name
stringlengths 15
44
| language
stringclasses 1
value | prompt
stringlengths 104
1.33k
| doctests
stringclasses 1
value | original
stringlengths 130
159
| prompt_terminology
stringclasses 1
value | tests
stringlengths 125
1.69k
| stop_tokens
stringclasses 1
value |
---|---|---|---|---|---|---|---|
HumanEval_103_rounded_avg
|
jl
|
"""You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
>>> rounded_avg(1, 5)
"0b11"
>>> rounded_avg(7, 5)
-1
>>> rounded_avg(10, 20)
"0b1111"
>>> rounded_avg(20, 33)
"0b11010"
"""
function rounded_avg(n::Int64, m::Int64)::Union{String, Int64}
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_103_rounded_avg.py
|
reworded
|
using Test
@testset begin
candidate = rounded_avg;
@test(candidate(1, 5) == "0b11")
@test(candidate(7, 13) == "0b1010")
@test(candidate(964, 977) == "0b1111001010")
@test(candidate(996, 997) == "0b1111100100")
@test(candidate(560, 851) == "0b1011000010")
@test(candidate(185, 546) == "0b101101110")
@test(candidate(362, 496) == "0b110101101")
@test(candidate(350, 902) == "0b1001110010")
@test(candidate(197, 233) == "0b11010111")
@test(candidate(7, 5) == -1)
@test(candidate(5, 1) == -1)
@test(candidate(5, 5) == "0b101")
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_104_unique_digits
|
jl
|
"""Given a vector of positive integers x. return a sorted vector of all
elements that hasn't any even digit.
Note: Returned vector should be sorted in increasing order.
For example:
>>> unique_digits([15, 33, 1422, 1])
[1, 15, 33]
>>> unique_digits([152, 323, 1422, 10])
[]"""
function unique_digits(x::Vector{Int64})::Vector{Int64}
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_104_unique_digits.py
|
reworded
|
using Test
@testset begin
candidate = unique_digits;
@test(candidate([15, 33, 1422, 1]) == [1, 15, 33])
@test(candidate([152, 323, 1422, 10]) == Vector{Int64}([]))
@test(candidate([12345, 2033, 111, 151]) == [111, 151])
@test(candidate([135, 103, 31]) == [31, 135])
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_105_by_length
|
jl
|
"""Given a vector of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting vector, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
>>> by_length([2, 1, 1, 4, 5, 8, 2, 3])
["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
If the vector is empty, return an empty vector:
>>> by_length([])
[]
If the vector has any strange number ignore it:
>>> by_length([1, -1, 55])
["One"]"""
function by_length(arr::Vector{Int64})::Vector{String}
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_105_by_length.py
|
reworded
|
using Test
@testset begin
candidate = by_length;
@test(candidate([2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"])
@test(candidate(Vector{Int64}([])) == Vector{String}([]))
@test(candidate([1, -1, 55]) == ["One"])
@test(candidate([1, -1, 3, 2]) == ["Three", "Two", "One"])
@test(candidate([9, 4, 8]) == ["Nine", "Eight", "Four"])
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_106_f
|
jl
|
""" Implement the function f that takes n as a parameter,
and returns a vector of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Note: The vector indices are 0-based for this problem.
Example:
>>> f(5)
[1, 2, 6, 24, 15]"""
function f(n::Int64)::Vector{Int64}
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_106_f.py
|
reworded
|
using Test
@testset begin
candidate = f;
@test(candidate(5) == [1, 2, 6, 24, 15])
@test(candidate(7) == [1, 2, 6, 24, 15, 720, 28])
@test(candidate(1) == [1])
@test(candidate(3) == [1, 2, 6])
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_107_even_odd_palindrome
|
jl
|
"""Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
>>> even_odd_palindrome(3)
(1, 2)
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
>>> even_odd_palindrome(12)
(4, 6)
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively."""
function even_odd_palindrome(n::Int64)::Tuple{Int64, Int64}
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_107_even_odd_palindrome.py
|
reworded
|
using Test
@testset begin
candidate = even_odd_palindrome;
@test(candidate(123) == (8, 13))
@test(candidate(12) == (4, 6))
@test(candidate(3) == (1, 2))
@test(candidate(63) == (6, 8))
@test(candidate(25) == (5, 6))
@test(candidate(19) == (4, 6))
@test(candidate(9) == (4, 5))
@test(candidate(1) == (0, 1))
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_108_count_nums
|
jl
|
"""Write a function count_nums which takes a vector of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
>>> count_nums([])
0
>>> count_nums([-1, 11, -11])
1
>>> count_nums([1, 1, 2])
3"""
function count_nums(arr::Vector{Int64})::Int64
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_108_count_nums.py
|
reworded
|
using Test
@testset begin
candidate = count_nums;
@test(candidate(Vector{Int64}([])) == 0)
@test(candidate([-1, -2, 0]) == 0)
@test(candidate([1, 1, 2, -2, 3, 4, 5]) == 6)
@test(candidate([1, 6, 9, -6, 0, 1, 5]) == 5)
@test(candidate([1, 100, 98, -7, 1, -1]) == 4)
@test(candidate([12, 23, 34, -45, -56, 0]) == 5)
@test(candidate([0, 1]) == 1)
@test(candidate([1]) == 1)
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_109_move_one_ball
|
jl
|
"""We have a vector 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the vector will be randomly ordered. Your task is to determine if
it is possible to get a vector sorted in non-decreasing order by performing
the following operation on the given vector:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the vector by one
position in the right direction. The last element of the vector will be moved to
the starting position in the vector i.e. 0th index.
If it is possible to obtain the sorted vector by performing the above operation
then return true else return false.
If the given vector is empty then return true.
Note: The given vector is guaranteed to have unique elements.
For Example:
>>> move_one_ball([3, 4, 5, 1, 2])
true
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given vector.
>>> move_one_ball([3, 5, 4, 1, 2])
false
Explanation:It is not possible to get non-decreasing order for the given
vector by performing any number of right shift operations."""
function move_one_ball(arr::Vector{Int64})::Bool
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_109_move_one_ball.py
|
reworded
|
using Test
@testset begin
candidate = move_one_ball;
@test(candidate([3, 4, 5, 1, 2]) == true)
@test(candidate([3, 5, 10, 1, 2]) == true)
@test(candidate([4, 3, 1, 2]) == false)
@test(candidate([3, 5, 4, 1, 2]) == false)
@test(candidate(Vector{Int64}([])) == true)
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_110_exchange
|
jl
|
"""In this problem, you will implement a function that takes two vectors of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 a vector of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
>>> exchange([1, 2, 3, 4], [1, 2, 3, 4])
"YES"
>>> exchange([1, 2, 3, 4], [1, 5, 3, 4])
"NO"
It is assumed that the input vectors will be non-empty."""
function exchange(lst1::Vector{Int64}, lst2::Vector{Int64})::String
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_110_exchange.py
|
reworded
|
using Test
@testset begin
candidate = exchange;
@test(candidate([1, 2, 3, 4], [1, 2, 3, 4]) == "YES")
@test(candidate([1, 2, 3, 4], [1, 5, 3, 4]) == "NO")
@test(candidate([1, 2, 3, 4], [2, 1, 4, 3]) == "YES")
@test(candidate([5, 7, 3], [2, 6, 4]) == "YES")
@test(candidate([5, 7, 3], [2, 6, 3]) == "NO")
@test(candidate([3, 2, 6, 1, 8, 9], [3, 5, 5, 1, 1, 1]) == "NO")
@test(candidate([100, 200], [200, 200]) == "YES")
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_111_histogram
|
jl
|
"""Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
>>> histogram("a b c")
Dict("a" => 1, "b" => 1, "c" => 1)
>>> histogram("a b b a")
Dict("a" => 2, "b" => 2)
>>> histogram("a b c a b")
Dict("a" => 2, "b" => 2)
>>> histogram("b b b b a")
Dict("b" => 4)
>>> histogram("")
Dict()"""
function histogram(test::String)::Dict{String, Int64}>
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_111_histogram.py
|
reworded
|
using Test
@testset begin
candidate = histogram;
@test(candidate("a b b a") == Dict("a" => 2, "b" => 2))
@test(candidate("a b c a b") == Dict("a" => 2, "b" => 2))
@test(candidate("a b c d g") == Dict("a" => 1, "b" => 1, "c" => 1, "d" => 1, "g" => 1))
@test(candidate("r t g") == Dict("r" => 1, "t" => 1, "g" => 1))
@test(candidate("b b b b a") == Dict("b" => 4))
@test(candidate("r t g") == Dict("r" => 1, "t" => 1, "g" => 1))
@test(candidate("") == Dict())
@test(candidate("a") == Dict("a" => 1))
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_112_reverse_delete
|
jl
|
"""Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and true/false for the check.
Example
>>> reverse_delete("abcde", "ae")
("bcd", false)
>>> reverse_delete("abcdef", "b")
("acdef", false)
>>> reverse_delete("abcdedcba", "ab")
("cdedc", true)"""
function reverse_delete(s::String, c::String)::Tuple{String, Bool}
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_112_reverse_delete.py
|
reworded
|
using Test
@testset begin
candidate = reverse_delete;
@test(candidate("abcde", "ae") == ("bcd", false))
@test(candidate("abcdef", "b") == ("acdef", false))
@test(candidate("abcdedcba", "ab") == ("cdedc", true))
@test(candidate("dwik", "w") == ("dik", false))
@test(candidate("a", "a") == ("", true))
@test(candidate("abcdedcba", "") == ("abcdedcba", true))
@test(candidate("abcdedcba", "v") == ("abcdedcba", true))
@test(candidate("vabba", "v") == ("abba", true))
@test(candidate("mamma", "mia") == ("", true))
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_113_odd_count
|
jl
|
"""Given a vector of strings, where each string consists of only digits, return a vector.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
>>> odd_count(["1234567"])
["the number of odd elements 4n the str4ng 4 of the 4nput."]
>>> odd_count(["3", "11111111"])
["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]"""
function odd_count(lst::Vector{String})::Vector{String}
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_113_odd_count.py
|
reworded
|
using Test
@testset begin
candidate = odd_count;
@test(candidate(["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."])
@test(candidate(["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."])
@test(candidate(["271", "137", "314"]) == ["the number of odd elements 2n the str2ng 2 of the 2nput.", "the number of odd elements 3n the str3ng 3 of the 3nput.", "the number of odd elements 2n the str2ng 2 of the 2nput."])
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_114_minSubArraySum
|
jl
|
"""Given a vector of integers nums, find the minimum sum of any non-empty sub-vector
of nums.
Example
>>> minSubArraySum([2, 3, 4, 1, 2, 4])
1
>>> minSubArraySum([-1, -2, -3])
-6"""
function minSubArraySum(nums::Vector{Int64})::Int64
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_114_minSubArraySum.py
|
reworded
|
using Test
@testset begin
candidate = minSubArraySum;
@test(candidate([2, 3, 4, 1, 2, 4]) == 1)
@test(candidate([-1, -2, -3]) == -6)
@test(candidate([-1, -2, -3, 2, -10]) == -14)
@test(candidate([-9999999999999999]) == -9999999999999999)
@test(candidate([0, 10, 20, 1000000]) == 0)
@test(candidate([-1, -2, -3, 10, -5]) == -6)
@test(candidate([100, -1, -2, -3, 10, -5]) == -6)
@test(candidate([10, 11, 13, 8, 3, 4]) == 3)
@test(candidate([100, -33, 32, -1, 0, -2]) == -33)
@test(candidate([-10]) == -10)
@test(candidate([7]) == 7)
@test(candidate([1, -1]) == -1)
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_115_max_fill
|
jl
|
"""You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
>>> max_fill([[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], 1)
6
Example 2:
>>> max_fill([[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], 2)
5
Example 3:
>>> max_fill([[0, 0, 0], [0, 0, 0]], 5)
0
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10"""
function max_fill(grid::Vector{Vector{Int64}}, capacity::Int64)::Int64
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_115_max_fill.py
|
reworded
|
using Test
@testset begin
candidate = max_fill;
@test(candidate([[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], 1) == 6)
@test(candidate([[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], 2) == 5)
@test(candidate([[0, 0, 0], [0, 0, 0]], 5) == 0)
@test(candidate([[1, 1, 1, 1], [1, 1, 1, 1]], 2) == 4)
@test(candidate([[1, 1, 1, 1], [1, 1, 1, 1]], 9) == 2)
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_116_sort_array
|
jl
|
"""In this Kata, you have to sort a vector of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
>>> sort_array([1, 5, 2, 3, 4])
[1, 2, 3, 4, 5]
>>> sort_array(Vector{Int64}([]))
Vector{Int64}([])
>>> sort_array([1, 0, 2, 3, 4])
[0, 1, 2, 3, 4]"""
function sort_array(arr::Vector{Int64})::Vector{Int64}
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_116_sort_array.py
|
reworded
|
using Test
@testset begin
candidate = sort_array;
@test(candidate([1, 5, 2, 3, 4]) == [1, 2, 4, 3, 5])
@test(candidate([1, 0, 2, 3, 4]) == [0, 1, 2, 4, 3])
@test(candidate(Vector{Int64}([])) == Vector{Int64}([]))
@test(candidate([2, 5, 77, 4, 5, 3, 5, 7, 2, 3, 4]) == [2, 2, 4, 4, 3, 3, 5, 5, 5, 7, 77])
@test(candidate([3, 6, 44, 12, 32, 5]) == [32, 3, 5, 6, 12, 44])
@test(candidate([2, 4, 8, 16, 32]) == [2, 4, 8, 16, 32])
@test(candidate([2, 4, 8, 16, 32]) == [2, 4, 8, 16, 32])
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_117_select_words
|
jl
|
"""Given a string s and a natural number n, you have been tasked to implement
a function that returns a vector of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty vector.
Note: you may assume the input string contains only letters and spaces.
Examples:
>>> select_words("Mary had a little lamb", 4)
["little"]
>>> select_words("Mary had a little lamb", 3)
["Mary", "lamb"]
>>> select_words("simple white space", 2)
[]
>>> select_words("Hello world", 4)
["world"]
>>> select_words("Uncle sam", 3)
["Uncle"]"""
function select_words(s::String, n::Int64)::Vector{String}
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_117_select_words.py
|
reworded
|
using Test
@testset begin
candidate = select_words;
@test(candidate("Mary had a little lamb", 4) == ["little"])
@test(candidate("Mary had a little lamb", 3) == ["Mary", "lamb"])
@test(candidate("simple white space", 2) == Vector{String}([]))
@test(candidate("Hello world", 4) == ["world"])
@test(candidate("Uncle sam", 3) == ["Uncle"])
@test(candidate("", 4) == Vector{String}([]))
@test(candidate("a b c d e f", 1) == ["b", "c", "d", "f"])
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_118_get_closest_vowel
|
jl
|
"""You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
>>> get_closest_vowel("yogurt")
"u"
>>> get_closest_vowel("FULL")
"U"
>>> get_closest_vowel("quick")
""
>>> get_closest_vowel("ab")
""
"""
function get_closest_vowel(word::String)::String
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_118_get_closest_vowel.py
|
reworded
|
using Test
@testset begin
candidate = get_closest_vowel;
@test(candidate("yogurt") == "u")
@test(candidate("full") == "u")
@test(candidate("easy") == "")
@test(candidate("eAsy") == "")
@test(candidate("ali") == "")
@test(candidate("bad") == "a")
@test(candidate("most") == "o")
@test(candidate("ab") == "")
@test(candidate("ba") == "")
@test(candidate("quick") == "")
@test(candidate("anime") == "i")
@test(candidate("Asia") == "")
@test(candidate("Above") == "o")
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_119_match_parens
|
jl
|
"""You are given a vector of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
>>> match_parens(["()(", ")"])
"Yes"
>>> match_parens([")", ")"])
"No"
"""
function match_parens(lst::Vector{String})::String
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_119_match_parens.py
|
reworded
|
using Test
@testset begin
candidate = match_parens;
@test(candidate(["()(", ")"]) == "Yes")
@test(candidate([")", ")"]) == "No")
@test(candidate(["(()(())", "())())"]) == "No")
@test(candidate([")())", "(()()("]) == "Yes")
@test(candidate(["(())))", "(()())(("]) == "Yes")
@test(candidate(["()", "())"]) == "No")
@test(candidate(["(()(", "()))()"]) == "Yes")
@test(candidate(["((((", "((())"]) == "No")
@test(candidate([")(()", "(()("]) == "No")
@test(candidate([")(", ")("]) == "No")
@test(candidate(["(", ")"]) == "Yes")
@test(candidate([")", "("]) == "Yes")
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_120_maximum
|
jl
|
"""Given a vector arr of integers and a positive integer k, return a sorted vector
of length k with the maximum k numbers in arr.
Example 1:
>>> maximum([-3, -4, 5], 3)
[-4, -3, 5]
Example 2:
>>> maximum([4, -4, 4], 2)
[4, 4]
Example 3:
>>> maximum([-3, 2, 1, 2, -1, -2, 1], 1)
[2]
Note:
1. The length of the vector will be in the range of [1, 1000].
2. The elements in the vector will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)"""
function maximum(arr::Vector{Int64}, k::Int64)::Vector{Int64}
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_120_maximum.py
|
reworded
|
using Test
@testset begin
candidate = maximum;
@test(candidate([-3, -4, 5], 3) == [-4, -3, 5])
@test(candidate([4, -4, 4], 2) == [4, 4])
@test(candidate([-3, 2, 1, 2, -1, -2, 1], 1) == [2])
@test(candidate([123, -123, 20, 0, 1, 2, -3], 3) == [2, 20, 123])
@test(candidate([-123, 20, 0, 1, 2, -3], 4) == [0, 1, 2, 20])
@test(candidate([5, 15, 0, 3, -13, -8, 0], 7) == [-13, -8, 0, 0, 3, 5, 15])
@test(candidate([-1, 0, 2, 5, 3, -10], 2) == [3, 5])
@test(candidate([1, 0, 5, -7], 1) == [5])
@test(candidate([4, -4], 2) == [-4, 4])
@test(candidate([-10, 10], 2) == [-10, 10])
@test(candidate([1, 2, 3, -23, 243, -400, 0], 0) == Vector{Int64}([]))
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_121_solution
|
jl
|
"""Given a non-empty vector of integers, return the sum of all of the odd elements that are in even positions.
Note: The vector indices are 0-based for this problem.
Examples
>>> solution([5, 8, 7, 1])
12
>>> solution([3, 3, 3, 3, 3])
9
>>> solution([30, 13, 24, 321])
0"""
function solution(lst::Vector{Int64})::Int64
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_121_solution.py
|
reworded
|
using Test
@testset begin
candidate = solution;
@test(candidate([5, 8, 7, 1]) == 12)
@test(candidate([3, 3, 3, 3, 3]) == 9)
@test(candidate([30, 13, 24, 321]) == 0)
@test(candidate([5, 9]) == 5)
@test(candidate([2, 4, 8]) == 0)
@test(candidate([30, 13, 23, 32]) == 23)
@test(candidate([3, 13, 2, 9]) == 3)
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_122_add_elements
|
jl
|
"""Given a non-empty vector of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
>>> add_elements([111, 21, 3, 4000, 5, 6, 7, 8, 9], 4)
24
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)"""
function add_elements(arr::Vector{Int64}, k::Int64)::Int64
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_122_add_elements.py
|
reworded
|
using Test
@testset begin
candidate = add_elements;
@test(candidate([1, -2, -3, 41, 57, 76, 87, 88, 99], 3) == -4)
@test(candidate([111, 121, 3, 4000, 5, 6], 2) == 0)
@test(candidate([11, 21, 3, 90, 5, 6, 7, 8, 9], 4) == 125)
@test(candidate([111, 21, 3, 4000, 5, 6, 7, 8, 9], 4) == 24)
@test(candidate([1], 1) == 1)
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_123_get_odd_collatz
|
jl
|
"""Given a positive integer n, return a sorted vector that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned vector sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
>>> get_odd_collatz(5)
[1, 5]"""
function get_odd_collatz(n::Int64)::Vector{Int64}
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_123_get_odd_collatz.py
|
reworded
|
using Test
@testset begin
candidate = get_odd_collatz;
@test(candidate(14) == [1, 5, 7, 11, 13, 17])
@test(candidate(5) == [1, 5])
@test(candidate(12) == [1, 3, 5])
@test(candidate(1) == [1])
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_124_valid_date
|
jl
|
"""You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
>>> valid_date("03-11-2000")
true
>>> valid_date("15-01-2012")
false
>>> valid_date("04-0-2040")
false
>>> valid_date("06-04-2020")
true
>>> valid_date("06/04/2020")
false"""
function valid_date(date::String)::Bool
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_124_valid_date.py
|
reworded
|
using Test
@testset begin
candidate = valid_date;
@test(candidate("03-11-2000") == true)
@test(candidate("15-01-2012") == false)
@test(candidate("04-0-2040") == false)
@test(candidate("06-04-2020") == true)
@test(candidate("01-01-2007") == true)
@test(candidate("03-32-2011") == false)
@test(candidate("") == false)
@test(candidate("04-31-3000") == false)
@test(candidate("06-06-2005") == true)
@test(candidate("21-31-2000") == false)
@test(candidate("04-12-2003") == true)
@test(candidate("04122003") == false)
@test(candidate("20030412") == false)
@test(candidate("2003-04") == false)
@test(candidate("2003-04-12") == false)
@test(candidate("04-2003") == false)
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_125_split_words
|
jl
|
"""Given a string of words, return a vector of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
>>> split_words("Hello world!")
["Hello", "world!"]
>>> split_words("Hello,world!")
["Hello", "world!"]
>>> split_words("abcdef")
3"""
function split_words(txt::String)::Union{Vector{String}, Int64}
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_125_split_words.py
|
reworded
|
using Test
@testset begin
candidate = split_words;
@test(candidate("Hello world!") == ["Hello", "world!"])
@test(candidate("Hello,world!") == ["Hello", "world!"])
@test(candidate("Hello world,!") == ["Hello", "world,!"])
@test(candidate("Hello,Hello,world !") == ["Hello,Hello,world", "!"])
@test(candidate("abcdef") == 3)
@test(candidate("aaabb") == 2)
@test(candidate("aaaBb") == 1)
@test(candidate("") == 0)
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_126_is_sorted
|
jl
|
"""Given a vector of numbers, return whether or not they are sorted
in ascending order. If vector has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
>>> is_sorted([5])
true
>>> is_sorted([1, 2, 3, 4, 5])
true
>>> is_sorted([1, 3, 2, 4, 5])
false
>>> is_sorted([1, 2, 3, 4, 5, 6])
true
>>> is_sorted([1, 2, 3, 4, 5, 6, 7])
true
>>> is_sorted([1, 3, 2, 4, 5, 6, 7])
false
>>> is_sorted([1, 2, 2, 3, 3, 4])
true
>>> is_sorted([1, 2, 2, 2, 3, 4])
false"""
function is_sorted(lst::Vector{Int64})::Bool
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_126_is_sorted.py
|
reworded
|
using Test
@testset begin
candidate = is_sorted;
@test(candidate([5]) == true)
@test(candidate([1, 2, 3, 4, 5]) == true)
@test(candidate([1, 3, 2, 4, 5]) == false)
@test(candidate([1, 2, 3, 4, 5, 6]) == true)
@test(candidate([1, 2, 3, 4, 5, 6, 7]) == true)
@test(candidate([1, 3, 2, 4, 5, 6, 7]) == false)
@test(candidate(Vector{Int64}([])) == true)
@test(candidate([1]) == true)
@test(candidate([3, 2, 1]) == false)
@test(candidate([1, 2, 2, 2, 3, 4]) == false)
@test(candidate([1, 2, 3, 3, 3, 4]) == false)
@test(candidate([1, 2, 2, 3, 3, 4]) == true)
@test(candidate([1, 2, 3, 4]) == true)
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_127_intersection
|
jl
|
"""You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
>>> intersection((1, 2), (2, 3))
"NO"
>>> intersection((-1, 1), (0, 4))
"NO"
>>> intersection((-3, -1), (-5, 5))
"YES"
"""
function intersection(interval1::Tuple{Int64, Int64}, interval2::Tuple{Int64, Int64})::String
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_127_intersection.py
|
reworded
|
using Test
@testset begin
candidate = intersection;
@test(candidate((1, 2), (2, 3)) == "NO")
@test(candidate((-1, 1), (0, 4)) == "NO")
@test(candidate((-3, -1), (-5, 5)) == "YES")
@test(candidate((-2, 2), (-4, 0)) == "YES")
@test(candidate((-11, 2), (-1, -1)) == "NO")
@test(candidate((1, 2), (3, 5)) == "NO")
@test(candidate((1, 2), (1, 2)) == "NO")
@test(candidate((-2, -2), (-3, -2)) == "NO")
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_128_prod_signs
|
jl
|
"""You are given a vector arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the vector, represented by 1, -1 or 0.
Note: return nothing for empty arr.
Example:
>>> prod_signs([1, 2, 2, -4])
-9
>>> prod_signs([0, 1])
0
>>> prod_signs([])
nothing"""
function prod_signs(arr::Vector{Int64})::Union{Int64, Nothing}
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_128_prod_signs.py
|
reworded
|
using Test
@testset begin
candidate = prod_signs;
@test(candidate([1, 2, 2, -4]) == -9)
@test(candidate([0, 1]) == 0)
@test(candidate([1, 1, 1, 2, 3, -1, 1]) == -10)
@test(candidate(Vector{Int64}([])) == nothing)
@test(candidate([2, 4, 1, 2, -1, -1, 9]) == 20)
@test(candidate([-1, 1, -1, 1]) == 4)
@test(candidate([-1, 1, 1, 1]) == -4)
@test(candidate([-1, 1, 1, 0]) == 0)
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_129_minPath
|
jl
|
"""Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered vectors of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered vector of the values on the cells that the minimum path go through.
Note: The vector indices are 0-based for this problem.
Examples:
>>> minPath([[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3)
[1, 2, 1]
>>> minPath([[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1)
[1]"""
function minPath(grid::Vector{Vector{Int64}}, k::Int64)::Vector{Int64}
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_129_minPath.py
|
reworded
|
using Test
@testset begin
candidate = minPath;
@test(candidate([[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3) == [1, 2, 1])
@test(candidate([[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1) == [1])
@test(candidate([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4) == [1, 2, 1, 2])
@test(candidate([[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7) == [1, 10, 1, 10, 1, 10, 1])
@test(candidate([[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5) == [1, 7, 1, 7, 1])
@test(candidate([[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9) == [1, 6, 1, 6, 1, 6, 1, 6, 1])
@test(candidate([[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12) == [1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6])
@test(candidate([[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8) == [1, 3, 1, 3, 1, 3, 1, 3])
@test(candidate([[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8) == [1, 5, 1, 5, 1, 5, 1, 5])
@test(candidate([[1, 2], [3, 4]], 10) == [1, 2, 1, 2, 1, 2, 1, 2, 1, 2])
@test(candidate([[1, 3], [3, 2]], 10) == [1, 3, 1, 3, 1, 3, 1, 3, 1, 3])
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_130_tri
|
jl
|
"""Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return a vector of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
>>> tri(3)
[1, 3, 2, 8]"""
function tri(n::Int64)::Vector{Int64}
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_130_tri.py
|
reworded
|
using Test
@testset begin
candidate = tri;
@test(candidate(3) == [1, 3, 2, 8])
@test(candidate(4) == [1, 3, 2, 8, 3])
@test(candidate(5) == [1, 3, 2, 8, 3, 15])
@test(candidate(6) == [1, 3, 2, 8, 3, 15, 4])
@test(candidate(7) == [1, 3, 2, 8, 3, 15, 4, 24])
@test(candidate(8) == [1, 3, 2, 8, 3, 15, 4, 24, 5])
@test(candidate(9) == [1, 3, 2, 8, 3, 15, 4, 24, 5, 35])
@test(candidate(20) == [1, 3, 2, 8, 3, 15, 4, 24, 5, 35, 6, 48, 7, 63, 8, 80, 9, 99, 10, 120, 11])
@test(candidate(0) == [1])
@test(candidate(1) == [1, 3])
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_131_digits
|
jl
|
"""Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
>>> digits(1)
1
>>> digits(4)
0
>>> digits(235)
15"""
function digits(n::Int64)::Int64
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_131_digits.py
|
reworded
|
using Test
@testset begin
candidate = digits;
@test(candidate(5) == 5)
@test(candidate(54) == 5)
@test(candidate(120) == 1)
@test(candidate(5014) == 5)
@test(candidate(98765) == 315)
@test(candidate(5576543) == 2625)
@test(candidate(2468) == 0)
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_132_is_nested
|
jl
|
"""Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
>>> is_nested("[[]]")
true
>>> is_nested("[]]]]]]][[[[[]")
false
>>> is_nested("[][]")
false
>>> is_nested("[]")
false
>>> is_nested("[[][]]")
true
>>> is_nested("[[]][[")
true"""
function is_nested(string::String)::Bool
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_132_is_nested.py
|
reworded
|
using Test
@testset begin
candidate = is_nested;
@test(candidate("[[]]") == true)
@test(candidate("[]]]]]]][[[[[]") == false)
@test(candidate("[][]") == false)
@test(candidate("[]") == false)
@test(candidate("[[[[]]]]") == true)
@test(candidate("[]]]]]]]]]]") == false)
@test(candidate("[][][[]]") == true)
@test(candidate("[[]") == false)
@test(candidate("[]]") == false)
@test(candidate("[[]][[") == true)
@test(candidate("[[][]]") == true)
@test(candidate("") == false)
@test(candidate("[[[[[[[[") == false)
@test(candidate("]]]]]]]]") == false)
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_133_sum_squares
|
jl
|
"""You are given a vector of numbers.
You need to return the sum of squared numbers in the given vector,
round each element in the vector to the upper int(Ceiling) first.
Examples:
>>> lst([1.0, 2.0, 3.0])
14
>>> lst([1.0, 4.0, 9.0])
98
>>> lst([1.0, 3.0, 5.0, 7.0])
84
>>> lst([1.4, 4.2, 0.0])
29
>>> lst([-2.4, 1.0, 1.0])
6"""
function sum_squares(lst::Vector{Float64})::Int64
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_133_sum_squares.py
|
reworded
|
using Test
@testset begin
candidate = sum_squares;
@test(candidate([1.0, 2.0, 3.0]) == 14)
@test(candidate([1.0, 2.0, 3.0]) == 14)
@test(candidate([1.0, 3.0, 5.0, 7.0]) == 84)
@test(candidate([1.4, 4.2, 0.0]) == 29)
@test(candidate([-2.4, 1.0, 1.0]) == 6)
@test(candidate([100.0, 1.0, 15.0, 2.0]) == 10230)
@test(candidate([10000.0, 10000.0]) == 200000000)
@test(candidate([-1.4, 4.6, 6.3]) == 75)
@test(candidate([-1.4, 17.9, 18.9, 19.9]) == 1086)
@test(candidate([0.0]) == 0)
@test(candidate([-1.0]) == 1)
@test(candidate([-1.0, 1.0, 0.0]) == 2)
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_134_check_if_last_char_is_a_letter
|
jl
|
"""Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
>>> check_if_last_char_is_a_letter("apple pie")
false
>>> check_if_last_char_is_a_letter("apple pi e")
true
>>> check_if_last_char_is_a_letter("apple pi e ")
false
>>> check_if_last_char_is_a_letter("")
false"""
function check_if_last_char_is_a_letter(txt::String)::Bool
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_134_check_if_last_char_is_a_letter.py
|
reworded
|
using Test
@testset begin
candidate = check_if_last_char_is_a_letter;
@test(candidate("apple") == false)
@test(candidate("apple pi e") == true)
@test(candidate("eeeee") == false)
@test(candidate("A") == true)
@test(candidate("Pumpkin pie ") == false)
@test(candidate("Pumpkin pie 1") == false)
@test(candidate("") == false)
@test(candidate("eeeee e ") == false)
@test(candidate("apple pie") == false)
@test(candidate("apple pi e ") == false)
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_135_can_arrange
|
jl
|
"""Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given vector will not contain
duplicate values.
Note: The vector indices are 0-based for this problem.
Examples:
>>> can_arrange([1, 2, 4, 3, 5])
3
>>> can_arrange([1, 2, 3])
-1"""
function can_arrange(arr::Vector{Int64})::Int64
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_135_can_arrange.py
|
reworded
|
using Test
@testset begin
candidate = can_arrange;
@test(candidate([1, 2, 4, 3, 5]) == 3)
@test(candidate([1, 2, 4, 5]) == -1)
@test(candidate([1, 4, 2, 5, 6, 7, 8, 9, 10]) == 2)
@test(candidate([4, 8, 5, 7, 3]) == 4)
@test(candidate(Vector{Int64}([])) == -1)
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_136_largest_smallest_integers
|
jl
|
"""Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in a vector.
If there is no negative or positive integers, return them as nothing.
Examples:
>>> largest_smallest_integers([2, 4, 1, 3, 5, 7])
(nothing, 1)
>>> largest_smallest_integers([])
(nothing, nothing)
>>> largest_smallest_integers([0])
(nothing, nothing)"""
function largest_smallest_integers(lst::Vector{Int64})::Tuple{Union{Int64, Nothing}, Union{Int64, Nothing}}
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_136_largest_smallest_integers.py
|
reworded
|
using Test
@testset begin
candidate = largest_smallest_integers;
@test(candidate([2, 4, 1, 3, 5, 7]) == (nothing, 1))
@test(candidate([2, 4, 1, 3, 5, 7, 0]) == (nothing, 1))
@test(candidate([1, 3, 2, 4, 5, 6, -2]) == (-2, 1))
@test(candidate([4, 5, 3, 6, 2, 7, -7]) == (-7, 2))
@test(candidate([7, 3, 8, 4, 9, 2, 5, -9]) == (-9, 2))
@test(candidate(Vector{Int64}([])) == (nothing, nothing))
@test(candidate([0]) == (nothing, nothing))
@test(candidate([-1, -3, -5, -6]) == (-1, nothing))
@test(candidate([-1, -3, -5, -6, 0]) == (-1, nothing))
@test(candidate([-6, -4, -4, -3, 1]) == (-3, 1))
@test(candidate([-6, -4, -4, -3, -100, 1]) == (-3, 1))
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_138_is_equal_to_sum_even
|
jl
|
"""Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
>>> is_equal_to_sum_even(4)
false
>>> is_equal_to_sum_even(6)
false
>>> is_equal_to_sum_even(8)
true"""
function is_equal_to_sum_even(n::Int64)::Bool
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_138_is_equal_to_sum_even.py
|
reworded
|
using Test
@testset begin
candidate = is_equal_to_sum_even;
@test(candidate(4) == false)
@test(candidate(6) == false)
@test(candidate(8) == true)
@test(candidate(10) == true)
@test(candidate(11) == false)
@test(candidate(12) == true)
@test(candidate(13) == false)
@test(candidate(16) == true)
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_139_special_factorial
|
jl
|
"""The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
>>> special_factorial(4)
288
The function will receive an integer as input and should return the special
factorial of this integer."""
function special_factorial(n::Int64)::Int64
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_139_special_factorial.py
|
reworded
|
using Test
@testset begin
candidate = special_factorial;
@test(candidate(4) == 288)
@test(candidate(5) == 34560)
@test(candidate(7) == 125411328000)
@test(candidate(1) == 1)
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_140_fix_spaces
|
jl
|
"""Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
>>> fix_spaces("Example")
"Example"
>>> fix_spaces("Example 1")
"Example_1"
>>> fix_spaces(" Example 2")
"_Example_2"
>>> fix_spaces(" Example 3")
"_Example-3"
"""
function fix_spaces(text::String)::String
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_140_fix_spaces.py
|
reworded
|
using Test
@testset begin
candidate = fix_spaces;
@test(candidate("Example") == "Example")
@test(candidate("Mudasir Hanif ") == "Mudasir_Hanif_")
@test(candidate("Yellow Yellow Dirty Fellow") == "Yellow_Yellow-Dirty-Fellow")
@test(candidate("Exa mple") == "Exa-mple")
@test(candidate(" Exa 1 2 2 mple") == "-Exa_1_2_2_mple")
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_141_file_name_check
|
jl
|
"""Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
>>> file_name_check("example.txt")
"Yes"
>>> file_name_check("1example.dll")
"No"
"""
function file_name_check(file_name::String)::String
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_141_file_name_check.py
|
reworded
|
using Test
@testset begin
candidate = file_name_check;
@test(candidate("example.txt") == "Yes")
@test(candidate("1example.dll") == "No")
@test(candidate("s1sdf3.asd") == "No")
@test(candidate("K.dll") == "Yes")
@test(candidate("MY16FILE3.exe") == "Yes")
@test(candidate("His12FILE94.exe") == "No")
@test(candidate("_Y.txt") == "No")
@test(candidate("?aREYA.exe") == "No")
@test(candidate("/this_is_valid.dll") == "No")
@test(candidate("this_is_valid.wow") == "No")
@test(candidate("this_is_valid.txt") == "Yes")
@test(candidate("this_is_valid.txtexe") == "No")
@test(candidate("#this2_i4s_5valid.ten") == "No")
@test(candidate("@this1_is6_valid.exe") == "No")
@test(candidate("this_is_12valid.6exe4.txt") == "No")
@test(candidate("all.exe.txt") == "No")
@test(candidate("I563_No.exe") == "Yes")
@test(candidate("Is3youfault.txt") == "Yes")
@test(candidate("no_one#knows.dll") == "Yes")
@test(candidate("1I563_Yes3.exe") == "No")
@test(candidate("I563_Yes3.txtt") == "No")
@test(candidate("final..txt") == "No")
@test(candidate("final132") == "No")
@test(candidate("_f4indsartal132.") == "No")
@test(candidate(".txt") == "No")
@test(candidate("s.") == "No")
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_142_sum_squares
|
jl
|
"""
This function will take a vector of integers. For all entries in the vector, the function shall square the integer entry if its index is a
multiple of 3 and will cube the integer entry if its index is a multiple of 4 and not a multiple of 3. The function will not
change the entries in the vector whose indexes are not a multiple of 3 or 4. The function shall then return the sum of all entries.
Note: The vector indices are 0-based for this problem.
Examples:
>>> sum_squares([1, 2, 3])
6
>>> sum_squares(Vector{Int64}([]))
0
>>> sum_squares([-1, -5, 2, -1, -5])
-126"""
function sum_squares(lst::Vector{Int64})::Int64
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_142_sum_squares.py
|
reworded
|
using Test
@testset begin
candidate = sum_squares;
@test(candidate([1, 2, 3]) == 6)
@test(candidate([1, 4, 9]) == 14)
@test(candidate(Vector{Int64}([])) == 0)
@test(candidate([1, 1, 1, 1, 1, 1, 1, 1, 1]) == 9)
@test(candidate([-1, -1, -1, -1, -1, -1, -1, -1, -1]) == -3)
@test(candidate([0]) == 0)
@test(candidate([-1, -5, 2, -1, -5]) == -126)
@test(candidate([-56, -99, 1, 0, -2]) == 3030)
@test(candidate([-1, 0, 0, 0, 0, 0, 0, 0, -1]) == 0)
@test(candidate([-16, -9, -2, 36, 36, 26, -20, 25, -40, 20, -4, 12, -26, 35, 37]) == -14196)
@test(candidate([-1, -3, 17, -1, -15, 13, -1, 14, -14, -12, -5, 14, -14, 6, 13, 11, 16, 16, 4, 10]) == -1448)
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_143_words_in_sentence
|
jl
|
"""You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
>>> words_in_sentence("This is a test")
"is"
Example 2:
>>> words_in_sentence("lets go for swimming")
"go for"
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters"""
function words_in_sentence(sentence::String)::String
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_143_words_in_sentence.py
|
reworded
|
using Test
@testset begin
candidate = words_in_sentence;
@test(candidate("This is a test") == "is")
@test(candidate("lets go for swimming") == "go for")
@test(candidate("there is no place available here") == "there is no place")
@test(candidate("Hi I am Hussein") == "Hi am Hussein")
@test(candidate("go for it") == "go for it")
@test(candidate("here") == "")
@test(candidate("here is") == "is")
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_144_simplify
|
jl
|
"""Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
>>> simplify("1/5", "5/1")
true
>>> simplify("1/6", "2/1")
false
>>> simplify("7/10", "10/2")
false"""
function simplify(x::String, n::String)::Bool
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_144_simplify.py
|
reworded
|
using Test
@testset begin
candidate = simplify;
@test(candidate("1/5", "5/1") == true)
@test(candidate("1/6", "2/1") == false)
@test(candidate("5/1", "3/1") == true)
@test(candidate("7/10", "10/2") == false)
@test(candidate("2/10", "50/10") == true)
@test(candidate("7/2", "4/2") == true)
@test(candidate("11/6", "6/1") == true)
@test(candidate("2/3", "5/2") == false)
@test(candidate("5/2", "3/5") == false)
@test(candidate("2/4", "8/4") == true)
@test(candidate("2/4", "4/2") == true)
@test(candidate("1/5", "5/1") == true)
@test(candidate("1/5", "1/5") == false)
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_145_order_by_points
|
jl
|
"""Write a function which sorts the given vector of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original vector.
For example:
>>> order_by_points([100, 22, 31, 4, 13])
[100, 22, 31, 4, 13]
>>> order_by_points(Vector{Int64}([]))
Vector{Int64}([])"""
function order_by_points(nums::Vector{Int64})::Vector{Int64}
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_145_order_by_points.py
|
reworded
|
using Test
@testset begin
candidate = order_by_points;
@test(candidate([1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11])
@test(candidate([1234, 423, 463, 145, 2, 423, 423, 53, 6, 37, 3457, 3, 56, 0, 46]) == [0, 2, 3, 6, 53, 423, 423, 423, 1234, 145, 37, 46, 56, 463, 3457])
@test(candidate(Vector{Int64}([])) == Vector{Int64}([]))
@test(candidate([1, -11, -32, 43, 54, -98, 2, -3]) == [-3, -32, -98, -11, 1, 2, 43, 54])
@test(candidate([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) == [1, 10, 2, 11, 3, 4, 5, 6, 7, 8, 9])
@test(candidate([0, 6, 6, -76, -21, 23, 4]) == [-76, -21, 0, 4, 23, 6, 6])
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_146_specialFilter
|
jl
|
"""Write a function that takes a vector of numbers as input and returns
the number of elements in the vector that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
>>> specialFilter([15, -73, 14, -15])
1
>>> specialFilter([33, -2, -3, 45, 21, 109])
2"""
function specialFilter(nums::Vector{Int64})::Int64
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_146_specialFilter.py
|
reworded
|
using Test
@testset begin
candidate = specialFilter;
@test(candidate([5, -2, 1, -5]) == 0)
@test(candidate([15, -73, 14, -15]) == 1)
@test(candidate([33, -2, -3, 45, 21, 109]) == 2)
@test(candidate([43, -12, 93, 125, 121, 109]) == 4)
@test(candidate([71, -2, -33, 75, 21, 19]) == 3)
@test(candidate([1]) == 0)
@test(candidate(Vector{Int64}([])) == 0)
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_147_get_max_triples
|
jl
|
""" You are given a positive integer n. You have to create an integer vector a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
>>> get_max_triples(5)
1
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13)."""
function get_max_triples(n::Int64)::Int64
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_147_get_max_triples.py
|
reworded
|
using Test
@testset begin
candidate = get_max_triples;
@test(candidate(5) == 1)
@test(candidate(6) == 4)
@test(candidate(10) == 36)
@test(candidate(100) == 53361)
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_149_sorted_list_sum
|
jl
|
"""Write a function that accepts a vector of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted vector with a sorted order,
The vector is always a vector of strings and never a vector of numbers,
and it may contain duplicates.
The order of the vector should be ascending by length of each word, and you
should return the vector sorted by that rule.
If two words have the same length, sort the vector alphabetically.
The function should return a vector of strings in sorted order.
You may assume that all words will have the same length.
For example:
>>> list_sort(["aa", "a", "aaa"])
["aa"]
>>> list_sort(["ab", "a", "aaa", "cd"])
["ab", "cd"]"""
function sorted_list_sum(lst::Vector{String})::Vector{String}
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_149_sorted_list_sum.py
|
reworded
|
using Test
@testset begin
candidate = sorted_list_sum;
@test(candidate(["aa", "a", "aaa"]) == ["aa"])
@test(candidate(["school", "AI", "asdf", "b"]) == ["AI", "asdf", "school"])
@test(candidate(["d", "b", "c", "a"]) == Vector{String}([]))
@test(candidate(["d", "dcba", "abcd", "a"]) == ["abcd", "dcba"])
@test(candidate(["AI", "ai", "au"]) == ["AI", "ai", "au"])
@test(candidate(["a", "b", "b", "c", "c", "a"]) == Vector{String}([]))
@test(candidate(["aaaa", "bbbb", "dd", "cc"]) == ["cc", "dd", "aaaa", "bbbb"])
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_150_x_or_y
|
jl
|
"""A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
>>> x_or_y(7, 34, 12)
34
>>> x_or_y(15, 8, 5)
5"""
function x_or_y(n::Int64, x::Int64, y::Int64)::Int64
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_150_x_or_y.py
|
reworded
|
using Test
@testset begin
candidate = x_or_y;
@test(candidate(7, 34, 12) == 34)
@test(candidate(15, 8, 5) == 5)
@test(candidate(3, 33, 5212) == 33)
@test(candidate(1259, 3, 52) == 3)
@test(candidate(7919, -1, 12) == -1)
@test(candidate(3609, 1245, 583) == 583)
@test(candidate(91, 56, 129) == 129)
@test(candidate(6, 34, 1234) == 1234)
@test(candidate(1, 2, 0) == 0)
@test(candidate(2, 2, 0) == 2)
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_151_double_the_difference
|
jl
|
"""Given a vector of numbers, return the sum of squares of the numbers
in the vector that are odd. Ignore numbers that are negative or not integers.
>>> double_the_difference([1, 3, 2, 0])
10
>>> double_the_difference([-1, -2, 0])
0
>>> double_the_difference([9, -2])
81
>>> double_the_difference([0])
0
If the input vector is empty, return 0."""
function double_the_difference(lst::Vector{Float64})::Int64
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_151_double_the_difference.py
|
reworded
|
using Test
@testset begin
candidate = double_the_difference;
@test(candidate(Vector{Float64}([])) == 0)
@test(candidate([5, 4]) == 25)
@test(candidate([0.1, 0.2, 0.3]) == 0)
@test(candidate([-10, -20, -30]) == 0)
@test(candidate([-1, -2, 8]) == 0)
@test(candidate([0.2, 3, 5]) == 34)
@test(candidate([-9, -7, -5, -3, -1, 1, 3, 5, 7, 9]) == 165)
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_152_compare
|
jl
|
"""I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two vectors of scores and guesses of equal length, where each index shows a match.
Return a vector of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
>>> compare([1, 2, 3, 4, 5, 1], [1, 2, 3, 4, 2, -2])
[0, 0, 0, 0, 3, 3]
>>> compare([0, 5, 0, 0, 0, 4], [4, 1, 1, 0, 0, -2])
[4, 4, 1, 0, 0, 6]"""
function compare(game::Vector{Int64}, guess::Vector{Int64})::Vector{Int64}
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_152_compare.py
|
reworded
|
using Test
@testset begin
candidate = compare;
@test(candidate([1, 2, 3, 4, 5, 1], [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3])
@test(candidate([0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]) == [0, 0, 0, 0, 0, 0])
@test(candidate([1, 2, 3], [-1, -2, -3]) == [2, 4, 6])
@test(candidate([1, 2, 3, 5], [-1, 2, 3, 4]) == [2, 0, 0, 1])
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_153_Strongest_Extension
|
jl
|
"""You will be given the name of a class (a string) and a vector of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the vector.
For example, if you are given "Slices" as the class and a vector of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
>>> Strongest_Extension("my_class", ["AA", "Be", "CC"])
"my_class.AA"
"""
function Strongest_Extension(class_name::String, extensions::Vector{String})::String
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_153_Strongest_Extension.py
|
reworded
|
using Test
@testset begin
candidate = Strongest_Extension;
@test(candidate("Watashi", ["tEN", "niNE", "eIGHt8OKe"]) == "Watashi.eIGHt8OKe")
@test(candidate("Boku123", ["nani", "NazeDa", "YEs.WeCaNe", "32145tggg"]) == "Boku123.YEs.WeCaNe")
@test(candidate("__YESIMHERE", ["t", "eMptY", "nothing", "zeR00", "NuLl__", "123NoooneB321"]) == "__YESIMHERE.NuLl__")
@test(candidate("K", ["Ta", "TAR", "t234An", "cosSo"]) == "K.TAR")
@test(candidate("__HAHA", ["Tab", "123", "781345", "-_-"]) == "__HAHA.123")
@test(candidate("YameRore", ["HhAas", "okIWILL123", "WorkOut", "Fails", "-_-"]) == "YameRore.okIWILL123")
@test(candidate("finNNalLLly", ["Die", "NowW", "Wow", "WoW"]) == "finNNalLLly.WoW")
@test(candidate("_", ["Bb", "91245"]) == "_.Bb")
@test(candidate("Sp", ["671235", "Bb"]) == "Sp.671235")
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_154_cycpattern_check
|
jl
|
"""You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
>>> cycpattern_check("abcd", "abd")
false
>>> cycpattern_check("hello", "ell")
true
>>> cycpattern_check("whassup", "psus")
false
>>> cycpattern_check("abab", "baa")
true
>>> cycpattern_check("efef", "eeff")
false
>>> cycpattern_check("himenss", "simen")
true"""
function cycpattern_check(a::String, b::String)::Bool
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_154_cycpattern_check.py
|
reworded
|
using Test
@testset begin
candidate = cycpattern_check;
@test(candidate("xyzw", "xyw") == false)
@test(candidate("yello", "ell") == true)
@test(candidate("whattup", "ptut") == false)
@test(candidate("efef", "fee") == true)
@test(candidate("abab", "aabb") == false)
@test(candidate("winemtt", "tinem") == true)
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_155_even_odd_count
|
jl
|
"""Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
>>> even_odd_count(-12)
(1, 1)
>>> even_odd_count(123)
(1, 2)"""
function even_odd_count(num::Int64)::Tuple{Int64, Int64}
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_155_even_odd_count.py
|
reworded
|
using Test
@testset begin
candidate = even_odd_count;
@test(candidate(7) == (0, 1))
@test(candidate(-78) == (1, 1))
@test(candidate(3452) == (2, 2))
@test(candidate(346211) == (3, 3))
@test(candidate(-345821) == (3, 3))
@test(candidate(-2) == (1, 0))
@test(candidate(-45347) == (2, 3))
@test(candidate(0) == (1, 0))
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_156_int_to_mini_roman
|
jl
|
"""Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
>>> int_to_mini_roman(19)
"xix"
>>> int_to_mini_roman(152)
"clii"
>>> int_to_mini_roman(426)
"cdxxvi"
"""
function int_to_mini_roman(number::Int64)::String
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_156_int_to_mini_roman.py
|
reworded
|
using Test
@testset begin
candidate = int_to_mini_roman;
@test(candidate(19) == "xix")
@test(candidate(152) == "clii")
@test(candidate(251) == "ccli")
@test(candidate(426) == "cdxxvi")
@test(candidate(500) == "d")
@test(candidate(1) == "i")
@test(candidate(4) == "iv")
@test(candidate(43) == "xliii")
@test(candidate(90) == "xc")
@test(candidate(94) == "xciv")
@test(candidate(532) == "dxxxii")
@test(candidate(900) == "cm")
@test(candidate(994) == "cmxciv")
@test(candidate(1000) == "m")
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_157_right_angle_triangle
|
jl
|
"""Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
>>> right_angle_triangle(3, 4, 5)
true
>>> right_angle_triangle(1, 2, 3)
false"""
function right_angle_triangle(a::Int64, b::Int64, c::Int64)::Bool
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_157_right_angle_triangle.py
|
reworded
|
using Test
@testset begin
candidate = right_angle_triangle;
@test(candidate(3, 4, 5) == true)
@test(candidate(1, 2, 3) == false)
@test(candidate(10, 6, 8) == true)
@test(candidate(2, 2, 2) == false)
@test(candidate(7, 24, 25) == true)
@test(candidate(10, 5, 7) == false)
@test(candidate(5, 12, 13) == true)
@test(candidate(15, 8, 17) == true)
@test(candidate(48, 55, 73) == true)
@test(candidate(1, 1, 1) == false)
@test(candidate(2, 2, 10) == false)
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_158_find_max
|
jl
|
"""Write a function that accepts a vector of strings.
The vector contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
>>> find_max(["name", "of", "string"])
"string"
>>> find_max(["name", "enam", "game"])
"enam"
>>> find_max(["aaaaaaa", "bb", "cc"])
"aaaaaaa"
"""
function find_max(words::Vector{String})::String
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_158_find_max.py
|
reworded
|
using Test
@testset begin
candidate = find_max;
@test(candidate(["name", "of", "string"]) == "string")
@test(candidate(["name", "enam", "game"]) == "enam")
@test(candidate(["aaaaaaa", "bb", "cc"]) == "aaaaaaa")
@test(candidate(["abc", "cba"]) == "abc")
@test(candidate(["play", "this", "game", "of", "footbott"]) == "footbott")
@test(candidate(["we", "are", "gonna", "rock"]) == "gonna")
@test(candidate(["we", "are", "a", "mad", "nation"]) == "nation")
@test(candidate(["this", "is", "a", "prrk"]) == "this")
@test(candidate(["b"]) == "b")
@test(candidate(["play", "play", "play"]) == "play")
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_159_eat
|
jl
|
"""You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return a vector of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
>>> eat(5, 6, 10)
[11, 4]
>>> eat(4, 8, 9)
[12, 1]
>>> eat(1, 10, 10)
[11, 0]
>>> eat(2, 11, 5)
[7, 0]
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)"""
function eat(number::Int64, need::Int64, remaining::Int64)::Vector{Int64}
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_159_eat.py
|
reworded
|
using Test
@testset begin
candidate = eat;
@test(candidate(5, 6, 10) == [11, 4])
@test(candidate(4, 8, 9) == [12, 1])
@test(candidate(1, 10, 10) == [11, 0])
@test(candidate(2, 11, 5) == [7, 0])
@test(candidate(4, 5, 7) == [9, 2])
@test(candidate(4, 5, 1) == [5, 0])
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_160_do_algebra
|
jl
|
"""Given two vectors operator, and operand. The first vector has basic algebra operations, and
the second vector is a vector of integers. Use the two given vectors to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
vector = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator vector is equal to the length of operand vector minus one.
Operand is a vector of of non-negative integers.
Operator vector has at least one operator, and operand vector has at least two operands."""
function do_algebra(operator::Vector{String}, operand::Vector{Int64})::Int64
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_160_do_algebra.py
|
reworded
|
using Test
@testset begin
candidate = do_algebra;
@test(candidate(["**", "*", "+"], [2, 3, 4, 5]) == 37)
@test(candidate(["+", "*", "-"], [2, 3, 4, 5]) == 9)
@test(candidate(["//", "*"], [7, 3, 4]) == 8)
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_161_solve
|
jl
|
"""You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
>>> solve("1234")
"4321"
>>> solve("ab")
"AB"
>>> solve("#a@C")
"#A@c"
"""
function solve(s::String)::String
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_161_solve.py
|
reworded
|
using Test
@testset begin
candidate = solve;
@test(candidate("AsDf") == "aSdF")
@test(candidate("1234") == "4321")
@test(candidate("ab") == "AB")
@test(candidate("#a@C") == "#A@c")
@test(candidate("#AsdfW^45") == "#aSDFw^45")
@test(candidate("#6@2") == "2@6#")
@test(candidate("#\$a^D") == "#\$A^d")
@test(candidate("#ccc") == "#CCC")
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_162_string_to_md5
|
jl
|
"""Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return nothing.
>>> string_to_md5("Hello world")
"3e25960a79dbc69b674cd4ec67a72c62"
"""
function string_to_md5(text::String)::Union{String, Nothing}
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_162_string_to_md5.py
|
reworded
|
using Test
@testset begin
candidate = string_to_md5;
@test(candidate("Hello world") == "3e25960a79dbc69b674cd4ec67a72c62")
@test(candidate("") == nothing)
@test(candidate("A B C") == "0ef78513b0cb8cef12743f5aeb35f888")
@test(candidate("password") == "5f4dcc3b5aa765d61d8327deb882cf99")
end
|
['\nfunction' '\nmacro' '\n\n']
|
HumanEval_163_generate_integers
|
jl
|
"""Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
>>> generate_integers(2, 8)
[2, 4, 6, 8]
>>> generate_integers(8, 2)
[2, 4, 6, 8]
>>> generate_integers(10, 14)
[]"""
function generate_integers(a::Int64, b::Int64)::Vector{Int64}
|
transform
|
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_163_generate_integers.py
|
reworded
|
using Test
@testset begin
candidate = generate_integers;
@test(candidate(2, 10) == [2, 4, 6, 8])
@test(candidate(10, 2) == [2, 4, 6, 8])
@test(candidate(132, 2) == [2, 4, 6, 8])
@test(candidate(17, 89) == Vector{Int64}([]))
end
|
['\nfunction' '\nmacro' '\n\n']
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.