Dataset Viewer
The dataset viewer is not available for this subset.
Cannot get the split names for the config 'default' of the dataset.
Exception:    SplitsNotFoundError
Message:      The split names could not be parsed from the dataset config.
Traceback:    Traceback (most recent call last):
                File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 289, in get_dataset_config_info
                  for split_generator in builder._split_generators(
                                         ^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/webdataset/webdataset.py", line 81, in _split_generators
                  first_examples = list(islice(pipeline, self.NUM_EXAMPLES_FOR_FEATURES_INFERENCE))
                                   ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/webdataset/webdataset.py", line 47, in _get_pipeline_from_tar
                  extracted_file_path = streaming_download_manager.extract(f"memory://{filename}")
                                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/download/streaming_download_manager.py", line 121, in extract
                  urlpaths = map_nested(self._extract, url_or_urls, map_tuple=True)
                             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/utils/py_utils.py", line 493, in map_nested
                  mapped = function(data_struct)
                           ^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/download/streaming_download_manager.py", line 131, in _extract
                  raise NotImplementedError(
              NotImplementedError: Extraction protocol for TAR archives like 'memory://train/shard-000209.tar.gz' is not implemented in streaming mode. Please use `dl_manager.iter_archive` instead.
              
              Example usage:
              
              	url = dl_manager.download(url)
              	tar_archive_iterator = dl_manager.iter_archive(url)
              
              	for filename, file in tar_archive_iterator:
              		...
              
              The above exception was the direct cause of the following exception:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/split_names.py", line 65, in compute_split_names_from_streaming_response
                  for split in get_dataset_split_names(
                               ^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 343, in get_dataset_split_names
                  info = get_dataset_config_info(
                         ^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 294, in get_dataset_config_info
                  raise SplitsNotFoundError("The split names could not be parsed from the dataset config.") from err
              datasets.inspect.SplitsNotFoundError: The split names could not be parsed from the dataset config.

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

BMS Molecular Translation - WebDataset Shards

This dataset contains pre-processed WebDataset shards of the BMS Molecular Translation dataset, optimized for fast data loading during model training.

Dataset Summary

  • Total Size: 3.8 GB
  • Training shards: 236 files (3.7 GB) - 2.36M molecular structure images with SMILES
  • Validation shards: 5 files (0.1 GB) - 48K samples for model validation
  • Test shards: 3 files (0.0 GB) - 24K held-out samples for final evaluation

Format

Shards are in WebDataset format:

  • Sequential tar archives for fast I/O
  • 10,000 samples per shard
  • Training data pre-shuffled
  • Val/test data in original order
  • Tar files are preserved (not extracted) - perfect for WebDataset!

Usage

Download the Dataset

# Using HuggingFace Hub
pip install huggingface_hub

# Download entire dataset
python download_shards_from_huggingface.py --username jeffdekerj

# Or use HuggingFace Hub directly
from huggingface_hub import snapshot_download
snapshot_download(
    repo_id="jeffdekerj/bms-images-shards",
    repo_type="dataset",
    local_dir=".data/webdataset_shards"
)

Load with WebDataset

from webdataset_loader import BMSWebDataset
from transformers import AutoProcessor

processor = AutoProcessor.from_pretrained("lightonai/LightOnOCR-1B-1025")

train_dataset = BMSWebDataset(
    shard_dir=".data/webdataset_shards/train/",
    processor=processor,
    user_prompt="Return the SMILES string for this molecule.",
    shuffle_buffer=1000,
)

Train Your Model

python finetune_lightocr.py \
  --train_shards .data/webdataset_shards/train/ \
  --val_shards .data/webdataset_shards/val/ \
  --per_device_train_batch_size 4 \
  --num_train_epochs 3 \
  --fp16

Benefits

  • 2-5x faster data loading vs individual files
  • Better I/O performance for network filesystems
  • Lower overhead with sequential reads
  • Built-in shuffling without memory overhead
  • Tar files preserved - no auto-extraction like Kaggle

Source Repository

GitHub: https://github.com/JeffDeKerj/lightocr

Complete documentation available in the repository:

  • docs/WEBDATASET_GUIDE.md - Complete usage guide
  • docs/HUGGINGFACE_GUIDE.md - HuggingFace-specific guide
  • docs/FINETUNE_GUIDE.md - Fine-tuning guide
  • README.md - Project overview

Original Dataset

Based on the BMS Molecular Translation competition dataset: https://www.kaggle.com/c/bms-molecular-translation

Citation

If you use this dataset, please cite both:

  1. The original BMS Molecular Translation competition
  2. The LightOnOCR model (if applicable to your work)

License

CC0: Public Domain. Free to use for any purpose.

Downloads last month
12