name
stringlengths
15
44
language
stringclasses
1 value
prompt
stringlengths
104
1.33k
doctests
stringclasses
1 value
original
stringlengths
130
159
prompt_terminology
stringclasses
1 value
tests
stringlengths
125
1.69k
stop_tokens
stringclasses
1 value
HumanEval_103_rounded_avg
jl
"""You are given two positive integers n and m, and your task is to compute the average of the integers from n through m (including n and m). Round the answer to the nearest integer and convert that to binary. If n is greater than m, return -1. Example: >>> rounded_avg(1, 5) "0b11" >>> rounded_avg(7, 5) -1 >>> rounded_avg(10, 20) "0b1111" >>> rounded_avg(20, 33) "0b11010" """ function rounded_avg(n::Int64, m::Int64)::Union{String, Int64}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_103_rounded_avg.py
reworded
using Test @testset begin candidate = rounded_avg; @test(candidate(1, 5) == "0b11") @test(candidate(7, 13) == "0b1010") @test(candidate(964, 977) == "0b1111001010") @test(candidate(996, 997) == "0b1111100100") @test(candidate(560, 851) == "0b1011000010") @test(candidate(185, 546) == "0b101101110") @test(candidate(362, 496) == "0b110101101") @test(candidate(350, 902) == "0b1001110010") @test(candidate(197, 233) == "0b11010111") @test(candidate(7, 5) == -1) @test(candidate(5, 1) == -1) @test(candidate(5, 5) == "0b101") end
['\nfunction' '\nmacro' '\n\n']
HumanEval_104_unique_digits
jl
"""Given a vector of positive integers x. return a sorted vector of all elements that hasn't any even digit. Note: Returned vector should be sorted in increasing order. For example: >>> unique_digits([15, 33, 1422, 1]) [1, 15, 33] >>> unique_digits([152, 323, 1422, 10]) []""" function unique_digits(x::Vector{Int64})::Vector{Int64}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_104_unique_digits.py
reworded
using Test @testset begin candidate = unique_digits; @test(candidate([15, 33, 1422, 1]) == [1, 15, 33]) @test(candidate([152, 323, 1422, 10]) == Vector{Int64}([])) @test(candidate([12345, 2033, 111, 151]) == [111, 151]) @test(candidate([135, 103, 31]) == [31, 135]) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_105_by_length
jl
"""Given a vector of integers, sort the integers that are between 1 and 9 inclusive, reverse the resulting vector, and then replace each digit by its corresponding name from "One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine". For example: >>> by_length([2, 1, 1, 4, 5, 8, 2, 3]) ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"] If the vector is empty, return an empty vector: >>> by_length([]) [] If the vector has any strange number ignore it: >>> by_length([1, -1, 55]) ["One"]""" function by_length(arr::Vector{Int64})::Vector{String}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_105_by_length.py
reworded
using Test @testset begin candidate = by_length; @test(candidate([2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]) @test(candidate(Vector{Int64}([])) == Vector{String}([])) @test(candidate([1, -1, 55]) == ["One"]) @test(candidate([1, -1, 3, 2]) == ["Three", "Two", "One"]) @test(candidate([9, 4, 8]) == ["Nine", "Eight", "Four"]) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_106_f
jl
""" Implement the function f that takes n as a parameter, and returns a vector of size n, such that the value of the element at index i is the factorial of i if i is even or the sum of numbers from 1 to i otherwise. i starts from 1. the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i). Note: The vector indices are 0-based for this problem. Example: >>> f(5) [1, 2, 6, 24, 15]""" function f(n::Int64)::Vector{Int64}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_106_f.py
reworded
using Test @testset begin candidate = f; @test(candidate(5) == [1, 2, 6, 24, 15]) @test(candidate(7) == [1, 2, 6, 24, 15, 720, 28]) @test(candidate(1) == [1]) @test(candidate(3) == [1, 2, 6]) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_107_even_odd_palindrome
jl
"""Given a positive integer n, return a tuple that has the number of even and odd integer palindromes that fall within the range(1, n), inclusive. Example 1: >>> even_odd_palindrome(3) (1, 2) Explanation: Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd. Example 2: >>> even_odd_palindrome(12) (4, 6) Explanation: Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd. Note: 1. 1 <= n <= 10^3 2. returned tuple has the number of even and odd integer palindromes respectively.""" function even_odd_palindrome(n::Int64)::Tuple{Int64, Int64}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_107_even_odd_palindrome.py
reworded
using Test @testset begin candidate = even_odd_palindrome; @test(candidate(123) == (8, 13)) @test(candidate(12) == (4, 6)) @test(candidate(3) == (1, 2)) @test(candidate(63) == (6, 8)) @test(candidate(25) == (5, 6)) @test(candidate(19) == (4, 6)) @test(candidate(9) == (4, 5)) @test(candidate(1) == (0, 1)) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_108_count_nums
jl
"""Write a function count_nums which takes a vector of integers and returns the number of elements which has a sum of digits > 0. If a number is negative, then its first signed digit will be negative: e.g. -123 has signed digits -1, 2, and 3. >>> count_nums([]) 0 >>> count_nums([-1, 11, -11]) 1 >>> count_nums([1, 1, 2]) 3""" function count_nums(arr::Vector{Int64})::Int64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_108_count_nums.py
reworded
using Test @testset begin candidate = count_nums; @test(candidate(Vector{Int64}([])) == 0) @test(candidate([-1, -2, 0]) == 0) @test(candidate([1, 1, 2, -2, 3, 4, 5]) == 6) @test(candidate([1, 6, 9, -6, 0, 1, 5]) == 5) @test(candidate([1, 100, 98, -7, 1, -1]) == 4) @test(candidate([12, 23, 34, -45, -56, 0]) == 5) @test(candidate([0, 1]) == 1) @test(candidate([1]) == 1) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_109_move_one_ball
jl
"""We have a vector 'arr' of N integers arr[1], arr[2], ..., arr[N].The numbers in the vector will be randomly ordered. Your task is to determine if it is possible to get a vector sorted in non-decreasing order by performing the following operation on the given vector: You are allowed to perform right shift operation any number of times. One right shift operation means shifting all elements of the vector by one position in the right direction. The last element of the vector will be moved to the starting position in the vector i.e. 0th index. If it is possible to obtain the sorted vector by performing the above operation then return true else return false. If the given vector is empty then return true. Note: The given vector is guaranteed to have unique elements. For Example: >>> move_one_ball([3, 4, 5, 1, 2]) true Explanation: By performin 2 right shift operations, non-decreasing order can be achieved for the given vector. >>> move_one_ball([3, 5, 4, 1, 2]) false Explanation:It is not possible to get non-decreasing order for the given vector by performing any number of right shift operations.""" function move_one_ball(arr::Vector{Int64})::Bool
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_109_move_one_ball.py
reworded
using Test @testset begin candidate = move_one_ball; @test(candidate([3, 4, 5, 1, 2]) == true) @test(candidate([3, 5, 10, 1, 2]) == true) @test(candidate([4, 3, 1, 2]) == false) @test(candidate([3, 5, 4, 1, 2]) == false) @test(candidate(Vector{Int64}([])) == true) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_110_exchange
jl
"""In this problem, you will implement a function that takes two vectors of numbers, and determines whether it is possible to perform an exchange of elements between them to make lst1 a vector of only even numbers. There is no limit on the number of exchanged elements between lst1 and lst2. If it is possible to exchange elements between the lst1 and lst2 to make all the elements of lst1 to be even, return "YES". Otherwise, return "NO". For example: >>> exchange([1, 2, 3, 4], [1, 2, 3, 4]) "YES" >>> exchange([1, 2, 3, 4], [1, 5, 3, 4]) "NO" It is assumed that the input vectors will be non-empty.""" function exchange(lst1::Vector{Int64}, lst2::Vector{Int64})::String
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_110_exchange.py
reworded
using Test @testset begin candidate = exchange; @test(candidate([1, 2, 3, 4], [1, 2, 3, 4]) == "YES") @test(candidate([1, 2, 3, 4], [1, 5, 3, 4]) == "NO") @test(candidate([1, 2, 3, 4], [2, 1, 4, 3]) == "YES") @test(candidate([5, 7, 3], [2, 6, 4]) == "YES") @test(candidate([5, 7, 3], [2, 6, 3]) == "NO") @test(candidate([3, 2, 6, 1, 8, 9], [3, 5, 5, 1, 1, 1]) == "NO") @test(candidate([100, 200], [200, 200]) == "YES") end
['\nfunction' '\nmacro' '\n\n']
HumanEval_111_histogram
jl
"""Given a string representing a space separated lowercase letters, return a dictionary of the letter with the most repetition and containing the corresponding count. If several letters have the same occurrence, return all of them. Example: >>> histogram("a b c") Dict("a" => 1, "b" => 1, "c" => 1) >>> histogram("a b b a") Dict("a" => 2, "b" => 2) >>> histogram("a b c a b") Dict("a" => 2, "b" => 2) >>> histogram("b b b b a") Dict("b" => 4) >>> histogram("") Dict()""" function histogram(test::String)::Dict{String, Int64}>
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_111_histogram.py
reworded
using Test @testset begin candidate = histogram; @test(candidate("a b b a") == Dict("a" => 2, "b" => 2)) @test(candidate("a b c a b") == Dict("a" => 2, "b" => 2)) @test(candidate("a b c d g") == Dict("a" => 1, "b" => 1, "c" => 1, "d" => 1, "g" => 1)) @test(candidate("r t g") == Dict("r" => 1, "t" => 1, "g" => 1)) @test(candidate("b b b b a") == Dict("b" => 4)) @test(candidate("r t g") == Dict("r" => 1, "t" => 1, "g" => 1)) @test(candidate("") == Dict()) @test(candidate("a") == Dict("a" => 1)) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_112_reverse_delete
jl
"""Task We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c then check if the result string is palindrome. A string is called palindrome if it reads the same backward as forward. You should return a tuple containing the result string and true/false for the check. Example >>> reverse_delete("abcde", "ae") ("bcd", false) >>> reverse_delete("abcdef", "b") ("acdef", false) >>> reverse_delete("abcdedcba", "ab") ("cdedc", true)""" function reverse_delete(s::String, c::String)::Tuple{String, Bool}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_112_reverse_delete.py
reworded
using Test @testset begin candidate = reverse_delete; @test(candidate("abcde", "ae") == ("bcd", false)) @test(candidate("abcdef", "b") == ("acdef", false)) @test(candidate("abcdedcba", "ab") == ("cdedc", true)) @test(candidate("dwik", "w") == ("dik", false)) @test(candidate("a", "a") == ("", true)) @test(candidate("abcdedcba", "") == ("abcdedcba", true)) @test(candidate("abcdedcba", "v") == ("abcdedcba", true)) @test(candidate("vabba", "v") == ("abba", true)) @test(candidate("mamma", "mia") == ("", true)) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_113_odd_count
jl
"""Given a vector of strings, where each string consists of only digits, return a vector. Each element i of the output should be "the number of odd elements in the string i of the input." where all the i's should be replaced by the number of odd digits in the i'th string of the input. >>> odd_count(["1234567"]) ["the number of odd elements 4n the str4ng 4 of the 4nput."] >>> odd_count(["3", "11111111"]) ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]""" function odd_count(lst::Vector{String})::Vector{String}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_113_odd_count.py
reworded
using Test @testset begin candidate = odd_count; @test(candidate(["1234567"]) == ["the number of odd elements 4n the str4ng 4 of the 4nput."]) @test(candidate(["3", "11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."]) @test(candidate(["271", "137", "314"]) == ["the number of odd elements 2n the str2ng 2 of the 2nput.", "the number of odd elements 3n the str3ng 3 of the 3nput.", "the number of odd elements 2n the str2ng 2 of the 2nput."]) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_114_minSubArraySum
jl
"""Given a vector of integers nums, find the minimum sum of any non-empty sub-vector of nums. Example >>> minSubArraySum([2, 3, 4, 1, 2, 4]) 1 >>> minSubArraySum([-1, -2, -3]) -6""" function minSubArraySum(nums::Vector{Int64})::Int64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_114_minSubArraySum.py
reworded
using Test @testset begin candidate = minSubArraySum; @test(candidate([2, 3, 4, 1, 2, 4]) == 1) @test(candidate([-1, -2, -3]) == -6) @test(candidate([-1, -2, -3, 2, -10]) == -14) @test(candidate([-9999999999999999]) == -9999999999999999) @test(candidate([0, 10, 20, 1000000]) == 0) @test(candidate([-1, -2, -3, 10, -5]) == -6) @test(candidate([100, -1, -2, -3, 10, -5]) == -6) @test(candidate([10, 11, 13, 8, 3, 4]) == 3) @test(candidate([100, -33, 32, -1, 0, -2]) == -33) @test(candidate([-10]) == -10) @test(candidate([7]) == 7) @test(candidate([1, -1]) == -1) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_115_max_fill
jl
"""You are given a rectangular grid of wells. Each row represents a single well, and each 1 in a row represents a single unit of water. Each well has a corresponding bucket that can be used to extract water from it, and all buckets have the same capacity. Your task is to use the buckets to empty the wells. Output the number of times you need to lower the buckets. Example 1: >>> max_fill([[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], 1) 6 Example 2: >>> max_fill([[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], 2) 5 Example 3: >>> max_fill([[0, 0, 0], [0, 0, 0]], 5) 0 Constraints: * all wells have the same length * 1 <= grid.length <= 10^2 * 1 <= grid[:,1].length <= 10^2 * grid[i][j] -> 0 | 1 * 1 <= capacity <= 10""" function max_fill(grid::Vector{Vector{Int64}}, capacity::Int64)::Int64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_115_max_fill.py
reworded
using Test @testset begin candidate = max_fill; @test(candidate([[0, 0, 1, 0], [0, 1, 0, 0], [1, 1, 1, 1]], 1) == 6) @test(candidate([[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1], [0, 1, 1, 1]], 2) == 5) @test(candidate([[0, 0, 0], [0, 0, 0]], 5) == 0) @test(candidate([[1, 1, 1, 1], [1, 1, 1, 1]], 2) == 4) @test(candidate([[1, 1, 1, 1], [1, 1, 1, 1]], 9) == 2) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_116_sort_array
jl
"""In this Kata, you have to sort a vector of non-negative integers according to number of ones in their binary representation in ascending order. For similar number of ones, sort based on decimal value. It must be implemented like this: >>> sort_array([1, 5, 2, 3, 4]) [1, 2, 3, 4, 5] >>> sort_array(Vector{Int64}([])) Vector{Int64}([]) >>> sort_array([1, 0, 2, 3, 4]) [0, 1, 2, 3, 4]""" function sort_array(arr::Vector{Int64})::Vector{Int64}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_116_sort_array.py
reworded
using Test @testset begin candidate = sort_array; @test(candidate([1, 5, 2, 3, 4]) == [1, 2, 4, 3, 5]) @test(candidate([1, 0, 2, 3, 4]) == [0, 1, 2, 4, 3]) @test(candidate(Vector{Int64}([])) == Vector{Int64}([])) @test(candidate([2, 5, 77, 4, 5, 3, 5, 7, 2, 3, 4]) == [2, 2, 4, 4, 3, 3, 5, 5, 5, 7, 77]) @test(candidate([3, 6, 44, 12, 32, 5]) == [32, 3, 5, 6, 12, 44]) @test(candidate([2, 4, 8, 16, 32]) == [2, 4, 8, 16, 32]) @test(candidate([2, 4, 8, 16, 32]) == [2, 4, 8, 16, 32]) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_117_select_words
jl
"""Given a string s and a natural number n, you have been tasked to implement a function that returns a vector of all words from string s that contain exactly n consonants, in order these words appear in the string s. If the string s is empty then the function should return an empty vector. Note: you may assume the input string contains only letters and spaces. Examples: >>> select_words("Mary had a little lamb", 4) ["little"] >>> select_words("Mary had a little lamb", 3) ["Mary", "lamb"] >>> select_words("simple white space", 2) [] >>> select_words("Hello world", 4) ["world"] >>> select_words("Uncle sam", 3) ["Uncle"]""" function select_words(s::String, n::Int64)::Vector{String}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_117_select_words.py
reworded
using Test @testset begin candidate = select_words; @test(candidate("Mary had a little lamb", 4) == ["little"]) @test(candidate("Mary had a little lamb", 3) == ["Mary", "lamb"]) @test(candidate("simple white space", 2) == Vector{String}([])) @test(candidate("Hello world", 4) == ["world"]) @test(candidate("Uncle sam", 3) == ["Uncle"]) @test(candidate("", 4) == Vector{String}([])) @test(candidate("a b c d e f", 1) == ["b", "c", "d", "f"]) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_118_get_closest_vowel
jl
"""You are given a word. Your task is to find the closest vowel that stands between two consonants from the right side of the word (case sensitive). Vowels in the beginning and ending doesn't count. Return empty string if you didn't find any vowel met the above condition. You may assume that the given string contains English letter only. Example: >>> get_closest_vowel("yogurt") "u" >>> get_closest_vowel("FULL") "U" >>> get_closest_vowel("quick") "" >>> get_closest_vowel("ab") "" """ function get_closest_vowel(word::String)::String
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_118_get_closest_vowel.py
reworded
using Test @testset begin candidate = get_closest_vowel; @test(candidate("yogurt") == "u") @test(candidate("full") == "u") @test(candidate("easy") == "") @test(candidate("eAsy") == "") @test(candidate("ali") == "") @test(candidate("bad") == "a") @test(candidate("most") == "o") @test(candidate("ab") == "") @test(candidate("ba") == "") @test(candidate("quick") == "") @test(candidate("anime") == "i") @test(candidate("Asia") == "") @test(candidate("Above") == "o") end
['\nfunction' '\nmacro' '\n\n']
HumanEval_119_match_parens
jl
"""You are given a vector of two strings, both strings consist of open parentheses '(' or close parentheses ')' only. Your job is to check if it is possible to concatenate the two strings in some order, that the resulting string will be good. A string S is considered to be good if and only if all parentheses in S are balanced. For example: the string '(())()' is good, while the string '())' is not. Return 'Yes' if there's a way to make a good string, and return 'No' otherwise. Examples: >>> match_parens(["()(", ")"]) "Yes" >>> match_parens([")", ")"]) "No" """ function match_parens(lst::Vector{String})::String
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_119_match_parens.py
reworded
using Test @testset begin candidate = match_parens; @test(candidate(["()(", ")"]) == "Yes") @test(candidate([")", ")"]) == "No") @test(candidate(["(()(())", "())())"]) == "No") @test(candidate([")())", "(()()("]) == "Yes") @test(candidate(["(())))", "(()())(("]) == "Yes") @test(candidate(["()", "())"]) == "No") @test(candidate(["(()(", "()))()"]) == "Yes") @test(candidate(["((((", "((())"]) == "No") @test(candidate([")(()", "(()("]) == "No") @test(candidate([")(", ")("]) == "No") @test(candidate(["(", ")"]) == "Yes") @test(candidate([")", "("]) == "Yes") end
['\nfunction' '\nmacro' '\n\n']
HumanEval_120_maximum
jl
"""Given a vector arr of integers and a positive integer k, return a sorted vector of length k with the maximum k numbers in arr. Example 1: >>> maximum([-3, -4, 5], 3) [-4, -3, 5] Example 2: >>> maximum([4, -4, 4], 2) [4, 4] Example 3: >>> maximum([-3, 2, 1, 2, -1, -2, 1], 1) [2] Note: 1. The length of the vector will be in the range of [1, 1000]. 2. The elements in the vector will be in the range of [-1000, 1000]. 3. 0 <= k <= len(arr)""" function maximum(arr::Vector{Int64}, k::Int64)::Vector{Int64}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_120_maximum.py
reworded
using Test @testset begin candidate = maximum; @test(candidate([-3, -4, 5], 3) == [-4, -3, 5]) @test(candidate([4, -4, 4], 2) == [4, 4]) @test(candidate([-3, 2, 1, 2, -1, -2, 1], 1) == [2]) @test(candidate([123, -123, 20, 0, 1, 2, -3], 3) == [2, 20, 123]) @test(candidate([-123, 20, 0, 1, 2, -3], 4) == [0, 1, 2, 20]) @test(candidate([5, 15, 0, 3, -13, -8, 0], 7) == [-13, -8, 0, 0, 3, 5, 15]) @test(candidate([-1, 0, 2, 5, 3, -10], 2) == [3, 5]) @test(candidate([1, 0, 5, -7], 1) == [5]) @test(candidate([4, -4], 2) == [-4, 4]) @test(candidate([-10, 10], 2) == [-10, 10]) @test(candidate([1, 2, 3, -23, 243, -400, 0], 0) == Vector{Int64}([])) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_121_solution
jl
"""Given a non-empty vector of integers, return the sum of all of the odd elements that are in even positions. Note: The vector indices are 0-based for this problem. Examples >>> solution([5, 8, 7, 1]) 12 >>> solution([3, 3, 3, 3, 3]) 9 >>> solution([30, 13, 24, 321]) 0""" function solution(lst::Vector{Int64})::Int64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_121_solution.py
reworded
using Test @testset begin candidate = solution; @test(candidate([5, 8, 7, 1]) == 12) @test(candidate([3, 3, 3, 3, 3]) == 9) @test(candidate([30, 13, 24, 321]) == 0) @test(candidate([5, 9]) == 5) @test(candidate([2, 4, 8]) == 0) @test(candidate([30, 13, 23, 32]) == 23) @test(candidate([3, 13, 2, 9]) == 3) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_122_add_elements
jl
"""Given a non-empty vector of integers arr and an integer k, return the sum of the elements with at most two digits from the first k elements of arr. Example: >>> add_elements([111, 21, 3, 4000, 5, 6, 7, 8, 9], 4) 24 Constraints: 1. 1 <= len(arr) <= 100 2. 1 <= k <= len(arr)""" function add_elements(arr::Vector{Int64}, k::Int64)::Int64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_122_add_elements.py
reworded
using Test @testset begin candidate = add_elements; @test(candidate([1, -2, -3, 41, 57, 76, 87, 88, 99], 3) == -4) @test(candidate([111, 121, 3, 4000, 5, 6], 2) == 0) @test(candidate([11, 21, 3, 90, 5, 6, 7, 8, 9], 4) == 125) @test(candidate([111, 21, 3, 4000, 5, 6, 7, 8, 9], 4) == 24) @test(candidate([1], 1) == 1) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_123_get_odd_collatz
jl
"""Given a positive integer n, return a sorted vector that has the odd numbers in collatz sequence. The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined as follows: start with any positive integer n. Then each term is obtained from the previous term as follows: if the previous term is even, the next term is one half of the previous term. If the previous term is odd, the next term is 3 times the previous term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1. Note: 1. Collatz(1) is [1]. 2. returned vector sorted in increasing order. For example: get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5. >>> get_odd_collatz(5) [1, 5]""" function get_odd_collatz(n::Int64)::Vector{Int64}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_123_get_odd_collatz.py
reworded
using Test @testset begin candidate = get_odd_collatz; @test(candidate(14) == [1, 5, 7, 11, 13, 17]) @test(candidate(5) == [1, 5]) @test(candidate(12) == [1, 3, 5]) @test(candidate(1) == [1]) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_124_valid_date
jl
"""You have to write a function which validates a given date string and returns true if the date is valid otherwise false. The date is valid if all of the following rules are satisfied: 1. The date string is not empty. 2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2. 3. The months should not be less than 1 or higher than 12. 4. The date should be in the format: mm-dd-yyyy >>> valid_date("03-11-2000") true >>> valid_date("15-01-2012") false >>> valid_date("04-0-2040") false >>> valid_date("06-04-2020") true >>> valid_date("06/04/2020") false""" function valid_date(date::String)::Bool
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_124_valid_date.py
reworded
using Test @testset begin candidate = valid_date; @test(candidate("03-11-2000") == true) @test(candidate("15-01-2012") == false) @test(candidate("04-0-2040") == false) @test(candidate("06-04-2020") == true) @test(candidate("01-01-2007") == true) @test(candidate("03-32-2011") == false) @test(candidate("") == false) @test(candidate("04-31-3000") == false) @test(candidate("06-06-2005") == true) @test(candidate("21-31-2000") == false) @test(candidate("04-12-2003") == true) @test(candidate("04122003") == false) @test(candidate("20030412") == false) @test(candidate("2003-04") == false) @test(candidate("2003-04-12") == false) @test(candidate("04-2003") == false) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_125_split_words
jl
"""Given a string of words, return a vector of words split on whitespace, if no whitespaces exists in the text you should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25 Examples >>> split_words("Hello world!") ["Hello", "world!"] >>> split_words("Hello,world!") ["Hello", "world!"] >>> split_words("abcdef") 3""" function split_words(txt::String)::Union{Vector{String}, Int64}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_125_split_words.py
reworded
using Test @testset begin candidate = split_words; @test(candidate("Hello world!") == ["Hello", "world!"]) @test(candidate("Hello,world!") == ["Hello", "world!"]) @test(candidate("Hello world,!") == ["Hello", "world,!"]) @test(candidate("Hello,Hello,world !") == ["Hello,Hello,world", "!"]) @test(candidate("abcdef") == 3) @test(candidate("aaabb") == 2) @test(candidate("aaaBb") == 1) @test(candidate("") == 0) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_126_is_sorted
jl
"""Given a vector of numbers, return whether or not they are sorted in ascending order. If vector has more than 1 duplicate of the same number, return false. Assume no negative numbers and only integers. Examples >>> is_sorted([5]) true >>> is_sorted([1, 2, 3, 4, 5]) true >>> is_sorted([1, 3, 2, 4, 5]) false >>> is_sorted([1, 2, 3, 4, 5, 6]) true >>> is_sorted([1, 2, 3, 4, 5, 6, 7]) true >>> is_sorted([1, 3, 2, 4, 5, 6, 7]) false >>> is_sorted([1, 2, 2, 3, 3, 4]) true >>> is_sorted([1, 2, 2, 2, 3, 4]) false""" function is_sorted(lst::Vector{Int64})::Bool
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_126_is_sorted.py
reworded
using Test @testset begin candidate = is_sorted; @test(candidate([5]) == true) @test(candidate([1, 2, 3, 4, 5]) == true) @test(candidate([1, 3, 2, 4, 5]) == false) @test(candidate([1, 2, 3, 4, 5, 6]) == true) @test(candidate([1, 2, 3, 4, 5, 6, 7]) == true) @test(candidate([1, 3, 2, 4, 5, 6, 7]) == false) @test(candidate(Vector{Int64}([])) == true) @test(candidate([1]) == true) @test(candidate([3, 2, 1]) == false) @test(candidate([1, 2, 2, 2, 3, 4]) == false) @test(candidate([1, 2, 3, 3, 3, 4]) == false) @test(candidate([1, 2, 2, 3, 3, 4]) == true) @test(candidate([1, 2, 3, 4]) == true) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_127_intersection
jl
"""You are given two intervals, where each interval is a pair of integers. For example, interval = (start, end) = (1, 2). The given intervals are closed which means that the interval (start, end) includes both start and end. For each given interval, it is assumed that its start is less or equal its end. Your task is to determine whether the length of intersection of these two intervals is a prime number. Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3) which its length is 1, which not a prime number. If the length of the intersection is a prime number, return "YES", otherwise, return "NO". If the two intervals don't intersect, return "NO". [input/output] samples: >>> intersection((1, 2), (2, 3)) "NO" >>> intersection((-1, 1), (0, 4)) "NO" >>> intersection((-3, -1), (-5, 5)) "YES" """ function intersection(interval1::Tuple{Int64, Int64}, interval2::Tuple{Int64, Int64})::String
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_127_intersection.py
reworded
using Test @testset begin candidate = intersection; @test(candidate((1, 2), (2, 3)) == "NO") @test(candidate((-1, 1), (0, 4)) == "NO") @test(candidate((-3, -1), (-5, 5)) == "YES") @test(candidate((-2, 2), (-4, 0)) == "YES") @test(candidate((-11, 2), (-1, -1)) == "NO") @test(candidate((1, 2), (3, 5)) == "NO") @test(candidate((1, 2), (1, 2)) == "NO") @test(candidate((-2, -2), (-3, -2)) == "NO") end
['\nfunction' '\nmacro' '\n\n']
HumanEval_128_prod_signs
jl
"""You are given a vector arr of integers and you need to return sum of magnitudes of integers multiplied by product of all signs of each number in the vector, represented by 1, -1 or 0. Note: return nothing for empty arr. Example: >>> prod_signs([1, 2, 2, -4]) -9 >>> prod_signs([0, 1]) 0 >>> prod_signs([]) nothing""" function prod_signs(arr::Vector{Int64})::Union{Int64, Nothing}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_128_prod_signs.py
reworded
using Test @testset begin candidate = prod_signs; @test(candidate([1, 2, 2, -4]) == -9) @test(candidate([0, 1]) == 0) @test(candidate([1, 1, 1, 2, 3, -1, 1]) == -10) @test(candidate(Vector{Int64}([])) == nothing) @test(candidate([2, 4, 1, 2, -1, -1, 9]) == 20) @test(candidate([-1, 1, -1, 1]) == 4) @test(candidate([-1, 1, 1, 1]) == -4) @test(candidate([-1, 1, 1, 0]) == 0) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_129_minPath
jl
"""Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered vectors of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered vector of the values on the cells that the minimum path go through. Note: The vector indices are 0-based for this problem. Examples: >>> minPath([[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3) [1, 2, 1] >>> minPath([[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1) [1]""" function minPath(grid::Vector{Vector{Int64}}, k::Int64)::Vector{Int64}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_129_minPath.py
reworded
using Test @testset begin candidate = minPath; @test(candidate([[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3) == [1, 2, 1]) @test(candidate([[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1) == [1]) @test(candidate([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4) == [1, 2, 1, 2]) @test(candidate([[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7) == [1, 10, 1, 10, 1, 10, 1]) @test(candidate([[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5) == [1, 7, 1, 7, 1]) @test(candidate([[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9) == [1, 6, 1, 6, 1, 6, 1, 6, 1]) @test(candidate([[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12) == [1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]) @test(candidate([[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8) == [1, 3, 1, 3, 1, 3, 1, 3]) @test(candidate([[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8) == [1, 5, 1, 5, 1, 5, 1, 5]) @test(candidate([[1, 2], [3, 4]], 10) == [1, 2, 1, 2, 1, 2, 1, 2, 1, 2]) @test(candidate([[1, 3], [3, 2]], 10) == [1, 3, 1, 3, 1, 3, 1, 3, 1, 3]) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_130_tri
jl
"""Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in the last couple centuries. However, what people don't know is Tribonacci sequence. Tribonacci sequence is defined by the recurrence: tri(1) = 3 tri(n) = 1 + n / 2, if n is even. tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd. For example: tri(2) = 1 + (2 / 2) = 2 tri(4) = 3 tri(3) = tri(2) + tri(1) + tri(4) = 2 + 3 + 3 = 8 You are given a non-negative integer number n, you have to a return a vector of the first n + 1 numbers of the Tribonacci sequence. Examples: >>> tri(3) [1, 3, 2, 8]""" function tri(n::Int64)::Vector{Int64}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_130_tri.py
reworded
using Test @testset begin candidate = tri; @test(candidate(3) == [1, 3, 2, 8]) @test(candidate(4) == [1, 3, 2, 8, 3]) @test(candidate(5) == [1, 3, 2, 8, 3, 15]) @test(candidate(6) == [1, 3, 2, 8, 3, 15, 4]) @test(candidate(7) == [1, 3, 2, 8, 3, 15, 4, 24]) @test(candidate(8) == [1, 3, 2, 8, 3, 15, 4, 24, 5]) @test(candidate(9) == [1, 3, 2, 8, 3, 15, 4, 24, 5, 35]) @test(candidate(20) == [1, 3, 2, 8, 3, 15, 4, 24, 5, 35, 6, 48, 7, 63, 8, 80, 9, 99, 10, 120, 11]) @test(candidate(0) == [1]) @test(candidate(1) == [1, 3]) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_131_digits
jl
"""Given a positive integer n, return the product of the odd digits. Return 0 if all digits are even. For example: >>> digits(1) 1 >>> digits(4) 0 >>> digits(235) 15""" function digits(n::Int64)::Int64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_131_digits.py
reworded
using Test @testset begin candidate = digits; @test(candidate(5) == 5) @test(candidate(54) == 5) @test(candidate(120) == 1) @test(candidate(5014) == 5) @test(candidate(98765) == 315) @test(candidate(5576543) == 2625) @test(candidate(2468) == 0) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_132_is_nested
jl
"""Create a function that takes a string as input which contains only square brackets. The function should return true if and only if there is a valid subsequence of brackets where at least one bracket in the subsequence is nested. >>> is_nested("[[]]") true >>> is_nested("[]]]]]]][[[[[]") false >>> is_nested("[][]") false >>> is_nested("[]") false >>> is_nested("[[][]]") true >>> is_nested("[[]][[") true""" function is_nested(string::String)::Bool
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_132_is_nested.py
reworded
using Test @testset begin candidate = is_nested; @test(candidate("[[]]") == true) @test(candidate("[]]]]]]][[[[[]") == false) @test(candidate("[][]") == false) @test(candidate("[]") == false) @test(candidate("[[[[]]]]") == true) @test(candidate("[]]]]]]]]]]") == false) @test(candidate("[][][[]]") == true) @test(candidate("[[]") == false) @test(candidate("[]]") == false) @test(candidate("[[]][[") == true) @test(candidate("[[][]]") == true) @test(candidate("") == false) @test(candidate("[[[[[[[[") == false) @test(candidate("]]]]]]]]") == false) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_133_sum_squares
jl
"""You are given a vector of numbers. You need to return the sum of squared numbers in the given vector, round each element in the vector to the upper int(Ceiling) first. Examples: >>> lst([1.0, 2.0, 3.0]) 14 >>> lst([1.0, 4.0, 9.0]) 98 >>> lst([1.0, 3.0, 5.0, 7.0]) 84 >>> lst([1.4, 4.2, 0.0]) 29 >>> lst([-2.4, 1.0, 1.0]) 6""" function sum_squares(lst::Vector{Float64})::Int64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_133_sum_squares.py
reworded
using Test @testset begin candidate = sum_squares; @test(candidate([1.0, 2.0, 3.0]) == 14) @test(candidate([1.0, 2.0, 3.0]) == 14) @test(candidate([1.0, 3.0, 5.0, 7.0]) == 84) @test(candidate([1.4, 4.2, 0.0]) == 29) @test(candidate([-2.4, 1.0, 1.0]) == 6) @test(candidate([100.0, 1.0, 15.0, 2.0]) == 10230) @test(candidate([10000.0, 10000.0]) == 200000000) @test(candidate([-1.4, 4.6, 6.3]) == 75) @test(candidate([-1.4, 17.9, 18.9, 19.9]) == 1086) @test(candidate([0.0]) == 0) @test(candidate([-1.0]) == 1) @test(candidate([-1.0, 1.0, 0.0]) == 2) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_134_check_if_last_char_is_a_letter
jl
"""Create a function that returns true if the last character of a given string is an alphabetical character and is not a part of a word, and false otherwise. Note: "word" is a group of characters separated by space. Examples: >>> check_if_last_char_is_a_letter("apple pie") false >>> check_if_last_char_is_a_letter("apple pi e") true >>> check_if_last_char_is_a_letter("apple pi e ") false >>> check_if_last_char_is_a_letter("") false""" function check_if_last_char_is_a_letter(txt::String)::Bool
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_134_check_if_last_char_is_a_letter.py
reworded
using Test @testset begin candidate = check_if_last_char_is_a_letter; @test(candidate("apple") == false) @test(candidate("apple pi e") == true) @test(candidate("eeeee") == false) @test(candidate("A") == true) @test(candidate("Pumpkin pie ") == false) @test(candidate("Pumpkin pie 1") == false) @test(candidate("") == false) @test(candidate("eeeee e ") == false) @test(candidate("apple pie") == false) @test(candidate("apple pi e ") == false) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_135_can_arrange
jl
"""Create a function which returns the largest index of an element which is not greater than or equal to the element immediately preceding it. If no such element exists then return -1. The given vector will not contain duplicate values. Note: The vector indices are 0-based for this problem. Examples: >>> can_arrange([1, 2, 4, 3, 5]) 3 >>> can_arrange([1, 2, 3]) -1""" function can_arrange(arr::Vector{Int64})::Int64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_135_can_arrange.py
reworded
using Test @testset begin candidate = can_arrange; @test(candidate([1, 2, 4, 3, 5]) == 3) @test(candidate([1, 2, 4, 5]) == -1) @test(candidate([1, 4, 2, 5, 6, 7, 8, 9, 10]) == 2) @test(candidate([4, 8, 5, 7, 3]) == 4) @test(candidate(Vector{Int64}([])) == -1) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_136_largest_smallest_integers
jl
"""Create a function that returns a tuple (a, b), where 'a' is the largest of negative integers, and 'b' is the smallest of positive integers in a vector. If there is no negative or positive integers, return them as nothing. Examples: >>> largest_smallest_integers([2, 4, 1, 3, 5, 7]) (nothing, 1) >>> largest_smallest_integers([]) (nothing, nothing) >>> largest_smallest_integers([0]) (nothing, nothing)""" function largest_smallest_integers(lst::Vector{Int64})::Tuple{Union{Int64, Nothing}, Union{Int64, Nothing}}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_136_largest_smallest_integers.py
reworded
using Test @testset begin candidate = largest_smallest_integers; @test(candidate([2, 4, 1, 3, 5, 7]) == (nothing, 1)) @test(candidate([2, 4, 1, 3, 5, 7, 0]) == (nothing, 1)) @test(candidate([1, 3, 2, 4, 5, 6, -2]) == (-2, 1)) @test(candidate([4, 5, 3, 6, 2, 7, -7]) == (-7, 2)) @test(candidate([7, 3, 8, 4, 9, 2, 5, -9]) == (-9, 2)) @test(candidate(Vector{Int64}([])) == (nothing, nothing)) @test(candidate([0]) == (nothing, nothing)) @test(candidate([-1, -3, -5, -6]) == (-1, nothing)) @test(candidate([-1, -3, -5, -6, 0]) == (-1, nothing)) @test(candidate([-6, -4, -4, -3, 1]) == (-3, 1)) @test(candidate([-6, -4, -4, -3, -100, 1]) == (-3, 1)) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_138_is_equal_to_sum_even
jl
"""Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers Example >>> is_equal_to_sum_even(4) false >>> is_equal_to_sum_even(6) false >>> is_equal_to_sum_even(8) true""" function is_equal_to_sum_even(n::Int64)::Bool
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_138_is_equal_to_sum_even.py
reworded
using Test @testset begin candidate = is_equal_to_sum_even; @test(candidate(4) == false) @test(candidate(6) == false) @test(candidate(8) == true) @test(candidate(10) == true) @test(candidate(11) == false) @test(candidate(12) == true) @test(candidate(13) == false) @test(candidate(16) == true) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_139_special_factorial
jl
"""The Brazilian factorial is defined as: brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1! where n > 0 For example: >>> special_factorial(4) 288 The function will receive an integer as input and should return the special factorial of this integer.""" function special_factorial(n::Int64)::Int64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_139_special_factorial.py
reworded
using Test @testset begin candidate = special_factorial; @test(candidate(4) == 288) @test(candidate(5) == 34560) @test(candidate(7) == 125411328000) @test(candidate(1) == 1) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_140_fix_spaces
jl
"""Given a string text, replace all spaces in it with underscores, and if a string has more than 2 consecutive spaces, then replace all consecutive spaces with - >>> fix_spaces("Example") "Example" >>> fix_spaces("Example 1") "Example_1" >>> fix_spaces(" Example 2") "_Example_2" >>> fix_spaces(" Example 3") "_Example-3" """ function fix_spaces(text::String)::String
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_140_fix_spaces.py
reworded
using Test @testset begin candidate = fix_spaces; @test(candidate("Example") == "Example") @test(candidate("Mudasir Hanif ") == "Mudasir_Hanif_") @test(candidate("Yellow Yellow Dirty Fellow") == "Yellow_Yellow-Dirty-Fellow") @test(candidate("Exa mple") == "Exa-mple") @test(candidate(" Exa 1 2 2 mple") == "-Exa_1_2_2_mple") end
['\nfunction' '\nmacro' '\n\n']
HumanEval_141_file_name_check
jl
"""Create a function which takes a string representing a file's name, and returns 'Yes' if the the file's name is valid, and returns 'No' otherwise. A file's name is considered to be valid if and only if all the following conditions are met: - There should not be more than three digits ('0'-'9') in the file's name. - The file's name contains exactly one dot '.' - The substring before the dot should not be empty, and it starts with a letter from the latin alphapet ('a'-'z' and 'A'-'Z'). - The substring after the dot should be one of these: ['txt', 'exe', 'dll'] Examples: >>> file_name_check("example.txt") "Yes" >>> file_name_check("1example.dll") "No" """ function file_name_check(file_name::String)::String
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_141_file_name_check.py
reworded
using Test @testset begin candidate = file_name_check; @test(candidate("example.txt") == "Yes") @test(candidate("1example.dll") == "No") @test(candidate("s1sdf3.asd") == "No") @test(candidate("K.dll") == "Yes") @test(candidate("MY16FILE3.exe") == "Yes") @test(candidate("His12FILE94.exe") == "No") @test(candidate("_Y.txt") == "No") @test(candidate("?aREYA.exe") == "No") @test(candidate("/this_is_valid.dll") == "No") @test(candidate("this_is_valid.wow") == "No") @test(candidate("this_is_valid.txt") == "Yes") @test(candidate("this_is_valid.txtexe") == "No") @test(candidate("#this2_i4s_5valid.ten") == "No") @test(candidate("@this1_is6_valid.exe") == "No") @test(candidate("this_is_12valid.6exe4.txt") == "No") @test(candidate("all.exe.txt") == "No") @test(candidate("I563_No.exe") == "Yes") @test(candidate("Is3youfault.txt") == "Yes") @test(candidate("no_one#knows.dll") == "Yes") @test(candidate("1I563_Yes3.exe") == "No") @test(candidate("I563_Yes3.txtt") == "No") @test(candidate("final..txt") == "No") @test(candidate("final132") == "No") @test(candidate("_f4indsartal132.") == "No") @test(candidate(".txt") == "No") @test(candidate("s.") == "No") end
['\nfunction' '\nmacro' '\n\n']
HumanEval_142_sum_squares
jl
""" This function will take a vector of integers. For all entries in the vector, the function shall square the integer entry if its index is a multiple of 3 and will cube the integer entry if its index is a multiple of 4 and not a multiple of 3. The function will not change the entries in the vector whose indexes are not a multiple of 3 or 4. The function shall then return the sum of all entries. Note: The vector indices are 0-based for this problem. Examples: >>> sum_squares([1, 2, 3]) 6 >>> sum_squares(Vector{Int64}([])) 0 >>> sum_squares([-1, -5, 2, -1, -5]) -126""" function sum_squares(lst::Vector{Int64})::Int64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_142_sum_squares.py
reworded
using Test @testset begin candidate = sum_squares; @test(candidate([1, 2, 3]) == 6) @test(candidate([1, 4, 9]) == 14) @test(candidate(Vector{Int64}([])) == 0) @test(candidate([1, 1, 1, 1, 1, 1, 1, 1, 1]) == 9) @test(candidate([-1, -1, -1, -1, -1, -1, -1, -1, -1]) == -3) @test(candidate([0]) == 0) @test(candidate([-1, -5, 2, -1, -5]) == -126) @test(candidate([-56, -99, 1, 0, -2]) == 3030) @test(candidate([-1, 0, 0, 0, 0, 0, 0, 0, -1]) == 0) @test(candidate([-16, -9, -2, 36, 36, 26, -20, 25, -40, 20, -4, 12, -26, 35, 37]) == -14196) @test(candidate([-1, -3, 17, -1, -15, 13, -1, 14, -14, -12, -5, 14, -14, 6, 13, 11, 16, 16, 4, 10]) == -1448) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_143_words_in_sentence
jl
"""You are given a string representing a sentence, the sentence contains some words separated by a space, and you have to return a string that contains the words from the original sentence, whose lengths are prime numbers, the order of the words in the new string should be the same as the original one. Example 1: >>> words_in_sentence("This is a test") "is" Example 2: >>> words_in_sentence("lets go for swimming") "go for" Constraints: * 1 <= len(sentence) <= 100 * sentence contains only letters""" function words_in_sentence(sentence::String)::String
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_143_words_in_sentence.py
reworded
using Test @testset begin candidate = words_in_sentence; @test(candidate("This is a test") == "is") @test(candidate("lets go for swimming") == "go for") @test(candidate("there is no place available here") == "there is no place") @test(candidate("Hi I am Hussein") == "Hi am Hussein") @test(candidate("go for it") == "go for it") @test(candidate("here") == "") @test(candidate("here is") == "is") end
['\nfunction' '\nmacro' '\n\n']
HumanEval_144_simplify
jl
"""Your task is to implement a function that will simplify the expression x * n. The function returns true if x * n evaluates to a whole number and false otherwise. Both x and n, are string representation of a fraction, and have the following format, <numerator>/<denominator> where both numerator and denominator are positive whole numbers. You can assume that x, and n are valid fractions, and do not have zero as denominator. >>> simplify("1/5", "5/1") true >>> simplify("1/6", "2/1") false >>> simplify("7/10", "10/2") false""" function simplify(x::String, n::String)::Bool
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_144_simplify.py
reworded
using Test @testset begin candidate = simplify; @test(candidate("1/5", "5/1") == true) @test(candidate("1/6", "2/1") == false) @test(candidate("5/1", "3/1") == true) @test(candidate("7/10", "10/2") == false) @test(candidate("2/10", "50/10") == true) @test(candidate("7/2", "4/2") == true) @test(candidate("11/6", "6/1") == true) @test(candidate("2/3", "5/2") == false) @test(candidate("5/2", "3/5") == false) @test(candidate("2/4", "8/4") == true) @test(candidate("2/4", "4/2") == true) @test(candidate("1/5", "5/1") == true) @test(candidate("1/5", "1/5") == false) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_145_order_by_points
jl
"""Write a function which sorts the given vector of integers in ascending order according to the sum of their digits. Note: if there are several items with similar sum of their digits, order them based on their index in original vector. For example: >>> order_by_points([100, 22, 31, 4, 13]) [100, 22, 31, 4, 13] >>> order_by_points(Vector{Int64}([])) Vector{Int64}([])""" function order_by_points(nums::Vector{Int64})::Vector{Int64}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_145_order_by_points.py
reworded
using Test @testset begin candidate = order_by_points; @test(candidate([1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]) @test(candidate([1234, 423, 463, 145, 2, 423, 423, 53, 6, 37, 3457, 3, 56, 0, 46]) == [0, 2, 3, 6, 53, 423, 423, 423, 1234, 145, 37, 46, 56, 463, 3457]) @test(candidate(Vector{Int64}([])) == Vector{Int64}([])) @test(candidate([1, -11, -32, 43, 54, -98, 2, -3]) == [-3, -32, -98, -11, 1, 2, 43, 54]) @test(candidate([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) == [1, 10, 2, 11, 3, 4, 5, 6, 7, 8, 9]) @test(candidate([0, 6, 6, -76, -21, 23, 4]) == [-76, -21, 0, 4, 23, 6, 6]) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_146_specialFilter
jl
"""Write a function that takes a vector of numbers as input and returns the number of elements in the vector that are greater than 10 and both first and last digits of a number are odd (1, 3, 5, 7, 9). For example: >>> specialFilter([15, -73, 14, -15]) 1 >>> specialFilter([33, -2, -3, 45, 21, 109]) 2""" function specialFilter(nums::Vector{Int64})::Int64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_146_specialFilter.py
reworded
using Test @testset begin candidate = specialFilter; @test(candidate([5, -2, 1, -5]) == 0) @test(candidate([15, -73, 14, -15]) == 1) @test(candidate([33, -2, -3, 45, 21, 109]) == 2) @test(candidate([43, -12, 93, 125, 121, 109]) == 4) @test(candidate([71, -2, -33, 75, 21, 19]) == 3) @test(candidate([1]) == 0) @test(candidate(Vector{Int64}([])) == 0) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_147_get_max_triples
jl
""" You are given a positive integer n. You have to create an integer vector a of length n. For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1. Return the number of triples (a[i], a[j], a[k]) of a where i < j < k, and a[i] + a[j] + a[k] is a multiple of 3. Example : >>> get_max_triples(5) 1 Explanation: a = [1, 3, 7, 13, 21] The only valid triple is (1, 7, 13).""" function get_max_triples(n::Int64)::Int64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_147_get_max_triples.py
reworded
using Test @testset begin candidate = get_max_triples; @test(candidate(5) == 1) @test(candidate(6) == 4) @test(candidate(10) == 36) @test(candidate(100) == 53361) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_149_sorted_list_sum
jl
"""Write a function that accepts a vector of strings as a parameter, deletes the strings that have odd lengths from it, and returns the resulted vector with a sorted order, The vector is always a vector of strings and never a vector of numbers, and it may contain duplicates. The order of the vector should be ascending by length of each word, and you should return the vector sorted by that rule. If two words have the same length, sort the vector alphabetically. The function should return a vector of strings in sorted order. You may assume that all words will have the same length. For example: >>> list_sort(["aa", "a", "aaa"]) ["aa"] >>> list_sort(["ab", "a", "aaa", "cd"]) ["ab", "cd"]""" function sorted_list_sum(lst::Vector{String})::Vector{String}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_149_sorted_list_sum.py
reworded
using Test @testset begin candidate = sorted_list_sum; @test(candidate(["aa", "a", "aaa"]) == ["aa"]) @test(candidate(["school", "AI", "asdf", "b"]) == ["AI", "asdf", "school"]) @test(candidate(["d", "b", "c", "a"]) == Vector{String}([])) @test(candidate(["d", "dcba", "abcd", "a"]) == ["abcd", "dcba"]) @test(candidate(["AI", "ai", "au"]) == ["AI", "ai", "au"]) @test(candidate(["a", "b", "b", "c", "c", "a"]) == Vector{String}([])) @test(candidate(["aaaa", "bbbb", "dd", "cc"]) == ["cc", "dd", "aaaa", "bbbb"]) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_150_x_or_y
jl
"""A simple program which should return the value of x if n is a prime number and should return the value of y otherwise. Examples: >>> x_or_y(7, 34, 12) 34 >>> x_or_y(15, 8, 5) 5""" function x_or_y(n::Int64, x::Int64, y::Int64)::Int64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_150_x_or_y.py
reworded
using Test @testset begin candidate = x_or_y; @test(candidate(7, 34, 12) == 34) @test(candidate(15, 8, 5) == 5) @test(candidate(3, 33, 5212) == 33) @test(candidate(1259, 3, 52) == 3) @test(candidate(7919, -1, 12) == -1) @test(candidate(3609, 1245, 583) == 583) @test(candidate(91, 56, 129) == 129) @test(candidate(6, 34, 1234) == 1234) @test(candidate(1, 2, 0) == 0) @test(candidate(2, 2, 0) == 2) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_151_double_the_difference
jl
"""Given a vector of numbers, return the sum of squares of the numbers in the vector that are odd. Ignore numbers that are negative or not integers. >>> double_the_difference([1, 3, 2, 0]) 10 >>> double_the_difference([-1, -2, 0]) 0 >>> double_the_difference([9, -2]) 81 >>> double_the_difference([0]) 0 If the input vector is empty, return 0.""" function double_the_difference(lst::Vector{Float64})::Int64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_151_double_the_difference.py
reworded
using Test @testset begin candidate = double_the_difference; @test(candidate(Vector{Float64}([])) == 0) @test(candidate([5, 4]) == 25) @test(candidate([0.1, 0.2, 0.3]) == 0) @test(candidate([-10, -20, -30]) == 0) @test(candidate([-1, -2, 8]) == 0) @test(candidate([0.2, 3, 5]) == 34) @test(candidate([-9, -7, -5, -3, -1, 1, 3, 5, 7, 9]) == 165) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_152_compare
jl
"""I think we all remember that feeling when the result of some long-awaited event is finally known. The feelings and thoughts you have at that moment are definitely worth noting down and comparing. Your task is to determine if a person correctly guessed the results of a number of matches. You are given two vectors of scores and guesses of equal length, where each index shows a match. Return a vector of the same length denoting how far off each guess was. If they have guessed correctly, the value is 0, and if not, the value is the absolute difference between the guess and the score. example: >>> compare([1, 2, 3, 4, 5, 1], [1, 2, 3, 4, 2, -2]) [0, 0, 0, 0, 3, 3] >>> compare([0, 5, 0, 0, 0, 4], [4, 1, 1, 0, 0, -2]) [4, 4, 1, 0, 0, 6]""" function compare(game::Vector{Int64}, guess::Vector{Int64})::Vector{Int64}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_152_compare.py
reworded
using Test @testset begin candidate = compare; @test(candidate([1, 2, 3, 4, 5, 1], [1, 2, 3, 4, 2, -2]) == [0, 0, 0, 0, 3, 3]) @test(candidate([0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]) == [0, 0, 0, 0, 0, 0]) @test(candidate([1, 2, 3], [-1, -2, -3]) == [2, 4, 6]) @test(candidate([1, 2, 3, 5], [-1, 2, 3, 4]) == [2, 0, 0, 1]) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_153_Strongest_Extension
jl
"""You will be given the name of a class (a string) and a vector of extensions. The extensions are to be used to load additional classes to the class. The strength of the extension is as follows: Let CAP be the number of the uppercase letters in the extension's name, and let SM be the number of lowercase letters in the extension's name, the strength is given by the fraction CAP - SM. You should find the strongest extension and return a string in this format: ClassName.StrongestExtensionName. If there are two or more extensions with the same strength, you should choose the one that comes first in the vector. For example, if you are given "Slices" as the class and a vector of the extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension (its strength is -1). Example: >>> Strongest_Extension("my_class", ["AA", "Be", "CC"]) "my_class.AA" """ function Strongest_Extension(class_name::String, extensions::Vector{String})::String
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_153_Strongest_Extension.py
reworded
using Test @testset begin candidate = Strongest_Extension; @test(candidate("Watashi", ["tEN", "niNE", "eIGHt8OKe"]) == "Watashi.eIGHt8OKe") @test(candidate("Boku123", ["nani", "NazeDa", "YEs.WeCaNe", "32145tggg"]) == "Boku123.YEs.WeCaNe") @test(candidate("__YESIMHERE", ["t", "eMptY", "nothing", "zeR00", "NuLl__", "123NoooneB321"]) == "__YESIMHERE.NuLl__") @test(candidate("K", ["Ta", "TAR", "t234An", "cosSo"]) == "K.TAR") @test(candidate("__HAHA", ["Tab", "123", "781345", "-_-"]) == "__HAHA.123") @test(candidate("YameRore", ["HhAas", "okIWILL123", "WorkOut", "Fails", "-_-"]) == "YameRore.okIWILL123") @test(candidate("finNNalLLly", ["Die", "NowW", "Wow", "WoW"]) == "finNNalLLly.WoW") @test(candidate("_", ["Bb", "91245"]) == "_.Bb") @test(candidate("Sp", ["671235", "Bb"]) == "Sp.671235") end
['\nfunction' '\nmacro' '\n\n']
HumanEval_154_cycpattern_check
jl
"""You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word >>> cycpattern_check("abcd", "abd") false >>> cycpattern_check("hello", "ell") true >>> cycpattern_check("whassup", "psus") false >>> cycpattern_check("abab", "baa") true >>> cycpattern_check("efef", "eeff") false >>> cycpattern_check("himenss", "simen") true""" function cycpattern_check(a::String, b::String)::Bool
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_154_cycpattern_check.py
reworded
using Test @testset begin candidate = cycpattern_check; @test(candidate("xyzw", "xyw") == false) @test(candidate("yello", "ell") == true) @test(candidate("whattup", "ptut") == false) @test(candidate("efef", "fee") == true) @test(candidate("abab", "aabb") == false) @test(candidate("winemtt", "tinem") == true) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_155_even_odd_count
jl
"""Given an integer. return a tuple that has the number of even and odd digits respectively. Example: >>> even_odd_count(-12) (1, 1) >>> even_odd_count(123) (1, 2)""" function even_odd_count(num::Int64)::Tuple{Int64, Int64}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_155_even_odd_count.py
reworded
using Test @testset begin candidate = even_odd_count; @test(candidate(7) == (0, 1)) @test(candidate(-78) == (1, 1)) @test(candidate(3452) == (2, 2)) @test(candidate(346211) == (3, 3)) @test(candidate(-345821) == (3, 3)) @test(candidate(-2) == (1, 0)) @test(candidate(-45347) == (2, 3)) @test(candidate(0) == (1, 0)) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_156_int_to_mini_roman
jl
"""Given a positive integer, obtain its roman numeral equivalent as a string, and return it in lowercase. Restrictions: 1 <= num <= 1000 Examples: >>> int_to_mini_roman(19) "xix" >>> int_to_mini_roman(152) "clii" >>> int_to_mini_roman(426) "cdxxvi" """ function int_to_mini_roman(number::Int64)::String
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_156_int_to_mini_roman.py
reworded
using Test @testset begin candidate = int_to_mini_roman; @test(candidate(19) == "xix") @test(candidate(152) == "clii") @test(candidate(251) == "ccli") @test(candidate(426) == "cdxxvi") @test(candidate(500) == "d") @test(candidate(1) == "i") @test(candidate(4) == "iv") @test(candidate(43) == "xliii") @test(candidate(90) == "xc") @test(candidate(94) == "xciv") @test(candidate(532) == "dxxxii") @test(candidate(900) == "cm") @test(candidate(994) == "cmxciv") @test(candidate(1000) == "m") end
['\nfunction' '\nmacro' '\n\n']
HumanEval_157_right_angle_triangle
jl
"""Given the lengths of the three sides of a triangle. Return true if the three sides form a right-angled triangle, false otherwise. A right-angled triangle is a triangle in which one angle is right angle or 90 degree. Example: >>> right_angle_triangle(3, 4, 5) true >>> right_angle_triangle(1, 2, 3) false""" function right_angle_triangle(a::Int64, b::Int64, c::Int64)::Bool
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_157_right_angle_triangle.py
reworded
using Test @testset begin candidate = right_angle_triangle; @test(candidate(3, 4, 5) == true) @test(candidate(1, 2, 3) == false) @test(candidate(10, 6, 8) == true) @test(candidate(2, 2, 2) == false) @test(candidate(7, 24, 25) == true) @test(candidate(10, 5, 7) == false) @test(candidate(5, 12, 13) == true) @test(candidate(15, 8, 17) == true) @test(candidate(48, 55, 73) == true) @test(candidate(1, 1, 1) == false) @test(candidate(2, 2, 10) == false) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_158_find_max
jl
"""Write a function that accepts a vector of strings. The vector contains different words. Return the word with maximum number of unique characters. If multiple strings have maximum number of unique characters, return the one which comes first in lexicographical order. >>> find_max(["name", "of", "string"]) "string" >>> find_max(["name", "enam", "game"]) "enam" >>> find_max(["aaaaaaa", "bb", "cc"]) "aaaaaaa" """ function find_max(words::Vector{String})::String
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_158_find_max.py
reworded
using Test @testset begin candidate = find_max; @test(candidate(["name", "of", "string"]) == "string") @test(candidate(["name", "enam", "game"]) == "enam") @test(candidate(["aaaaaaa", "bb", "cc"]) == "aaaaaaa") @test(candidate(["abc", "cba"]) == "abc") @test(candidate(["play", "this", "game", "of", "footbott"]) == "footbott") @test(candidate(["we", "are", "gonna", "rock"]) == "gonna") @test(candidate(["we", "are", "a", "mad", "nation"]) == "nation") @test(candidate(["this", "is", "a", "prrk"]) == "this") @test(candidate(["b"]) == "b") @test(candidate(["play", "play", "play"]) == "play") end
['\nfunction' '\nmacro' '\n\n']
HumanEval_159_eat
jl
"""You're a hungry rabbit, and you already have eaten a certain number of carrots, but now you need to eat more carrots to complete the day's meals. you should return a vector of [ total number of eaten carrots after your meals, the number of carrots left after your meals ] if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry. Example: >>> eat(5, 6, 10) [11, 4] >>> eat(4, 8, 9) [12, 1] >>> eat(1, 10, 10) [11, 0] >>> eat(2, 11, 5) [7, 0] Variables: @number : integer the number of carrots that you have eaten. @need : integer the number of carrots that you need to eat. @remaining : integer the number of remaining carrots thet exist in stock Constrain: * 0 <= number <= 1000 * 0 <= need <= 1000 * 0 <= remaining <= 1000 Have fun :)""" function eat(number::Int64, need::Int64, remaining::Int64)::Vector{Int64}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_159_eat.py
reworded
using Test @testset begin candidate = eat; @test(candidate(5, 6, 10) == [11, 4]) @test(candidate(4, 8, 9) == [12, 1]) @test(candidate(1, 10, 10) == [11, 0]) @test(candidate(2, 11, 5) == [7, 0]) @test(candidate(4, 5, 7) == [9, 2]) @test(candidate(4, 5, 1) == [5, 0]) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_160_do_algebra
jl
"""Given two vectors operator, and operand. The first vector has basic algebra operations, and the second vector is a vector of integers. Use the two given vectors to build the algebric expression and return the evaluation of this expression. The basic algebra operations: Addition ( + ) Subtraction ( - ) Multiplication ( * ) Floor division ( // ) Exponentiation ( ** ) Example: operator['+', '*', '-'] vector = [2, 3, 4, 5] result = 2 + 3 * 4 - 5 => result = 9 Note: The length of operator vector is equal to the length of operand vector minus one. Operand is a vector of of non-negative integers. Operator vector has at least one operator, and operand vector has at least two operands.""" function do_algebra(operator::Vector{String}, operand::Vector{Int64})::Int64
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_160_do_algebra.py
reworded
using Test @testset begin candidate = do_algebra; @test(candidate(["**", "*", "+"], [2, 3, 4, 5]) == 37) @test(candidate(["+", "*", "-"], [2, 3, 4, 5]) == 9) @test(candidate(["//", "*"], [7, 3, 4]) == 8) end
['\nfunction' '\nmacro' '\n\n']
HumanEval_161_solve
jl
"""You are given a string s. if s[i] is a letter, reverse its case from lower to upper or vise versa, otherwise keep it as it is. If the string contains no letters, reverse the string. The function should return the resulted string. Examples >>> solve("1234") "4321" >>> solve("ab") "AB" >>> solve("#a@C") "#A@c" """ function solve(s::String)::String
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_161_solve.py
reworded
using Test @testset begin candidate = solve; @test(candidate("AsDf") == "aSdF") @test(candidate("1234") == "4321") @test(candidate("ab") == "AB") @test(candidate("#a@C") == "#A@c") @test(candidate("#AsdfW^45") == "#aSDFw^45") @test(candidate("#6@2") == "2@6#") @test(candidate("#\$a^D") == "#\$A^d") @test(candidate("#ccc") == "#CCC") end
['\nfunction' '\nmacro' '\n\n']
HumanEval_162_string_to_md5
jl
"""Given a string 'text', return its md5 hash equivalent string. If 'text' is an empty string, return nothing. >>> string_to_md5("Hello world") "3e25960a79dbc69b674cd4ec67a72c62" """ function string_to_md5(text::String)::Union{String, Nothing}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_162_string_to_md5.py
reworded
using Test @testset begin candidate = string_to_md5; @test(candidate("Hello world") == "3e25960a79dbc69b674cd4ec67a72c62") @test(candidate("") == nothing) @test(candidate("A B C") == "0ef78513b0cb8cef12743f5aeb35f888") @test(candidate("password") == "5f4dcc3b5aa765d61d8327deb882cf99") end
['\nfunction' '\nmacro' '\n\n']
HumanEval_163_generate_integers
jl
"""Given two positive integers a and b, return the even digits between a and b, in ascending order. For example: >>> generate_integers(2, 8) [2, 4, 6, 8] >>> generate_integers(8, 2) [2, 4, 6, 8] >>> generate_integers(10, 14) []""" function generate_integers(a::Int64, b::Int64)::Vector{Int64}
transform
/work/arjunguha-research-group/arjun/repos/nuprl/MultiPL-E/datasets/../datasets/originals-with-cleaned-doctests/HumanEval_163_generate_integers.py
reworded
using Test @testset begin candidate = generate_integers; @test(candidate(2, 10) == [2, 4, 6, 8]) @test(candidate(10, 2) == [2, 4, 6, 8]) @test(candidate(132, 2) == [2, 4, 6, 8]) @test(candidate(17, 89) == Vector{Int64}([])) end
['\nfunction' '\nmacro' '\n\n']