File size: 5,363 Bytes
15254d1 afd61d6 15254d1 d1bc69e 15254d1 d1bc69e afd61d6 fcca0e5 afd61d6 fcca0e5 b630bcb 36ab200 b630bcb 36ab200 b74e038 869e15d b74e038 869e15d 6053cf5 004e89e 6053cf5 004e89e 15254d1 afd61d6 b630bcb b74e038 6053cf5 15254d1 faa55bd 6f6ac04 faa55bd a76d0fd faa55bd a76d0fd faa55bd 6f6ac04 faa55bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
---
dataset_info:
- config_name: humaneval-jl
features:
- name: name
dtype: string
- name: language
dtype: string
- name: prompt
dtype: string
- name: doctests
dtype: string
- name: original
dtype: string
- name: prompt_terminology
dtype: string
- name: tests
dtype: string
- name: stop_tokens
dtype: string
splits:
- name: test
num_bytes: 167490
num_examples: 159
download_size: 66247
dataset_size: 167490
- config_name: humaneval-lua
features:
- name: name
dtype: string
- name: language
dtype: string
- name: prompt
dtype: string
- name: doctests
dtype: string
- name: original
dtype: string
- name: prompt_terminology
dtype: string
- name: tests
dtype: string
- name: stop_tokens
dtype: string
splits:
- name: test
num_bytes: 184572
num_examples: 161
download_size: 66774
dataset_size: 184572
- config_name: humaneval-ml
features:
- name: name
dtype: string
- name: language
dtype: string
- name: prompt
dtype: string
- name: doctests
dtype: string
- name: original
dtype: string
- name: prompt_terminology
dtype: string
- name: tests
dtype: string
- name: stop_tokens
dtype: string
splits:
- name: test
num_bytes: 170283
num_examples: 155
download_size: 65815
dataset_size: 170283
- config_name: humaneval-r
features:
- name: name
dtype: string
- name: language
dtype: string
- name: prompt
dtype: string
- name: doctests
dtype: string
- name: original
dtype: string
- name: prompt_terminology
dtype: string
- name: tests
dtype: string
- name: stop_tokens
dtype: string
splits:
- name: test
num_bytes: 199744
num_examples: 161
download_size: 68771
dataset_size: 199744
- config_name: humaneval-rkt
features:
- name: name
dtype: string
- name: language
dtype: string
- name: prompt
dtype: string
- name: doctests
dtype: string
- name: original
dtype: string
- name: prompt_terminology
dtype: string
- name: tests
dtype: string
- name: stop_tokens
dtype: string
splits:
- name: test
num_bytes: 196214
num_examples: 161
download_size: 67226
dataset_size: 196214
configs:
- config_name: humaneval-jl
data_files:
- split: test
path: humaneval-jl/test-*
- config_name: humaneval-lua
data_files:
- split: test
path: humaneval-lua/test-*
- config_name: humaneval-ml
data_files:
- split: test
path: humaneval-ml/test-*
- config_name: humaneval-r
data_files:
- split: test
path: humaneval-r/test-*
- config_name: humaneval-rkt
data_files:
- split: test
path: humaneval-rkt/test-*
---
# Dataset Card for MultiPL-E-fixed (OCaml, Lua, R, Racket, Julia)
This dataset provides corrections for the **OCaml, Lua, R, Racket, and Julia** portions of the [nuprl/MultiPL-E](https://github.com/nuprl/MultiPL-E) benchmark.
### Original Dataset Information
- **Repository:** https://github.com/nuprl/MultiPL-E
- **Paper:** https://ieeexplore.ieee.org/abstract/document/10103177
- **Original Point of Contact:** [email protected], [email protected], [email protected]
### This Version
- **Repository:** https://github.com/jsbyun121/MultiPL-E-fixed
---
## Dataset Summary
MultiPL-E is a large-scale dataset for evaluating code generation models across 22 programming languages.
However, analysis of the dataset revealed several logical errors, inconsistencies, and language-specific issues in the generated prompts and test cases. These issues can lead to inaccurate evaluation scores by unfairly penalizing models for correctly identifying flaws in the prompts.
This repository provides a **corrected version** of the dataset specifically for **OCaml, Lua, R, Racket, and Julia**. The goal of this version is to provide a more reliable and accurate benchmark for evaluating Large Language Models on these languages.
## Summary of Corrections
A detailed table of all corrections (logical problems, prompt ambiguities, and language-specific fixes) is available here:
🔗 [Google Sheet of Corrections](https://docs.google.com/spreadsheets/d/1lnDubSv39__ZuSFmnnXoXCUuPS85jcFScS9hlzI9ohI/edit?usp=sharing)
## Using This Dataset
This corrected dataset is designed to be a **drop-in replacement** for the official MultiPL-E data for OCaml, Lua, R, Racket, and Julia.
To use it, simply replace the original `humaneval-[lang]` files with the corrected versions provided in this repository. The data structure remains compatible with standard evaluation frameworks.
## Citation and Attribution
If you use this corrected version of the dataset in your work, we ask that you please cite the original MultiPL-E paper and also acknowledge this repository for the corrections.
**Original Paper:**
```bibtex
@inproceedings{cassano2023multipl,
title={MultiPL-E: A Scalable and Extensible Approach to Benchmarking Neural Code Generation},
author={Cassano, Federico and Gouwar, John and Nguyen, Daniel and Nguyen, Tuan and Phothilimthana, Phitchaya and Pinckney, David and Anderson, Carolyn and Feldman, Michael and Guha, Arjun},
booktitle={2023 IEEE/ACM 20th International Conference on Mining Software Repositories (MSR)},
pages={707--719},
year={2023},
organization={IEEE}
}
|