Dataset Viewer
Auto-converted to Parquet
name
stringlengths
15
44
language
stringclasses
1 value
prompt
stringlengths
104
1.33k
doctests
stringclasses
1 value
original
stringlengths
130
159
prompt_terminology
stringclasses
1 value
tests
stringlengths
125
1.69k
stop_tokens
stringclasses
1 value
HumanEval_0_has_close_elements
jl
""" Check if in given vector of numbers, are any two numbers closer to each other than given threshold. >>> has_close_elements([1.0, 2.0, 3.0], 0.5) false >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) true""" function has_close_elements(numbers::Vector{Float64}, threshold::Float64)::Bool
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_0_has_close_elements.py
reworded
using Test @testset begin candidate = has_close_elements; @test(candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == true) @test(candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == false) @test(candidate([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == true) @test(candidate([1.0, 2.0, 5.9, 4.0, 5.0], 0.8) == false) @test(candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1) == true) @test(candidate([1.1, 2.2, 3.1, 4.1, 5.1], 1.0) == true) @test(candidate([1.1, 2.2, 3.1, 4.1, 5.1], 0.5) == false) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_1_separate_paren_groups
jl
""" Input to this function is a string containing multiple groups of nested parentheses. Your goal is to separate those group into separate strings and return the vector of those. Separate groups are balanced (each open brace is properly closed) and not nested within each other Ignore any spaces in the input string. >>> separate_paren_groups("( ) (( )) (( )( ))") ["()", "(())", "(()())"]""" function separate_paren_groups(paren_string::String)::Vector{String}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_1_separate_paren_groups.py
reworded
using Test @testset begin candidate = separate_paren_groups; @test(candidate("(()()) ((())) () ((())()())") == ["(()())", "((()))", "()", "((())()())"]) @test(candidate("() (()) ((())) (((())))") == ["()", "(())", "((()))", "(((())))"]) @test(candidate("(()(())((())))") == ["(()(())((())))"]) @test(candidate("( ) (( )) (( )( ))") == ["()", "(())", "(()())"]) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_2_truncate_number
jl
""" Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). Return the decimal part of the number. >>> truncate_number(3.5) 0.5""" function truncate_number(number::Float64)::Float64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_2_truncate_number.py
reworded
using Test @testset begin candidate = truncate_number; @test(candidate(3.5) == 0.5) @test(candidate(1.25) == 0.25) @test(candidate(123.0) == 0.0) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_3_below_zero
jl
""" You're given a vector of deposit and withdrawal operations on a bank account that starts with zero balance. Your task is to detect if at any point the balance of account fallls below zero, and at that point function should return true. Otherwise it should return false. >>> below_zero([1, 2, 3]) false >>> below_zero([1, 2, -4, 5]) true""" function below_zero(operations::Vector{Int64})::Bool
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_3_below_zero.py
reworded
using Test @testset begin candidate = below_zero; @test(candidate(Vector{Int64}([])) == false) @test(candidate([1, 2, -3, 1, 2, -3]) == false) @test(candidate([1, 2, -4, 5, 6]) == true) @test(candidate([1, -1, 2, -2, 5, -5, 4, -4]) == false) @test(candidate([1, -1, 2, -2, 5, -5, 4, -5]) == true) @test(candidate([1, -2, 2, -2, 5, -5, 4, -4]) == true) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_4_mean_absolute_deviation
jl
""" For a given vector of input numbers, calculate Mean Absolute Deviation around the mean of this dataset. Mean Absolute Deviation is the average absolute difference between each element and a centerpoint (mean in this case): MAD = average | x - x_mean | >>> mean_absolute_deviation([1.0, 2.0, 3.0, 4.0]) 1.0""" function mean_absolute_deviation(numbers::Vector{Float64})::Float64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_4_mean_absolute_deviation.py
reworded
using Test @testset begin candidate = mean_absolute_deviation; @test(candidate([1.0, 2.0]) == 0.5) @test(candidate([1.0, 2.0, 3.0, 4.0]) == 1.0) @test(candidate([1.0, 2.0, 3.0, 4.0, 5.0]) == 1.2) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_5_intersperse
jl
""" Insert a number 'delimeter' between every two consecutive elements of input vector `numbers' >>> intersperse([], 4) [] >>> intersperse([1, 2, 3], 4) [1, 4, 2, 4, 3]""" function intersperse(numbers::Vector{Int64}, delimeter::Int64)::Vector{Int64}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_5_intersperse.py
reworded
using Test @testset begin candidate = intersperse; @test(candidate(Vector{Int64}([]), 7) == Vector{Int64}([])) @test(candidate([5, 6, 3, 2], 8) == [5, 8, 6, 8, 3, 8, 2]) @test(candidate([2, 2, 2], 2) == [2, 2, 2, 2, 2]) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_6_parse_nested_parens
jl
""" Input to this function is a string represented multiple groups for nested parentheses separated by spaces. For each of the group, output the deepest level of nesting of parentheses. E.g. (()()) has maximum two levels of nesting while ((())) has three. >>> parse_nested_parens("(()()) ((())) () ((())()())") [2, 3, 1, 3]""" function parse_nested_parens(paren_string::String)::Vector{Int64}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_6_parse_nested_parens.py
reworded
using Test @testset begin candidate = parse_nested_parens; @test(candidate("(()()) ((())) () ((())()())") == [2, 3, 1, 3]) @test(candidate("() (()) ((())) (((())))") == [1, 2, 3, 4]) @test(candidate("(()(())((())))") == [4]) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_7_filter_by_substring
jl
""" Filter an input vector of strings only for ones that contain given substring >>> filter_by_substring([], "a") [] >>> filter_by_substring(["abc", "bacd", "cde", "array"], "a") ["abc", "bacd", "array"]""" function filter_by_substring(strings::Vector{String}, substring::String)::Vector{String}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_7_filter_by_substring.py
reworded
using Test @testset begin candidate = filter_by_substring; @test(candidate(Vector{String}([]), "john") == Vector{String}([])) @test(candidate(["xxx", "asd", "xxy", "john doe", "xxxAAA", "xxx"], "xxx") == ["xxx", "xxxAAA", "xxx"]) @test(candidate(["xxx", "asd", "aaaxxy", "john doe", "xxxAAA", "xxx"], "xx") == ["xxx", "aaaxxy", "xxxAAA", "xxx"]) @test(candidate(["grunt", "trumpet", "prune", "gruesome"], "run") == ["grunt", "prune"]) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_8_sum_product
jl
""" For a given vector of integers, return a tuple consisting of a sum and a product of all the integers in a vector. Empty sum should be equal to 0 and empty product should be equal to 1. >>> sum_product([]) (0, 1) >>> sum_product([1, 2, 3, 4]) (10, 24)""" function sum_product(numbers::Vector{Int64})::Tuple{Int64, Int64}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_8_sum_product.py
reworded
using Test @testset begin candidate = sum_product; @test(candidate(Vector{Int64}([])) == (0, 1)) @test(candidate([1, 1, 1]) == (3, 1)) @test(candidate([100, 0]) == (100, 0)) @test(candidate([3, 5, 7]) == (15, 105)) @test(candidate([10]) == (10, 10)) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_9_rolling_max
jl
""" From a given vector of integers, generate a vector of rolling maximum element found until given moment in the sequence. >>> rolling_max([1, 2, 3, 2, 3, 4, 2]) [1, 2, 3, 3, 3, 4, 4]""" function rolling_max(numbers::Vector{Int64})::Vector{Int64}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_9_rolling_max.py
reworded
using Test @testset begin candidate = rolling_max; @test(candidate(Vector{Int64}([])) == Vector{Int64}([])) @test(candidate([1, 2, 3, 4]) == [1, 2, 3, 4]) @test(candidate([4, 3, 2, 1]) == [4, 4, 4, 4]) @test(candidate([3, 2, 3, 100, 3]) == [3, 3, 3, 100, 100]) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_10_make_palindrome
jl
""" Find the shortest palindrome that begins with a supplied string. Algorithm idea is simple: - Find the longest postfix of supplied string that is a palindrome. - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix. >>> make_palindrome("") "" >>> make_palindrome("cat") "catac" >>> make_palindrome("cata") "catac" """ function make_palindrome(string::String)::String
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_10_make_palindrome.py
reworded
using Test @testset begin candidate = make_palindrome; @test(candidate("") == "") @test(candidate("x") == "x") @test(candidate("xyz") == "xyzyx") @test(candidate("xyx") == "xyx") @test(candidate("jerry") == "jerryrrej") end
['\nfunction' '\nmacro' '\n\n']
HumanEval_11_string_xor
jl
""" Input are two strings a and b consisting only of 1s and 0s. Perform binary XOR on these inputs and return result also as a string. >>> string_xor("010", "110") "100" """ function string_xor(a::String, b::String)::String
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_11_string_xor.py
reworded
using Test @testset begin candidate = string_xor; @test(candidate("111000", "101010") == "010010") @test(candidate("1", "1") == "0") @test(candidate("0101", "0000") == "0101") end
['\nfunction' '\nmacro' '\n\n']
HumanEval_12_longest
jl
""" Out of vector of strings, return the longest one. Return the first one in case of multiple strings of the same length. Return nothing in case the input vector is empty. >>> longest([]) nothing >>> longest(["a", "b", "c"]) "a" >>> longest(["a", "bb", "ccc"]) "ccc" """ function longest(strings::Vector{String})::Union{String, Nothing}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_12_longest.py
reworded
using Test @testset begin candidate = longest; @test(candidate(Vector{String}([])) == nothing) @test(candidate(["x", "y", "z"]) == "x") @test(candidate(["x", "yyy", "zzzz", "www", "kkkk", "abc"]) == "zzzz") end
['\nfunction' '\nmacro' '\n\n']
HumanEval_13_greatest_common_divisor
jl
""" Return a greatest common divisor of two integers a and b >>> greatest_common_divisor(3, 5) 1 >>> greatest_common_divisor(25, 15) 5""" function greatest_common_divisor(a::Int64, b::Int64)::Int64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_13_greatest_common_divisor.py
reworded
using Test @testset begin candidate = greatest_common_divisor; @test(candidate(3, 7) == 1) @test(candidate(10, 15) == 5) @test(candidate(49, 14) == 7) @test(candidate(144, 60) == 12) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_14_all_prefixes
jl
""" Return vector of all prefixes from shortest to longest of the input string >>> all_prefixes("abc") ["a", "ab", "abc"]""" function all_prefixes(string::String)::Vector{String}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_14_all_prefixes.py
reworded
using Test @testset begin candidate = all_prefixes; @test(candidate("") == Vector{String}([])) @test(candidate("asdfgh") == ["a", "as", "asd", "asdf", "asdfg", "asdfgh"]) @test(candidate("WWW") == ["W", "WW", "WWW"]) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_15_string_sequence
jl
""" Return a string containing space-delimited numbers starting from 0 upto n inclusive. >>> string_sequence(0) "0" >>> string_sequence(5) "0 1 2 3 4 5" """ function string_sequence(n::Int64)::String
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_15_string_sequence.py
reworded
using Test @testset begin candidate = string_sequence; @test(candidate(0) == "0") @test(candidate(3) == "0 1 2 3") @test(candidate(10) == "0 1 2 3 4 5 6 7 8 9 10") end
['\nfunction' '\nmacro' '\n\n']
HumanEval_16_count_distinct_characters
jl
""" Given a string, find out how many distinct characters (regardless of case) does it consist of >>> count_distinct_characters("xyzXYZ") 3 >>> count_distinct_characters("Jerry") 4""" function count_distinct_characters(string::String)::Int64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_16_count_distinct_characters.py
reworded
using Test @testset begin candidate = count_distinct_characters; @test(candidate("") == 0) @test(candidate("abcde") == 5) @test(candidate("abcdecadeCADE") == 5) @test(candidate("aaaaAAAAaaaa") == 1) @test(candidate("Jerry jERRY JeRRRY") == 5) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_17_parse_music
jl
""" Input to this function is a string representing musical notes in a special ASCII format. Your task is to parse this string and return vector of integers corresponding to how many beats does each not last. Here is a legend: 'o' - whole note, lasts four beats 'o|' - half note, lasts two beats '.|' - quater note, lasts one beat >>> parse_music("o o| .| o| o| .| .| .| .| o o") [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]""" function parse_music(music_string::String)::Vector{Int64}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_17_parse_music.py
reworded
using Test @testset begin candidate = parse_music; @test(candidate("") == Vector{Int64}([])) @test(candidate("o o o o") == [4, 4, 4, 4]) @test(candidate(".| .| .| .|") == [1, 1, 1, 1]) @test(candidate("o| o| .| .| o o o o") == [2, 2, 1, 1, 4, 4, 4, 4]) @test(candidate("o| .| o| .| o o| o o|") == [2, 1, 2, 1, 4, 2, 4, 2]) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_18_how_many_times
jl
""" Find how many times a given substring can be found in the original string. Count overlaping cases. >>> how_many_times("", "a") 0 >>> how_many_times("aaa", "a") 3 >>> how_many_times("aaaa", "aa") 3""" function how_many_times(string::String, substring::String)::Int64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_18_how_many_times.py
reworded
using Test @testset begin candidate = how_many_times; @test(candidate("", "x") == 0) @test(candidate("xyxyxyx", "x") == 4) @test(candidate("cacacacac", "cac") == 4) @test(candidate("john doe", "john") == 1) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_19_sort_numbers
jl
""" Input is a space-delimited string of numberals from 'zero' to 'nine'. Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'. Return the string with numbers sorted from smallest to largest >>> sort_numbers("three one five") "one three five" """ function sort_numbers(numbers::String)::String
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_19_sort_numbers.py
reworded
using Test @testset begin candidate = sort_numbers; @test(candidate("") == "") @test(candidate("three") == "three") @test(candidate("three five nine") == "three five nine") @test(candidate("five zero four seven nine eight") == "zero four five seven eight nine") @test(candidate("six five four three two one zero") == "zero one two three four five six") end
['\nfunction' '\nmacro' '\n\n']
HumanEval_20_find_closest_elements
jl
""" From a supplied vector of numbers (of length at least two) select and return two that are the closest to each other and return them in order (smaller number, larger number). >>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) (2.0, 2.2) >>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) (2.0, 2.0)""" function find_closest_elements(numbers::Vector{Float64})::Tuple{Float64, Float64}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_20_find_closest_elements.py
reworded
using Test @testset begin candidate = find_closest_elements; @test(candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2]) == (3.9, 4.0)) @test(candidate([1.0, 2.0, 5.9, 4.0, 5.0]) == (5.0, 5.9)) @test(candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)) @test(candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)) @test(candidate([1.1, 2.2, 3.1, 4.1, 5.1]) == (2.2, 3.1)) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_21_rescale_to_unit
jl
""" Given vector of numbers (of at least two elements), apply a linear transform to that vector, such that the smallest number will become 0 and the largest will become 1 >>> rescale_to_unit([1.0, 2.0, 3.0, 4.0, 5.0]) [0.0, 0.25, 0.5, 0.75, 1.0]""" function rescale_to_unit(numbers::Vector{Float64})::Vector{Float64}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_21_rescale_to_unit.py
reworded
using Test @testset begin candidate = rescale_to_unit; @test(candidate([2.0, 49.9]) == [0.0, 1.0]) @test(candidate([100.0, 49.9]) == [1.0, 0.0]) @test(candidate([1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]) @test(candidate([2.0, 1.0, 5.0, 3.0, 4.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]) @test(candidate([12.0, 11.0, 15.0, 13.0, 14.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_22_filter_integers
jl
""" Filter given vector of any jlthon values only for integers >>> filter_integers(["a", 3.14, 5]) [5] >>> filter_integers([1, 2, 3, "abc", Dict(), []]) [1, 2, 3]""" function filter_integers(values::Vector{Any})::Vector{Int64}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_22_filter_integers.py
reworded
using Test @testset begin candidate = filter_integers; @test(candidate(Vector{Any}([])) == Vector{Int64}([])) @test(candidate([4, Dict(), [], 23.2, 9, "adasd"]) == [4, 9]) @test(candidate([3, "c", 3, 3, "a", "b"]) == [3, 3, 3]) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_23_strlen
jl
""" Return length of given string >>> strlen("") 0 >>> strlen("abc") 3""" function strlen(string::String)::Int64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_23_strlen.py
reworded
using Test @testset begin candidate = strlen; @test(candidate("") == 0) @test(candidate("x") == 1) @test(candidate("asdasnakj") == 9) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_24_largest_divisor
jl
""" For a given number n, find the largest number that divides n evenly, smaller than n >>> largest_divisor(15) 5""" function largest_divisor(n::Int64)::Int64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_24_largest_divisor.py
reworded
using Test @testset begin candidate = largest_divisor; @test(candidate(3) == 1) @test(candidate(7) == 1) @test(candidate(10) == 5) @test(candidate(100) == 50) @test(candidate(49) == 7) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_25_factorize
jl
""" Return vector of prime factors of given integer in the order from smallest to largest. Each of the factors should be vectored number of times corresponding to how many times it appeares in factorization. Input number should be equal to the product of all factors >>> factorize(8) [2, 2, 2] >>> factorize(25) [5, 5] >>> factorize(70) [2, 5, 7]""" function factorize(n::Int64)::Vector{Int64}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_25_factorize.py
reworded
using Test @testset begin candidate = factorize; @test(candidate(2) == [2]) @test(candidate(4) == [2, 2]) @test(candidate(8) == [2, 2, 2]) @test(candidate(57) == [3, 19]) @test(candidate(3249) == [3, 3, 19, 19]) @test(candidate(185193) == [3, 3, 3, 19, 19, 19]) @test(candidate(20577) == [3, 19, 19, 19]) @test(candidate(18) == [2, 3, 3]) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_26_remove_duplicates
jl
""" From a vector of integers, remove all elements that occur more than once. Keep order of elements left the same as in the input. >>> remove_duplicates([1, 2, 3, 2, 4]) [1, 3, 4]""" function remove_duplicates(numbers::Vector{Int64})::Vector{Int64}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_26_remove_duplicates.py
reworded
using Test @testset begin candidate = remove_duplicates; @test(candidate(Vector{Int64}([])) == Vector{Int64}([])) @test(candidate([1, 2, 3, 4]) == [1, 2, 3, 4]) @test(candidate([1, 2, 3, 2, 4, 3, 5]) == [1, 4, 5]) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_27_flip_case
jl
""" For a given string, flip lowercase characters to uppercase and uppercase to lowercase. >>> flip_case("Hello") "hELLO" """ function flip_case(string::String)::String
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_27_flip_case.py
reworded
using Test @testset begin candidate = flip_case; @test(candidate("") == "") @test(candidate("Hello!") == "hELLO!") @test(candidate("These violent delights have violent ends") == "tHESE VIOLENT DELIGHTS HAVE VIOLENT ENDS") end
['\nfunction' '\nmacro' '\n\n']
HumanEval_28_concatenate
jl
""" Concatenate vector of strings into a single string >>> concatenate([]) "" >>> concatenate(["a", "b", "c"]) "abc" """ function concatenate(strings::Vector{String})::String
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_28_concatenate.py
reworded
using Test @testset begin candidate = concatenate; @test(candidate(Vector{String}([])) == "") @test(candidate(["x", "y", "z"]) == "xyz") @test(candidate(["x", "y", "z", "w", "k"]) == "xyzwk") end
['\nfunction' '\nmacro' '\n\n']
HumanEval_29_filter_by_prefix
jl
""" Filter an input vector of strings only for ones that start with a given prefix. >>> filter_by_prefix([], "a") [] >>> filter_by_prefix(["abc", "bcd", "cde", "array"], "a") ["abc", "array"]""" function filter_by_prefix(strings::Vector{String}, prefix::String)::Vector{String}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_29_filter_by_prefix.py
reworded
using Test @testset begin candidate = filter_by_prefix; @test(candidate(Vector{String}([]), "john") == Vector{String}([])) @test(candidate(["xxx", "asd", "xxy", "john doe", "xxxAAA", "xxx"], "xxx") == ["xxx", "xxxAAA", "xxx"]) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_30_get_positive
jl
"""Return only positive numbers in the vector. >>> get_positive([-1, 2, -4, 5, 6]) [2, 5, 6] >>> get_positive([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) [5, 3, 2, 3, 9, 123, 1]""" function get_positive(l::Vector{Int64})::Vector{Int64}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_30_get_positive.py
reworded
using Test @testset begin candidate = get_positive; @test(candidate([-1, -2, 4, 5, 6]) == [4, 5, 6]) @test(candidate([5, 3, -5, 2, 3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 3, 9, 123, 1]) @test(candidate([-1, -2]) == Vector{Int64}([])) @test(candidate(Vector{Int64}([])) == Vector{Int64}([])) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_31_is_prime
jl
"""Return true if a given number is prime, and false otherwise. >>> is_prime(6) false >>> is_prime(101) true >>> is_prime(11) true >>> is_prime(13441) true >>> is_prime(61) true >>> is_prime(4) false >>> is_prime(1) false""" function is_prime(n::Int64)::Bool
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_31_is_prime.py
reworded
using Test @testset begin candidate = is_prime; @test(candidate(6) == false) @test(candidate(101) == true) @test(candidate(11) == true) @test(candidate(13441) == true) @test(candidate(61) == true) @test(candidate(4) == false) @test(candidate(1) == false) @test(candidate(5) == true) @test(candidate(11) == true) @test(candidate(17) == true) @test(candidate(85) == false) @test(candidate(77) == false) @test(candidate(255379) == false) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_33_sort_third
jl
"""This function takes a vector l and returns a vector l' such that l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal to the values of the corresponding indicies of l, but sorted. Note: The vector indices are 0-based for this problem. >>> sort_third([1, 2, 3]) [1, 2, 3] >>> sort_third([5, 6, 3, 4, 8, 9, 2]) [2, 6, 3, 4, 8, 9, 5]""" function sort_third(l::Vector{Int64})::Vector{Int64}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_33_sort_third.py
reworded
using Test @testset begin candidate = sort_third; @test(candidate([5, 6, 3, 4, 8, 9, 2]) == [2, 6, 3, 4, 8, 9, 5]) @test(candidate([5, 8, 3, 4, 6, 9, 2]) == [2, 8, 3, 4, 6, 9, 5]) @test(candidate([5, 6, 9, 4, 8, 3, 2]) == [2, 6, 9, 4, 8, 3, 5]) @test(candidate([5, 6, 3, 4, 8, 9, 2, 1]) == [2, 6, 3, 4, 8, 9, 5, 1]) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_34_unique
jl
"""Return sorted unique elements in a vector >>> unique([5, 3, 5, 2, 3, 3, 9, 0, 123]) [0, 2, 3, 5, 9, 123]""" function unique(l::Vector{Int64})::Vector{Int64}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_34_unique.py
reworded
using Test @testset begin candidate = unique; @test(candidate([5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_35_max_element
jl
"""Return maximum element in the vector. >>> max_element([1, 2, 3]) 3 >>> max_element([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) 123""" function max_element(l::Vector{Int64})::Int64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_35_max_element.py
reworded
using Test @testset begin candidate = max_element; @test(candidate([1, 2, 3]) == 3) @test(candidate([5, 3, -5, 2, -3, 3, 9, 0, 124, 1, -10]) == 124) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_36_fizz_buzz
jl
"""Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13. >>> fizz_buzz(50) 0 >>> fizz_buzz(78) 2 >>> fizz_buzz(79) 3""" function fizz_buzz(n::Int64)::Int64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_36_fizz_buzz.py
reworded
using Test @testset begin candidate = fizz_buzz; @test(candidate(50) == 0) @test(candidate(78) == 2) @test(candidate(79) == 3) @test(candidate(100) == 3) @test(candidate(200) == 6) @test(candidate(4000) == 192) @test(candidate(10000) == 639) @test(candidate(100000) == 8026) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_37_sort_even
jl
"""This function takes a vector l and returns a vector l' such that l' is identical to l in the odd indicies, while its values at the even indicies are equal to the values of the even indicies of l, but sorted. Note: The vector indices are 0-based for this problem. >>> sort_even([1, 2, 3]) [1, 2, 3] >>> sort_even([5, 6, 3, 4]) [3, 6, 5, 4]""" function sort_even(l::Vector{Int64})::Vector{Int64}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_37_sort_even.py
reworded
using Test @testset begin candidate = sort_even; @test(candidate([1, 2, 3]) == [1, 2, 3]) @test(candidate([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) == [-10, 3, -5, 2, -3, 3, 5, 0, 9, 1, 123]) @test(candidate([5, 8, -12, 4, 23, 2, 3, 11, 12, -10]) == [-12, 8, 3, 4, 5, 2, 12, 11, 23, -10]) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_39_prime_fib
jl
"""prime_fib returns n-th number that is a Fibonacci number and it's also prime. >>> prime_fib(1) 2 >>> prime_fib(2) 3 >>> prime_fib(3) 5 >>> prime_fib(4) 13 >>> prime_fib(5) 89""" function prime_fib(n::Int64)::Int64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_39_prime_fib.py
reworded
using Test @testset begin candidate = prime_fib; @test(candidate(1) == 2) @test(candidate(2) == 3) @test(candidate(3) == 5) @test(candidate(4) == 13) @test(candidate(5) == 89) @test(candidate(6) == 233) @test(candidate(7) == 1597) @test(candidate(8) == 28657) @test(candidate(9) == 514229) @test(candidate(10) == 433494437) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_40_triples_sum_to_zero
jl
"""triples_sum_to_zero takes a vector of integers as an input. it returns true if there are three distinct elements in the vector that sum to zero, and false otherwise. >>> triples_sum_to_zero([1, 3, 5, 0]) false >>> triples_sum_to_zero([1, 3, -2, 1]) true >>> triples_sum_to_zero([1, 2, 3, 7]) false >>> triples_sum_to_zero([2, 4, -5, 3, 9, 7]) true >>> triples_sum_to_zero([1]) false""" function triples_sum_to_zero(l::Vector{Int64})::Bool
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_40_triples_sum_to_zero.py
reworded
using Test @testset begin candidate = triples_sum_to_zero; @test(candidate([1, 3, 5, 0]) == false) @test(candidate([1, 3, 5, -1]) == false) @test(candidate([1, 3, -2, 1]) == true) @test(candidate([1, 2, 3, 7]) == false) @test(candidate([1, 2, 5, 7]) == false) @test(candidate([2, 4, -5, 3, 9, 7]) == true) @test(candidate([1]) == false) @test(candidate([1, 3, 5, -100]) == false) @test(candidate([100, 3, 5, -100]) == false) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_41_car_race_collision
jl
"""Imagine a road that's a perfectly straight infinitely long line. n cars are driving left to right; simultaneously, a different set of n cars are driving right to left. The two sets of cars start out being very far from each other. All cars move in the same speed. Two cars are said to collide when a car that's moving left to right hits a car that's moving right to left. However, the cars are infinitely sturdy and strong; as a result, they continue moving in their trajectory as if they did not collide. This function outputs the number of such collisions.""" function car_race_collision(n::Int64)::Int64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_41_car_race_collision.py
reworded
using Test @testset begin candidate = car_race_collision; @test(candidate(2) == 4) @test(candidate(3) == 9) @test(candidate(4) == 16) @test(candidate(8) == 64) @test(candidate(10) == 100) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_42_incr_list
jl
"""Return vector with elements incremented by 1. >>> incr_list([1, 2, 3]) [2, 3, 4] >>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123]) [6, 4, 6, 3, 4, 4, 10, 1, 124]""" function incr_list(l::Vector{Int64})::Vector{Int64}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_42_incr_list.py
reworded
using Test @testset begin candidate = incr_list; @test(candidate(Vector{Int64}([])) == Vector{Int64}([])) @test(candidate([3, 2, 1]) == [4, 3, 2]) @test(candidate([5, 2, 5, 2, 3, 3, 9, 0, 123]) == [6, 3, 6, 3, 4, 4, 10, 1, 124]) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_43_pairs_sum_to_zero
jl
"""pairs_sum_to_zero takes a vector of integers as an input. it returns true if there are two distinct elements in the vector that sum to zero, and false otherwise. >>> pairs_sum_to_zero([1, 3, 5, 0]) false >>> pairs_sum_to_zero([1, 3, -2, 1]) false >>> pairs_sum_to_zero([1, 2, 3, 7]) false >>> pairs_sum_to_zero([2, 4, -5, 3, 5, 7]) true >>> pairs_sum_to_zero([1]) false""" function pairs_sum_to_zero(l::Vector{Int64})::Bool
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_43_pairs_sum_to_zero.py
reworded
using Test @testset begin candidate = pairs_sum_to_zero; @test(candidate([1, 3, 5, 0]) == false) @test(candidate([1, 3, -2, 1]) == false) @test(candidate([1, 2, 3, 7]) == false) @test(candidate([2, 4, -5, 3, 5, 7]) == true) @test(candidate([1]) == false) @test(candidate([-3, 9, -1, 3, 2, 30]) == true) @test(candidate([-3, 9, -1, 3, 2, 31]) == true) @test(candidate([-3, 9, -1, 4, 2, 30]) == false) @test(candidate([-3, 9, -1, 4, 2, 31]) == false) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_44_change_base
jl
"""Change numerical base of input number x to base. return string representation after the conversion. base numbers are less than 10. >>> change_base(8, 3) "22" >>> change_base(8, 2) "1000" >>> change_base(7, 2) "111" """ function change_base(x::Int64, base::Int64)::String
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_44_change_base.py
reworded
using Test @testset begin candidate = change_base; @test(candidate(8, 3) == "22") @test(candidate(9, 3) == "100") @test(candidate(234, 2) == "11101010") @test(candidate(16, 2) == "10000") @test(candidate(8, 2) == "1000") @test(candidate(7, 2) == "111") @test(candidate(2, 3) == "2") @test(candidate(3, 4) == "3") @test(candidate(4, 5) == "4") @test(candidate(5, 6) == "5") @test(candidate(6, 7) == "6") @test(candidate(7, 8) == "7") end
['\nfunction' '\nmacro' '\n\n']
HumanEval_45_triangle_area
jl
"""Given length of a side and high return area for a triangle. >>> triangle_area(5, 3) 7.5""" function triangle_area(a::Int64, h::Int64)::Float64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_45_triangle_area.py
reworded
using Test @testset begin candidate = triangle_area; @test(candidate(5, 3) == 7.5) @test(candidate(2, 2) == 2.0) @test(candidate(10, 8) == 40.0) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_46_fib4
jl
"""The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows: fib4(0) -> 0 fib4(1) -> 0 fib4(2) -> 2 fib4(3) -> 0 fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4). Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion. >>> fib4(5) 4 >>> fib4(6) 8 >>> fib4(7) 14""" function fib4(n::Int64)::Int64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_46_fib4.py
reworded
using Test @testset begin candidate = fib4; @test(candidate(5) == 4) @test(candidate(8) == 28) @test(candidate(10) == 104) @test(candidate(12) == 386) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_47_median
jl
"""Return median of elements in the vector l. >>> median([3, 1, 2, 4, 5]) 3 >>> median([-10, 4, 6, 1000, 10, 20]) 15.0""" function median(l::Vector{Int64})::Float64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_47_median.py
reworded
using Test @testset begin candidate = median; @test(candidate([3, 1, 2, 4, 5]) == 3) @test(candidate([-10, 4, 6, 1000, 10, 20]) == 8.0) @test(candidate([5]) == 5) @test(candidate([6, 5]) == 5.5) @test(candidate([8, 1, 3, 9, 9, 2, 7]) == 7) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_48_is_palindrome
jl
"""Checks if given string is a palindrome >>> is_palindrome("") true >>> is_palindrome("aba") true >>> is_palindrome("aaaaa") true >>> is_palindrome("zbcd") false""" function is_palindrome(text::String)::Bool
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_48_is_palindrome.py
reworded
using Test @testset begin candidate = is_palindrome; @test(candidate("") == true) @test(candidate("aba") == true) @test(candidate("aaaaa") == true) @test(candidate("zbcd") == false) @test(candidate("xywyx") == true) @test(candidate("xywyz") == false) @test(candidate("xywzx") == false) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_49_modp
jl
"""Return 2^n modulo p (be aware of numerics). >>> modp(3, 5) 3 >>> modp(1101, 101) 2 >>> modp(0, 101) 1 >>> modp(3, 11) 8 >>> modp(100, 101) 1""" function modp(n::Int64, p::Int64)::Int64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_49_modp.py
reworded
using Test @testset begin candidate = modp; @test(candidate(3, 5) == 3) @test(candidate(1101, 101) == 2) @test(candidate(0, 101) == 1) @test(candidate(3, 11) == 8) @test(candidate(100, 101) == 1) @test(candidate(30, 5) == 4) @test(candidate(31, 5) == 3) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_51_remove_vowels
jl
"""remove_vowels is a function that takes string and returns string without vowels. >>> remove_vowels("") "" >>> remove_vowels("abcdef") "bcdf" >>> remove_vowels("aaaaa") "" >>> remove_vowels("aaBAA") "B" >>> remove_vowels("zbcd") "zbcd" """ function remove_vowels(text::String)::String
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_51_remove_vowels.py
reworded
using Test @testset begin candidate = remove_vowels; @test(candidate("") == "") @test(candidate("abcdef ghijklm") == "bcdf ghjklm") @test(candidate("fedcba") == "fdcb") @test(candidate("eeeee") == "") @test(candidate("acBAA") == "cB") @test(candidate("EcBOO") == "cB") @test(candidate("ybcd") == "ybcd") end
['\nfunction' '\nmacro' '\n\n']
HumanEval_52_below_threshold
jl
"""Return true if all numbers in the vector l are below threshold t. >>> below_threshold([1, 2, 4, 10], 100) true >>> below_threshold([1, 20, 4, 10], 5) false""" function below_threshold(l::Vector{Int64}, t::Int64)::Bool
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_52_below_threshold.py
reworded
using Test @testset begin candidate = below_threshold; @test(candidate([1, 2, 4, 10], 100) == true) @test(candidate([1, 20, 4, 10], 5) == false) @test(candidate([1, 20, 4, 10], 21) == true) @test(candidate([1, 20, 4, 10], 22) == true) @test(candidate([1, 8, 4, 10], 11) == true) @test(candidate([1, 8, 4, 10], 10) == false) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_53_add
jl
"""Add two numbers x and y >>> add(2, 3) 5 >>> add(5, 7) 12""" function add(x::Int64, y::Int64)::Int64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_53_add.py
reworded
using Test @testset begin candidate = add; @test(candidate(0, 1) == 1) @test(candidate(1, 0) == 1) @test(candidate(2, 3) == 5) @test(candidate(5, 7) == 12) @test(candidate(7, 5) == 12) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_54_same_chars
jl
"""Check if two words have the same characters. >>> same_chars("eabcdzzzz", "dddzzzzzzzddeddabc") true >>> same_chars("abcd", "dddddddabc") true >>> same_chars("dddddddabc", "abcd") true >>> same_chars("eabcd", "dddddddabc") false >>> same_chars("abcd", "dddddddabce") false >>> same_chars("eabcdzzzz", "dddzzzzzzzddddabc") false""" function same_chars(s0::String, s1::String)::Bool
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_54_same_chars.py
reworded
using Test @testset begin candidate = same_chars; @test(candidate("eabcdzzzz", "dddzzzzzzzddeddabc") == true) @test(candidate("abcd", "dddddddabc") == true) @test(candidate("dddddddabc", "abcd") == true) @test(candidate("eabcd", "dddddddabc") == false) @test(candidate("abcd", "dddddddabcf") == false) @test(candidate("eabcdzzzz", "dddzzzzzzzddddabc") == false) @test(candidate("aabb", "aaccc") == false) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_55_fib
jl
"""Return n-th Fibonacci number. >>> fib(10) 55 >>> fib(1) 1 >>> fib(8) 21""" function fib(n::Int64)::Int64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_55_fib.py
reworded
using Test @testset begin candidate = fib; @test(candidate(10) == 55) @test(candidate(1) == 1) @test(candidate(8) == 21) @test(candidate(11) == 89) @test(candidate(12) == 144) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_56_correct_bracketing
jl
""" brackets is a string of "<" and ">". return true if every opening bracket has a corresponding closing bracket. >>> correct_bracketing("<") false >>> correct_bracketing("<>") true >>> correct_bracketing("<<><>>") true >>> correct_bracketing("><<>") false""" function correct_bracketing(brackets::String)::Bool
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_56_correct_bracketing.py
reworded
using Test @testset begin candidate = correct_bracketing; @test(candidate("<>") == true) @test(candidate("<<><>>") == true) @test(candidate("<><><<><>><>") == true) @test(candidate("<><><<<><><>><>><<><><<>>>") == true) @test(candidate("<<<><>>>>") == false) @test(candidate("><<>") == false) @test(candidate("<") == false) @test(candidate("<<<<") == false) @test(candidate(">") == false) @test(candidate("<<>") == false) @test(candidate("<><><<><>><>><<>") == false) @test(candidate("<><><<><>><>>><>") == false) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_57_monotonic
jl
"""Return true is vector elements are monotonically increasing or decreasing. >>> monotonic([1, 2, 4, 20]) true >>> monotonic([1, 20, 4, 10]) false >>> monotonic([4, 1, 0, -10]) true""" function monotonic(l::Vector{Int64})::Bool
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_57_monotonic.py
reworded
using Test @testset begin candidate = monotonic; @test(candidate([1, 2, 4, 10]) == true) @test(candidate([1, 2, 4, 20]) == true) @test(candidate([1, 20, 4, 10]) == false) @test(candidate([4, 1, 0, -10]) == true) @test(candidate([4, 1, 1, 0]) == true) @test(candidate([1, 2, 3, 2, 5, 60]) == false) @test(candidate([1, 2, 3, 4, 5, 60]) == true) @test(candidate([9, 9, 9, 9]) == true) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_58_common
jl
"""Return sorted unique common elements for two vectors. >>> common([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]) [1, 5, 653] >>> common([5, 3, 2, 8], [3, 2]) [2, 3]""" function common(l1::Vector{Int64}, l2::Vector{Int64})::Vector{Int64}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_58_common.py
reworded
using Test @testset begin candidate = common; @test(candidate([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]) @test(candidate([5, 3, 2, 8], [3, 2]) == [2, 3]) @test(candidate([4, 3, 2, 8], [3, 2, 4]) == [2, 3, 4]) @test(candidate([4, 3, 2, 8], Vector{Int64}([])) == Vector{Int64}([])) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_59_largest_prime_factor
jl
"""Return the largest prime factor of n. Assume n > 1 and is not a prime. >>> largest_prime_factor(13195) 29 >>> largest_prime_factor(2048) 2""" function largest_prime_factor(n::Int64)::Int64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_59_largest_prime_factor.py
reworded
using Test @testset begin candidate = largest_prime_factor; @test(candidate(15) == 5) @test(candidate(27) == 3) @test(candidate(63) == 7) @test(candidate(330) == 11) @test(candidate(13195) == 29) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_60_sum_to_n
jl
"""sum_to_n is a function that sums numbers from 1 to n. >>> sum_to_n(30) 465 >>> sum_to_n(100) 5050 >>> sum_to_n(5) 15 >>> sum_to_n(10) 55 >>> sum_to_n(1) 1""" function sum_to_n(n::Int64)::Int64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_60_sum_to_n.py
reworded
using Test @testset begin candidate = sum_to_n; @test(candidate(1) == 1) @test(candidate(6) == 21) @test(candidate(11) == 66) @test(candidate(30) == 465) @test(candidate(100) == 5050) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_61_correct_bracketing
jl
""" brackets is a string of "(" and ")". return true if every opening bracket has a corresponding closing bracket. >>> correct_bracketing("(") false >>> correct_bracketing("()") true >>> correct_bracketing("(()())") true >>> correct_bracketing(")(()") false""" function correct_bracketing(brackets::String)::Bool
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_61_correct_bracketing.py
reworded
using Test @testset begin candidate = correct_bracketing; @test(candidate("()") == true) @test(candidate("(()())") == true) @test(candidate("()()(()())()") == true) @test(candidate("()()((()()())())(()()(()))") == true) @test(candidate("((()())))") == false) @test(candidate(")(()") == false) @test(candidate("(") == false) @test(candidate("((((") == false) @test(candidate(")") == false) @test(candidate("(()") == false) @test(candidate("()()(()())())(()") == false) @test(candidate("()()(()())()))()") == false) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_62_derivative
jl
""" xs represent coefficients of a polynomial. xs[0] + xs[1] * x + xs[2] * x^2 + .... Return derivative of this polynomial in the same form. Note: The vector indices are 0-based for this problem. >>> derivative([3, 1, 2, 4, 5]) [1, 4, 12, 20] >>> derivative([1, 2, 3]) [2, 6]""" function derivative(xs::Vector{Int64})::Vector{Int64}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_62_derivative.py
reworded
using Test @testset begin candidate = derivative; @test(candidate([3, 1, 2, 4, 5]) == [1, 4, 12, 20]) @test(candidate([1, 2, 3]) == [2, 6]) @test(candidate([3, 2, 1]) == [2, 2]) @test(candidate([3, 2, 1, 0, 4]) == [2, 2, 0, 16]) @test(candidate([1]) == Vector{Int64}([])) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_63_fibfib
jl
"""The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows: fibfib(0) == 0 fibfib(1) == 0 fibfib(2) == 1 fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3). Please write a function to efficiently compute the n-th element of the fibfib number sequence. >>> fibfib(1) 0 >>> fibfib(5) 4 >>> fibfib(8) 24""" function fibfib(n::Int64)::Int64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_63_fibfib.py
reworded
using Test @testset begin candidate = fibfib; @test(candidate(2) == 1) @test(candidate(1) == 0) @test(candidate(5) == 4) @test(candidate(8) == 24) @test(candidate(10) == 81) @test(candidate(12) == 274) @test(candidate(14) == 927) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_64_vowels_count
jl
"""Write a function vowels_count which takes a string representing a word as input and returns the number of vowels in the string. Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a vowel, but only when it is at the end of the given word. Example: >>> vowels_count("abcde") 2 >>> vowels_count("ACEDY") 3""" function vowels_count(s::String)::Int64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_64_vowels_count.py
reworded
using Test @testset begin candidate = vowels_count; @test(candidate("abcde") == 2) @test(candidate("Alone") == 3) @test(candidate("key") == 2) @test(candidate("bye") == 1) @test(candidate("keY") == 2) @test(candidate("bYe") == 1) @test(candidate("ACEDY") == 3) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_65_circular_shift
jl
"""Circular shift the digits of the integer x, shift the digits right by shift and return the result as a string. If shift > number of digits, return digits reversed. >>> circular_shift(12, 1) "21" >>> circular_shift(12, 2) "12" """ function circular_shift(x::Int64, shift::Int64)::String
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_65_circular_shift.py
reworded
using Test @testset begin candidate = circular_shift; @test(candidate(100, 2) == "001") @test(candidate(12, 2) == "12") @test(candidate(97, 8) == "79") @test(candidate(12, 1) == "21") @test(candidate(11, 101) == "11") end
['\nfunction' '\nmacro' '\n\n']
HumanEval_66_digitSum
jl
"""Task Write a function that takes a string as input and returns the sum of the upper characters only' ASCII codes. Examples: >>> digitSum("") 0 >>> digitSum("abAB") 131 >>> digitSum("abcCd") 67 >>> digitSum("helloE") 69 >>> digitSum("woArBld") 131 >>> digitSum("aAaaaXa") 153""" function digitSum(s::String)::Int64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_66_digitSum.py
reworded
using Test @testset begin candidate = digitSum; @test(candidate("") == 0) @test(candidate("abAB") == 131) @test(candidate("abcCd") == 67) @test(candidate("helloE") == 69) @test(candidate("woArBld") == 131) @test(candidate("aAaaaXa") == 153) @test(candidate(" How are yOu?") == 151) @test(candidate("You arE Very Smart") == 327) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_67_fruit_distribution
jl
"""In this task, you will be given a string that represents a number of apples and oranges that are distributed in a basket of fruit this basket contains apples, oranges, and mango fruits. Given the string that represents the total number of the oranges and apples and an integer that represent the total number of the fruits in the basket return the number of the mango fruits in the basket. for examble: >>> fruit_distribution("5 apples and 6 oranges", 19) 8 >>> fruit_distribution("0 apples and 1 oranges", 3) 2 >>> fruit_distribution("2 apples and 3 oranges", 100) 95 >>> fruit_distribution("100 apples and 1 oranges", 120) 19""" function fruit_distribution(s::String, n::Int64)::Int64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_67_fruit_distribution.py
reworded
using Test @testset begin candidate = fruit_distribution; @test(candidate("5 apples and 6 oranges", 19) == 8) @test(candidate("5 apples and 6 oranges", 21) == 10) @test(candidate("0 apples and 1 oranges", 3) == 2) @test(candidate("1 apples and 0 oranges", 3) == 2) @test(candidate("2 apples and 3 oranges", 100) == 95) @test(candidate("2 apples and 3 oranges", 5) == 0) @test(candidate("1 apples and 100 oranges", 120) == 19) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_68_pluck
jl
"""Given a vector representing a branch of a tree that has non-negative integer nodes your task is to pluck one of the nodes and return it. The plucked node should be the node with the smallest even value. If multiple nodes with the same smallest even value are found return the node that has smallest index. The plucked node should be returned in a vector, [ smalest_value, its index ], If there are no even values or the given vector is empty, return []. Note: The vector indices are 0-based for this problem. Example 1: >>> pluck([4, 2, 3]) [2, 1] Explanation: 2 has the smallest even value, and 2 has the smallest index. Example 2: >>> pluck([1, 2, 3]) [2, 1] Explanation: 2 has the smallest even value, and 2 has the smallest index. Example 3: >>> pluck([]) [] Example 4: >>> pluck([5, 0, 3, 0, 4, 2]) [0, 1] Explanation: 0 is the smallest value, but there are two zeros, so we will choose the first zero, which has the smallest index. Constraints: * 1 <= nodes.length <= 10000 * 0 <= node.value""" function pluck(arr::Vector{Int64})::Vector{Int64}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_68_pluck.py
reworded
using Test @testset begin candidate = pluck; @test(candidate([4, 2, 3]) == [2, 1]) @test(candidate([1, 2, 3]) == [2, 1]) @test(candidate(Vector{Int64}([])) == Vector{Int64}([])) @test(candidate([5, 0, 3, 0, 4, 2]) == [0, 1]) @test(candidate([1, 2, 3, 0, 5, 3]) == [0, 3]) @test(candidate([5, 4, 8, 4, 8]) == [4, 1]) @test(candidate([7, 6, 7, 1]) == [6, 1]) @test(candidate([7, 9, 7, 1]) == Vector{Int64}([])) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_69_search
jl
"""You are given a non-empty vector of positive integers. Return the greatest integer that is greater than zero, and has a frequency greater than or equal to the value of the integer itself. The frequency of an integer is the number of times it appears in the vector. If no such a value exist, return -1. Examples: >>> search([4, 1, 2, 2, 3, 1]) 2 >>> search([1, 2, 2, 3, 3, 3, 4, 4, 4]) 3 >>> search([5, 5, 4, 4, 4]) -1""" function search(lst::Vector{Int64})::Int64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_69_search.py
reworded
using Test @testset begin candidate = search; @test(candidate([5, 5, 5, 5, 1]) == 1) @test(candidate([4, 1, 4, 1, 4, 4]) == 4) @test(candidate([3, 3]) == -1) @test(candidate([8, 8, 8, 8, 8, 8, 8, 8]) == 8) @test(candidate([2, 3, 3, 2, 2]) == 2) @test(candidate([2, 7, 8, 8, 4, 8, 7, 3, 9, 6, 5, 10, 4, 3, 6, 7, 1, 7, 4, 10, 8, 1]) == 1) @test(candidate([3, 2, 8, 2]) == 2) @test(candidate([6, 7, 1, 8, 8, 10, 5, 8, 5, 3, 10]) == 1) @test(candidate([8, 8, 3, 6, 5, 6, 4]) == -1) @test(candidate([6, 9, 6, 7, 1, 4, 7, 1, 8, 8, 9, 8, 10, 10, 8, 4, 10, 4, 10, 1, 2, 9, 5, 7, 9]) == 1) @test(candidate([1, 9, 10, 1, 3]) == 1) @test(candidate([6, 9, 7, 5, 8, 7, 5, 3, 7, 5, 10, 10, 3, 6, 10, 2, 8, 6, 5, 4, 9, 5, 3, 10]) == 5) @test(candidate([1]) == 1) @test(candidate([8, 8, 10, 6, 4, 3, 5, 8, 2, 4, 2, 8, 4, 6, 10, 4, 2, 1, 10, 2, 1, 1, 5]) == 4) @test(candidate([2, 10, 4, 8, 2, 10, 5, 1, 2, 9, 5, 5, 6, 3, 8, 6, 4, 10]) == 2) @test(candidate([1, 6, 10, 1, 6, 9, 10, 8, 6, 8, 7, 3]) == 1) @test(candidate([9, 2, 4, 1, 5, 1, 5, 2, 5, 7, 7, 7, 3, 10, 1, 5, 4, 2, 8, 4, 1, 9, 10, 7, 10, 2, 8, 10, 9, 4]) == 4) @test(candidate([2, 6, 4, 2, 8, 7, 5, 6, 4, 10, 4, 6, 3, 7, 8, 8, 3, 1, 4, 2, 2, 10, 7]) == 4) @test(candidate([9, 8, 6, 10, 2, 6, 10, 2, 7, 8, 10, 3, 8, 2, 6, 2, 3, 1]) == 2) @test(candidate([5, 5, 3, 9, 5, 6, 3, 2, 8, 5, 6, 10, 10, 6, 8, 4, 10, 7, 7, 10, 8]) == -1) @test(candidate([10]) == -1) @test(candidate([9, 7, 7, 2, 4, 7, 2, 10, 9, 7, 5, 7, 2]) == 2) @test(candidate([5, 4, 10, 2, 1, 1, 10, 3, 6, 1, 8]) == 1) @test(candidate([7, 9, 9, 9, 3, 4, 1, 5, 9, 1, 2, 1, 1, 10, 7, 5, 6, 7, 6, 7, 7, 6]) == 1) @test(candidate([3, 10, 10, 9, 2]) == -1) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_70_strange_sort_list
jl
"""Given vector of integers, return vector in strange order. Strange sorting, is when you start with the minimum value, then maximum of the remaining integers, then minimum and so on. Examples: >>> strange_sort_list([1, 2, 3, 4]) [1, 4, 2, 3] >>> strange_sort_list([5, 5, 5, 5]) [5, 5, 5, 5] >>> strange_sort_list([]) []""" function strange_sort_list(lst::Vector{Int64})::Vector{Int64}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_70_strange_sort_list.py
reworded
using Test @testset begin candidate = strange_sort_list; @test(candidate([1, 2, 3, 4]) == [1, 4, 2, 3]) @test(candidate([5, 6, 7, 8, 9]) == [5, 9, 6, 8, 7]) @test(candidate([1, 2, 3, 4, 5]) == [1, 5, 2, 4, 3]) @test(candidate([5, 6, 7, 8, 9, 1]) == [1, 9, 5, 8, 6, 7]) @test(candidate([5, 5, 5, 5]) == [5, 5, 5, 5]) @test(candidate(Vector{Int64}([])) == Vector{Int64}([])) @test(candidate([1, 2, 3, 4, 5, 6, 7, 8]) == [1, 8, 2, 7, 3, 6, 4, 5]) @test(candidate([0, 2, 2, 2, 5, 5, -5, -5]) == [-5, 5, -5, 5, 0, 2, 2, 2]) @test(candidate([111111]) == [111111]) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_71_triangle_area
jl
"""Given the lengths of the three sides of a triangle. Return the area of the triangle rounded to 2 decimal points if the three sides form a valid triangle. Otherwise return -1 Three sides make a valid triangle when the sum of any two sides is greater than the third side. Example: >>> triangle_area(3, 4, 5) 6.0 >>> triangle_area(1, 2, 10) -1""" function triangle_area(a::Int64, b::Int64, c::Int64)::Float64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_71_triangle_area.py
reworded
using Test @testset begin candidate = triangle_area; @test(candidate(3, 4, 5) == 6.0) @test(candidate(1, 2, 10) == -1) @test(candidate(4, 8, 5) == 8.18) @test(candidate(2, 2, 2) == 1.73) @test(candidate(1, 2, 3) == -1) @test(candidate(10, 5, 7) == 16.25) @test(candidate(2, 6, 3) == -1) @test(candidate(1, 1, 1) == 0.43) @test(candidate(2, 2, 10) == -1) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_72_will_it_fly
jl
"""Write a function that returns true if the object q will fly, and false otherwise. The object q will fly if it's balanced (it is a palindromic vector) and the sum of its elements is less than or equal the maximum possible weight w. Example: >>> will_it_fly([1, 2], 5) false # 1+2 is less than the maximum possible weight, but it's unbalanced. >>> will_it_fly([3, 2, 3], 1) false # it's balanced, but 3+2+3 is more than the maximum possible weight. >>> will_it_fly([3, 2, 3], 9) true # 3+2+3 is less than the maximum possible weight, and it's balanced. >>> will_it_fly([3], 5) true # 3 is less than the maximum possible weight, and it's balanced.""" function will_it_fly(q::Vector{Int64}, w::Int64)::Bool
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_72_will_it_fly.py
reworded
using Test @testset begin candidate = will_it_fly; @test(candidate([3, 2, 3], 9) == true) @test(candidate([1, 2], 5) == false) @test(candidate([3], 5) == true) @test(candidate([3, 2, 3], 1) == false) @test(candidate([1, 2, 3], 6) == false) @test(candidate([5], 5) == true) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_73_smallest_change
jl
"""Given a vector arr of integers, find the minimum number of elements that need to be changed to make the vector palindromic. A palindromic vector is a vector that is read the same backwards and forwards. In one change, you can change one element to any other element. For example: >>> smallest_change([1, 2, 3, 5, 4, 7, 9, 6]) 4 >>> smallest_change([1, 2, 3, 4, 3, 2, 2]) 1 >>> smallest_change([1, 2, 3, 2, 1]) 0""" function smallest_change(arr::Vector{Int64})::Int64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_73_smallest_change.py
reworded
using Test @testset begin candidate = smallest_change; @test(candidate([1, 2, 3, 5, 4, 7, 9, 6]) == 4) @test(candidate([1, 2, 3, 4, 3, 2, 2]) == 1) @test(candidate([1, 4, 2]) == 1) @test(candidate([1, 4, 4, 2]) == 1) @test(candidate([1, 2, 3, 2, 1]) == 0) @test(candidate([3, 1, 1, 3]) == 0) @test(candidate([1]) == 0) @test(candidate([0, 1]) == 1) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_74_total_match
jl
"""Write a function that accepts two vectors of strings and returns the vector that has total number of chars in the all strings of the vector less than the other vector. if the two vectors have the same number of chars, return the first vector. Examples >>> total_match([], []) [] >>> total_match(["hi", "admin"], ["hI", "Hi"]) ["hI", "Hi"] >>> total_match(["hi", "admin"], ["hi", "hi", "admin", "project"]) ["hi", "admin"] >>> total_match(["hi", "admin"], ["hI", "hi", "hi"]) ["hI", "hi", "hi"] >>> total_match(["4"], ["1", "2", "3", "4", "5"]) ["4"]""" function total_match(lst1::Vector{String}, lst2::Vector{String})::Vector{String}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_74_total_match.py
reworded
using Test @testset begin candidate = total_match; @test(candidate(Vector{String}([]), Vector{String}([])) == Vector{String}([])) @test(candidate(["hi", "admin"], ["hi", "hi"]) == ["hi", "hi"]) @test(candidate(["hi", "admin"], ["hi", "hi", "admin", "project"]) == ["hi", "admin"]) @test(candidate(["4"], ["1", "2", "3", "4", "5"]) == ["4"]) @test(candidate(["hi", "admin"], ["hI", "Hi"]) == ["hI", "Hi"]) @test(candidate(["hi", "admin"], ["hI", "hi", "hi"]) == ["hI", "hi", "hi"]) @test(candidate(["hi", "admin"], ["hI", "hi", "hii"]) == ["hi", "admin"]) @test(candidate(Vector{String}([]), ["this"]) == Vector{String}([])) @test(candidate(["this"], Vector{String}([])) == Vector{String}([])) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_75_is_multiply_prime
jl
"""Write a function that returns true if the given number is the multiplication of 3 prime numbers and false otherwise. Knowing that (a) is less then 1000. Example: >>> is_multiply_prime(30) true 30 = 2 * 3 * 5""" function is_multiply_prime(a::Int64)::Bool
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_75_is_multiply_prime.py
reworded
using Test @testset begin candidate = is_multiply_prime; @test(candidate(5) == false) @test(candidate(30) == true) @test(candidate(8) == true) @test(candidate(10) == false) @test(candidate(125) == true) @test(candidate(105) == true) @test(candidate(126) == false) @test(candidate(729) == false) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_76_is_simple_power
jl
"""Your task is to write a function that returns true if a number x is a simple power of n and false in other cases. x is a simple power of n if n**int=x For example: >>> is_simple_power(1, 4) true >>> is_simple_power(2, 2) true >>> is_simple_power(8, 2) true >>> is_simple_power(3, 2) false >>> is_simple_power(3, 1) false >>> is_simple_power(5, 3) false""" function is_simple_power(x::Int64, n::Int64)::Bool
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_76_is_simple_power.py
reworded
using Test @testset begin candidate = is_simple_power; @test(candidate(16, 2) == true) @test(candidate(143214, 16) == false) @test(candidate(4, 2) == true) @test(candidate(9, 3) == true) @test(candidate(16, 4) == true) @test(candidate(24, 2) == false) @test(candidate(128, 4) == false) @test(candidate(12, 6) == false) @test(candidate(1, 1) == true) @test(candidate(1, 12) == true) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_77_iscube
jl
"""Write a function that takes an integer a and returns true if this ingeger is a cube of some integer number. Note: you may assume the input is always valid. Examples: >>> iscube(1) true >>> iscube(2) false >>> iscube(-1) true >>> iscube(64) true >>> iscube(0) true >>> iscube(180) false""" function iscube(a::Int64)::Bool
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_77_iscube.py
reworded
using Test @testset begin candidate = iscube; @test(candidate(1) == true) @test(candidate(2) == false) @test(candidate(-1) == true) @test(candidate(64) == true) @test(candidate(180) == false) @test(candidate(1000) == true) @test(candidate(0) == true) @test(candidate(1729) == false) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_78_hex_key
jl
"""You have been tasked to write a function that receives a hexadecimal number as a string and counts the number of hexadecimal digits that are primes (prime number, or a prime, is a natural number greater than 1 that is not a product of two smaller natural numbers). Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Prime numbers are 2, 3, 5, 7, 11, 13, 17,... So you have to determine a number of the following digits: 2, 3, 5, 7, B (=decimal 11), D (=decimal 13). Note: you may assume the input is always correct or empty string, and symbols A,B,C,D,E,F are always uppercase. Examples: >>> hex_key("AB") 1 >>> hex_key("1077E") 2 >>> hex_key("ABED1A33") 4 >>> hex_key("123456789ABCDEF0") 6 >>> hex_key("2020") 2""" function hex_key(num::String)::Int64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_78_hex_key.py
reworded
using Test @testset begin candidate = hex_key; @test(candidate("AB") == 1) @test(candidate("1077E") == 2) @test(candidate("ABED1A33") == 4) @test(candidate("2020") == 2) @test(candidate("123456789ABCDEF0") == 6) @test(candidate("112233445566778899AABBCCDDEEFF00") == 12) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_79_decimal_to_binary
jl
"""You will be given a number in decimal form and your task is to convert it to binary format. The function should return a string, with each character representing a binary number. Each character in the string will be '0' or '1'. There will be an extra couple of characters 'db' at the beginning and at the end of the string. The extra characters are there to help with the format. Examples: >>> decimal_to_binary(15) "db1111db" >>> decimal_to_binary(32) "db100000db" """ function decimal_to_binary(decimal::Int64)::String
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_79_decimal_to_binary.py
reworded
using Test @testset begin candidate = decimal_to_binary; @test(candidate(0) == "db0db") @test(candidate(32) == "db100000db") @test(candidate(103) == "db1100111db") @test(candidate(15) == "db1111db") end
['\nfunction' '\nmacro' '\n\n']
HumanEval_80_is_happy
jl
"""You are given a string s. Your task is to check if the string is hapjl or not. A string is hapjl if its length is at least 3 and every 3 consecutive letters are distinct For example: >>> is_happy("a") false >>> is_happy("aa") false >>> is_happy("abcd") true >>> is_happy("aabb") false >>> is_happy("adb") true >>> is_happy("xyy") false""" function is_happy(s::String)::Bool
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_80_is_happy.py
reworded
using Test @testset begin candidate = is_happy; @test(candidate("a") == false) @test(candidate("aa") == false) @test(candidate("abcd") == true) @test(candidate("aabb") == false) @test(candidate("adb") == true) @test(candidate("xyy") == false) @test(candidate("iopaxpoi") == true) @test(candidate("iopaxioi") == false) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_81_numerical_letter_grade
jl
"""It is the last week of the semester and the teacher has to give the grades to students. The teacher has been making her own algorithm for grading. The only problem is, she has lost the code she used for grading. She has given you a vector of GPAs for some students and you have to write a function that can output a vector of letter grades using the following table: GPA | Letter grade 4.0 A+ > 3.7 A > 3.3 A- > 3.0 B+ > 2.7 B > 2.3 B- > 2.0 C+ > 1.7 C > 1.3 C- > 1.0 D+ > 0.7 D > 0.0 D- 0.0 E Example: >>> grade_equation([4.0, 3, 1.7, 2, 3.5]) ["A+", "B", "C-", "C", "A-"]""" function numerical_letter_grade(grades::Vector{Float64})::Vector{String}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_81_numerical_letter_grade.py
reworded
using Test @testset begin candidate = numerical_letter_grade; @test(candidate([4.0, 3, 1.7, 2, 3.5]) == ["A+", "B", "C-", "C", "A-"]) @test(candidate([1.2]) == ["D+"]) @test(candidate([0.5]) == ["D-"]) @test(candidate([0.0]) == ["E"]) @test(candidate([1.0, 0.3, 1.5, 2.8, 3.3]) == ["D", "D-", "C-", "B", "B+"]) @test(candidate([0.0, 0.7]) == ["E", "D-"]) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_82_prime_length
jl
"""Write a function that takes a string and returns true if the string length is a prime number or false otherwise Examples >>> prime_length("Hello") true >>> prime_length("abcdcba") true >>> prime_length("kittens") true >>> prime_length("orange") false""" function prime_length(string::String)::Bool
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_82_prime_length.py
reworded
using Test @testset begin candidate = prime_length; @test(candidate("Hello") == true) @test(candidate("abcdcba") == true) @test(candidate("kittens") == true) @test(candidate("orange") == false) @test(candidate("wow") == true) @test(candidate("world") == true) @test(candidate("MadaM") == true) @test(candidate("Wow") == true) @test(candidate("") == false) @test(candidate("HI") == true) @test(candidate("go") == true) @test(candidate("gogo") == false) @test(candidate("aaaaaaaaaaaaaaa") == false) @test(candidate("Madam") == true) @test(candidate("M") == false) @test(candidate("0") == false) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_83_starts_one_ends
jl
"""Given a positive integer n, return the count of the numbers of n-digit positive integers that start or end with 1.""" function starts_one_ends(n::Int64)::Int64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_83_starts_one_ends.py
reworded
using Test @testset begin candidate = starts_one_ends; @test(candidate(1) == 1) @test(candidate(2) == 18) @test(candidate(3) == 180) @test(candidate(4) == 1800) @test(candidate(5) == 18000) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_84_solve
jl
"""Given a positive integer N, return the total sum of its digits in binary. Example >>> solve(1000) "1" >>> solve(150) "110" >>> solve(147) "1100" Variables: @N integer Constraints: 0 ≤ N ≤ 10000. Output: a string of binary number""" function solve(N::Int64)::String
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_84_solve.py
reworded
using Test @testset begin candidate = solve; @test(candidate(1000) == "1") @test(candidate(150) == "110") @test(candidate(147) == "1100") @test(candidate(333) == "1001") @test(candidate(963) == "10010") end
['\nfunction' '\nmacro' '\n\n']
HumanEval_85_add
jl
"""Given a non-empty vector of integers lst. add the even elements that are at odd indices. Note: The vector indices are 0-based for this problem. Examples: >>> add([4, 2, 6, 7]) 2""" function add(lst::Vector{Int64})::Int64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_85_add.py
reworded
using Test @testset begin candidate = add; @test(candidate([4, 88]) == 88) @test(candidate([4, 5, 6, 7, 2, 122]) == 122) @test(candidate([4, 0, 6, 7]) == 0) @test(candidate([4, 4, 6, 8]) == 12) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_86_anti_shuffle
jl
"""Write a function that takes a string and returns an ordered version of it. Ordered version of string, is a string where all words (separated by space) are replaced by a new word where all the characters arranged in ascending order based on ascii value. Note: You should keep the order of words and blank spaces in the sentence. For example: >>> anti_shuffle("Hi") "Hi" >>> anti_shuffle("hello") "ehllo" >>> anti_shuffle("Hello World!!!") "Hello !!!Wdlor" """ function anti_shuffle(s::String)::String
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_86_anti_shuffle.py
reworded
using Test @testset begin candidate = anti_shuffle; @test(candidate("Hi") == "Hi") @test(candidate("hello") == "ehllo") @test(candidate("number") == "bemnru") @test(candidate("abcd") == "abcd") @test(candidate("Hello World!!!") == "Hello !!!Wdlor") @test(candidate("") == "") @test(candidate("Hi. My name is Mister Robot. How are you?") == ".Hi My aemn is Meirst .Rboot How aer ?ouy") end
['\nfunction' '\nmacro' '\n\n']
HumanEval_87_get_row
jl
"""You are given a 2 dimensional data, as a nested vectors, which is similar to matrix, however, unlike matrices, each row may contain a different number of columns. Given lst, and integer x, find integers x in the vector, and return vector of tuples, [(x1, y1), (x2, y2) ...] such that each tuple is a coordinate - (row, columns), starting with 0. Sort coordinates initially by rows in ascending order. Also, sort coordinates of the row by columns in descending order. Note: The vector indices are 0-based for this problem. Examples: >>> get_row([[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], 1) [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)] >>> get_row([], 1) [] >>> get_row([[], [1], [1, 2, 3]], 3) [(2, 2)]""" function get_row(lst::Vector{Vector{Int64}}, x::Int64)::Vector{Tuple{Int64, Int64}}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_87_get_row.py
reworded
using Test @testset begin candidate = get_row; @test(candidate([[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]) @test(candidate([[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 5, 6]], 2) == [(0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1)]) @test(candidate([[1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 5, 6], [1, 1, 3, 4, 5, 6], [1, 2, 1, 4, 5, 6], [1, 2, 3, 1, 5, 6], [1, 2, 3, 4, 1, 6], [1, 2, 3, 4, 5, 1]], 1) == [(0, 0), (1, 0), (2, 1), (2, 0), (3, 2), (3, 0), (4, 3), (4, 0), (5, 4), (5, 0), (6, 5), (6, 0)]) @test(candidate(Vector{Vector{Int64}}([]), 1) == Vector{Tuple{Int64, Int64}}([])) @test(candidate([[1]], 2) == Vector{Tuple{Int64, Int64}}([])) @test(candidate([[], [1], [1, 2, 3]], 3) == [(2, 2)]) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_88_sort_array
jl
"""Given a vector of non-negative integers, return a cojl of the given vector after sorting, you will sort the given vector in ascending order if the sum( first index value, last index value) is odd, or sort it in descending order if the sum( first index value, last index value) is even. Note: * don't change the given vector. Examples: >>> sort_array([]) [] >>> sort_array([5]) [5] >>> sort_array([2, 4, 3, 0, 1, 5]) [0, 1, 2, 3, 4, 5] >>> sort_array([2, 4, 3, 0, 1, 5, 6]) [6, 5, 4, 3, 2, 1, 0]""" function sort_array(array::Vector{Int64})::Vector{Int64}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_88_sort_array.py
reworded
using Test @testset begin candidate = sort_array; @test(candidate(Vector{Int64}([])) == Vector{Int64}([])) @test(candidate([5]) == [5]) @test(candidate([2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5]) @test(candidate([2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0]) @test(candidate([2, 1]) == [1, 2]) @test(candidate([15, 42, 87, 32, 11, 0]) == [0, 11, 15, 32, 42, 87]) @test(candidate([21, 14, 23, 11]) == [23, 21, 14, 11]) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_89_encrypt
jl
"""Create a function encrypt that takes a string as an argument and returns a string encrypted with the alphabet being rotated. The alphabet should be rotated in a manner such that the letters shift down by two multiplied to two places. For example: >>> encrypt("hi") "lm" >>> encrypt("asdfghjkl") "ewhjklnop" >>> encrypt("gf") "kj" >>> encrypt("et") "ix" """ function encrypt(s::String)::String
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_89_encrypt.py
reworded
using Test @testset begin candidate = encrypt; @test(candidate("hi") == "lm") @test(candidate("asdfghjkl") == "ewhjklnop") @test(candidate("gf") == "kj") @test(candidate("et") == "ix") @test(candidate("faewfawefaewg") == "jeiajeaijeiak") @test(candidate("hellomyfriend") == "lippsqcjvmirh") @test(candidate("dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh") == "hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl") @test(candidate("a") == "e") end
['\nfunction' '\nmacro' '\n\n']
HumanEval_90_next_smallest
jl
"""You are given a vector of integers. Write a function next_smallest() that returns the 2nd smallest element of the vector. Return nothing if there is no such element. >>> next_smallest([1, 2, 3, 4, 5]) 2 >>> next_smallest([5, 1, 4, 3, 2]) 2 >>> next_smallest([]) nothing >>> next_smallest([1, 1]) nothing""" function next_smallest(lst::Vector{Int64})::Union{Int64, Nothing}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_90_next_smallest.py
reworded
using Test @testset begin candidate = next_smallest; @test(candidate([1, 2, 3, 4, 5]) == 2) @test(candidate([5, 1, 4, 3, 2]) == 2) @test(candidate(Vector{Int64}([])) == nothing) @test(candidate([1, 1]) == nothing) @test(candidate([1, 1, 1, 1, 0]) == 1) @test(candidate([1, 1]) == nothing) @test(candidate([-35, 34, 12, -45]) == -35) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_91_is_bored
jl
"""You'll be given a string of words, and your task is to count the number of boredoms. A boredom is a sentence that starts with the word "I". Sentences are delimited by '.', '?' or '!'. For example: >>> is_bored("Hello world") 0 >>> is_bored("The sky is blue. The sun is shining. I love this weather") 1""" function is_bored(S::String)::Int64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_91_is_bored.py
reworded
using Test @testset begin candidate = is_bored; @test(candidate("Hello world") == 0) @test(candidate("Is the sky blue?") == 0) @test(candidate("I love It !") == 1) @test(candidate("bIt") == 0) @test(candidate("I feel good today. I will be productive. will kill It") == 2) @test(candidate("You and I are going for a walk") == 0) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_92_any_int
jl
"""Create a function that takes 3 numbers. Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers. Returns false in any other cases. Examples >>> any_int(5, 2, 7) true >>> any_int(3, 2, 2) false >>> any_int(3, -2, 1) true >>> any_int(3.6, -2.2, 2) false""" function any_int(x::Float64, y::Float64, z::Float64)::Bool
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_92_any_int.py
reworded
using Test @testset begin candidate = any_int; @test(candidate(2, 3, 1) == true) @test(candidate(2.5, 2, 3) == false) @test(candidate(1.5, 5, 3.5) == false) @test(candidate(2, 6, 2) == false) @test(candidate(4, 2, 2) == true) @test(candidate(2.2, 2.2, 2.2) == false) @test(candidate(-4, 6, 2) == true) @test(candidate(2, 1, 1) == true) @test(candidate(3, 4, 7) == true) @test(candidate(3.0, 4, 7) == false) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_93_encode
jl
"""Write a function that takes a message, and encodes in such a way that it swaps case of all letters, replaces all vowels in the message with the letter that appears 2 places ahead of that vowel in the english alphabet. Assume only letters. Examples: >>> encode("test") "TGST" >>> encode("This is a message") "tHKS KS C MGSSCGG" """ function encode(message::String)::String
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_93_encode.py
reworded
using Test @testset begin candidate = encode; @test(candidate("TEST") == "tgst") @test(candidate("Mudasir") == "mWDCSKR") @test(candidate("YES") == "ygs") @test(candidate("This is a message") == "tHKS KS C MGSSCGG") @test(candidate("I DoNt KnOw WhAt tO WrItE") == "k dQnT kNqW wHcT Tq wRkTg") end
['\nfunction' '\nmacro' '\n\n']
HumanEval_94_skjkasdkd
jl
"""You are given a vector of integers. You need to find the largest prime value and return the sum of its digits. Examples: >>> skjkasdkd([0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) 10 >>> skjkasdkd([1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) 25 >>> skjkasdkd([1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) 13 >>> skjkasdkd([0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) 11 >>> skjkasdkd([0, 81, 12, 3, 1, 21]) 3 >>> skjkasdkd([0, 8, 1, 2, 1, 7]) 7""" function skjkasdkd(lst::Vector{Int64})::Int64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_94_skjkasdkd.py
reworded
using Test @testset begin candidate = skjkasdkd; @test(candidate([0, 3, 2, 1, 3, 5, 7, 4, 5, 5, 5, 2, 181, 32, 4, 32, 3, 2, 32, 324, 4, 3]) == 10) @test(candidate([1, 0, 1, 8, 2, 4597, 2, 1, 3, 40, 1, 2, 1, 2, 4, 2, 5, 1]) == 25) @test(candidate([1, 3, 1, 32, 5107, 34, 83278, 109, 163, 23, 2323, 32, 30, 1, 9, 3]) == 13) @test(candidate([0, 724, 32, 71, 99, 32, 6, 0, 5, 91, 83, 0, 5, 6]) == 11) @test(candidate([0, 81, 12, 3, 1, 21]) == 3) @test(candidate([0, 8, 1, 2, 1, 7]) == 7) @test(candidate([8191]) == 19) @test(candidate([8191, 123456, 127, 7]) == 19) @test(candidate([127, 97, 8192]) == 10) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_95_check_dict_case
jl
"""Given a dictionary, return true if all keys are strings in lower case or all keys are strings in upper case, else return false. The function should return false is the given dictionary is empty. Examples: >>> check_dict_case(Dict("a" => "apple", "b" => "banana")) true >>> check_dict_case(Dict("a" => "apple", "A" => "banana", "B" => "banana")) false >>> check_dict_case(Dict("a" => "apple", 8 => "banana", "a" => "apple")) false >>> check_dict_case(Dict("Name" => "John", "Age" => "36", "City" => "Houston")) false >>> check_dict_case(Dict("STATE" => "NC", "ZIP" => "12345")) true""" function check_dict_case(dict::Dict{String, String}>)::Bool
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_95_check_dict_case.py
reworded
using Test @testset begin candidate = check_dict_case; @test(candidate(Dict("p" => "pineapple", "b" => "banana")) == true) @test(candidate(Dict("p" => "pineapple", "A" => "banana", "B" => "banana")) == false) @test(candidate(Dict("p" => "pineapple", "5" => "banana", "a" => "apple")) == false) @test(candidate(Dict("Name" => "John", "Age" => "36", "City" => "Houston")) == false) @test(candidate(Dict("STATE" => "NC", "ZIP" => "12345")) == true) @test(candidate(Dict("fruit" => "Orange", "taste" => "Sweet")) == true) @test(candidate(Dict()) == false) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_96_count_up_to
jl
"""Implement a function that takes an non-negative integer and returns a vector of the first n integers that are prime numbers and less than n. for example: >>> count_up_to(5) [2, 3] >>> count_up_to(11) [2, 3, 5, 7] >>> count_up_to(0) [] >>> count_up_to(20) [2, 3, 5, 7, 11, 13, 17, 19] >>> count_up_to(1) [] >>> count_up_to(18) [2, 3, 5, 7, 11, 13, 17]""" function count_up_to(n::Int64)::Vector{Int64}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_96_count_up_to.py
reworded
using Test @testset begin candidate = count_up_to; @test(candidate(5) == [2, 3]) @test(candidate(6) == [2, 3, 5]) @test(candidate(7) == [2, 3, 5]) @test(candidate(10) == [2, 3, 5, 7]) @test(candidate(0) == Vector{Int64}([])) @test(candidate(22) == [2, 3, 5, 7, 11, 13, 17, 19]) @test(candidate(1) == Vector{Int64}([])) @test(candidate(18) == [2, 3, 5, 7, 11, 13, 17]) @test(candidate(47) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43]) @test(candidate(101) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_97_multiply
jl
"""Complete the function that takes two integers and returns the product of their unit digits. Assume the input is always valid. Examples: >>> multiply(148, 412) 16 >>> multiply(19, 28) 72 >>> multiply(2020, 1851) 0 >>> multiply(14, -15) 20""" function multiply(a::Int64, b::Int64)::Int64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_97_multiply.py
reworded
using Test @testset begin candidate = multiply; @test(candidate(148, 412) == 16) @test(candidate(19, 28) == 72) @test(candidate(2020, 1851) == 0) @test(candidate(14, -15) == 20) @test(candidate(76, 67) == 42) @test(candidate(17, 27) == 49) @test(candidate(0, 1) == 0) @test(candidate(0, 0) == 0) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_98_count_upper
jl
"""Given a string s, count the number of uppercase vowels in even indices. Note: The vector indices are 0-based for this problem. For example: >>> count_upper("aBCdEf") 1 >>> count_upper("abcdefg") 0 >>> count_upper("dBBE") 0""" function count_upper(s::String)::Int64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_98_count_upper.py
reworded
using Test @testset begin candidate = count_upper; @test(candidate("aBCdEf") == 1) @test(candidate("abcdefg") == 0) @test(candidate("dBBE") == 0) @test(candidate("B") == 0) @test(candidate("U") == 1) @test(candidate("") == 0) @test(candidate("EEEE") == 2) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_99_closest_integer
jl
"""Create a function that takes a value (string) representing a number and returns the closest integer to it. If the number is equidistant from two integers, round it away from zero. Examples >>> closest_integer("10") 10 >>> closest_integer("15.3") 15 Note: Rounding away from zero means that if the given number is equidistant from two integers, the one you should return is the one that is the farthest from zero. For example closest_integer("14.5") should return 15 and closest_integer("-14.5") should return -15.""" function closest_integer(value::String)::Int64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_99_closest_integer.py
reworded
using Test @testset begin candidate = closest_integer; @test(candidate("10") == 10) @test(candidate("14.5") == 15) @test(candidate("-15.5") == -16) @test(candidate("15.3") == 15) @test(candidate("0") == 0) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_100_make_a_pile
jl
"""Given a positive integer n, you have to make a pile of n levels of stones. The first level has n stones. The number of stones in the next level is: - the next odd number if n is odd. - the next even number if n is even. Return the number of stones in each level in a vector, where element at index i represents the number of stones in the level (i+1). Examples: >>> make_a_pile(3) [3, 5, 7]""" function make_a_pile(n::Int64)::Vector{Int64}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_100_make_a_pile.py
reworded
using Test @testset begin candidate = make_a_pile; @test(candidate(3) == [3, 5, 7]) @test(candidate(4) == [4, 6, 8, 10]) @test(candidate(5) == [5, 7, 9, 11, 13]) @test(candidate(6) == [6, 8, 10, 12, 14, 16]) @test(candidate(8) == [8, 10, 12, 14, 16, 18, 20, 22]) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_101_words_string
jl
"""You will be given a string of words separated by commas or spaces. Your task is to split the string into words and return a vector of the words. For example: >>> words_string("Hi, my name is John") ["Hi", "my", "name", "is", "John"] >>> words_string("One, two, three, four, five, six") ["One", "two", "three", "four", "five", "six"]""" function words_string(s::String)::Vector{String}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_101_words_string.py
reworded
using Test @testset begin candidate = words_string; @test(candidate("Hi, my name is John") == ["Hi", "my", "name", "is", "John"]) @test(candidate("One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]) @test(candidate("Hi, my name") == ["Hi", "my", "name"]) @test(candidate("One,, two, three, four, five, six,") == ["One", "two", "three", "four", "five", "six"]) @test(candidate("") == Vector{String}([])) @test(candidate("ahmed , gamal") == ["ahmed", "gamal"]) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_102_choose_num
jl
"""This function takes two positive numbers x and y and returns the biggest even integer number that is in the range [x, y] inclusive. If there's no such number, then the function should return -1. For example: >>> choose_num(12, 15) 14 >>> choose_num(13, 12) -1""" function choose_num(x::Int64, y::Int64)::Int64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_102_choose_num.py
reworded
using Test @testset begin candidate = choose_num; @test(candidate(12, 15) == 14) @test(candidate(13, 12) == -1) @test(candidate(33, 12354) == 12354) @test(candidate(5234, 5233) == -1) @test(candidate(6, 29) == 28) @test(candidate(27, 10) == -1) @test(candidate(7, 7) == -1) @test(candidate(546, 546) == 546) end
['\nfunction' '\nmacro' '\n\n']
End of preview. Expand in Data Studio

Dataset Card for MultiPL-E-fixed (OCaml, Lua, R, Racket, Julia)

This dataset provides corrections for the OCaml, Lua, R, Racket, and Julia portions of the nuprl/MultiPL-E benchmark.

Original Dataset Information

This Version


Dataset Summary

MultiPL-E is a large-scale dataset for evaluating code generation models across 22 programming languages.

However, analysis of the dataset revealed several logical errors, inconsistencies, and language-specific issues in the generated prompts and test cases. These issues can lead to inaccurate evaluation scores by unfairly penalizing models for correctly identifying flaws in the prompts.

This repository provides a corrected version of the dataset specifically for OCaml, Lua, R, Racket, and Julia. The goal of this version is to provide a more reliable and accurate benchmark for evaluating Large Language Models on these languages.

Summary of Corrections

The following modifications were made to address issues in the original dataset.

1. Logical Problems in Prompts and Test Cases

Several problems in the HumanEval portion of the dataset were corrected for the following issues:

  • HumanEval_75_is_multiply_prime: Resolved a mismatch between problem instructions and test cases.
  • HumanEval_92_any_int: Fixed an incorrect test case that did not align with the problem's requirements.
  • HumanEval_116_sort_array: Corrected a discrepancy between the sorting criteria in the instructions and the test cases.
  • HumanEval_128_prod_signs: Amended an incorrect example in the prompt's docstring.
  • HumanEval_140_fix_spaces: Corrected a faulty test case.
  • HumanEval_142_sum_squares: Repaired corrupted or syntactically incorrect examples.
  • HumanEval_145_order_by_points: Clarified vague and ambiguous logic in the question to provide a more precise problem statement.
  • HumanEval_148_bf: Fixed a contradiction between the provided examples and the main instructions.
  • HumanEval_151_double_the_difference: Replaced an incorrect test case that produced an invalid result.
  • HumanEval_162_string_to_md5: Addressed incorrect handling for language-specific None/null data types required by the test cases.

2. General Prompt Ambiguities

  • 0-Based Indexing: Added clarifications to prompts where array/list index interpretation was ambiguous, explicitly enforcing a 0-based convention to ensure consistent behavior.

3. Language-Specific Fixes

  • R: Corrected issues related to the handling of empty vectors, a common edge case.
  • OCaml: Fixed incorrect usage of unary operators to align with OCaml's syntax.
  • Julia: Resolved parsing issues caused by the triple-quote (""") docstring character.

Using This Dataset

This corrected dataset is designed to be a drop-in replacement for the official MultiPL-E data for OCaml, Lua, R, Racket, and Julia.

To use it, simply replace the original humaneval-[lang] files with the corrected versions provided in this repository. The data structure remains compatible with standard evaluation frameworks.

Citation and Attribution

If you use this corrected version of the dataset in your work, we ask that you please cite the original MultiPL-E paper and also acknowledge this repository for the corrections.

Original Paper:

@inproceedings{cassano2023multipl,
  title={MultiPL-E: A Scalable and Extensible Approach to Benchmarking Neural Code Generation},
  author={Cassano, Federico and Gouwar, John and Nguyen, Daniel and Nguyen, Tuan and Phothilimthana, Phitchaya and Pinckney, David and Anderson, Carolyn and Feldman, Michael and Guha, Arjun},
  booktitle={2023 IEEE/ACM 20th International Conference on Mining Software Repositories (MSR)},
  pages={707--719},
  year={2023},
  organization={IEEE}
}
Downloads last month
40