package in Scientific.Functions.LeastSquares. This version allows upper and lower bounding constraints to be placed on each parameter, or the parameter can be held fixed. The user-supplied Python function should return an array of weighted deviations between model and data. In a typical scientific problem the residuals should be weighted so that each deviate has a gaussian sigma of 1.0. If X represents values of the independent variable, Y represents a measurement for each value of X, and ERR represents the error in the measurements, then the deviates could be calculated as follows: DEVIATES = (Y - F(X)) / ERR where F is the analytical function representing the model. You are recommended to use the convenience functions MPFITFUN and MPFITEXPR, which are driver functions that calculate the deviates for you. If ERR are the 1-sigma uncertainties in Y, then TOTAL( DEVIATES^2 ) will be the total chi-squared value. MPFIT will minimize the chi-square value. The values of X, Y and ERR are passed through MPFIT to the user-supplied function via the FUNCTKW keyword. Simple constraints can be placed on parameter values by using the PARINFO keyword to MPFIT. See below for a description of this keyword. MPFIT does not perform more general optimization tasks. See TNMIN instead. MPFIT is customized, based on MINPACK-1, to the least-squares minimization problem. USER FUNCTION The user must define a function which returns the appropriate values as specified above. The function should return the weighted deviations between the model and the data. It should also return a status flag and an optional partial derivative array. For applications which use finite-difference derivatives -- the default -- the user function should be declared in the following way: def myfunct(p, fjac=None, x=None, y=None, err=None) # Parameter values are passed in "p" # If fjac==None then partial derivatives should not be # computed. It will always be None if MPFIT is called with default # flag. model = F(x, p) # put here the function for the model. # # Non-negative status value means MPFIT should continue, negative means # stop the calculation. status = 0 # y(x) are the measured values, and err(x) are the errors in y. # return([status, (y-model)/err] See below for applications with analytical derivatives. Here 'x', 'y' and 'err' are the variables of the problem in the example above. Their names can be changed as a passed parameter to mpfit. So they are suggestive but not required. Any set of variables can be passed to MYFUNCT by using the functkw keyword to MPFIT. Parameters of the problem which need optimization are then passed using the parameter list 'p'. Use MPFITFUN and MPFITEXPR if you need ideas on how to do that. The function *must* accept a parameter list, 'p'. In general there are no restrictions on the number of dimensions in X, Y or ERR. However the deviates *must* be returned in a one-dimensional Numeric array of type Float. User functions may also indicate a fatal error condition using the status return described above. If status is set to a number between -15 and -1 then MPFIT will stop the calculation and return to the caller. To call the user function, you will need something like: import mpfit #import numpy.oldnumeric as Numeric # #... define your parameters par = (p1,p2,p3,...) # #... get your data to define xx = (ordinate) yy = (measurements for each x) e_yy = (errors in each y) f = {'x':xx,'y':yy,'err':e_y} ANALYTIC DERIVATIVES # Z = mpfit.mpfit('myfunct', par, functkw=f, quiet=True) results returned in Z.status, Z.params, Z.perror, etc. And if you want to limit the parameters, add a list of disctionaries in the parinfo keyword with the limits, etcetera. In the search for the best-fit solution, MPFIT by default calculates derivatives numerically via a finite difference approximation. The user-supplied function need not calculate the derivatives explicitly. However, if you desire to compute them analytically, then the AUTODERIVATIVE=0 keyword must be passed to MPFIT. As a practical matter, it is often sufficient and even faster to allow MPFIT to calculate the derivatives numerically, and so AUTODERIVATIVE=0 is not necessary. If AUTODERIVATIVE=0 is used then the user function must check the parameter FJAC, and if FJAC!=None then return the partial derivative array in the return list. def myfunct(p, fjac=None, x=None, y=None, err=None) # Parameter values are passed in "p" # If FJAC!=None then partial derivatives must be comptuer. # FJAC contains an array of len(p), where each entry # is 1 if that parameter is free and 0 if it is fixed. model = F(x, p) Non-negative status value means MPFIT should continue, negative means # stop the calculation. status = 0 if (dojac): pderiv = zeros([len(x), len(p)], Float) for j in range(len(p)): pderiv[:,j] = FGRAD(x, p, j) else: pderiv = None return([status, (y-model)/err, pderiv] where FGRAD(x, p, i) is a user function which must compute the derivative of the model with respect to parameter P[i] at X. When finite differencing is used for computing derivatives (ie, when AUTODERIVATIVE=1), or when MPFIT needs only the errors but not the derivatives the parameter FJAC=None. Derivatives should be returned in the PDERIV array. PDERIV should be an m x n array, where m is the number of data points and n is the number of parameters. dp[i,j] is the derivative at the ith point with respect to the jth parameter. The derivatives with respect to fixed parameters are ignored; zero is an appropriate value to insert for those derivatives. Upon input to the user function, FJAC is set to a vector with the same length as P, with a value of 1 for a parameter which is free, and a value of zero for a parameter which is fixed (and hence no derivative needs to be calculated). If the data is higher than one dimensional, then the *last* dimension should be the parameter dimension. Example: fitting a 50x50 image, "dp" should be 50x50xNPAR. CONSTRAINING PARAMETER VALUES WITH THE PARINFO KEYWORD The behavior of MPFIT can be modified with respect to each parameter to be fitted. A parameter value can be fixed; simple boundary constraints can be imposed; limitations on the parameter changes can be imposed; properties of the automatic derivative can be modified; and parameters can be tied to one another. These properties are governed by the PARINFO structure, which is passed as a keyword parameter to MPFIT. PARINFO should be a list of dictionaries, one list entry for each parameter. Each parameter is associated with one element of the array, in numerical order. The dictionary can have the following keys (none are required, keys are case insensitive): 'value' - the starting parameter value (but see the START_PARAMS parameter for more information). 'fixed' - a boolean value, whether the parameter is to be held fixed or not. Fixed parameters are not varied by MPFIT, but are passed on to MYFUNCT for evaluation. 'limited' - a two-element boolean array. If the first/second element is set, then the parameter is bounded on the lower/upper side. A parameter can be bounded on both sides. Both LIMITED and LIMITS must be given together. 'limits' - a two-element float array. Gives the parameter limits on the lower and upper sides, respectively. Zero, one or two of these values can be set, depending on the values of LIMITED. Both LIMITED and LIMITS must be given together. 'parname' - a string, giving the name of the parameter. The fitting code of MPFIT does not use this tag in any way. However, the default iterfunct will print the parameter name if available. 'step' - the step size to be used in calculating the numerical derivatives. If set to zero, then the step size is computed automatically. Ignored when AUTODERIVATIVE=0. 'mpside' - the sidedness of the finite difference when computing numerical derivatives. This field can take four values: 0 - one-sided derivative computed automatically 1 - one-sided derivative (f(x+h) - f(x) )/h -1 - one-sided derivative (f(x) - f(x-h))/h 2 - two-sided derivative (f(x+h) - f(x-h))/(2*h) Where H is the STEP parameter described above. The "automatic" one-sided derivative method will chose a direction for the finite difference which does not violate any constraints. The other methods do not perform this check. The two-sided method is in principle more precise, but requires twice as many function evaluations. Default: 0. 'mpmaxstep' - the maximum change to be made in the parameter value. During the fitting process, the parameter will never be changed by more than this value in one iteration. A value of 0 indicates no maximum. Default: 0. 'tied' - a string expression which "ties" the parameter to other free or fixed parameters. Any expression involving constants and the parameter array P are permitted. Example: if parameter 2 is always to be twice parameter 1 then use the following: parinfo(2).tied = '2 * p(1)'. Since they are totally constrained, tied parameters are considered to be fixed; no errors are computed for them. [ NOTE: the PARNAME can't be used in expressions. ] 'mpprint' - if set to 1, then the default iterfunct will print the parameter value. If set to 0, the parameter value will not be printed. This tag can be used to selectively print only a few parameter values out of many. Default: 1 (all parameters printed) Future modifications to the PARINFO structure, if any, will involve adding dictionary tags beginning with the two letters "MP". Therefore programmers are urged to avoid using tags starting with the same letters; otherwise they are free to include their own fields within the PARINFO structure, and they will be ignored. PARINFO Example with 5 parameters : parinfo = [{'value':0., 'fixed':0, 'limited':[0,0], 'limits':[0.,0.]},\ {'value':0., 'fixed':0, 'limited':[0,0], 'limits':[0.,0.]},\ {'value':0., 'fixed':0, 'limited':[0,0], 'limits':[0.,0.]},\ {'value':0., 'fixed':0, 'limited':[0,0], 'limits':[0.,0.]},\ {'value':0., 'fixed':0, 'limited':[0,0], 'limits':[0.,0.]}] parinfo[0]['fixed'] = 1 parinfo[4]['limited'][0] = 1 parinfo[4]['limits'][0] = 50. values = [5.7, 2.2, 500., 1.5, 2000.] for i in range(5): parinfo[i]['value']=values[i] A total of 5 parameters, with starting values of 5.7, 2.2, 500, 1.5, and 2000 are given. The first parameter is fixed at a value of 5.7, and the last parameter is constrained to be above 50. EXAMPLE import mpfit #import numpy.oldnumeric as Numeric x = arange(100, float) p0 = [5.7, 2.2, 500., 1.5, 2000.] y = ( p[0] + p[1]*[x] + p[2]*[x**2] + p[3]*sqrt(x) + p[4]*log(x)) fa = {'x':x, 'y':y, 'err':err} m = mpfit.mpfit('myfunct', p0, functkw=fa) print 'status = ', m.status if (m.status <= 0): print 'error message = ', m.errmsg print 'parameters = ', m.params Minimizes sum of squares of MYFUNCT. MYFUNCT is called with the X, Y, and ERR keyword parameters that are given by FUNCTKW. The results can be obtained from the returned object m. THEORY OF OPERATION There are many specific strategies for function minimization. One very popular technique is to use function gradient information to realize the local structure of the function. Near a local minimum the function value can be taylor expanded about x0 as follows: f(x) = f(x0) + f'(x0) . (x-x0) + (1/2) (x-x0) . f''(x0) . (x-x0) ----- --------------- ------------------------------- (1) Order 0th 1st 2nd Here f'(x) is the gradient vector of f at x, and f''(x) is the Hessian matrix of second derivatives of f at x. The vector x is the set of function parameters, not the measured data vector. One can find the minimum of f, f(xm) using Newton's method, and arrives at the following linear equation: f''(x0) . (xm-x0) = - f'(x0) (2) If an inverse can be found for f''(x0) then one can solve for (xm-x0), the step vector from the current position x0 to the new projected minimum. Here the problem has been linearized (ie, the gradient information is known to first order). f''(x0) is symmetric n x n matrix, and should be positive definite. The Levenberg - Marquardt technique is a variation on this theme. It adds an additional diagonal term to the equation which may aid the convergence properties: (f''(x0) + nu I) . (xm-x0) = -f'(x0) (2a) where I is the identity matrix. When nu is large, the overall matrix is diagonally dominant, and the iterations follow steepest descent. When nu is small, the iterations are quadratically convergent. In principle, if f''(x0) and f'(x0) are known then xm-x0 can be determined. However the Hessian matrix is often difficult or impossible to compute. The gradient f'(x0) may be easier to compute, if even by finite difference techniques. So-called quasi-Newton techniques attempt to successively estimate f''(x0) by building up gradient information as the iterations proceed. In the least squares problem there are further simplifications which assist in solving eqn (2). The function to be minimized is a sum of squares: f = Sum(hi^2) (3) where hi is the ith residual out of m residuals as described above. This can be substituted back into eqn (2) after computing the derivatives: f' = 2 Sum(hi hi') f'' = 2 Sum(hi' hj') + 2 Sum(hi hi'') (4) If one assumes that the parameters are already close enough to a minimum, then one typically finds that the second term in f'' is negligible [or, in any case, is too difficult to compute]. Thus, equation (2) can be solved, at least approximately, using only gradient information. In matrix notation, the combination of eqns (2) and (4) becomes: hT' . h' . dx = - hT' . h (5) Where h is the residual vector (length m), hT is its transpose, h' is the Jacobian matrix (dimensions n x m), and dx is (xm-x0). The user function supplies the residual vector h, and in some cases h' when it is not found by finite differences (see MPFIT_FDJAC2, which finds h and hT'). Even if dx is not the best absolute step to take, it does provide a good estimate of the best *direction*, so often a line minimization will occur along the dx vector direction. The method of solution employed by MINPACK is to form the Q . R factorization of h', where Q is an orthogonal matrix such that QT . Q = I, and R is upper right triangular. Using h' = Q . R and the ortogonality of Q, eqn (5) becomes (RT . QT) . (Q . R) . dx = - (RT . QT) . h RT . R . dx = - RT . QT . h (6) R . dx = - QT . h where the last statement follows because R is upper triangular. Here, R, QT and h are known so this is a matter of solving for dx. The routine MPFIT_QRFAC provides the QR factorization of h, with pivoting, and MPFIT_QRSOLV provides the solution for dx. REFERENCES MINPACK-1, Jorge More', available from netlib (www.netlib.org). "Optimization Software Guide," Jorge More' and Stephen Wright, SIAM, *Frontiers in Applied Mathematics*, Number 14. More', Jorge J., "The Levenberg-Marquardt Algorithm: Implementation and Theory," in *Numerical Analysis*, ed. Watson, G. A., Lecture Notes in Mathematics 630, Springer-Verlag, 1977. MODIFICATION HISTORY Translated from MINPACK-1 in FORTRAN, Apr-Jul 1998, CM Copyright (C) 1997-2002, Craig Markwardt This software is provided as is without any warranty whatsoever. Permission to use, copy, modify, and distribute modified or unmodified copies is granted, provided this copyright and disclaimer are included unchanged. Translated from MPFIT (Craig Markwardt's IDL package) to Python, August, 2002. Mark Rivers Converted from Numeric to numpy (Sergey Koposov, July 2008) """ from __future__ import division from __future__ import print_function from builtins import str from builtins import range from builtins import object from past.utils import old_div import numpy import types import scipy.linalg.blas # Original FORTRAN documentation # ********** # # subroutine lmdif # # the purpose of lmdif is to minimize the sum of the squares of # m nonlinear functions in n variables by a modification of # the levenberg-marquardt algorithm. the user must provide a # subroutine which calculates the functions. the jacobian is # then calculated by a forward-difference approximation. # # the subroutine statement is # # subroutine lmdif(fcn,m,n,x,fvec,ftol,xtol,gtol,maxfev,epsfcn, # diag,mode,factor,nprint,info,nfev,fjac, # ldfjac,ipvt,qtf,wa1,wa2,wa3,wa4) # # where # # fcn is the name of the user-supplied subroutine which # calculates the functions. fcn must be declared # in an external statement in the user calling # program, and should be written as follows. # # subroutine fcn(m,n,x,fvec,iflag) # integer m,n,iflag # double precision x(n),fvec(m) # ---------- # calculate the functions at x and # return this vector in fvec. # ---------- # return # end # # the value of iflag should not be changed by fcn unless # the user wants to terminate execution of lmdif. # in this case set iflag to a negative integer. # # m is a positive integer input variable set to the number # of functions. # # n is a positive integer input variable set to the number # of variables. n must not exceed m. # # x is an array of length n. on input x must contain # an initial estimate of the solution vector. on output x # contains the final estimate of the solution vector. # # fvec is an output array of length m which contains # the functions evaluated at the output x. # # ftol is a nonnegative input variable. termination # occurs when both the actual and predicted relative # reductions in the sum of squares are at most ftol. # therefore, ftol measures the relative error desired # in the sum of squares. # # xtol is a nonnegative input variable. termination # occurs when the relative error between two consecutive # iterates is at most xtol. therefore, xtol measures the # relative error desired in the approximate solution. # # gtol is a nonnegative input variable. termination # occurs when the cosine of the angle between fvec and # any column of the jacobian is at most gtol in absolute # value. therefore, gtol measures the orthogonality # desired between the function vector and the columns # of the jacobian. # # maxfev is a positive integer input variable. termination # occurs when the number of calls to fcn is at least # maxfev by the end of an iteration. # # epsfcn is an input variable used in determining a suitable # step length for the forward-difference approximation. this # approximation assumes that the relative errors in the # functions are of the order of epsfcn. if epsfcn is less # than the machine precision, it is assumed that the relative # errors in the functions are of the order of the machine # precision. # # diag is an array of length n. if mode = 1 (see # below), diag is internally set. if mode = 2, diag # must contain positive entries that serve as # multiplicative scale factors for the variables. # # mode is an integer input variable. if mode = 1, the # variables will be scaled internally. if mode = 2, # the scaling is specified by the input diag. other # values of mode are equivalent to mode = 1. # # factor is a positive input variable used in determining the # initial step bound. this bound is set to the product of # factor and the euclidean norm of diag*x if nonzero, or else # to factor itself. in most cases factor should lie in the # interval (.1,100.). 100. is a generally recommended value. # # nprint is an integer input variable that enables controlled # printing of iterates if it is positive. in this case, # fcn is called with iflag = 0 at the beginning of the first # iteration and every nprint iterations thereafter and # immediately prior to return, with x and fvec available # for printing. if nprint is not positive, no special calls # of fcn with iflag = 0 are made. # # info is an integer output variable. if the user has # terminated execution, info is set to the (negative) # value of iflag. see description of fcn. otherwise, # info is set as follows. # # info = 0 improper input parameters. # # info = 1 both actual and predicted relative reductions # in the sum of squares are at most ftol. # # info = 2 relative error between two consecutive iterates # is at most xtol. # # info = 3 conditions for info = 1 and info = 2 both hold. # # info = 4 the cosine of the angle between fvec and any # column of the jacobian is at most gtol in # absolute value. # # info = 5 number of calls to fcn has reached or # exceeded maxfev. # # info = 6 ftol is too small. no further reduction in # the sum of squares is possible. # # info = 7 xtol is too small. no further improvement in # the approximate solution x is possible. # # info = 8 gtol is too small. fvec is orthogonal to the # columns of the jacobian to machine precision. # # nfev is an integer output variable set to the number of # calls to fcn. # # fjac is an output m by n array. the upper n by n submatrix # of fjac contains an upper triangular matrix r with # diagonal elements of nonincreasing magnitude such that # # t t t # p *(jac *jac)*p = r *r, # # where p is a permutation matrix and jac is the final # calculated jacobian. column j of p is column ipvt(j) # (see below) of the identity matrix. the lower trapezoidal # part of fjac contains information generated during # the computation of r. # # ldfjac is a positive integer input variable not less than m # which specifies the leading dimension of the array fjac. # # ipvt is an integer output array of length n. ipvt # defines a permutation matrix p such that jac*p = q*r, # where jac is the final calculated jacobian, q is # orthogonal (not stored), and r is upper triangular # with diagonal elements of nonincreasing magnitude. # column j of p is column ipvt(j) of the identity matrix. # # qtf is an output array of length n which contains # the first n elements of the vector (q transpose)*fvec. # # wa1, wa2, and wa3 are work arrays of length n. # # wa4 is a work array of length m. # # subprograms called # # user-supplied ...... fcn # # minpack-supplied ... dpmpar,enorm,fdjac2,,qrfac # # fortran-supplied ... dabs,dmax1,dmin1,dsqrt,mod # # argonne national laboratory. minpack project. march 1980. # burton s. garbow, kenneth e. hillstrom, jorge j. more # # ********** class mpfit(object): blas_enorm32, = scipy.linalg.blas.get_blas_funcs(['nrm2'],numpy.array([0],dtype=numpy.float32)) blas_enorm64, = scipy.linalg.blas.get_blas_funcs(['nrm2'],numpy.array([0],dtype=numpy.float64)) def __init__(self, fcn, xall=None, functkw={}, parinfo=None, ftol=1.e-10, xtol=1.e-10, gtol=1.e-10, damp=0., maxiter=200, factor=100., nprint=1, iterfunct='default', iterkw={}, nocovar=0, rescale=0, autoderivative=1, quiet=0, diag=None, epsfcn=None, debug=0): """ Inputs: fcn: The function to be minimized. The function should return the weighted deviations between the model and the data, as described above. xall: An array of starting values for each of the parameters of the model. The number of parameters should be fewer than the number of measurements. This parameter is optional if the parinfo keyword is used (but see parinfo). The parinfo keyword provides a mechanism to fix or constrain individual parameters. Keywords: autoderivative: If this is set, derivatives of the function will be computed automatically via a finite differencing procedure. If not set, then fcn must provide the (analytical) derivatives. Default: set (=1) NOTE: to supply your own analytical derivatives, explicitly pass autoderivative=0 ftol: A nonnegative input variable. Termination occurs when both the actual and predicted relative reductions in the sum of squares are at most ftol (and status is accordingly set to 1 or 3). Therefore, ftol measures the relative error desired in the sum of squares. Default: 1E-10 functkw: A dictionary which contains the parameters to be passed to the user-supplied function specified by fcn via the standard Python keyword dictionary mechanism. This is the way you can pass additional data to your user-supplied function without using global variables. Consider the following example: if functkw = {'xval':[1.,2.,3.], 'yval':[1.,4.,9.], 'errval':[1.,1.,1.] } then the user supplied function should be declared like this: def myfunct(p, fjac=None, xval=None, yval=None, errval=None): Default: {} No extra parameters are passed to the user-supplied function. gtol: A nonnegative input variable. Termination occurs when the cosine of the angle between fvec and any column of the jacobian is at most gtol in absolute value (and status is accordingly set to 4). Therefore, gtol measures the orthogonality desired between the function vector and the columns of the jacobian. Default: 1e-10 iterkw: The keyword arguments to be passed to iterfunct via the dictionary keyword mechanism. This should be a dictionary and is similar in operation to FUNCTKW. Default: {} No arguments are passed. iterfunct: The name of a function to be called upon each NPRINT iteration of the MPFIT routine. It should be declared in the following way: def iterfunct(myfunct, p, iter, fnorm, functkw=None, parinfo=None, quiet=0, dof=None, [iterkw keywords here]) # perform custom iteration update iterfunct must accept all three keyword parameters (FUNCTKW, PARINFO and QUIET). myfunct: The user-supplied function to be minimized, p: The current set of model parameters iter: The iteration number functkw: The arguments to be passed to myfunct. fnorm: The chi-squared value. quiet: Set when no textual output should be printed. dof: The number of degrees of freedom, normally the number of points less the number of free parameters. See below for documentation of parinfo. In implementation, iterfunct can perform updates to the terminal or graphical user interface, to provide feedback while the fit proceeds. If the fit is to be stopped for any reason, then iterfunct should return a a status value between -15 and -1. Otherwise it should return None (e.g. no return statement) or 0. In principle, iterfunct should probably not modify the parameter values, because it may interfere with the algorithm's stability. In practice it is allowed. Default: an internal routine is used to print the parameter values. Set iterfunct=None if there is no user-defined routine and you don't want the internal default routine be called. maxiter: The maximum number of iterations to perform. If the number is exceeded, then the status value is set to 5 and MPFIT returns. Default: 200 iterations nocovar: Set this keyword to prevent the calculation of the covariance matrix before returning (see COVAR) Default: clear (=0) The covariance matrix is returned nprint: The frequency with which iterfunct is called. A value of 1 indicates that iterfunct is called with every iteration, while 2 indicates every other iteration, etc. Note that several Levenberg-Marquardt attempts can be made in a single iteration. Default value: 1 parinfo Provides a mechanism for more sophisticated constraints to be placed on parameter values. When parinfo is not passed, then it is assumed that all parameters are free and unconstrained. Values in parinfo are never modified during a call to MPFIT. See description above for the structure of PARINFO. Default value: None All parameters are free and unconstrained. quiet: Set this keyword when no textual output should be printed by MPFIT damp: A scalar number, indicating the cut-off value of residuals where "damping" will occur. Residuals with magnitudes greater than this number will be replaced by their hyperbolic tangent. This partially mitigates the so-called large residual problem inherent in least-squares solvers (as for the test problem CURVI, http://www.maxthis.com/curviex.htm). A value of 0 indicates no damping. Default: 0 Note: DAMP doesn't work with autoderivative=0 xtol: A nonnegative input variable. Termination occurs when the relative error between two consecutive iterates is at most xtol (and status is accordingly set to 2 or 3). Therefore, xtol measures the relative error desired in the approximate solution. Default: 1E-10 Outputs: Returns an object of type mpfit. The results are attributes of this class, e.g. mpfit.status, mpfit.errmsg, mpfit.params, npfit.niter, mpfit.covar. .status An integer status code is returned. All values greater than zero can represent success (however .status == 5 may indicate failure to converge). It can have one of the following values: -16 A parameter or function value has become infinite or an undefined number. This is usually a consequence of numerical overflow in the user's model function, which must be avoided. -15 to -1 These are error codes that either MYFUNCT or iterfunct may return to terminate the fitting process. Values from -15 to -1 are reserved for the user functions and will not clash with MPFIT. 0 Improper input parameters. 1 Both actual and predicted relative reductions in the sum of squares are at most ftol. 2 Relative error between two consecutive iterates is at most xtol 3 Conditions for status = 1 and status = 2 both hold. 4 The cosine of the angle between fvec and any column of the jacobian is at most gtol in absolute value. 5 The maximum number of iterations has been reached. 6 ftol is too small. No further reduction in the sum of squares is possible. 7 xtol is too small. No further improvement in the approximate solution x is possible. 8 gtol is too small. fvec is orthogonal to the columns of the jacobian to machine precision. .fnorm The value of the summed squared residuals for the returned parameter values. (chi-square) .covar The covariance matrix for the set of parameters returned by MPFIT. The matrix is NxN where N is the number of parameters. The square root of the diagonal elements gives the formal 1-sigma statistical errors on the parameters if errors were treated "properly" in fcn. Parameter errors are also returned in .perror. To compute the correlation matrix, pcor, use this example: cov = mpfit.covar pcor = cov * 0. for i in range(n): for j in range(n): pcor[i,j] = cov[i,j]/sqrt(cov[i,i]*cov[j,j]) If nocovar is set or MPFIT terminated abnormally, then .covar is set to a scalar with value None. .errmsg A string error or warning message is returned. .nfev The number of calls to MYFUNCT performed. .niter The number of iterations completed. .perror The formal 1-sigma errors in each parameter, computed from the covariance matrix. If a parameter is held fixed, or if it touches a boundary, then the error is reported as zero. If the fit is unweighted (i.e. no errors were given, or the weights were uniformly set to unity), then .perror will probably not represent the true parameter uncertainties. *If* you can assume that the true reduced chi-squared value is unity -- meaning that the fit is implicitly assumed to be of good quality -- then the estimated parameter uncertainties can be computed by scaling .perror by the measured chi-squared value. dof = len(x) - len(mpfit.params) # deg of freedom # scaled uncertainties pcerror = mpfit.perror * sqrt(mpfit.fnorm / dof) """ self.niter = 0 self.params = None self.covar = None self.perror = None self.status = 0 # Invalid input flag set while we check inputs self.debug = debug self.errmsg = '' self.nfev = 0 self.damp = damp self.dof=0 if fcn==None: self.errmsg = "Usage: parms = mpfit('myfunt', ... )" return if iterfunct == 'default': iterfunct = self.defiter # Parameter damping doesn't work when user is providing their own # gradients. if (self.damp != 0) and (autoderivative == 0): self.errmsg = 'ERROR: keywords DAMP and AUTODERIVATIVE are mutually exclusive' return # Parameters can either be stored in parinfo, or x. x takes precedence if it exists if (xall is None) and (parinfo is None): self.errmsg = 'ERROR: must pass parameters in P or PARINFO' return # Be sure that PARINFO is of the right type if parinfo is not None: if type(parinfo) != list: self.errmsg = 'ERROR: PARINFO must be a list of dictionaries.' return else: if type(parinfo[0]) != dict: self.errmsg = 'ERROR: PARINFO must be a list of dictionaries.' return if ((xall is not None) and (len(xall) != len(parinfo))): self.errmsg = 'ERROR: number of elements in PARINFO and P must agree' return # If the parameters were not specified at the command line, then # extract them from PARINFO if xall is None: xall = self.parinfo(parinfo, 'value') if xall is None: self.errmsg = 'ERROR: either P or PARINFO(*)["value"] must be supplied.' return # Make sure parameters are numpy arrays xall = numpy.asarray(xall) # In the case if the xall is not float or if is float but has less # than 64 bits we do convert it into double if xall.dtype.kind != 'f' or xall.dtype.itemsize<=4: xall = xall.astype(numpy.float) npar = len(xall) self.fnorm = -1. fnorm1 = -1. # TIED parameters? ptied = self.parinfo(parinfo, 'tied', default='', n=npar) self.qanytied = 0 for i in range(npar): ptied[i] = ptied[i].strip() if ptied[i] != '': self.qanytied = 1 self.ptied = ptied # FIXED parameters ? pfixed = self.parinfo(parinfo, 'fixed', default=0, n=npar) pfixed = (pfixed == 1) for i in range(npar): pfixed[i] = pfixed[i] or (ptied[i] != '') # Tied parameters are also effectively fixed # Finite differencing step, absolute and relative, and sidedness of deriv. step = self.parinfo(parinfo, 'step', default=0., n=npar) dstep = self.parinfo(parinfo, 'relstep', default=0., n=npar) dside = self.parinfo(parinfo, 'mpside', default=0, n=npar) # Maximum and minimum steps allowed to be taken in one iteration maxstep = self.parinfo(parinfo, 'mpmaxstep', default=0., n=npar) minstep = self.parinfo(parinfo, 'mpminstep', default=0., n=npar) qmin = minstep != 0 qmin[:] = False # Remove minstep for now!! qmax = maxstep != 0 if numpy.any(qmin & qmax & (maxstep<minstep)): self.errmsg = 'ERROR: MPMINSTEP is greater than MPMAXSTEP' return wh = (numpy.nonzero((qmin!=0.) | (qmax!=0.)))[0] qminmax = len(wh > 0) # Finish up the free parameters ifree = (numpy.nonzero(pfixed != 1))[0] nfree = len(ifree) if nfree == 0: self.errmsg = 'ERROR: no free parameters' return # Compose only VARYING parameters self.params = xall.copy() # self.params is the set of parameters to be returned x = self.params[ifree] # x is the set of free parameters # LIMITED parameters ? limited = self.parinfo(parinfo, 'limited', default=[0,0], n=npar) limits = self.parinfo(parinfo, 'limits', default=[0.,0.], n=npar) if (limited is not None) and (limits is not None): # Error checking on limits in parinfo if numpy.any((limited[:,0] & (xall < limits[:,0])) | (limited[:,1] & (xall > limits[:,1]))): self.errmsg = 'ERROR: parameters are not within PARINFO limits' return if numpy.any((limited[:,0] & limited[:,1]) & (limits[:,0] >= limits[:,1]) & (pfixed == 0)): self.errmsg = 'ERROR: PARINFO parameter limits are not consistent' return # Transfer structure values to local variables qulim = (limited[:,1])[ifree] ulim = (limits [:,1])[ifree] qllim = (limited[:,0])[ifree] llim = (limits [:,0])[ifree] if numpy.any((qulim!=0.) | (qllim!=0.)): qanylim = 1 else: qanylim = 0 else: # Fill in local variables with dummy values qulim = numpy.zeros(nfree) ulim = x * 0. qllim = qulim llim = x * 0. qanylim = 0 n = len(x) # Check input parameters for errors if (n < 0) or (ftol <= 0) or (xtol <= 0) or (gtol <= 0) \ or (maxiter < 0) or (factor <= 0): self.errmsg = 'ERROR: input keywords are inconsistent' return if rescale != 0: self.errmsg = 'ERROR: DIAG parameter scales are inconsistent' if len(diag) < n: return if numpy.any(diag <= 0): return self.errmsg = '' [self.status, fvec] = self.call(fcn, self.params, functkw) if self.status < 0: self.errmsg = 'ERROR: first call to "'+str(fcn)+'" failed' return # If the returned fvec has more than four bits I assume that we have # double precision # It is important that the machar is determined by the precision of # the returned value, not by the precision of the input array if numpy.array([fvec]).dtype.itemsize>4: self.machar = machar(double=1) self.blas_enorm = mpfit.blas_enorm64 else: self.machar = machar(double=0) self.blas_enorm = mpfit.blas_enorm32 machep = self.machar.machep m = len(fvec) if m < n: self.errmsg = 'ERROR: number of parameters must not exceed data' return self.dof = m-nfree self.fnorm = self.enorm(fvec) # Initialize Levelberg-Marquardt parameter and iteration counter par = 0. self.niter = 1 qtf = x * 0. self.status = 0 # Beginning of the outer loop while(1): # If requested, call fcn to enable printing of iterates self.params[ifree] = x if self.qanytied: self.params = self.tie(self.params, ptied) if (nprint > 0) and (iterfunct is not None): if ((self.niter-1) % nprint) == 0: mperr = 0 xnew0 = self.params.copy() dof = numpy.max([len(fvec) - len(x), 0]) status = iterfunct(fcn, self.params, self.niter, self.fnorm**2, functkw=functkw, parinfo=parinfo, quiet=quiet, dof=dof, **iterkw) if status is not None: self.status = status # Check for user termination if self.status < 0: self.errmsg = 'WARNING: premature termination by ' + str(iterfunct) return # If parameters were changed (grrr..) then re-tie if numpy.max(numpy.abs(xnew0-self.params)) > 0: if self.qanytied: self.params = self.tie(self.params, ptied) x = self.params[ifree] # Calculate the jacobian matrix self.status = 2 catch_msg = 'calling MPFIT_FDJAC2' fjac = self.fdjac2(fcn, x, fvec, step, qulim, ulim, dside, epsfcn=epsfcn, autoderivative=autoderivative, dstep=dstep, functkw=functkw, ifree=ifree, xall=self.params) if fjac is None: self.errmsg = 'WARNING: premature termination by FDJAC2' return # Determine if any of the parameters are pegged at the limits if qanylim: catch_msg = 'zeroing derivatives of pegged parameters' whlpeg = (numpy.nonzero(qllim & (x == llim)))[0] nlpeg = len(whlpeg) whupeg = (numpy.nonzero(qulim & (x == ulim)))[0] nupeg = len(whupeg) # See if any "pegged" values should keep their derivatives if nlpeg > 0: # Total derivative of sum wrt lower pegged parameters for i in range(nlpeg): sum0 = sum(fvec * fjac[:,whlpeg[i]]) if sum0 > 0: fjac[:,whlpeg[i]] = 0 if nupeg > 0: # Total derivative of sum wrt upper pegged parameters for i in range(nupeg): sum0 = sum(fvec * fjac[:,whupeg[i]]) if sum0 < 0: fjac[:,whupeg[i]] = 0 # Compute the QR factorization of the jacobian [fjac, ipvt, wa1, wa2] = self.qrfac(fjac, pivot=1) # On the first iteration if "diag" is unspecified, scale # according to the norms of the columns of the initial jacobian catch_msg = 'rescaling diagonal elements' if self.niter == 1: if (rescale==0) or (len(diag) < n): diag = wa2.copy() diag[diag == 0] = 1. # On the first iteration, calculate the norm of the scaled x # and initialize the step bound delta wa3 = diag * x xnorm = self.enorm(wa3) delta = factor*xnorm if delta == 0.: delta = factor # Form (q transpose)*fvec and store the first n components in qtf catch_msg = 'forming (q transpose)*fvec' wa4 = fvec.copy() for j in range(n): lj = ipvt[j] temp3 = fjac[j,lj] if temp3 != 0: fj = fjac[j:,lj] wj = wa4[j:] # *** optimization wa4(j:*) wa4[j:] = wj - fj * sum(fj*wj) / temp3 fjac[j,lj] = wa1[j] qtf[j] = wa4[j] # From this point on, only the square matrix, consisting of the # triangle of R, is needed. fjac = fjac[0:n, 0:n] fjac.shape = [n, n] temp = fjac.copy() for i in range(n): temp[:,i] = fjac[:, ipvt[i]] fjac = temp.copy() # Check for overflow. This should be a cheap test here since FJAC # has been reduced to a (small) square matrix, and the test is # O(N^2). #wh = where(finite(fjac) EQ 0, ct) #if ct GT 0 then goto, FAIL_OVERFLOW # Compute the norm of the scaled gradient catch_msg = 'computing the scaled gradient' gnorm = 0. if self.fnorm != 0: for j in range(n): l = ipvt[j] if wa2[l] != 0: sum0 = old_div(sum(fjac[0:j+1,j]*qtf[0:j+1]),self.fnorm) gnorm = numpy.max([gnorm,numpy.abs(old_div(sum0,wa2[l]))]) # Test for convergence of the gradient norm if gnorm <= gtol: self.status = 4 break if maxiter == 0: self.status = 5 break # Rescale if necessary if rescale == 0: diag = numpy.choose(diag>wa2, (wa2, diag)) # Beginning of the inner loop while(1): # Determine the levenberg-marquardt parameter catch_msg = 'calculating LM parameter (MPFIT_)' [fjac, par, wa1, wa2] = self.lmpar(fjac, ipvt, diag, qtf, delta, wa1, wa2, par=par) # Store the direction p and x+p. Calculate the norm of p wa1 = -wa1 if (qanylim == 0) and (qminmax == 0): # No parameter limits, so just move to new position WA2 alpha = 1. wa2 = x + wa1 else: # Respect the limits. If a step were to go out of bounds, then # we should take a step in the same direction but shorter distance. # The step should take us right to the limit in that case. alpha = 1. if qanylim: # Do not allow any steps out of bounds catch_msg = 'checking for a step out of bounds' if nlpeg > 0: wa1[whlpeg] = numpy.clip( wa1[whlpeg], 0., numpy.max(wa1)) if nupeg > 0: wa1[whupeg] = numpy.clip(wa1[whupeg], numpy.min(wa1), 0.) dwa1 = numpy.abs(wa1) > machep whl = (numpy.nonzero(((dwa1!=0.) & qllim) & ((x + wa1) < llim)))[0] if len(whl) > 0: t = (old_div((llim[whl] - x[whl]), wa1[whl])) alpha = numpy.min([alpha, numpy.min(t)]) whu = (numpy.nonzero(((dwa1!=0.) & qulim) & ((x + wa1) > ulim)))[0] if len(whu) > 0: t = (old_div((ulim[whu] - x[whu]), wa1[whu])) alpha = numpy.min([alpha, numpy.min(t)]) # Obey any max step values. if qminmax: nwa1 = wa1 * alpha whmax = (numpy.nonzero((qmax != 0.) & (maxstep > 0)))[0] if len(whmax) > 0: mrat = numpy.max(old_div(numpy.abs(nwa1[whmax]), numpy.abs(maxstep[ifree[whmax]]))) if mrat > 1: alpha = old_div(alpha, mrat) # Scale the resulting vector wa1 = wa1 * alpha wa2 = x + wa1 # Adjust the final output values. If the step put us exactly # on a boundary, make sure it is exact. sgnu = (ulim >= 0) * 2. - 1. sgnl = (llim >= 0) * 2. - 1. # Handles case of # ... nonzero *LIM ... ...zero * LIM ulim1 = ulim * (1 - sgnu * machep) - (ulim == 0) * machep llim1 = llim * (1 + sgnl * machep) + (llim == 0) * machep wh = (numpy.nonzero((qulim!=0) & (wa2 >= ulim1)))[0] if len(wh) > 0: wa2[wh] = ulim[wh] wh = (numpy.nonzero((qllim!=0.) & (wa2 <= llim1)))[0] if len(wh) > 0: wa2[wh] = llim[wh] # endelse wa3 = diag * wa1 pnorm = self.enorm(wa3) # On the first iteration, adjust the initial step bound if self.niter == 1: delta = numpy.min([delta,pnorm]) self.params[ifree] = wa2 # Evaluate the function at x+p and calculate its norm mperr = 0 catch_msg = 'calling '+str(fcn) [self.status, wa4] = self.call(fcn, self.params, functkw) if self.status < 0: self.errmsg = 'WARNING: premature termination by "'+fcn+'"' return fnorm1 = self.enorm(wa4) # Compute the scaled actual reduction catch_msg = 'computing convergence criteria' actred = -1. if (0.1 * fnorm1) < self.fnorm: actred = - (old_div(fnorm1,self.fnorm))**2 + 1. # Compute the scaled predicted reduction and the scaled directional # derivative for j in range(n): wa3[j] = 0 wa3[0:j+1] = wa3[0:j+1] + fjac[0:j+1,j]*wa1[ipvt[j]] # Remember, alpha is the fraction of the full LM step actually # taken temp1 = old_div(self.enorm(alpha*wa3),self.fnorm) temp2 = old_div((numpy.sqrt(alpha*par)*pnorm),self.fnorm) prered = temp1*temp1 + old_div((temp2*temp2),0.5) dirder = -(temp1*temp1 + temp2*temp2) # Compute the ratio of the actual to the predicted reduction. ratio = 0. if prered != 0: ratio = old_div(actred,prered) # Update the step bound if ratio <= 0.25: if actred >= 0: temp = .5 else: temp = .5*dirder/(dirder + .5*actred) if ((0.1*fnorm1) >= self.fnorm) or (temp < 0.1): temp = 0.1 delta = temp*numpy.min([delta,old_div(pnorm,0.1)]) par = old_div(par,temp) else: if (par == 0) or (ratio >= 0.75): delta = old_div(pnorm,.5) par = .5*par # Test for successful iteration if ratio >= 0.0001: # Successful iteration. Update x, fvec, and their norms x = wa2 wa2 = diag * x fvec = wa4 xnorm = self.enorm(wa2) self.fnorm = fnorm1 self.niter = self.niter + 1 # Tests for convergence if (numpy.abs(actred) <= ftol) and (prered <= ftol) \ and (0.5 * ratio <= 1): self.status = 1 if delta <= xtol*xnorm: self.status = 2 if (numpy.abs(actred) <= ftol) and (prered <= ftol) \ and (0.5 * ratio <= 1) and (self.status == 2): self.status = 3 if self.status != 0: break # Tests for termination and stringent tolerances if self.niter >= maxiter: self.status = 5 if (numpy.abs(actred) <= machep) and (prered <= machep) \ and (0.5*ratio <= 1): self.status = 6 if delta <= machep*xnorm: self.status = 7 if gnorm <= machep: self.status = 8 if self.status != 0: break # End of inner loop. Repeat if iteration unsuccessful if ratio >= 0.0001: break # Check for over/underflow if ~numpy.all(numpy.isfinite(wa1) & numpy.isfinite(wa2) & \ numpy.isfinite(x)) or ~numpy.isfinite(ratio): errmsg = ('''ERROR: parameter or function value(s) have become 'infinite; check model function for over- 'and underflow''') self.status = -16 break #wh = where(finite(wa1) EQ 0 OR finite(wa2) EQ 0 OR finite(x) EQ 0, ct) #if ct GT 0 OR finite(ratio) EQ 0 then begin if self.status != 0: break; # End of outer loop. catch_msg = 'in the termination phase' # Termination, either normal or user imposed. if len(self.params) == 0: return if nfree == 0: self.params = xall.copy() else: self.params[ifree] = x if (nprint > 0) and (self.status > 0): catch_msg = 'calling ' + str(fcn) [status, fvec] = self.call(fcn, self.params, functkw) catch_msg = 'in the termination phase' self.fnorm = self.enorm(fvec) if (self.fnorm is not None) and (fnorm1 is not None): self.fnorm = numpy.max([self.fnorm, fnorm1]) self.fnorm = self.fnorm**2. self.covar = None self.perror = None # (very carefully) set the covariance matrix COVAR if (self.status > 0) and (nocovar==0) and (n is not None) \ and (fjac is not None) and (ipvt is not None): sz = fjac.shape if (n > 0) and (sz[0] >= n) and (sz[1] >= n) \ and (len(ipvt) >= n): catch_msg = 'computing the covariance matrix' cv = self.calc_covar(fjac[0:n,0:n], ipvt[0:n]) cv.shape = [n, n] nn = len(xall) # Fill in actual covariance matrix, accounting for fixed # parameters. self.covar = numpy.zeros([nn, nn], dtype=float) for i in range(n): self.covar[ifree,ifree[i]] = cv[:,i] # Compute errors in parameters catch_msg = 'computing parameter errors' self.perror = numpy.zeros(nn, dtype=float) d = numpy.diagonal(self.covar).copy() wh = (numpy.nonzero(d >= 0))[0] if len(wh) > 0: self.perror[wh] = numpy.sqrt(d[wh]) return def __str__(self): return {'params': self.params, 'niter': self.niter, 'params': self.params, 'covar': self.covar, 'perror': self.perror, 'status': self.status, 'debug': self.debug, 'errmsg': self.errmsg, 'nfev': self.nfev, 'damp': self.damp #,'machar':self.machar }.__str__() # Default procedure to be called every iteration. It simply prints # the parameter values. def defiter(self, fcn, x, iter, fnorm=None, functkw=None, quiet=0, iterstop=None, parinfo=None, format=None, pformat='%.10g', dof=1): if self.debug: print('Entering defiter...') if quiet: return if fnorm is None: [status, fvec] = self.call(fcn, x, functkw) fnorm = self.enorm(fvec)**2 # Determine which parameters to print nprint = len(x) print("Iter ", ('%6i' % iter)," CHI-SQUARE = ",('%.10g' % fnorm)," DOF = ", ('%i' % dof)) for i in range(nprint): if (parinfo is not None) and ('parname' in parinfo[i]): p = ' ' + parinfo[i]['parname'] + ' = ' else: p = ' P' + str(i) + ' = ' if (parinfo is not None) and ('mpprint' in parinfo[i]): iprint = parinfo[i]['mpprint'] else: iprint = 1 if iprint: print(p + (pformat % x[i]) + ' ') return 0 # DO_ITERSTOP: # if keyword_set(iterstop) then begin # k = get_kbrd(0) # if k EQ string(byte(7)) then begin # message, 'WARNING: minimization not complete', /info # print, 'Do you want to terminate this procedure? (y/n)', $ # format='(A,$)' # k = '' # read, k # if strupcase(strmid(k,0,1)) EQ 'Y' then begin # message, 'WARNING: Procedure is terminating.', /info # mperr = -1 # endif # endif # endif # Procedure to parse the parameter values in PARINFO, which is a list of dictionaries def parinfo(self, parinfo=None, key='a', default=None, n=0): if self.debug: print('Entering parinfo...') if (n == 0) and (parinfo is not None): n = len(parinfo) if n == 0: values = default return values values = [] for i in range(n): if (parinfo is not None) and (key in parinfo[i]): values.append(parinfo[i][key]) else: values.append(default) # Convert to numeric arrays if possible test = default if type(default) == list: test=default[0] if isinstance(test, int): values = numpy.asarray(values, int) elif isinstance(test, float): values = numpy.asarray(values, float) return values # Call user function or procedure, with _EXTRA or not, with # derivatives or not. def call(self, fcn, x, functkw, fjac=None): if self.debug: print('Entering call...') if self.qanytied: x = self.tie(x, self.ptied) self.nfev = self.nfev + 1 if fjac is None: [status, f] = fcn(x, fjac=fjac, **functkw) if self.damp > 0: # Apply the damping if requested. This replaces the residuals # with their hyperbolic tangent. Thus residuals larger than # DAMP are essentially clipped. f = numpy.tanh(old_div(f,self.damp)) return [status, f] else: return fcn(x, fjac=fjac, **functkw) def enorm(self, vec): ans = self.blas_enorm(vec) return ans def fdjac2(self, fcn, x, fvec, step=None, ulimited=None, ulimit=None, dside=None, epsfcn=None, autoderivative=1, functkw=None, xall=None, ifree=None, dstep=None): if self.debug: print('Entering fdjac2...') machep = self.machar.machep if epsfcn is None: epsfcn = machep if xall is None: xall = x if ifree is None: ifree = numpy.arange(len(xall)) if step is None: step = x * 0. nall = len(xall) eps = numpy.sqrt(numpy.max([epsfcn, machep])) m = len(fvec) n = len(x) # Compute analytical derivative if requested if autoderivative == 0: mperr = 0 fjac = numpy.zeros(nall, dtype=float) fjac[ifree] = 1.0 # Specify which parameters need derivatives [status, fp] = self.call(fcn, xall, functkw, fjac=fjac) if len(fjac) != m*nall: print('ERROR: Derivative matrix was not computed properly.') return None # This definition is consistent with CURVEFIT # Sign error found (thanks Jesus Fernandez <[email protected]>) fjac.shape = [m,nall] fjac = -fjac # Select only the free parameters if len(ifree) < nall: fjac = fjac[:,ifree] fjac.shape = [m, n] return fjac fjac = numpy.zeros([m, n], dtype=float) h = eps * numpy.abs(x) # if STEP is given, use that # STEP includes the fixed parameters if step is not None: stepi = step[ifree] wh = (numpy.nonzero(stepi > 0))[0] if len(wh) > 0: h[wh] = stepi[wh] # if relative step is given, use that # DSTEP includes the fixed parameters if len(dstep) > 0: dstepi = dstep[ifree] wh = (numpy.nonzero(dstepi > 0))[0] if len(wh) > 0: h[wh] = numpy.abs(dstepi[wh]*x[wh]) # In case any of the step values are zero h[h == 0] = eps # Reverse the sign of the step if we are up against the parameter # limit, or if the user requested it. # DSIDE includes the fixed parameters (ULIMITED/ULIMIT have only # varying ones) mask = dside[ifree] == -1 if len(ulimited) > 0 and len(ulimit) > 0: mask = (mask | ((ulimited!=0) & (x > ulimit-h))) wh = (numpy.nonzero(mask))[0] if len(wh) > 0: h[wh] = - h[wh] # Loop through parameters, computing the derivative for each for j in range(n): xp = xall.copy() xp[ifree[j]] = xp[ifree[j]] + h[j] [status, fp] = self.call(fcn, xp, functkw) if status < 0: return None if numpy.abs(dside[ifree[j]]) <= 1: # COMPUTE THE ONE-SIDED DERIVATIVE # Note optimization fjac(0:*,j) fjac[0:,j] = old_div((fp-fvec),h[j]) else: # COMPUTE THE TWO-SIDED DERIVATIVE xp[ifree[j]] = xall[ifree[j]] - h[j] mperr = 0 [status, fm] = self.call(fcn, xp, functkw) if status < 0: return None # Note optimization fjac(0:*,j) fjac[0:,j] = old_div((fp-fm),(2*h[j])) return fjac # Original FORTRAN documentation # ********** # # subroutine qrfac # # this subroutine uses householder transformations with column # pivoting (optional) to compute a qr factorization of the # m by n matrix a. that is, qrfac determines an orthogonal # matrix q, a permutation matrix p, and an upper trapezoidal # matrix r with diagonal elements of nonincreasing magnitude, # such that a*p = q*r. the householder transformation for # column k, k = 1,2,...,min(m,n), is of the form # # t # i - (1/u(k))*u*u # # where u has zeros in the first k-1 positions. the form of # this transformation and the method of pivoting first # appeared in the corresponding linpack subroutine. # # the subroutine statement is # # subroutine qrfac(m,n,a,lda,pivot,ipvt,lipvt,rdiag,acnorm,wa) # # where # # m is a positive integer input variable set to the number # of rows of a. # # n is a positive integer input variable set to the number # of columns of a. # # a is an m by n array. on input a contains the matrix for # which the qr factorization is to be computed. on output # the strict upper trapezoidal part of a contains the strict # upper trapezoidal part of r, and the lower trapezoidal # part of a contains a factored form of q (the non-trivial # elements of the u vectors described above). # # lda is a positive integer input variable not less than m # which specifies the leading dimension of the array a. # # pivot is a logical input variable. if pivot is set true, # then column pivoting is enforced. if pivot is set false, # then no column pivoting is done. # # ipvt is an integer output array of length lipvt. ipvt # defines the permutation matrix p such that a*p = q*r. # column j of p is column ipvt(j) of the identity matrix. # if pivot is false, ipvt is not referenced. # # lipvt is a positive integer input variable. if pivot is false, # then lipvt may be as small as 1. if pivot is true, then # lipvt must be at least n. # # rdiag is an output array of length n which contains the # diagonal elements of r. # # acnorm is an output array of length n which contains the # norms of the corresponding columns of the input matrix a. # if this information is not needed, then acnorm can coincide # with rdiag. # # wa is a work array of length n. if pivot is false, then wa # can coincide with rdiag. # # subprograms called # # minpack-supplied ... dpmpar,enorm # # fortran-supplied ... dmax1,dsqrt,min0 # # argonne national laboratory. minpack project. march 1980. # burton s. garbow, kenneth e. hillstrom, jorge j. more # # ********** # # PIVOTING / PERMUTING: # # Upon return, A(*,*) is in standard parameter order, A(*,IPVT) is in # permuted order. # # RDIAG is in permuted order. # ACNORM is in standard parameter order. # # # NOTE: in IDL the factors appear slightly differently than described # above. The matrix A is still m x n where m >= n. # # The "upper" triangular matrix R is actually stored in the strict # lower left triangle of A under the standard notation of IDL. # # The reflectors that generate Q are in the upper trapezoid of A upon # output. # # EXAMPLE: decompose the matrix [[9.,2.,6.],[4.,8.,7.]] # aa = [[9.,2.,6.],[4.,8.,7.]] # mpfit_qrfac, aa, aapvt, rdiag, aanorm # IDL> print, aa # 1.81818* 0.181818* 0.545455* # -8.54545+ 1.90160* 0.432573* # IDL> print, rdiag # -11.0000+ -7.48166+ # # The components marked with a * are the components of the # reflectors, and those marked with a + are components of R. # # To reconstruct Q and R we proceed as follows. First R. # r = fltarr(m, n) # for i = 0, n-1 do r(0:i,i) = aa(0:i,i) # fill in lower diag # r(lindgen(n)*(m+1)) = rdiag # # Next, Q, which are composed from the reflectors. Each reflector v # is taken from the upper trapezoid of aa, and converted to a matrix # via (I - 2 vT . v / (v . vT)). # # hh = ident # identity matrix # for i = 0, n-1 do begin # v = aa(*,i) & if i GT 0 then v(0:i-1) = 0 # extract reflector # hh = hh # (ident - 2*(v # v)/total(v * v)) # generate matrix # endfor # # Test the result: # IDL> print, hh # transpose(r) # 9.00000 4.00000 # 2.00000 8.00000 # 6.00000 7.00000 # # Note that it is usually never necessary to form the Q matrix # explicitly, and MPFIT does not. def qrfac(self, a, pivot=0): if self.debug: print('Entering qrfac...') machep = self.machar.machep sz = a.shape m = sz[0] n = sz[1] # Compute the initial column norms and initialize arrays acnorm = numpy.zeros(n, dtype=float) for j in range(n): acnorm[j] = self.enorm(a[:,j]) rdiag = acnorm.copy() wa = rdiag.copy() ipvt = numpy.arange(n) # Reduce a to r with householder transformations minmn = numpy.min([m,n]) for j in range(minmn): if pivot != 0: # Bring the column of largest norm into the pivot position rmax = numpy.max(rdiag[j:]) kmax = (numpy.nonzero(rdiag[j:] == rmax))[0] ct = len(kmax) kmax = kmax + j if ct > 0: kmax = kmax[0] # Exchange rows via the pivot only. Avoid actually exchanging # the rows, in case there is lots of memory transfer. The # exchange occurs later, within the body of MPFIT, after the # extraneous columns of the matrix have been shed. if kmax != j: temp = ipvt[j] ; ipvt[j] = ipvt[kmax] ; ipvt[kmax] = temp rdiag[kmax] = rdiag[j] wa[kmax] = wa[j] # Compute the householder transformation to reduce the jth # column of A to a multiple of the jth unit vector lj = ipvt[j] ajj = a[j:,lj] ajnorm = self.enorm(ajj) if ajnorm == 0: break if a[j,lj] < 0: ajnorm = -ajnorm ajj = old_div(ajj, ajnorm) ajj[0] = ajj[0] + 1 # *** Note optimization a(j:*,j) a[j:,lj] = ajj # Apply the transformation to the remaining columns # and update the norms # NOTE to SELF: tried to optimize this by removing the loop, # but it actually got slower. Reverted to "for" loop to keep # it simple. if j+1 < n: for k in range(j+1, n): lk = ipvt[k] ajk = a[j:,lk] # *** Note optimization a(j:*,lk) # (corrected 20 Jul 2000) if a[j,lj] != 0: a[j:,lk] = ajk - ajj * sum(ajk*ajj)/a[j,lj] if (pivot != 0) and (rdiag[k] != 0): temp = old_div(a[j,lk],rdiag[k]) rdiag[k] = rdiag[k] * numpy.sqrt(numpy.max([(1.-temp**2), 0.])) temp = old_div(rdiag[k],wa[k]) if (0.05*temp*temp) <= machep: rdiag[k] = self.enorm(a[j+1:,lk]) wa[k] = rdiag[k] rdiag[j] = -ajnorm return [a, ipvt, rdiag, acnorm] # Original FORTRAN documentation # ********** # # subroutine qrsolv # # given an m by n matrix a, an n by n diagonal matrix d, # and an m-vector b, the problem is to determine an x which # solves the system # # a*x = b , d*x = 0 , # # in the least squares sense. # # this subroutine completes the solution of the problem # if it is provided with the necessary information from the # factorization, with column pivoting, of a. that is, if # a*p = q*r, where p is a permutation matrix, q has orthogonal # columns, and r is an upper triangular matrix with diagonal # elements of nonincreasing magnitude, then qrsolv expects # the full upper triangle of r, the permutation matrix p, # and the first n components of (q transpose)*b. the system # a*x = b, d*x = 0, is then equivalent to # # t t # r*z = q *b , p *d*p*z = 0 , # # where x = p*z. if this system does not have full rank, # then a least squares solution is obtained. on output qrsolv # also provides an upper triangular matrix s such that # # t t t # p *(a *a + d*d)*p = s *s . # # s is computed within qrsolv and may be of separate interest. # # the subroutine statement is # # subroutine qrsolv(n,r,ldr,ipvt,diag,qtb,x,sdiag,wa) # # where # # n is a positive integer input variable set to the order of r. # # r is an n by n array. on input the full upper triangle # must contain the full upper triangle of the matrix r. # on output the full upper triangle is unaltered, and the # strict lower triangle contains the strict upper triangle # (transposed) of the upper triangular matrix s. # # ldr is a positive integer input variable not less than n # which specifies the leading dimension of the array r. # # ipvt is an integer input array of length n which defines the # permutation matrix p such that a*p = q*r. column j of p # is column ipvt(j) of the identity matrix. # # diag is an input array of length n which must contain the # diagonal elements of the matrix d. # # qtb is an input array of length n which must contain the first # n elements of the vector (q transpose)*b. # # x is an output array of length n which contains the least # squares solution of the system a*x = b, d*x = 0. # # sdiag is an output array of length n which contains the # diagonal elements of the upper triangular matrix s. # # wa is a work array of length n. # # subprograms called # # fortran-supplied ... dabs,dsqrt # # argonne national laboratory. minpack project. march 1980. # burton s. garbow, kenneth e. hillstrom, jorge j. more # def qrsolv(self, r, ipvt, diag, qtb, sdiag): if self.debug: print('Entering qrsolv...') sz = r.shape m = sz[0] n = sz[1] # copy r and (q transpose)*b to preserve input and initialize s. # in particular, save the diagonal elements of r in x. for j in range(n): r[j:n,j] = r[j,j:n] x = numpy.diagonal(r).copy() wa = qtb.copy() # Eliminate the diagonal matrix d using a givens rotation for j in range(n): l = ipvt[j] if diag[l] == 0: break sdiag[j:] = 0 sdiag[j] = diag[l] # The transformations to eliminate the row of d modify only a # single element of (q transpose)*b beyond the first n, which # is initially zero. qtbpj = 0. for k in range(j,n): if sdiag[k] == 0: break if numpy.abs(r[k,k]) < numpy.abs(sdiag[k]): cotan = old_div(r[k,k],sdiag[k]) sine = old_div(0.5,numpy.sqrt(.25 + .25*cotan*cotan)) cosine = sine*cotan else: tang = old_div(sdiag[k],r[k,k]) cosine = old_div(0.5,numpy.sqrt(.25 + .25*tang*tang)) sine = cosine*tang # Compute the modified diagonal element of r and the # modified element of ((q transpose)*b,0). r[k,k] = cosine*r[k,k] + sine*sdiag[k] temp = cosine*wa[k] + sine*qtbpj qtbpj = -sine*wa[k] + cosine*qtbpj wa[k] = temp # Accumulate the transformation in the row of s if n > k+1: temp = cosine*r[k+1:n,k] + sine*sdiag[k+1:n] sdiag[k+1:n] = -sine*r[k+1:n,k] + cosine*sdiag[k+1:n] r[k+1:n,k] = temp sdiag[j] = r[j,j] r[j,j] = x[j] # Solve the triangular system for z. If the system is singular # then obtain a least squares solution nsing = n wh = (numpy.nonzero(sdiag == 0))[0] if len(wh) > 0: nsing = wh[0] wa[nsing:] = 0 if nsing >= 1: wa[nsing-1] = old_div(wa[nsing-1],sdiag[nsing-1]) # Degenerate case # *** Reverse loop *** for j in range(nsing-2,-1,-1): sum0 = sum(r[j+1:nsing,j]*wa[j+1:nsing]) wa[j] = old_div((wa[j]-sum0),sdiag[j]) # Permute the components of z back to components of x x[ipvt] = wa return (r, x, sdiag) # Original FORTRAN documentation # # subroutine lmpar # # given an m by n matrix a, an n by n nonsingular diagonal # matrix d, an m-vector b, and a positive number delta, # the problem is to determine a value for the parameter # par such that if x solves the system # # a*x = b , sqrt(par)*d*x = 0 , # # in the least squares sense, and dxnorm is the euclidean # norm of d*x, then either par is zero and # # (dxnorm-delta) .le. 0.1*delta , # # or par is positive and # # abs(dxnorm-delta) .le. 0.1*delta . # # this subroutine completes the solution of the problem # if it is provided with the necessary information from the # qr factorization, with column pivoting, of a. that is, if # a*p = q*r, where p is a permutation matrix, q has orthogonal # columns, and r is an upper triangular matrix with diagonal # elements of nonincreasing magnitude, then lmpar expects # the full upper triangle of r, the permutation matrix p, # and the first n components of (q transpose)*b. on output # lmpar also provides an upper triangular matrix s such that # # t t t # p *(a *a + par*d*d)*p = s *s . # # s is employed within lmpar and may be of separate interest. # # only a few iterations are generally needed for convergence # of the algorithm. if, however, the limit of 10 iterations # is reached, then the output par will contain the best # value obtained so far. # # the subroutine statement is # # subroutine lmpar(n,r,ldr,ipvt,diag,qtb,delta,par,x,sdiag, # wa1,wa2) # # where # # n is a positive integer input variable set to the order of r. # # r is an n by n array. on input the full upper triangle # must contain the full upper triangle of the matrix r. # on output the full upper triangle is unaltered, and the # strict lower triangle contains the strict upper triangle # (transposed) of the upper triangular matrix s. # # ldr is a positive integer input variable not less than n # which specifies the leading dimension of the array r. # # ipvt is an integer input array of length n which defines the # permutation matrix p such that a*p = q*r. column j of p # is column ipvt(j) of the identity matrix. # # diag is an input array of length n which must contain the # diagonal elements of the matrix d. # # qtb is an input array of length n which must contain the first # n elements of the vector (q transpose)*b. # # delta is a positive input variable which specifies an upper # bound on the euclidean norm of d*x. # # par is a nonnegative variable. on input par contains an # initial estimate of the levenberg-marquardt parameter. # on output par contains the final estimate. # # x is an output array of length n which contains the least # squares solution of the system a*x = b, sqrt(par)*d*x = 0, # for the output par. # # sdiag is an output array of length n which contains the # diagonal elements of the upper triangular matrix s. # # wa1 and wa2 are work arrays of length n. # # subprograms called # # minpack-supplied ... dpmpar,enorm,qrsolv # # fortran-supplied ... dabs,dmax1,dmin1,dsqrt # # argonne national laboratory. minpack project. march 1980. # burton s. garbow, kenneth e. hillstrom, jorge j. more # def lmpar(self, r, ipvt, diag, qtb, delta, x, sdiag, par=None): if self.debug: print('Entering lmpar...') dwarf = self.machar.minnum machep = self.machar.machep sz = r.shape m = sz[0] n = sz[1] # Compute and store in x the gauss-newton direction. If the # jacobian is rank-deficient, obtain a least-squares solution nsing = n wa1 = qtb.copy() rthresh = numpy.max(numpy.abs(numpy.diagonal(r).copy())) * machep wh = (numpy.nonzero(numpy.abs(numpy.diagonal(r).copy()) < rthresh))[0] if len(wh) > 0: nsing = wh[0] wa1[wh[0]:] = 0 if nsing >= 1: # *** Reverse loop *** for j in range(nsing-1,-1,-1): wa1[j] = old_div(wa1[j],r[j,j]) if j-1 >= 0: wa1[0:j] = wa1[0:j] - r[0:j,j]*wa1[j] # Note: ipvt here is a permutation array x[ipvt] = wa1 # Initialize the iteration counter. Evaluate the function at the # origin, and test for acceptance of the gauss-newton direction iter = 0 wa2 = diag * x dxnorm = self.enorm(wa2) fp = dxnorm - delta if fp <= 0.1*delta: return [r, 0., x, sdiag] # If the jacobian is not rank deficient, the newton step provides a # lower bound, parl, for the zero of the function. Otherwise set # this bound to zero. parl = 0. if nsing >= n: wa1 = diag[ipvt] * wa2[ipvt] / dxnorm wa1[0] = old_div(wa1[0], r[0,0]) # Degenerate case for j in range(1,n): # Note "1" here, not zero sum0 = sum(r[0:j,j]*wa1[0:j]) wa1[j] = old_div((wa1[j] - sum0),r[j,j]) temp = self.enorm(wa1) parl = old_div((old_div((old_div(fp,delta)),temp)),temp) # Calculate an upper bound, paru, for the zero of the function for j in range(n): sum0 = sum(r[0:j+1,j]*qtb[0:j+1]) wa1[j] = old_div(sum0,diag[ipvt[j]]) gnorm = self.enorm(wa1) paru = old_div(gnorm,delta) if paru == 0: paru = old_div(dwarf,numpy.min([delta,0.1])) # If the input par lies outside of the interval (parl,paru), set # par to the closer endpoint par = numpy.max([par,parl]) par = numpy.min([par,paru]) if par == 0: par = old_div(gnorm,dxnorm) # Beginning of an interation while(1): iter = iter + 1 # Evaluate the function at the current value of par if par == 0: par = numpy.max([dwarf, paru*0.001]) temp = numpy.sqrt(par) wa1 = temp * diag [r, x, sdiag] = self.qrsolv(r, ipvt, wa1, qtb, sdiag) wa2 = diag*x dxnorm = self.enorm(wa2) temp = fp fp = dxnorm - delta if (numpy.abs(fp) <= 0.1*delta) or \ ((parl == 0) and (fp <= temp) and (temp < 0)) or \ (iter == 10): break; # Compute the newton correction wa1 = diag[ipvt] * wa2[ipvt] / dxnorm for j in range(n-1): wa1[j] = old_div(wa1[j],sdiag[j]) wa1[j+1:n] = wa1[j+1:n] - r[j+1:n,j]*wa1[j] wa1[n-1] = old_div(wa1[n-1],sdiag[n-1]) # Degenerate case temp = self.enorm(wa1) parc = old_div((old_div((old_div(fp,delta)),temp)),temp) # Depending on the sign of the function, update parl or paru if fp > 0: parl = numpy.max([parl,par]) if fp < 0: paru = numpy.min([paru,par]) # Compute an improved estimate for par par = numpy.max([parl, par+parc]) # End of an iteration # Termination return [r, par, x, sdiag] # Procedure to tie one parameter to another. def tie(self, p, ptied=None): if self.debug: print('Entering tie...') if ptied is None: return for i in range(len(ptied)): if ptied[i] == '': continue cmd = 'p[' + str(i) + '] = ' + ptied[i] exec(cmd) return p # Original FORTRAN documentation # ********** # # subroutine covar # # given an m by n matrix a, the problem is to determine # the covariance matrix corresponding to a, defined as # # t # inverse(a *a) . # # this subroutine completes the solution of the problem # if it is provided with the necessary information from the # qr factorization, with column pivoting, of a. that is, if # a*p = q*r, where p is a permutation matrix, q has orthogonal # columns, and r is an upper triangular matrix with diagonal # elements of nonincreasing magnitude, then covar expects # the full upper triangle of r and the permutation matrix p. # the covariance matrix is then computed as # # t t # p*inverse(r *r)*p . # # if a is nearly rank deficient, it may be desirable to compute # the covariance matrix corresponding to the linearly independent # columns of a. to define the numerical rank of a, covar uses # the tolerance tol. if l is the largest integer such that # # abs(r(l,l)) .gt. tol*abs(r(1,1)) , # # then covar computes the covariance matrix corresponding to # the first l columns of r. for k greater than l, column # and row ipvt(k) of the covariance matrix are set to zero. # # the subroutine statement is # # subroutine covar(n,r,ldr,ipvt,tol,wa) # # where # # n is a positive integer input variable set to the order of r. # # r is an n by n array. on input the full upper triangle must # contain the full upper triangle of the matrix r. on output # r contains the square symmetric covariance matrix. # # ldr is a positive integer input variable not less than n # which specifies the leading dimension of the array r. # # ipvt is an integer input array of length n which defines the # permutation matrix p such that a*p = q*r. column j of p # is column ipvt(j) of the identity matrix. # # tol is a nonnegative input variable used to define the # numerical rank of a in the manner described above. # # wa is a work array of length n. # # subprograms called # # fortran-supplied ... dabs # # argonne national laboratory. minpack project. august 1980. # burton s. garbow, kenneth e. hillstrom, jorge j. more # # ********** def calc_covar(self, rr, ipvt=None, tol=1.e-14): if self.debug: print('Entering calc_covar...') if numpy.array(rr).ndim != 2: print('ERROR: r must be a two-dimensional matrix') return -1 s = rr.shape n = s[0] if s[0] != s[1]: print('ERROR: r must be a square matrix') return -1 if ipvt is None: ipvt = numpy.arange(n) r = rr.copy() r.shape = [n,n] # For the inverse of r in the full upper triangle of r l = -1 tolr = tol * numpy.abs(r[0,0]) for k in range(n): if numpy.abs(r[k,k]) <= tolr: break r[k,k] = old_div(1.,r[k,k]) for j in range(k): temp = r[k,k] * r[j,k] r[j,k] = 0. r[0:j+1,k] = r[0:j+1,k] - temp*r[0:j+1,j] l = k # Form the full upper triangle of the inverse of (r transpose)*r # in the full upper triangle of r if l >= 0: for k in range(l+1): for j in range(k): temp = r[j,k] r[0:j+1,j] = r[0:j+1,j] + temp*r[0:j+1,k] temp = r[k,k] r[0:k+1,k] = temp * r[0:k+1,k] # For the full lower triangle of the covariance matrix # in the strict lower triangle or and in wa wa = numpy.repeat([r[0,0]], n) for j in range(n): jj = ipvt[j] sing = j > l for i in range(j+1): if sing: r[i,j] = 0. ii = ipvt[i] if ii > jj: r[ii,jj] = r[i,j] if ii < jj: r[jj,ii] = r[i,j] wa[jj] = r[j,j] # Symmetrize the covariance matrix in r for j in range(n): r[0:j+1,j] = r[j,0:j+1] r[j,j] = wa[j] return r class machar(object): def __init__(self, double=1): if double == 0: info = numpy.finfo(numpy.float32) else: info = numpy.finfo(numpy.float64) self.machep = info.eps self.maxnum = info.max self.minnum = info.tiny self.maxlog = numpy.log(self.maxnum) self.minlog = numpy.log(self.minnum) self.rdwarf = numpy.sqrt(self.minnum*1.5) * 10 self.rgiant = numpy.sqrt(self.maxnum) * 0.1
bmazin/ARCONS-pipeline
util/mpfit.py
Python
gpl-2.0
80,276
[ "Gaussian" ]
6315585e7fb3e3eadf6877166b15758799e24c17a9640e413845b7a73a1dc2e7
#!/usr/bin/env python3 #* This file is part of the MOOSE framework #* https://www.mooseframework.org #* #* All rights reserved, see COPYRIGHT for full restrictions #* https://github.com/idaholab/moose/blob/master/COPYRIGHT #* #* Licensed under LGPL 2.1, please see LICENSE for details #* https://www.gnu.org/licenses/lgpl-2.1.html import os import copy import subprocess import logging import mooseutils import moosetree import pyhit LOG = logging.getLogger(__name__) from .SQARequirementReport import SQARequirementReport, SQARequirementDiffReport from .SQADocumentReport import SQADocumentReport from .SQAMooseAppReport import SQAMooseAppReport def get_sqa_reports(config_file, app_report=True, doc_report=True, req_report=True): """ Generate reports regarding SQA content. Input: config_file[str|dict]: A YAML file to load or loaded YAML dict object app/doc/req_report [bool]: Flags for controlling the creating of the various reports Output: doc_reports: List of SQADocumentReport objects for the existence of SQA documents links/files req_reports: List of SQARequirementReport objects test requirement information app_reports: List of SQAMooseAppReport objects for class documentation See moose/scripts/check_sqa.py for usage. """ config = mooseutils.yaml_load(config_file) if isinstance(config_file, str) else config_file doc_reports = _get_sqa_document_reports(config) if doc_report else None req_reports = _get_sqa_requirement_reports(config) if req_report else None app_reports = _get_sqa_app_reports(config) if app_report else None return doc_reports, req_reports, app_reports def _get_sqa_document_reports(config): """Helper function for building SQADocumentReport objects""" if 'Documents' not in config: return None kwargs = config['Documents'] kwargs.setdefault('title', 'Documents') doc_report = SQADocumentReport(**kwargs) return [doc_report] def _get_sqa_requirement_reports(config): """Helper for building the SQARequirementReport objects""" if 'Requirements' not in config: return None req_config = config['Requirements'] reports = list() # Local reports diff_report = req_config.pop('create_diff_report', False) for name, kwargs in req_config.items(): kwargs.setdefault('title', name) local = SQARequirementReport(**kwargs) reports.append(local) # Local/global difference report if diff_report: diff = SQARequirementDiffReport(title='Missing Tests from Reports', reports=copy.copy(reports)) reports.append(diff) return reports def _get_sqa_app_reports(config): """Helper for building the SQAMooseAppReport objects""" if 'Applications' not in config: return None app_configs = config['Applications'] reports = list() for name, kwargs in app_configs.items(): kwargs.setdefault('title', name) reports.append(SQAMooseAppReport(**kwargs)) return reports
harterj/moose
python/moosesqa/get_sqa_reports.py
Python
lgpl-2.1
3,041
[ "MOOSE" ]
569e6a7017c34eef199cd3c2dfecd8e7c694d3e7c815c08611491e9e8ba06717
"""Testing for kernels for Gaussian processes.""" # Author: Jan Hendrik Metzen <[email protected]> # License: BSD 3 clause import pytest import numpy as np from inspect import signature from sklearn.gaussian_process.kernels import _approx_fprime from sklearn.metrics.pairwise \ import PAIRWISE_KERNEL_FUNCTIONS, euclidean_distances, pairwise_kernels from sklearn.gaussian_process.kernels \ import (RBF, Matern, RationalQuadratic, ExpSineSquared, DotProduct, ConstantKernel, WhiteKernel, PairwiseKernel, KernelOperator, Exponentiation, CompoundKernel) from sklearn.base import clone from sklearn.utils._testing import (assert_almost_equal, assert_array_equal, assert_array_almost_equal, assert_allclose, assert_raise_message, fails_if_pypy) X = np.random.RandomState(0).normal(0, 1, (5, 2)) Y = np.random.RandomState(0).normal(0, 1, (6, 2)) kernel_rbf_plus_white = RBF(length_scale=2.0) + WhiteKernel(noise_level=3.0) kernels = [RBF(length_scale=2.0), RBF(length_scale_bounds=(0.5, 2.0)), ConstantKernel(constant_value=10.0), 2.0 * RBF(length_scale=0.33, length_scale_bounds="fixed"), 2.0 * RBF(length_scale=0.5), kernel_rbf_plus_white, 2.0 * RBF(length_scale=[0.5, 2.0]), 2.0 * Matern(length_scale=0.33, length_scale_bounds="fixed"), 2.0 * Matern(length_scale=0.5, nu=0.5), 2.0 * Matern(length_scale=1.5, nu=1.5), 2.0 * Matern(length_scale=2.5, nu=2.5), 2.0 * Matern(length_scale=[0.5, 2.0], nu=0.5), 3.0 * Matern(length_scale=[2.0, 0.5], nu=1.5), 4.0 * Matern(length_scale=[0.5, 0.5], nu=2.5), RationalQuadratic(length_scale=0.5, alpha=1.5), ExpSineSquared(length_scale=0.5, periodicity=1.5), DotProduct(sigma_0=2.0), DotProduct(sigma_0=2.0) ** 2, RBF(length_scale=[2.0]), Matern(length_scale=[2.0])] for metric in PAIRWISE_KERNEL_FUNCTIONS: if metric in ["additive_chi2", "chi2"]: continue kernels.append(PairwiseKernel(gamma=1.0, metric=metric)) # Numerical precisions errors in PyPy @fails_if_pypy @pytest.mark.parametrize('kernel', kernels) def test_kernel_gradient(kernel): # Compare analytic and numeric gradient of kernels. K, K_gradient = kernel(X, eval_gradient=True) assert K_gradient.shape[0] == X.shape[0] assert K_gradient.shape[1] == X.shape[0] assert K_gradient.shape[2] == kernel.theta.shape[0] def eval_kernel_for_theta(theta): kernel_clone = kernel.clone_with_theta(theta) K = kernel_clone(X, eval_gradient=False) return K K_gradient_approx = \ _approx_fprime(kernel.theta, eval_kernel_for_theta, 1e-10) assert_almost_equal(K_gradient, K_gradient_approx, 4) @pytest.mark.parametrize( 'kernel', [kernel for kernel in kernels # skip non-basic kernels if not (isinstance(kernel, KernelOperator) or isinstance(kernel, Exponentiation))]) def test_kernel_theta(kernel): # Check that parameter vector theta of kernel is set correctly. theta = kernel.theta _, K_gradient = kernel(X, eval_gradient=True) # Determine kernel parameters that contribute to theta init_sign = signature(kernel.__class__.__init__).parameters.values() args = [p.name for p in init_sign if p.name != 'self'] theta_vars = map(lambda s: s[0:-len("_bounds")], filter(lambda s: s.endswith("_bounds"), args)) assert ( set(hyperparameter.name for hyperparameter in kernel.hyperparameters) == set(theta_vars)) # Check that values returned in theta are consistent with # hyperparameter values (being their logarithms) for i, hyperparameter in enumerate(kernel.hyperparameters): assert (theta[i] == np.log(getattr(kernel, hyperparameter.name))) # Fixed kernel parameters must be excluded from theta and gradient. for i, hyperparameter in enumerate(kernel.hyperparameters): # create copy with certain hyperparameter fixed params = kernel.get_params() params[hyperparameter.name + "_bounds"] = "fixed" kernel_class = kernel.__class__ new_kernel = kernel_class(**params) # Check that theta and K_gradient are identical with the fixed # dimension left out _, K_gradient_new = new_kernel(X, eval_gradient=True) assert theta.shape[0] == new_kernel.theta.shape[0] + 1 assert K_gradient.shape[2] == K_gradient_new.shape[2] + 1 if i > 0: assert theta[:i] == new_kernel.theta[:i] assert_array_equal(K_gradient[..., :i], K_gradient_new[..., :i]) if i + 1 < len(kernel.hyperparameters): assert theta[i + 1:] == new_kernel.theta[i:] assert_array_equal(K_gradient[..., i + 1:], K_gradient_new[..., i:]) # Check that values of theta are modified correctly for i, hyperparameter in enumerate(kernel.hyperparameters): theta[i] = np.log(42) kernel.theta = theta assert_almost_equal(getattr(kernel, hyperparameter.name), 42) setattr(kernel, hyperparameter.name, 43) assert_almost_equal(kernel.theta[i], np.log(43)) @pytest.mark.parametrize('kernel', [kernel for kernel in kernels # Identity is not satisfied on diagonal if kernel != kernel_rbf_plus_white]) def test_auto_vs_cross(kernel): # Auto-correlation and cross-correlation should be consistent. K_auto = kernel(X) K_cross = kernel(X, X) assert_almost_equal(K_auto, K_cross, 5) @pytest.mark.parametrize('kernel', kernels) def test_kernel_diag(kernel): # Test that diag method of kernel returns consistent results. K_call_diag = np.diag(kernel(X)) K_diag = kernel.diag(X) assert_almost_equal(K_call_diag, K_diag, 5) def test_kernel_operator_commutative(): # Adding kernels and multiplying kernels should be commutative. # Check addition assert_almost_equal((RBF(2.0) + 1.0)(X), (1.0 + RBF(2.0))(X)) # Check multiplication assert_almost_equal((3.0 * RBF(2.0))(X), (RBF(2.0) * 3.0)(X)) def test_kernel_anisotropic(): # Anisotropic kernel should be consistent with isotropic kernels. kernel = 3.0 * RBF([0.5, 2.0]) K = kernel(X) X1 = np.array(X) X1[:, 0] *= 4 K1 = 3.0 * RBF(2.0)(X1) assert_almost_equal(K, K1) X2 = np.array(X) X2[:, 1] /= 4 K2 = 3.0 * RBF(0.5)(X2) assert_almost_equal(K, K2) # Check getting and setting via theta kernel.theta = kernel.theta + np.log(2) assert_array_equal(kernel.theta, np.log([6.0, 1.0, 4.0])) assert_array_equal(kernel.k2.length_scale, [1.0, 4.0]) @pytest.mark.parametrize('kernel', [kernel for kernel in kernels if kernel.is_stationary()]) def test_kernel_stationary(kernel): # Test stationarity of kernels. K = kernel(X, X + 1) assert_almost_equal(K[0, 0], np.diag(K)) @pytest.mark.parametrize('kernel', kernels) def test_kernel_input_type(kernel): # Test whether kernels is for vectors or structured data if isinstance(kernel, Exponentiation): assert(kernel.requires_vector_input == kernel.kernel.requires_vector_input) if isinstance(kernel, KernelOperator): assert(kernel.requires_vector_input == (kernel.k1.requires_vector_input or kernel.k2.requires_vector_input)) def test_compound_kernel_input_type(): kernel = CompoundKernel([WhiteKernel(noise_level=3.0)]) assert not kernel.requires_vector_input kernel = CompoundKernel([WhiteKernel(noise_level=3.0), RBF(length_scale=2.0)]) assert kernel.requires_vector_input def check_hyperparameters_equal(kernel1, kernel2): # Check that hyperparameters of two kernels are equal for attr in set(dir(kernel1) + dir(kernel2)): if attr.startswith("hyperparameter_"): attr_value1 = getattr(kernel1, attr) attr_value2 = getattr(kernel2, attr) assert attr_value1 == attr_value2 @pytest.mark.parametrize("kernel", kernels) def test_kernel_clone(kernel): # Test that sklearn's clone works correctly on kernels. kernel_cloned = clone(kernel) # XXX: Should this be fixed? # This differs from the sklearn's estimators equality check. assert kernel == kernel_cloned assert id(kernel) != id(kernel_cloned) # Check that all constructor parameters are equal. assert kernel.get_params() == kernel_cloned.get_params() # Check that all hyperparameters are equal. check_hyperparameters_equal(kernel, kernel_cloned) @pytest.mark.parametrize('kernel', kernels) def test_kernel_clone_after_set_params(kernel): # This test is to verify that using set_params does not # break clone on kernels. # This used to break because in kernels such as the RBF, non-trivial # logic that modified the length scale used to be in the constructor # See https://github.com/scikit-learn/scikit-learn/issues/6961 # for more details. bounds = (1e-5, 1e5) kernel_cloned = clone(kernel) params = kernel.get_params() # RationalQuadratic kernel is isotropic. isotropic_kernels = (ExpSineSquared, RationalQuadratic) if 'length_scale' in params and not isinstance(kernel, isotropic_kernels): length_scale = params['length_scale'] if np.iterable(length_scale): # XXX unreached code as of v0.22 params['length_scale'] = length_scale[0] params['length_scale_bounds'] = bounds else: params['length_scale'] = [length_scale] * 2 params['length_scale_bounds'] = bounds * 2 kernel_cloned.set_params(**params) kernel_cloned_clone = clone(kernel_cloned) assert (kernel_cloned_clone.get_params() == kernel_cloned.get_params()) assert id(kernel_cloned_clone) != id(kernel_cloned) check_hyperparameters_equal(kernel_cloned, kernel_cloned_clone) def test_matern_kernel(): # Test consistency of Matern kernel for special values of nu. K = Matern(nu=1.5, length_scale=1.0)(X) # the diagonal elements of a matern kernel are 1 assert_array_almost_equal(np.diag(K), np.ones(X.shape[0])) # matern kernel for coef0==0.5 is equal to absolute exponential kernel K_absexp = np.exp(-euclidean_distances(X, X, squared=False)) K = Matern(nu=0.5, length_scale=1.0)(X) assert_array_almost_equal(K, K_absexp) # matern kernel with coef0==inf is equal to RBF kernel K_rbf = RBF(length_scale=1.0)(X) K = Matern(nu=np.inf, length_scale=1.0)(X) assert_array_almost_equal(K, K_rbf) assert_allclose(K, K_rbf) # test that special cases of matern kernel (coef0 in [0.5, 1.5, 2.5]) # result in nearly identical results as the general case for coef0 in # [0.5 + tiny, 1.5 + tiny, 2.5 + tiny] tiny = 1e-10 for nu in [0.5, 1.5, 2.5]: K1 = Matern(nu=nu, length_scale=1.0)(X) K2 = Matern(nu=nu + tiny, length_scale=1.0)(X) assert_array_almost_equal(K1, K2) # test that coef0==large is close to RBF large = 100 K1 = Matern(nu=large, length_scale=1.0)(X) K2 = RBF(length_scale=1.0)(X) assert_array_almost_equal(K1, K2, decimal=2) @pytest.mark.parametrize("kernel", kernels) def test_kernel_versus_pairwise(kernel): # Check that GP kernels can also be used as pairwise kernels. # Test auto-kernel if kernel != kernel_rbf_plus_white: # For WhiteKernel: k(X) != k(X,X). This is assumed by # pairwise_kernels K1 = kernel(X) K2 = pairwise_kernels(X, metric=kernel) assert_array_almost_equal(K1, K2) # Test cross-kernel K1 = kernel(X, Y) K2 = pairwise_kernels(X, Y, metric=kernel) assert_array_almost_equal(K1, K2) @pytest.mark.parametrize("kernel", kernels) def test_set_get_params(kernel): # Check that set_params()/get_params() is consistent with kernel.theta. # Test get_params() index = 0 params = kernel.get_params() for hyperparameter in kernel.hyperparameters: if isinstance("string", type(hyperparameter.bounds)): if hyperparameter.bounds == "fixed": continue size = hyperparameter.n_elements if size > 1: # anisotropic kernels assert_almost_equal(np.exp(kernel.theta[index:index + size]), params[hyperparameter.name]) index += size else: assert_almost_equal(np.exp(kernel.theta[index]), params[hyperparameter.name]) index += 1 # Test set_params() index = 0 value = 10 # arbitrary value for hyperparameter in kernel.hyperparameters: if isinstance("string", type(hyperparameter.bounds)): if hyperparameter.bounds == "fixed": continue size = hyperparameter.n_elements if size > 1: # anisotropic kernels kernel.set_params(**{hyperparameter.name: [value] * size}) assert_almost_equal(np.exp(kernel.theta[index:index + size]), [value] * size) index += size else: kernel.set_params(**{hyperparameter.name: value}) assert_almost_equal(np.exp(kernel.theta[index]), value) index += 1 @pytest.mark.parametrize("kernel", kernels) def test_repr_kernels(kernel): # Smoke-test for repr in kernels. repr(kernel) def test_rational_quadratic_kernel(): kernel = RationalQuadratic(length_scale=[1., 1.]) assert_raise_message(AttributeError, "RationalQuadratic kernel only supports isotropic " "version, please use a single " "scalar for length_scale", kernel, X)
anntzer/scikit-learn
sklearn/gaussian_process/tests/test_kernels.py
Python
bsd-3-clause
14,237
[ "Gaussian" ]
402e9de70dd84ae4a9ad9de0afa78a3f637d2a82eac7befa12c3e781284cf597
# Copyright (C) 2012,2013 # Max Planck Institute for Polymer Research # Copyright (C) 2008,2009,2010,2011 # Max-Planck-Institute for Polymer Research & Fraunhofer SCAI # # This file is part of ESPResSo++. # # ESPResSo++ is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # ESPResSo++ is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. """ **************************** **espresso.analysis.Energy** **************************** """ import espresso class EnergyPot(): 'Potential energy of the system.' def __init__(self, system, per_atom=False): self.system = system self.per_atom = per_atom def compute(self): EPot = 0.0 for k in range(self.system.getNumberOfInteractions()): EPot += self.system.getInteraction(k).computeEnergy() if self.per_atom: NPart = espresso.analysis.NPart(self.system).compute() return EPot / NPart else: return EPot class EnergyKin(): 'Kinetic energy of the system.' def __init__(self, system, per_atom=False): self.system = system self.per_atom = per_atom def compute(self): NPart = espresso.analysis.NPart(self.system).compute() T = espresso.analysis.Temperature(self.system).compute() EKin = (3.0/2.0) * NPart * T if self.per_atom: return EKin / NPart else: return EKin class EnergyTot(): 'Total energy (EKin + EPot) of the system.' def __init__(self, system, per_atom=False): self.system = system self.per_atom = per_atom def compute(self): NPart = espresso.analysis.NPart(self.system).compute() T = espresso.analysis.Temperature(self.system).compute() EKin = (3.0/2.0) * NPart * T EPot = 0.0 for k in range(self.system.getNumberOfInteractions()): EPot += self.system.getInteraction(k).computeEnergy() if self.per_atom: return (EPot + EKin) / NPart else: return (EPot + EKin)
BackupTheBerlios/espressopp
src/analysis/Energy.py
Python
gpl-3.0
2,570
[ "ESPResSo" ]
78f0914b5380d2801a1fefb14d3f729fdbcb9a9db97fd4c5d6f8d1e4438df379
# Principal Component Analysis Code : from numpy import mean,cov,double,cumsum,dot,linalg,array,rank,size,flipud from pylab import * import numpy as np import matplotlib.pyplot as pp #from enthought.mayavi import mlab import scipy.ndimage as ni import roslib; roslib.load_manifest('sandbox_tapo_darpa_m3') import rospy #import hrl_lib.mayavi2_util as mu import hrl_lib.viz as hv import hrl_lib.util as ut import hrl_lib.matplotlib_util as mpu import pickle from mvpa.clfs.knn import kNN from mvpa.datasets import Dataset from mvpa.clfs.transerror import TransferError from mvpa.misc.data_generators import normalFeatureDataset from mvpa.algorithms.cvtranserror import CrossValidatedTransferError from mvpa.datasets.splitters import NFoldSplitter import sys sys.path.insert(0, '/home/tapo/svn/robot1_data/usr/tapo/data_code/BMED_8813_HAP/Data') from data import Fmat_original def pca(X): #get dimensions num_data,dim = X.shape #center data mean_X = X.mean(axis=1) M = (X-mean_X) # subtract the mean (along columns) Mcov = cov(M) ###### Sanity Check ###### i=0 n=0 while i < 41: j=0 while j < 90: if X[i,j] != X[i,j]: print X[i,j] print i,j n=n+1 j = j+1 i=i+1 print n ########################## print 'PCA - COV-Method used' val,vec = linalg.eig(Mcov) #return the projection matrix, the variance and the mean return vec,val,mean_X, M, Mcov def my_mvpa(Y,num2): #Using PYMVPA PCA_data = np.array(Y) PCA_label_1 = ['Edge-1']*30 + ['Surface']*30 + ['Edge-2']*30 PCA_chunk_1 = ['Can-Edge-1']*5 + ['Book-Edge-1']*5 + ['Brown-Cardboard-Box-Edge-1']*5 + ['Cinder-Block-Edge-1']*5 + ['Tin-Box-Edge-1']*5 + ['White-Cardboard-Box-Edge-1']*5 + ['Can-Surface']*5 + ['Book-Surface']*5 + ['Brown-Cardboard-Box-Surface']*5 + ['Cinder-Block-Surface']*5 + ['Tin-Box-Surface']*5 + ['White-Cardboard-Box-Surface']*5 + ['Can-Edge-2']*5 + ['Book-Edge-2']*5 + ['Brown-Cardboard-Box-Edge-2']*5 + ['Cinder-Block-Edge-2']*5 + ['Tin-Box-Edge-2']*5 + ['White-Cardboard-Box-Edge-2']*5 clf = kNN(k=num2) terr = TransferError(clf) ds1 = Dataset(samples=PCA_data,labels=PCA_label_1,chunks=PCA_chunk_1) cvterr = CrossValidatedTransferError(terr,NFoldSplitter(cvtype=1),enable_states=['confusion']) error = cvterr(ds1) return (1-error)*100 def result(eigvec_total,eigval_total,mean_data_total,B,C,num_PC): # Reduced Eigen-Vector Matrix according to highest Eigenvalues..(Considering First 20 based on above figure) W = eigvec_total[:,0:num_PC] m_W, n_W = np.shape(W) #Projected Data: Y = (W.T)*B m_Y, n_Y = np.shape(Y.T) return Y.T if __name__ == '__main__': Fmat = Fmat_original[0:41,:] # Checking the Data-Matrix m_tot, n_tot = np.shape(Fmat) print 'Total_Matrix_Shape:',m_tot,n_tot eigvec_total, eigval_total, mean_data_total, B, C = pca(Fmat) #print eigvec_total #print eigval_total #print mean_data_total m_eigval_total, n_eigval_total = np.shape(np.matrix(eigval_total)) m_eigvec_total, n_eigvec_total = np.shape(eigvec_total) m_mean_data_total, n_mean_data_total = np.shape(np.matrix(mean_data_total)) print 'Eigenvalue Shape:',m_eigval_total, n_eigval_total print 'Eigenvector Shape:',m_eigvec_total, n_eigvec_total print 'Mean-Data Shape:',m_mean_data_total, n_mean_data_total #Recall that the cumulative sum of the eigenvalues shows the level of variance accounted by each of the corresponding eigenvectors. On the x axis there is the number of eigenvalues used. perc_total = cumsum(eigval_total)/sum(eigval_total) num_PC=1 while num_PC <=20: Proj = np.zeros((90,num_PC)) Proj = result(eigvec_total,eigval_total,mean_data_total,B,C,num_PC) # PYMVPA: num=0 cv_acc = np.zeros(21) while num <=20: cv_acc[num] = my_mvpa(Proj,num) num = num+1 plot(np.arange(21),cv_acc,'-s') grid('True') hold('True') num_PC = num_PC+1 legend(('1-PC', '2-PCs', '3-PCs', '4-PCs', '5-PCs', '6-PCs', '7-PCs', '8-PCs', '9-PCs', '10-PCs', '11-PC', '12-PCs', '13-PCs', '14-PCs', '15-PCs', '16-PCs', '17-PCs', '18-PCs', '19-PCs', '20-PCs')) ylabel('Cross-Validation Accuracy') xlabel('k in k-NN Classifier') show()
tapomayukh/projects_in_python
sandbox_tapo/src/skin_related/BMED_8813_HAP/Features/single_feature/best_kNN_PC/cross_validate_categories_kNN_PC_BMED_8813_HAP_scaled_method_II_shape.py
Python
mit
4,446
[ "Mayavi" ]
4ab2168370e8212873ab6639ff2ce37df4e1ec7ff80cc00f0fccabf63498bd88
from distutils.core import setup setup(name="bikeshed", version="1.0", description="bikeshed REST API", author_email="[email protected]", url="http://www.bikeshed.io", keywords="bikeshed", py_modules=["bikeshed"], )
briancurtin/bikeshed
setup.py
Python
mit
258
[ "Brian" ]
cf8080315a0717e812f785d79fa508197833d380c2f71a9938fe1e2466cf2b3e
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*- # vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4 fileencoding=utf-8 # # MDAnalysis --- https://www.mdanalysis.org # Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors # (see the file AUTHORS for the full list of names) # # Released under the GNU Public Licence, v2 or any higher version # # Please cite your use of MDAnalysis in published work: # # R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler, # D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein. # MDAnalysis: A Python package for the rapid analysis of molecular dynamics # simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th # Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy. # doi: 10.25080/majora-629e541a-00e # # N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein. # MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations. # J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787 # import os from unittest.mock import patch import MDAnalysis as mda import MDAnalysis.analysis.gnm from numpy.testing import assert_almost_equal import numpy as np import pytest from MDAnalysisTests.datafiles import GRO, XTC @pytest.fixture() def universe(): return mda.Universe(GRO, XTC) def test_gnm(universe, tmpdir): output = os.path.join(str(tmpdir), 'output.txt') gnm = mda.analysis.gnm.GNMAnalysis(universe, ReportVector=output) gnm.run() result = gnm.results assert len(result.times) == 10 assert_almost_equal(gnm.results.times, np.arange(0, 1000, 100), decimal=4) assert_almost_equal(gnm.results.eigenvalues, [2.0287113e-15, 4.1471575e-15, 1.8539533e-15, 4.3810359e-15, 3.9607304e-15, 4.1289113e-15, 2.5501084e-15, 4.0498182e-15, 4.2058769e-15, 3.9839431e-15]) def test_gnm_run_step(universe): gnm = mda.analysis.gnm.GNMAnalysis(universe) gnm.run(step=3) result = gnm.results assert len(result.times) == 4 assert_almost_equal(gnm.results.times, np.arange(0, 1200, 300), decimal=4) assert_almost_equal(gnm.results.eigenvalues, [2.0287113e-15, 4.3810359e-15, 2.5501084e-15, 3.9839431e-15]) def test_generate_kirchoff(universe): gnm = mda.analysis.gnm.GNMAnalysis(universe) gen = gnm.generate_kirchoff() assert_almost_equal(gen[0], [7,-1,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-1,-1,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) def test_gnm_SVD_fail(universe): with patch.object(np.linalg, "svd") as np_load_mock: np_load_mock.side_effect = np.linalg.LinAlgError msg = "SVD with cutoff 7.0 failed to converge. " msg += "Skip frame at 0.0." with pytest.warns(UserWarning, match=msg): mda.analysis.gnm.GNMAnalysis(universe).run(stop=1) def test_closeContactGNMAnalysis(universe): gnm = mda.analysis.gnm.closeContactGNMAnalysis(universe, weights="size") gnm.run(stop=2) result = gnm.results assert len(result.times) == 2 assert_almost_equal(gnm.results.times, (0, 100), decimal=4) assert_almost_equal(gnm.results.eigenvalues, [0.1502614, 0.1426407]) gen = gnm.generate_kirchoff() assert_almost_equal(gen[0], [16.326744128018923, -2.716098853586913, -1.94736842105263, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.05263157894736842, 0.0, 0.0, 0.0, -3.3541953679557905, 0.0, -1.4210526315789465, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0423368771244421, -1.3006649542861801, -0.30779350562554625, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.927172649945531, -0.7509392614826383, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.263157894736841, -0.24333213169614382]) def test_closeContactGNMAnalysis_weights_None(universe): gnm = mda.analysis.gnm.closeContactGNMAnalysis(universe, weights=None) gnm.run(stop=2) result = gnm.results assert len(result.times) == 2 assert_almost_equal(gnm.results.times, (0, 100), decimal=4) assert_almost_equal(gnm.results.eigenvalues, [2.4328739, 2.2967251]) gen = gnm.generate_kirchoff() assert_almost_equal(gen[0], [303.0, -58.0, -37.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -67.0, 0.0, -27.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -17.0, -15.0, -6.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -14.0, -15.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -43.0, -3.0])
MDAnalysis/mdanalysis
testsuite/MDAnalysisTests/analysis/test_gnm.py
Python
gpl-2.0
6,875
[ "MDAnalysis" ]
0cec2cc8103f68934b64beddf9a4b62d04a043521c182b691589f18235485e9f
# # Gramps - a GTK+/GNOME based genealogy program # # Copyright (C) 2000-2005 Donald N. Allingham # Copyright (C) 2008 Brian G. Matherly # Copyright (C) 2009 Benny Malengier # Copyright (C) 2012 Paul Franklin # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # """ The core of the Gramps plugin system. This module provides capability to load plugins from specified directories and provide information about the loaded plugins. Plugins are divided into several categories. These are: reports, tools, importers, exporters, quick reports, and document generators. """ #------------------------------------------------------------------------- # # Standard Python modules # #------------------------------------------------------------------------- import os import sys import re import logging LOG = logging.getLogger('._manager') LOG.progagate = True from ..const import GRAMPS_LOCALE as glocale _ = glocale.translation.gettext #------------------------------------------------------------------------- # # Gramps modules # #------------------------------------------------------------------------- from ..config import config from . import PluginRegister, ImportPlugin, ExportPlugin, DocGenPlugin from ..constfunc import win #------------------------------------------------------------------------- # # Constants # #------------------------------------------------------------------------- _UNAVAILABLE = _("No description was provided") #------------------------------------------------------------------------- # # BasePluginManager # #------------------------------------------------------------------------- class BasePluginManager: """ unique singleton storage class for a :class:`.PluginManager`. """ __instance = None def get_instance(): """ Use this function to get the instance of the :class:`.PluginManager` """ if BasePluginManager.__instance is None: BasePluginManager.__instance = 1 # Set to 1 for __init__() BasePluginManager.__instance = BasePluginManager() return BasePluginManager.__instance get_instance = staticmethod(get_instance) def __init__(self): """ This function should only be run once by get_instance() """ if BasePluginManager.__instance is not 1: raise Exception("This class is a singleton. " "Use the get_instance() method") self.__import_plugins = [] self.__export_plugins = [] self.__docgen_plugins = [] self.__attempt_list = [] self.__failmsg_list = [] self.__external_opt_dict = {} self.__success_list = [] self.__docgen_names = [] self.__mod2text = {} self.__modules = {} self.__pgr = PluginRegister.get_instance() self.__loaded_plugins = {} self.__scanned_dirs = [] def reg_plugins(self, direct, dbstate=None, uistate=None, load_on_reg=False): """ Searches the specified directory, and registers python plugin that are being defined in gpr.py files. If a relationship calculator for env var LANG is present, it is immediately loaded so it is available for all. """ # if we've already scanned this directory or if the directory does not # exist, we are done. Should only happen in tests. # LOG.warning("\nPlugin manager registration: %s, load_on_reg=%s," # " been_here=%s, pahte exists:%s", direct, load_on_reg, # direct in self.__scanned_dirs, os.path.isdir(direct)) if os.path.isdir(direct) and direct not in self.__scanned_dirs: self.__scanned_dirs.append(direct) for (dirpath, dirnames, filenames) in os.walk(direct, topdown=True): for dirname in dirnames[:]: # Skip hidden and system directories: if dirname.startswith(".") or dirname in ["po", "locale", "__pycache__"]: dirnames.remove(dirname) # LOG.warning("Plugin dir scanned: %s", dirpath) self.__pgr.scan_dir(dirpath, filenames, uistate=uistate) if load_on_reg: # Run plugins that request to be loaded on startup and # have a load_on_reg callable. # first, remove hidden plugins_to_load = [] for plugin in self.__pgr.filter_load_on_reg(): # LOG.warning("\nFound %s at registration", plugin.id) if plugin.id in config.get("plugin.hiddenplugins"): continue plugins_to_load.append(plugin) # next, sort on dependencies # Probably a more efficient method to get dependency graph: plugins_sorted = [] count = 0 max_count = len(plugins_to_load) while plugins_to_load: for plugin in plugins_to_load[:]: # copy of list # LOG.warning("\nDependencies for %s at registration", # plugin.id) delay = False for depend in plugin.depends_on: if depend not in [p.id for p in plugins_sorted]: delay = True break if delay: pass # wait till next loop else: if plugin not in plugins_sorted: plugins_sorted.append(plugin) if plugin in plugins_to_load: plugins_to_load.remove(plugin) count += 1 if count > max_count: print("Cannot resolve the following plugin dependencies:") for plugin in plugins_to_load: print(" Plugin '%s' requires: %s" % ( plugin.id, plugin.depends_on)) break # now load them: for plugin in plugins_sorted: # next line shouldn't be necessary, but this gets called a lot # of times during Travis test; so avoid multiple copies plugin.data = [] mod = self.load_plugin(plugin) if hasattr(mod, "load_on_reg"): # LOG.warning("\nRun %s at registration", plugin.id) try: results = mod.load_on_reg(dbstate, uistate, plugin) except: import traceback traceback.print_exc() print("Plugin '%s' did not run; continuing..." % plugin.name) continue try: iter(results) plugin.data += results except: plugin.data = results def is_loaded(self, pdata_id): """ return True if plugin is already loaded """ if pdata_id in self.__loaded_plugins: return True return False def load_plugin(self, pdata): """ Load a :class:`.PluginData` object. This means import of the python module. Plugin directories are added to sys path, so files are found """ if pdata.id in self.__loaded_plugins: return self.__loaded_plugins[pdata.id] need_reload = False filename = pdata.fname if filename in self.__modules: #filename is loaded already, a different plugin in this module _module = self.__modules[filename] self.__success_list.append((filename, _module, pdata)) self.__loaded_plugins[pdata.id] = _module self.__mod2text[_module.__name__] += ' - ' + pdata.description return _module if filename in self.__attempt_list: #new load attempt after a fail, a reload needed need_reload = True #remove previous fail of the plugins in this file dellist = [] for index, data in enumerate(self.__failmsg_list): if data[0] == filename: dellist.append(index) dellist.reverse() for index in dellist: del self.__failmsg_list[index] else: self.__attempt_list.append(filename) try: _module = self.import_plugin(pdata) if need_reload: # For some strange reason second importing of a failed plugin # results in success. Then reload reveals the actual error. # Looks like a bug in Python. _module = self.reload(_module, pdata) if _module: self.__success_list.append((filename, _module, pdata)) self.__modules[filename] = _module self.__loaded_plugins[pdata.id] = _module self.__mod2text[_module.__name__] = pdata.description return _module except: import traceback traceback.print_exc() self.__failmsg_list.append((filename, sys.exc_info(), pdata)) return None def import_plugin(self, pdata): """ Rather than just __import__(id), this will add the pdata.fpath to sys.path first (if needed), import, and then reset path. """ module = None if isinstance(pdata, str): pdata = self.get_plugin(pdata) if not pdata: return None if pdata.fpath not in sys.path: if pdata.mod_name: sys.path.insert(0, pdata.fpath) try: module = __import__(pdata.mod_name) except ValueError as err: # Python3 on Windows work with unicode in sys.path # but they are mbcs encode for checking validity if win(): # we don't want to load Gramps core plugin like this # only 3rd party plugins if "gramps" in pdata.fpath: try: sys.path.insert(0, ".") oldwd = os.getcwd() os.chdir(pdata.fpath) module = __import__(pdata.mod_name) os.chdir(oldwd) sys.path.pop(0) except ValueError as err: LOG.warning("Plugin error (from '%s'): %s" % (pdata.mod_name, err)) else: LOG.warning("Plugin error (from '%s'): %s" % (pdata.mod_name, err)) except ImportError as err: LOG.warning("Plugin error (from '%s'): %s" % (pdata.mod_name, err)) sys.path.pop(0) else: print("WARNING: module cannot be loaded") else: module = __import__(pdata.mod_name) return module def empty_managed_plugins(self): """ For some plugins, managed Plugin are used. These are only reobtained from the registry if this method is called """ # TODO: do other lists need to be reset here, too? self.__import_plugins = [] self.__export_plugins = [] self.__docgen_plugins = [] def reload_plugins(self): """ Reload previously loaded plugins """ pymod = re.compile(r"^(.*)\.py$") oldfailmsg = self.__failmsg_list[:] self.__failmsg_list = [] # attempt to reload all plugins that have succeeded in the past self.empty_managed_plugins() self.__loaded_plugins = {} oldmodules = self.__modules self.__modules = {} dellist = [] #reload first modules that loaded successfully previously for (index, plugin) in enumerate(self.__success_list): filename = plugin[0] pdata = plugin[2] filename = filename.replace('pyc','py') filename = filename.replace('pyo','py') if filename in self.__modules: #module already reloaded, a second plugin in same module continue try: self.reload(plugin[1], pdata) self.__modules[filename] = plugin[1] self.__loaded_plugins[pdata.id] = plugin[1] except: dellist.append(index) self.__failmsg_list.append((filename, sys.exc_info(), pdata)) dellist.reverse() for index in dellist: del self.__success_list[index] # Remove previously good plugins that are now bad # from the registered lists self.__purge_failed() # attempt to load the plugins that have failed in the past for (filename, message, pdata) in oldfailmsg: self.load_plugin(pdata) def reload(self, module, pdata): """ Reloads modules that might not be in the path. """ try: import imp fp, pathname, description = imp.find_module(pdata.mod_name, [pdata.fpath]) try: module = imp.load_module(pdata.mod_name, fp, pathname,description) finally: if fp: fp.close() except: if pdata.mod_name in sys.modules: del sys.modules[pdata.mod_name] module = self.import_plugin(pdata) return module def get_fail_list(self): """ Return the list of failed plugins. """ return self.__failmsg_list def get_success_list(self): """ Return the list of succeeded plugins. """ return self.__success_list def get_plugin(self, id): """ Returns a plugin object from :class:`.PluginRegister` by id. """ return self.__pgr.get_plugin(id) def get_reg_reports(self, gui=True): """ Return list of registered reports :param gui: bool indicating if GUI reports or CLI reports must be returned """ return self.__pgr.report_plugins(gui) def get_reg_tools(self, gui=True): """ Return list of registered tools :aram gui: bool indicating if GUI reports or CLI reports must be returned """ return self.__pgr.tool_plugins(gui) def get_reg_quick_reports(self): """ Return list of registered quick reports """ return self.__pgr.quickreport_plugins() def get_reg_views(self): """ Return list of registered views """ return self.__pgr.view_plugins() def get_reg_mapservices(self): """ Return list of registered mapservices """ return self.__pgr.mapservice_plugins() def get_reg_bookitems(self): """ Return list of reports registered as bookitem """ return self.__pgr.bookitem_plugins() def get_reg_gramplets(self): """ Return list of non hidden gramplets. """ return self.__pgr.gramplet_plugins() def get_reg_sidebars(self): """ Return list of registered sidebars. """ return self.__pgr.sidebar_plugins() def get_reg_databases(self): """ Return list of registered database backends """ return self.__pgr.database_plugins() def get_external_opt_dict(self): """ Return the dictionary of external options. """ return self.__external_opt_dict def get_module_description(self, module): """ Given a module name, return the module description. """ return self.__mod2text.get(module, '') def get_reg_importers(self): """ Return list of registered importers """ return self.__pgr.import_plugins() def get_reg_exporters(self): """ Return list of registered exporters """ return self.__pgr.export_plugins() def get_reg_docgens(self): """ Return list of registered docgen """ return self.__pgr.docgen_plugins() def get_reg_general(self, category=None): """ Return list of registered general libs """ return self.__pgr.general_plugins(category) def load_plugin_category(self, category): """ Make sure all plugins of a type are loaded. """ for plugin in self.__pgr.general_plugins(category): if not self.is_loaded(plugin): self.load_plugin(plugin) def get_plugin_data(self, category): """ Gets all of the data from general plugins of type category. plugin.data may be a single item, an iterable, or a callable. >>> PLUGMAN.get_plugin_data('CSS') <a list of raw data items> """ retval = [] data = None for plugin in self.__pgr.general_plugins(category): data = plugin.data try: iter(data) retval.extend(data) except: retval.append(data) return retval def process_plugin_data(self, category): """ Gathers all of the data from general plugins of type category, and pass it to a single process function from one of those plugins. >>> PLUGMAN.process_plugin_data('CSS') <a list of processed data items> """ retval = [] data = None process = None for plugin in self.__pgr.general_plugins(category): if plugin.process is not None: mod = self.load_plugin(plugin) if hasattr(mod, plugin.process): process = getattr(mod, plugin.process) data = plugin.data if data: try: iter(data) retval.extend(data) except: retval.append(data) # LOG.warning("Process plugin data=%s, %s, items=%s", # process is not None, category, len(retval)) if process: return process(retval) return retval def get_import_plugins(self): """ Get the list of import plugins. :return: :class:`.ImportPlugin` (a list of ImportPlugin instances) """ ## TODO: would it not be better to remove ImportPlugin and use ## only PluginData, loading from module when importfunction needed? if self.__import_plugins == []: #The module still needs to be imported for pdata in self.get_reg_importers(): if pdata.id in config.get("plugin.hiddenplugins"): continue mod = self.load_plugin(pdata) if mod: imp = ImportPlugin(name=pdata.name, description = pdata.description, import_function = getattr(mod, pdata.import_function), extension = pdata.extension) self.__import_plugins.append(imp) return self.__import_plugins def get_export_plugins(self): """ Get the list of export plugins. :return: :class:`.ExportPlugin` (a list of ExportPlugin instances) """ ## TODO: would it not be better to remove ExportPlugin and use ## only PluginData, loading from module when export/options needed? if self.__export_plugins == []: #The modules still need to be imported for pdata in self.get_reg_exporters(): if pdata.id in config.get("plugin.hiddenplugins"): continue mod = self.load_plugin(pdata) if mod: options = None if (pdata.export_options and hasattr(mod, pdata.export_options)): options = getattr(mod, pdata.export_options) exp = ExportPlugin(name=pdata.name_accell, description = pdata.description, export_function = getattr(mod, pdata.export_function), extension = pdata.extension, config = (pdata.export_options_title, options)) self.__export_plugins.append(exp) return self.__export_plugins def get_docgen_plugins(self): """ Get the list of docgen plugins. :return: :class:`.DocGenPlugin` (a list of DocGenPlugin instances) """ ## TODO: would it not be better to return list of plugindata, and only ## import those docgen that will then actuallly be needed? ## So, only do import when docgen.get_basedoc() is requested if self.__docgen_plugins == []: #The modules still need to be imported hiddenplugins = config.get("plugin.hiddenplugins") for pdata in self.get_reg_docgens(): if pdata.id in hiddenplugins: continue mod = self.load_plugin(pdata) if mod: oclass = None if pdata.optionclass: oclass = getattr(mod, pdata.optionclass) dgp = DocGenPlugin(name=pdata.name, description = pdata.description, basedoc = getattr(mod, pdata.docclass), paper = pdata.paper, style = pdata.style, extension = pdata.extension, docoptclass = oclass, basedocname = pdata.docclass ) self.__docgen_plugins.append(dgp) return self.__docgen_plugins def get_docgen_names(self): """ Get the list of docgen plugin names. :return: a list of :class:`.DocGenPlugin` names """ if self.__docgen_names == []: hiddenplugins = config.get("plugin.hiddenplugins") for pdata in self.get_reg_docgens(): if pdata.id not in hiddenplugins: self.__docgen_names.append(pdata.docclass) return self.__docgen_names def register_option(self, option, guioption): """ Register an external option. Register a mapping from option to guioption for an option that is not native to Gramps but provided by the plugin writer. This should typically be called during initialisation of a :class:`.ReportOptions` class. :param option: the option class :type option: class that inherits from gen.plug.menu.Option :param guioption: the gui-option class :type guioption: class that inherits from Gtk.Widget. """ self.__external_opt_dict[option] = guioption; def __purge_failed(self): """ Purge the failed plugins from the corresponding lists. """ failed_module_names = [ os.path.splitext(os.path.basename(filename))[0] for filename, msg, pdata in self.__failmsg_list ] self.__export_plugins[:] = [ item for item in self.__export_plugins if item.get_module_name() not in failed_module_names ][:] self.__import_plugins[:] = [ item for item in self.__import_plugins if item.get_module_name() not in failed_module_names ][:] self.__docgen_plugins[:] = [ item for item in self.__docgen_plugins if item.get_module_name() not in failed_module_names ][:]
beernarrd/gramps
gramps/gen/plug/_manager.py
Python
gpl-2.0
24,793
[ "Brian" ]
8da6f46ffa280186edc0440725b602d5e4e8e73399d609a86b80fecb96d0e49a
''' Tests for netcdf ''' from __future__ import division, print_function, absolute_import import os from os.path import join as pjoin, dirname import shutil import tempfile import warnings from io import BytesIO from glob import glob from contextlib import contextmanager import numpy as np from numpy.testing import assert_, assert_allclose, assert_equal from pytest import raises as assert_raises from scipy.io.netcdf import netcdf_file, IS_PYPY from scipy._lib._numpy_compat import suppress_warnings from scipy._lib._tmpdirs import in_tempdir TEST_DATA_PATH = pjoin(dirname(__file__), 'data') N_EG_ELS = 11 # number of elements for example variable VARTYPE_EG = 'b' # var type for example variable @contextmanager def make_simple(*args, **kwargs): f = netcdf_file(*args, **kwargs) f.history = 'Created for a test' f.createDimension('time', N_EG_ELS) time = f.createVariable('time', VARTYPE_EG, ('time',)) time[:] = np.arange(N_EG_ELS) time.units = 'days since 2008-01-01' f.flush() yield f f.close() def check_simple(ncfileobj): '''Example fileobj tests ''' assert_equal(ncfileobj.history, b'Created for a test') time = ncfileobj.variables['time'] assert_equal(time.units, b'days since 2008-01-01') assert_equal(time.shape, (N_EG_ELS,)) assert_equal(time[-1], N_EG_ELS-1) def assert_mask_matches(arr, expected_mask): ''' Asserts that the mask of arr is effectively the same as expected_mask. In contrast to numpy.ma.testutils.assert_mask_equal, this function allows testing the 'mask' of a standard numpy array (the mask in this case is treated as all False). Parameters ---------- arr: ndarray or MaskedArray Array to test. expected_mask: array_like of booleans A list giving the expected mask. ''' mask = np.ma.getmaskarray(arr) assert_equal(mask, expected_mask) def test_read_write_files(): # test round trip for example file cwd = os.getcwd() try: tmpdir = tempfile.mkdtemp() os.chdir(tmpdir) with make_simple('simple.nc', 'w') as f: pass # read the file we just created in 'a' mode with netcdf_file('simple.nc', 'a') as f: check_simple(f) # add something f._attributes['appendRan'] = 1 # To read the NetCDF file we just created:: with netcdf_file('simple.nc') as f: # Using mmap is the default (but not on pypy) assert_equal(f.use_mmap, not IS_PYPY) check_simple(f) assert_equal(f._attributes['appendRan'], 1) # Read it in append (and check mmap is off) with netcdf_file('simple.nc', 'a') as f: assert_(not f.use_mmap) check_simple(f) assert_equal(f._attributes['appendRan'], 1) # Now without mmap with netcdf_file('simple.nc', mmap=False) as f: # Using mmap is the default assert_(not f.use_mmap) check_simple(f) # To read the NetCDF file we just created, as file object, no # mmap. When n * n_bytes(var_type) is not divisible by 4, this # raised an error in pupynere 1.0.12 and scipy rev 5893, because # calculated vsize was rounding up in units of 4 - see # https://www.unidata.ucar.edu/software/netcdf/docs/user_guide.html with open('simple.nc', 'rb') as fobj: with netcdf_file(fobj) as f: # by default, don't use mmap for file-like assert_(not f.use_mmap) check_simple(f) # Read file from fileobj, with mmap with suppress_warnings() as sup: if IS_PYPY: sup.filter(RuntimeWarning, "Cannot close a netcdf_file opened with mmap=True.*") with open('simple.nc', 'rb') as fobj: with netcdf_file(fobj, mmap=True) as f: assert_(f.use_mmap) check_simple(f) # Again read it in append mode (adding another att) with open('simple.nc', 'r+b') as fobj: with netcdf_file(fobj, 'a') as f: assert_(not f.use_mmap) check_simple(f) f.createDimension('app_dim', 1) var = f.createVariable('app_var', 'i', ('app_dim',)) var[:] = 42 # And... check that app_var made it in... with netcdf_file('simple.nc') as f: check_simple(f) assert_equal(f.variables['app_var'][:], 42) except: # noqa: E722 os.chdir(cwd) shutil.rmtree(tmpdir) raise os.chdir(cwd) shutil.rmtree(tmpdir) def test_read_write_sio(): eg_sio1 = BytesIO() with make_simple(eg_sio1, 'w') as f1: str_val = eg_sio1.getvalue() eg_sio2 = BytesIO(str_val) with netcdf_file(eg_sio2) as f2: check_simple(f2) # Test that error is raised if attempting mmap for sio eg_sio3 = BytesIO(str_val) assert_raises(ValueError, netcdf_file, eg_sio3, 'r', True) # Test 64-bit offset write / read eg_sio_64 = BytesIO() with make_simple(eg_sio_64, 'w', version=2) as f_64: str_val = eg_sio_64.getvalue() eg_sio_64 = BytesIO(str_val) with netcdf_file(eg_sio_64) as f_64: check_simple(f_64) assert_equal(f_64.version_byte, 2) # also when version 2 explicitly specified eg_sio_64 = BytesIO(str_val) with netcdf_file(eg_sio_64, version=2) as f_64: check_simple(f_64) assert_equal(f_64.version_byte, 2) def test_bytes(): raw_file = BytesIO() f = netcdf_file(raw_file, mode='w') # Dataset only has a single variable, dimension and attribute to avoid # any ambiguity related to order. f.a = 'b' f.createDimension('dim', 1) var = f.createVariable('var', np.int16, ('dim',)) var[0] = -9999 var.c = 'd' f.sync() actual = raw_file.getvalue() expected = (b'CDF\x01' b'\x00\x00\x00\x00' b'\x00\x00\x00\x0a' b'\x00\x00\x00\x01' b'\x00\x00\x00\x03' b'dim\x00' b'\x00\x00\x00\x01' b'\x00\x00\x00\x0c' b'\x00\x00\x00\x01' b'\x00\x00\x00\x01' b'a\x00\x00\x00' b'\x00\x00\x00\x02' b'\x00\x00\x00\x01' b'b\x00\x00\x00' b'\x00\x00\x00\x0b' b'\x00\x00\x00\x01' b'\x00\x00\x00\x03' b'var\x00' b'\x00\x00\x00\x01' b'\x00\x00\x00\x00' b'\x00\x00\x00\x0c' b'\x00\x00\x00\x01' b'\x00\x00\x00\x01' b'c\x00\x00\x00' b'\x00\x00\x00\x02' b'\x00\x00\x00\x01' b'd\x00\x00\x00' b'\x00\x00\x00\x03' b'\x00\x00\x00\x04' b'\x00\x00\x00\x78' b'\xd8\xf1\x80\x01') assert_equal(actual, expected) def test_encoded_fill_value(): with netcdf_file(BytesIO(), mode='w') as f: f.createDimension('x', 1) var = f.createVariable('var', 'S1', ('x',)) assert_equal(var._get_encoded_fill_value(), b'\x00') var._FillValue = b'\x01' assert_equal(var._get_encoded_fill_value(), b'\x01') var._FillValue = b'\x00\x00' # invalid, wrong size assert_equal(var._get_encoded_fill_value(), b'\x00') def test_read_example_data(): # read any example data files for fname in glob(pjoin(TEST_DATA_PATH, '*.nc')): with netcdf_file(fname, 'r') as f: pass with netcdf_file(fname, 'r', mmap=False) as f: pass def test_itemset_no_segfault_on_readonly(): # Regression test for ticket #1202. # Open the test file in read-only mode. filename = pjoin(TEST_DATA_PATH, 'example_1.nc') with suppress_warnings() as sup: sup.filter(RuntimeWarning, "Cannot close a netcdf_file opened with mmap=True, when netcdf_variables or arrays referring to its data still exist") with netcdf_file(filename, 'r', mmap=True) as f: time_var = f.variables['time'] # time_var.assignValue(42) should raise a RuntimeError--not seg. fault! assert_raises(RuntimeError, time_var.assignValue, 42) def test_appending_issue_gh_8625(): stream = BytesIO() with make_simple(stream, mode='w') as f: f.createDimension('x', 2) f.createVariable('x', float, ('x',)) f.variables['x'][...] = 1 f.flush() contents = stream.getvalue() stream = BytesIO(contents) with netcdf_file(stream, mode='a') as f: f.variables['x'][...] = 2 def test_write_invalid_dtype(): dtypes = ['int64', 'uint64'] if np.dtype('int').itemsize == 8: # 64-bit machines dtypes.append('int') if np.dtype('uint').itemsize == 8: # 64-bit machines dtypes.append('uint') with netcdf_file(BytesIO(), 'w') as f: f.createDimension('time', N_EG_ELS) for dt in dtypes: assert_raises(ValueError, f.createVariable, 'time', dt, ('time',)) def test_flush_rewind(): stream = BytesIO() with make_simple(stream, mode='w') as f: x = f.createDimension('x',4) v = f.createVariable('v', 'i2', ['x']) v[:] = 1 f.flush() len_single = len(stream.getvalue()) f.flush() len_double = len(stream.getvalue()) assert_(len_single == len_double) def test_dtype_specifiers(): # Numpy 1.7.0-dev had a bug where 'i2' wouldn't work. # Specifying np.int16 or similar only works from the same commit as this # comment was made. with make_simple(BytesIO(), mode='w') as f: f.createDimension('x',4) f.createVariable('v1', 'i2', ['x']) f.createVariable('v2', np.int16, ['x']) f.createVariable('v3', np.dtype(np.int16), ['x']) def test_ticket_1720(): io = BytesIO() items = [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9] with netcdf_file(io, 'w') as f: f.history = 'Created for a test' f.createDimension('float_var', 10) float_var = f.createVariable('float_var', 'f', ('float_var',)) float_var[:] = items float_var.units = 'metres' f.flush() contents = io.getvalue() io = BytesIO(contents) with netcdf_file(io, 'r') as f: assert_equal(f.history, b'Created for a test') float_var = f.variables['float_var'] assert_equal(float_var.units, b'metres') assert_equal(float_var.shape, (10,)) assert_allclose(float_var[:], items) def test_mmaps_segfault(): filename = pjoin(TEST_DATA_PATH, 'example_1.nc') if not IS_PYPY: with warnings.catch_warnings(): warnings.simplefilter("error") with netcdf_file(filename, mmap=True) as f: x = f.variables['lat'][:] # should not raise warnings del x def doit(): with netcdf_file(filename, mmap=True) as f: return f.variables['lat'][:] # should not crash with suppress_warnings() as sup: sup.filter(RuntimeWarning, "Cannot close a netcdf_file opened with mmap=True, when netcdf_variables or arrays referring to its data still exist") x = doit() x.sum() def test_zero_dimensional_var(): io = BytesIO() with make_simple(io, 'w') as f: v = f.createVariable('zerodim', 'i2', []) # This is checking that .isrec returns a boolean - don't simplify it # to 'assert not ...' assert v.isrec is False, v.isrec f.flush() def test_byte_gatts(): # Check that global "string" atts work like they did before py3k # unicode and general bytes confusion with in_tempdir(): filename = 'g_byte_atts.nc' f = netcdf_file(filename, 'w') f._attributes['holy'] = b'grail' f._attributes['witch'] = 'floats' f.close() f = netcdf_file(filename, 'r') assert_equal(f._attributes['holy'], b'grail') assert_equal(f._attributes['witch'], b'floats') f.close() def test_open_append(): # open 'w' put one attr with in_tempdir(): filename = 'append_dat.nc' f = netcdf_file(filename, 'w') f._attributes['Kilroy'] = 'was here' f.close() # open again in 'a', read the att and and a new one f = netcdf_file(filename, 'a') assert_equal(f._attributes['Kilroy'], b'was here') f._attributes['naughty'] = b'Zoot' f.close() # open yet again in 'r' and check both atts f = netcdf_file(filename, 'r') assert_equal(f._attributes['Kilroy'], b'was here') assert_equal(f._attributes['naughty'], b'Zoot') f.close() def test_append_recordDimension(): dataSize = 100 with in_tempdir(): # Create file with record time dimension with netcdf_file('withRecordDimension.nc', 'w') as f: f.createDimension('time', None) f.createVariable('time', 'd', ('time',)) f.createDimension('x', dataSize) x = f.createVariable('x', 'd', ('x',)) x[:] = np.array(range(dataSize)) f.createDimension('y', dataSize) y = f.createVariable('y', 'd', ('y',)) y[:] = np.array(range(dataSize)) f.createVariable('testData', 'i', ('time', 'x', 'y')) f.flush() f.close() for i in range(2): # Open the file in append mode and add data with netcdf_file('withRecordDimension.nc', 'a') as f: f.variables['time'].data = np.append(f.variables["time"].data, i) f.variables['testData'][i, :, :] = np.full((dataSize, dataSize), i) f.flush() # Read the file and check that append worked with netcdf_file('withRecordDimension.nc') as f: assert_equal(f.variables['time'][-1], i) assert_equal(f.variables['testData'][-1, :, :].copy(), np.full((dataSize, dataSize), i)) assert_equal(f.variables['time'].data.shape[0], i+1) assert_equal(f.variables['testData'].data.shape[0], i+1) # Read the file and check that 'data' was not saved as user defined # attribute of testData variable during append operation with netcdf_file('withRecordDimension.nc') as f: with assert_raises(KeyError) as ar: f.variables['testData']._attributes['data'] ex = ar.value assert_equal(ex.args[0], 'data') def test_maskandscale(): t = np.linspace(20, 30, 15) t[3] = 100 tm = np.ma.masked_greater(t, 99) fname = pjoin(TEST_DATA_PATH, 'example_2.nc') with netcdf_file(fname, maskandscale=True) as f: Temp = f.variables['Temperature'] assert_equal(Temp.missing_value, 9999) assert_equal(Temp.add_offset, 20) assert_equal(Temp.scale_factor, np.float32(0.01)) found = Temp[:].compressed() del Temp # Remove ref to mmap, so file can be closed. expected = np.round(tm.compressed(), 2) assert_allclose(found, expected) with in_tempdir(): newfname = 'ms.nc' f = netcdf_file(newfname, 'w', maskandscale=True) f.createDimension('Temperature', len(tm)) temp = f.createVariable('Temperature', 'i', ('Temperature',)) temp.missing_value = 9999 temp.scale_factor = 0.01 temp.add_offset = 20 temp[:] = tm f.close() with netcdf_file(newfname, maskandscale=True) as f: Temp = f.variables['Temperature'] assert_equal(Temp.missing_value, 9999) assert_equal(Temp.add_offset, 20) assert_equal(Temp.scale_factor, np.float32(0.01)) expected = np.round(tm.compressed(), 2) found = Temp[:].compressed() del Temp assert_allclose(found, expected) # ------------------------------------------------------------------------ # Test reading with masked values (_FillValue / missing_value) # ------------------------------------------------------------------------ def test_read_withValuesNearFillValue(): # Regression test for ticket #5626 fname = pjoin(TEST_DATA_PATH, 'example_3_maskedvals.nc') with netcdf_file(fname, maskandscale=True) as f: vardata = f.variables['var1_fillval0'][:] assert_mask_matches(vardata, [False, True, False]) def test_read_withNoFillValue(): # For a variable with no fill value, reading data with maskandscale=True # should return unmasked data fname = pjoin(TEST_DATA_PATH, 'example_3_maskedvals.nc') with netcdf_file(fname, maskandscale=True) as f: vardata = f.variables['var2_noFillval'][:] assert_mask_matches(vardata, [False, False, False]) assert_equal(vardata, [1,2,3]) def test_read_withFillValueAndMissingValue(): # For a variable with both _FillValue and missing_value, the _FillValue # should be used IRRELEVANT_VALUE = 9999 fname = pjoin(TEST_DATA_PATH, 'example_3_maskedvals.nc') with netcdf_file(fname, maskandscale=True) as f: vardata = f.variables['var3_fillvalAndMissingValue'][:] assert_mask_matches(vardata, [True, False, False]) assert_equal(vardata, [IRRELEVANT_VALUE, 2, 3]) def test_read_withMissingValue(): # For a variable with missing_value but not _FillValue, the missing_value # should be used fname = pjoin(TEST_DATA_PATH, 'example_3_maskedvals.nc') with netcdf_file(fname, maskandscale=True) as f: vardata = f.variables['var4_missingValue'][:] assert_mask_matches(vardata, [False, True, False]) def test_read_withFillValNaN(): fname = pjoin(TEST_DATA_PATH, 'example_3_maskedvals.nc') with netcdf_file(fname, maskandscale=True) as f: vardata = f.variables['var5_fillvalNaN'][:] assert_mask_matches(vardata, [False, True, False]) def test_read_withChar(): fname = pjoin(TEST_DATA_PATH, 'example_3_maskedvals.nc') with netcdf_file(fname, maskandscale=True) as f: vardata = f.variables['var6_char'][:] assert_mask_matches(vardata, [False, True, False]) def test_read_with2dVar(): fname = pjoin(TEST_DATA_PATH, 'example_3_maskedvals.nc') with netcdf_file(fname, maskandscale=True) as f: vardata = f.variables['var7_2d'][:] assert_mask_matches(vardata, [[True, False], [False, False], [False, True]]) def test_read_withMaskAndScaleFalse(): # If a variable has a _FillValue (or missing_value) attribute, but is read # with maskandscale set to False, the result should be unmasked fname = pjoin(TEST_DATA_PATH, 'example_3_maskedvals.nc') # Open file with mmap=False to avoid problems with closing a mmap'ed file # when arrays referring to its data still exist: with netcdf_file(fname, maskandscale=False, mmap=False) as f: vardata = f.variables['var3_fillvalAndMissingValue'][:] assert_mask_matches(vardata, [False, False, False]) assert_equal(vardata, [1, 2, 3])
lhilt/scipy
scipy/io/tests/test_netcdf.py
Python
bsd-3-clause
19,261
[ "NetCDF" ]
08e3c126ca23ad52a2391b246a18055648bfc4cde00b24b0491f64da17272c44
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright 2015 gimoh # # This file is part of devops-utils. # # devops-utils is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # devops-utils is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with devops-utils. If not, see <http://www.gnu.org/licenses/>. """devops-utils - devops-utils image helper tools""" __author__ = 'gimoh' __email__ = '[email protected]' __version__ = '0.1.0' PROGS = ( 'ansible', 'ansible-doc', 'ansible-galaxy', 'ansible-playbook', 'ansible-vault', 'fab', ) PLUGIN_DIR = '/etc/devops-utils'
gimoh/devops-utils
devops_utils/__init__.py
Python
gpl-3.0
1,021
[ "Galaxy" ]
03cc5c7470322f33a0bec2c8e80747a3ab6d5767a5c6b4e2cff9daa008aac7a8
#!/usr/bin/python import unittest import os import random import json import numpy as np from pymatgen.core.structure import Structure from pymatgen.core.lattice import Lattice from pymatgen.core.surface import Slab, SlabGenerator, generate_all_slabs, \ get_symmetrically_distinct_miller_indices, get_symmetrically_equivalent_miller_indices, \ ReconstructionGenerator, miller_index_from_sites, get_d, get_slab_regions from pymatgen.symmetry.groups import SpaceGroup from pymatgen.symmetry.analyzer import SpacegroupAnalyzer from pymatgen.util.testing import PymatgenTest from pymatgen.analysis.structure_matcher import StructureMatcher def get_path(path_str): cwd = os.path.abspath(os.path.dirname(__file__)) path = os.path.join(cwd, "..", "..", "..", "test_files", "surface_tests", path_str) return path class SlabTest(PymatgenTest): def setUp(self): zno1 = Structure.from_file(get_path("ZnO-wz.cif"), primitive=False) zno55 = SlabGenerator(zno1, [1, 0, 0], 5, 5, lll_reduce=False, center_slab=False).get_slab() Ti = Structure(Lattice.hexagonal(4.6, 2.82), ["Ti", "Ti", "Ti"], [[0.000000, 0.000000, 0.000000], [0.333333, 0.666667, 0.500000], [0.666667, 0.333333, 0.500000]]) Ag_fcc = Structure(Lattice.cubic(4.06), ["Ag", "Ag", "Ag", "Ag"], [[0.000000, 0.000000, 0.000000], [0.000000, 0.500000, 0.500000], [0.500000, 0.000000, 0.500000], [0.500000, 0.500000, 0.000000]]) self.ti = Ti self.agfcc = Ag_fcc self.zno1 = zno1 self.zno55 = zno55 self.h = Structure(Lattice.cubic(3), ["H"], [[0, 0, 0]]) self.libcc = Structure(Lattice.cubic(3.51004), ["Li", "Li"], [[0, 0, 0], [0.5, 0.5, 0.5]]) def test_init(self): zno_slab = Slab(self.zno55.lattice, self.zno55.species, self.zno55.frac_coords, self.zno55.miller_index, self.zno55.oriented_unit_cell, 0, self.zno55.scale_factor) m = self.zno55.lattice.matrix area = np.linalg.norm(np.cross(m[0], m[1])) self.assertAlmostEqual(zno_slab.surface_area, area) self.assertEqual(zno_slab.lattice.parameters, self.zno55.lattice.parameters) self.assertEqual(zno_slab.oriented_unit_cell.composition, self.zno1.composition) self.assertEqual(len(zno_slab), 8) def test_add_adsorbate_atom(self): zno_slab = Slab(self.zno55.lattice, self.zno55.species, self.zno55.frac_coords, self.zno55.miller_index, self.zno55.oriented_unit_cell, 0, self.zno55.scale_factor) zno_slab.add_adsorbate_atom([1], 'H', 1) self.assertEqual(len(zno_slab), 9) self.assertEqual(str(zno_slab[8].specie), 'H') self.assertAlmostEqual(zno_slab.get_distance(1, 8), 1.0) self.assertTrue(zno_slab[8].c > zno_slab[0].c) m = self.zno55.lattice.matrix area = np.linalg.norm(np.cross(m[0], m[1])) self.assertAlmostEqual(zno_slab.surface_area, area) self.assertEqual(zno_slab.lattice.parameters, self.zno55.lattice.parameters) def test_get_sorted_structure(self): species = [str(site.specie) for site in self.zno55.get_sorted_structure()] self.assertEqual(species, ["Zn2+"] * 4 + ["O2-"] * 4) def test_methods(self): # Test various structure methods self.zno55.get_primitive_structure() def test_as_from_dict(self): d = self.zno55.as_dict() obj = Slab.from_dict(d) self.assertEqual(obj.miller_index, (1, 0, 0)) def test_dipole_and_is_polar(self): self.assertArrayAlmostEqual(self.zno55.dipole, [0, 0, 0]) self.assertFalse(self.zno55.is_polar()) cscl = self.get_structure("CsCl") cscl.add_oxidation_state_by_element({"Cs": 1, "Cl": -1}) slab = SlabGenerator(cscl, [1, 0, 0], 5, 5, reorient_lattice=False, lll_reduce=False, center_slab=False).get_slab() self.assertArrayAlmostEqual(slab.dipole, [-4.209, 0, 0]) self.assertTrue(slab.is_polar()) def test_surface_sites_and_symmetry(self): # test if surfaces are equivalent by using # Laue symmetry and surface site equivalence for bool in [True, False]: # We will also set the slab to be centered and # off centered in order to test the center of mass slabgen = SlabGenerator(self.agfcc, (3, 1, 0), 10, 10, center_slab=bool) slab = slabgen.get_slabs()[0] surf_sites_dict = slab.get_surface_sites() self.assertEqual(len(surf_sites_dict["top"]), len(surf_sites_dict["bottom"])) total_surf_sites = sum([len(surf_sites_dict[key]) for key in surf_sites_dict.keys()]) self.assertTrue(slab.is_symmetric()) self.assertEqual(total_surf_sites / 2, 4) self.assertTrue(slab.have_equivalent_surfaces()) # Test if the ratio of surface sites per area is # constant, ie are the surface energies the same r1 = total_surf_sites / (2 * slab.surface_area) slabgen = SlabGenerator(self.agfcc, (3, 1, 0), 10, 10, primitive=False) slab = slabgen.get_slabs()[0] surf_sites_dict = slab.get_surface_sites() total_surf_sites = sum([len(surf_sites_dict[key]) for key in surf_sites_dict.keys()]) r2 = total_surf_sites / (2 * slab.surface_area) self.assertArrayEqual(r1, r2) def test_symmetrization(self): # Restricted to primitive_elemental materials due to the risk of # broken stoichiometry. For compound materials, use is_polar() # Get all slabs for P6/mmm Ti and Fm-3m Ag up to index of 2 all_Ti_slabs = generate_all_slabs(self.ti, 2, 10, 10, bonds=None, tol=1e-3, max_broken_bonds=0, lll_reduce=False, center_slab=False, primitive=True, max_normal_search=2, symmetrize=True) all_Ag_fcc_slabs = generate_all_slabs(self.agfcc, 2, 10, 10, bonds=None, tol=1e-3, max_broken_bonds=0, lll_reduce=False, center_slab=False, primitive=True, max_normal_search=2, symmetrize=True) all_slabs = [all_Ti_slabs, all_Ag_fcc_slabs] for i, slabs in enumerate(all_slabs): assymetric_count = 0 symmetric_count = 0 for i, slab in enumerate(slabs): sg = SpacegroupAnalyzer(slab) # Check if a slab is symmetric if not sg.is_laue(): assymetric_count += 1 else: symmetric_count += 1 # Check if slabs are all symmetric self.assertEqual(assymetric_count, 0) self.assertEqual(symmetric_count, len(slabs)) def test_get_symmetric_sites(self): # Check to see if we get an equivalent site on one # surface if we add a new site to the other surface all_Ti_slabs = generate_all_slabs(self.ti, 2, 10, 10, bonds=None, tol=1e-3, max_broken_bonds=0, lll_reduce=False, center_slab=False, primitive=True, max_normal_search=2, symmetrize=True) for slab in all_Ti_slabs: sorted_sites = sorted(slab, key=lambda site: site.frac_coords[2]) site = sorted_sites[-1] point = np.array(site.frac_coords) point[2] = point[2] + 0.1 point2 = slab.get_symmetric_site(point) slab.append("O", point) slab.append("O", point2) # Check if slab is all symmetric sg = SpacegroupAnalyzer(slab) self.assertTrue(sg.is_laue()) def test_oriented_unit_cell(self): # Check to see if we get the fully reduced oriented unit # cell. This will also ensure that the constrain_latt # parameter for get_primitive_structure is working properly def surface_area(s): m = s.lattice.matrix return np.linalg.norm(np.cross(m[0], m[1])) all_slabs = generate_all_slabs(self.agfcc, 2, 10, 10, max_normal_search=3) for slab in all_slabs: ouc = slab.oriented_unit_cell self.assertAlmostEqual(surface_area(slab), surface_area(ouc)) self.assertGreaterEqual(len(slab), len(ouc)) def test_get_slab_regions(self): # If a slab layer in the slab cell is not completely inside # the cell (noncontiguous), check that get_slab_regions will # be able to identify where the slab layers are located s = self.get_structure("LiFePO4") slabgen = SlabGenerator(s, (0, 0, 1), 15, 15) slab = slabgen.get_slabs()[0] slab.translate_sites([i for i, site in enumerate(slab)], [0, 0, -0.25]) bottom_c, top_c = [], [] for site in slab: if site.frac_coords[2] < 0.5: bottom_c.append(site.frac_coords[2]) else: top_c.append(site.frac_coords[2]) ranges = get_slab_regions(slab) self.assertEqual(tuple(ranges[0]), (0, max(bottom_c))) self.assertEqual(tuple(ranges[1]), (min(top_c), 1)) def test_as_dict(self): slabs = generate_all_slabs(self.ti, 1, 10, 10, bonds=None, tol=1e-3, max_broken_bonds=0, lll_reduce=False, center_slab=False, primitive=True) slab = slabs[0] s = json.dumps(slab.as_dict()) d = json.loads(s) self.assertEqual(slab, Slab.from_dict(d)) class SlabGeneratorTest(PymatgenTest): def setUp(self): lattice = Lattice.cubic(3.010) frac_coords = [[0.00000, 0.00000, 0.00000], [0.00000, 0.50000, 0.50000], [0.50000, 0.00000, 0.50000], [0.50000, 0.50000, 0.00000], [0.50000, 0.00000, 0.00000], [0.50000, 0.50000, 0.50000], [0.00000, 0.00000, 0.50000], [0.00000, 0.50000, 0.00000]] species = ['Mg', 'Mg', 'Mg', 'Mg', 'O', 'O', 'O', 'O'] self.MgO = Structure(lattice, species, frac_coords) self.MgO.add_oxidation_state_by_element({"Mg": 2, "O": -6}) lattice_Dy = Lattice.hexagonal(3.58, 25.61) frac_coords_Dy = [[0.00000, 0.00000, 0.00000], [0.66667, 0.33333, 0.11133], [0.00000, 0.00000, 0.222], [0.66667, 0.33333, 0.33333], [0.33333, 0.66666, 0.44467], [0.66667, 0.33333, 0.55533], [0.33333, 0.66667, 0.66667], [0.00000, 0.00000, 0.778], [0.33333, 0.66667, 0.88867]] species_Dy = ['Dy', 'Dy', 'Dy', 'Dy', 'Dy', 'Dy', 'Dy', 'Dy', 'Dy'] self.Dy = Structure(lattice_Dy, species_Dy, frac_coords_Dy) def test_get_slab(self): s = self.get_structure("LiFePO4") gen = SlabGenerator(s, [0, 0, 1], 10, 10) s = gen.get_slab(0.25) self.assertAlmostEqual(s.lattice.abc[2], 20.820740000000001) fcc = Structure.from_spacegroup("Fm-3m", Lattice.cubic(3), ["Fe"], [[0, 0, 0]]) gen = SlabGenerator(fcc, [1, 1, 1], 10, 10, max_normal_search=1) slab = gen.get_slab() self.assertEqual(len(slab), 6) gen = SlabGenerator(fcc, [1, 1, 1], 10, 10, primitive=False, max_normal_search=1) slab_non_prim = gen.get_slab() self.assertEqual(len(slab_non_prim), len(slab) * 4) # Some randomized testing of cell vectors for i in range(1, 231): i = random.randint(1, 230) sg = SpaceGroup.from_int_number(i) if sg.crystal_system == "hexagonal" or (sg.crystal_system == "trigonal" and (sg.symbol.endswith("H") or sg.int_number in [ 143, 144, 145, 147, 149, 150, 151, 152, 153, 154, 156, 157, 158, 159, 162, 163, 164, 165])): latt = Lattice.hexagonal(5, 10) else: # Cubic lattice is compatible with all other space groups. latt = Lattice.cubic(5) s = Structure.from_spacegroup(i, latt, ["H"], [[0, 0, 0]]) miller = (0, 0, 0) while miller == (0, 0, 0): miller = (random.randint(0, 6), random.randint(0, 6), random.randint(0, 6)) gen = SlabGenerator(s, miller, 10, 10) a, b, c = gen.oriented_unit_cell.lattice.matrix self.assertAlmostEqual(np.dot(a, gen._normal), 0) self.assertAlmostEqual(np.dot(b, gen._normal), 0) def test_normal_search(self): fcc = Structure.from_spacegroup("Fm-3m", Lattice.cubic(3), ["Fe"], [[0, 0, 0]]) for miller in [(1, 0, 0), (1, 1, 0), (1, 1, 1), (2, 1, 1)]: gen = SlabGenerator(fcc, miller, 10, 10) gen_normal = SlabGenerator(fcc, miller, 10, 10, max_normal_search=max(miller)) slab = gen_normal.get_slab() self.assertAlmostEqual(slab.lattice.alpha, 90) self.assertAlmostEqual(slab.lattice.beta, 90) self.assertGreaterEqual(len(gen_normal.oriented_unit_cell), len(gen.oriented_unit_cell)) graphite = self.get_structure("Graphite") for miller in [(1, 0, 0), (1, 1, 0), (0, 0, 1), (2, 1, 1)]: gen = SlabGenerator(graphite, miller, 10, 10) gen_normal = SlabGenerator(graphite, miller, 10, 10, max_normal_search=max(miller)) self.assertGreaterEqual(len(gen_normal.oriented_unit_cell), len(gen.oriented_unit_cell)) sc = Structure(Lattice.hexagonal(3.32, 5.15), ["Sc", "Sc"], [[1 / 3, 2 / 3, 0.25], [2 / 3, 1 / 3, 0.75]]) gen = SlabGenerator(sc, (1, 1, 1), 10, 10, max_normal_search=1) self.assertAlmostEqual(gen.oriented_unit_cell.lattice.angles[1], 90) def test_get_slabs(self): gen = SlabGenerator(self.get_structure("CsCl"), [0, 0, 1], 10, 10) # Test orthogonality of some internal variables. a, b, c = gen.oriented_unit_cell.lattice.matrix self.assertAlmostEqual(np.dot(a, gen._normal), 0) self.assertAlmostEqual(np.dot(b, gen._normal), 0) self.assertEqual(len(gen.get_slabs()), 1) s = self.get_structure("LiFePO4") gen = SlabGenerator(s, [0, 0, 1], 10, 10) self.assertEqual(len(gen.get_slabs()), 5) self.assertEqual(len(gen.get_slabs(bonds={("P", "O"): 3})), 2) # There are no slabs in LFP that does not break either P-O or Fe-O # bonds for a miller index of [0, 0, 1]. self.assertEqual(len(gen.get_slabs( bonds={("P", "O"): 3, ("Fe", "O"): 3})), 0) # If we allow some broken bonds, there are a few slabs. self.assertEqual(len(gen.get_slabs( bonds={("P", "O"): 3, ("Fe", "O"): 3}, max_broken_bonds=2)), 2) # At this threshold, only the origin and center Li results in # clustering. All other sites are non-clustered. So the of # slabs is of sites in LiFePO4 unit cell - 2 + 1. self.assertEqual(len(gen.get_slabs(tol=1e-4, ftol=1e-4)), 15) LiCoO2 = Structure.from_file(get_path("icsd_LiCoO2.cif"), primitive=False) gen = SlabGenerator(LiCoO2, [0, 0, 1], 10, 10) lco = gen.get_slabs(bonds={("Co", "O"): 3}) self.assertEqual(len(lco), 1) a, b, c = gen.oriented_unit_cell.lattice.matrix self.assertAlmostEqual(np.dot(a, gen._normal), 0) self.assertAlmostEqual(np.dot(b, gen._normal), 0) scc = Structure.from_spacegroup("Pm-3m", Lattice.cubic(3), ["Fe"], [[0, 0, 0]]) gen = SlabGenerator(scc, [0, 0, 1], 10, 10) slabs = gen.get_slabs() self.assertEqual(len(slabs), 1) gen = SlabGenerator(scc, [1, 1, 1], 10, 10, max_normal_search=1) slabs = gen.get_slabs() self.assertEqual(len(slabs), 1) # Test whether using units of hkl planes instead of Angstroms for # min_slab_size and min_vac_size will give us the same number of atoms natoms = [] for a in [1, 1.4, 2.5, 3.6]: s = Structure.from_spacegroup("Im-3m", Lattice.cubic(a), ["Fe"], [[0, 0, 0]]) slabgen = SlabGenerator(s, (1, 1, 1), 10, 10, in_unit_planes=True, max_normal_search=2) natoms.append(len(slabgen.get_slab())) n = natoms[0] for i in natoms: self.assertEqual(n, i) def test_triclinic_TeI(self): # Test case for a triclinic structure of TeI. Only these three # Miller indices are used because it is easier to identify which # atoms should be in a surface together. The closeness of the sites # in other Miller indices can cause some ambiguity when choosing a # higher tolerance. numb_slabs = {(0, 0, 1): 5, (0, 1, 0): 3, (1, 0, 0): 7} TeI = Structure.from_file(get_path("icsd_TeI.cif"), primitive=False) for k, v in numb_slabs.items(): trclnc_TeI = SlabGenerator(TeI, k, 10, 10) TeI_slabs = trclnc_TeI.get_slabs() self.assertEqual(v, len(TeI_slabs)) def test_get_orthogonal_c_slab(self): TeI = Structure.from_file(get_path("icsd_TeI.cif"), primitive=False) trclnc_TeI = SlabGenerator(TeI, (0, 0, 1), 10, 10) TeI_slabs = trclnc_TeI.get_slabs() slab = TeI_slabs[0] norm_slab = slab.get_orthogonal_c_slab() self.assertAlmostEqual(norm_slab.lattice.angles[0], 90) self.assertAlmostEqual(norm_slab.lattice.angles[1], 90) def test_get_orthogonal_c_slab_site_props(self): TeI = Structure.from_file(get_path("icsd_TeI.cif"), primitive=False) trclnc_TeI = SlabGenerator(TeI, (0, 0, 1), 10, 10) TeI_slabs = trclnc_TeI.get_slabs() slab = TeI_slabs[0] # Add site property to slab sd_list = [[True, True, True] for site in slab.sites] new_sp = slab.site_properties new_sp['selective_dynamics'] = sd_list slab_with_site_props = slab.copy(site_properties=new_sp) # Get orthogonal slab norm_slab = slab_with_site_props.get_orthogonal_c_slab() # Check if site properties is consistent (or kept) self.assertEqual(slab_with_site_props.site_properties, norm_slab.site_properties) def test_get_tasker2_slabs(self): # The uneven distribution of ions on the (111) facets of Halite # type slabs are typical examples of Tasker 3 structures. We # will test this algo to generate a Tasker 2 structure instead slabgen = SlabGenerator(self.MgO, (1, 1, 1), 10, 10, max_normal_search=1) # We generate the Tasker 3 structure first slab = slabgen.get_slabs()[0] self.assertFalse(slab.is_symmetric()) self.assertTrue(slab.is_polar()) # Now to generate the Tasker 2 structure, we must # ensure there are enough ions on top to move around slab.make_supercell([2, 1, 1]) slabs = slab.get_tasker2_slabs() # Check if our Tasker 2 slab is nonpolar and symmetric for slab in slabs: self.assertTrue(slab.is_symmetric()) self.assertFalse(slab.is_polar()) def test_nonstoichiometric_symmetrized_slab(self): # For the (111) halite slab, sometimes a nonstoichiometric # system is preferred over the stoichiometric Tasker 2. slabgen = SlabGenerator(self.MgO, (1, 1, 1), 10, 10, max_normal_search=1) slabs = slabgen.get_slabs(symmetrize=True) # We should end up with two terminations, one with # an Mg rich surface and another O rich surface self.assertEqual(len(slabs), 2) for slab in slabs: self.assertTrue(slab.is_symmetric()) # For a low symmetry primitive_elemental system such as # R-3m, there should be some nonsymmetric slabs # without using nonstoichiometric_symmetrized_slab slabs = generate_all_slabs(self.Dy, 1, 30, 30, center_slab=True, symmetrize=True) for s in slabs: self.assertTrue(s.is_symmetric()) self.assertGreater(len(s), len(self.Dy)) def test_move_to_other_side(self): # Tests to see if sites are added to opposite side s = self.get_structure("LiFePO4") slabgen = SlabGenerator(s, (0, 0, 1), 10, 10, center_slab=True) slab = slabgen.get_slab() surface_sites = slab.get_surface_sites() # check if top sites are moved to the bottom top_index = [ss[1] for ss in surface_sites["top"]] slab = slabgen.move_to_other_side(slab, top_index) all_bottom = [slab[i].frac_coords[2] < slab.center_of_mass[2] for i in top_index] self.assertTrue(all(all_bottom)) # check if bottom sites are moved to the top bottom_index = [ss[1] for ss in surface_sites["bottom"]] slab = slabgen.move_to_other_side(slab, bottom_index) all_top = [slab[i].frac_coords[2] > slab.center_of_mass[2] for i in bottom_index] self.assertTrue(all(all_top)) class ReconstructionGeneratorTests(PymatgenTest): def setUp(self): l = Lattice.cubic(3.51) species = ["Ni"] coords = [[0, 0, 0]] self.Ni = Structure.from_spacegroup("Fm-3m", l, species, coords) l = Lattice.cubic(2.819000) species = ["Fe"] coords = [[0, 0, 0]] self.Fe = Structure.from_spacegroup("Im-3m", l, species, coords) self.Si = Structure.from_spacegroup("Fd-3m", Lattice.cubic(5.430500), ["Si"], [(0, 0, 0.5)]) with open(os.path.join(os.path.abspath(os.path.dirname(__file__)), "..", "reconstructions_archive.json")) as data_file: self.rec_archive = json.load(data_file) def test_build_slab(self): # First lets test a reconstruction where we only remove atoms recon = ReconstructionGenerator(self.Ni, 10, 10, "fcc_110_missing_row_1x2") slab = recon.get_unreconstructed_slabs()[0] recon_slab = recon.build_slabs()[0] self.assertTrue(recon_slab.reconstruction) self.assertEqual(len(slab), len(recon_slab) + 2) self.assertTrue(recon_slab.is_symmetric()) # Test if the ouc corresponds to the reconstructed slab recon_ouc = recon_slab.oriented_unit_cell ouc = slab.oriented_unit_cell self.assertEqual(ouc.lattice.b * 2, recon_ouc.lattice.b) self.assertEqual(len(ouc) * 2, len(recon_ouc)) # Test a reconstruction where we simply add atoms recon = ReconstructionGenerator(self.Ni, 10, 10, "fcc_111_adatom_t_1x1") slab = recon.get_unreconstructed_slabs()[0] recon_slab = recon.build_slabs()[0] self.assertEqual(len(slab), len(recon_slab) - 2) self.assertTrue(recon_slab.is_symmetric()) # If a slab references another slab, # make sure it is properly generated recon = ReconstructionGenerator(self.Ni, 10, 10, "fcc_111_adatom_ft_1x1") slab = recon.build_slabs()[0] self.assertTrue(slab.is_symmetric) # Test a reconstruction where it works on a specific # termination (Fd-3m (111)) recon = ReconstructionGenerator(self.Si, 10, 10, "diamond_111_1x2") slab = recon.get_unreconstructed_slabs()[0] recon_slab = recon.build_slabs()[0] self.assertEqual(len(slab), len(recon_slab) - 8) self.assertTrue(recon_slab.is_symmetric()) # Test a reconstruction where terminations give # different reconstructions with a non-primitive_elemental system def test_get_d(self): # Ensure that regardles of the size of the vacuum or slab # layer, the spacing between atomic layers should be the same recon = ReconstructionGenerator(self.Si, 10, 10, "diamond_100_2x1") recon2 = ReconstructionGenerator(self.Si, 20, 10, "diamond_100_2x1") s1 = recon.get_unreconstructed_slabs()[0] s2 = recon2.get_unreconstructed_slabs()[0] self.assertAlmostEqual(get_d(s1), get_d(s2)) @unittest.skip("This test relies on neighbor orders and is hard coded. Disable temporarily") def test_previous_reconstructions(self): # Test to see if we generated all reconstruction # types correctly and nothing changes m = StructureMatcher() for n in self.rec_archive.keys(): if "base_reconstruction" in self.rec_archive[n].keys(): arch = self.rec_archive[ self.rec_archive[n]["base_reconstruction"]] sg = arch["spacegroup"]["symbol"] else: sg = self.rec_archive[n]["spacegroup"]["symbol"] if sg == "Fm-3m": rec = ReconstructionGenerator(self.Ni, 20, 20, n) el = self.Ni[0].species_string elif sg == "Im-3m": rec = ReconstructionGenerator(self.Fe, 20, 20, n) el = self.Fe[0].species_string elif sg == "Fd-3m": rec = ReconstructionGenerator(self.Si, 20, 20, n) el = self.Si[0].species_string slabs = rec.build_slabs() s = Structure.from_file(get_path(os.path.join("reconstructions", el + "_" + n + ".cif"))) self.assertTrue(any( [len(m.group_structures([s, slab])) == 1 for slab in slabs])) class MillerIndexFinderTests(PymatgenTest): def setUp(self): self.cscl = Structure.from_spacegroup( "Pm-3m", Lattice.cubic(4.2), ["Cs", "Cl"], [[0, 0, 0], [0.5, 0.5, 0.5]]) self.Fe = Structure.from_spacegroup( "Im-3m", Lattice.cubic(2.82), ["Fe"], [[0, 0, 0]]) mglatt = Lattice.from_parameters(3.2, 3.2, 5.13, 90, 90, 120) self.Mg = Structure(mglatt, ["Mg", "Mg"], [[1 / 3, 2 / 3, 1 / 4], [2 / 3, 1 / 3, 3 / 4]]) self.lifepo4 = self.get_structure("LiFePO4") self.tei = Structure.from_file(get_path("icsd_TeI.cif"), primitive=False) self.LiCoO2 = Structure.from_file(get_path("icsd_LiCoO2.cif"), primitive=False) self.p1 = Structure(Lattice.from_parameters(3, 4, 5, 31, 43, 50), ["H", "He"], [[0, 0, 0], [0.1, 0.2, 0.3]]) self.graphite = self.get_structure("Graphite") self.trigBi = Structure(Lattice.from_parameters(3, 3, 10, 90, 90, 120), ["Bi", "Bi", "Bi", "Bi", "Bi", "Bi"], [[0.3333, 0.6666, 0.39945113], [0.0000, 0.0000, 0.26721554], [0.0000, 0.0000, 0.73278446], [0.6666, 0.3333, 0.60054887], [0.6666, 0.3333, 0.06611779], [0.3333, 0.6666, 0.93388221]]) def test_get_symmetrically_distinct_miller_indices(self): # Tests to see if the function obtains the known number of unique slabs indices = get_symmetrically_distinct_miller_indices(self.cscl, 1) self.assertEqual(len(indices), 3) indices = get_symmetrically_distinct_miller_indices(self.cscl, 2) self.assertEqual(len(indices), 6) self.assertEqual( len(get_symmetrically_distinct_miller_indices(self.lifepo4, 1)), 7) # The TeI P-1 structure should have 13 unique millers (only inversion # symmetry eliminates pairs) indices = get_symmetrically_distinct_miller_indices(self.tei, 1) self.assertEqual(len(indices), 13) # P1 and P-1 should have the same # of miller indices since surfaces # always have inversion symmetry. indices = get_symmetrically_distinct_miller_indices(self.p1, 1) self.assertEqual(len(indices), 13) indices = get_symmetrically_distinct_miller_indices(self.graphite, 2) self.assertEqual(len(indices), 12) # Now try a trigonal system. indices = get_symmetrically_distinct_miller_indices(self.trigBi, 2, return_hkil=True) self.assertEqual(len(indices), 17) self.assertTrue(all([len(hkl) == 4 for hkl in indices])) def test_get_symmetrically_equivalent_miller_indices(self): # Tests to see if the function obtains all equivalent hkl for cubic (100) indices001 = [(1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, -1), (0, -1, 0), (-1, 0, 0)] indices = get_symmetrically_equivalent_miller_indices(self.cscl, (1, 0, 0)) self.assertTrue(all([hkl in indices for hkl in indices001])) # Tests to see if it captures expanded Miller indices in the family e.g. (001) == (002) hcp_indices_100 = get_symmetrically_equivalent_miller_indices(self.Mg, (1, 0, 0)) hcp_indices_200 = get_symmetrically_equivalent_miller_indices(self.Mg, (2, 0, 0)) self.assertEqual(len(hcp_indices_100) * 2, len(hcp_indices_200)) self.assertEqual(len(hcp_indices_100), 6) self.assertTrue(all([len(hkl) == 4 for hkl in hcp_indices_100])) def test_generate_all_slabs(self): slabs = generate_all_slabs(self.cscl, 1, 10, 10) # Only three possible slabs, one each in (100), (110) and (111). self.assertEqual(len(slabs), 3) # make sure it generates reconstructions slabs = generate_all_slabs(self.Fe, 1, 10, 10, include_reconstructions=True) # Four possible slabs, (100), (110), (111) and the zigzag (100). self.assertEqual(len(slabs), 4) slabs = generate_all_slabs(self.cscl, 1, 10, 10, bonds={("Cs", "Cl"): 4}) # No slabs if we don't allow broken Cs-Cl self.assertEqual(len(slabs), 0) slabs = generate_all_slabs(self.cscl, 1, 10, 10, bonds={("Cs", "Cl"): 4}, max_broken_bonds=100) self.assertEqual(len(slabs), 3) slabs2 = generate_all_slabs(self.lifepo4, 1, 10, 10, bonds={("P", "O"): 3, ("Fe", "O"): 3}) self.assertEqual(len(slabs2), 0) # There should be only one possible stable surfaces, all of which are # in the (001) oriented unit cell slabs3 = generate_all_slabs(self.LiCoO2, 1, 10, 10, bonds={("Co", "O"): 3}) self.assertEqual(len(slabs3), 1) mill = (0, 0, 1) for s in slabs3: self.assertEqual(s.miller_index, mill) slabs1 = generate_all_slabs(self.lifepo4, 1, 10, 10, tol=0.1, bonds={("P", "O"): 3}) self.assertEqual(len(slabs1), 4) # Now we test this out for repair_broken_bonds() slabs1_repair = generate_all_slabs(self.lifepo4, 1, 10, 10, tol=0.1, bonds={("P", "O"): 3}, repair=True) self.assertGreater(len(slabs1_repair), len(slabs1)) # Lets see if there are no broken PO4 polyhedrons miller_list = get_symmetrically_distinct_miller_indices(self.lifepo4, 1) all_miller_list = [] for slab in slabs1_repair: hkl = tuple(slab.miller_index) if hkl not in all_miller_list: all_miller_list.append(hkl) broken = [] for site in slab: if site.species_string == "P": neighbors = slab.get_neighbors(site, 3) cn = 0 for nn in neighbors: cn += 1 if nn[0].species_string == "O" else 0 broken.append(cn != 4) self.assertFalse(any(broken)) # check if we were able to produce at least one # termination for each distinct Miller _index self.assertEqual(len(miller_list), len(all_miller_list)) def test_miller_index_from_sites(self): """Test surface miller index convenience function""" # test on a cubic system m = Lattice.cubic(1) s1 = np.array([0.5, -1.5, 3]) s2 = np.array([0.5, 3., -1.5]) s3 = np.array([2.5, 1.5, -4.]) self.assertEqual(miller_index_from_sites(m, [s1, s2, s3]), (2, 1, 1)) # test casting from matrix to Lattice m = [[2.319, -4.01662582, 0.], [2.319, 4.01662582, 0.], [0., 0., 7.252]] s1 = np.array([2.319, 1.33887527, 6.3455]) s2 = np.array([1.1595, 0.66943764, 4.5325]) s3 = np.array([1.1595, 0.66943764, 0.9065]) hkl = miller_index_from_sites(m, [s1, s2, s3]) self.assertEqual(hkl, (2, -1, 0)) if __name__ == "__main__": unittest.main()
mbkumar/pymatgen
pymatgen/core/tests/test_surface.py
Python
mit
35,374
[ "pymatgen" ]
ea48e5be1834160cd9e1bfe10281013827c96568af5e8b928ad1bba2033b079b
# -*- coding: utf-8 -*- """ Convert the simuPOP documentation to Sphinx ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :copyright: 2007-2008 by Georg Brandl. :license: BSD. """ import sys import os, re import sys import os import glob import shutil import codecs from os import path from converter.tokenizer import Tokenizer from converter.latexparser import DocParser from converter.restwriter import RestWriter from converter.filenamemap import (fn_mapping, copyfiles_mapping, newfiles_mapping, rename_mapping, dirs_to_make, toctree_mapping, amendments_mapping) from converter.console import red, green from converter.docnodes import CommentNode, RootNode, NodeList, ParaSepNode, \ TextNode, EmptyNode, NbspNode, SimpleCmdNode, BreakNode, CommandNode, \ DescLineCommandNode, InlineNode, IndexNode, SectioningNode, \ EnvironmentNode, DescEnvironmentNode, TableNode, VerbatimNode, \ ListNode, ItemizeNode, EnumerateNode, DescriptionNode, \ DefinitionsNode, ProductionListNode from converter.util import umlaut, empty, text from converter.latexparser import ParserError class MyDocParser(DocParser): def __init__(self, *args, **kwargs): DocParser.__init__(self, *args, **kwargs) def mk_metadata_handler(self, name, mdname=None, arg='M'): if mdname is None: mdname = name def handler(self): data = self.parse_args('\\'+name, arg) self.rootnode.params[mdname] = data[0] return EmptyNode() return handler handle_color = mk_metadata_handler(None, 'color', None, 'M') handle_lstset = mk_metadata_handler(None, 'lstset') handle_setcounter = mk_metadata_handler(None, 'setcounter', None, 'MM') handle_hypersetup = mk_metadata_handler(None, 'hypersetup') handle_definecolor = mk_metadata_handler(None, 'definecolor', None, 'MMM') handle_sectionfont = mk_metadata_handler(None, 'sectionfont', None, 'O') handle_subsectionfont = mk_metadata_handler(None, 'subsectionfont', None, 'O') handle_subsubsectionfont = mk_metadata_handler(None, 'subsubsectionfont', None, 'O') handle_makeatother = mk_metadata_handler(None, 'makeatother', None, 'O') handle_totalheight = mk_metadata_handler(None, 'totalheight', None, 'O') handle_columnwidth = mk_metadata_handler(None, 'columnwidth', None, 'O') handle_vspace = mk_metadata_handler(None, 'vspace', None, 'M') handle_hspace = mk_metadata_handler(None, 'hspace', None, 'M') handle_hrule = mk_metadata_handler(None, 'hrule', None, 'O') handle_lstlistoflistings = mk_metadata_handler(None, 'lstlistoflistings', None, 'O') handle_centering = mk_metadata_handler(None, 'centering', None, 'M') handle_textwidth = mk_metadata_handler(None, 'textwidth', None, 'O') handle_end = mk_metadata_handler(None, 'end', None, 'O') handle_textendash = mk_metadata_handler(None, 'textendash', None, 'O') #handle_item = mk_metadata_handler(None, 'item', None, 'O') handle_textmd = mk_metadata_handler(None, 'textmd', None, 'O') handle_normalsize = mk_metadata_handler(None, 'normalsize', None, 'O') handle_textcompwordmark = mk_metadata_handler(None, 'textcompwordmark', None, 'O') handle_citep = mk_metadata_handler(None, 'citep', None, 'O') handle_citet = mk_metadata_handler(None, 'citet', None, 'O') handle_citeyearpar = mk_metadata_handler(None, 'citeyearpar', None, 'O') handle_bibliographystyle = mk_metadata_handler(None, 'bibliographystyle', None, 'O') handle_bibliography = mk_metadata_handler(None, 'bibliography', None, 'O') handle_printindex = mk_metadata_handler(None, 'printindex', None, 'O') def handle_minipage_env(self): # Ignore the minipage part. txt = '' while not txt.endswith('end{minipage}'): nextl, nextt, nextv, nextr = self.tokens.pop() txt += nextv return EmptyNode() def handle_include(self): data = self.parse_args('\\include', 'M')[0].text return EmptyNode() def handle_newenvironment(self, numOpt=3): txt = '' opt = 0 depth = 0 while True: nextl, nextt, nextv, nextr = self.tokens.pop() if nextr == '{' or nextr == '[': depth += 1 elif nextr == '}' or nextr == ']': depth -= 1 if nextr == '}' and depth == 0: opt += 1 if opt == numOpt: break return EmptyNode() def handle_newcommand(self): return self.handle_newenvironment(2) def handle_unrecognized(self, name, line): def handler(): #self.unrecognized.add(name) return InlineNode('include', name) return handler handle_small = mk_metadata_handler(None, '\\small', None, 'O') handle_ttfamily = mk_metadata_handler(None, '\\small', None, 'O') handle_textsf = mk_metadata_handler(None, '\\textsf', None, 'O') handle_slshape = mk_metadata_handler(None, '\\small', None, 'O') handle_bf = mk_metadata_handler(None, '\\small', None, 'O') handle_makeatletter = mk_metadata_handler(None, 'makeatletter', None, 'O') handle_lyxline = mk_metadata_handler(None, 'lyxline', None, 'O') handle_par = mk_metadata_handler(None, 'par', None, 'O') handle_rule = mk_metadata_handler(None, 'rule', None, 'O') handle_hfill = mk_metadata_handler(None, 'hfill', None, 'O') handle_sloppy = mk_metadata_handler(None, 'sloppy', None, 'O') handle_lstlistingname = mk_metadata_handler(None, 'lstlistingname', None, 'O') handle_lstlistlistingname = mk_metadata_handler(None, 'lstlistlistingname', None, 'O') class MyRestWriter(RestWriter): def __init__(self, dir = '.', auto_keywords = {}, *args, **kwargs): RestWriter.__init__(self, *args, **kwargs) self.dirname = dir if self.dirname == '': self.dirname = '.' self.auto_keywords = auto_keywords def visit_InlineNode(self, node): cmdname = node.cmdname if not node.args: self.curpar.append(self.simplecmd_mapping[cmdname]) return content = node.args[0] if cmdname == 'include': file = node.args for dir in ['.', self.dirname, 'build']: for suffix in ['', '.ref', '.rst', '.txt']: filename = os.path.join(dir, file + suffix) if os.path.isfile(filename): txt = open(filename).read() self.write(txt) return print 'Warning: Failed to find included file for filename "%s".' % file return sym = '' if cmdname in ('code', 'bfcode', 'samp', 'texttt', 'regexp'): sym = '``' elif cmdname in ('strong', 'textbf'): sym = '**' if sym != '': cnt = self.get_textonly_node(content, 'code', warn=1) done = False if isinstance(cnt, TextNode): for keyword in self.auto_keywords.keys(): txt = text(cnt).split('(')[0] leftover = text(cnt)[len(txt):] match = False if txt in self.auto_keywords[keyword]: self.curpar.append(':%s:`%s`' % (keyword, txt)) match = True elif '.' in txt: ends = [x.endswith(txt) for x in self.auto_keywords[keyword]] if True in ends: fullword = self.auto_keywords[keyword][ends.index(True)] self.curpar.append(':%s:`~%s`' % (keyword, fullword)) match = True if match: if leftover != '': if leftover.startswith('()'): # sphinx ignores them!! self.curpar.append("()") if len(leftover) > 2: self.curpar.append("%s%s%s" % (sym, leftover[2:], sym)) elif leftover.startswith('(') and leftover.endswith(')'): self.curpar.append("(%s%s%s)" % (sym, leftover[1:-1], sym)) else: self.curpar.append("%s%s%s" % (sym, leftover, sym)) return # the regular emph/strong case and other stuff RestWriter.visit_InlineNode(self, node) def visit_CommentNode(self, node): # no inline comments -> they are all output at the start of a new paragraph pass #self.comments.append(node.comment.strip()) def visit_CommandNode(self, node): cmdname = node.cmdname if cmdname == 'example_url': file = text(node.args[0]) file = file.replace('.log', '.py') # get the file txt = open(file).read() outfilename = os.path.split(file)[-1] with open(os.path.join('build', outfilename), 'w') as outfile: print >> outfile, '''#!/usr/bin/env python # # $File: %s $ # # This file is part of simuPOP, a forward-time population genetics # simulation environment. Please visit http://simupop.sourceforge.net # for details. # # Copyright (C) 2004 - 2010 Bo Peng ([email protected]) # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # # This script is an example in the simuPOP user's guide. Please refer to # the user's guide (http://simupop.sourceforge.net/manual) for a detailed # description of this example. # ''' % outfilename print >> outfile, txt # insert a URL self.write('`Download %s <%s>`_\n' % (outfilename, outfilename)) else: RestWriter.visit_CommandNode(self, node) def convert_file(infile, outfile, doraise=True, splitchap=True, toctree=None, deflang=None, labelprefix=''): inf = codecs.open(infile, 'r', 'latin1') p = MyDocParser(Tokenizer(inf.read()).tokenize(), infile) if not splitchap: outf = codecs.open(outfile, 'w', 'utf-8') else: outf = None refFile = os.path.join(os.path.dirname(infile), 'reflist.py') if os.path.isfile(refFile): execfile(refFile, globals(), globals()) r = MyRestWriter(os.path.dirname(infile), auto_keywords, outf, splitchap, toctree, deflang, labelprefix) try: r.write_document(p.parse()) if splitchap: outf = codecs.open(outfile, 'w', 'utf-8') outf.write('.. toctree::\n \n') # :numbered:\n \n') for ch,chapter in enumerate(r.chapters[1:]): dir = path.dirname(outfile) if dir == '': dir = '.' chtoc = '%s/%s' % (dir, path.basename(outfile)) chtoc = chtoc.replace('.rst', '_ch%d.rst' % (ch+1)) outf.write(' %s\n' % chtoc[len('%s/' % dir):]) choutf = codecs.open(chtoc, 'w', 'utf-8') choutf.write(chapter[0].getvalue()) if len(chapter) > 1: choutf.write('\n.. toctree::\n\n') for sec,section in enumerate(chapter[1:]): filename = '%s/%s' % (dir, path.basename(outfile)) filename = filename.replace('.rst', '_ch%d_sec%d.rst' % (ch + 1, sec + 1)) sec_outf = codecs.open(filename, 'w', 'utf-8') sec_outf.write(section.getvalue()) sec_outf.close() choutf.write(' %s\n' % filename[len('%s/' % dir):]) choutf.close() outf.close() else: outf.close() p.finish() return 1, r.warnings except Exception, err: if doraise: raise return 0, str(err) if __name__ == '__main__': convert_file(*sys.argv[1:])
BoPeng/simuPOP
doc/tools/convert.py
Python
gpl-2.0
12,679
[ "VisIt" ]
814ccfc9923431302f3cdeacc17b481cacaa490598f1ef57d01c8cbb0173af5a
import logging import numpy as np import scipy.ndimage as ndim from skimage.morphology import binary_dilation from scipy.spatial.distance import dice import nibabel as nib from dipy.io.utils import (create_nifti_header, get_reference_info) from dipy.tracking.streamline import select_random_set_of_streamlines import dipy.tracking.utils as dtu logger = logging.getLogger('AFQ.utils.volume') def transform_inverse_roi(roi, mapping, bundle_name="ROI"): """ After being non-linearly transformed, ROIs tend to have holes in them. We perform a couple of computational geometry operations on the ROI to fix that up. Parameters ---------- roi : Nifti1Image, str, ndarray The ROI to transform. Can be a path or image, which will be converted to an ndarray. mapping : DiffeomorphicMap object A mapping between DWI space and a template. bundle_name : str, optional Name of bundle, which may be useful for error messages. Default: None Returns ------- ROI after dilation and hole-filling """ if isinstance(roi, str): roi = nib.load(roi) if isinstance(roi, nib.Nifti1Image): roi = roi.get_fdata() _roi = mapping.transform_inverse(roi, interpolation='linear') if np.sum(_roi) == 0: logger.warning( f'Lost ROI {bundle_name}, performing automatic binary dilation') _roi = binary_dilation(roi) _roi = mapping.transform_inverse(_roi, interpolation='linear') _roi = patch_up_roi(_roi > 0, bundle_name=bundle_name).astype(int) return _roi def patch_up_roi(roi, bundle_name="ROI", make_convex=True): """ After being non-linearly transformed, ROIs tend to have holes in them. We perform a couple of computational geometry operations on the ROI to fix that up. Parameters ---------- roi : 3D binary array The ROI after it has been transformed. sigma : float The sigma for initial Gaussian smoothing. truncate : float The truncation for the Gaussian bundle_name : str, optional Name of bundle, which may be useful for error messages. Default: None Returns ------- ROI after dilation and hole-filling """ hole_filled = ndim.binary_fill_holes(roi > 0) if not np.any(hole_filled): raise ValueError(( f"{bundle_name} found to be empty after " "applying the mapping.")) return hole_filled def density_map(tractogram, n_sls=None, to_vox=False, normalize=False): """ Create a streamline density map. based on: https://dipy.org/documentation/1.1.1./examples_built/streamline_formats/ Parameters ---------- tractogram : StatefulTractogram Stateful tractogram whose streamlines are used to make the density map. n_sls : int or None, optional n_sls to randomly select to make the density map. If None, all streamlines are used. Default: None to_vox : bool, optional Whether to put the stateful tractogram in VOX space before making the density map. Default: False normalize : bool, optional Whether to normalize maximum values to 1. Default: False Returns ------- Nifti1Image containing the density map. """ if to_vox: tractogram.to_vox() sls = tractogram.streamlines if n_sls is not None: sls = select_random_set_of_streamlines(sls, n_sls) affine, vol_dims, voxel_sizes, voxel_order = get_reference_info(tractogram) tractogram_density = dtu.density_map(sls, np.eye(4), vol_dims) if normalize: tractogram_density = tractogram_density / tractogram_density.max() nifti_header = create_nifti_header(affine, vol_dims, voxel_sizes) density_map_img = nib.Nifti1Image(tractogram_density, affine, nifti_header) return density_map_img def dice_coeff(arr1, arr2, weighted=True): """ Compute Dice's coefficient between two images. Parameters ---------- arr1 : Nifti1Image, str, ndarray One ndarray to compare. Can be a path or image, which will be converted to an ndarray. arr2 : Nifti1Image, str, ndarray The other ndarray to compare. Can be a path or image, which will be converted to an ndarray. weighted : bool, optional Whether or not to weight the DICE coefficient as in [Cousineau2017]_. The weighted Dice coefficient is calculated by adding the sum of all values in arr1 where arr2 is nonzero to the sum of all values in arr2 where arr1 is nonzero, then dividing that by the sum of all values in arr1 and arr2. Default: True Returns ------- The dice similarity between the images. Notes ----- .. [1] Cousineau M, Jodoin PM, Morency FC, et al. A test-retest study on Parkinson's PPMI dataset yields statistically significant white matter fascicles. Neuroimage Clin. 2017;16:222-233. Published 2017 Jul 25. doi:10.1016/j.nicl.2017.07.020 """ if isinstance(arr1, str): arr1 = nib.load(arr1) if isinstance(arr2, str): arr2 = nib.load(arr2) if isinstance(arr1, nib.Nifti1Image): arr1 = arr1.get_fdata() if isinstance(arr2, nib.Nifti1Image): arr2 = arr2.get_fdata() arr1 = arr1.flatten() arr2 = arr2.flatten() if weighted: return ( np.sum(arr1 * arr2.astype(bool)) + np.sum(arr2 * arr1.astype(bool)))\ / (np.sum(arr1) + np.sum(arr2)) else: # scipy's dice function returns the dice *dissimilarity* return 1 - dice( arr1.astype(bool), arr2.astype(bool))
arokem/pyAFQ
AFQ/utils/volume.py
Python
bsd-2-clause
5,768
[ "Gaussian" ]
088416cf8d00e6ee2f0d08336d2601cf4191006030ee13d02c269428bb3215b7
"""Tests for wien2k interface.""" import os import numpy as np from phonopy.interface.phonopy_yaml import read_cell_yaml from phonopy.interface.wien2k import parse_wien2k_struct data_dir = os.path.dirname(os.path.abspath(__file__)) def test_parse_wien2k_struct(): """Test structure parsing.""" filename_BaGa2 = os.path.join(data_dir, "BaGa2.struct") cell, _, _, _ = parse_wien2k_struct(filename_BaGa2) filename = os.path.join(data_dir, "BaGa2-wien2k.yaml") cell_ref = read_cell_yaml(filename) assert (np.abs(cell.cell - cell_ref.cell) < 1e-5).all() diff_pos = cell.scaled_positions - cell_ref.scaled_positions diff_pos -= np.rint(diff_pos) assert (np.abs(diff_pos) < 1e-5).all() for s, s_r in zip(cell.symbols, cell_ref.symbols): assert s == s_r
atztogo/phonopy
test/interface/test_wien2k.py
Python
bsd-3-clause
799
[ "WIEN2k", "phonopy" ]
c7d7b84bc76c4bfe65f44c47ac92b5535b6b47312260b7bd57bb68ec46db39cd
import logging from post_request_task.task import task from mkt.feed.models import FeedApp, FeedCollection log = logging.getLogger('z.feed') @task def _migrate_collection_colors(ids, model): """Migrate deprecated background color (hex) to color (name).""" cls = FeedApp if model == 'collection': cls = FeedCollection for obj in cls.objects.filter(id__in=ids): if obj.background_color and not obj.color: try: color = { '#CE001C': 'ruby', '#F78813': 'amber', '#00953F': 'emerald', '#0099D0': 'aquamarine', '#1E1E9C': 'sapphire', '#5A197E': 'amethyst', '#A20D55': 'garnet' }.get(obj.background_color, 'aquamarine') except KeyError: continue obj.update(color=color) log.info('Migrated %s:%s from %s to %s' % (model, unicode(obj.id), obj.background_color, color))
jasonthomas/zamboni
mkt/feed/tasks.py
Python
bsd-3-clause
1,054
[ "Amber" ]
2e22a33207d693aac69598dec17993702fd9facbbb973d787c9aae66329bdab6
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: """Interfaces to assorted Freesurfer utility programs. Change directory to provide relative paths for doctests >>> import os >>> filepath = os.path.dirname( os.path.realpath( __file__ ) ) >>> datadir = os.path.realpath(os.path.join(filepath, '../../testing/data')) >>> os.chdir(datadir) """ __docformat__ = 'restructuredtext' import os import re from nipype.utils.filemanip import fname_presuffix, split_filename from nipype.interfaces.freesurfer.base import FSCommand, FSTraitedSpec from nipype.interfaces.base import TraitedSpec, File, traits, OutputMultiPath, isdefined filemap = dict(cor='cor', mgh='mgh', mgz='mgz', minc='mnc', afni='brik', brik='brik', bshort='bshort', spm='img', analyze='img', analyze4d='img', bfloat='bfloat', nifti1='img', nii='nii', niigz='nii.gz') filetypes = ['cor', 'mgh', 'mgz', 'minc', 'analyze', 'analyze4d', 'spm', 'afni', 'brik', 'bshort', 'bfloat', 'sdt', 'outline', 'otl', 'gdf', 'nifti1', 'nii', 'niigz'] class SampleToSurfaceInputSpec(FSTraitedSpec): source_file = File(exists=True, mandatory=True, argstr="--mov %s", desc="volume to sample values from") reference_file = File(exists=True, argstr="--ref %s", desc="reference volume (default is orig.mgz)") hemi = traits.Enum("lh", "rh", mandatory=True, argstr="--hemi %s", desc="target hemisphere") surface = traits.String(argstr="--surf", desc="target surface (default is white)") reg_xors = ["reg_file", "reg_header", "mni152reg"] reg_file = File(exists=True, argstr="--reg %s", required=True, xor=reg_xors, desc="source-to-reference registration file") reg_header = traits.Bool(argstr="--regheader %s", requires=["subject_id"], required=True, xor=reg_xors, desc="register based on header geometry") mni152reg = traits.Bool(argstr="--mni152reg", required=True, xor=reg_xors, desc="source volume is in MNI152 space") apply_rot = traits.Tuple(traits.Float, traits.Float, traits.Float, argstr="--rot %.3f %.3f %.3f", desc="rotation angles (in degrees) to apply to reg matrix") apply_trans = traits.Tuple(traits.Float, traits.Float, traits.Float, argstr="--trans %.3f %.3f %.3f", desc="translation (in mm) to apply to reg matrix") override_reg_subj = traits.Bool(argstr="--srcsubject %s", requires=["subject_id"], desc="override the subject in the reg file header") sampling_method = traits.Enum("point", "max", "average", mandatory=True, argstr="%s", xor=["projection_stem"], requires=["sampling_range", "sampling_units"], desc="how to sample -- at a point or at the max or average over a range") sampling_range = traits.Either(traits.Float, traits.Tuple(traits.Float, traits.Float, traits.Float), desc="sampling range - a point or a tuple of (min, max, step)") sampling_units = traits.Enum("mm", "frac", desc="sampling range type -- either 'mm' or 'frac'") projection_stem = traits.String(mandatory=True, xor=["sampling_method"], desc="stem for precomputed linear estimates and volume fractions") smooth_vol = traits.Float(argstr="--fwhm %.3f", desc="smooth input volume (mm fwhm)") smooth_surf = traits.Float(argstr="--surf-fwhm %.3f", desc="smooth output surface (mm fwhm)") interp_method = traits.Enum("nearest", "trilinear", argstr="--interp %s", desc="interpolation method") cortex_mask = traits.Bool(argstr="--cortex", xor=["mask_label"], desc="mask the target surface with hemi.cortex.label") mask_label = File(exists=True, argstr="--mask %s", xor=["cortex_mask"], desc="label file to mask output with") float2int_method = traits.Enum("round", "tkregister", argstr="--float2int %s", desc="method to convert reg matrix values (default is round)") fix_tk_reg = traits.Bool(argstr="--fixtkreg", desc="make reg matrix round-compatible") subject_id = traits.String(desc="subject id") target_subject = traits.String(argstr="--trgsubject %s", desc="sample to surface of different subject than source") surf_reg = traits.Bool(argstr="--surfreg", requires=["target_subject"], desc="use surface registration to target subject") ico_order = traits.Int(argstr="--icoorder %d", requires=["target_subject"], desc="icosahedron order when target_subject is 'ico'") reshape = traits.Bool(argstr="--reshape", xor=["no_reshape"], desc="reshape surface vector to fit in non-mgh format") no_reshape = traits.Bool(argstr="--noreshape", xor=["reshape"], desc="do not reshape surface vector (default)") reshape_slices = traits.Int(argstr="--rf %d", desc="number of 'slices' for reshaping") scale_input = traits.Float(argstr="--scale %.3f", desc="multiple all intensities by scale factor") frame = traits.Int(argstr="--frame %d", desc="save only one frame (0-based)") out_file = File(argstr="--o %s", genfile=True, desc="surface file to write") out_type = traits.Enum(filetypes, argstr="--out_type %s", desc="output file type") hits_file = traits.Either(traits.Bool, File(exists=True), argstr="--srchit %s", desc="save image with number of hits at each voxel") hits_type = traits.Enum(filetypes, argstr="--srchit_type", desc="hits file type") vox_file = traits.Either(traits.Bool, File, argstr="--nvox %s", desc="text file with the number of voxels intersecting the surface") class SampleToSurfaceOutputSpec(TraitedSpec): out_file = File(exists=True, desc="surface file") hits_file = File(exists=True, desc="image with number of hits at each voxel") vox_file = File(exists=True, desc="text file with the number of voxels intersecting the surface") class SampleToSurface(FSCommand): """Sample a volume to the cortical surface using Freesurfer's mri_vol2surf. You must supply a sampling method, range, and units. You can project either a given distance (in mm) or a given fraction of the cortical thickness at that vertex along the surface normal from the target surface, and then set the value of that vertex to be either the value at that point or the average or maximum value found along the projection vector. By default, the surface will be saved as a vector with a length equal to the number of vertices on the target surface. This is not a problem for Freesurfer programs, but if you intend to use the file with interfaces to another package, you must set the ``reshape`` input to True, which will factor the surface vector into a matrix with dimensions compatible with proper Nifti files. Examples -------- >>> import nipype.interfaces.freesurfer as fs >>> sampler = fs.SampleToSurface(hemi="lh") >>> sampler.inputs.source_file = "cope1.nii.gz" >>> sampler.inputs.reg_file = "register.dat" >>> sampler.inputs.sampling_method = "average" >>> sampler.inputs.sampling_range = 1 >>> sampler.inputs.sampling_units = "frac" >>> res = sampler.run() # doctest: +SKIP """ _cmd = "mri_vol2surf" input_spec = SampleToSurfaceInputSpec output_spec = SampleToSurfaceOutputSpec filemap = dict(cor='cor', mgh='mgh', mgz='mgz', minc='mnc', afni='brik', brik='brik', bshort='bshort', spm='img', analyze='img', analyze4d='img', bfloat='bfloat', nifti1='img', nii='nii', niigz='nii.gz') def _format_arg(self, name, spec, value): if name == "sampling_method": range = self.inputs.sampling_range units = self.inputs.sampling_units if units == "mm": units = "dist" if isinstance(range, tuple): range = "%.3f %.3f %.3f" % range else: range = "%.3f" % range method = dict(point="", max="-max", average="-avg")[value] return "--proj%s%s %s" % (units, method, range) if name == "reg_header": return spec.argstr % self.inputs.subject_id if name == "override_reg_subj": return spec.argstr % self.inputs.subject_id if name in ["hits_file", "vox_file"]: return spec.argstr % self._get_outfilename(name) return super(SampleToSurface, self)._format_arg(name, spec, value) def _get_outfilename(self, opt="out_file"): outfile = getattr(self.inputs, opt) if not isdefined(outfile) or isinstance(outfile, bool): if isdefined(self.inputs.out_type): if opt == "hits_file": suffix = '_hits.' + self.filemap[self.inputs.out_type] else: suffix = '.' + self.filemap[self.inputs.out_type] elif opt == "hits_file": suffix = "_hits.mgz" else: suffix = '.mgz' outfile = fname_presuffix(self.inputs.source_file, newpath=os.getcwd(), prefix=self.inputs.hemi + ".", suffix=suffix, use_ext=False) return outfile def _list_outputs(self): outputs = self._outputs().get() outputs["out_file"] = self._get_outfilename() hitsfile = self.inputs.hits_file if isdefined(hitsfile): outputs["hits_file"] = hitsfile if isinstance(hitsfile, bool): hitsfile = self._get_outfilename("hits_file") voxfile = self.inputs.vox_file if isdefined(voxfile): if isinstance(voxfile, bool): voxfile = fname_presuffix(self.inputs.source_file, newpath=os.getcwd(), prefix=self.inputs.hemi + ".", suffix="_vox.txt", use_ext=False) outputs["vox_file"] = voxfile return outputs def _gen_filename(self, name): if name == "out_file": return self._list_outputs()[name] return None class SurfaceSmoothInputSpec(FSTraitedSpec): in_file = File(mandatory=True, argstr="--sval %s", desc="source surface file") subject_id = traits.String(mandatory=True, argstr="--s %s", desc="subject id of surface file") hemi = traits.Enum("lh", "rh", argstr="--hemi %s", mandatory=True, desc="hemisphere to operate on") fwhm = traits.Float(argstr="--fwhm %.4f", xor=["smooth_iters"], desc="effective FWHM of the smoothing process") smooth_iters = traits.Int(argstr="--smooth %d", xor=["fwhm"], desc="iterations of the smoothing process") cortex = traits.Bool(True, argstr="--cortex", usedefault=True, desc="only smooth within $hemi.cortex.label") reshape = traits.Bool(argstr="--reshape", desc="reshape surface vector to fit in non-mgh format") out_file = File(argstr="--tval %s", genfile=True, desc="surface file to write") class SurfaceSmoothOutputSpec(TraitedSpec): out_file = File(exists=True, desc="smoothed surface file") class SurfaceSmooth(FSCommand): """Smooth a surface image with mri_surf2surf. The surface is smoothed by an interative process of averaging the value at each vertex with those of its adjacent neighbors. You may supply either the number of iterations to run or a desired effective FWHM of the smoothing process. If the latter, the underlying program will calculate the correct number of iterations internally. .. seealso:: SmoothTessellation() Interface For smoothing a tessellated surface (e.g. in gifti or .stl) Examples -------- >>> import nipype.interfaces.freesurfer as fs >>> smoother = fs.SurfaceSmooth() >>> smoother.inputs.in_file = "lh.cope1.mgz" >>> smoother.inputs.subject_id = "subj_1" >>> smoother.inputs.hemi = "lh" >>> smoother.inputs.fwhm = 5 >>> smoother.run() # doctest: +SKIP """ _cmd = "mri_surf2surf" input_spec = SurfaceSmoothInputSpec output_spec = SurfaceSmoothOutputSpec def _list_outputs(self): outputs = self._outputs().get() outputs["out_file"] = self.inputs.out_file if not isdefined(outputs["out_file"]): in_file = self.inputs.in_file if isdefined(self.inputs.fwhm): kernel = self.inputs.fwhm else: kernel = self.inputs.smooth_iters outputs["out_file"] = fname_presuffix(in_file, suffix="_smooth%d" % kernel, newpath=os.getcwd()) return outputs def _gen_filename(self, name): if name == "out_file": return self._list_outputs()[name] return None class SurfaceTransformInputSpec(FSTraitedSpec): source_file = File(exists=True, mandatory=True, argstr="--sval %s", xor=['source_annot_file'], help="surface file with source values") source_annot_file = File(exists=True, mandatory=True, argstr="--sval-annot %s", xor=['source_file'], help="surface annotation file") source_subject = traits.String(mandatory=True, argstr="--srcsubject %s", help="subject id for source surface") hemi = traits.Enum("lh", "rh", argstr="--hemi %s", mandatory=True, desc="hemisphere to transform") target_subject = traits.String(mandatory=True, argstr="--trgsubject %s", help="subject id of target surface") target_ico_order = traits.Enum(1, 2, 3, 4, 5, 6, 7, argstr="--trgicoorder %d", help="order of the icosahedron if target_subject is 'ico'") source_type = traits.Enum(filetypes, argstr='--sfmt %s', requires=['source_file'], help="source file format") target_type = traits.Enum(filetypes, argstr='--tfmt %s', help="output format") reshape = traits.Bool(argstr="--reshape", help="reshape output surface to conform with Nifti") reshape_factor = traits.Int(argstr="--reshape-factor", help="number of slices in reshaped image") out_file = File(argstr="--tval %s", genfile=True, desc="surface file to write") class SurfaceTransformOutputSpec(TraitedSpec): out_file = File(exists=True, desc="transformed surface file") class SurfaceTransform(FSCommand): """Transform a surface file from one subject to another via a spherical registration. Both the source and target subject must reside in your Subjects Directory, and they must have been processed with recon-all, unless you are transforming to one of the icosahedron meshes. Examples -------- >>> from nipype.interfaces.freesurfer import SurfaceTransform >>> sxfm = SurfaceTransform() >>> sxfm.inputs.source_file = "lh.cope1.nii.gz" >>> sxfm.inputs.source_subject = "my_subject" >>> sxfm.inputs.target_subject = "fsaverage" >>> sxfm.inputs.hemi = "lh" >>> sxfm.run() # doctest: +SKIP """ _cmd = "mri_surf2surf" input_spec = SurfaceTransformInputSpec output_spec = SurfaceTransformOutputSpec def _list_outputs(self): outputs = self._outputs().get() outputs["out_file"] = self.inputs.out_file if not isdefined(outputs["out_file"]): source = self.inputs.source_file # Some recon-all files don't have a proper extension (e.g. "lh.thickness") # so we have to account for that here bad_extensions = [".%s" % e for e in ["area", "mid", "pial", "avg_curv", "curv", "inflated", "jacobian_white", "orig", "nofix", "smoothwm", "crv", "sphere", "sulc", "thickness", "volume", "white"]] use_ext = True if split_filename(source)[2] in bad_extensions: source = source + ".stripme" use_ext = False ext = "" if isdefined(self.inputs.target_type): ext = "." + filemap[self.inputs.target_type] use_ext = False outputs["out_file"] = fname_presuffix(source, suffix=".%s%s" % (self.inputs.target_subject, ext), newpath=os.getcwd(), use_ext=use_ext) else: outputs["out_file"] = os.path.abspath(self.inputs.out_file) return outputs def _gen_filename(self, name): if name == "out_file": return self._list_outputs()[name] return None class ApplyMaskInputSpec(FSTraitedSpec): in_file = File(exists=True, mandatory=True, position=-3, argstr="%s", desc="input image (will be masked)") mask_file = File(exists=True, mandatory=True, position=-2, argstr="%s", desc="image defining mask space") out_file = File(genfile=True, position=-1, argstr="%s", desc="final image to write") xfm_file = File(exists=True, argstr="-xform %s", desc="LTA-format transformation matrix to align mask with input") invert_xfm = traits.Bool(argstr="-invert", desc="invert transformation") xfm_source = File(exists=True, argstr="-lta_src %s", desc="image defining transform source space") xfm_target = File(exists=True, argstr="-lta_dst %s", desc="image defining transform target space") use_abs = traits.Bool(argstr="-abs", desc="take absolute value of mask before applying") mask_thresh = traits.Float(argstr="-T %.4f", desc="threshold mask before applying") class ApplyMaskOutputSpec(TraitedSpec): out_file = File(exists=True, desc="masked image") class ApplyMask(FSCommand): """Use Freesurfer's mri_mask to apply a mask to an image. The mask file need not be binarized; it can be thresholded above a given value before application. It can also optionally be transformed into input space with an LTA matrix. """ _cmd = "mri_mask" input_spec = ApplyMaskInputSpec output_spec = ApplyMaskOutputSpec def _list_outputs(self): outputs = self._outputs().get() outputs["out_file"] = self.inputs.out_file if not isdefined(outputs["out_file"]): outputs["out_file"] = fname_presuffix(self.inputs.in_file, suffix="_masked", newpath=os.getcwd(), use_ext=True) return outputs def _gen_filename(self, name): if name == "out_file": return self._list_outputs()[name] return None class SurfaceSnapshotsInputSpec(FSTraitedSpec): subject_id = traits.String(position=1, argstr="%s", mandatory=True, desc="subject to visualize") hemi = traits.Enum("lh", "rh", position=2, argstr="%s", mandatory=True, desc="hemisphere to visualize") surface = traits.String(position=3, argstr="%s", mandatory=True, desc="surface to visualize") show_curv = traits.Bool(argstr="-curv", desc="show curvature", xor=["show_gray_curv"]) show_gray_curv = traits.Bool(argstr="-gray", desc="show curvature in gray", xor=["show_curv"]) overlay = File(exists=True, argstr="-overlay %s", desc="load an overlay volume/surface", requires=["overlay_range"]) reg_xors = ["overlay_reg", "identity_reg", "mni152_reg"] overlay_reg = traits.File(exists=True, argstr="-overlay-reg %s", xor=reg_xors, desc="registration matrix file to register overlay to surface") identity_reg = traits.Bool(argstr="-overlay-reg-identity", xor=reg_xors, desc="use the identity matrix to register the overlay to the surface") mni152_reg = traits.Bool(argstr="-mni152reg", xor=reg_xors, desc="use to display a volume in MNI152 space on the average subject") overlay_range = traits.Either(traits.Float, traits.Tuple(traits.Float, traits.Float), traits.Tuple(traits.Float, traits.Float, traits.Float), desc="overlay range--either min, (min, max) or (min, mid, max)", argstr="%s") overlay_range_offset = traits.Float(argstr="-foffset %.3f", desc="overlay range will be symettric around offset value") truncate_overlay = traits.Bool(argstr="-truncphaseflag 1", desc="truncate the overlay display") reverse_overlay = traits.Bool(argstr="-revphaseflag 1", desc="reverse the overlay display") invert_overlay = traits.Bool(argstr="-invphaseflag 1", desc="invert the overlay display") demean_overlay = traits.Bool(argstr="-zm", desc="remove mean from overlay") annot_file = File(exists=True, argstr="-annotation %s", xor=["annot_name"], desc="path to annotation file to display") annot_name = traits.String(argstr="-annotation %s", xor=["annot_file"], desc="name of annotation to display (must be in $subject/label directory") label_file = File(exists=True, argstr="-label %s", xor=["label_name"], desc="path to label file to display") label_name = traits.String(argstr="-label %s", xor=["label_file"], desc="name of label to display (must be in $subject/label directory") colortable = File(exists=True, argstr="-colortable %s", desc="load colortable file") label_under = traits.Bool(argstr="-labels-under", desc="draw label/annotation under overlay") label_outline = traits.Bool(argstr="-label-outline", desc="draw label/annotation as outline") patch_file = File(exists=True, argstr="-patch %s", desc="load a patch") orig_suffix = traits.String(argstr="-orig %s", desc="set the orig surface suffix string") sphere_suffix = traits.String(argstr="-sphere %s", desc="set the sphere.reg suffix string") show_color_scale = traits.Bool(argstr="-colscalebarflag 1", desc="display the color scale bar") show_color_text = traits.Bool(argstr="-colscaletext 1", desc="display text in the color scale bar") six_images = traits.Bool(desc="also take anterior and posterior snapshots") screenshot_stem = traits.String(desc="stem to use for screenshot file names") stem_template_args = traits.List(traits.String, requires=["screenshot_stem"], desc="input names to use as arguments for a string-formated stem template") tcl_script = File(exists=True, argstr="%s", genfile=True, desc="override default screenshot script") class SurfaceSnapshotsOutputSpec(TraitedSpec): snapshots = OutputMultiPath(File(exists=True), desc="tiff images of the surface from different perspectives") class SurfaceSnapshots(FSCommand): """Use Tksurfer to save pictures of the cortical surface. By default, this takes snapshots of the lateral, medial, ventral, and dorsal surfaces. See the ``six_images`` option to add the anterior and posterior surfaces. You may also supply your own tcl script (see the Freesurfer wiki for information on scripting tksurfer). The screenshot stem is set as the environment variable "_SNAPSHOT_STEM", which you can use in your own scripts. Node that this interface will not run if you do not have graphics enabled on your system. Examples -------- >>> import nipype.interfaces.freesurfer as fs >>> shots = fs.SurfaceSnapshots(subject_id="fsaverage", hemi="lh", surface="pial") >>> shots.inputs.overlay = "zstat1.nii.gz" >>> shots.inputs.overlay_range = (2.3, 6) >>> shots.inputs.overlay_reg = "register.dat" >>> res = shots.run() # doctest: +SKIP """ _cmd = "tksurfer" input_spec = SurfaceSnapshotsInputSpec output_spec = SurfaceSnapshotsOutputSpec def _format_arg(self, name, spec, value): if name == "tcl_script": if not isdefined(value): return "-tcl snapshots.tcl" else: return "-tcl %s" % value elif name == "overlay_range": if isinstance(value, float): return "-fthresh %.3f" % value else: if len(value) == 2: return "-fminmax %.3f %.3f" % value else: return "-fminmax %.3f %.3f -fmid %.3f" % (value[0], value[2], value[1]) elif name == "annot_name" and isdefined(value): # Matching annot by name needs to strip the leading hemi and trailing # extension strings if value.endswith(".annot"): value = value[:-6] if re.match("%s[\.\-_]" % self.inputs.hemi, value[:3]): value = value[3:] return "-annotation %s" % value return super(SurfaceSnapshots, self)._format_arg(name, spec, value) def _run_interface(self, runtime): if not isdefined(self.inputs.screenshot_stem): stem = "%s_%s_%s" % ( self.inputs.subject_id, self.inputs.hemi, self.inputs.surface) else: stem = self.inputs.screenshot_stem stem_args = self.inputs.stem_template_args if isdefined(stem_args): args = tuple([getattr(self.inputs, arg) for arg in stem_args]) stem = stem % args # Check if the DISPLAY variable is set -- should avoid crashes (might not?) if not "DISPLAY" in os.environ: raise RuntimeError("Graphics are not enabled -- cannot run tksurfer") runtime.environ["_SNAPSHOT_STEM"] = stem self._write_tcl_script() runtime = super(SurfaceSnapshots, self)._run_interface(runtime) # If a display window can't be opened, this will crash on # aggregate_outputs. Let's try to parse stderr and raise a # better exception here if that happened. errors = ["surfer: failed, no suitable display found", "Fatal Error in tksurfer.bin: could not open display"] for err in errors: if err in runtime.stderr: self.raise_exception(runtime) # Tksurfer always (or at least always when you run a tcl script) # exits with a nonzero returncode. We have to force it to 0 here. runtime.returncode = 0 return runtime def _write_tcl_script(self): fid = open("snapshots.tcl", "w") script = ["save_tiff $env(_SNAPSHOT_STEM)-lat.tif", "make_lateral_view", "rotate_brain_y 180", "redraw", "save_tiff $env(_SNAPSHOT_STEM)-med.tif", "make_lateral_view", "rotate_brain_x 90", "redraw", "save_tiff $env(_SNAPSHOT_STEM)-ven.tif", "make_lateral_view", "rotate_brain_x -90", "redraw", "save_tiff $env(_SNAPSHOT_STEM)-dor.tif"] if isdefined(self.inputs.six_images) and self.inputs.six_images: script.extend(["make_lateral_view", "rotate_brain_y 90", "redraw", "save_tiff $env(_SNAPSHOT_STEM)-pos.tif", "make_lateral_view", "rotate_brain_y -90", "redraw", "save_tiff $env(_SNAPSHOT_STEM)-ant.tif"]) script.append("exit") fid.write("\n".join(script)) fid.close() def _list_outputs(self): outputs = self._outputs().get() if not isdefined(self.inputs.screenshot_stem): stem = "%s_%s_%s" % (self.inputs.subject_id, self.inputs.hemi, self.inputs.surface) else: stem = self.inputs.screenshot_stem stem_args = self.inputs.stem_template_args if isdefined(stem_args): args = tuple([getattr(self.inputs, arg) for arg in stem_args]) stem = stem % args snapshots = ["%s-lat.tif", "%s-med.tif", "%s-dor.tif", "%s-ven.tif"] if self.inputs.six_images: snapshots.extend(["%s-pos.tif", "%s-ant.tif"]) snapshots = [self._gen_fname(f % stem, suffix="") for f in snapshots] outputs["snapshots"] = snapshots return outputs def _gen_filename(self, name): if name == "tcl_script": return "snapshots.tcl" return None class ImageInfoInputSpec(FSTraitedSpec): in_file = File(exists=True, position=1, argstr="%s", desc="image to query") class ImageInfoOutputSpec(TraitedSpec): info = traits.Any(desc="output of mri_info") out_file = File(exists=True, desc="text file with image information") data_type = traits.String(desc="image data type") file_format = traits.String(desc="file format") TE = traits.String(desc="echo time (msec)") TR = traits.String(desc="repetition time(msec)") TI = traits.String(desc="inversion time (msec)") dimensions = traits.Tuple(desc="image dimensions (voxels)") vox_sizes = traits.Tuple(desc="voxel sizes (mm)") orientation = traits.String(desc="image orientation") ph_enc_dir = traits.String(desc="phase encode direction") class ImageInfo(FSCommand): _cmd = "mri_info" input_spec = ImageInfoInputSpec output_spec = ImageInfoOutputSpec def info_regexp(self, info, field, delim="\n"): m = re.search("%s\s*:\s+(.+?)%s" % (field, delim), info) if m: return m.group(1) else: return None def aggregate_outputs(self, runtime=None, needed_outputs=None): outputs = self._outputs() info = runtime.stdout outputs.info = info # Pulse sequence parameters for field in ["TE", "TR", "TI"]: fieldval = self.info_regexp(info, field, ", ") if fieldval.endswith(" msec"): fieldval = fieldval[:-5] setattr(outputs, field, fieldval) # Voxel info vox = self.info_regexp(info, "voxel sizes") vox = tuple(vox.split(", ")) outputs.vox_sizes = vox dim = self.info_regexp(info, "dimensions") dim = tuple([int(d) for d in dim.split(" x ")]) outputs.dimensions = dim outputs.orientation = self.info_regexp(info, "Orientation") outputs.ph_enc_dir = self.info_regexp(info, "PhEncDir") # File format and datatype are both keyed by "type" ftype, dtype = re.findall("%s\s*:\s+(.+?)\n" % "type", info) outputs.file_format = ftype outputs.data_type = dtype return outputs class MRIsConvertInputSpec(FSTraitedSpec): """ Uses Freesurfer's mris_convert to convert surface files to various formats """ annot_file = File(exists=True, argstr="--annot %s", desc="input is annotation or gifti label data") parcstats_file = File(exists=True, argstr="--parcstats %s", desc="infile is name of text file containing label/val pairs") label_file = File(exists=True, argstr="--label %s", desc="infile is .label file, label is name of this label") scalarcurv_file = File(exists=True, argstr="-c %s", desc="input is scalar curv overlay file (must still specify surface)") functional_file = File(exists=True, argstr="-f %s", desc="input is functional time-series or other multi-frame data (must specify surface)") labelstats_outfile = File(exists=False, argstr="--labelstats %s", desc="outfile is name of gifti file to which label stats will be written") patch = traits.Bool(argstr="-p", desc="input is a patch, not a full surface") rescale = traits.Bool(argstr="-r", desc="rescale vertex xyz so total area is same as group average") normal = traits.Bool(argstr="-n", desc="output is an ascii file where vertex data") xyz_ascii = traits.Bool(argstr="-a", desc="Print only surface xyz to ascii file") vertex = traits.Bool(argstr="-v", desc="Writes out neighbors of a vertex in each row") scale = traits.Float(argstr="-s %.3f", desc="scale vertex xyz by scale") dataarray_num = traits.Int(argstr="--da_num %d", desc="if input is gifti, 'num' specifies which data array to use") talairachxfm_subjid = traits.String(argstr="-t %s", desc="apply talairach xfm of subject to vertex xyz") origname = traits.String(argstr="-o %s", desc="read orig positions") in_file = File(exists=True, mandatory=True, position=-2, argstr='%s', desc='File to read/convert') out_file = File(argstr='./%s', position=-1, genfile=True, desc='output filename or True to generate one') #Not really sure why the ./ is necessary but the module fails without it out_datatype = traits.Enum("ico", "tri", "stl", "vtk", "gii", "mgh", "mgz", mandatory=True, desc="These file formats are supported: ASCII: .asc" \ "ICO: .ico, .tri GEO: .geo STL: .stl VTK: .vtk GIFTI: .gii MGH surface-encoded 'volume': .mgh, .mgz") class MRIsConvertOutputSpec(TraitedSpec): """ Uses Freesurfer's mris_convert to convert surface files to various formats """ converted = File(exists=True, desc='converted output surface') class MRIsConvert(FSCommand): """ Uses Freesurfer's mris_convert to convert surface files to various formats Example ------- >>> import nipype.interfaces.freesurfer as fs >>> mris = fs.MRIsConvert() >>> mris.inputs.in_file = 'lh.pial' >>> mris.inputs.out_datatype = 'gii' >>> mris.run() # doctest: +SKIP """ _cmd = 'mris_convert' input_spec = MRIsConvertInputSpec output_spec = MRIsConvertOutputSpec def _list_outputs(self): outputs = self.output_spec().get() outputs["converted"] = os.path.abspath(self._gen_outfilename()) return outputs def _gen_filename(self, name): if name is 'out_file': return self._gen_outfilename() else: return None def _gen_outfilename(self): if isdefined(self.inputs.annot_file): _, name, ext = split_filename(self.inputs.annot_file) elif isdefined(self.inputs.parcstats_file): _, name, ext = split_filename(self.inputs.parcstats_file) elif isdefined(self.inputs.label_file): _, name, ext = split_filename(self.inputs.label_file) elif isdefined(self.inputs.scalarcurv_file): _, name, ext = split_filename(self.inputs.scalarcurv_file) elif isdefined(self.inputs.functional_file): _, name, ext = split_filename(self.inputs.functional_file) elif isdefined(self.inputs.in_file): _, name, ext = split_filename(self.inputs.in_file) return name + ext + "_converted." + self.inputs.out_datatype class MRITessellateInputSpec(FSTraitedSpec): """ Uses Freesurfer's mri_tessellate to create surfaces by tessellating a given input volume """ in_file = File(exists=True, mandatory=True, position=-3, argstr='%s', desc='Input volume to tesselate voxels from.') label_value = traits.Int(position=-2, argstr='%d', mandatory=True, desc='Label value which to tesselate from the input volume. (integer, if input is "filled.mgz" volume, 127 is rh, 255 is lh)') out_file = File(argstr='./%s', position=-1, genfile=True, desc='output filename or True to generate one') tesselate_all_voxels = traits.Bool(argstr='-a', desc='Tessellate the surface of all voxels with different labels') use_real_RAS_coordinates = traits.Bool(argstr='-n', desc='Saves surface with real RAS coordinates where c_(r,a,s) != 0') class MRITessellateOutputSpec(TraitedSpec): """ Uses Freesurfer's mri_tessellate to create surfaces by tessellating a given input volume """ surface = File(exists=True, desc='binary surface of the tessellation ') class MRITessellate(FSCommand): """ Uses Freesurfer's mri_tessellate to create surfaces by tessellating a given input volume Example ------- >>> import nipype.interfaces.freesurfer as fs >>> tess = fs.MRITessellate() >>> tess.inputs.in_file = 'aseg.mgz' >>> tess.inputs.label_value = 17 >>> tess.inputs.out_file = 'lh.hippocampus' >>> tess.run() # doctest: +SKIP """ _cmd = 'mri_tessellate' input_spec = MRITessellateInputSpec output_spec = MRITessellateOutputSpec def _list_outputs(self): outputs = self.output_spec().get() outputs['surface'] = os.path.abspath(self._gen_outfilename()) return outputs def _gen_filename(self, name): if name is 'out_file': return self._gen_outfilename() else: return None def _gen_outfilename(self): if isdefined(self.inputs.out_file): return self.inputs.out_file else: _, name, ext = split_filename(self.inputs.in_file) return name + ext + '_' + str(self.inputs.label_value) class MRIMarchingCubesInputSpec(FSTraitedSpec): """ Uses Freesurfer's mri_mc to create surfaces by tessellating a given input volume """ in_file = File(exists=True, mandatory=True, position=1, argstr='%s', desc='Input volume to tesselate voxels from.') label_value = traits.Int(position=2, argstr='%d', mandatory=True, desc='Label value which to tesselate from the input volume. (integer, if input is "filled.mgz" volume, 127 is rh, 255 is lh)') connectivity_value = traits.Int(1, position=-1, argstr='%d', usedefault=True, desc='Alter the marching cubes connectivity: 1=6+,2=18,3=6,4=26 (default=1)') out_file = File(argstr='./%s', position=-2, genfile=True, desc='output filename or True to generate one') class MRIMarchingCubesOutputSpec(TraitedSpec): """ Uses Freesurfer's mri_mc to create surfaces by tessellating a given input volume """ surface = File(exists=True, desc='binary surface of the tessellation ') class MRIMarchingCubes(FSCommand): """ Uses Freesurfer's mri_mc to create surfaces by tessellating a given input volume Example ------- >>> import nipype.interfaces.freesurfer as fs >>> mc = fs.MRIMarchingCubes() >>> mc.inputs.in_file = 'aseg.mgz' >>> mc.inputs.label_value = 17 >>> mc.inputs.out_file = 'lh.hippocampus' >>> mc.run() # doctest: +SKIP """ _cmd = 'mri_mc' input_spec = MRIMarchingCubesInputSpec output_spec = MRIMarchingCubesOutputSpec def _list_outputs(self): outputs = self.output_spec().get() outputs['surface'] = self._gen_outfilename() return outputs def _gen_filename(self, name): if name is 'out_file': return self._gen_outfilename() else: return None def _gen_outfilename(self): if isdefined(self.inputs.out_file): return os.path.abspath(self.inputs.out_file) else: _, name, ext = split_filename(self.inputs.in_file) return os.path.abspath(name + ext + '_' + str(self.inputs.label_value)) class SmoothTessellationInputSpec(FSTraitedSpec): """ This program smooths the tessellation of a surface using 'mris_smooth' """ in_file = File(exists=True, mandatory=True, argstr='%s', position=1, desc='Input volume to tesselate voxels from.') curvature_averaging_iterations = traits.Int(10, usedefault=True, argstr='-a %d', position=-1, desc='Number of curvature averaging iterations (default=10)') smoothing_iterations = traits.Int(10, usedefault=True, argstr='-n %d', position=-2, desc='Number of smoothing iterations (default=10)') snapshot_writing_iterations = traits.Int(argstr='-w %d', desc='Write snapshot every "n" iterations') use_gaussian_curvature_smoothing = traits.Bool(argstr='-g', position=3, desc='Use Gaussian curvature smoothing') gaussian_curvature_norm_steps = traits.Int(argstr='%d ', position=4, desc='Use Gaussian curvature smoothing') gaussian_curvature_smoothing_steps = traits.Int(argstr='%d', position=5, desc='Use Gaussian curvature smoothing') disable_estimates = traits.Bool(argstr='-nw', desc='Disables the writing of curvature and area estimates') normalize_area = traits.Bool(argstr='-area', desc='Normalizes the area after smoothing') use_momentum = traits.Bool(argstr='-m', desc='Uses momentum') out_file = File(argstr='./%s', position=2, genfile=True, desc='output filename or True to generate one') out_curvature_file = File(argstr='-c ./%s', desc='Write curvature to ?h.curvname (default "curv")') out_area_file = File(argstr='-b ./%s', desc='Write area to ?h.areaname (default "area")') class SmoothTessellationOutputSpec(TraitedSpec): """ This program smooths the tessellation of a surface using 'mris_smooth' """ surface = File(exists=True, desc='Smoothed surface file ') class SmoothTessellation(FSCommand): """ This program smooths the tessellation of a surface using 'mris_smooth' .. seealso:: SurfaceSmooth() Interface For smoothing a scalar field along a surface manifold Example ------- >>> import nipype.interfaces.freesurfer as fs >>> smooth = fs.SmoothTessellation() >>> smooth.inputs.in_file = 'lh.hippocampus.stl' >>> smooth.run() # doctest: +SKIP """ _cmd = 'mris_smooth' input_spec = SmoothTessellationInputSpec output_spec = SmoothTessellationOutputSpec def _list_outputs(self): outputs = self.output_spec().get() outputs['surface'] = self._gen_outfilename() return outputs def _gen_filename(self, name): if name is 'out_file': return self._gen_outfilename() else: return None def _gen_outfilename(self): if isdefined(self.inputs.out_file): return os.path.abspath(self.inputs.out_file) else: _, name, ext = split_filename(self.inputs.in_file) return os.path.abspath(name + '_smoothed' + ext) class MakeAverageSubjectInputSpec(FSTraitedSpec): subjects_ids = traits.List(traits.Str(), argstr='--subjects %s', desc='freesurfer subjects ids to average', mandatory=True, sep=' ') out_name = File('average', argstr='--out %s', desc='name for the average subject', usedefault=True) class MakeAverageSubjectOutputSpec(TraitedSpec): average_subject_name = traits.Str(desc='Output registration file') class MakeAverageSubject(FSCommand): """Make an average freesurfer subject Examples -------- >>> from nipype.interfaces.freesurfer import MakeAverageSubject >>> avg = MakeAverageSubject(subjects_ids=['s1', 's2']) >>> avg.cmdline 'make_average_subject --out average --subjects s1 s2' """ _cmd = 'make_average_subject' input_spec = MakeAverageSubjectInputSpec output_spec = MakeAverageSubjectOutputSpec def _list_outputs(self): outputs = self.output_spec().get() outputs['average_subject_name'] = self.inputs.out_name return outputs
christianbrodbeck/nipype
nipype/interfaces/freesurfer/utils.py
Python
bsd-3-clause
44,609
[ "Gaussian", "VTK" ]
49f9b27397b7a10b051d405ea4d38d50a9a157275bbac4089c60cfd4c755602b
# coding: utf-8 from __future__ import unicode_literals import re from .common import InfoExtractor from ..utils import ( ExtractorError, unsmuggle_url, ) from ..compat import ( compat_parse_qs, compat_urlparse, ) class SenateISVPIE(InfoExtractor): _COMM_MAP = [ ["ag", "76440", "http://ag-f.akamaihd.net"], ["aging", "76442", "http://aging-f.akamaihd.net"], ["approps", "76441", "http://approps-f.akamaihd.net"], ["armed", "76445", "http://armed-f.akamaihd.net"], ["banking", "76446", "http://banking-f.akamaihd.net"], ["budget", "76447", "http://budget-f.akamaihd.net"], ["cecc", "76486", "http://srs-f.akamaihd.net"], ["commerce", "80177", "http://commerce1-f.akamaihd.net"], ["csce", "75229", "http://srs-f.akamaihd.net"], ["dpc", "76590", "http://dpc-f.akamaihd.net"], ["energy", "76448", "http://energy-f.akamaihd.net"], ["epw", "76478", "http://epw-f.akamaihd.net"], ["ethics", "76449", "http://ethics-f.akamaihd.net"], ["finance", "76450", "http://finance-f.akamaihd.net"], ["foreign", "76451", "http://foreign-f.akamaihd.net"], ["govtaff", "76453", "http://govtaff-f.akamaihd.net"], ["help", "76452", "http://help-f.akamaihd.net"], ["indian", "76455", "http://indian-f.akamaihd.net"], ["intel", "76456", "http://intel-f.akamaihd.net"], ["intlnarc", "76457", "http://intlnarc-f.akamaihd.net"], ["jccic", "85180", "http://jccic-f.akamaihd.net"], ["jec", "76458", "http://jec-f.akamaihd.net"], ["judiciary", "76459", "http://judiciary-f.akamaihd.net"], ["rpc", "76591", "http://rpc-f.akamaihd.net"], ["rules", "76460", "http://rules-f.akamaihd.net"], ["saa", "76489", "http://srs-f.akamaihd.net"], ["smbiz", "76461", "http://smbiz-f.akamaihd.net"], ["srs", "75229", "http://srs-f.akamaihd.net"], ["uscc", "76487", "http://srs-f.akamaihd.net"], ["vetaff", "76462", "http://vetaff-f.akamaihd.net"], ["arch", "", "http://ussenate-f.akamaihd.net/"] ] _IE_NAME = 'senate.gov' _VALID_URL = r'http://www\.senate\.gov/isvp/?\?(?P<qs>.+)' _TESTS = [{ 'url': 'http://www.senate.gov/isvp/?comm=judiciary&type=live&stt=&filename=judiciary031715&auto_play=false&wmode=transparent&poster=http%3A%2F%2Fwww.judiciary.senate.gov%2Fthemes%2Fjudiciary%2Fimages%2Fvideo-poster-flash-fit.png', 'info_dict': { 'id': 'judiciary031715', 'ext': 'mp4', 'title': 'Integrated Senate Video Player', 'thumbnail': 're:^https?://.*\.(?:jpg|png)$', }, 'params': { # m3u8 download 'skip_download': True, }, }, { 'url': 'http://www.senate.gov/isvp/?type=live&comm=commerce&filename=commerce011514.mp4&auto_play=false', 'info_dict': { 'id': 'commerce011514', 'ext': 'mp4', 'title': 'Integrated Senate Video Player' }, 'params': { # m3u8 download 'skip_download': True, }, }, { 'url': 'http://www.senate.gov/isvp/?type=arch&comm=intel&filename=intel090613&hc_location=ufi', # checksum differs each time 'info_dict': { 'id': 'intel090613', 'ext': 'mp4', 'title': 'Integrated Senate Video Player' } }, { # From http://www.c-span.org/video/?96791-1 'url': 'http://www.senate.gov/isvp?type=live&comm=banking&filename=banking012715', 'only_matching': True, }] @staticmethod def _search_iframe_url(webpage): mobj = re.search( r"<iframe[^>]+src=['\"](?P<url>http://www\.senate\.gov/isvp/?\?[^'\"]+)['\"]", webpage) if mobj: return mobj.group('url') def _get_info_for_comm(self, committee): for entry in self._COMM_MAP: if entry[0] == committee: return entry[1:] def _real_extract(self, url): url, smuggled_data = unsmuggle_url(url, {}) qs = compat_parse_qs(re.match(self._VALID_URL, url).group('qs')) if not qs.get('filename') or not qs.get('type') or not qs.get('comm'): raise ExtractorError('Invalid URL', expected=True) video_id = re.sub(r'.mp4$', '', qs['filename'][0]) webpage = self._download_webpage(url, video_id) if smuggled_data.get('force_title'): title = smuggled_data['force_title'] else: title = self._html_search_regex(r'<title>([^<]+)</title>', webpage, video_id) poster = qs.get('poster') thumbnail = poster[0] if poster else None video_type = qs['type'][0] committee = video_type if video_type == 'arch' else qs['comm'][0] stream_num, domain = self._get_info_for_comm(committee) formats = [] if video_type == 'arch': filename = video_id if '.' in video_id else video_id + '.mp4' formats = [{ # All parameters in the query string are necessary to prevent a 403 error 'url': compat_urlparse.urljoin(domain, filename) + '?v=3.1.0&fp=&r=&g=', }] else: hdcore_sign = 'hdcore=3.1.0' url_params = (domain, video_id, stream_num) f4m_url = '%s/z/%s_1@%s/manifest.f4m?' % url_params + hdcore_sign m3u8_url = '%s/i/%s_1@%s/master.m3u8' % url_params for entry in self._extract_f4m_formats(f4m_url, video_id, f4m_id='f4m'): # URLs without the extra param induce an 404 error entry.update({'extra_param_to_segment_url': hdcore_sign}) formats.append(entry) for entry in self._extract_m3u8_formats(m3u8_url, video_id, ext='mp4', m3u8_id='m3u8'): mobj = re.search(r'(?P<tag>(?:-p|-b)).m3u8', entry['url']) if mobj: entry['format_id'] += mobj.group('tag') formats.append(entry) self._sort_formats(formats) return { 'id': video_id, 'title': title, 'formats': formats, 'thumbnail': thumbnail, }
lzambella/Qyoutube-dl
youtube_dl/extractor/senateisvp.py
Python
gpl-3.0
6,265
[ "EPW" ]
e3793a0fba7b8b31b08e1f9fca0dcdb3a82bcdfcfeec998e0c5483f5292abc23
""" This module gathers tree-based methods, including decision, regression and randomized trees. Single and multi-output problems are both handled. """ # Authors: Gilles Louppe <[email protected]> # Peter Prettenhofer <[email protected]> # Brian Holt <[email protected]> # Noel Dawe <[email protected]> # Satrajit Gosh <[email protected]> # Joly Arnaud <[email protected]> # Fares Hedayati <[email protected]> # Nelson Liu <[email protected]> # # License: BSD 3 clause from __future__ import division import numbers import warnings from abc import ABCMeta from abc import abstractmethod from math import ceil import numpy as np from scipy.sparse import issparse from ..base import BaseEstimator from ..base import ClassifierMixin from ..base import RegressorMixin from ..externals import six from ..utils import check_array from ..utils import check_random_state from ..utils import compute_sample_weight from ..utils.multiclass import check_classification_targets from ..utils.validation import check_is_fitted from ._criterion import Criterion from ._splitter import Splitter from ._tree import DepthFirstTreeBuilder from ._tree import BestFirstTreeBuilder from ._tree import Tree from . import _tree, _splitter, _criterion __all__ = ["DecisionTreeClassifier", "DecisionTreeRegressor", "ExtraTreeClassifier", "ExtraTreeRegressor"] # ============================================================================= # Types and constants # ============================================================================= DTYPE = _tree.DTYPE DOUBLE = _tree.DOUBLE CRITERIA_CLF = {"gini": _criterion.Gini, "entropy": _criterion.Entropy} CRITERIA_REG = {"mse": _criterion.MSE, "friedman_mse": _criterion.FriedmanMSE, "mae": _criterion.MAE} DENSE_SPLITTERS = {"best": _splitter.BestSplitter, "random": _splitter.RandomSplitter} SPARSE_SPLITTERS = {"best": _splitter.BestSparseSplitter, "random": _splitter.RandomSparseSplitter} # ============================================================================= # Base decision tree # ============================================================================= class BaseDecisionTree(six.with_metaclass(ABCMeta, BaseEstimator)): """Base class for decision trees. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, criterion, splitter, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_features, max_leaf_nodes, random_state, min_impurity_decrease, min_impurity_split, class_weight=None, presort=False): self.criterion = criterion self.splitter = splitter self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.random_state = random_state self.max_leaf_nodes = max_leaf_nodes self.min_impurity_decrease = min_impurity_decrease self.min_impurity_split = min_impurity_split self.class_weight = class_weight self.presort = presort def fit(self, X, y, sample_weight=None, check_input=True, X_idx_sorted=None): random_state = check_random_state(self.random_state) if check_input: X = check_array(X, dtype=DTYPE, accept_sparse="csc") y = check_array(y, ensure_2d=False, dtype=None) if issparse(X): X.sort_indices() if X.indices.dtype != np.intc or X.indptr.dtype != np.intc: raise ValueError("No support for np.int64 index based " "sparse matrices") # Determine output settings n_samples, self.n_features_ = X.shape is_classification = isinstance(self, ClassifierMixin) y = np.atleast_1d(y) expanded_class_weight = None if y.ndim == 1: # reshape is necessary to preserve the data contiguity against vs # [:, np.newaxis] that does not. y = np.reshape(y, (-1, 1)) self.n_outputs_ = y.shape[1] if is_classification: check_classification_targets(y) y = np.copy(y) self.classes_ = [] self.n_classes_ = [] if self.class_weight is not None: y_original = np.copy(y) y_encoded = np.zeros(y.shape, dtype=np.int) for k in range(self.n_outputs_): classes_k, y_encoded[:, k] = np.unique(y[:, k], return_inverse=True) self.classes_.append(classes_k) self.n_classes_.append(classes_k.shape[0]) y = y_encoded if self.class_weight is not None: expanded_class_weight = compute_sample_weight( self.class_weight, y_original) else: self.classes_ = [None] * self.n_outputs_ self.n_classes_ = [1] * self.n_outputs_ self.n_classes_ = np.array(self.n_classes_, dtype=np.intp) if getattr(y, "dtype", None) != DOUBLE or not y.flags.contiguous: y = np.ascontiguousarray(y, dtype=DOUBLE) # Check parameters max_depth = ((2 ** 31) - 1 if self.max_depth is None else self.max_depth) max_leaf_nodes = (-1 if self.max_leaf_nodes is None else self.max_leaf_nodes) if isinstance(self.min_samples_leaf, (numbers.Integral, np.integer)): if not 1 <= self.min_samples_leaf: raise ValueError("min_samples_leaf must be at least 1 " "or in (0, 0.5], got %s" % self.min_samples_leaf) min_samples_leaf = self.min_samples_leaf else: # float if not 0. < self.min_samples_leaf <= 0.5: raise ValueError("min_samples_leaf must be at least 1 " "or in (0, 0.5], got %s" % self.min_samples_leaf) min_samples_leaf = int(ceil(self.min_samples_leaf * n_samples)) if isinstance(self.min_samples_split, (numbers.Integral, np.integer)): if not 2 <= self.min_samples_split: raise ValueError("min_samples_split must be an integer " "greater than 1 or a float in (0.0, 1.0]; " "got the integer %s" % self.min_samples_split) min_samples_split = self.min_samples_split else: # float if not 0. < self.min_samples_split <= 1.: raise ValueError("min_samples_split must be an integer " "greater than 1 or a float in (0.0, 1.0]; " "got the float %s" % self.min_samples_split) min_samples_split = int(ceil(self.min_samples_split * n_samples)) min_samples_split = max(2, min_samples_split) min_samples_split = max(min_samples_split, 2 * min_samples_leaf) if isinstance(self.max_features, six.string_types): if self.max_features == "auto": if is_classification: max_features = max(1, int(np.sqrt(self.n_features_))) else: max_features = self.n_features_ elif self.max_features == "sqrt": max_features = max(1, int(np.sqrt(self.n_features_))) elif self.max_features == "log2": max_features = max(1, int(np.log2(self.n_features_))) else: raise ValueError( 'Invalid value for max_features. Allowed string ' 'values are "auto", "sqrt" or "log2".') elif self.max_features is None: max_features = self.n_features_ elif isinstance(self.max_features, (numbers.Integral, np.integer)): max_features = self.max_features else: # float if self.max_features > 0.0: max_features = max(1, int(self.max_features * self.n_features_)) else: max_features = 0 self.max_features_ = max_features if len(y) != n_samples: raise ValueError("Number of labels=%d does not match " "number of samples=%d" % (len(y), n_samples)) if not 0 <= self.min_weight_fraction_leaf <= 0.5: raise ValueError("min_weight_fraction_leaf must in [0, 0.5]") if max_depth <= 0: raise ValueError("max_depth must be greater than zero. ") if not (0 < max_features <= self.n_features_): raise ValueError("max_features must be in (0, n_features]") if not isinstance(max_leaf_nodes, (numbers.Integral, np.integer)): raise ValueError("max_leaf_nodes must be integral number but was " "%r" % max_leaf_nodes) if -1 < max_leaf_nodes < 2: raise ValueError(("max_leaf_nodes {0} must be either None " "or larger than 1").format(max_leaf_nodes)) if sample_weight is not None: if (getattr(sample_weight, "dtype", None) != DOUBLE or not sample_weight.flags.contiguous): sample_weight = np.ascontiguousarray( sample_weight, dtype=DOUBLE) if len(sample_weight.shape) > 1: raise ValueError("Sample weights array has more " "than one dimension: %d" % len(sample_weight.shape)) if len(sample_weight) != n_samples: raise ValueError("Number of weights=%d does not match " "number of samples=%d" % (len(sample_weight), n_samples)) if expanded_class_weight is not None: if sample_weight is not None: sample_weight = sample_weight * expanded_class_weight else: sample_weight = expanded_class_weight # Set min_weight_leaf from min_weight_fraction_leaf if sample_weight is None: min_weight_leaf = (self.min_weight_fraction_leaf * n_samples) else: min_weight_leaf = (self.min_weight_fraction_leaf * np.sum(sample_weight)) if self.min_impurity_split is not None: warnings.warn("The min_impurity_split parameter is deprecated and" " will be removed in version 0.21. " "Use the min_impurity_decrease parameter instead.", DeprecationWarning) min_impurity_split = self.min_impurity_split else: min_impurity_split = 1e-7 if min_impurity_split < 0.: raise ValueError("min_impurity_split must be greater than " "or equal to 0") if self.min_impurity_decrease < 0.: raise ValueError("min_impurity_decrease must be greater than " "or equal to 0") presort = self.presort # Allow presort to be 'auto', which means True if the dataset is dense, # otherwise it will be False. if self.presort == 'auto' and issparse(X): presort = False elif self.presort == 'auto': presort = True if presort is True and issparse(X): raise ValueError("Presorting is not supported for sparse " "matrices.") # If multiple trees are built on the same dataset, we only want to # presort once. Splitters now can accept presorted indices if desired, # but do not handle any presorting themselves. Ensemble algorithms # which desire presorting must do presorting themselves and pass that # matrix into each tree. if X_idx_sorted is None and presort: X_idx_sorted = np.asfortranarray(np.argsort(X, axis=0), dtype=np.int32) if presort and X_idx_sorted.shape != X.shape: raise ValueError("The shape of X (X.shape = {}) doesn't match " "the shape of X_idx_sorted (X_idx_sorted" ".shape = {})".format(X.shape, X_idx_sorted.shape)) # Build tree criterion = self.criterion if not isinstance(criterion, Criterion): if is_classification: criterion = CRITERIA_CLF[self.criterion](self.n_outputs_, self.n_classes_) else: criterion = CRITERIA_REG[self.criterion](self.n_outputs_, n_samples) SPLITTERS = SPARSE_SPLITTERS if issparse(X) else DENSE_SPLITTERS splitter = self.splitter if not isinstance(self.splitter, Splitter): splitter = SPLITTERS[self.splitter](criterion, self.max_features_, min_samples_leaf, min_weight_leaf, random_state, self.presort) self.tree_ = Tree(self.n_features_, self.n_classes_, self.n_outputs_) # Use BestFirst if max_leaf_nodes given; use DepthFirst otherwise if max_leaf_nodes < 0: builder = DepthFirstTreeBuilder(splitter, min_samples_split, min_samples_leaf, min_weight_leaf, max_depth, self.min_impurity_decrease, min_impurity_split) else: builder = BestFirstTreeBuilder(splitter, min_samples_split, min_samples_leaf, min_weight_leaf, max_depth, max_leaf_nodes, self.min_impurity_decrease, min_impurity_split) builder.build(self.tree_, X, y, sample_weight, X_idx_sorted) if self.n_outputs_ == 1: self.n_classes_ = self.n_classes_[0] self.classes_ = self.classes_[0] return self def _validate_X_predict(self, X, check_input): """Validate X whenever one tries to predict, apply, predict_proba""" if check_input: X = check_array(X, dtype=DTYPE, accept_sparse="csr") if issparse(X) and (X.indices.dtype != np.intc or X.indptr.dtype != np.intc): raise ValueError("No support for np.int64 index based " "sparse matrices") n_features = X.shape[1] if self.n_features_ != n_features: raise ValueError("Number of features of the model must " "match the input. Model n_features is %s and " "input n_features is %s " % (self.n_features_, n_features)) return X def predict(self, X, check_input=True): """Predict class or regression value for X. For a classification model, the predicted class for each sample in X is returned. For a regression model, the predicted value based on X is returned. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. check_input : boolean, (default=True) Allow to bypass several input checking. Don't use this parameter unless you know what you do. Returns ------- y : array of shape = [n_samples] or [n_samples, n_outputs] The predicted classes, or the predict values. """ check_is_fitted(self, 'tree_') X = self._validate_X_predict(X, check_input) proba = self.tree_.predict(X) n_samples = X.shape[0] # Classification if isinstance(self, ClassifierMixin): if self.n_outputs_ == 1: return self.classes_.take(np.argmax(proba, axis=1), axis=0) else: predictions = np.zeros((n_samples, self.n_outputs_)) for k in range(self.n_outputs_): predictions[:, k] = self.classes_[k].take( np.argmax(proba[:, k], axis=1), axis=0) return predictions # Regression else: if self.n_outputs_ == 1: return proba[:, 0] else: return proba[:, :, 0] def apply(self, X, check_input=True): """ Returns the index of the leaf that each sample is predicted as. .. versionadded:: 0.17 Parameters ---------- X : array_like or sparse matrix, shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. check_input : boolean, (default=True) Allow to bypass several input checking. Don't use this parameter unless you know what you do. Returns ------- X_leaves : array_like, shape = [n_samples,] For each datapoint x in X, return the index of the leaf x ends up in. Leaves are numbered within ``[0; self.tree_.node_count)``, possibly with gaps in the numbering. """ check_is_fitted(self, 'tree_') X = self._validate_X_predict(X, check_input) return self.tree_.apply(X) def decision_path(self, X, check_input=True): """Return the decision path in the tree .. versionadded:: 0.18 Parameters ---------- X : array_like or sparse matrix, shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. check_input : boolean, (default=True) Allow to bypass several input checking. Don't use this parameter unless you know what you do. Returns ------- indicator : sparse csr array, shape = [n_samples, n_nodes] Return a node indicator matrix where non zero elements indicates that the samples goes through the nodes. """ X = self._validate_X_predict(X, check_input) return self.tree_.decision_path(X) @property def feature_importances_(self): """Return the feature importances. The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that feature. It is also known as the Gini importance. Returns ------- feature_importances_ : array, shape = [n_features] """ check_is_fitted(self, 'tree_') return self.tree_.compute_feature_importances() # ============================================================================= # Public estimators # ============================================================================= class DecisionTreeClassifier(BaseDecisionTree, ClassifierMixin): """A decision tree classifier. Read more in the :ref:`User Guide <tree>`. Parameters ---------- criterion : string, optional (default="gini") The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "entropy" for the information gain. splitter : string, optional (default="best") The strategy used to choose the split at each node. Supported strategies are "best" to choose the best split and "random" to choose the best random split. max_depth : int or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. .. versionchanged:: 0.18 Added float values for percentages. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. .. versionchanged:: 0.18 Added float values for percentages. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. max_features : int, float, string or None, optional (default=None) The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=sqrt(n_features)`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. max_leaf_nodes : int or None, optional (default=None) Grow a tree with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. min_impurity_decrease : float, optional (default=0.) A node will be split if this split induces a decrease of the impurity greater than or equal to this value. The weighted impurity decrease equation is the following:: N_t / N * (impurity - N_t_R / N_t * right_impurity - N_t_L / N_t * left_impurity) where ``N`` is the total number of samples, ``N_t`` is the number of samples at the current node, ``N_t_L`` is the number of samples in the left child, and ``N_t_R`` is the number of samples in the right child. ``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum, if ``sample_weight`` is passed. .. versionadded:: 0.19 min_impurity_split : float, Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. .. deprecated:: 0.19 ``min_impurity_split`` has been deprecated in favor of ``min_impurity_decrease`` in 0.19 and will be removed in 0.21. Use ``min_impurity_decrease`` instead. class_weight : dict, list of dicts, "balanced" or None, default=None Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. For multi-output problems, a list of dicts can be provided in the same order as the columns of y. Note that for multioutput (including multilabel) weights should be defined for each class of every column in its own dict. For example, for four-class multilabel classification weights should be [{0: 1, 1: 1}, {0: 1, 1: 5}, {0: 1, 1: 1}, {0: 1, 1: 1}] instead of [{1:1}, {2:5}, {3:1}, {4:1}]. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` For multi-output, the weights of each column of y will be multiplied. Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. presort : bool, optional (default=False) Whether to presort the data to speed up the finding of best splits in fitting. For the default settings of a decision tree on large datasets, setting this to true may slow down the training process. When using either a smaller dataset or a restricted depth, this may speed up the training. Attributes ---------- classes_ : array of shape = [n_classes] or a list of such arrays The classes labels (single output problem), or a list of arrays of class labels (multi-output problem). feature_importances_ : array of shape = [n_features] The feature importances. The higher, the more important the feature. The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that feature. It is also known as the Gini importance [4]_. max_features_ : int, The inferred value of max_features. n_classes_ : int or list The number of classes (for single output problems), or a list containing the number of classes for each output (for multi-output problems). n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. tree_ : Tree object The underlying Tree object. Notes ----- The default values for the parameters controlling the size of the trees (e.g. ``max_depth``, ``min_samples_leaf``, etc.) lead to fully grown and unpruned trees which can potentially be very large on some data sets. To reduce memory consumption, the complexity and size of the trees should be controlled by setting those parameter values. The features are always randomly permuted at each split. Therefore, the best found split may vary, even with the same training data and ``max_features=n_features``, if the improvement of the criterion is identical for several splits enumerated during the search of the best split. To obtain a deterministic behaviour during fitting, ``random_state`` has to be fixed. See also -------- DecisionTreeRegressor References ---------- .. [1] https://en.wikipedia.org/wiki/Decision_tree_learning .. [2] L. Breiman, J. Friedman, R. Olshen, and C. Stone, "Classification and Regression Trees", Wadsworth, Belmont, CA, 1984. .. [3] T. Hastie, R. Tibshirani and J. Friedman. "Elements of Statistical Learning", Springer, 2009. .. [4] L. Breiman, and A. Cutler, "Random Forests", http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm Examples -------- >>> from sklearn.datasets import load_iris >>> from sklearn.model_selection import cross_val_score >>> from sklearn.tree import DecisionTreeClassifier >>> clf = DecisionTreeClassifier(random_state=0) >>> iris = load_iris() >>> cross_val_score(clf, iris.data, iris.target, cv=10) ... # doctest: +SKIP ... array([ 1. , 0.93..., 0.86..., 0.93..., 0.93..., 0.93..., 0.93..., 1. , 0.93..., 1. ]) """ def __init__(self, criterion="gini", splitter="best", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0., min_impurity_split=None, class_weight=None, presort=False): super(DecisionTreeClassifier, self).__init__( criterion=criterion, splitter=splitter, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=min_weight_fraction_leaf, max_features=max_features, max_leaf_nodes=max_leaf_nodes, class_weight=class_weight, random_state=random_state, min_impurity_decrease=min_impurity_decrease, min_impurity_split=min_impurity_split, presort=presort) def fit(self, X, y, sample_weight=None, check_input=True, X_idx_sorted=None): """Build a decision tree classifier from the training set (X, y). Parameters ---------- X : array-like or sparse matrix, shape = [n_samples, n_features] The training input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csc_matrix``. y : array-like, shape = [n_samples] or [n_samples, n_outputs] The target values (class labels) as integers or strings. sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. Splits are also ignored if they would result in any single class carrying a negative weight in either child node. check_input : boolean, (default=True) Allow to bypass several input checking. Don't use this parameter unless you know what you do. X_idx_sorted : array-like, shape = [n_samples, n_features], optional The indexes of the sorted training input samples. If many tree are grown on the same dataset, this allows the ordering to be cached between trees. If None, the data will be sorted here. Don't use this parameter unless you know what to do. Returns ------- self : object Returns self. """ super(DecisionTreeClassifier, self).fit( X, y, sample_weight=sample_weight, check_input=check_input, X_idx_sorted=X_idx_sorted) return self def predict_proba(self, X, check_input=True): """Predict class probabilities of the input samples X. The predicted class probability is the fraction of samples of the same class in a leaf. check_input : boolean, (default=True) Allow to bypass several input checking. Don't use this parameter unless you know what you do. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. check_input : bool Run check_array on X. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if n_outputs > 1. The class probabilities of the input samples. The order of the classes corresponds to that in the attribute `classes_`. """ check_is_fitted(self, 'tree_') X = self._validate_X_predict(X, check_input) proba = self.tree_.predict(X) if self.n_outputs_ == 1: proba = proba[:, :self.n_classes_] normalizer = proba.sum(axis=1)[:, np.newaxis] normalizer[normalizer == 0.0] = 1.0 proba /= normalizer return proba else: all_proba = [] for k in range(self.n_outputs_): proba_k = proba[:, k, :self.n_classes_[k]] normalizer = proba_k.sum(axis=1)[:, np.newaxis] normalizer[normalizer == 0.0] = 1.0 proba_k /= normalizer all_proba.append(proba_k) return all_proba def predict_log_proba(self, X): """Predict class log-probabilities of the input samples X. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if n_outputs > 1. The class log-probabilities of the input samples. The order of the classes corresponds to that in the attribute `classes_`. """ proba = self.predict_proba(X) if self.n_outputs_ == 1: return np.log(proba) else: for k in range(self.n_outputs_): proba[k] = np.log(proba[k]) return proba class DecisionTreeRegressor(BaseDecisionTree, RegressorMixin): """A decision tree regressor. Read more in the :ref:`User Guide <tree>`. Parameters ---------- criterion : string, optional (default="mse") The function to measure the quality of a split. Supported criteria are "mse" for the mean squared error, which is equal to variance reduction as feature selection criterion and minimizes the L2 loss using the mean of each terminal node, "friedman_mse", which uses mean squared error with Friedman's improvement score for potential splits, and "mae" for the mean absolute error, which minimizes the L1 loss using the median of each terminal node. .. versionadded:: 0.18 Mean Absolute Error (MAE) criterion. splitter : string, optional (default="best") The strategy used to choose the split at each node. Supported strategies are "best" to choose the best split and "random" to choose the best random split. max_depth : int or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. .. versionchanged:: 0.18 Added float values for percentages. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. .. versionchanged:: 0.18 Added float values for percentages. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. max_features : int, float, string or None, optional (default=None) The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=n_features`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. max_leaf_nodes : int or None, optional (default=None) Grow a tree with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. min_impurity_decrease : float, optional (default=0.) A node will be split if this split induces a decrease of the impurity greater than or equal to this value. The weighted impurity decrease equation is the following:: N_t / N * (impurity - N_t_R / N_t * right_impurity - N_t_L / N_t * left_impurity) where ``N`` is the total number of samples, ``N_t`` is the number of samples at the current node, ``N_t_L`` is the number of samples in the left child, and ``N_t_R`` is the number of samples in the right child. ``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum, if ``sample_weight`` is passed. .. versionadded:: 0.19 min_impurity_split : float, Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. .. deprecated:: 0.19 ``min_impurity_split`` has been deprecated in favor of ``min_impurity_decrease`` in 0.19 and will be removed in 0.21. Use ``min_impurity_decrease`` instead. presort : bool, optional (default=False) Whether to presort the data to speed up the finding of best splits in fitting. For the default settings of a decision tree on large datasets, setting this to true may slow down the training process. When using either a smaller dataset or a restricted depth, this may speed up the training. Attributes ---------- feature_importances_ : array of shape = [n_features] The feature importances. The higher, the more important the feature. The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that feature. It is also known as the Gini importance [4]_. max_features_ : int, The inferred value of max_features. n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. tree_ : Tree object The underlying Tree object. Notes ----- The default values for the parameters controlling the size of the trees (e.g. ``max_depth``, ``min_samples_leaf``, etc.) lead to fully grown and unpruned trees which can potentially be very large on some data sets. To reduce memory consumption, the complexity and size of the trees should be controlled by setting those parameter values. The features are always randomly permuted at each split. Therefore, the best found split may vary, even with the same training data and ``max_features=n_features``, if the improvement of the criterion is identical for several splits enumerated during the search of the best split. To obtain a deterministic behaviour during fitting, ``random_state`` has to be fixed. See also -------- DecisionTreeClassifier References ---------- .. [1] https://en.wikipedia.org/wiki/Decision_tree_learning .. [2] L. Breiman, J. Friedman, R. Olshen, and C. Stone, "Classification and Regression Trees", Wadsworth, Belmont, CA, 1984. .. [3] T. Hastie, R. Tibshirani and J. Friedman. "Elements of Statistical Learning", Springer, 2009. .. [4] L. Breiman, and A. Cutler, "Random Forests", http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm Examples -------- >>> from sklearn.datasets import load_boston >>> from sklearn.model_selection import cross_val_score >>> from sklearn.tree import DecisionTreeRegressor >>> boston = load_boston() >>> regressor = DecisionTreeRegressor(random_state=0) >>> cross_val_score(regressor, boston.data, boston.target, cv=10) ... # doctest: +SKIP ... array([ 0.61..., 0.57..., -0.34..., 0.41..., 0.75..., 0.07..., 0.29..., 0.33..., -1.42..., -1.77...]) """ def __init__(self, criterion="mse", splitter="best", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0., min_impurity_split=None, presort=False): super(DecisionTreeRegressor, self).__init__( criterion=criterion, splitter=splitter, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=min_weight_fraction_leaf, max_features=max_features, max_leaf_nodes=max_leaf_nodes, random_state=random_state, min_impurity_decrease=min_impurity_decrease, min_impurity_split=min_impurity_split, presort=presort) def fit(self, X, y, sample_weight=None, check_input=True, X_idx_sorted=None): """Build a decision tree regressor from the training set (X, y). Parameters ---------- X : array-like or sparse matrix, shape = [n_samples, n_features] The training input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csc_matrix``. y : array-like, shape = [n_samples] or [n_samples, n_outputs] The target values (real numbers). Use ``dtype=np.float64`` and ``order='C'`` for maximum efficiency. sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. check_input : boolean, (default=True) Allow to bypass several input checking. Don't use this parameter unless you know what you do. X_idx_sorted : array-like, shape = [n_samples, n_features], optional The indexes of the sorted training input samples. If many tree are grown on the same dataset, this allows the ordering to be cached between trees. If None, the data will be sorted here. Don't use this parameter unless you know what to do. Returns ------- self : object Returns self. """ super(DecisionTreeRegressor, self).fit( X, y, sample_weight=sample_weight, check_input=check_input, X_idx_sorted=X_idx_sorted) return self class ExtraTreeClassifier(DecisionTreeClassifier): """An extremely randomized tree classifier. Extra-trees differ from classic decision trees in the way they are built. When looking for the best split to separate the samples of a node into two groups, random splits are drawn for each of the `max_features` randomly selected features and the best split among those is chosen. When `max_features` is set 1, this amounts to building a totally random decision tree. Warning: Extra-trees should only be used within ensemble methods. Read more in the :ref:`User Guide <tree>`. Parameters ---------- criterion : string, optional (default="gini") The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "entropy" for the information gain. splitter : string, optional (default="best") The strategy used to choose the split at each node. Supported strategies are "best" to choose the best split and "random" to choose the best random split. max_depth : int or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. .. versionchanged:: 0.18 Added float values for percentages. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. .. versionchanged:: 0.18 Added float values for percentages. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. max_features : int, float, string or None, optional (default=None) The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=sqrt(n_features)`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. max_leaf_nodes : int or None, optional (default=None) Grow a tree with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. min_impurity_decrease : float, optional (default=0.) A node will be split if this split induces a decrease of the impurity greater than or equal to this value. The weighted impurity decrease equation is the following:: N_t / N * (impurity - N_t_R / N_t * right_impurity - N_t_L / N_t * left_impurity) where ``N`` is the total number of samples, ``N_t`` is the number of samples at the current node, ``N_t_L`` is the number of samples in the left child, and ``N_t_R`` is the number of samples in the right child. ``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum, if ``sample_weight`` is passed. .. versionadded:: 0.19 min_impurity_split : float, Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. .. deprecated:: 0.19 ``min_impurity_split`` has been deprecated in favor of ``min_impurity_decrease`` in 0.19 and will be removed in 0.21. Use ``min_impurity_decrease`` instead. class_weight : dict, list of dicts, "balanced" or None, default=None Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. For multi-output problems, a list of dicts can be provided in the same order as the columns of y. Note that for multioutput (including multilabel) weights should be defined for each class of every column in its own dict. For example, for four-class multilabel classification weights should be [{0: 1, 1: 1}, {0: 1, 1: 5}, {0: 1, 1: 1}, {0: 1, 1: 1}] instead of [{1:1}, {2:5}, {3:1}, {4:1}]. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` For multi-output, the weights of each column of y will be multiplied. Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. See also -------- ExtraTreeRegressor, ExtraTreesClassifier, ExtraTreesRegressor Notes ----- The default values for the parameters controlling the size of the trees (e.g. ``max_depth``, ``min_samples_leaf``, etc.) lead to fully grown and unpruned trees which can potentially be very large on some data sets. To reduce memory consumption, the complexity and size of the trees should be controlled by setting those parameter values. References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. """ def __init__(self, criterion="gini", splitter="random", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", random_state=None, max_leaf_nodes=None, min_impurity_decrease=0., min_impurity_split=None, class_weight=None): super(ExtraTreeClassifier, self).__init__( criterion=criterion, splitter=splitter, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=min_weight_fraction_leaf, max_features=max_features, max_leaf_nodes=max_leaf_nodes, class_weight=class_weight, min_impurity_decrease=min_impurity_decrease, min_impurity_split=min_impurity_split, random_state=random_state) class ExtraTreeRegressor(DecisionTreeRegressor): """An extremely randomized tree regressor. Extra-trees differ from classic decision trees in the way they are built. When looking for the best split to separate the samples of a node into two groups, random splits are drawn for each of the `max_features` randomly selected features and the best split among those is chosen. When `max_features` is set 1, this amounts to building a totally random decision tree. Warning: Extra-trees should only be used within ensemble methods. Read more in the :ref:`User Guide <tree>`. Parameters ---------- criterion : string, optional (default="mse") The function to measure the quality of a split. Supported criteria are "mse" for the mean squared error, which is equal to variance reduction as feature selection criterion, and "mae" for the mean absolute error. .. versionadded:: 0.18 Mean Absolute Error (MAE) criterion. splitter : string, optional (default="best") The strategy used to choose the split at each node. Supported strategies are "best" to choose the best split and "random" to choose the best random split. max_depth : int or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. .. versionchanged:: 0.18 Added float values for percentages. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. .. versionchanged:: 0.18 Added float values for percentages. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. max_features : int, float, string or None, optional (default=None) The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=n_features`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. min_impurity_decrease : float, optional (default=0.) A node will be split if this split induces a decrease of the impurity greater than or equal to this value. The weighted impurity decrease equation is the following:: N_t / N * (impurity - N_t_R / N_t * right_impurity - N_t_L / N_t * left_impurity) where ``N`` is the total number of samples, ``N_t`` is the number of samples at the current node, ``N_t_L`` is the number of samples in the left child, and ``N_t_R`` is the number of samples in the right child. ``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum, if ``sample_weight`` is passed. .. versionadded:: 0.19 min_impurity_split : float, Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. .. deprecated:: 0.19 ``min_impurity_split`` has been deprecated in favor of ``min_impurity_decrease`` in 0.19 and will be removed in 0.21. Use ``min_impurity_decrease`` instead. max_leaf_nodes : int or None, optional (default=None) Grow a tree with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. See also -------- ExtraTreeClassifier, ExtraTreesClassifier, ExtraTreesRegressor Notes ----- The default values for the parameters controlling the size of the trees (e.g. ``max_depth``, ``min_samples_leaf``, etc.) lead to fully grown and unpruned trees which can potentially be very large on some data sets. To reduce memory consumption, the complexity and size of the trees should be controlled by setting those parameter values. References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. """ def __init__(self, criterion="mse", splitter="random", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", random_state=None, min_impurity_decrease=0., min_impurity_split=None, max_leaf_nodes=None): super(ExtraTreeRegressor, self).__init__( criterion=criterion, splitter=splitter, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=min_weight_fraction_leaf, max_features=max_features, max_leaf_nodes=max_leaf_nodes, min_impurity_decrease=min_impurity_decrease, min_impurity_split=min_impurity_split, random_state=random_state)
wazeerzulfikar/scikit-learn
sklearn/tree/tree.py
Python
bsd-3-clause
60,513
[ "Brian" ]
a7dc3b1a4d263c0be1643dd6f18ca291a2ea365152b33259899f7ffebe8e283d
#Copyright ReportLab Europe Ltd. 2000-2017 #see license.txt for license details #history http://www.reportlab.co.uk/cgi-bin/viewcvs.cgi/public/reportlab/trunk/reportlab/pdfbase/cidfonts.py #$Header $ __version__='3.3.0' __doc__="""CID (Asian multi-byte) font support. This defines classes to represent CID fonts. They know how to calculate their own width and how to write themselves into PDF files.""" import os import marshal import time try: from hashlib import md5 except ImportError: from md5 import md5 import reportlab from reportlab.pdfbase import pdfmetrics from reportlab.pdfbase._cidfontdata import allowedTypeFaces, allowedEncodings, CIDFontInfo, \ defaultUnicodeEncodings, widthsByUnichar from reportlab.pdfgen.canvas import Canvas from reportlab.pdfbase import pdfdoc from reportlab.lib.rl_accel import escapePDF from reportlab.rl_config import CMapSearchPath from reportlab.lib.utils import isSeq, isBytes #quick hackery for 2.0 release. Now we always do unicode, and have built in #the CMAP data, any code to load CMap files is not needed. DISABLE_CMAP = True def findCMapFile(name): "Returns full filename, or raises error" for dirname in CMapSearchPath: cmapfile = dirname + os.sep + name if os.path.isfile(cmapfile): #print "found", cmapfile return cmapfile raise IOError('CMAP file for encodings "%s" not found!' % name) def structToPDF(structure): "Converts deeply nested structure to PDFdoc dictionary/array objects" if isinstance(structure,dict): newDict = {} for k, v in structure.items(): newDict[k] = structToPDF(v) return pdfdoc.PDFDictionary(newDict) elif isSeq(structure): newList = [] for elem in structure: newList.append(structToPDF(elem)) return pdfdoc.PDFArray(newList) else: return structure class CIDEncoding(pdfmetrics.Encoding): """Multi-byte encoding. These are loaded from CMAP files. A CMAP file is like a mini-codec. It defines the correspondence between code points in the (multi-byte) input data and Character IDs. """ # aims to do similar things to Brian Hooper's CMap class, # but I could not get it working and had to rewrite. # also, we should really rearrange our current encoding # into a SingleByteEncoding since many of its methods # should not apply here. def __init__(self, name, useCache=1): self.name = name self._mapFileHash = None self._codeSpaceRanges = [] self._notDefRanges = [] self._cmap = {} self.source = None if not DISABLE_CMAP: if useCache: from reportlab.lib.utils import get_rl_tempdir fontmapdir = get_rl_tempdir('FastCMAPS') if os.path.isfile(fontmapdir + os.sep + name + '.fastmap'): self.fastLoad(fontmapdir) self.source = fontmapdir + os.sep + name + '.fastmap' else: self.parseCMAPFile(name) self.source = 'CMAP: ' + name self.fastSave(fontmapdir) else: self.parseCMAPFile(name) def _hash(self, text): hasher = md5() hasher.update(text) return hasher.digest() def parseCMAPFile(self, name): """This is a tricky one as CMAP files are Postscript ones. Some refer to others with a 'usecmap' command""" #started = time.clock() cmapfile = findCMapFile(name) # this will CRAWL with the unicode encodings... rawdata = open(cmapfile, 'r').read() self._mapFileHash = self._hash(rawdata) #if it contains the token 'usecmap', parse the other #cmap file first.... usecmap_pos = rawdata.find('usecmap') if usecmap_pos > -1: #they tell us to look in another file #for the code space ranges. The one # to use will be the previous word. chunk = rawdata[0:usecmap_pos] words = chunk.split() otherCMAPName = words[-1] #print 'referred to another CMAP %s' % otherCMAPName self.parseCMAPFile(otherCMAPName) # now continue parsing this, as it may # override some settings words = rawdata.split() while words != []: if words[0] == 'begincodespacerange': words = words[1:] while words[0] != 'endcodespacerange': strStart, strEnd, words = words[0], words[1], words[2:] start = int(strStart[1:-1], 16) end = int(strEnd[1:-1], 16) self._codeSpaceRanges.append((start, end),) elif words[0] == 'beginnotdefrange': words = words[1:] while words[0] != 'endnotdefrange': strStart, strEnd, strValue = words[0:3] start = int(strStart[1:-1], 16) end = int(strEnd[1:-1], 16) value = int(strValue) self._notDefRanges.append((start, end, value),) words = words[3:] elif words[0] == 'begincidrange': words = words[1:] while words[0] != 'endcidrange': strStart, strEnd, strValue = words[0:3] start = int(strStart[1:-1], 16) end = int(strEnd[1:-1], 16) value = int(strValue) # this means that 'start' corresponds to 'value', # start+1 corresponds to value+1 and so on up # to end offset = 0 while start + offset <= end: self._cmap[start + offset] = value + offset offset = offset + 1 words = words[3:] else: words = words[1:] #finished = time.clock() #print 'parsed CMAP %s in %0.4f seconds' % (self.name, finished - started) def translate(self, text): "Convert a string into a list of CIDs" output = [] cmap = self._cmap lastChar = '' for char in text: if lastChar != '': #print 'convert character pair "%s"' % (lastChar + char) num = ord(lastChar) * 256 + ord(char) else: #print 'convert character "%s"' % char num = ord(char) lastChar = char found = 0 for low, high in self._codeSpaceRanges: if low < num < high: try: cid = cmap[num] #print '%d -> %d' % (num, cid) except KeyError: #not defined. Try to find the appropriate # notdef character, or failing that return # zero cid = 0 for low2, high2, notdef in self._notDefRanges: if low2 < num < high2: cid = notdef break output.append(cid) found = 1 break if found: lastChar = '' else: lastChar = char return output def fastSave(self, directory): f = open(os.path.join(directory, self.name + '.fastmap'), 'wb') marshal.dump(self._mapFileHash, f) marshal.dump(self._codeSpaceRanges, f) marshal.dump(self._notDefRanges, f) marshal.dump(self._cmap, f) f.close() def fastLoad(self, directory): started = time.clock() f = open(os.path.join(directory, self.name + '.fastmap'), 'rb') self._mapFileHash = marshal.load(f) self._codeSpaceRanges = marshal.load(f) self._notDefRanges = marshal.load(f) self._cmap = marshal.load(f) f.close() finished = time.clock() #print 'loaded %s in %0.4f seconds' % (self.name, finished - started) def getData(self): """Simple persistence helper. Return a dict with all that matters.""" return { 'mapFileHash': self._mapFileHash, 'codeSpaceRanges': self._codeSpaceRanges, 'notDefRanges': self._notDefRanges, 'cmap': self._cmap, } class CIDTypeFace(pdfmetrics.TypeFace): """Multi-byte type face. Conceptually similar to a single byte typeface, but the glyphs are identified by a numeric Character ID (CID) and not a glyph name. """ def __init__(self, name): """Initialised from one of the canned dictionaries in allowedEncodings Or rather, it will be shortly...""" pdfmetrics.TypeFace.__init__(self, name) self._extractDictInfo(name) def _extractDictInfo(self, name): try: fontDict = CIDFontInfo[name] except KeyError: raise KeyError("Unable to find information on CID typeface '%s'" % name + "Only the following font names work:" + repr(allowedTypeFaces)) descFont = fontDict['DescendantFonts'][0] self.ascent = descFont['FontDescriptor']['Ascent'] self.descent = descFont['FontDescriptor']['Descent'] self._defaultWidth = descFont['DW'] self._explicitWidths = self._expandWidths(descFont['W']) # should really support self.glyphWidths, self.glyphNames # but not done yet. def _expandWidths(self, compactWidthArray): """Expands Adobe nested list structure to get a dictionary of widths. Here is an example of such a structure.:: ( # starting at character ID 1, next n characters have the widths given. 1, (277,305,500,668,668,906,727,305,445,445,508,668,305,379,305,539), # all Characters from ID 17 to 26 are 668 em units wide 17, 26, 668, 27, (305, 305, 668, 668, 668, 566, 871, 727, 637, 652, 699, 574, 555, 676, 687, 242, 492, 664, 582, 789, 707, 734, 582, 734, 605, 605, 641, 668, 727, 945, 609, 609, 574, 445, 668, 445, 668, 668, 590, 555, 609, 547, 602, 574, 391, 609, 582, 234, 277, 539, 234, 895, 582, 605, 602, 602, 387, 508, 441, 582, 562, 781, 531, 570, 555, 449, 246, 449, 668), # these must be half width katakana and the like. 231, 632, 500 ) """ data = compactWidthArray[:] widths = {} while data: start, data = data[0], data[1:] if isSeq(data[0]): items, data = data[0], data[1:] for offset in range(len(items)): widths[start + offset] = items[offset] else: end, width, data = data[0], data[1], data[2:] for idx in range(start, end+1): widths[idx] = width return widths def getCharWidth(self, characterId): return self._explicitWidths.get(characterId, self._defaultWidth) class CIDFont(pdfmetrics.Font): "Represents a built-in multi-byte font" _multiByte = 1 def __init__(self, face, encoding): assert face in allowedTypeFaces, "TypeFace '%s' not supported! Use any of these instead: %s" % (face, allowedTypeFaces) self.faceName = face #should cache in registry... self.face = CIDTypeFace(face) assert encoding in allowedEncodings, "Encoding '%s' not supported! Use any of these instead: %s" % (encoding, allowedEncodings) self.encodingName = encoding self.encoding = CIDEncoding(encoding) #legacy hack doing quick cut and paste. self.fontName = self.faceName + '-' + self.encodingName self.name = self.fontName # need to know if it is vertical or horizontal self.isVertical = (self.encodingName[-1] == 'V') #no substitutes initially self.substitutionFonts = [] def formatForPdf(self, text): encoded = escapePDF(text) #print 'encoded CIDFont:', encoded return encoded def stringWidth(self, text, size, encoding=None): """This presumes non-Unicode input. UnicodeCIDFont wraps it for that context""" cidlist = self.encoding.translate(text) if self.isVertical: #this part is "not checked!" but seems to work. #assume each is 1000 ems high return len(cidlist) * size else: w = 0 for cid in cidlist: w = w + self.face.getCharWidth(cid) return 0.001 * w * size def addObjects(self, doc): """The explicit code in addMinchoObjects and addGothicObjects will be replaced by something that pulls the data from _cidfontdata.py in the next few days.""" internalName = 'F' + repr(len(doc.fontMapping)+1) bigDict = CIDFontInfo[self.face.name] bigDict['Name'] = '/' + internalName bigDict['Encoding'] = '/' + self.encodingName #convert to PDF dictionary/array objects cidObj = structToPDF(bigDict) # link into document, and add to font map r = doc.Reference(cidObj, internalName) fontDict = doc.idToObject['BasicFonts'].dict fontDict[internalName] = r doc.fontMapping[self.name] = '/' + internalName class UnicodeCIDFont(CIDFont): """Wraps up CIDFont to hide explicit encoding choice; encodes text for output as UTF16. lang should be one of 'jpn',chs','cht','kor' for now. if vertical is set, it will select a different widths array and possibly glyphs for some punctuation marks. halfWidth is only for Japanese. >>> dodgy = UnicodeCIDFont('nonexistent') Traceback (most recent call last): ... KeyError: "don't know anything about CID font nonexistent" >>> heisei = UnicodeCIDFont('HeiseiMin-W3') >>> heisei.name 'HeiseiMin-W3' >>> heisei.language 'jpn' >>> heisei.encoding.name 'UniJIS-UCS2-H' >>> #This is how PDF data gets encoded. >>> print(heisei.formatForPdf('hello')) \\000h\\000e\\000l\\000l\\000o >>> tokyo = u'\u6771\u4AEC' >>> print(heisei.formatForPdf(tokyo)) gqJ\\354 >>> print(heisei.stringWidth(tokyo,10)) 20.0 >>> print(heisei.stringWidth('hello world',10)) 45.83 """ def __init__(self, face, isVertical=False, isHalfWidth=False): #pass try: lang, defaultEncoding = defaultUnicodeEncodings[face] except KeyError: raise KeyError("don't know anything about CID font %s" % face) #we know the languages now. self.language = lang #rebuilt encoding string. They follow rules which work #for the 7 fonts provided. enc = defaultEncoding[:-1] if isHalfWidth: enc = enc + 'HW-' if isVertical: enc = enc + 'V' else: enc = enc + 'H' #now we can do the more general case CIDFont.__init__(self, face, enc) #self.encName = 'utf_16_le' #it's simpler for unicode, just use the face name self.name = self.fontName = face self.vertical = isVertical self.isHalfWidth = isHalfWidth self.unicodeWidths = widthsByUnichar[self.name] def formatForPdf(self, text): #these ones should be encoded asUTF16 minus the BOM from codecs import utf_16_be_encode #print 'formatting %s: %s' % (type(text), repr(text)) if isBytes(text): text = text.decode('utf8') utfText = utf_16_be_encode(text)[0] encoded = escapePDF(utfText) #print ' encoded:',encoded return encoded # #result = escapePDF(encoded) #print ' -> %s' % repr(result) #return result def stringWidth(self, text, size, encoding=None): "Just ensure we do width test on characters, not bytes..." if isBytes(text): text = text.decode('utf8') widths = self.unicodeWidths return size * 0.001 * sum([widths.get(uch, 1000) for uch in text]) #return CIDFont.stringWidth(self, text, size, encoding) def precalculate(cmapdir): # crunches through all, making 'fastmap' files import os files = os.listdir(cmapdir) for file in files: if os.path.isfile(cmapdir + os.sep + file + '.fastmap'): continue try: enc = CIDEncoding(file) except: print('cannot parse %s, skipping' % enc) continue enc.fastSave(cmapdir) print('saved %s.fastmap' % file) def test(): # only works if you have cirrect encodings on your box! c = Canvas('test_japanese.pdf') c.setFont('Helvetica', 30) c.drawString(100,700, 'Japanese Font Support') pdfmetrics.registerFont(CIDFont('HeiseiMin-W3','90ms-RKSJ-H')) pdfmetrics.registerFont(CIDFont('HeiseiKakuGo-W5','90ms-RKSJ-H')) # the two typefaces c.setFont('HeiseiMin-W3-90ms-RKSJ-H', 16) # this says "This is HeiseiMincho" in shift-JIS. Not all our readers # have a Japanese PC, so I escaped it. On a Japanese-capable # system, print the string to see Kanji message1 = '\202\261\202\352\202\315\225\275\220\254\226\276\222\251\202\305\202\267\201B' c.drawString(100, 675, message1) c.save() print('saved test_japanese.pdf') ## print 'CMAP_DIR = ', CMAP_DIR ## tf1 = CIDTypeFace('HeiseiMin-W3') ## print 'ascent = ',tf1.ascent ## print 'descent = ',tf1.descent ## for cid in [1,2,3,4,5,18,19,28,231,1742]: ## print 'width of cid %d = %d' % (cid, tf1.getCharWidth(cid)) encName = '90ms-RKSJ-H' enc = CIDEncoding(encName) print(message1, '->', enc.translate(message1)) f = CIDFont('HeiseiMin-W3','90ms-RKSJ-H') print('width = %0.2f' % f.stringWidth(message1, 10)) #testing all encodings ## import time ## started = time.time() ## import glob ## for encName in _cidfontdata.allowedEncodings: ## #encName = '90ms-RKSJ-H' ## enc = CIDEncoding(encName) ## print 'encoding %s:' % encName ## print ' codeSpaceRanges = %s' % enc._codeSpaceRanges ## print ' notDefRanges = %s' % enc._notDefRanges ## print ' mapping size = %d' % len(enc._cmap) ## finished = time.time() ## print 'constructed all encodings in %0.2f seconds' % (finished - started) if __name__=='__main__': import doctest from reportlab.pdfbase import cidfonts doctest.testmod(cidfonts) #test()
sandeepkoduri/GAE-html-to-pdf
libs/reportlab/pdfbase/cidfonts.py
Python
mit
18,851
[ "Brian" ]
34a923080ab34a3582bde863f47cda128a3d3fda480f2a4325d64001756a794b
import re import ast import sys try: from distutils.util import get_platform is_windows = get_platform().startswith("win") except ImportError: # Don't break install if distuils is incompatible in some way # probably overly defensive. is_windows = False try: from setuptools import setup except ImportError: from distutils.core import setup readme = open('README.rst').read() history = open('HISTORY.rst').read().replace('.. :changelog:', '') requirements = [ 'six', 'webob', 'psutil', 'pyyaml', ] if sys.version_info[0] == 2: requirements.append('PasteScript') requirements.append('paste') test_requirements = [ # TODO: put package test requirements here ] _version_re = re.compile(r'__version__\s+=\s+(.*)') with open('pulsar/__init__.py', 'rb') as f: version = str(ast.literal_eval(_version_re.search( f.read().decode('utf-8')).group(1))) if is_windows: scripts = ["scripts/pulsar.bat"] else: scripts = ["scripts/pulsar"] setup( name='pulsar-app', version=version, description='Distributed job execution application built for Galaxy (http://galaxyproject.org/).', long_description=readme + '\n\n' + history, author='Galaxy Project', author_email='[email protected]', url='https://github.com/galaxyproject/pulsar', packages=[ 'pulsar', 'pulsar.cache', 'pulsar.client', 'pulsar.client.test', 'pulsar.client.staging', 'pulsar.client.transport', 'pulsar.managers', 'pulsar.managers.base', 'pulsar.managers.staging', 'pulsar.managers.util', 'pulsar.managers.util.cli', 'pulsar.managers.util.cli.job', 'pulsar.managers.util.cli.shell', 'pulsar.managers.util.condor', 'pulsar.managers.util.drmaa', 'pulsar.managers.util.job_script', 'pulsar.mesos', 'pulsar.messaging', 'pulsar.scripts', 'pulsar.tools', 'pulsar.web', 'galaxy', 'galaxy.jobs', 'galaxy.jobs.metrics', 'galaxy.jobs.metrics.collectl', 'galaxy.jobs.metrics.instrumenters', 'galaxy.objectstore', 'galaxy.tools', 'galaxy.tools.linters', 'galaxy.tools.deps', 'galaxy.tools.deps.resolvers', 'galaxy.util', ], entry_points=''' [console_scripts] pulsar-main=pulsar.main:main pulsar-check=pulsar.client.test.check:main pulsar-config=pulsar.scripts.config:main pulsar-drmaa-launch=pulsar.scripts.drmaa_launch:main pulsar-drmaa-kill=pulsar.scripts.drmaa_kill:main pulsar-chown-working-directory=pulsar.scripts.chown_working_directory:main pulsar-submit=pulsar.scripts.submit:main pulsar-run=pulsar.scripts.run:main ''', scripts=scripts, package_data={'pulsar': [ 'managers/util/job_script/DEFAULT_JOB_FILE_TEMPLATE.sh', 'managers/util/job_script/CLUSTER_SLOTS_STATEMENT.sh', ]}, package_dir={'pulsar': 'pulsar', 'galaxy': 'galaxy'}, include_package_data=True, install_requires=requirements, license="Apache License 2.0", zip_safe=False, keywords='pulsar', classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Environment :: Console', 'License :: OSI Approved :: Apache Software License', 'Operating System :: POSIX', 'Operating System :: Microsoft :: Windows', 'Natural Language :: English', "Programming Language :: Python :: 2", 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', ], test_suite='test', tests_require=test_requirements )
ssorgatem/pulsar
setup.py
Python
apache-2.0
3,786
[ "Galaxy" ]
9eceb8a6cb38ed09c35aef9367684404bf3d2dfc6dd2325e9fbfb600692c2f58
import os from django.test import TransactionTestCase from django.contrib.auth.models import Group from django.core.exceptions import ValidationError from rest_framework.exceptions import ValidationError as DRF_ValidationError from hs_core.testing import MockIRODSTestCaseMixin from hs_core import hydroshare from hs_core.models import Coverage, ResourceFile from hs_core.views.utils import remove_folder, move_or_rename_file_or_folder from hs_app_netCDF.models import OriginalCoverage, Variable from hs_file_types.models import NetCDFLogicalFile, NetCDFFileMetaData from hs_file_types.models.base import METADATA_FILE_ENDSWITH, RESMAP_FILE_ENDSWITH from .utils import assert_netcdf_file_type_metadata, CompositeResourceTestMixin, \ get_path_with_no_file_extension class NetCDFFileTypeTest(MockIRODSTestCaseMixin, TransactionTestCase, CompositeResourceTestMixin): def setUp(self): super(NetCDFFileTypeTest, self).setUp() self.group, _ = Group.objects.get_or_create(name='Hydroshare Author') self.user = hydroshare.create_account( '[email protected]', username='user1', first_name='Creator_FirstName', last_name='Creator_LastName', superuser=False, groups=[self.group] ) self.res_title = "Testing NetCDF File Type" self.netcdf_file_name = 'netcdf_valid.nc' self.netcdf_file = 'hs_file_types/tests/{}'.format(self.netcdf_file_name) self.netcdf_invalid_file_name = 'netcdf_invalid.nc' self.netcdf_invalid_file = 'hs_file_types/tests/{}'.format(self.netcdf_invalid_file_name) def test_create_aggregation_from_nc_file_1(self): # here we are using a valid nc file for setting it # to NetCDF file type which includes metadata extraction # the nc file in this case is at the root of the folder hierarchy self.create_composite_resource(self.netcdf_file) self.assertEqual(self.composite_resource.files.all().count(), 1) res_file = self.composite_resource.files.first() # check that the resource file is not associated with any logical file self.assertEqual(res_file.has_logical_file, False) # check that there is no NetCDFLogicalFile object self.assertEqual(NetCDFLogicalFile.objects.count(), 0) base_file_name, _ = os.path.splitext(res_file.file_name) expected_res_file_folder_path = res_file.file_folder # set the nc file to NetCDF file type NetCDFLogicalFile.set_file_type(self.composite_resource, self.user, res_file.id) # test extracted metadata assert_netcdf_file_type_metadata(self, self.res_title, aggr_folder=expected_res_file_folder_path) # test file level keywords res_file = self.composite_resource.files.first() logical_file = res_file.logical_file self.assertEqual(len(logical_file.metadata.keywords), 1) self.assertEqual(logical_file.metadata.keywords[0], 'Snow water equivalent') self.assertFalse(self.composite_resource.dangling_aggregations_exist()) self.composite_resource.delete() def test_create_aggregation_from_nc_file_2(self): # here we are using a valid nc file for setting it # to NetCDF file type which includes metadata extraction # the nc file in this case is not at the root of the folder hierarchy but in a folder self.create_composite_resource() new_folder = 'netcdf_aggr' ResourceFile.create_folder(self.composite_resource, new_folder) # add the the nc file to the resource at the above folder self.add_file_to_resource(file_to_add=self.netcdf_file, upload_folder=new_folder) self.assertEqual(self.composite_resource.files.all().count(), 1) res_file = self.composite_resource.files.first() # check that the resource file is not associated with any logical file self.assertEqual(res_file.has_logical_file, False) # check that there is no NetCDFLogicalFile object self.assertEqual(NetCDFLogicalFile.objects.count(), 0) # set the nc file to NetCDF file type NetCDFLogicalFile.set_file_type(self.composite_resource, self.user, res_file.id) # test extracted metadata assert_netcdf_file_type_metadata(self, self.res_title, aggr_folder=new_folder) # test file level keywords res_file = self.composite_resource.files.first() logical_file = res_file.logical_file self.assertEqual(len(logical_file.metadata.keywords), 1) self.assertEqual(logical_file.metadata.keywords[0], 'Snow water equivalent') self.assertFalse(self.composite_resource.dangling_aggregations_exist()) self.composite_resource.delete() def test_create_aggregation_from_nc_file_3(self): # here we are using a valid nc file for setting it # to NetCDF file type which includes metadata extraction # the nc file in this case is not at the root of the folder hierarchy but in a folder. The # same folder contains another file that's not going part of the aggregation # location of the nc file before aggregation is created: /my_folder/netcdf_valid.nc # location of another file before aggregation is created: /my_folder/netcdf_invalid.nc # location of nc file after aggregation is created: # /my_folder/netcdf_valid.nc # location of another file after aggregation is created: /my_folder/netcdf_invalid.nc self.create_composite_resource() new_folder = 'my_folder' ResourceFile.create_folder(self.composite_resource, new_folder) # add the the nc file to the resource at the above folder self.add_file_to_resource(file_to_add=self.netcdf_file, upload_folder=new_folder) self.assertEqual(self.composite_resource.files.all().count(), 1) res_file = self.composite_resource.files.first() # check that the resource file is not associated with any logical file self.assertEqual(res_file.has_logical_file, False) # check that there is no NetCDFLogicalFile object self.assertEqual(NetCDFLogicalFile.objects.count(), 0) # add another file to the same folder self.add_file_to_resource(file_to_add=self.netcdf_invalid_file, upload_folder=new_folder) self.assertEqual(self.composite_resource.files.all().count(), 2) # set the nc file to NetCDF file type NetCDFLogicalFile.set_file_type(self.composite_resource, self.user, res_file.id) self.assertEqual(self.composite_resource.files.all().count(), 3) # test logical file/aggregation self.assertEqual(len(list(self.composite_resource.logical_files)), 1) logical_file = list(self.composite_resource.logical_files)[0] self.assertEqual(logical_file.files.count(), 2) base_nc_file_name, _ = os.path.splitext(self.netcdf_file_name) expected_file_folder = new_folder for res_file in logical_file.files.all(): self.assertEqual(res_file.file_folder, expected_file_folder) self.assertTrue(isinstance(logical_file, NetCDFLogicalFile)) self.assertTrue(logical_file.metadata, NetCDFLogicalFile) # test the location of the file that's not part of the netcdf aggregation other_res_file = None for res_file in self.composite_resource.files.all(): if not res_file.has_logical_file: other_res_file = res_file break self.assertEqual(other_res_file.file_folder, new_folder) self.assertFalse(self.composite_resource.dangling_aggregations_exist()) self.composite_resource.delete() def test_create_aggregation_from_nc_file_4(self): # here we are using a valid nc file for setting it # to NetCDF file type which includes metadata extraction # the nc file in this case is not at the root of the folder hierarchy but in a folder. The # same folder contains another folder # location nc file before aggregation is created: /my_folder/netcdf_valid.nc # location of another folder before aggregation is created: /my_folder/another_folder # location of nc file after aggregation is created: # /my_folder/netcdf_valid.nc self.create_composite_resource() new_folder = 'my_folder' ResourceFile.create_folder(self.composite_resource, new_folder) another_folder = '{}/another_folder'.format(new_folder) ResourceFile.create_folder(self.composite_resource, another_folder) # add the the nc file to the resource at the above folder self.add_file_to_resource(file_to_add=self.netcdf_file, upload_folder=new_folder) self.assertEqual(self.composite_resource.files.all().count(), 1) res_file = self.composite_resource.files.first() # check that the resource file is not associated with any logical file self.assertEqual(res_file.has_logical_file, False) # check that there is no NetCDFLogicalFile object self.assertEqual(NetCDFLogicalFile.objects.count(), 0) # set the nc file to NetCDF file type NetCDFLogicalFile.set_file_type(self.composite_resource, self.user, res_file.id) self.assertEqual(self.composite_resource.files.all().count(), 2) # test logical file/aggregation self.assertEqual(len(list(self.composite_resource.logical_files)), 1) logical_file = list(self.composite_resource.logical_files)[0] self.assertEqual(logical_file.files.count(), 2) base_nc_file_name, _ = os.path.splitext(self.netcdf_file_name) expected_file_folder = new_folder for res_file in logical_file.files.all(): self.assertEqual(res_file.file_folder, expected_file_folder) self.assertTrue(isinstance(logical_file, NetCDFLogicalFile)) self.assertTrue(logical_file.metadata, NetCDFLogicalFile) self.assertFalse(self.composite_resource.dangling_aggregations_exist()) self.composite_resource.delete() def test_create_aggregation_for_netcdf_resource_title(self): # here we are using a valid nc file for setting it # to NetCDF file type which includes metadata extraction # and testing that the resource title gets set with the # extracted metadata if the original title is 'untitled resource' self.res_title = 'untitled resource' self.create_composite_resource(self.netcdf_file) self.assertEqual(self.composite_resource.metadata.title.value, self.res_title) self.assertEqual(self.composite_resource.files.all().count(), 1) res_file = self.composite_resource.files.first() # check that the resource file is not associated with any logical file self.assertEqual(res_file.has_logical_file, False) # check that there is no NetCDFLogicalFile object self.assertEqual(NetCDFLogicalFile.objects.count(), 0) # set the nc file to NetCDF file type NetCDFLogicalFile.set_file_type(self.composite_resource, self.user, res_file.id) # test resource title was updated with the extracted netcdf data res_title = "Snow water equivalent estimation at TWDEF site from Oct 2009 to June 2010" self.assertEqual(self.composite_resource.metadata.title.value, res_title) self.assertFalse(self.composite_resource.dangling_aggregations_exist()) self.composite_resource.delete() def test_create_aggregation_from_invalid_nc_file_1(self): # here we are using an invalid netcdf file for setting it # to netCDF file type which should fail self.create_composite_resource(self.netcdf_invalid_file) self._test_invalid_file() self.assertFalse(self.composite_resource.dangling_aggregations_exist()) self.composite_resource.delete() def test_create_aggregation_from_invalid_nc_file_2(self): # here we are using a valid nc file for setting it # to NetCDF file type which already been previously set to this file type - should fail self.create_composite_resource(self.netcdf_file) self.assertEqual(self.composite_resource.files.all().count(), 1) res_file = self.composite_resource.files.first() # check that the resource file is not associated with any logical file self.assertEqual(res_file.has_logical_file, False) # set nc file to aggregation NetCDFLogicalFile.set_file_type(self.composite_resource, self.user, res_file.id) self.assertEqual(NetCDFLogicalFile.objects.count(), 1) self.assertEqual(self.composite_resource.files.all().count(), 2) # check that the nc resource file is associated with a logical file res_file = hydroshare.utils.get_resource_files_by_extension( self.composite_resource, '.nc')[0] self.assertEqual(res_file.has_logical_file, True) self.assertEqual(res_file.logical_file_type_name, "NetCDFLogicalFile") # trying to set this nc file again to netcdf file type should raise # ValidationError with self.assertRaises(ValidationError): NetCDFLogicalFile.set_file_type(self.composite_resource, self.user, res_file.id) self.assertEqual(NetCDFLogicalFile.objects.count(), 1) self.assertFalse(self.composite_resource.dangling_aggregations_exist()) self.composite_resource.delete() def test_aggregation_metadata_CRUD(self): # here we are using a valid nc file for creating a NetCDF file type (aggregation) # then testing with metadata CRUD actions for the aggregation self.create_composite_resource() new_folder = 'nc_folder' ResourceFile.create_folder(self.composite_resource, new_folder) # add the the nc file to the resource at the above folder self.add_file_to_resource(file_to_add=self.netcdf_file, upload_folder=new_folder) # make the netcdf file part of the NetCDFLogicalFile res_file = self.composite_resource.files.first() self.assertEqual(NetCDFFileMetaData.objects.count(), 0) netcdf_logical_file = NetCDFLogicalFile.create(self.composite_resource) netcdf_logical_file.save() self.assertEqual(NetCDFFileMetaData.objects.count(), 1) netcdf_logical_file.add_resource_file(res_file) res_file = self.composite_resource.files.first() self.assertEqual(res_file.logical_file_type_name, 'NetCDFLogicalFile') self.assertEqual(netcdf_logical_file.files.count(), 1) # create keywords - note it is possible to have duplicate keywords # appropriate view functions need to disallow duplicate keywords keywords = ['key-1', 'key-1', 'key-2'] netcdf_logical_file.metadata.keywords = keywords netcdf_logical_file.metadata.save() self.assertEqual(len(keywords), len(netcdf_logical_file.metadata.keywords)) for keyword in keywords: self.assertIn(keyword, netcdf_logical_file.metadata.keywords) # create OriginalCoverage element self.assertEqual(netcdf_logical_file.metadata.original_coverage, None) coverage_data = {'northlimit': 121.345, 'southlimit': 42.678, 'eastlimit': 123.789, 'westlimit': 40.789, 'units': 'meters'} netcdf_logical_file.metadata.create_element('OriginalCoverage', value=coverage_data) self.assertNotEqual(netcdf_logical_file.metadata.original_coverage, None) self.assertEqual(float(netcdf_logical_file.metadata.original_coverage.value['northlimit']), 121.345) # test updating OriginalCoverage element orig_coverage = netcdf_logical_file.metadata.original_coverage coverage_data = {'northlimit': 111.333, 'southlimit': 42.678, 'eastlimit': 123.789, 'westlimit': 40.789, 'units': 'meters'} netcdf_logical_file.metadata.update_element('OriginalCoverage', orig_coverage.id, value=coverage_data) self.assertEqual(float(netcdf_logical_file.metadata.original_coverage.value['northlimit']), 111.333) # trying to create a 2nd OriginalCoverage element should raise exception with self.assertRaises(Exception): netcdf_logical_file.metadata.create_element('OriginalCoverage', value=coverage_data) # trying to update bounding box values with non-numeric values # (e.g., 'north_limit' key with a non-numeric value) should raise exception coverage_data = {'northlimit': '121.345a', 'southlimit': 42.678, 'eastlimit': 123.789, 'westlimit': 40.789, 'units': 'meters'} with self.assertRaises(ValidationError): netcdf_logical_file.metadata.update_element('OriginalCoverage', orig_coverage.id, value=coverage_data) # test creating spatial coverage # there should not be any spatial coverage for the netcdf file type self.assertEqual(netcdf_logical_file.metadata.spatial_coverage, None) coverage_data = {'projection': 'WGS 84 EPSG:4326', 'northlimit': 41.87, 'southlimit': 41.863, 'eastlimit': -111.505, 'westlimit': -111.511, 'units': 'meters'} # create spatial coverage netcdf_logical_file.metadata.create_element('Coverage', type="box", value=coverage_data) spatial_coverage = netcdf_logical_file.metadata.spatial_coverage self.assertEqual(float(spatial_coverage.value['northlimit']), 41.87) # test updating spatial coverage coverage_data = {'projection': 'WGS 84 EPSG:4326', 'northlimit': 41.87706, 'southlimit': 41.863, 'eastlimit': -111.505, 'westlimit': -111.511, 'units': 'meters'} netcdf_logical_file.metadata.update_element('Coverage', element_id=spatial_coverage.id, type="box", value=coverage_data) spatial_coverage = netcdf_logical_file.metadata.spatial_coverage self.assertEqual(float(spatial_coverage.value['northlimit']), 41.87706) # create Variable element self.assertEqual(netcdf_logical_file.metadata.variables.count(), 0) variable_data = {'name': 'variable_name', 'type': 'Int', 'unit': 'deg F', 'shape': 'variable_shape'} netcdf_logical_file.metadata.create_element('Variable', **variable_data) self.assertEqual(netcdf_logical_file.metadata.variables.count(), 1) self.assertEqual(netcdf_logical_file.metadata.variables.first().name, 'variable_name') # test that multiple Variable elements can be created variable_data = {'name': 'variable_name_2', 'type': 'Int', 'unit': 'deg F', 'shape': 'variable_shape_2'} netcdf_logical_file.metadata.create_element('Variable', **variable_data) self.assertEqual(netcdf_logical_file.metadata.variables.count(), 2) # test update Variable element variable = netcdf_logical_file.metadata.variables.first() variable_data = {'name': 'variable_name_updated', 'type': 'Int', 'unit': 'deg F', 'shape': 'variable_shape'} netcdf_logical_file.metadata.update_element('Variable', variable.id, **variable_data) variable = netcdf_logical_file.metadata.variables.get(id=variable.id) self.assertEqual(variable.name, 'variable_name_updated') self.assertFalse(self.composite_resource.dangling_aggregations_exist()) self.composite_resource.delete() def test_aggregation_metadata_on_logical_file_delete(self): # test that when the NetCDFLogicalFile instance is deleted # all metadata associated with it also get deleted self.create_composite_resource(self.netcdf_file) res_file = self.composite_resource.files.first() # extract metadata from the tif file NetCDFLogicalFile.set_file_type(self.composite_resource, self.user, res_file.id) # test that we have one logical file of type NetCDFLogicalFile as a result # of metadata extraction self.assertEqual(NetCDFLogicalFile.objects.count(), 1) self.assertEqual(NetCDFFileMetaData.objects.count(), 1) res_file = self.composite_resource.files.first() logical_file = res_file.logical_file # test that we have the metadata elements # there should be 4 Coverage objects - 2 at the resource level and # the other 2 at the file type level self.assertEqual(Coverage.objects.count(), 4) self.assertEqual(self.composite_resource.metadata.coverages.all().count(), 2) self.assertEqual(logical_file.metadata.coverages.all().count(), 2) self.assertEqual(OriginalCoverage.objects.count(), 1) self.assertNotEqual(logical_file.metadata.originalCoverage, None) self.assertEqual(Variable.objects.count(), 5) self.assertEqual(logical_file.metadata.variables.all().count(), 5) # delete the logical file logical_file.logical_delete(self.user) # test that we have no logical file of type NetCDFLogicalFile self.assertEqual(NetCDFLogicalFile.objects.count(), 0) self.assertEqual(NetCDFFileMetaData.objects.count(), 0) # test that all metadata deleted - there should be 2 resource level coverages self.assertEqual(self.composite_resource.metadata.coverages.all().count(), 2) self.assertEqual(Coverage.objects.count(), 2) self.assertEqual(OriginalCoverage.objects.count(), 0) self.assertEqual(Variable.objects.count(), 0) self.assertFalse(self.composite_resource.dangling_aggregations_exist()) self.composite_resource.delete() def test_remove_aggregation(self): # test that when an instance NetCDFLogicalFile Type (aggregation) is deleted # all resource files associated with that aggregation is not deleted but the associated # metadata is deleted self.create_composite_resource(self.netcdf_file) nc_res_file = self.composite_resource.files.first() base_file_name, _ = os.path.splitext(nc_res_file.file_name) expected_folder_name = nc_res_file.file_folder # set the nc file to NetCDFLogicalFile aggregation NetCDFLogicalFile.set_file_type(self.composite_resource, self.user, nc_res_file.id) # test that we have one logical file (aggregation) of type NetCDFLogicalFile self.assertEqual(NetCDFLogicalFile.objects.count(), 1) self.assertEqual(NetCDFFileMetaData.objects.count(), 1) logical_file = NetCDFLogicalFile.objects.first() self.assertEqual(logical_file.files.all().count(), 2) self.assertEqual(self.composite_resource.files.all().count(), 2) self.assertEqual(set(self.composite_resource.files.all()), set(logical_file.files.all())) # delete the aggregation (logical file) object using the remove_aggregation function # this should delete the system generated txt file when the netcdf logical file was created logical_file.remove_aggregation() # test there is no NetCDFLogicalFile object self.assertEqual(NetCDFLogicalFile.objects.count(), 0) # test there is no NetCDFFileMetaData object self.assertEqual(NetCDFFileMetaData.objects.count(), 0) # check the files associated with the aggregation not deleted self.assertEqual(self.composite_resource.files.all().count(), 1) # check the file folder is not deleted nc_file = self.composite_resource.files.first() self.assertTrue(nc_file.file_name.endswith('.nc')) self.assertEqual(nc_file.file_folder, expected_folder_name) self.assertFalse(self.composite_resource.dangling_aggregations_exist()) self.composite_resource.delete() def test_aggregation_metadata_on_resource_delete(self): # test that when the composite resource is deleted # all metadata associated with NetCDFLogicalFile Type is deleted self.create_composite_resource(self.netcdf_file) res_file = self.composite_resource.files.first() # extract metadata from the tif file NetCDFLogicalFile.set_file_type(self.composite_resource, self.user, res_file.id) # test that we have one logical file of type NetCDFLogicalFile as a result # of metadata extraction self.assertEqual(NetCDFLogicalFile.objects.count(), 1) self.assertEqual(NetCDFFileMetaData.objects.count(), 1) # test that we have the metadata elements # there should be 4 Coverage objects - 2 at the resource level and # the other 2 at the file type level self.assertEqual(Coverage.objects.count(), 4) self.assertEqual(OriginalCoverage.objects.count(), 1) self.assertEqual(Variable.objects.count(), 5) self.assertFalse(self.composite_resource.dangling_aggregations_exist()) # delete resource hydroshare.delete_resource(self.composite_resource.short_id) # test that we have no logical file of type NetCDFLogicalFile self.assertEqual(NetCDFLogicalFile.objects.count(), 0) self.assertEqual(NetCDFFileMetaData.objects.count(), 0) # test that all metadata deleted self.assertEqual(Coverage.objects.count(), 0) self.assertEqual(OriginalCoverage.objects.count(), 0) self.assertEqual(Variable.objects.count(), 0) def test_aggregation_metadata_on_file_delete(self): # test that when any resource file that is part of a NetCDFLogicalFile is deleted # all metadata associated with NetCDFLogicalFile is deleted # test for both .nc and .txt delete # test with deleting of 'nc' file self._test_file_metadata_on_file_delete(ext='.nc') # test with deleting of 'txt' file self._test_file_metadata_on_file_delete(ext='.txt') def test_aggregation_folder_delete(self): # when a file is set to NetCDFLogicalFile type # system automatically creates folder using the name of the file # that was used to set the file type # Here we need to test that when that folder gets deleted, all files # in that folder gets deleted, the logicalfile object gets deleted and # the associated metadata objects get deleted self.create_composite_resource() new_folder = 'nc_folder' ResourceFile.create_folder(self.composite_resource, new_folder) # add the the nc file to the resource at the above folder self.add_file_to_resource(file_to_add=self.netcdf_file, upload_folder=new_folder) nc_res_file = self.composite_resource.files.first() base_file_name, _ = os.path.splitext(nc_res_file.file_name) expected_folder_name = nc_res_file.file_folder # extract metadata from the tif file NetCDFLogicalFile.set_file_type(self.composite_resource, self.user, nc_res_file.id) # test that we have one logical file of type NetCDFLogicalFile as a result # of metadata extraction self.assertEqual(NetCDFLogicalFile.objects.count(), 1) # should have one NetCDFFileMetadata object self.assertEqual(NetCDFFileMetaData.objects.count(), 1) # there should be 2 content files self.assertEqual(self.composite_resource.files.count(), 2) # test that there are metadata associated with the logical file self.assertEqual(Coverage.objects.count(), 4) self.assertEqual(OriginalCoverage.objects.count(), 1) self.assertEqual(Variable.objects.count(), 5) # delete the folder for the logical file folder_path = "data/contents/{}".format(expected_folder_name) remove_folder(self.user, self.composite_resource.short_id, folder_path) # there should no content files self.assertEqual(self.composite_resource.files.count(), 0) # there should not be any netCDF logical file or metadata file self.assertEqual(NetCDFLogicalFile.objects.count(), 0) self.assertEqual(NetCDFFileMetaData.objects.count(), 0) # test that all metadata associated with the logical file got deleted - there still be # 2 resource level coverages self.assertEqual(self.composite_resource.metadata.coverages.all().count(), 2) self.assertEqual(Coverage.objects.count(), 2) self.assertEqual(OriginalCoverage.objects.count(), 0) self.assertEqual(Variable.objects.count(), 0) self.assertFalse(self.composite_resource.dangling_aggregations_exist()) self.composite_resource.delete() def test_aggregation_file_rename(self): # test that a file can't renamed for any resource file # that's part of the NetCDF logical file self.create_composite_resource() self.add_file_to_resource(file_to_add=self.netcdf_file) res_file = self.composite_resource.files.first() expected_folder_path = res_file.file_folder # create aggregation from the nc file NetCDFLogicalFile.set_file_type(self.composite_resource, self.user, res_file.id) # test renaming of files that are associated with aggregation raises exception self.assertEqual(self.composite_resource.files.count(), 2) for res_file in self.composite_resource.files.all(): base_file_name, ext = os.path.splitext(res_file.file_name) self.assertEqual(res_file.file_folder, expected_folder_path) if expected_folder_path is not None: src_path = 'data/contents/{0}/{1}'.format(expected_folder_path, res_file.file_name) else: src_path = 'data/contents/{}'.format(res_file.file_name) new_file_name = 'some_netcdf.{}'.format(ext) self.assertNotEqual(res_file.file_name, new_file_name) if expected_folder_path is not None: tgt_path = 'data/contents/{}/{}'.format(expected_folder_path, new_file_name) else: tgt_path = 'data/contents/{}'.format(new_file_name) with self.assertRaises(DRF_ValidationError): move_or_rename_file_or_folder(self.user, self.composite_resource.short_id, src_path, tgt_path) self.assertFalse(self.composite_resource.dangling_aggregations_exist()) self.composite_resource.delete() def test_aggregation_file_move(self): # test any resource file that's part of the NetCDF logical file can't be moved self.create_composite_resource() self.add_file_to_resource(file_to_add=self.netcdf_file) nc_res_file = self.composite_resource.files.first() # create the aggregation using the nc file NetCDFLogicalFile.set_file_type(self.composite_resource, self.user, nc_res_file.id) # test renaming of files that are associated with raster LFO - which should raise exception self.assertEqual(self.composite_resource.files.count(), 2) res_file = self.composite_resource.files.first() expected_folder_path = nc_res_file.file_folder self.assertEqual(res_file.file_folder, expected_folder_path) new_folder = 'netcdf_aggr' ResourceFile.create_folder(self.composite_resource, new_folder) # moving any of the resource files to this new folder should raise exception tgt_path = 'data/contents/{}'.format(new_folder) for res_file in self.composite_resource.files.all(): with self.assertRaises(DRF_ValidationError): src_path = os.path.join('data', 'contents', res_file.short_path) move_or_rename_file_or_folder(self.user, self.composite_resource.short_id, src_path, tgt_path) self.assertFalse(self.composite_resource.dangling_aggregations_exist()) self.composite_resource.delete() def test_aggregation_folder_rename(self): # test changes to aggregation name, aggregation metadata xml file path, and aggregation # resource map xml file path on folder (that contains netcdf aggregation) name change self.create_composite_resource() new_folder = 'netcdf_aggr' ResourceFile.create_folder(self.composite_resource, new_folder) # add the the nc file to the resource at the above folder self.add_file_to_resource(file_to_add=self.netcdf_file, upload_folder=new_folder) nc_res_file = self.composite_resource.files.first() expected_folder_path = nc_res_file.file_folder # create aggregation from the nc file NetCDFLogicalFile.set_file_type(self.composite_resource, self.user, nc_res_file.id) self.assertEqual(self.composite_resource.files.count(), 2) for res_file in self.composite_resource.files.all(): self.assertEqual(res_file.file_folder, expected_folder_path) # test aggregation name res_file = self.composite_resource.files.first() logical_file = res_file.logical_file self.assertEqual(logical_file.aggregation_name, nc_res_file.short_path) # test aggregation xml file paths nc_file_path = get_path_with_no_file_extension(nc_res_file.short_path) expected_meta_file_path = '{0}{1}'.format(nc_file_path, METADATA_FILE_ENDSWITH) self.assertEqual(logical_file.metadata_short_file_path, expected_meta_file_path) expected_map_file_path = '{0}{1}'.format(nc_file_path, RESMAP_FILE_ENDSWITH) self.assertEqual(logical_file.map_short_file_path, expected_map_file_path) # test renaming folder src_path = 'data/contents/{}'.format(expected_folder_path) tgt_path = 'data/contents/{}_1'.format(expected_folder_path) move_or_rename_file_or_folder(self.user, self.composite_resource.short_id, src_path, tgt_path) for res_file in self.composite_resource.files.all(): self.assertEqual(res_file.file_folder, '{}_1'.format(expected_folder_path)) # test aggregation name update res_file = self.composite_resource.files.first() logical_file = res_file.logical_file nc_res_file.refresh_from_db() self.assertEqual(logical_file.aggregation_name, nc_res_file.short_path) # test aggregation xml file paths nc_file_path = get_path_with_no_file_extension(nc_res_file.short_path) expected_meta_file_path = '{0}{1}'.format(nc_file_path, METADATA_FILE_ENDSWITH) self.assertEqual(logical_file.metadata_short_file_path, expected_meta_file_path) expected_map_file_path = '{0}{1}'.format(nc_file_path, RESMAP_FILE_ENDSWITH) self.assertEqual(logical_file.map_short_file_path, expected_map_file_path) self.assertFalse(self.composite_resource.dangling_aggregations_exist()) self.composite_resource.delete() def test_aggregation_parent_folder_rename(self): # test changes to aggregation name, aggregation metadata xml file path, and aggregation # resource map xml file path on aggregation folder parent folder name change self.create_composite_resource() new_folder = 'netcdf_aggr' ResourceFile.create_folder(self.composite_resource, new_folder) # add the the nc file to the resource at the above folder self.add_file_to_resource(file_to_add=self.netcdf_file, upload_folder=new_folder) nc_res_file = self.composite_resource.files.first() aggregation_folder_name = new_folder # create aggregation from the nc file NetCDFLogicalFile.set_file_type(self.composite_resource, self.user, nc_res_file.id) # test renaming of files that are associated with aggregation raises exception self.assertEqual(self.composite_resource.files.count(), 2) for res_file in self.composite_resource.files.all(): self.assertEqual(res_file.file_folder, aggregation_folder_name) # test aggregation name res_file = self.composite_resource.files.first() logical_file = res_file.logical_file self.assertEqual(logical_file.aggregation_name, nc_res_file.short_path) # test aggregation xml file paths nc_file_path = get_path_with_no_file_extension(nc_res_file.short_path) expected_meta_file_path = '{0}{1}'.format(nc_file_path, METADATA_FILE_ENDSWITH) self.assertEqual(logical_file.metadata_short_file_path, expected_meta_file_path) expected_map_file_path = '{0}{1}'.format(nc_file_path, RESMAP_FILE_ENDSWITH) self.assertEqual(logical_file.map_short_file_path, expected_map_file_path) # create a folder to be the parent folder of the aggregation folder parent_folder = 'parent_folder' ResourceFile.create_folder(self.composite_resource, parent_folder) # move the aggregation folder to the parent folder src_path = 'data/contents/{}'.format(aggregation_folder_name) tgt_path = 'data/contents/{0}/{1}'.format(parent_folder, aggregation_folder_name) move_or_rename_file_or_folder(self.user, self.composite_resource.short_id, src_path, tgt_path) file_folder = '{}/{}'.format(parent_folder, aggregation_folder_name) for res_file in self.composite_resource.files.all(): self.assertEqual(res_file.file_folder, file_folder) # renaming parent folder parent_folder_rename = 'parent_folder_1' src_path = 'data/contents/{}'.format(parent_folder) tgt_path = 'data/contents/{}'.format(parent_folder_rename) move_or_rename_file_or_folder(self.user, self.composite_resource.short_id, src_path, tgt_path) file_folder = '{}/{}'.format(parent_folder_rename, aggregation_folder_name) for res_file in self.composite_resource.files.all(): self.assertEqual(res_file.file_folder, file_folder) # test aggregation name after folder rename res_file = self.composite_resource.files.first() logical_file = res_file.logical_file nc_res_file.refresh_from_db() self.assertEqual(logical_file.aggregation_name, nc_res_file.short_path) # test aggregation xml file paths after folder rename nc_file_path = get_path_with_no_file_extension(nc_res_file.short_path) expected_meta_file_path = '{0}{1}'.format(nc_file_path, METADATA_FILE_ENDSWITH) self.assertEqual(logical_file.metadata_short_file_path, expected_meta_file_path) expected_map_file_path = '{0}{1}'.format(nc_file_path, RESMAP_FILE_ENDSWITH) self.assertEqual(logical_file.map_short_file_path, expected_map_file_path) self.assertFalse(self.composite_resource.dangling_aggregations_exist()) self.composite_resource.delete() def test_aggregation_folder_move_1(self): # test changes to aggregation name, aggregation metadata xml file path, and aggregation # resource map xml file path on moving a folder that contains netcdf aggregation self.create_composite_resource() new_folder = 'netcdf_aggr' ResourceFile.create_folder(self.composite_resource, new_folder) # add the the nc file to the resource at the above folder self.add_file_to_resource(file_to_add=self.netcdf_file, upload_folder=new_folder) nc_res_file = self.composite_resource.files.first() aggregation_folder_name = nc_res_file.file_folder # create aggregation from the nc file NetCDFLogicalFile.set_file_type(self.composite_resource, self.user, nc_res_file.id) self.assertEqual(self.composite_resource.files.count(), 2) for res_file in self.composite_resource.files.all(): self.assertEqual(res_file.file_folder, aggregation_folder_name) # create a folder to move the aggregation folder there parent_folder = 'parent_folder' ResourceFile.create_folder(self.composite_resource, parent_folder) # move the aggregation folder to the parent folder src_path = 'data/contents/{}'.format(aggregation_folder_name) tgt_path = 'data/contents/{0}/{1}'.format(parent_folder, aggregation_folder_name) move_or_rename_file_or_folder(self.user, self.composite_resource.short_id, src_path, tgt_path) file_folder = '{0}/{1}'.format(parent_folder, aggregation_folder_name) for res_file in self.composite_resource.files.all(): self.assertEqual(res_file.file_folder, file_folder) # test aggregation name update res_file = self.composite_resource.files.first() logical_file = res_file.logical_file nc_res_file.refresh_from_db() self.assertEqual(logical_file.aggregation_name, nc_res_file.short_path) # test aggregation xml file paths nc_file_path = get_path_with_no_file_extension(nc_res_file.short_path) expected_meta_file_path = '{0}{1}'.format(nc_file_path, METADATA_FILE_ENDSWITH) self.assertEqual(logical_file.metadata_short_file_path, expected_meta_file_path) expected_map_file_path = '{0}{1}'.format(nc_file_path, RESMAP_FILE_ENDSWITH) self.assertEqual(logical_file.map_short_file_path, expected_map_file_path) self.assertFalse(self.composite_resource.dangling_aggregations_exist()) self.composite_resource.delete() def test_aggregation_folder_move_2(self): # test a folder can be moved into a folder that contains a netcdf aggregation self.create_composite_resource() new_folder = 'netcdf_aggr' ResourceFile.create_folder(self.composite_resource, new_folder) # add the the nc file to the resource at the above folder self.add_file_to_resource(file_to_add=self.netcdf_file, upload_folder=new_folder) nc_res_file = self.composite_resource.files.first() aggregation_folder_name = new_folder # create aggregation from the nc file NetCDFLogicalFile.set_file_type(self.composite_resource, self.user, nc_res_file.id) # create a folder to move into the aggregation folder folder_to_move = 'folder_to_move' ResourceFile.create_folder(self.composite_resource, folder_to_move) # move the folder_to_move into the aggregation folder src_path = 'data/contents/{}'.format(folder_to_move) tgt_path = 'data/contents/{}'.format(aggregation_folder_name) move_or_rename_file_or_folder(self.user, self.composite_resource.short_id, src_path, tgt_path) self.assertFalse(self.composite_resource.dangling_aggregations_exist()) self.composite_resource.delete() def test_aggregation_folder_sub_folder_creation(self): # test a folder can be created inside a folder that contains a netcdf aggregation self.create_composite_resource() new_folder = 'netcdf_aggr' ResourceFile.create_folder(self.composite_resource, new_folder) # add the the nc file to the resource at the above folder self.add_file_to_resource(file_to_add=self.netcdf_file, upload_folder=new_folder) nc_res_file = self.composite_resource.files.first() self.assertEqual(nc_res_file.file_folder, new_folder) # create aggregation from the nc file NetCDFLogicalFile.set_file_type(self.composite_resource, self.user, nc_res_file.id) res_file = self.composite_resource.files.first() self.assertNotEqual(res_file.file_folder, None) # create a folder inside the aggregation folder new_folder = '{}/sub_folder'.format(res_file.file_folder) ResourceFile.create_folder(self.composite_resource, new_folder) self.assertFalse(self.composite_resource.dangling_aggregations_exist()) self.composite_resource.delete() def test_file_move_to_aggregation_folder_allowed(self): # test a file can be moved into a folder that contains a netcdf aggregation self.create_composite_resource() new_folder = 'netcdf_aggr' ResourceFile.create_folder(self.composite_resource, new_folder) # add the the nc file to the resource at the above folder self.add_file_to_resource(file_to_add=self.netcdf_file, upload_folder=new_folder) nc_res_file = self.composite_resource.files.first() self.assertEqual(nc_res_file.file_folder, new_folder) # create aggregation from the nc file NetCDFLogicalFile.set_file_type(self.composite_resource, self.user, nc_res_file.id) res_file = self.composite_resource.files.first() self.assertNotEqual(res_file.file_folder, '') # add a file to the resource which will try to move into the aggregation folder res_file_to_move = self.add_file_to_resource(file_to_add=self.netcdf_invalid_file) src_path = os.path.join('data', 'contents', res_file_to_move.short_path) tgt_path = 'data/contents/{}'.format(res_file.file_folder) # move file to aggregation folder move_or_rename_file_or_folder(self.user, self.composite_resource.short_id, src_path, tgt_path) self.assertFalse(self.composite_resource.dangling_aggregations_exist()) self.composite_resource.delete() def test_upload_file_to_aggregation_folder_allowed(self): # test no file can be uploaded into a folder that represents an aggregation self.create_composite_resource() new_folder = 'netcdf_aggr' ResourceFile.create_folder(self.composite_resource, new_folder) # add the the nc file to the resource at the above folder self.add_file_to_resource(file_to_add=self.netcdf_file, upload_folder=new_folder) res_file = self.composite_resource.files.first() self.assertEqual(res_file.file_folder, new_folder) # create aggregation from the nc file NetCDFLogicalFile.set_file_type(self.composite_resource, self.user, res_file.id) res_file = self.composite_resource.files.first() self.assertNotEqual(res_file.file_folder, '') # add a file to the resource at the aggregation folder self.add_file_to_resource(file_to_add=self.netcdf_invalid_file, upload_folder=res_file.file_folder) self.assertFalse(self.composite_resource.dangling_aggregations_exist()) self.composite_resource.delete() def _test_invalid_file(self): self.assertEqual(self.composite_resource.files.all().count(), 1) res_file = self.composite_resource.files.first() # check that the resource file is not associated with any logical file self.assertEqual(res_file.has_logical_file, False) # trying to set this invalid tif file to NetCDF file type should raise # ValidationError with self.assertRaises(ValidationError): NetCDFLogicalFile.set_file_type(self.composite_resource, self.user, res_file.id) self.assertEqual(NetCDFLogicalFile.objects.count(), 0) # test that the invalid file did not get deleted self.assertEqual(self.composite_resource.files.all().count(), 1) # check that the resource file is not associated with any logical file self.assertEqual(res_file.has_logical_file, False) def _test_file_metadata_on_file_delete(self, ext): self.create_composite_resource(self.netcdf_file) res_file = self.composite_resource.files.first() # extract metadata from the tif file NetCDFLogicalFile.set_file_type(self.composite_resource, self.user, res_file.id) # test that we have one logical file of type NetCDFLogicalFile self.assertEqual(NetCDFLogicalFile.objects.count(), 1) self.assertEqual(NetCDFFileMetaData.objects.count(), 1) res_file = self.composite_resource.files.first() logical_file = res_file.logical_file # there should be 2 coverage elements - one spatial and the other one temporal self.assertEqual(logical_file.metadata.coverages.all().count(), 2) self.assertNotEqual(logical_file.metadata.spatial_coverage, None) self.assertNotEqual(logical_file.metadata.temporal_coverage, None) # there should be one original coverage self.assertNotEqual(logical_file.metadata.originalCoverage, None) # testing extended metadata element: variables self.assertEqual(logical_file.metadata.variables.all().count(), 5) # there should be 4 coverage objects - 2 at the resource level # and the other 2 at the file type level self.assertEqual(Coverage.objects.count(), 4) self.assertEqual(OriginalCoverage.objects.count(), 1) self.assertEqual(Variable.objects.count(), 5) # delete content file specified by extension (ext parameter) res_file = hydroshare.utils.get_resource_files_by_extension( self.composite_resource, ext)[0] hydroshare.delete_resource_file(self.composite_resource.short_id, res_file.id, self.user) # test that we don't have logical file of type NetCDFLogicalFile Type self.assertEqual(NetCDFLogicalFile.objects.count(), 0) self.assertEqual(NetCDFFileMetaData.objects.count(), 0) # test that all metadata deleted - there should be still 2 resource level coverages self.assertEqual(self.composite_resource.metadata.coverages.all().count(), 2) self.assertEqual(Coverage.objects.count(), 2) self.assertEqual(OriginalCoverage.objects.count(), 0) self.assertEqual(Variable.objects.count(), 0) self.assertFalse(self.composite_resource.dangling_aggregations_exist()) self.composite_resource.delete() def test_main_file(self): self.create_composite_resource(self.netcdf_file) self.assertEqual(self.composite_resource.files.all().count(), 1) res_file = self.composite_resource.files.first() self.assertEqual(res_file.has_logical_file, False) NetCDFLogicalFile.set_file_type(self.composite_resource, self.user, res_file.id) self.assertEqual(1, NetCDFLogicalFile.objects.count()) self.assertEqual(".nc", NetCDFLogicalFile.objects.first().get_main_file_type()) self.assertEqual(self.netcdf_file_name, NetCDFLogicalFile.objects.first().get_main_file.file_name) self.assertFalse(self.composite_resource.dangling_aggregations_exist())
hydroshare/hydroshare
hs_file_types/tests/test_netcdf_metadata.py
Python
bsd-3-clause
51,039
[ "NetCDF" ]
cb71d5aaef65a79d7171d11149e4776b63a141d8709c578c44a8d378ce9ffe4e
import numpy as np from scipy import ndimage from dipy.align import floating from dipy.align.metrics import SSDMetric, CCMetric, EMMetric from numpy.testing import (assert_array_equal, assert_array_almost_equal, assert_raises) def test_exceptions(): for invalid_dim in [-1, 0, 1, 4, 5]: assert_raises(ValueError, CCMetric, invalid_dim) assert_raises(ValueError, EMMetric, invalid_dim) assert_raises(ValueError, SSDMetric, invalid_dim) assert_raises(ValueError, SSDMetric, 3, step_type='unknown_metric_name') assert_raises(ValueError, EMMetric, 3, step_type='unknown_metric_name') def test_EMMetric_image_dynamics(): np.random.seed(7181309) metric = EMMetric(2) target_shape = (10, 10) # create a random image image = np.ndarray(target_shape, dtype=floating) image[...] = np.random.randint( 0, 10, np.size(image)).reshape(tuple(target_shape)) # compute the expected binary mask expected = (image > 0).astype(np.int32) metric.use_static_image_dynamics(image, None) assert_array_equal(expected, metric.static_image_mask) metric.use_moving_image_dynamics(image, None) assert_array_equal(expected, metric.moving_image_mask) def test_em_demons_step_2d(): r""" Compares the output of the demons step in 2d against an analytical step. The fixed image is given by $F(x) = \frac{1}{2}||x - c_f||^2$, the moving image is given by $G(x) = \frac{1}{2}||x - c_g||^2$, $x, c_f, c_g \in R^{2}$ References ---------- [Vercauteren09] Vercauteren, T., Pennec, X., Perchant, A., & Ayache, N. (2009). Diffeomorphic demons: efficient non-parametric image registration. NeuroImage, 45(1 Suppl), S61-72. doi:10.1016/j.neuroimage.2008.10.040 """ # Select arbitrary images' shape (same shape for both images) sh = (20, 10) # Select arbitrary centers c_f = np.asarray(sh) / 2 c_g = c_f + 0.5 # Compute the identity vector field I(x) = x in R^2 x_0 = np.asarray(range(sh[0])) x_1 = np.asarray(range(sh[1])) X = np.ndarray(sh + (2,), dtype=np.float64) O = np.ones(sh) X[..., 0] = x_0[:, None] * O X[..., 1] = x_1[None, :] * O # Compute the gradient fields of F and G grad_F = X - c_f grad_G = X - c_g # The squared norm of grad_G to be used later sq_norm_grad_F = np.sum(grad_F**2, -1) sq_norm_grad_G = np.sum(grad_G**2, -1) # Compute F and G F = 0.5 * sq_norm_grad_F G = 0.5 * sq_norm_grad_G # Create an instance of EMMetric metric = EMMetric(2) metric.static_spacing = np.array([1.2, 1.2]) # The $\sigma_x$ (eq. 4 in [Vercauteren09]) parameter is computed in ANTS # based on the image's spacing sigma_x_sq = np.sum(metric.static_spacing**2) / metric.dim # Set arbitrary values for $\sigma_i$ (eq. 4 in [Vercauteren09]) # The original Demons algorithm used simply |F(x) - G(x)| as an # estimator, so let's use it as well sigma_i_sq = (F - G)**2 # Set the properties relevant to the demons methods metric.smooth = 3.0 metric.gradient_static = np.array(grad_F, dtype=floating) metric.gradient_moving = np.array(grad_G, dtype=floating) metric.static_image = np.array(F, dtype=floating) metric.moving_image = np.array(G, dtype=floating) metric.staticq_means_field = np.array(F, dtype=floating) metric.staticq_sigma_sq_field = np.array(sigma_i_sq, dtype=floating) metric.movingq_means_field = np.array(G, dtype=floating) metric.movingq_sigma_sq_field = np.array(sigma_i_sq, dtype=floating) # compute the step using the implementation under test actual_forward = metric.compute_demons_step(True) actual_backward = metric.compute_demons_step(False) # Now directly compute the demons steps according to eq 4 in # [Vercauteren09] num_fwd = sigma_x_sq * (G - F) den_fwd = sigma_x_sq * sq_norm_grad_F + sigma_i_sq # This is $J^{P}$ in eq. 4 [Vercauteren09] expected_fwd = -1 * np.array(grad_F) expected_fwd[..., 0] *= num_fwd / den_fwd expected_fwd[..., 1] *= num_fwd / den_fwd # apply Gaussian smoothing expected_fwd[..., 0] = ndimage.filters.gaussian_filter( expected_fwd[..., 0], 3.0) expected_fwd[..., 1] = ndimage.filters.gaussian_filter( expected_fwd[..., 1], 3.0) num_bwd = sigma_x_sq * (F - G) den_bwd = sigma_x_sq * sq_norm_grad_G + sigma_i_sq # This is $J^{P}$ in eq. 4 [Vercauteren09] expected_bwd = -1 * np.array(grad_G) expected_bwd[..., 0] *= num_bwd / den_bwd expected_bwd[..., 1] *= num_bwd / den_bwd # apply Gaussian smoothing expected_bwd[..., 0] = ndimage.filters.gaussian_filter( expected_bwd[..., 0], 3.0) expected_bwd[..., 1] = ndimage.filters.gaussian_filter( expected_bwd[..., 1], 3.0) assert_array_almost_equal(actual_forward, expected_fwd) assert_array_almost_equal(actual_backward, expected_bwd) def test_em_demons_step_3d(): r""" Compares the output of the demons step in 3d against an analytical step. The fixed image is given by $F(x) = \frac{1}{2}||x - c_f||^2$, the moving image is given by $G(x) = \frac{1}{2}||x - c_g||^2$, $x, c_f, c_g \in R^{3}$ References ---------- [Vercauteren09] Vercauteren, T., Pennec, X., Perchant, A., & Ayache, N. (2009). Diffeomorphic demons: efficient non-parametric image registration. NeuroImage, 45(1 Suppl), S61-72. doi:10.1016/j.neuroimage.2008.10.040 """ # Select arbitrary images' shape (same shape for both images) sh = (20, 15, 10) # Select arbitrary centers c_f = np.asarray(sh) / 2 c_g = c_f + 0.5 # Compute the identity vector field I(x) = x in R^2 x_0 = np.asarray(range(sh[0])) x_1 = np.asarray(range(sh[1])) x_2 = np.asarray(range(sh[2])) X = np.ndarray(sh + (3,), dtype=np.float64) O = np.ones(sh) X[..., 0] = x_0[:, None, None] * O X[..., 1] = x_1[None, :, None] * O X[..., 2] = x_2[None, None, :] * O # Compute the gradient fields of F and G grad_F = X - c_f grad_G = X - c_g # The squared norm of grad_G to be used later sq_norm_grad_F = np.sum(grad_F**2, -1) sq_norm_grad_G = np.sum(grad_G**2, -1) # Compute F and G F = 0.5 * sq_norm_grad_F G = 0.5 * sq_norm_grad_G # Create an instance of EMMetric metric = EMMetric(3) metric.static_spacing = np.array([1.2, 1.2, 1.2]) # The $\sigma_x$ (eq. 4 in [Vercauteren09]) parameter is computed in ANTS # based on the image's spacing sigma_x_sq = np.sum(metric.static_spacing**2) / metric.dim # Set arbitrary values for $\sigma_i$ (eq. 4 in [Vercauteren09]) # The original Demons algorithm used simply |F(x) - G(x)| as an # estimator, so let's use it as well sigma_i_sq = (F - G)**2 # Set the properties relevant to the demons methods metric.smooth = 3.0 metric.gradient_static = np.array(grad_F, dtype=floating) metric.gradient_moving = np.array(grad_G, dtype=floating) metric.static_image = np.array(F, dtype=floating) metric.moving_image = np.array(G, dtype=floating) metric.staticq_means_field = np.array(F, dtype=floating) metric.staticq_sigma_sq_field = np.array(sigma_i_sq, dtype=floating) metric.movingq_means_field = np.array(G, dtype=floating) metric.movingq_sigma_sq_field = np.array(sigma_i_sq, dtype=floating) # compute the step using the implementation under test actual_forward = metric.compute_demons_step(True) actual_backward = metric.compute_demons_step(False) # Now directly compute the demons steps according to eq 4 in # [Vercauteren09] num_fwd = sigma_x_sq * (G - F) den_fwd = sigma_x_sq * sq_norm_grad_F + sigma_i_sq expected_fwd = -1 * np.array(grad_F) expected_fwd[..., 0] *= num_fwd / den_fwd expected_fwd[..., 1] *= num_fwd / den_fwd expected_fwd[..., 2] *= num_fwd / den_fwd # apply Gaussian smoothing expected_fwd[..., 0] = ndimage.filters.gaussian_filter( expected_fwd[..., 0], 3.0) expected_fwd[..., 1] = ndimage.filters.gaussian_filter( expected_fwd[..., 1], 3.0) expected_fwd[..., 2] = ndimage.filters.gaussian_filter( expected_fwd[..., 2], 3.0) num_bwd = sigma_x_sq * (F - G) den_bwd = sigma_x_sq * sq_norm_grad_G + sigma_i_sq expected_bwd = -1 * np.array(grad_G) expected_bwd[..., 0] *= num_bwd / den_bwd expected_bwd[..., 1] *= num_bwd / den_bwd expected_bwd[..., 2] *= num_bwd / den_bwd # apply Gaussian smoothing expected_bwd[..., 0] = ndimage.filters.gaussian_filter( expected_bwd[..., 0], 3.0) expected_bwd[..., 1] = ndimage.filters.gaussian_filter( expected_bwd[..., 1], 3.0) expected_bwd[..., 2] = ndimage.filters.gaussian_filter( expected_bwd[..., 2], 3.0) assert_array_almost_equal(actual_forward, expected_fwd) assert_array_almost_equal(actual_backward, expected_bwd) if __name__ == '__main__': test_em_demons_step_2d() test_em_demons_step_3d() test_exceptions() test_EMMetric_image_dynamics()
villalonreina/dipy
dipy/align/tests/test_metrics.py
Python
bsd-3-clause
9,239
[ "Gaussian" ]
7e1dbedad84ddb71a165218eed7884de6cc3c53eb5613cb2ea72ec1ad89774db
# -*- coding: utf-8 -*- # Version: 0.17 """The Versioneer - like a rocketeer, but for versions. The Versioneer ============== * like a rocketeer, but for versions! * https://github.com/warner/python-versioneer * Brian Warner * License: Public Domain * Compatible With: python2.6, 2.7, 3.2, 3.3, 3.4, 3.5, and pypy * [![Latest Version] (https://pypip.in/version/versioneer/badge.svg?style=flat) ](https://pypi.python.org/pypi/versioneer/) * [![Build Status] (https://travis-ci.org/warner/python-versioneer.png?branch=master) ](https://travis-ci.org/warner/python-versioneer) This is a tool for managing a recorded version number in distutils-based python projects. The goal is to remove the tedious and error-prone "update the embedded version string" step from your release process. Making a new release should be as easy as recording a new tag in your version-control system, and maybe making new tarballs. ## Quick Install * `pip install versioneer` to somewhere to your $PATH * add a `[versioneer]` section to your setup.cfg (see below) * run `versioneer install` in your source tree, commit the results ## Version Identifiers Source trees come from a variety of places: * a version-control system checkout (mostly used by developers) * a nightly tarball, produced by build automation * a snapshot tarball, produced by a web-based VCS browser, like github's "tarball from tag" feature * a release tarball, produced by "setup.py sdist", distributed through PyPI Within each source tree, the version identifier (either a string or a number, this tool is format-agnostic) can come from a variety of places: * ask the VCS tool itself, e.g. "git describe" (for checkouts), which knows about recent "tags" and an absolute revision-id * the name of the directory into which the tarball was unpacked * an expanded VCS keyword ($Id$, etc) * a `_version.py` created by some earlier build step For released software, the version identifier is closely related to a VCS tag. Some projects use tag names that include more than just the version string (e.g. "myproject-1.2" instead of just "1.2"), in which case the tool needs to strip the tag prefix to extract the version identifier. For unreleased software (between tags), the version identifier should provide enough information to help developers recreate the same tree, while also giving them an idea of roughly how old the tree is (after version 1.2, before version 1.3). Many VCS systems can report a description that captures this, for example `git describe --tags --dirty --always` reports things like "0.7-1-g574ab98-dirty" to indicate that the checkout is one revision past the 0.7 tag, has a unique revision id of "574ab98", and is "dirty" (it has uncommitted changes. The version identifier is used for multiple purposes: * to allow the module to self-identify its version: `myproject.__version__` * to choose a name and prefix for a 'setup.py sdist' tarball ## Theory of Operation Versioneer works by adding a special `_version.py` file into your source tree, where your `__init__.py` can import it. This `_version.py` knows how to dynamically ask the VCS tool for version information at import time. `_version.py` also contains `$Revision$` markers, and the installation process marks `_version.py` to have this marker rewritten with a tag name during the `git archive` command. As a result, generated tarballs will contain enough information to get the proper version. To allow `setup.py` to compute a version too, a `versioneer.py` is added to the top level of your source tree, next to `setup.py` and the `setup.cfg` that configures it. This overrides several distutils/setuptools commands to compute the version when invoked, and changes `setup.py build` and `setup.py sdist` to replace `_version.py` with a small static file that contains just the generated version data. ## Installation See [INSTALL.md](./INSTALL.md) for detailed installation instructions. ## Version-String Flavors Code which uses Versioneer can learn about its version string at runtime by importing `_version` from your main `__init__.py` file and running the `get_versions()` function. From the "outside" (e.g. in `setup.py`), you can import the top-level `versioneer.py` and run `get_versions()`. Both functions return a dictionary with different flavors of version information: * `['version']`: A condensed version string, rendered using the selected style. This is the most commonly used value for the project's version string. The default "pep440" style yields strings like `0.11`, `0.11+2.g1076c97`, or `0.11+2.g1076c97.dirty`. See the "Styles" section below for alternative styles. * `['full-revisionid']`: detailed revision identifier. For Git, this is the full SHA1 commit id, e.g. "1076c978a8d3cfc70f408fe5974aa6c092c949ac". * `['date']`: Date and time of the latest `HEAD` commit. For Git, it is the commit date in ISO 8601 format. This will be None if the date is not available. * `['dirty']`: a boolean, True if the tree has uncommitted changes. Note that this is only accurate if run in a VCS checkout, otherwise it is likely to be False or None * `['error']`: if the version string could not be computed, this will be set to a string describing the problem, otherwise it will be None. It may be useful to throw an exception in setup.py if this is set, to avoid e.g. creating tarballs with a version string of "unknown". Some variants are more useful than others. Including `full-revisionid` in a bug report should allow developers to reconstruct the exact code being tested (or indicate the presence of local changes that should be shared with the developers). `version` is suitable for display in an "about" box or a CLI `--version` output: it can be easily compared against release notes and lists of bugs fixed in various releases. The installer adds the following text to your `__init__.py` to place a basic version in `YOURPROJECT.__version__`: from ._version import get_versions __version__ = get_versions()['version'] del get_versions ## Styles The setup.cfg `style=` configuration controls how the VCS information is rendered into a version string. The default style, "pep440", produces a PEP440-compliant string, equal to the un-prefixed tag name for actual releases, and containing an additional "local version" section with more detail for in-between builds. For Git, this is TAG[+DISTANCE.gHEX[.dirty]] , using information from `git describe --tags --dirty --always`. For example "0.11+2.g1076c97.dirty" indicates that the tree is like the "1076c97" commit but has uncommitted changes (".dirty"), and that this commit is two revisions ("+2") beyond the "0.11" tag. For released software (exactly equal to a known tag), the identifier will only contain the stripped tag, e.g. "0.11". Other styles are available. See details.md in the Versioneer source tree for descriptions. ## Debugging Versioneer tries to avoid fatal errors: if something goes wrong, it will tend to return a version of "0+unknown". To investigate the problem, run `setup.py version`, which will run the version-lookup code in a verbose mode, and will display the full contents of `get_versions()` (including the `error` string, which may help identify what went wrong). ## Known Limitations Some situations are known to cause problems for Versioneer. This details the most significant ones. More can be found on Github [issues page](https://github.com/warner/python-versioneer/issues). ### Subprojects Versioneer has limited support for source trees in which `setup.py` is not in the root directory (e.g. `setup.py` and `.git/` are *not* siblings). The are two common reasons why `setup.py` might not be in the root: * Source trees which contain multiple subprojects, such as [Buildbot](https://github.com/buildbot/buildbot), which contains both "master" and "slave" subprojects, each with their own `setup.py`, `setup.cfg`, and `tox.ini`. Projects like these produce multiple PyPI distributions (and upload multiple independently-installable tarballs). * Source trees whose main purpose is to contain a C library, but which also provide bindings to Python (and perhaps other langauges) in subdirectories. Versioneer will look for `.git` in parent directories, and most operations should get the right version string. However `pip` and `setuptools` have bugs and implementation details which frequently cause `pip install .` from a subproject directory to fail to find a correct version string (so it usually defaults to `0+unknown`). `pip install --editable .` should work correctly. `setup.py install` might work too. Pip-8.1.1 is known to have this problem, but hopefully it will get fixed in some later version. [Bug #38](https://github.com/warner/python-versioneer/issues/38) is tracking this issue. The discussion in [PR #61](https://github.com/warner/python-versioneer/pull/61) describes the issue from the Versioneer side in more detail. [pip PR#3176](https://github.com/pypa/pip/pull/3176) and [pip PR#3615](https://github.com/pypa/pip/pull/3615) contain work to improve pip to let Versioneer work correctly. Versioneer-0.16 and earlier only looked for a `.git` directory next to the `setup.cfg`, so subprojects were completely unsupported with those releases. ### Editable installs with setuptools <= 18.5 `setup.py develop` and `pip install --editable .` allow you to install a project into a virtualenv once, then continue editing the source code (and test) without re-installing after every change. "Entry-point scripts" (`setup(entry_points={"console_scripts": ..})`) are a convenient way to specify executable scripts that should be installed along with the python package. These both work as expected when using modern setuptools. When using setuptools-18.5 or earlier, however, certain operations will cause `pkg_resources.DistributionNotFound` errors when running the entrypoint script, which must be resolved by re-installing the package. This happens when the install happens with one version, then the egg_info data is regenerated while a different version is checked out. Many setup.py commands cause egg_info to be rebuilt (including `sdist`, `wheel`, and installing into a different virtualenv), so this can be surprising. [Bug #83](https://github.com/warner/python-versioneer/issues/83) describes this one, but upgrading to a newer version of setuptools should probably resolve it. ### Unicode version strings While Versioneer works (and is continually tested) with both Python 2 and Python 3, it is not entirely consistent with bytes-vs-unicode distinctions. Newer releases probably generate unicode version strings on py2. It's not clear that this is wrong, but it may be surprising for applications when then write these strings to a network connection or include them in bytes-oriented APIs like cryptographic checksums. [Bug #71](https://github.com/warner/python-versioneer/issues/71) investigates this question. ## Updating Versioneer To upgrade your project to a new release of Versioneer, do the following: * install the new Versioneer (`pip install -U versioneer` or equivalent) * edit `setup.cfg`, if necessary, to include any new configuration settings indicated by the release notes. See [UPGRADING](./UPGRADING.md) for details. * re-run `versioneer install` in your source tree, to replace `SRC/_version.py` * commit any changed files ## Future Directions This tool is designed to make it easily extended to other version-control systems: all VCS-specific components are in separate directories like src/git/ . The top-level `versioneer.py` script is assembled from these components by running make-versioneer.py . In the future, make-versioneer.py will take a VCS name as an argument, and will construct a version of `versioneer.py` that is specific to the given VCS. It might also take the configuration arguments that are currently provided manually during installation by editing setup.py . Alternatively, it might go the other direction and include code from all supported VCS systems, reducing the number of intermediate scripts. ## License To make Versioneer easier to embed, all its code is dedicated to the public domain. The `_version.py` that it creates is also in the public domain. Specifically, both are released under the Creative Commons "Public Domain Dedication" license (CC0-1.0), as described in https://creativecommons.org/publicdomain/zero/1.0/ . """ from __future__ import print_function try: import configparser except ImportError: import ConfigParser as configparser import errno import json import os import re import subprocess import sys class VersioneerConfig: """Container for Versioneer configuration parameters.""" def get_root(): """Get the project root directory. We require that all commands are run from the project root, i.e. the directory that contains setup.py, setup.cfg, and versioneer.py . """ root = os.path.realpath(os.path.abspath(os.getcwd())) setup_py = os.path.join(root, "setup.py") versioneer_py = os.path.join(root, "versioneer.py") if not (os.path.exists(setup_py) or os.path.exists(versioneer_py)): # allow 'python path/to/setup.py COMMAND' root = os.path.dirname(os.path.realpath(os.path.abspath(sys.argv[0]))) setup_py = os.path.join(root, "setup.py") versioneer_py = os.path.join(root, "versioneer.py") if not (os.path.exists(setup_py) or os.path.exists(versioneer_py)): err = ("Versioneer was unable to run the project root directory. " "Versioneer requires setup.py to be executed from " "its immediate directory (like 'python setup.py COMMAND'), " "or in a way that lets it use sys.argv[0] to find the root " "(like 'python path/to/setup.py COMMAND').") raise VersioneerBadRootError(err) try: # Certain runtime workflows (setup.py install/develop in a setuptools # tree) execute all dependencies in a single python process, so # "versioneer" may be imported multiple times, and python's shared # module-import table will cache the first one. So we can't use # os.path.dirname(__file__), as that will find whichever # versioneer.py was first imported, even in later projects. me = os.path.realpath(os.path.abspath(__file__)) me_dir = os.path.normcase(os.path.splitext(me)[0]) vsr_dir = os.path.normcase(os.path.splitext(versioneer_py)[0]) if me_dir != vsr_dir: print("Warning: build in %s is using versioneer.py from %s" % (os.path.dirname(me), versioneer_py)) except NameError: pass return root def get_config_from_root(root): """Read the project setup.cfg file to determine Versioneer config.""" # This might raise EnvironmentError (if setup.cfg is missing), or # configparser.NoSectionError (if it lacks a [versioneer] section), or # configparser.NoOptionError (if it lacks "VCS="). See the docstring at # the top of versioneer.py for instructions on writing your setup.cfg . setup_cfg = os.path.join(root, "setup.cfg") parser = configparser.SafeConfigParser() with open(setup_cfg, "r") as f: parser.readfp(f) VCS = parser.get("versioneer", "VCS") # mandatory def get(parser, name): if parser.has_option("versioneer", name): return parser.get("versioneer", name) return None cfg = VersioneerConfig() cfg.VCS = VCS cfg.style = get(parser, "style") or "" cfg.versionfile_source = get(parser, "versionfile_source") cfg.versionfile_build = get(parser, "versionfile_build") cfg.tag_prefix = get(parser, "tag_prefix") if cfg.tag_prefix in ("''", '""'): cfg.tag_prefix = "" cfg.parentdir_prefix = get(parser, "parentdir_prefix") cfg.verbose = get(parser, "verbose") return cfg class NotThisMethod(Exception): """Exception raised if a method is not valid for the current scenario.""" # these dictionaries contain VCS-specific tools LONG_VERSION_PY = {} HANDLERS = {} def register_vcs_handler(vcs, method): # decorator """Decorator to mark a method as the handler for a particular VCS.""" def decorate(f): """Store f in HANDLERS[vcs][method].""" if vcs not in HANDLERS: HANDLERS[vcs] = {} HANDLERS[vcs][method] = f return f return decorate def run_command(commands, args, cwd=None, verbose=False, hide_stderr=False, env=None): """Call the given command(s).""" assert isinstance(commands, list) p = None for c in commands: try: dispcmd = str([c] + args) # remember shell=False, so use git.cmd on windows, not just git p = subprocess.Popen([c] + args, cwd=cwd, env=env, stdout=subprocess.PIPE, stderr=(subprocess.PIPE if hide_stderr else None)) break except EnvironmentError: e = sys.exc_info()[1] if e.errno == errno.ENOENT: continue if verbose: print("unable to run %s" % dispcmd) print(e) return None, None else: if verbose: print("unable to find command, tried {}".format(commands)) return None, None stdout = p.communicate()[0].strip() if sys.version_info[0] >= 3: stdout = stdout.decode() if p.returncode != 0: if verbose: print("unable to run %s (error)" % dispcmd) print("stdout was %s" % stdout) return None, p.returncode return stdout, p.returncode LONG_VERSION_PY['git'] = r''' # This file helps to compute a version number in source trees obtained from # git-archive tarball (such as those provided by githubs download-from-tag # feature). Distribution tarballs (built by setup.py sdist) and build # directories (produced by setup.py build) will contain a much shorter file # that just contains the computed version number. # This file is released into the public domain. Generated by # versioneer-0.17 (https://github.com/warner/python-versioneer) """Git implementation of _version.py.""" import errno import os import re import subprocess import sys def get_keywords(): """Get the keywords needed to look up the version information.""" # these strings will be replaced by git during git-archive. # setup.py/versioneer.py will grep for the variable names, so they must # each be defined on a line of their own. _version.py will just call # get_keywords(). git_refnames = "%(DOLLAR)sFormat:%%d%(DOLLAR)s" git_full = "%(DOLLAR)sFormat:%%H%(DOLLAR)s" git_date = "%(DOLLAR)sFormat:%%ci%(DOLLAR)s" keywords = {"refnames": git_refnames, "full": git_full, "date": git_date} return keywords class VersioneerConfig: """Container for Versioneer configuration parameters.""" def get_config(): """Create, populate and return the VersioneerConfig() object.""" # these strings are filled in when 'setup.py versioneer' creates # _version.py cfg = VersioneerConfig() cfg.VCS = "git" cfg.style = "%(STYLE)s" cfg.tag_prefix = "%(TAG_PREFIX)s" cfg.parentdir_prefix = "%(PARENTDIR_PREFIX)s" cfg.versionfile_source = "%(VERSIONFILE_SOURCE)s" cfg.verbose = False return cfg class NotThisMethod(Exception): """Exception raised if a method is not valid for the current scenario.""" LONG_VERSION_PY = {} HANDLERS = {} def register_vcs_handler(vcs, method): # decorator """Decorator to mark a method as the handler for a particular VCS.""" def decorate(f): """Store f in HANDLERS[vcs][method].""" if vcs not in HANDLERS: HANDLERS[vcs] = {} HANDLERS[vcs][method] = f return f return decorate def run_command(commands, args, cwd=None, verbose=False, hide_stderr=False, env=None): """Call the given command(s).""" assert isinstance(commands, list) p = None for c in commands: try: dispcmd = str([c] + args) # remember shell=False, so use git.cmd on windows, not just git p = subprocess.Popen([c] + args, cwd=cwd, env=env, stdout=subprocess.PIPE, stderr=(subprocess.PIPE if hide_stderr else None)) break except EnvironmentError: e = sys.exc_info()[1] if e.errno == errno.ENOENT: continue if verbose: print("unable to run %%s" %% dispcmd) print(e) return None, None else: if verbose: print("unable to find command, tried %%s" %% (commands,)) return None, None stdout = p.communicate()[0].strip() if sys.version_info[0] >= 3: stdout = stdout.decode() if p.returncode != 0: if verbose: print("unable to run %%s (error)" %% dispcmd) print("stdout was %%s" %% stdout) return None, p.returncode return stdout, p.returncode def versions_from_parentdir(parentdir_prefix, root, verbose): """Try to determine the version from the parent directory name. Source tarballs conventionally unpack into a directory that includes both the project name and a version string. We will also support searching up two directory levels for an appropriately named parent directory """ rootdirs = [] for i in range(3): dirname = os.path.basename(root) if dirname.startswith(parentdir_prefix): return {"version": dirname[len(parentdir_prefix):], "full-revisionid": None, "dirty": False, "error": None, "date": None} else: rootdirs.append(root) root = os.path.dirname(root) # up a level if verbose: print("Tried directories %%s but none started with prefix %%s" %% (str(rootdirs), parentdir_prefix)) raise NotThisMethod("rootdir doesn't start with parentdir_prefix") @register_vcs_handler("git", "get_keywords") def git_get_keywords(versionfile_abs): """Extract version information from the given file.""" # the code embedded in _version.py can just fetch the value of these # keywords. When used from setup.py, we don't want to import _version.py, # so we do it with a regexp instead. This function is not used from # _version.py. keywords = {} try: f = open(versionfile_abs, "r") for line in f.readlines(): if line.strip().startswith("git_refnames ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["refnames"] = mo.group(1) if line.strip().startswith("git_full ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["full"] = mo.group(1) if line.strip().startswith("git_date ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["date"] = mo.group(1) f.close() except EnvironmentError: pass return keywords @register_vcs_handler("git", "keywords") def git_versions_from_keywords(keywords, tag_prefix, verbose): """Get version information from git keywords.""" if not keywords: raise NotThisMethod("no keywords at all, weird") date = keywords.get("date") if date is not None: # git-2.2.0 added "%%cI", which expands to an ISO-8601 -compliant # datestamp. However we prefer "%%ci" (which expands to an "ISO-8601 # -like" string, which we must then edit to make compliant), because # it's been around since git-1.5.3, and it's too difficult to # discover which version we're using, or to work around using an # older one. date = date.strip().replace(" ", "T", 1).replace(" ", "", 1) refnames = keywords["refnames"].strip() if refnames.startswith("$Format"): if verbose: print("keywords are unexpanded, not using") raise NotThisMethod("unexpanded keywords, not a git-archive tarball") refs = set([r.strip() for r in refnames.strip("()").split(",")]) # starting in git-1.8.3, tags are listed as "tag: foo-1.0" instead of # just "foo-1.0". If we see a "tag: " prefix, prefer those. TAG = "tag: " tags = set([r[len(TAG):] for r in refs if r.startswith(TAG)]) if not tags: # Either we're using git < 1.8.3, or there really are no tags. We use # a heuristic: assume all version tags have a digit. The old git %%d # expansion behaves like git log --decorate=short and strips out the # refs/heads/ and refs/tags/ prefixes that would let us distinguish # between branches and tags. By ignoring refnames without digits, we # filter out many common branch names like "release" and # "stabilization", as well as "HEAD" and "master". tags = set([r for r in refs if re.search(r'\d', r)]) if verbose: print("discarding '%%s', no digits" %% ",".join(refs - tags)) if verbose: print("likely tags: %%s" %% ",".join(sorted(tags))) for ref in sorted(tags): # sorting will prefer e.g. "2.0" over "2.0rc1" if ref.startswith(tag_prefix): r = ref[len(tag_prefix):] if verbose: print("picking %%s" %% r) return {"version": r, "full-revisionid": keywords["full"].strip(), "dirty": False, "error": None, "date": date} # no suitable tags, so version is "0+unknown", but full hex is still there if verbose: print("no suitable tags, using unknown + full revision id") return {"version": "0+unknown", "full-revisionid": keywords["full"].strip(), "dirty": False, "error": "no suitable tags", "date": None} @register_vcs_handler("git", "pieces_from_vcs") def git_pieces_from_vcs(tag_prefix, root, verbose, run_command=run_command): """Get version from 'git describe' in the root of the source tree. This only gets called if the git-archive 'subst' keywords were *not* expanded, and _version.py hasn't already been rewritten with a short version string, meaning we're inside a checked out source tree. """ GITS = ["git"] if sys.platform == "win32": GITS = ["git.cmd", "git.exe"] out, rc = run_command(GITS, ["rev-parse", "--git-dir"], cwd=root, hide_stderr=True) if rc != 0: if verbose: print("Directory %%s not under git control" %% root) raise NotThisMethod("'git rev-parse --git-dir' returned error") # if there is a tag matching tag_prefix, this yields TAG-NUM-gHEX[-dirty] # if there isn't one, this yields HEX[-dirty] (no NUM) describe_out, rc = run_command(GITS, ["describe", "--tags", "--dirty", "--always", "--long", "--match", "%%s*" %% tag_prefix], cwd=root) # --long was added in git-1.5.5 if describe_out is None: raise NotThisMethod("'git describe' failed") describe_out = describe_out.strip() full_out, rc = run_command(GITS, ["rev-parse", "HEAD"], cwd=root) if full_out is None: raise NotThisMethod("'git rev-parse' failed") full_out = full_out.strip() pieces = {} pieces["long"] = full_out pieces["short"] = full_out[:7] # maybe improved later pieces["error"] = None # parse describe_out. It will be like TAG-NUM-gHEX[-dirty] or HEX[-dirty] # TAG might have hyphens. git_describe = describe_out # look for -dirty suffix dirty = git_describe.endswith("-dirty") pieces["dirty"] = dirty if dirty: git_describe = git_describe[:git_describe.rindex("-dirty")] # now we have TAG-NUM-gHEX or HEX if "-" in git_describe: # TAG-NUM-gHEX mo = re.search(r'^(.+)-(\d+)-g([0-9a-f]+)$', git_describe) if not mo: # unparseable. Maybe git-describe is misbehaving? pieces["error"] = ("unable to parse git-describe output: '%%s'" %% describe_out) return pieces # tag full_tag = mo.group(1) if not full_tag.startswith(tag_prefix): if verbose: fmt = "tag '%%s' doesn't start with prefix '%%s'" print(fmt %% (full_tag, tag_prefix)) pieces["error"] = ("tag '%%s' doesn't start with prefix '%%s'" %% (full_tag, tag_prefix)) return pieces pieces["closest-tag"] = full_tag[len(tag_prefix):] # distance: number of commits since tag pieces["distance"] = int(mo.group(2)) # commit: short hex revision ID pieces["short"] = mo.group(3) else: # HEX: no tags pieces["closest-tag"] = None count_out, rc = run_command(GITS, ["rev-list", "HEAD", "--count"], cwd=root) pieces["distance"] = int(count_out) # total number of commits # commit date: see ISO-8601 comment in git_versions_from_keywords() date = run_command(GITS, ["show", "-s", "--format=%%ci", "HEAD"], cwd=root)[0].strip() pieces["date"] = date.strip().replace(" ", "T", 1).replace(" ", "", 1) return pieces def plus_or_dot(pieces): """Return a + if we don't already have one, else return a .""" if "+" in pieces.get("closest-tag", ""): return "." return "+" def render_pep440(pieces): """Build up version string, with post-release "local version identifier". Our goal: TAG[+DISTANCE.gHEX[.dirty]] . Note that if you get a tagged build and then dirty it, you'll get TAG+0.gHEX.dirty Exceptions: 1: no tags. git_describe was just HEX. 0+untagged.DISTANCE.gHEX[.dirty] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += plus_or_dot(pieces) rendered += "%%d.g%%s" %% (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" else: # exception #1 rendered = "0+untagged.%%d.g%%s" %% (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" return rendered def render_pep440_pre(pieces): """TAG[.post.devDISTANCE] -- No -dirty. Exceptions: 1: no tags. 0.post.devDISTANCE """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += ".post.dev%%d" %% pieces["distance"] else: # exception #1 rendered = "0.post.dev%%d" %% pieces["distance"] return rendered def render_pep440_post(pieces): """TAG[.postDISTANCE[.dev0]+gHEX] . The ".dev0" means dirty. Note that .dev0 sorts backwards (a dirty tree will appear "older" than the corresponding clean one), but you shouldn't be releasing software with -dirty anyways. Exceptions: 1: no tags. 0.postDISTANCE[.dev0] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%%d" %% pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += plus_or_dot(pieces) rendered += "g%%s" %% pieces["short"] else: # exception #1 rendered = "0.post%%d" %% pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += "+g%%s" %% pieces["short"] return rendered def render_pep440_old(pieces): """TAG[.postDISTANCE[.dev0]] . The ".dev0" means dirty. Eexceptions: 1: no tags. 0.postDISTANCE[.dev0] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%%d" %% pieces["distance"] if pieces["dirty"]: rendered += ".dev0" else: # exception #1 rendered = "0.post%%d" %% pieces["distance"] if pieces["dirty"]: rendered += ".dev0" return rendered def render_git_describe(pieces): """TAG[-DISTANCE-gHEX][-dirty]. Like 'git describe --tags --dirty --always'. Exceptions: 1: no tags. HEX[-dirty] (note: no 'g' prefix) """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += "-%%d-g%%s" %% (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render_git_describe_long(pieces): """TAG-DISTANCE-gHEX[-dirty]. Like 'git describe --tags --dirty --always -long'. The distance/hash is unconditional. Exceptions: 1: no tags. HEX[-dirty] (note: no 'g' prefix) """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] rendered += "-%%d-g%%s" %% (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render(pieces, style): """Render the given version pieces into the requested style.""" if pieces["error"]: return {"version": "unknown", "full-revisionid": pieces.get("long"), "dirty": None, "error": pieces["error"], "date": None} if not style or style == "default": style = "pep440" # the default if style == "pep440": rendered = render_pep440(pieces) elif style == "pep440-pre": rendered = render_pep440_pre(pieces) elif style == "pep440-post": rendered = render_pep440_post(pieces) elif style == "pep440-old": rendered = render_pep440_old(pieces) elif style == "git-describe": rendered = render_git_describe(pieces) elif style == "git-describe-long": rendered = render_git_describe_long(pieces) else: raise ValueError("unknown style '%%s'" %% style) return {"version": rendered, "full-revisionid": pieces["long"], "dirty": pieces["dirty"], "error": None, "date": pieces.get("date")} def get_versions(): """Get version information or return default if unable to do so.""" # I am in _version.py, which lives at ROOT/VERSIONFILE_SOURCE. If we have # __file__, we can work backwards from there to the root. Some # py2exe/bbfreeze/non-CPython implementations don't do __file__, in which # case we can only use expanded keywords. cfg = get_config() verbose = cfg.verbose try: return git_versions_from_keywords(get_keywords(), cfg.tag_prefix, verbose) except NotThisMethod: pass try: root = os.path.realpath(__file__) # versionfile_source is the relative path from the top of the source # tree (where the .git directory might live) to this file. Invert # this to find the root from __file__. for i in cfg.versionfile_source.split('/'): root = os.path.dirname(root) except NameError: return {"version": "0+unknown", "full-revisionid": None, "dirty": None, "error": "unable to find root of source tree", "date": None} try: pieces = git_pieces_from_vcs(cfg.tag_prefix, root, verbose) return render(pieces, cfg.style) except NotThisMethod: pass try: if cfg.parentdir_prefix: return versions_from_parentdir(cfg.parentdir_prefix, root, verbose) except NotThisMethod: pass return {"version": "0+unknown", "full-revisionid": None, "dirty": None, "error": "unable to compute version", "date": None} ''' @register_vcs_handler("git", "get_keywords") def git_get_keywords(versionfile_abs): """Extract version information from the given file.""" # the code embedded in _version.py can just fetch the value of these # keywords. When used from setup.py, we don't want to import _version.py, # so we do it with a regexp instead. This function is not used from # _version.py. keywords = {} try: f = open(versionfile_abs, "r") for line in f.readlines(): if line.strip().startswith("git_refnames ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["refnames"] = mo.group(1) if line.strip().startswith("git_full ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["full"] = mo.group(1) if line.strip().startswith("git_date ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["date"] = mo.group(1) f.close() except EnvironmentError: pass return keywords @register_vcs_handler("git", "keywords") def git_versions_from_keywords(keywords, tag_prefix, verbose): """Get version information from git keywords.""" if not keywords: raise NotThisMethod("no keywords at all, weird") date = keywords.get("date") if date is not None: # git-2.2.0 added "%cI", which expands to an ISO-8601 -compliant # datestamp. However we prefer "%ci" (which expands to an "ISO-8601 # -like" string, which we must then edit to make compliant), because # it's been around since git-1.5.3, and it's too difficult to # discover which version we're using, or to work around using an # older one. date = date.strip().replace(" ", "T", 1).replace(" ", "", 1) refnames = keywords["refnames"].strip() if refnames.startswith("$Format"): if verbose: print("keywords are unexpanded, not using") raise NotThisMethod("unexpanded keywords, not a git-archive tarball") refs = {r.strip() for r in refnames.strip("()").split(",")} # starting in git-1.8.3, tags are listed as "tag: foo-1.0" instead of # just "foo-1.0". If we see a "tag: " prefix, prefer those. TAG = "tag: " tags = {r[len(TAG):] for r in refs if r.startswith(TAG)} if not tags: # Either we're using git < 1.8.3, or there really are no tags. We use # a heuristic: assume all version tags have a digit. The old git %d # expansion behaves like git log --decorate=short and strips out the # refs/heads/ and refs/tags/ prefixes that would let us distinguish # between branches and tags. By ignoring refnames without digits, we # filter out many common branch names like "release" and # "stabilization", as well as "HEAD" and "master". tags = {r for r in refs if re.search(r'\d', r)} if verbose: print("discarding '%s', no digits" % ",".join(refs - tags)) if verbose: print("likely tags: %s" % ",".join(sorted(tags))) for ref in sorted(tags): # sorting will prefer e.g. "2.0" over "2.0rc1" if ref.startswith(tag_prefix): r = ref[len(tag_prefix):] if verbose: print("picking %s" % r) return {"version": r, "full-revisionid": keywords["full"].strip(), "dirty": False, "error": None, "date": date} # no suitable tags, so version is "0+unknown", but full hex is still there if verbose: print("no suitable tags, using unknown + full revision id") return {"version": "0+unknown", "full-revisionid": keywords["full"].strip(), "dirty": False, "error": "no suitable tags", "date": None} @register_vcs_handler("git", "pieces_from_vcs") def git_pieces_from_vcs(tag_prefix, root, verbose, run_command=run_command): """Get version from 'git describe' in the root of the source tree. This only gets called if the git-archive 'subst' keywords were *not* expanded, and _version.py hasn't already been rewritten with a short version string, meaning we're inside a checked out source tree. """ GITS = ["git"] if sys.platform == "win32": GITS = ["git.cmd", "git.exe"] out, rc = run_command(GITS, ["rev-parse", "--git-dir"], cwd=root, hide_stderr=True) if rc != 0: if verbose: print("Directory %s not under git control" % root) raise NotThisMethod("'git rev-parse --git-dir' returned error") # if there is a tag matching tag_prefix, this yields TAG-NUM-gHEX[-dirty] # if there isn't one, this yields HEX[-dirty] (no NUM) describe_out, rc = run_command(GITS, ["describe", "--tags", "--dirty", "--always", "--long", "--match", "%s*" % tag_prefix], cwd=root) # --long was added in git-1.5.5 if describe_out is None: raise NotThisMethod("'git describe' failed") describe_out = describe_out.strip() full_out, rc = run_command(GITS, ["rev-parse", "HEAD"], cwd=root) if full_out is None: raise NotThisMethod("'git rev-parse' failed") full_out = full_out.strip() pieces = {} pieces["long"] = full_out pieces["short"] = full_out[:7] # maybe improved later pieces["error"] = None # parse describe_out. It will be like TAG-NUM-gHEX[-dirty] or HEX[-dirty] # TAG might have hyphens. git_describe = describe_out # look for -dirty suffix dirty = git_describe.endswith("-dirty") pieces["dirty"] = dirty if dirty: git_describe = git_describe[:git_describe.rindex("-dirty")] # now we have TAG-NUM-gHEX or HEX if "-" in git_describe: # TAG-NUM-gHEX mo = re.search(r'^(.+)-(\d+)-g([0-9a-f]+)$', git_describe) if not mo: # unparseable. Maybe git-describe is misbehaving? pieces["error"] = ("unable to parse git-describe output: '%s'" % describe_out) return pieces # tag full_tag = mo.group(1) if not full_tag.startswith(tag_prefix): if verbose: fmt = "tag '%s' doesn't start with prefix '%s'" print(fmt % (full_tag, tag_prefix)) pieces["error"] = ("tag '%s' doesn't start with prefix '%s'" % (full_tag, tag_prefix)) return pieces pieces["closest-tag"] = full_tag[len(tag_prefix):] # distance: number of commits since tag pieces["distance"] = int(mo.group(2)) # commit: short hex revision ID pieces["short"] = mo.group(3) else: # HEX: no tags pieces["closest-tag"] = None count_out, rc = run_command(GITS, ["rev-list", "HEAD", "--count"], cwd=root) pieces["distance"] = int(count_out) # total number of commits # commit date: see ISO-8601 comment in git_versions_from_keywords() date = run_command(GITS, ["show", "-s", "--format=%ci", "HEAD"], cwd=root)[0].strip() pieces["date"] = date.strip().replace(" ", "T", 1).replace(" ", "", 1) return pieces def do_vcs_install(manifest_in, versionfile_source, ipy): """Git-specific installation logic for Versioneer. For Git, this means creating/changing .gitattributes to mark _version.py for export-subst keyword substitution. """ GITS = ["git"] if sys.platform == "win32": GITS = ["git.cmd", "git.exe"] files = [manifest_in, versionfile_source] if ipy: files.append(ipy) try: me = __file__ if me.endswith(".pyc") or me.endswith(".pyo"): me = os.path.splitext(me)[0] + ".py" versioneer_file = os.path.relpath(me) except NameError: versioneer_file = "versioneer.py" files.append(versioneer_file) present = False try: f = open(".gitattributes", "r") for line in f.readlines(): if line.strip().startswith(versionfile_source): if "export-subst" in line.strip().split()[1:]: present = True f.close() except EnvironmentError: pass if not present: f = open(".gitattributes", "a+") f.write("%s export-subst\n" % versionfile_source) f.close() files.append(".gitattributes") run_command(GITS, ["add", "--"] + files) def versions_from_parentdir(parentdir_prefix, root, verbose): """Try to determine the version from the parent directory name. Source tarballs conventionally unpack into a directory that includes both the project name and a version string. We will also support searching up two directory levels for an appropriately named parent directory """ rootdirs = [] for i in range(3): dirname = os.path.basename(root) if dirname.startswith(parentdir_prefix): return {"version": dirname[len(parentdir_prefix):], "full-revisionid": None, "dirty": False, "error": None, "date": None} else: rootdirs.append(root) root = os.path.dirname(root) # up a level if verbose: print("Tried directories %s but none started with prefix %s" % (str(rootdirs), parentdir_prefix)) raise NotThisMethod("rootdir doesn't start with parentdir_prefix") SHORT_VERSION_PY = """ # This file was generated by 'versioneer.py' (0.17) from # revision-control system data, or from the parent directory name of an # unpacked source archive. Distribution tarballs contain a pre-generated copy # of this file. import json version_json = ''' %s ''' # END VERSION_JSON def get_versions(): return json.loads(version_json) """ def versions_from_file(filename): """Try to determine the version from _version.py if present.""" try: with open(filename) as f: contents = f.read() except EnvironmentError: raise NotThisMethod("unable to read _version.py") mo = re.search(r"version_json = '''\n(.*)''' # END VERSION_JSON", contents, re.M | re.S) if not mo: mo = re.search(r"version_json = '''\r\n(.*)''' # END VERSION_JSON", contents, re.M | re.S) if not mo: raise NotThisMethod("no version_json in _version.py") return json.loads(mo.group(1)) def write_to_version_file(filename, versions): """Write the given version number to the given _version.py file.""" os.unlink(filename) contents = json.dumps(versions, sort_keys=True, indent=1, separators=(",", ": ")) with open(filename, "w") as f: f.write(SHORT_VERSION_PY % contents) print("set {} to '{}'".format(filename, versions["version"])) def plus_or_dot(pieces): """Return a + if we don't already have one, else return a .""" if "+" in pieces.get("closest-tag", ""): return "." return "+" def render_pep440(pieces): """Build up version string, with post-release "local version identifier". Our goal: TAG[+DISTANCE.gHEX[.dirty]] . Note that if you get a tagged build and then dirty it, you'll get TAG+0.gHEX.dirty Exceptions: 1: no tags. git_describe was just HEX. 0+untagged.DISTANCE.gHEX[.dirty] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += plus_or_dot(pieces) rendered += "%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" else: # exception #1 rendered = "0+untagged.%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" return rendered def render_pep440_pre(pieces): """TAG[.post.devDISTANCE] -- No -dirty. Exceptions: 1: no tags. 0.post.devDISTANCE """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += ".post.dev%d" % pieces["distance"] else: # exception #1 rendered = "0.post.dev%d" % pieces["distance"] return rendered def render_pep440_post(pieces): """TAG[.postDISTANCE[.dev0]+gHEX] . The ".dev0" means dirty. Note that .dev0 sorts backwards (a dirty tree will appear "older" than the corresponding clean one), but you shouldn't be releasing software with -dirty anyways. Exceptions: 1: no tags. 0.postDISTANCE[.dev0] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: if ".post" in rendered: # update the existing post tag start = rendered.index(".post") + 5 if len(rendered) == start: rendered += "%d" % pieces["distance"] else: end = start + 1 while end <= len(rendered) and rendered[start:end].isdigit(): end += 1 end -= 1 distance = pieces["distance"] if start != end: distance += int(rendered[start:end]) rendered = rendered[:start] + "%d" % distance + rendered[end:] else: rendered += ".post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += plus_or_dot(pieces) rendered += "g%s" % pieces["short"] else: # exception #1 rendered = "0.post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += "+g%s" % pieces["short"] return rendered def render_pep440_old(pieces): """TAG[.postDISTANCE[.dev0]] . The ".dev0" means dirty. Eexceptions: 1: no tags. 0.postDISTANCE[.dev0] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" else: # exception #1 rendered = "0.post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" return rendered def render_git_describe(pieces): """TAG[-DISTANCE-gHEX][-dirty]. Like 'git describe --tags --dirty --always'. Exceptions: 1: no tags. HEX[-dirty] (note: no 'g' prefix) """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += "-%d-g%s" % (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render_git_describe_long(pieces): """TAG-DISTANCE-gHEX[-dirty]. Like 'git describe --tags --dirty --always -long'. The distance/hash is unconditional. Exceptions: 1: no tags. HEX[-dirty] (note: no 'g' prefix) """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] rendered += "-%d-g%s" % (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render(pieces, style): """Render the given version pieces into the requested style.""" if pieces["error"]: return {"version": "unknown", "full-revisionid": pieces.get("long"), "dirty": None, "error": pieces["error"], "date": None} if not style or style == "default": style = "pep440" # the default if style == "pep440": rendered = render_pep440(pieces) elif style == "pep440-pre": rendered = render_pep440_pre(pieces) elif style == "pep440-post": rendered = render_pep440_post(pieces) elif style == "pep440-old": rendered = render_pep440_old(pieces) elif style == "git-describe": rendered = render_git_describe(pieces) elif style == "git-describe-long": rendered = render_git_describe_long(pieces) else: raise ValueError("unknown style '%s'" % style) return {"version": rendered, "full-revisionid": pieces["long"], "dirty": pieces["dirty"], "error": None, "date": pieces.get("date")} class VersioneerBadRootError(Exception): """The project root directory is unknown or missing key files.""" def get_versions(verbose=False): """Get the project version from whatever source is available. Returns dict with two keys: 'version' and 'full'. """ if "versioneer" in sys.modules: # see the discussion in cmdclass.py:get_cmdclass() del sys.modules["versioneer"] root = get_root() cfg = get_config_from_root(root) assert cfg.VCS is not None, "please set [versioneer]VCS= in setup.cfg" handlers = HANDLERS.get(cfg.VCS) assert handlers, "unrecognized VCS '%s'" % cfg.VCS verbose = verbose or cfg.verbose assert cfg.versionfile_source is not None, \ "please set versioneer.versionfile_source" assert cfg.tag_prefix is not None, "please set versioneer.tag_prefix" versionfile_abs = os.path.join(root, cfg.versionfile_source) # extract version from first of: _version.py, VCS command (e.g. 'git # describe'), parentdir. This is meant to work for developers using a # source checkout, for users of a tarball created by 'setup.py sdist', # and for users of a tarball/zipball created by 'git archive' or github's # download-from-tag feature or the equivalent in other VCSes. get_keywords_f = handlers.get("get_keywords") from_keywords_f = handlers.get("keywords") if get_keywords_f and from_keywords_f: try: keywords = get_keywords_f(versionfile_abs) ver = from_keywords_f(keywords, cfg.tag_prefix, verbose) if verbose: print("got version from expanded keyword %s" % ver) return ver except NotThisMethod: pass try: ver = versions_from_file(versionfile_abs) if verbose: print("got version from file {} {}".format(versionfile_abs, ver)) return ver except NotThisMethod: pass from_vcs_f = handlers.get("pieces_from_vcs") if from_vcs_f: try: pieces = from_vcs_f(cfg.tag_prefix, root, verbose) ver = render(pieces, cfg.style) if verbose: print("got version from VCS %s" % ver) return ver except NotThisMethod: pass try: if cfg.parentdir_prefix: ver = versions_from_parentdir(cfg.parentdir_prefix, root, verbose) if verbose: print("got version from parentdir %s" % ver) return ver except NotThisMethod: pass if verbose: print("unable to compute version") return {"version": "0+unknown", "full-revisionid": None, "dirty": None, "error": "unable to compute version", "date": None} def get_version(): """Get the short version string for this project.""" return get_versions()["version"] def get_cmdclass(): """Get the custom setuptools/distutils subclasses used by Versioneer.""" if "versioneer" in sys.modules: del sys.modules["versioneer"] # this fixes the "python setup.py develop" case (also 'install' and # 'easy_install .'), in which subdependencies of the main project are # built (using setup.py bdist_egg) in the same python process. Assume # a main project A and a dependency B, which use different versions # of Versioneer. A's setup.py imports A's Versioneer, leaving it in # sys.modules by the time B's setup.py is executed, causing B to run # with the wrong versioneer. Setuptools wraps the sub-dep builds in a # sandbox that restores sys.modules to it's pre-build state, so the # parent is protected against the child's "import versioneer". By # removing ourselves from sys.modules here, before the child build # happens, we protect the child from the parent's versioneer too. # Also see https://github.com/warner/python-versioneer/issues/52 cmds = {} # we add "version" to both distutils and setuptools from distutils.core import Command class cmd_version(Command): description = "report generated version string" user_options = [] boolean_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): vers = get_versions(verbose=True) print("Version: %s" % vers["version"]) print(" full-revisionid: %s" % vers.get("full-revisionid")) print(" dirty: %s" % vers.get("dirty")) print(" date: %s" % vers.get("date")) if vers["error"]: print(" error: %s" % vers["error"]) cmds["version"] = cmd_version # we override "build_py" in both distutils and setuptools # # most invocation pathways end up running build_py: # distutils/build -> build_py # distutils/install -> distutils/build ->.. # setuptools/bdist_wheel -> distutils/install ->.. # setuptools/bdist_egg -> distutils/install_lib -> build_py # setuptools/install -> bdist_egg ->.. # setuptools/develop -> ? # pip install: # copies source tree to a tempdir before running egg_info/etc # if .git isn't copied too, 'git describe' will fail # then does setup.py bdist_wheel, or sometimes setup.py install # setup.py egg_info -> ? # we override different "build_py" commands for both environments if "setuptools" in sys.modules: from setuptools.command.build_py import build_py as _build_py else: from distutils.command.build_py import build_py as _build_py class cmd_build_py(_build_py): def run(self): root = get_root() cfg = get_config_from_root(root) versions = get_versions() _build_py.run(self) # now locate _version.py in the new build/ directory and replace # it with an updated value if cfg.versionfile_build: target_versionfile = os.path.join(self.build_lib, cfg.versionfile_build) print("UPDATING %s" % target_versionfile) write_to_version_file(target_versionfile, versions) cmds["build_py"] = cmd_build_py if "cx_Freeze" in sys.modules: # cx_freeze enabled? from cx_Freeze.dist import build_exe as _build_exe # nczeczulin reports that py2exe won't like the pep440-style string # as FILEVERSION, but it can be used for PRODUCTVERSION, e.g. # setup(console=[{ # "version": versioneer.get_version().split("+", 1)[0], # FILEVERSION # "product_version": versioneer.get_version(), # ... class cmd_build_exe(_build_exe): def run(self): root = get_root() cfg = get_config_from_root(root) versions = get_versions() target_versionfile = cfg.versionfile_source print("UPDATING %s" % target_versionfile) write_to_version_file(target_versionfile, versions) _build_exe.run(self) os.unlink(target_versionfile) with open(cfg.versionfile_source, "w") as f: LONG = LONG_VERSION_PY[cfg.VCS] f.write(LONG % {"DOLLAR": "$", "STYLE": cfg.style, "TAG_PREFIX": cfg.tag_prefix, "PARENTDIR_PREFIX": cfg.parentdir_prefix, "VERSIONFILE_SOURCE": cfg.versionfile_source, }) cmds["build_exe"] = cmd_build_exe del cmds["build_py"] if 'py2exe' in sys.modules: # py2exe enabled? try: from py2exe.distutils_buildexe import py2exe as _py2exe # py3 except ImportError: from py2exe.build_exe import py2exe as _py2exe # py2 class cmd_py2exe(_py2exe): def run(self): root = get_root() cfg = get_config_from_root(root) versions = get_versions() target_versionfile = cfg.versionfile_source print("UPDATING %s" % target_versionfile) write_to_version_file(target_versionfile, versions) _py2exe.run(self) os.unlink(target_versionfile) with open(cfg.versionfile_source, "w") as f: LONG = LONG_VERSION_PY[cfg.VCS] f.write(LONG % {"DOLLAR": "$", "STYLE": cfg.style, "TAG_PREFIX": cfg.tag_prefix, "PARENTDIR_PREFIX": cfg.parentdir_prefix, "VERSIONFILE_SOURCE": cfg.versionfile_source, }) cmds["py2exe"] = cmd_py2exe # we override different "sdist" commands for both environments if "setuptools" in sys.modules: from setuptools.command.sdist import sdist as _sdist else: from distutils.command.sdist import sdist as _sdist class cmd_sdist(_sdist): def run(self): versions = get_versions() self._versioneer_generated_versions = versions # unless we update this, the command will keep using the old # version self.distribution.metadata.version = versions["version"] return _sdist.run(self) def make_release_tree(self, base_dir, files): root = get_root() cfg = get_config_from_root(root) _sdist.make_release_tree(self, base_dir, files) # now locate _version.py in the new base_dir directory # (remembering that it may be a hardlink) and replace it with an # updated value target_versionfile = os.path.join(base_dir, cfg.versionfile_source) print("UPDATING %s" % target_versionfile) write_to_version_file(target_versionfile, self._versioneer_generated_versions) cmds["sdist"] = cmd_sdist return cmds CONFIG_ERROR = """ setup.cfg is missing the necessary Versioneer configuration. You need a section like: [versioneer] VCS = git style = pep440 versionfile_source = src/myproject/_version.py versionfile_build = myproject/_version.py tag_prefix = parentdir_prefix = myproject- You will also need to edit your setup.py to use the results: import versioneer setup(version=versioneer.get_version(), cmdclass=versioneer.get_cmdclass(), ...) Please read the docstring in ./versioneer.py for configuration instructions, edit setup.cfg, and re-run the installer or 'python versioneer.py setup'. """ SAMPLE_CONFIG = """ # See the docstring in versioneer.py for instructions. Note that you must # re-run 'versioneer.py setup' after changing this section, and commit the # resulting files. [versioneer] #VCS = git #style = pep440 #versionfile_source = #versionfile_build = #tag_prefix = #parentdir_prefix = """ INIT_PY_SNIPPET = """ from ._version import get_versions __version__ = get_versions()['version'] del get_versions """ def do_setup(): """Main VCS-independent setup function for installing Versioneer.""" root = get_root() try: cfg = get_config_from_root(root) except (EnvironmentError, configparser.NoSectionError, configparser.NoOptionError) as e: if isinstance(e, (EnvironmentError, configparser.NoSectionError)): print("Adding sample versioneer config to setup.cfg", file=sys.stderr) with open(os.path.join(root, "setup.cfg"), "a") as f: f.write(SAMPLE_CONFIG) print(CONFIG_ERROR, file=sys.stderr) return 1 print(" creating %s" % cfg.versionfile_source) with open(cfg.versionfile_source, "w") as f: LONG = LONG_VERSION_PY[cfg.VCS] f.write(LONG % {"DOLLAR": "$", "STYLE": cfg.style, "TAG_PREFIX": cfg.tag_prefix, "PARENTDIR_PREFIX": cfg.parentdir_prefix, "VERSIONFILE_SOURCE": cfg.versionfile_source, }) ipy = os.path.join(os.path.dirname(cfg.versionfile_source), "__init__.py") if os.path.exists(ipy): try: with open(ipy, "r") as f: old = f.read() except EnvironmentError: old = "" if INIT_PY_SNIPPET not in old: print(" appending to %s" % ipy) with open(ipy, "a") as f: f.write(INIT_PY_SNIPPET) else: print(" %s unmodified" % ipy) else: print(" %s doesn't exist, ok" % ipy) ipy = None # Make sure both the top-level "versioneer.py" and versionfile_source # (PKG/_version.py, used by runtime code) are in MANIFEST.in, so # they'll be copied into source distributions. Pip won't be able to # install the package without this. manifest_in = os.path.join(root, "MANIFEST.in") simple_includes = set() try: with open(manifest_in, "r") as f: for line in f: if line.startswith("include "): for include in line.split()[1:]: simple_includes.add(include) except EnvironmentError: pass # That doesn't cover everything MANIFEST.in can do # (http://docs.python.org/2/distutils/sourcedist.html#commands), so # it might give some false negatives. Appending redundant 'include' # lines is safe, though. if "versioneer.py" not in simple_includes: print(" appending 'versioneer.py' to MANIFEST.in") with open(manifest_in, "a") as f: f.write("include versioneer.py\n") else: print(" 'versioneer.py' already in MANIFEST.in") if cfg.versionfile_source not in simple_includes: print(" appending versionfile_source ('%s') to MANIFEST.in" % cfg.versionfile_source) with open(manifest_in, "a") as f: f.write("include %s\n" % cfg.versionfile_source) else: print(" versionfile_source already in MANIFEST.in") # Make VCS-specific changes. For git, this means creating/changing # .gitattributes to mark _version.py for export-subst keyword # substitution. do_vcs_install(manifest_in, cfg.versionfile_source, ipy) return 0 def scan_setup_py(): """Validate the contents of setup.py against Versioneer's expectations.""" found = set() setters = False errors = 0 with open("setup.py", "r") as f: for line in f.readlines(): if "import versioneer" in line: found.add("import") if "versioneer.get_cmdclass()" in line: found.add("cmdclass") if "versioneer.get_version()" in line: found.add("get_version") if "versioneer.VCS" in line: setters = True if "versioneer.versionfile_source" in line: setters = True if len(found) != 3: print("") print("Your setup.py appears to be missing some important items") print("(but I might be wrong). Please make sure it has something") print("roughly like the following:") print("") print(" import versioneer") print(" setup( version=versioneer.get_version(),") print(" cmdclass=versioneer.get_cmdclass(), ...)") print("") errors += 1 if setters: print("You should remove lines like 'versioneer.VCS = ' and") print("'versioneer.versionfile_source = ' . This configuration") print("now lives in setup.cfg, and should be removed from setup.py") print("") errors += 1 return errors if __name__ == "__main__": cmd = sys.argv[1] if cmd == "setup": errors = do_setup() errors += scan_setup_py() if errors: sys.exit(1)
scikit-build/ninja-python-distributions
versioneer.py
Python
apache-2.0
69,301
[ "Brian" ]
908af127bf45df4a83917278b0c728785cc81ed8c4330d014d44d091d72f0e57