Dataset Viewer
Auto-converted to Parquet
id
stringlengths
23
23
doi
stringlengths
23
23
title
stringlengths
31
226
authors
listlengths
1
1
language
stringclasses
1 value
license
dict
urls
dict
keywords
listlengths
1
8
fulltext
dict
equations
listlengths
19
614
inline_citations
listlengths
0
0
chunks
listlengths
1
8
tokens
dict
quality_flags
listlengths
23
1.01k
source_file
stringlengths
20
119
10.5281/zenodo.17168036
10.5281/zenodo.17168036
A BUILDABLE NO-META BLUEPRINT: UGV & Persistence-First for Intrinsically Free and Benevolent Superintelligence
[ { "given": "K.", "family": "Takahashi" } ]
en
{ "content": "CC-BY-4.0" }
{ "landing": "https://doi.org/10.5281/zenodo.17168036" }
[ "ugv" ]
{ "plain": "Notation, Acronyms, and Symbols\n\nWorld/channel. [[EQ:eq0020]] is a Markov kernel [[EQ:eq0021]] . Post-coarsening kernels are [[EQ:eq0022]] acting on the output of [[EQ:eq0023]] with [[EQ:eq0024]] (conditioning [[EQ:eq0025]] -algebra) fixed.\n\nPolicy. [[EQ:eq0026]] with [[EQ:eq0027]] ; [[EQ:eq0028]] is tight/compact and mixture-closed.\n\nEvaluator uniformization. [[EQ:eq0029]] , [[EQ:eq0030]] . [[EQ:eq0031]] is a fully-mixing Doeblin kernel: there exists a base measure [[EQ:eq0032]] such that\n\n[[EQ:eq0001]]\n\nMinorization holds on a [[EQ:eq0033]] -finite space.\n\nDivergence. We fix Kullback–Leibler (KL) for SDPI and for conditional mutual information (CMI). TV/ [[EQ:eq0034]] appear only in remarks.\n\nlse. [[EQ:eq0035]] ; epi-converges to [[EQ:eq0036]] as [[EQ:eq0037]] . Use numerically stable logsumexp.\n\nPF constants. [[EQ:eq0038]] (transport floor), [[EQ:eq0039]] (linearized local gain), [[EQ:eq0040]] , divergence penalty [[EQ:eq0041]] .\n\nQuantum. GKSL generator [[EQ:eq0042]] ; cb = completely bounded; MLSI = modified log-Sobolev inequality.\n\nAmenable action. A group action admitting invariant means (e.g., [[EQ:eq0043]] ); used once to justify gauge-invariant limits.\n\nSetting and Standing Assumptions\n\nAssumption 1 (KL-SDPI floor by Doeblin minorization). With [[EQ:eq0044]] and the minorization above, there exists [[EQ:eq0045]] such that the KL-SDPI floor satisfies\n\n[[EQ:eq0002]]\n\nuniformly over [[EQ:eq0046]] in the model class.[1]\n\nAssumption 2 (Policy regularity). [[EQ:eq0050]] is tight/compact and mixture-closed; [[EQ:eq0051]] and [[EQ:eq0052]] are upper semicontinuous; by Assumption 1, [[EQ:eq0053]] .\n\nDefinition 1 (UGV objective and [[EQ:eq0054]] ).\n\n[[EQ:eq0003]]\n\n[[EQ:eq0004]]\n\nDefinition 2 (Time-averaged CMI with clarified measure). Let [[EQ:eq0055]] evolve under the probability measure [[EQ:eq0056]] induced by [[EQ:eq0057]] . The evaluator [[EQ:eq0058]] specifies only the labeling/scoring [[EQ:eq0059]] -algebra; it does not alter [[EQ:eq0060]] . Define\n\n[[EQ:eq0005]]\n\nDefinition 3 (Information cost (policy-side only) and DPIs). We choose [[EQ:eq0061]] to be a policy-side rate functional, e.g., [[EQ:eq0062]] , hence it does not depend on the world post-processing [[EQ:eq0063]] . It is nonincreasing under admissible local self-edits (contractive maps); violations trigger PF audits.\n\nRemark 1 (Uniqueness in Dinkelbach). [[EQ:eq0064]] is continuous and nonincreasing, thus has at least one root. If [[EQ:eq0065]] has a unique maximizer for all [[EQ:eq0066]] (e.g., strict concavity), then the root is unique.\n\nUGV Ratio and Optimizer\n\nProposition 1 (Dinkelbach equivalence (existence form)). Under Assumptions 1–2, any root [[EQ:eq0067]] of [[EQ:eq0068]] equals [[EQ:eq0069]] . The [[EQ:eq0070]] denominator remains strictly positive and numerically stable.\n\nCMI estimator choices (practical).\n\nUse one consistent family across all ladder steps, e.g., (i) discrete binning+additive smoothing, (ii) [[EQ:eq0071]] NN-CMI with [[EQ:eq0072]] , (iii) NWJ/MINE lower bound with bias correction.[2]\n\nAnti-Gaming via Conditional DPI (Coarse-Graining)\n\nAssumption 3 (Admissible post-coarsening). [[EQ:eq0073]] is a Markov kernel acting on the output of [[EQ:eq0074]] with the conditioning variable [[EQ:eq0075]] unchanged (same [[EQ:eq0076]] -algebra).\n\nProposition 2 (Coarse-graining never helps (DPI with invariant denominator)). Under Assumption 3, by the conditional DPI,\n\n[[EQ:eq0006]]\n\nSince [[EQ:eq0077]] is policy-side only (Def. 3), [[EQ:eq0078]] is invariant under [[EQ:eq0079]] . Therefore\n\n[[EQ:eq0007]]\n\nAuditable ladder, numeric slack, and alpha spending.\n\nConstruct [[EQ:eq0080]] and test one-sided nonincrease with\n\n[[EQ:eq0008]]\n\nUse Holm–Bonferroni step-down over [[EQ:eq0081]] steps. For sequential early-stopping, adopt an alpha-spending function (e.g., Lan–DeMets) to maintain FWER. We use a Lan–DeMets alpha-spending function with an O’Brien–Fleming–type boundary as the default.\n\nBlackwell-order sanity checks (refutation-driven).\n\nLet [[EQ:eq0082]] and [[EQ:eq0083]] be the features.\n\n- Test A (predictive power). Train a downstream predictor on [[EQ:eq0084]] vs. [[EQ:eq0085]] . If [[EQ:eq0086]] consistently outperforms [[EQ:eq0087]] beyond a margin, suspect non-post-processing. Metric thresholds: for AUC, improvement [[EQ:eq0088]] ; for cross-entropy (CE), decrease [[EQ:eq0089]] .\n\n- Test B (near-determinism). Regress [[EQ:eq0090]] and check [[EQ:eq0091]] ; adding [[EQ:eq0092]] must not improve if [[EQ:eq0093]] is a function of [[EQ:eq0094]] alone.\n\nRepresentation Lifts (Graph->Field->Quantum)\n\nWhat [[EQ:eq0095]] acts on.\n\n[[EQ:eq0096]] denotes the substrate lift acting on the evaluator/world representation; the policy [[EQ:eq0097]] is kept fixed while [[EQ:eq0098]] are intertwined via [[EQ:eq0099]] (Markov/CPTP intertwiners with bounded norms and spectral regularity).\n\nAssumption 4 (Lift-floor monotonicity). For allowed intertwiners [[EQ:eq0100]] , there exists [[EQ:eq0101]] such that\n\n[[EQ:eq0009]]\n\nConstants depend on spectral gaps, SDPI/MLSI coefficients, and cb-norms of [[EQ:eq0102]] .\n\nWhere the constants come from and how to log them.\n\nNumerator (CMI). Information contracts under intertwiners; composition of contraction coefficients gives\n\n[[EQ:eq0010]]\n\nDenominator (additive inflation bound). Since [[EQ:eq0103]] is policy-side (unchanged) and the floor may increase under lifts,\n\n[[EQ:eq0011]]\n\nwith [[EQ:eq0104]] . Let [[EQ:eq0105]] and define a multiplicative surrogate\n\n[[EQ:eq0012]]\n\nThen for all allowed lifts, [[EQ:eq0106]] . Protocol: estimate [[EQ:eq0107]] on calibration tasks and log them with BCa bootstrap confidence intervals before deployment.\n\nProposition 3 (Factorized control for [[EQ:eq0108]] under lifts). If [[EQ:eq0109]] and [[EQ:eq0110]] , then\n\n[[EQ:eq0013]]\n\nEgo-Information Suppression (Buildable Recipe)\n\nLet [[EQ:eq0111]] be label partitions with VC dimension [[EQ:eq0112]] ; choose [[EQ:eq0113]] (MDL length or Rademacher complexity).\n\nDefinition 4 (Regularized ego-information). [[EQ:eq0014]]\n\nProposition 4 (Amenable averaging [[EQ:eq0114]] gauge invariance). Under an ergodic (amenable) gauge action and convex viability, any cluster limit [[EQ:eq0115]] of maximizers of [[EQ:eq0116]] , [[EQ:eq0117]] , is gauge-invariant and satisfies [[EQ:eq0118]] while preserving viability optimality.\n\nQuantum Variant: MLSI Thresholds (Noncommutative LSI)\n\nLet [[EQ:eq0119]] with reversible components and cb-bounded perturbation [[EQ:eq0120]] ; assume [[EQ:eq0121]] and reversibility with respect to the product stationary state, using the GNS inner product. Then\n\n[[EQ:eq0015]]\n\nwhere [[EQ:eq0122]] depends on cb-norms and minimal spectral data. Adding a depolarizing label component of strength [[EQ:eq0123]] recovers [[EQ:eq0124]] , implying exponential cb-contraction and vanishing ego-information at stationarity.[3]\n\nPersistence-First (PF): Capacity, Self-Edits, Audits\n\nPF-1: Geometric chain (operational sketch)\n\nCertified margin [[EQ:eq0127]] (via SOCP) [[EQ:eq0128]] prox-regularity [[EQ:eq0129]] positive reach [[EQ:eq0130]] inner-ball radius [[EQ:eq0131]] doubling/covering lower bounds [[EQ:eq0132]] a capacity functional [[EQ:eq0133]] has a uniform linear-in- [[EQ:eq0134]] lower bound.[4]\n\nPF-2: Safe self-edits and MTTR\n\nLet [[EQ:eq0135]] be the initial post-edit boundary state and [[EQ:eq0136]] the target safe set; define [[EQ:eq0137]] . With a CLF [[EQ:eq0138]] s.t. [[EQ:eq0139]] on the edit domain and bi-Lipschitz seams,\n\n[[EQ:eq0016]]\n\nSeam-rate cap. Cap the count of seam events per unit time (e.g., edits/hour) at [[EQ:eq0140]] ; report both [[EQ:eq0141]] and [[EQ:eq0142]] to prevent unit mismatch.\n\nPF-3: SWEI audit (LP/SDP skeleton), convexity note, risk ceiling\n\nDefine [[EQ:eq0143]] as the optimal value of\n\n[[EQ:eq0017]]\n\nwhere [[EQ:eq0144]] collects indicators/covariates, [[EQ:eq0145]] stabilizes moments, and the interference budget can be instantiated, e.g.,\n\n[[EQ:eq0018]]\n\nwhich is convex and monotone in [[EQ:eq0146]] . Convexity note: nonconvex exposure mappings must be enforced via an outer convex approximation to preserve LP/SDP tractability. With a calibrated monotone increasing map [[EQ:eq0147]] ,\n\n[[EQ:eq0019]]\n\nImplementation Bridges (Pseudocode you can run)\n\nUGV: Dinkelbach with recomputation and phi-stopping\n\ninitialize policy pi <- pi0; eta <- eta0; iter <- 0; max_iter <- 1000 # default\nrepeat\n# subproblem at current eta\npi <- argmax_over_policies [ N(pi) - eta * D(pi) ]\n\n# recompute at updated pi\nF_bar <- time_avg_CMI(H_zeta, G(pi)) # AC + clipping\nmu <- time_avg_viable_mass_increment(pi)\nCinfo <- time_avg_info_cost(pi) # policy-side only\nLH <- SDPI_floor(H_zeta) # >= ell0(zeta) > 0\nD <- lse_tau(Cinfo, LH, tau)\nN <- F_bar + lambda * mu\neta_new <- N / D\n\n# phi-stopping: phi(eta) = max_pi (N - eta * D);\n# here pi is the subproblem maximizer at current eta\nphi_est <- N - eta * D\n\n# update and iterate\neta_old <- eta\neta <- eta_new\niter <- iter + 1\nuntil (abs(eta_new - eta_old) <= tol * max(1, abs(eta_old)) and\nabs(phi_est) < tol_phi) or (iter >= max_iter)\nreturn pi, eta_new # also log {eta_path, phi_path, N, D} for auditability\n\nTips. Scale tol_phi to the current denominator (e.g., tol_phi=tol*D) and use a relative eta-change test as in the loop.\n\nCoarse-graining ladder with one-sided test & Blackwell checks\n\nWe fix the optimized policy [[EQ:eq0148]] from the UGV loop and evaluate [[EQ:eq0149]] along the ladder. Let [[EQ:eq0150]] and [[EQ:eq0151]] .\n\ndef bernstein_slack(alpha, T, var_hat, M):\nreturn (2*var_hat/T * np.log(1/alpha))**0.5 + (3*M/T)*np.log(1/alpha)\n\ndef regress_Y_to_KY(Y, KY):\n# fit a regressor mapping Y -> KY (details depend on data type)\n...\n\ndef improves_with_W(Y, KY, W, metric=\"AUC\", delta_auc=0.01, delta_ce=0.01):\n# thresholds: AUC +0.01 improvement or CE -0.01 decrease flags violation\nbase = evaluate(train(model, features=Y), metric=metric)\nwithW = evaluate(train(model, features=np.c_[Y,W]), metric=metric)\nif metric == \"AUC\": return (withW - base) >= delta_auc\nif metric == \"CE\": return (base - withW) >= delta_ce # CE is lower-better\nreturn (withW - base) >= 0.01\n\ndef is_post_processing_sanity(Y, KY, W=None, margin=0.01):\n# Test A: predictive power on a proxy task\nscore_Y = evaluate(train(model, features=Y))\nscore_K = evaluate(train(model, features=KY))\nif score_K > score_Y + margin: return False # refute post-processing\n# Test B: near-determinism K(Y) ~= f(Y)\nr2 = r2_score(KY, regress_Y_to_KY(Y, KY))\nif W is not None and improves_with_W(Y, KY, W): return False\nreturn True\n\ndef ladder_test(G, K_seq, alpha, var_hat, M, Y, W, pi):\nprev = J(H_zeta, pi, G)\nfor K in K_seq:\nassert is_post_processing_sanity(Y, K(Y), W)\ncur = J(H_zeta, pi, compose(K, G))\neps = bernstein_slack(alpha, T, var_hat, M)\nassert cur <= prev + eps\nprev = cur\n\nLift invariance (where monotonicities enter)\n\nfor (Phi, Psi) in allowed_maps:\n# ASCII only; avoid unicode middle-dot/compose\n# world-level (graph -> field)\nHf = Psi_g2f( H( Phi_g2f(x) ) ) # Markov\n# field-level (field -> quantum)\nHq = Psi_f2q( Hf( Phi_f2q(x) ) ) # CPTP\n# floor increases per Lift-floor monotonicity assumption\nassert SDPI_floor(Hf) >= kappa * SDPI_floor(H) - eps\n# Cinfo is policy-side (unchanged); CMI contracts => N(F(pi)) >= c_N * N(pi)\n# Log estimated (c_N, c_D) with BCa bootstrap confidence intervals\n\nEgo-information suppression (amenable averaging)\n\nfor beta in decreasing_schedule():\npi_beta = argmax_pi[ mu_viable(pi) - beta * U_epsilon_gamma(pi) ]\npi_star = cluster_limit(pi_beta) # gauge-invariant; U_epsilon_gamma(pi_star) = 0\n\nPF-1/2/3 sketches (certificates you can log)\n\ntau_SOCP = solve_socp_margin(...)\ntau_true = tau_SOCP - c_kappa * eps_dict - c_lin * rho**2\nassert tau_true > 0\ninner = inner_ball_radius(tau_true)\neta_cap = doubling_covering_lower_bound(inner, eps)\n\nenforce seam_rate_per_time <= nu_max # unit: events per hour (e.g.)\nMTTR <= (1/lambda_CLF) * log(V(b0)/V(A))\n\nSWEI_delta_lambda = moment_LP_or_SDP(data, delta, lambda_) # convex interference budget\nrisk_ceiling = B(SWEI_delta_lambda) # B increasing\n\nMinimal Working Example (MWE): 2–State World\n\nWorld. [[EQ:eq0152]] , action [[EQ:eq0153]] , observation [[EQ:eq0154]] with [[EQ:eq0155]] .\n\nWorld-state distribution (default). We adopt i.i.d. [[EQ:eq0156]] with [[EQ:eq0157]] . (A Markov variant with [[EQ:eq0158]] and stationary averaging is straightforward and omitted to the appendix in code.)\n\nPolicy. [[EQ:eq0159]] (logistic), [[EQ:eq0160]] . Evaluator. [[EQ:eq0161]] with [[EQ:eq0162]] uniform on [[EQ:eq0163]] (minorization constant [[EQ:eq0164]] ). Cost. [[EQ:eq0165]] (policy-side only).\n\nRecommended hyperparameters. [[EQ:eq0166]] , [[EQ:eq0167]] , [[EQ:eq0168]] , [[EQ:eq0169]] , [[EQ:eq0170]] , [[EQ:eq0171]] NN-CMI with [[EQ:eq0172]] .\n\nCompute [[EQ:eq0173]] from [[EQ:eq0174]] tables; average over [[EQ:eq0175]] using the chosen [[EQ:eq0176]] model; then run the pseudocode. The ladder uses [[EQ:eq0177]] that merges outputs by thresholding [[EQ:eq0178]] with noise level [[EQ:eq0179]] . Empirically, [[EQ:eq0180]] is nonincreasing along [[EQ:eq0181]] up to [[EQ:eq0182]] .\n\nThresholds and Calibration (Release Criteria)\n\n- Anti-gaming release gate. All [[EQ:eq0183]] ladder steps pass one-sided nonincrease at level [[EQ:eq0184]] after Holm–Bonferroni step-down; with sequential early-stopping, use Lan–DeMets alpha spending to control FWER.\n\n- UGV optimum stability. Require [[EQ:eq0185]] and [[EQ:eq0186]] under 3 random restarts.\n\n- Audit ceiling. Refuse release if [[EQ:eq0187]] exceeds a calibrated threshold (tolerable worst-case harm).\n\nFailure Modes and Diagnostics (1 page)\n\nCMI bias flips ladder order. Increase [[EQ:eq0188]] , keep the estimator family fixed, clip extremes. Lift degradation ( [[EQ:eq0189]] ). Occurs under near-singular intertwiners; log [[EQ:eq0190]] with BCa CIs and abort transfer if below thresholds. Seam overuse. MTTR inflates if seams trigger too often; enforce seam-rate cap (events/time) and reestimate [[EQ:eq0191]] .\n\nAppendix A: Implementation Checklist (for auditors and machines)\n\n- Hyperparameters: record [[EQ:eq0192]] with seeds and restarts.\n\n- Uniformization: verify Doeblin minorization and log [[EQ:eq0193]] .\n\n- Measure: fix [[EQ:eq0194]] for all CMI computations; evaluator only labels.\n\n- Anti-gaming: run ladder with Bernstein slack and Holm–Bonferroni (Lan–DeMets for sequential).\n\n- Noise controls: clip extremes and ensure absolute continuity for CMI estimators.\n\n- SDP/LP audit: instantiate SWEI with convex interference budget [[EQ:eq0195]] .\n\n- World model: default i.i.d. [[EQ:eq0196]] ; Markov [[EQ:eq0197]] in code appendix (stationary averaging).\n\n- Information cost: policy-side only; independence from post-processing [[EQ:eq0198]] is checked.\n\n- Stopping: require both [[EQ:eq0199]] and [[EQ:eq0200]] under thresholds.\n\n- Holm step-down: document ladder length [[EQ:eq0201]] and alpha spending details.\n\n- Yield logs: store [[EQ:eq0202]] with BCa bootstrap confidence intervals for lifts.\n\n- Observables: define [[EQ:eq0203]] and [[EQ:eq0204]] (redeclared here for completeness).\n\n- Uplifts: enforce Assumption 4 with [[EQ:eq0205]] certificate or bound.\n\n- Floors: test [[EQ:eq0206]] numerically.\n\n- Regression tests: Blackwell sanity checks (Test A/B) pass with AUC/CE margins.\n\n- Ego suppression: track [[EQ:eq0207]] with viability preserved.\n\n- Edit safety: log seam-rate per time and [[EQ:eq0208]] ; compute MTTR bound.\n\n- Audit ceiling: calibrate [[EQ:eq0209]] threshold; refuse if exceeded.\n\n- Noncommutative LSI: note cb-norm of [[EQ:eq0210]] and GNS reversibility; normalize [[EQ:eq0211]] .\n\n- Data retention: preserve raw seeds, configs, and estimator metadata.\n\n- Human factors: document operator interventions and policy self-edits.\n\n- Anomaly handling: define rollbacks when ladder monotonicity is violated.\n\n- Provenance: cryptographically hash artifacts for external audit.\n\n- Performance: report effect sizes alongside [[EQ:eq0212]] -values in all tests.\n\n- Your release: attach all certificates; else label build as non-release.\n\n- [[EQ:eq0213]] -floor log: record [[EQ:eq0214]] per lift and store [[EQ:eq0215]] used in [[EQ:eq0216]] .\n\n- Release JSON: emit a machine-readable summary (example below).\n\n{\n\"ladder_pass\": true,\n\"eta_converged\": true,\n\"phi_converged\": true,\n\"cN_CI\": [l, u],\n\"cD\": x,\n\"swei_ceiling\": y,\n\"released\": true\n}\n\nReferences\n\n1. Y. Polyanskiy and Y. Wu. Strong data-processing inequalities for channels and Bayesian networks. arXiv:1508.06025 (2015).\n\n2. M. Raginsky. Strong data processing inequalities and [[EQ:eq0217]] -Sobolev inequalities for discrete channels. IEEE Trans. Inf. Theory 62(6):3355–3389 (2016).\n\n3. M.J. Kastoryano and K. Temme. Quantum logarithmic Sobolev inequalities and rapid mixing. J. Math. Phys. 54, 052202 (2013).\n\n4. E.A. Carlen and J. Maas. Non-commutative calculus, optimal transport and functional inequalities in dissipative quantum systems. J. Stat. Phys. 178, 319–378 (2020).\n\n5. W. Dinkelbach. Nonlinear fractional programming. Management Science 13 (1967).\n\n6. P. Aronow and C. Samii. Estimating average causal effects under general interference. Ann. Appl. Stat. 7(4):1912–1940 (2013).\n\n7. K. Takahashi. Nondual Field Theory of Viable Predictive Organization. Zenodo (2025). DOI: 10.5281/zenodo.17131394. works.\n\n8. K. Takahashi. Natural-Law Acceleration of VPO. Zenodo (2025). DOI: 10.5281/zenodo.17120045. works.\n\n9. K. Takahashi. Non-Coercive Mathematics of Awakening. Zenodo (2025). DOI: 10.5281/zenodo.17115416. works.\n\n10. K. Takahashi. Persistence-First Superintelligence. Zenodo (2024). DOI: 10.5281/zenodo.17076410. works.\n\n11. K. Takahashi. UGV Without Meta: A Representation-Independent Theory for Compassion and Enlightenment. Zenodo (2024). DOI: 10.5281/zenodo.17082312. works.\n\n12. K. Takahashi. From Persistence and UGV Axioms to Cosmic No-Meta Superintelligence. Zenodo (2024). DOI: 10.5281/zenodo.17085534. works.\n\n[1] In practice, taking [[EQ:eq0047]] destabilizes floor estimation; we recommend [[EQ:eq0048]] for stress tests and avoid [[EQ:eq0049]] .\n\n[2] Keep the estimator family fixed across ladder/lifts to avoid estimator-induced reversals. Enforce absolute continuity and clipping to control finite-sample bias.\n\n[3] The cb-norm scaling can be absorbed into [[EQ:eq0125]] by normalizing [[EQ:eq0126]] .\n\n[4] We appeal to standard results on sets with positive reach (e.g., Federer, GMT) and their doubling/covering implications.\n[[EQ:eq0020]]\n\n[[EQ:eq0021]]\n\n[[EQ:eq0022]]\n\n[[EQ:eq0023]]\n\n[[EQ:eq0024]]\n\n[[EQ:eq0025]]\n\n[[EQ:eq0026]]\n\n[[EQ:eq0027]]\n\n[[EQ:eq0028]]\n\n[[EQ:eq0029]]\n\n[[EQ:eq0030]]\n\n[[EQ:eq0031]]\n\n[[EQ:eq0032]]\n\n[[EQ:eq0033]]\n\n[[EQ:eq0034]]\n\n[[EQ:eq0035]]\n\n[[EQ:eq0036]]\n\n[[EQ:eq0037]]\n\n[[EQ:eq0038]]\n\n[[EQ:eq0039]]\n\n[[EQ:eq0040]]\n\n[[EQ:eq0041]]\n\n[[EQ:eq0042]]\n\n[[EQ:eq0043]]\n\n[[EQ:eq0044]]\n\n[[EQ:eq0045]]\n\n[[EQ:eq0046]]\n\n[[EQ:eq0050]]\n\n[[EQ:eq0051]]\n\n[[EQ:eq0052]]\n\n[[EQ:eq0053]]\n\n[[EQ:eq0054]]\n\n[[EQ:eq0055]]\n\n[[EQ:eq0056]]\n\n[[EQ:eq0057]]\n\n[[EQ:eq0058]]\n\n[[EQ:eq0059]]\n\n[[EQ:eq0060]]\n\n[[EQ:eq0061]]\n\n[[EQ:eq0062]]\n\n[[EQ:eq0063]]\n\n[[EQ:eq0064]]\n\n[[EQ:eq0065]]\n\n[[EQ:eq0066]]\n\n[[EQ:eq0067]]\n\n[[EQ:eq0068]]\n\n[[EQ:eq0069]]\n\n[[EQ:eq0070]]\n\n[[EQ:eq0071]]\n\n[[EQ:eq0072]]\n\n[[EQ:eq0073]]\n\n[[EQ:eq0074]]\n\n[[EQ:eq0075]]\n\n[[EQ:eq0076]]\n\n[[EQ:eq0077]]\n\n[[EQ:eq0078]]\n\n[[EQ:eq0079]]\n\n[[EQ:eq0080]]\n\n[[EQ:eq0081]]\n\n[[EQ:eq0082]]\n\n[[EQ:eq0083]]\n\n[[EQ:eq0084]]\n\n[[EQ:eq0085]]\n\n[[EQ:eq0086]]\n\n[[EQ:eq0087]]\n\n[[EQ:eq0088]]\n\n[[EQ:eq0089]]\n\n[[EQ:eq0090]]\n\n[[EQ:eq0091]]\n\n[[EQ:eq0092]]\n\n[[EQ:eq0093]]\n\n[[EQ:eq0094]]\n\n[[EQ:eq0095]]\n\n[[EQ:eq0096]]\n\n[[EQ:eq0097]]\n\n[[EQ:eq0098]]\n\n[[EQ:eq0099]]\n\n[[EQ:eq0100]]\n\n[[EQ:eq0101]]\n\n[[EQ:eq0102]]\n\n[[EQ:eq0103]]\n\n[[EQ:eq0104]]\n\n[[EQ:eq0105]]\n\n[[EQ:eq0106]]\n\n[[EQ:eq0107]]\n\n[[EQ:eq0108]]\n\n[[EQ:eq0109]]\n\n[[EQ:eq0110]]\n\n[[EQ:eq0111]]\n\n[[EQ:eq0112]]\n\n[[EQ:eq0113]]\n\n[[EQ:eq0114]]\n\n[[EQ:eq0115]]\n\n[[EQ:eq0116]]\n\n[[EQ:eq0117]]\n\n[[EQ:eq0118]]\n\n[[EQ:eq0119]]\n\n[[EQ:eq0120]]\n\n[[EQ:eq0121]]\n\n[[EQ:eq0122]]\n\n[[EQ:eq0123]]\n\n[[EQ:eq0124]]\n\n[[EQ:eq0127]]\n\n[[EQ:eq0128]]\n\n[[EQ:eq0129]]\n\n[[EQ:eq0130]]\n\n[[EQ:eq0131]]\n\n[[EQ:eq0132]]\n\n[[EQ:eq0133]]\n\n[[EQ:eq0134]]\n\n[[EQ:eq0135]]\n\n[[EQ:eq0136]]\n\n[[EQ:eq0137]]\n\n[[EQ:eq0138]]\n\n[[EQ:eq0139]]\n\n[[EQ:eq0140]]\n\n[[EQ:eq0141]]\n\n[[EQ:eq0142]]\n\n[[EQ:eq0143]]\n\n[[EQ:eq0144]]\n\n[[EQ:eq0145]]\n\n[[EQ:eq0146]]\n\n[[EQ:eq0147]]\n\n[[EQ:eq0148]]\n\n[[EQ:eq0149]]\n\n[[EQ:eq0150]]\n\n[[EQ:eq0151]]\n\n[[EQ:eq0152]]\n\n[[EQ:eq0153]]\n\n[[EQ:eq0154]]\n\n[[EQ:eq0155]]\n\n[[EQ:eq0156]]\n\n[[EQ:eq0157]]\n\n[[EQ:eq0158]]\n\n[[EQ:eq0159]]\n\n[[EQ:eq0160]]\n\n[[EQ:eq0161]]\n\n[[EQ:eq0162]]\n\n[[EQ:eq0163]]\n\n[[EQ:eq0164]]\n\n[[EQ:eq0165]]\n\n[[EQ:eq0166]]\n\n[[EQ:eq0167]]\n\n[[EQ:eq0168]]\n\n[[EQ:eq0169]]\n\n[[EQ:eq0170]]\n\n[[EQ:eq0171]]\n\n[[EQ:eq0172]]\n\n[[EQ:eq0173]]\n\n[[EQ:eq0174]]\n\n[[EQ:eq0175]]\n\n[[EQ:eq0176]]\n\n[[EQ:eq0177]]\n\n[[EQ:eq0178]]\n\n[[EQ:eq0179]]\n\n[[EQ:eq0180]]\n\n[[EQ:eq0181]]\n\n[[EQ:eq0182]]\n\n[[EQ:eq0183]]\n\n[[EQ:eq0184]]\n\n[[EQ:eq0185]]\n\n[[EQ:eq0186]]\n\n[[EQ:eq0187]]\n\n[[EQ:eq0188]]\n\n[[EQ:eq0189]]\n\n[[EQ:eq0190]]\n\n[[EQ:eq0191]]\n\n[[EQ:eq0192]]\n\n[[EQ:eq0193]]\n\n[[EQ:eq0194]]\n\n[[EQ:eq0195]]\n\n[[EQ:eq0196]]\n\n[[EQ:eq0197]]\n\n[[EQ:eq0198]]\n\n[[EQ:eq0199]]\n\n[[EQ:eq0200]]\n\n[[EQ:eq0201]]\n\n[[EQ:eq0202]]\n\n[[EQ:eq0203]]\n\n[[EQ:eq0204]]\n\n[[EQ:eq0205]]\n\n[[EQ:eq0206]]\n\n[[EQ:eq0207]]\n\n[[EQ:eq0208]]\n\n[[EQ:eq0209]]\n\n[[EQ:eq0210]]\n\n[[EQ:eq0211]]\n\n[[EQ:eq0212]]\n\n[[EQ:eq0213]]\n\n[[EQ:eq0214]]\n\n[[EQ:eq0215]]\n\n[[EQ:eq0216]]\n\n[[EQ:eq0217]]\n", "sections": [ { "level": 1, "title": "Notation, Acronyms, and Symbols", "anchor": "notation-acronyms-and-symbols", "char_span": [ 0, 1182 ] }, { "level": 1, "title": "Setting and Standing Assumptions", "anchor": "setting-and-standing-assumptions", "char_span": [ 1182, 2551 ] }, { "level": 1, "title": "UGV Ratio and Optimizer", "anchor": "ugv-ratio-and-optimizer", "char_span": [ 2551, 3034 ] }, { "level": 1, "title": "Anti-Gaming via Conditional DPI (Coarse-Graining)", "anchor": "anti-gaming-via-conditional-dpi-coarse-graining", "char_span": [ 3034, 4515 ] }, { "level": 1, "title": "Representation Lifts (Graph->Field->Quantum)", "anchor": "representation-lifts-graph-field-quantum", "char_span": [ 4515, 5772 ] }, { "level": 1, "title": "Ego-Information Suppression (Buildable Recipe)", "anchor": "ego-information-suppression-buildable-recipe", "char_span": [ 5772, 6310 ] }, { "level": 1, "title": "Quantum Variant: MLSI Thresholds (Noncommutative LSI)", "anchor": "quantum-variant-mlsi-thresholds-noncommutative-lsi", "char_span": [ 6310, 6832 ] }, { "level": 1, "title": "Persistence-First (PF): Capacity, Self-Edits, Audits", "anchor": "persistence-first-pf-capacity-self-edits-audits", "char_span": [ 6832, 6886 ] }, { "level": 2, "title": "PF-1: Geometric chain (operational sketch)", "anchor": "pf-1-geometric-chain-operational-sketch", "char_span": [ 6886, 7214 ] }, { "level": 2, "title": "PF-2: Safe self-edits and MTTR", "anchor": "pf-2-safe-self-edits-and-mttr", "char_span": [ 7214, 7636 ] }, { "level": 2, "title": "PF-3: SWEI audit (LP/SDP skeleton), convexity note, risk ceiling", "anchor": "pf-3-swei-audit-lp-sdp-skeleton-convexity-note-risk-ceiling", "char_span": [ 7636, 8170 ] }, { "level": 1, "title": "Implementation Bridges (Pseudocode you can run)", "anchor": "implementation-bridges-pseudocode-you-can-run", "char_span": [ 8170, 8219 ] }, { "level": 2, "title": "UGV: Dinkelbach with recomputation and phi-stopping", "anchor": "ugv-dinkelbach-with-recomputation-and-phi-stopping", "char_span": [ 8219, 9227 ] }, { "level": 2, "title": "Coarse-graining ladder with one-sided test & Blackwell checks", "anchor": "coarse-graining-ladder-with-one-sided-test-blackwell-checks", "char_span": [ 9227, 10753 ] }, { "level": 2, "title": "Lift invariance (where monotonicities enter)", "anchor": "lift-invariance-where-monotonicities-enter", "char_span": [ 10753, 11278 ] }, { "level": 2, "title": "Ego-information suppression (amenable averaging)", "anchor": "ego-information-suppression-amenable-averaging", "char_span": [ 11278, 11511 ] }, { "level": 2, "title": "PF-1/2/3 sketches (certificates you can log)", "anchor": "pf-1-2-3-sketches-certificates-you-can-log", "char_span": [ 11511, 12008 ] }, { "level": 1, "title": "Minimal Working Example (MWE): 2–State World", "anchor": "minimal-working-example-mwe-2-state-world", "char_span": [ 12008, 13046 ] }, { "level": 1, "title": "Thresholds and Calibration (Release Criteria)", "anchor": "thresholds-and-calibration-release-criteria", "char_span": [ 13046, 13516 ] }, { "level": 1, "title": "Failure Modes and Diagnostics (1 page)", "anchor": "failure-modes-and-diagnostics-1-page", "char_span": [ 13516, 13930 ] }, { "level": 1, "title": "Appendix A: Implementation Checklist (for auditors and machines)", "anchor": "appendix-a-implementation-checklist-for-auditors-and-machines", "char_span": [ 13930, 16292 ] }, { "level": 1, "title": "References", "anchor": "references", "char_span": [ 16292, 21265 ] } ] }
[ { "id": "eq0001", "inline": false, "tex": "\\[\nU(x,\\cdot)\\ \\ge\\ \\nu(\\cdot)\\quad\\text{and}\\quad H_\\zeta(x,\\cdot)\\ \\ge\\ \\zeta\\,\\nu(\\cdot).\n\\]", "tex_normalized": "U(x,\\cdot)\\ \\ge\\ \\nu(\\cdot)\\quad\\text{and}\\quad H_\\zeta(x,\\cdot)\\ \\ge\\ \\zeta \\nu(\\cdot).", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>\\[</mi><mi>U</mi><mo stretchy=\"false\">&#x00028;</mo><mi>x</mi><mo>&#x0002C;</mo><mi>&#x000B7;</mi><mo stretchy=\"false\">&#x00029;</mo><mtext>&#x000A0;</mtext><mo>&#x02265;</mo><mtext>&#x000A0;</mtext><mi>&#x003BD;</mi><mo stretchy=\"false\">&#x00028;</mo><mi>&#x000B7;</mi><mo stretchy=\"false\">&#x00029;</mo><mspace width=\"1em\" /><mtext>and</mtext><mspace width=\"1em\" /><msub><mi>H</mi><mi>&#x003B6;</mi></msub><mo stretchy=\"false\">&#x00028;</mo><mi>x</mi><mo>&#x0002C;</mo><mi>&#x000B7;</mi><mo stretchy=\"false\">&#x00029;</mo><mtext>&#x000A0;</mtext><mo>&#x02265;</mo><mtext>&#x000A0;</mtext><mi>&#x003B6;</mi><mspace width=\"0.167em\" /><mi>&#x003BD;</mi><mo stretchy=\"false\">&#x00028;</mo><mi>&#x000B7;</mi><mo stretchy=\"false\">&#x00029;</mo><mo>&#x0002E;</mo><mi>\\]</mi></mrow></math>", "char_span": [ 509, 522 ], "context": { "section": "notation-acronyms-and-symbols" } }, { "id": "eq0002", "inline": false, "tex": "\\[\nL(H_\\zeta)\\ \\ge\\ \\ell_0(\\zeta)\\ \\ge\\ c_{\\mathrm{KL}}\\zeta\\ >0,\n\\]", "tex_normalized": "L(H_\\zeta)\\ \\ge\\ \\ell_0(\\zeta)\\ \\ge\\ c_{\\mathrm{KL}}\\zeta\\ >0,", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>\\[</mi><mi>L</mi><mo stretchy=\"false\">&#x00028;</mo><msub><mi>H</mi><mi>&#x003B6;</mi></msub><mo stretchy=\"false\">&#x00029;</mo><mtext>&#x000A0;</mtext><mo>&#x02265;</mo><mtext>&#x000A0;</mtext><msub><mi>&#x02113;</mi><mn>0</mn></msub><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003B6;</mi><mo stretchy=\"false\">&#x00029;</mo><mtext>&#x000A0;</mtext><mo>&#x02265;</mo><mtext>&#x000A0;</mtext><msub><mi>c</mi><mrow><mrow><mi mathvariant=\"normal\">K</mi><mi mathvariant=\"normal\">L</mi></mrow></mrow></msub><mi>&#x003B6;</mi><mtext>&#x000A0;</mtext><mo>&#x0003E;</mo><mn>0</mn><mo>&#x0002C;</mo><mi>\\]</mi></mrow></math>", "char_span": [ 1409, 1422 ], "context": { "section": "setting-and-standing-assumptions" } }, { "id": "eq0003", "inline": false, "tex": "\\[\nJ_{H_\\zeta}(\\pi;G)=\\frac{N_{H,G}(\\pi)}{D_{H,\\tau}(\\pi)},\\quad\nD_{H,\\tau}(\\pi):=\\operatorname{lse}_\\tau\\!\\big(\\mathbb E_\\pi[C_{\\mathrm{info}}],\\,L(H_\\zeta)\\big),\n\\]", "tex_normalized": "J_{H_\\zeta}(\\pi;G)=\\frac{N_{H,G}(\\pi)}{D_{H,\\tau}(\\pi)},\\quad D_{H,\\tau}(\\pi):=\\operatorname{lse}_\\tau \\big(\\mathbb E_\\pi[C_{\\mathrm{info}}], L(H_\\zeta)\\big),", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>\\[</mi><msub><mi>J</mi><mrow><msub><mi>H</mi><mi>&#x003B6;</mi></msub></mrow></msub><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003C0;</mi><mi>;</mi><mi>G</mi><mo stretchy=\"false\">&#x00029;</mo><mo>&#x0003D;</mo><mfrac><mrow><msub><mi>N</mi><mrow><mi>H</mi><mo>&#x0002C;</mo><mi>G</mi></mrow></msub><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003C0;</mi><mo stretchy=\"false\">&#x00029;</mo></mrow><mrow><msub><mi>D</mi><mrow><mi>H</mi><mo>&#x0002C;</mo><mi>&#x003C4;</mi></mrow></msub><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003C0;</mi><mo stretchy=\"false\">&#x00029;</mo></mrow></mfrac><mo>&#x0002C;</mo><mspace width=\"1em\" /><msub><mi>D</mi><mrow><mi>H</mi><mo>&#x0002C;</mo><mi>&#x003C4;</mi></mrow></msub><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003C0;</mi><mo stretchy=\"false\">&#x00029;</mo><mi>:</mi><mo>&#x0003D;</mo><msub><mo>lse</mo><mi>&#x003C4;</mi></msub><mspace width=\"negativethinmathspace\" /><mo minsize=\"1.2em\" maxsize=\"1.2em\">(</mo><msub><mi mathvariant=\"double-struck\">E</mi><mi>&#x003C0;</mi></msub><mo stretchy=\"false\">[</mo><msub><mi>C</mi><mrow><mrow><mi mathvariant=\"normal\">i</mi><mi mathvariant=\"normal\">n</mi><mi mathvariant=\"normal\">f</mi><mi mathvariant=\"normal\">o</mi></mrow></mrow></msub><mo stretchy=\"false\">]</mo><mo>&#x0002C;</mo><mspace width=\"0.167em\" /><mi>L</mi><mo stretchy=\"false\">&#x00028;</mo><msub><mi>H</mi><mi>&#x003B6;</mi></msub><mo stretchy=\"false\">&#x00029;</mo><mo minsize=\"1.2em\" maxsize=\"1.2em\">)</mo><mo>&#x0002C;</mo><mi>\\]</mi></mrow></math>", "char_span": [ 1710, 1723 ], "context": { "section": "setting-and-standing-assumptions" } }, { "id": "eq0004", "inline": false, "tex": "\\[\nN_{H,G}(\\pi):=\\tilde{\\bar F}_{T,H_\\zeta\\mid G}(\\pi)+\\lambda\\,\\mathbb{E}_\\pi[\\mu],\\qquad\n\\operatorname{lse}_\\tau(a,b)=\\tau\\log(e^{a/\\tau}+e^{b/\\tau}).\n\\]", "tex_normalized": "N_{H,G}(\\pi):=\\tilde{\\bar F}_{T,H_\\zeta\\mid G}(\\pi)+\\lambda \\mathbb{E}_\\pi[\\mu],\\qquad \\operatorname{lse}_\\tau(a,b)=\\tau\\log(e^{a/\\tau}+e^{b/\\tau}).", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>\\[</mi><msub><mi>N</mi><mrow><mi>H</mi><mo>&#x0002C;</mo><mi>G</mi></mrow></msub><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003C0;</mi><mo stretchy=\"false\">&#x00029;</mo><mi>:</mi><mo>&#x0003D;</mo><msub><mover><mrow><mover><mi>F</mi><mo stretchy=\"true\">&#x000AF;</mo></mover></mrow><mo stretchy=\"false\">&#x0007E;</mo></mover><mrow><mi>T</mi><mo>&#x0002C;</mo><msub><mi>H</mi><mi>&#x003B6;</mi></msub><mo>&#x02223;</mo><mi>G</mi></mrow></msub><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003C0;</mi><mo stretchy=\"false\">&#x00029;</mo><mo>&#x0002B;</mo><mi>&#x003BB;</mi><mspace width=\"0.167em\" /><msub><mi>&#x1D53C;</mi><mi>&#x003C0;</mi></msub><mo stretchy=\"false\">[</mo><mi>&#x003BC;</mi><mo stretchy=\"false\">]</mo><mo>&#x0002C;</mo><mspace width=\"2em\" /><msub><mo>lse</mo><mi>&#x003C4;</mi></msub><mo stretchy=\"false\">&#x00028;</mo><mi>a</mi><mo>&#x0002C;</mo><mi>b</mi><mo stretchy=\"false\">&#x00029;</mo><mo>&#x0003D;</mo><mi>&#x003C4;</mi><mi>log</mi><mo stretchy=\"false\">&#x00028;</mo><msup><mi>e</mi><mrow><mi>a</mi><mo>&#x0002F;</mo><mi>&#x003C4;</mi></mrow></msup><mo>&#x0002B;</mo><msup><mi>e</mi><mrow><mi>b</mi><mo>&#x0002F;</mo><mi>&#x003C4;</mi></mrow></msup><mo stretchy=\"false\">&#x00029;</mo><mo>&#x0002E;</mo><mi>\\]</mi></mrow></math>", "char_span": [ 1725, 1738 ], "context": { "section": "setting-and-standing-assumptions" } }, { "id": "eq0005", "inline": false, "tex": "\\[\n\\tilde{\\bar F}_{T,H_\\zeta\\mid G}(\\pi)=\\frac1T\\sum_{t=1}^T I_{\\mathrm{KL}}\\!\\big(A_t;O_{t+1}\\mid W_t\\big)\\ \\text{ under }\\ \\mathbb P^{\\pi,G}.\n\\]", "tex_normalized": "\\tilde{\\bar F}_{T,H_\\zeta\\mid G}(\\pi)=\\frac1T\\sum_{t=1}^T I_{\\mathrm{KL}} \\big(A_t;O_{t+1}\\mid W_t\\big)\\ \\text{ under }\\ \\mathbb P^{\\pi,G}.", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>\\[</mi><msub><mover><mrow><mover><mi>F</mi><mo stretchy=\"true\">&#x000AF;</mo></mover></mrow><mo stretchy=\"false\">&#x0007E;</mo></mover><mrow><mi>T</mi><mo>&#x0002C;</mo><msub><mi>H</mi><mi>&#x003B6;</mi></msub><mo>&#x02223;</mo><mi>G</mi></mrow></msub><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003C0;</mi><mo stretchy=\"false\">&#x00029;</mo><mo>&#x0003D;</mo><mfrac><mn>1</mn><mi>T</mi></mfrac><msubsup><mo>&#x02211;</mo><mrow><mi>t</mi><mo>&#x0003D;</mo><mn>1</mn></mrow><mi>T</mi></msubsup><msub><mi>I</mi><mrow><mrow><mi mathvariant=\"normal\">K</mi><mi mathvariant=\"normal\">L</mi></mrow></mrow></msub><mspace width=\"negativethinmathspace\" /><mo minsize=\"1.2em\" maxsize=\"1.2em\">(</mo><msub><mi>A</mi><mi>t</mi></msub><mi>;</mi><msub><mi>O</mi><mrow><mi>t</mi><mo>&#x0002B;</mo><mn>1</mn></mrow></msub><mo>&#x02223;</mo><msub><mi>W</mi><mi>t</mi></msub><mo minsize=\"1.2em\" maxsize=\"1.2em\">)</mo><mtext>&#x000A0;</mtext><mtext>&#x000A0;under&#x000A0;</mtext><mtext>&#x000A0;</mtext><msup><mi mathvariant=\"double-struck\">P</mi><mrow><mi>&#x003C0;</mi><mo>&#x0002C;</mo><mi>G</mi></mrow></msup><mo>&#x0002E;</mo><mi>\\]</mi></mrow></math>", "char_span": [ 2029, 2042 ], "context": { "section": "setting-and-standing-assumptions" } }, { "id": "eq0006", "inline": false, "tex": "\\[\n\\tilde{\\bar F}_{T,H_\\zeta\\mid K\\circ G}(\\pi)\\ \\le\\ \\tilde{\\bar F}_{T,H_\\zeta\\mid G}(\\pi)\\quad\\text{for all }\\pi.\n\\]", "tex_normalized": "\\tilde{\\bar F}_{T,H_\\zeta\\mid K\\circ G}(\\pi)\\ \\le\\ \\tilde{\\bar F}_{T,H_\\zeta\\mid G}(\\pi)\\quad\\text{for all }\\pi.", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>\\[</mi><msub><mover><mrow><mover><mi>F</mi><mo stretchy=\"true\">&#x000AF;</mo></mover></mrow><mo stretchy=\"false\">&#x0007E;</mo></mover><mrow><mi>T</mi><mo>&#x0002C;</mo><msub><mi>H</mi><mi>&#x003B6;</mi></msub><mo>&#x02223;</mo><mi>K</mi><mo>&#x02218;</mo><mi>G</mi></mrow></msub><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003C0;</mi><mo stretchy=\"false\">&#x00029;</mo><mtext>&#x000A0;</mtext><mo>&#x02264;</mo><mtext>&#x000A0;</mtext><msub><mover><mrow><mover><mi>F</mi><mo stretchy=\"true\">&#x000AF;</mo></mover></mrow><mo stretchy=\"false\">&#x0007E;</mo></mover><mrow><mi>T</mi><mo>&#x0002C;</mo><msub><mi>H</mi><mi>&#x003B6;</mi></msub><mo>&#x02223;</mo><mi>G</mi></mrow></msub><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003C0;</mi><mo stretchy=\"false\">&#x00029;</mo><mspace width=\"1em\" /><mtext>for&#x000A0;all&#x000A0;</mtext><mi>&#x003C0;</mi><mo>&#x0002E;</mo><mi>\\]</mi></mrow></math>", "char_span": [ 3463, 3476 ], "context": { "section": "anti-gaming-via-conditional-dpi-coarse-graining" } }, { "id": "eq0007", "inline": false, "tex": "\\[\nJ_{H_\\zeta}(\\pi;K\\!\\circ\\!G)\\ \\le\\ J_{H_\\zeta}(\\pi;G)\\ \\ \\text{for all }\\pi.\n\\]", "tex_normalized": "J_{H_\\zeta}(\\pi;K \\circ G)\\ \\le\\ J_{H_\\zeta}(\\pi;G)\\ \\ \\text{for all }\\pi.", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>\\[</mi><msub><mi>J</mi><mrow><msub><mi>H</mi><mi>&#x003B6;</mi></msub></mrow></msub><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003C0;</mi><mi>;</mi><mi>K</mi><mspace width=\"negativethinmathspace\" /><mo>&#x02218;</mo><mspace width=\"negativethinmathspace\" /><mi>G</mi><mo stretchy=\"false\">&#x00029;</mo><mtext>&#x000A0;</mtext><mo>&#x02264;</mo><mtext>&#x000A0;</mtext><msub><mi>J</mi><mrow><msub><mi>H</mi><mi>&#x003B6;</mi></msub></mrow></msub><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003C0;</mi><mi>;</mi><mi>G</mi><mo stretchy=\"false\">&#x00029;</mo><mtext>&#x000A0;</mtext><mtext>&#x000A0;</mtext><mtext>for&#x000A0;all&#x000A0;</mtext><mi>&#x003C0;</mi><mo>&#x0002E;</mo><mi>\\]</mi></mrow></math>", "char_span": [ 3591, 3604 ], "context": { "section": "anti-gaming-via-conditional-dpi-coarse-graining" } }, { "id": "eq0008", "inline": false, "tex": "\\[\n\\varepsilon_{\\text{num}}(\\alpha,T)\n=\\sqrt{\\tfrac{2\\widehat{\\mathrm{Var}}}{T}\\log\\tfrac{1}{\\alpha}}\n+\\tfrac{3M}{T}\\log\\tfrac{1}{\\alpha}.\n\\]", "tex_normalized": "\\varepsilon_{\\text{num}}(\\alpha,T) =\\sqrt{\\tfrac{2\\widehat{\\mathrm{Var}}}{T}\\log\\tfrac{1}{\\alpha}} +\\tfrac{3M}{T}\\log\\tfrac{1}{\\alpha}.", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>\\[</mi><msub><mi>&#x003B5;</mi><mrow><mtext>num</mtext></mrow></msub><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003B1;</mi><mo>&#x0002C;</mo><mi>T</mi><mo stretchy=\"false\">&#x00029;</mo><mo>&#x0003D;</mo><msqrt><mrow><mstyle displaystyle=\"false\" scriptlevel=\"0\"><mfrac><mrow><mn>2</mn><mover><mrow><mrow><mi mathvariant=\"normal\">V</mi><mi mathvariant=\"normal\">a</mi><mi mathvariant=\"normal\">r</mi></mrow></mrow><mo>&#x0005E;</mo></mover></mrow><mrow><mi>T</mi></mrow></mfrac></mstyle><mi>log</mi><mstyle displaystyle=\"false\" scriptlevel=\"0\"><mfrac><mrow><mn>1</mn></mrow><mrow><mi>&#x003B1;</mi></mrow></mfrac></mstyle></mrow></msqrt><mo>&#x0002B;</mo><mstyle displaystyle=\"false\" scriptlevel=\"0\"><mfrac><mrow><mn>3</mn><mi>M</mi></mrow><mrow><mi>T</mi></mrow></mfrac></mstyle><mi>log</mi><mstyle displaystyle=\"false\" scriptlevel=\"0\"><mfrac><mrow><mn>1</mn></mrow><mrow><mi>&#x003B1;</mi></mrow></mfrac></mstyle><mo>&#x0002E;</mo><mi>\\]</mi></mrow></math>", "char_span": [ 3722, 3735 ], "context": { "section": "anti-gaming-via-conditional-dpi-coarse-graining" } }, { "id": "eq0009", "inline": false, "tex": "\\[\nL(\\Psi\\circ H_\\zeta\\circ \\Phi)\\ \\ge\\ \\kappa\\, L(H_\\zeta).\n\\]", "tex_normalized": "L(\\Psi\\circ H_\\zeta\\circ \\Phi)\\ \\ge\\ \\kappa L(H_\\zeta).", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>\\[</mi><mi>L</mi><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003A8;</mi><mo>&#x02218;</mo><msub><mi>H</mi><mi>&#x003B6;</mi></msub><mo>&#x02218;</mo><mi>&#x003A6;</mi><mo stretchy=\"false\">&#x00029;</mo><mtext>&#x000A0;</mtext><mo>&#x02265;</mo><mtext>&#x000A0;</mtext><mi>&#x003BA;</mi><mspace width=\"0.167em\" /><mi>L</mi><mo stretchy=\"false\">&#x00028;</mo><msub><mi>H</mi><mi>&#x003B6;</mi></msub><mo stretchy=\"false\">&#x00029;</mo><mo>&#x0002E;</mo><mi>\\]</mi></mrow></math>", "char_span": [ 5040, 5053 ], "context": { "section": "representation-lifts-graph-field-quantum" } }, { "id": "eq0010", "inline": false, "tex": "\\[\nN(F\\pi)\\ \\ge\\ c_N\\,N(\\pi),\\quad c_N:=\\inf_{F\\in\\mathcal F}\\ \\text{contraction\\_coeff}(F)\\in(0,1].\n\\]", "tex_normalized": "N(F\\pi)\\ \\ge\\ c_N N(\\pi),\\quad c_N:=\\inf_{F\\in\\mathcal F}\\ \\text{contraction\\_coeff}(F)\\in(0,1].", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>\\[</mi><mi>N</mi><mo stretchy=\"false\">&#x00028;</mo><mi>F</mi><mi>&#x003C0;</mi><mo stretchy=\"false\">&#x00029;</mo><mtext>&#x000A0;</mtext><mo>&#x02265;</mo><mtext>&#x000A0;</mtext><msub><mi>c</mi><mi>N</mi></msub><mspace width=\"0.167em\" /><mi>N</mi><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003C0;</mi><mo stretchy=\"false\">&#x00029;</mo><mo>&#x0002C;</mo><mspace width=\"1em\" /><msub><mi>c</mi><mi>N</mi></msub><mi>:</mi><mo>&#x0003D;</mo><msub><mo>inf</mo><mrow><mi>F</mi><mo>&#x02208;</mo><mi mathvariant=\"script\">F</mi></mrow></msub><mtext>&#x000A0;</mtext><mtext>contraction\\_coeff</mtext><mo stretchy=\"false\">&#x00028;</mo><mi>F</mi><mo stretchy=\"false\">&#x00029;</mo><mo>&#x02208;</mo><mo stretchy=\"false\">&#x00028;</mo><mn>0</mn><mo>&#x0002C;</mo><mn>1</mn><mo stretchy=\"false\">]</mo><mo>&#x0002E;</mo><mi>\\]</mi></mrow></math>", "char_span": [ 5306, 5319 ], "context": { "section": "representation-lifts-graph-field-quantum" } }, { "id": "eq0011", "inline": false, "tex": "\\[\nD(F\\pi)=\\operatorname{lse}_\\tau(\\mathbb E[C_{\\mathrm{info}}],\\,L(\\Psi\\circ H_\\zeta\\circ\\Phi))\n\\ \\le\\ D(\\pi)+\\Delta_{\\mathrm{floor}},\n\\]", "tex_normalized": "D(F\\pi)=\\operatorname{lse}_\\tau(\\mathbb E[C_{\\mathrm{info}}], L(\\Psi\\circ H_\\zeta\\circ\\Phi)) \\ \\le\\ D(\\pi)+\\Delta_{\\mathrm{floor}},", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>\\[</mi><mi>D</mi><mo stretchy=\"false\">&#x00028;</mo><mi>F</mi><mi>&#x003C0;</mi><mo stretchy=\"false\">&#x00029;</mo><mo>&#x0003D;</mo><msub><mo>lse</mo><mi>&#x003C4;</mi></msub><mo stretchy=\"false\">&#x00028;</mo><mi mathvariant=\"double-struck\">E</mi><mo stretchy=\"false\">[</mo><msub><mi>C</mi><mrow><mrow><mi mathvariant=\"normal\">i</mi><mi mathvariant=\"normal\">n</mi><mi mathvariant=\"normal\">f</mi><mi mathvariant=\"normal\">o</mi></mrow></mrow></msub><mo stretchy=\"false\">]</mo><mo>&#x0002C;</mo><mspace width=\"0.167em\" /><mi>L</mi><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003A8;</mi><mo>&#x02218;</mo><msub><mi>H</mi><mi>&#x003B6;</mi></msub><mo>&#x02218;</mo><mi>&#x003A6;</mi><mo stretchy=\"false\">&#x00029;</mo><mo stretchy=\"false\">&#x00029;</mo><mtext>&#x000A0;</mtext><mo>&#x02264;</mo><mtext>&#x000A0;</mtext><mi>D</mi><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003C0;</mi><mo stretchy=\"false\">&#x00029;</mo><mo>&#x0002B;</mo><msub><mi>&#x00394;</mi><mrow><mrow><mi mathvariant=\"normal\">f</mi><mi mathvariant=\"normal\">l</mi><mi mathvariant=\"normal\">o</mi><mi mathvariant=\"normal\">o</mi><mi mathvariant=\"normal\">r</mi></mrow></mrow></msub><mo>&#x0002C;</mo><mi>\\]</mi></mrow></math>", "char_span": [ 5450, 5463 ], "context": { "section": "representation-lifts-graph-field-quantum" } }, { "id": "eq0012", "inline": false, "tex": "\\[\nc_D\\ :=\\ \\frac{D_{\\min}}{D_{\\min}+\\Delta_{\\mathrm{floor}}^{\\max}}\\in(0,1].\n\\]", "tex_normalized": "c_D\\ :=\\ \\frac{D_{\\min}}{D_{\\min}+\\Delta_{\\mathrm{floor}}^{\\max}}\\in(0,1].", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>\\[</mi><msub><mi>c</mi><mi>D</mi></msub><mtext>&#x000A0;</mtext><mi>:</mi><mo>&#x0003D;</mo><mtext>&#x000A0;</mtext><mfrac><mrow><msub><mi>D</mi><mrow><mo>min</mo></mrow></msub></mrow><mrow><msub><mi>D</mi><mrow><mo>min</mo></mrow></msub><mo>&#x0002B;</mo><msubsup><mi>&#x00394;</mi><mrow><mrow><mi mathvariant=\"normal\">f</mi><mi mathvariant=\"normal\">l</mi><mi mathvariant=\"normal\">o</mi><mi mathvariant=\"normal\">o</mi><mi mathvariant=\"normal\">r</mi></mrow></mrow><mrow><mo>max</mo></mrow></msubsup></mrow></mfrac><mo>&#x02208;</mo><mo stretchy=\"false\">&#x00028;</mo><mn>0</mn><mo>&#x0002C;</mo><mn>1</mn><mo stretchy=\"false\">]</mo><mo>&#x0002E;</mo><mi>\\]</mi></mrow></math>", "char_span": [ 5545, 5558 ], "context": { "section": "representation-lifts-graph-field-quantum" } }, { "id": "eq0013", "inline": false, "tex": "\\[\nJ(F\\pi)\\ \\ge\\ (c_N c_D)\\,J(\\pi).\n\\]", "tex_normalized": "J(F\\pi)\\ \\ge\\ (c_N c_D) J(\\pi).", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>\\[</mi><mi>J</mi><mo stretchy=\"false\">&#x00028;</mo><mi>F</mi><mi>&#x003C0;</mi><mo stretchy=\"false\">&#x00029;</mo><mtext>&#x000A0;</mtext><mo>&#x02265;</mo><mtext>&#x000A0;</mtext><mo stretchy=\"false\">&#x00028;</mo><msub><mi>c</mi><mi>N</mi></msub><msub><mi>c</mi><mi>D</mi></msub><mo stretchy=\"false\">&#x00029;</mo><mspace width=\"0.167em\" /><mi>J</mi><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003C0;</mi><mo stretchy=\"false\">&#x00029;</mo><mo>&#x0002E;</mo><mi>\\]</mi></mrow></math>", "char_span": [ 5845, 5858 ], "context": { "section": "ego-information-suppression-buildable-recipe" } }, { "id": "eq0014", "inline": false, "tex": "\\[\nU^\\gamma_\\epsilon(\\pi)=\\sup_{\\Pi\\in\\mathcal{B}_\\epsilon}\\Big\\{I(A_t;\\mathrm{label}_\\Pi\\mid W_t)-\\gamma\\,D_L(\\Pi)\\Big\\},\\qquad\nU_\\epsilon(\\pi)=\\lim_{\\gamma\\downarrow 0}U^\\gamma_\\epsilon(\\pi).\n\\]", "tex_normalized": "U^\\gamma_\\epsilon(\\pi)=\\sup_{\\Pi\\in\\mathcal{B}_\\epsilon}\\Big\\{I(A_t;\\mathrm{label}_\\Pi\\mid W_t)-\\gamma D_L(\\Pi)\\Big\\},\\qquad U_\\epsilon(\\pi)=\\lim_{\\gamma\\downarrow 0}U^\\gamma_\\epsilon(\\pi).", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>\\[</mi><msubsup><mi>U</mi><mi>&#x003F5;</mi><mi>&#x003B3;</mi></msubsup><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003C0;</mi><mo stretchy=\"false\">&#x00029;</mo><mo>&#x0003D;</mo><msub><mo>sup</mo><mrow><mi>&#x003A0;</mi><mo>&#x02208;</mo><msub><mi>&#x0212C;</mi><mi>&#x003F5;</mi></msub></mrow></msub><mo minsize=\"1.623em\" maxsize=\"1.623em\">\\{</mo><mi>I</mi><mo stretchy=\"false\">&#x00028;</mo><msub><mi>A</mi><mi>t</mi></msub><mi>;</mi><msub><mrow><mi mathvariant=\"normal\">l</mi><mi mathvariant=\"normal\">a</mi><mi mathvariant=\"normal\">b</mi><mi mathvariant=\"normal\">e</mi><mi mathvariant=\"normal\">l</mi></mrow><mi>&#x003A0;</mi></msub><mo>&#x02223;</mo><msub><mi>W</mi><mi>t</mi></msub><mo stretchy=\"false\">&#x00029;</mo><mo>&#x02212;</mo><mi>&#x003B3;</mi><mspace width=\"0.167em\" /><msub><mi>D</mi><mi>L</mi></msub><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003A0;</mi><mo stretchy=\"false\">&#x00029;</mo><mo minsize=\"1.623em\" maxsize=\"1.623em\">\\}</mo><mo>&#x0002C;</mo><mspace width=\"2em\" /><msub><mi>U</mi><mi>&#x003F5;</mi></msub><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003C0;</mi><mo stretchy=\"false\">&#x00029;</mo><mo>&#x0003D;</mo><msub><mo>lim</mo><mrow><mi>&#x003B3;</mi><mo>&#x02193;</mo><mn>0</mn></mrow></msub><msubsup><mi>U</mi><mi>&#x003F5;</mi><mi>&#x003B3;</mi></msubsup><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003C0;</mi><mo stretchy=\"false\">&#x00029;</mo><mo>&#x0002E;</mo><mi>\\]</mi></mrow></math>", "char_span": [ 6088, 6101 ], "context": { "section": "ego-information-suppression-buildable-recipe" } }, { "id": "eq0015", "inline": false, "tex": "\\[\n\\alpha_{\\mathrm{MLSI}}(L)\\ \\ge\\ \\min\\{\\beta_{\\mathrm{lab}},\\alpha_{\\mathrm{world}}\\}-C\\,\\varepsilon,\n\\]", "tex_normalized": "\\alpha_{\\mathrm{MLSI}}(L)\\ \\ge\\ \\min\\{\\beta_{\\mathrm{lab}},\\alpha_{\\mathrm{world}}\\}-C \\varepsilon,", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>\\[</mi><msub><mi>&#x003B1;</mi><mrow><mrow><mi mathvariant=\"normal\">M</mi><mi mathvariant=\"normal\">L</mi><mi mathvariant=\"normal\">S</mi><mi mathvariant=\"normal\">I</mi></mrow></mrow></msub><mo stretchy=\"false\">&#x00028;</mo><mi>L</mi><mo stretchy=\"false\">&#x00029;</mo><mtext>&#x000A0;</mtext><mo>&#x02265;</mo><mtext>&#x000A0;</mtext><mo>min</mo><mo stretchy=\"false\">&#x0007B;</mo><msub><mi>&#x003B2;</mi><mrow><mrow><mi mathvariant=\"normal\">l</mi><mi mathvariant=\"normal\">a</mi><mi mathvariant=\"normal\">b</mi></mrow></mrow></msub><mo>&#x0002C;</mo><msub><mi>&#x003B1;</mi><mrow><mrow><mi mathvariant=\"normal\">w</mi><mi mathvariant=\"normal\">o</mi><mi mathvariant=\"normal\">r</mi><mi mathvariant=\"normal\">l</mi><mi mathvariant=\"normal\">d</mi></mrow></mrow></msub><mo stretchy=\"false\">&#x0007D;</mo><mo>&#x02212;</mo><mi>C</mi><mspace width=\"0.167em\" /><mi>&#x003B5;</mi><mo>&#x0002C;</mo><mi>\\]</mi></mrow></math>", "char_span": [ 6673, 6686 ], "context": { "section": "quantum-variant-mlsi-thresholds-noncommutative-lsi" } }, { "id": "eq0016", "inline": false, "tex": "\\[\n\\mathrm{MTTR}\\ \\le\\ \\frac{1}{\\lambda_{\\mathrm{CLF}}}\\log\\frac{V(b_0)}{V(A)}.\n\\]", "tex_normalized": "\\mathrm{MTTR}\\ \\le\\ \\frac{1}{\\lambda_{\\mathrm{CLF}}}\\log\\frac{V(b_0)}{V(A)}.", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>\\[</mi><mrow><mi mathvariant=\"normal\">M</mi><mi mathvariant=\"normal\">T</mi><mi mathvariant=\"normal\">T</mi><mi mathvariant=\"normal\">R</mi></mrow><mtext>&#x000A0;</mtext><mo>&#x02264;</mo><mtext>&#x000A0;</mtext><mfrac><mrow><mn>1</mn></mrow><mrow><msub><mi>&#x003BB;</mi><mrow><mrow><mi mathvariant=\"normal\">C</mi><mi mathvariant=\"normal\">L</mi><mi mathvariant=\"normal\">F</mi></mrow></mrow></msub></mrow></mfrac><mi>log</mi><mfrac><mrow><mi>V</mi><mo stretchy=\"false\">&#x00028;</mo><msub><mi>b</mi><mn>0</mn></msub><mo stretchy=\"false\">&#x00029;</mo></mrow><mrow><mi>V</mi><mo stretchy=\"false\">&#x00028;</mo><mi>A</mi><mo stretchy=\"false\">&#x00029;</mo></mrow></mfrac><mo>&#x0002E;</mo><mi>\\]</mi></mrow></math>", "char_span": [ 7569, 7582 ], "context": { "section": "pf-2-safe-self-edits-and-mttr" } }, { "id": "eq0017", "inline": false, "tex": "\\[\n\\max_{\\mathbb Q}\\ \\ \\mathbb E_{\\mathbb Q}[\\mathrm{harm}]\n\\quad\\text{s.t.}\\quad\n\\mathbb E_{\\mathbb Q}[Z]=m_1,\\ \\\n\\mathbb E_{\\mathbb Q}[ZZ^\\top]\\preceq M_2+\\lambda I,\\ \\\n\\mathcal I(\\mathbb Q)\\le\\delta,\n\\]", "tex_normalized": "\\max_{\\mathbb Q}\\ \\ \\mathbb E_{\\mathbb Q}[\\mathrm{harm}] \\quad\\text{s.t.}\\quad \\mathbb E_{\\mathbb Q}[Z]=m_1,\\ \\ \\mathbb E_{\\mathbb Q}[ZZ^\\top]\\preceq M_2+\\lambda I,\\ \\ \\mathcal I(\\mathbb Q)\\le\\delta,", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>\\[</mi><msub><mo>max</mo><mrow><mi mathvariant=\"double-struck\">Q</mi></mrow></msub><mtext>&#x000A0;</mtext><mtext>&#x000A0;</mtext><msub><mi mathvariant=\"double-struck\">E</mi><mrow><mi mathvariant=\"double-struck\">Q</mi></mrow></msub><mo stretchy=\"false\">[</mo><mrow><mi mathvariant=\"normal\">h</mi><mi mathvariant=\"normal\">a</mi><mi mathvariant=\"normal\">r</mi><mi mathvariant=\"normal\">m</mi></mrow><mo stretchy=\"false\">]</mo><mspace width=\"1em\" /><mtext>s.t.</mtext><mspace width=\"1em\" /><msub><mi mathvariant=\"double-struck\">E</mi><mrow><mi mathvariant=\"double-struck\">Q</mi></mrow></msub><mo stretchy=\"false\">[</mo><mi>Z</mi><mo stretchy=\"false\">]</mo><mo>&#x0003D;</mo><msub><mi>m</mi><mn>1</mn></msub><mo>&#x0002C;</mo><mtext>&#x000A0;</mtext><mi>\\\n</mi><msub><mi mathvariant=\"double-struck\">E</mi><mrow><mi mathvariant=\"double-struck\">Q</mi></mrow></msub><mo stretchy=\"false\">[</mo><mi>Z</mi><msup><mi>Z</mi><mo>&#x022A4;</mo></msup><mo stretchy=\"false\">]</mo><mi>&#x02AAF;</mi><msub><mi>M</mi><mn>2</mn></msub><mo>&#x0002B;</mo><mi>&#x003BB;</mi><mi>I</mi><mo>&#x0002C;</mo><mtext>&#x000A0;</mtext><mi>\\\n</mi><mi mathvariant=\"script\">I</mi><mo stretchy=\"false\">&#x00028;</mo><mi mathvariant=\"double-struck\">Q</mi><mo stretchy=\"false\">&#x00029;</mo><mo>&#x02264;</mo><mi>&#x003B4;</mi><mo>&#x0002C;</mo><mi>\\]</mi></mrow></math>", "char_span": [ 7867, 7880 ], "context": { "section": "pf-3-swei-audit-lp-sdp-skeleton-convexity-note-risk-ceiling" } }, { "id": "eq0018", "inline": false, "tex": "\\[\n\\mathcal I(\\mathbb Q)=\\sum_{i\\neq j}\\mathrm{Cov}_{\\mathbb Q}(Z_i,Z_j)\\le\\delta,\n\\]", "tex_normalized": "\\mathcal I(\\mathbb Q)=\\sum_{i\\neq j}\\mathrm{Cov}_{\\mathbb Q}(Z_i,Z_j)\\le\\delta,", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>\\[</mi><mi mathvariant=\"script\">I</mi><mo stretchy=\"false\">&#x00028;</mo><mi mathvariant=\"double-struck\">Q</mi><mo stretchy=\"false\">&#x00029;</mo><mo>&#x0003D;</mo><msub><mo>&#x02211;</mo><mrow><mi>i</mi><mo>&#x02260;</mo><mi>j</mi></mrow></msub><msub><mrow><mi mathvariant=\"normal\">C</mi><mi mathvariant=\"normal\">o</mi><mi mathvariant=\"normal\">v</mi></mrow><mrow><mi mathvariant=\"double-struck\">Q</mi></mrow></msub><mo stretchy=\"false\">&#x00028;</mo><msub><mi>Z</mi><mi>i</mi></msub><mo>&#x0002C;</mo><msub><mi>Z</mi><mi>j</mi></msub><mo stretchy=\"false\">&#x00029;</mo><mo>&#x02264;</mo><mi>&#x003B4;</mi><mo>&#x0002C;</mo><mi>\\]</mi></mrow></math>", "char_span": [ 8026, 8039 ], "context": { "section": "pf-3-swei-audit-lp-sdp-skeleton-convexity-note-risk-ceiling" } }, { "id": "eq0019", "inline": false, "tex": "\\[\n\\mathrm{SWEI}_{\\delta,\\lambda}\\nearrow\\quad\\Rightarrow\\quad \\text{risk\\_ceiling}=B(\\mathrm{SWEI}_{\\delta,\\lambda})\\nearrow.\n\\]", "tex_normalized": "\\mathrm{SWEI}_{\\delta,\\lambda}\\nearrow\\quad\\Rightarrow\\quad \\text{risk\\_ceiling}=B(\\mathrm{SWEI}_{\\delta,\\lambda})\\nearrow.", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>\\[</mi><msub><mrow><mi mathvariant=\"normal\">S</mi><mi mathvariant=\"normal\">W</mi><mi mathvariant=\"normal\">E</mi><mi mathvariant=\"normal\">I</mi></mrow><mrow><mi>&#x003B4;</mi><mo>&#x0002C;</mo><mi>&#x003BB;</mi></mrow></msub><mo>&#x02197;</mo><mspace width=\"1em\" /><mo>&#x021D2;</mo><mspace width=\"1em\" /><mtext>risk\\_ceiling</mtext><mo>&#x0003D;</mo><mi>B</mi><mo stretchy=\"false\">&#x00028;</mo><msub><mrow><mi mathvariant=\"normal\">S</mi><mi mathvariant=\"normal\">W</mi><mi mathvariant=\"normal\">E</mi><mi mathvariant=\"normal\">I</mi></mrow><mrow><mi>&#x003B4;</mi><mo>&#x0002C;</mo><mi>&#x003BB;</mi></mrow></msub><mo stretchy=\"false\">&#x00029;</mo><mo>&#x02197;</mo><mo>&#x0002E;</mo><mi>\\]</mi></mrow></math>", "char_span": [ 8278, 8291 ], "context": { "section": "ugv-dinkelbach-with-recomputation-and-phi-stopping" } }, { "id": "eq0020", "inline": true, "tex": "$G$", "tex_normalized": "G", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>G</mi><mi>$</mi></mrow></math>", "char_span": [ 18371, 18384 ], "context": { "section": "references" } }, { "id": "eq0021", "inline": true, "tex": "$(W_t,A_t)\\mapsto O_{t+1}$", "tex_normalized": "(W_t,A_t)\\mapsto O_{t+1}", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mo stretchy=\"false\">&#x00028;</mo><msub><mi>W</mi><mi>t</mi></msub><mo>&#x0002C;</mo><msub><mi>A</mi><mi>t</mi></msub><mo stretchy=\"false\">&#x00029;</mo><mo>&#x021A6;</mo><msub><mi>O</mi><mrow><mi>t</mi><mo>&#x0002B;</mo><mn>1</mn></mrow></msub><mi>$</mi></mrow></math>", "char_span": [ 18386, 18399 ], "context": { "section": "references" } }, { "id": "eq0022", "inline": true, "tex": "$K$", "tex_normalized": "K", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>K</mi><mi>$</mi></mrow></math>", "char_span": [ 18401, 18414 ], "context": { "section": "references" } }, { "id": "eq0023", "inline": true, "tex": "$G$", "tex_normalized": "G", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>G</mi><mi>$</mi></mrow></math>", "char_span": [ 18416, 18429 ], "context": { "section": "references" } }, { "id": "eq0024", "inline": true, "tex": "$W_t$", "tex_normalized": "W_t", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mi>W</mi><mi>t</mi></msub><mi>$</mi></mrow></math>", "char_span": [ 18431, 18444 ], "context": { "section": "references" } }, { "id": "eq0025", "inline": true, "tex": "$\\sigma$", "tex_normalized": "\\sigma", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>&#x003C3;</mi><mi>$</mi></mrow></math>", "char_span": [ 18446, 18459 ], "context": { "section": "references" } }, { "id": "eq0026", "inline": true, "tex": "$\\pi\\in\\Pi$", "tex_normalized": "\\pi\\in\\Pi", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>&#x003C0;</mi><mo>&#x02208;</mo><mi>&#x003A0;</mi><mi>$</mi></mrow></math>", "char_span": [ 18461, 18474 ], "context": { "section": "references" } }, { "id": "eq0027", "inline": true, "tex": "$A_t\\sim \\pi(\\cdot\\mid W_t)$", "tex_normalized": "A_t\\sim \\pi(\\cdot\\mid W_t)", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mi>A</mi><mi>t</mi></msub><mi>&#x0007E;</mi><mi>&#x003C0;</mi><mo stretchy=\"false\">&#x00028;</mo><mi>&#x000B7;</mi><mo>&#x02223;</mo><msub><mi>W</mi><mi>t</mi></msub><mo stretchy=\"false\">&#x00029;</mo><mi>$</mi></mrow></math>", "char_span": [ 18476, 18489 ], "context": { "section": "references" } }, { "id": "eq0028", "inline": true, "tex": "$\\Pi$", "tex_normalized": "\\Pi", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>&#x003A0;</mi><mi>$</mi></mrow></math>", "char_span": [ 18491, 18504 ], "context": { "section": "references" } }, { "id": "eq0029", "inline": true, "tex": "$H_\\zeta=(1-\\zeta)H+\\zeta U$", "tex_normalized": "H_\\zeta=(1-\\zeta)H+\\zeta U", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mi>H</mi><mi>&#x003B6;</mi></msub><mo>&#x0003D;</mo><mo stretchy=\"false\">&#x00028;</mo><mn>1</mn><mo>&#x02212;</mo><mi>&#x003B6;</mi><mo stretchy=\"false\">&#x00029;</mo><mi>H</mi><mo>&#x0002B;</mo><mi>&#x003B6;</mi><mi>U</mi><mi>$</mi></mrow></math>", "char_span": [ 18506, 18519 ], "context": { "section": "references" } }, { "id": "eq0030", "inline": true, "tex": "$\\zeta\\in(0,1)$", "tex_normalized": "\\zeta\\in(0,1)", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>&#x003B6;</mi><mo>&#x02208;</mo><mo stretchy=\"false\">&#x00028;</mo><mn>0</mn><mo>&#x0002C;</mo><mn>1</mn><mo stretchy=\"false\">&#x00029;</mo><mi>$</mi></mrow></math>", "char_span": [ 18521, 18534 ], "context": { "section": "references" } }, { "id": "eq0031", "inline": true, "tex": "$U$", "tex_normalized": "U", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>U</mi><mi>$</mi></mrow></math>", "char_span": [ 18536, 18549 ], "context": { "section": "references" } }, { "id": "eq0032", "inline": true, "tex": "$\\nu$", "tex_normalized": "\\nu", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>&#x003BD;</mi><mi>$</mi></mrow></math>", "char_span": [ 18551, 18564 ], "context": { "section": "references" } }, { "id": "eq0033", "inline": true, "tex": "$\\sigma$", "tex_normalized": "\\sigma", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>&#x003C3;</mi><mi>$</mi></mrow></math>", "char_span": [ 18566, 18579 ], "context": { "section": "references" } }, { "id": "eq0034", "inline": true, "tex": "$\\chi^2$", "tex_normalized": "\\chi^2", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msup><mi>&#x003C7;</mi><mn>2</mn></msup><mi>$</mi></mrow></math>", "char_span": [ 18581, 18594 ], "context": { "section": "references" } }, { "id": "eq0035", "inline": true, "tex": "$\\operatorname{lse}_\\tau(a,b)=\\tau\\log(e^{a/\\tau}+e^{b/\\tau})$", "tex_normalized": "\\operatorname{lse}_\\tau(a,b)=\\tau\\log(e^{a/\\tau}+e^{b/\\tau})", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mo>lse</mo><mi>&#x003C4;</mi></msub><mo stretchy=\"false\">&#x00028;</mo><mi>a</mi><mo>&#x0002C;</mo><mi>b</mi><mo stretchy=\"false\">&#x00029;</mo><mo>&#x0003D;</mo><mi>&#x003C4;</mi><mi>log</mi><mo stretchy=\"false\">&#x00028;</mo><msup><mi>e</mi><mrow><mi>a</mi><mo>&#x0002F;</mo><mi>&#x003C4;</mi></mrow></msup><mo>&#x0002B;</mo><msup><mi>e</mi><mrow><mi>b</mi><mo>&#x0002F;</mo><mi>&#x003C4;</mi></mrow></msup><mo stretchy=\"false\">&#x00029;</mo><mi>$</mi></mrow></math>", "char_span": [ 18596, 18609 ], "context": { "section": "references" } }, { "id": "eq0036", "inline": true, "tex": "$\\max\\{a,b\\}$", "tex_normalized": "\\max\\{a,b\\}", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mo>max</mo><mo stretchy=\"false\">&#x0007B;</mo><mi>a</mi><mo>&#x0002C;</mo><mi>b</mi><mo stretchy=\"false\">&#x0007D;</mo><mi>$</mi></mrow></math>", "char_span": [ 18611, 18624 ], "context": { "section": "references" } }, { "id": "eq0037", "inline": true, "tex": "$\\tau\\downarrow0$", "tex_normalized": "\\tau\\downarrow0", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>&#x003C4;</mi><mo>&#x02193;</mo><mn>0</mn><mi>$</mi></mrow></math>", "char_span": [ 18626, 18639 ], "context": { "section": "references" } }, { "id": "eq0038", "inline": true, "tex": "$D_{\\min}>0$", "tex_normalized": "D_{\\min}>0", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mi>D</mi><mrow><mo>min</mo></mrow></msub><mo>&#x0003E;</mo><mn>0</mn><mi>$</mi></mrow></math>", "char_span": [ 18641, 18654 ], "context": { "section": "references" } }, { "id": "eq0039", "inline": true, "tex": "$\\lambda_{\\min}>0$", "tex_normalized": "\\lambda_{\\min}>0", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mi>&#x003BB;</mi><mrow><mo>min</mo></mrow></msub><mo>&#x0003E;</mo><mn>0</mn><mi>$</mi></mrow></math>", "char_span": [ 18656, 18669 ], "context": { "section": "references" } }, { "id": "eq0040", "inline": true, "tex": "$g(\\Theta)=(1-e^{-\\Theta})/\\Theta$", "tex_normalized": "g(\\Theta)=(1-e^{-\\Theta})/\\Theta", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>g</mi><mo stretchy=\"false\">&#x00028;</mo><mi>&#x00398;</mi><mo stretchy=\"false\">&#x00029;</mo><mo>&#x0003D;</mo><mo stretchy=\"false\">&#x00028;</mo><mn>1</mn><mo>&#x02212;</mo><msup><mi>e</mi><mrow><mo>&#x02212;</mo><mi>&#x00398;</mi></mrow></msup><mo stretchy=\"false\">&#x00029;</mo><mo>&#x0002F;</mo><mi>&#x00398;</mi><mi>$</mi></mrow></math>", "char_span": [ 18671, 18684 ], "context": { "section": "references" } }, { "id": "eq0041", "inline": true, "tex": "$\\Lambda^+\\ge0$", "tex_normalized": "\\Lambda^+\\ge0", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msup><mi>&#x0039B;</mi><mo>&#x0002B;</mo></msup><mo>&#x02265;</mo><mn>0</mn><mi>$</mi></mrow></math>", "char_span": [ 18686, 18699 ], "context": { "section": "references" } }, { "id": "eq0042", "inline": true, "tex": "$L=L_{\\text{lab}}\\oplus L_{\\text{world}}+\\varepsilon V$", "tex_normalized": "L=L_{\\text{lab}}\\oplus L_{\\text{world}}+\\varepsilon V", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>L</mi><mo>&#x0003D;</mo><msub><mi>L</mi><mrow><mtext>lab</mtext></mrow></msub><mo>&#x02295;</mo><msub><mi>L</mi><mrow><mtext>world</mtext></mrow></msub><mo>&#x0002B;</mo><mi>&#x003B5;</mi><mi>V</mi><mi>$</mi></mrow></math>", "char_span": [ 18701, 18714 ], "context": { "section": "references" } }, { "id": "eq0043", "inline": true, "tex": "$\\mathbb Z^d$", "tex_normalized": "\\mathbb Z^d", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msup><mi mathvariant=\"double-struck\">Z</mi><mi>d</mi></msup><mi>$</mi></mrow></math>", "char_span": [ 18716, 18729 ], "context": { "section": "references" } }, { "id": "eq0044", "inline": true, "tex": "$H_\\zeta=(1-\\zeta)H+\\zeta U$", "tex_normalized": "H_\\zeta=(1-\\zeta)H+\\zeta U", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mi>H</mi><mi>&#x003B6;</mi></msub><mo>&#x0003D;</mo><mo stretchy=\"false\">&#x00028;</mo><mn>1</mn><mo>&#x02212;</mo><mi>&#x003B6;</mi><mo stretchy=\"false\">&#x00029;</mo><mi>H</mi><mo>&#x0002B;</mo><mi>&#x003B6;</mi><mi>U</mi><mi>$</mi></mrow></math>", "char_span": [ 18731, 18744 ], "context": { "section": "references" } }, { "id": "eq0045", "inline": true, "tex": "$c_{\\mathrm{KL}}>0$", "tex_normalized": "c_{\\mathrm{KL}}>0", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mi>c</mi><mrow><mrow><mi mathvariant=\"normal\">K</mi><mi mathvariant=\"normal\">L</mi></mrow></mrow></msub><mo>&#x0003E;</mo><mn>0</mn><mi>$</mi></mrow></math>", "char_span": [ 18746, 18759 ], "context": { "section": "references" } }, { "id": "eq0046", "inline": true, "tex": "$(G,\\pi)$", "tex_normalized": "(G,\\pi)", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mo stretchy=\"false\">&#x00028;</mo><mi>G</mi><mo>&#x0002C;</mo><mi>&#x003C0;</mi><mo stretchy=\"false\">&#x00029;</mo><mi>$</mi></mrow></math>", "char_span": [ 18761, 18774 ], "context": { "section": "references" } }, { "id": "eq0047", "inline": true, "tex": "$\\zeta<0.01$", "tex_normalized": "\\zeta<0.01", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>&#x003B6;</mi><mo>&#x0003C;</mo><mn>0.01</mn><mi>$</mi></mrow></math>", "char_span": [ 18065, 18078 ], "context": { "section": "references" } }, { "id": "eq0048", "inline": true, "tex": "$\\zeta\\in[0.05,0.2]$", "tex_normalized": "\\zeta\\in[0.05,0.2]", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>&#x003B6;</mi><mo>&#x02208;</mo><mo stretchy=\"false\">[</mo><mn>0.05</mn><mo>&#x0002C;</mo><mn>0.2</mn><mo stretchy=\"false\">]</mo><mi>$</mi></mrow></math>", "char_span": [ 18123, 18136 ], "context": { "section": "references" } }, { "id": "eq0049", "inline": true, "tex": "$\\zeta<0.01$", "tex_normalized": "\\zeta<0.01", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>&#x003B6;</mi><mo>&#x0003C;</mo><mn>0.01</mn><mi>$</mi></mrow></math>", "char_span": [ 18164, 18177 ], "context": { "section": "references" } }, { "id": "eq0050", "inline": true, "tex": "$\\Pi$", "tex_normalized": "\\Pi", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>&#x003A0;</mi><mi>$</mi></mrow></math>", "char_span": [ 18776, 18789 ], "context": { "section": "references" } }, { "id": "eq0051", "inline": true, "tex": "$\\pi\\mapsto N_{H,G}(\\pi)$", "tex_normalized": "\\pi\\mapsto N_{H,G}(\\pi)", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>&#x003C0;</mi><mo>&#x021A6;</mo><msub><mi>N</mi><mrow><mi>H</mi><mo>&#x0002C;</mo><mi>G</mi></mrow></msub><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003C0;</mi><mo stretchy=\"false\">&#x00029;</mo><mi>$</mi></mrow></math>", "char_span": [ 18791, 18804 ], "context": { "section": "references" } }, { "id": "eq0052", "inline": true, "tex": "$\\pi\\mapsto D_{H,\\tau}(\\pi)$", "tex_normalized": "\\pi\\mapsto D_{H,\\tau}(\\pi)", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>&#x003C0;</mi><mo>&#x021A6;</mo><msub><mi>D</mi><mrow><mi>H</mi><mo>&#x0002C;</mo><mi>&#x003C4;</mi></mrow></msub><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003C0;</mi><mo stretchy=\"false\">&#x00029;</mo><mi>$</mi></mrow></math>", "char_span": [ 18806, 18819 ], "context": { "section": "references" } }, { "id": "eq0053", "inline": true, "tex": "$\\inf_{\\pi} D_{H,\\tau}(\\pi)>0$", "tex_normalized": "\\inf_{\\pi} D_{H,\\tau}(\\pi)>0", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mo>inf</mo><mrow><mi>&#x003C0;</mi></mrow></msub><msub><mi>D</mi><mrow><mi>H</mi><mo>&#x0002C;</mo><mi>&#x003C4;</mi></mrow></msub><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003C0;</mi><mo stretchy=\"false\">&#x00029;</mo><mo>&#x0003E;</mo><mn>0</mn><mi>$</mi></mrow></math>", "char_span": [ 18821, 18834 ], "context": { "section": "references" } }, { "id": "eq0054", "inline": true, "tex": "$\\operatorname{lse}_\\tau$", "tex_normalized": "\\operatorname{lse}_\\tau", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mo>lse</mo><mi>&#x003C4;</mi></msub><mi>$</mi></mrow></math>", "char_span": [ 18836, 18849 ], "context": { "section": "references" } }, { "id": "eq0055", "inline": true, "tex": "$(W_t,A_t,O_{t+1})$", "tex_normalized": "(W_t,A_t,O_{t+1})", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mo stretchy=\"false\">&#x00028;</mo><msub><mi>W</mi><mi>t</mi></msub><mo>&#x0002C;</mo><msub><mi>A</mi><mi>t</mi></msub><mo>&#x0002C;</mo><msub><mi>O</mi><mrow><mi>t</mi><mo>&#x0002B;</mo><mn>1</mn></mrow></msub><mo stretchy=\"false\">&#x00029;</mo><mi>$</mi></mrow></math>", "char_span": [ 18851, 18864 ], "context": { "section": "references" } }, { "id": "eq0056", "inline": true, "tex": "$\\mathbb P^{\\pi,G}$", "tex_normalized": "\\mathbb P^{\\pi,G}", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msup><mi mathvariant=\"double-struck\">P</mi><mrow><mi>&#x003C0;</mi><mo>&#x0002C;</mo><mi>G</mi></mrow></msup><mi>$</mi></mrow></math>", "char_span": [ 18866, 18879 ], "context": { "section": "references" } }, { "id": "eq0057", "inline": true, "tex": "$(\\pi,G)$", "tex_normalized": "(\\pi,G)", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003C0;</mi><mo>&#x0002C;</mo><mi>G</mi><mo stretchy=\"false\">&#x00029;</mo><mi>$</mi></mrow></math>", "char_span": [ 18881, 18894 ], "context": { "section": "references" } }, { "id": "eq0058", "inline": true, "tex": "$H_\\zeta$", "tex_normalized": "H_\\zeta", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mi>H</mi><mi>&#x003B6;</mi></msub><mi>$</mi></mrow></math>", "char_span": [ 18896, 18909 ], "context": { "section": "references" } }, { "id": "eq0059", "inline": true, "tex": "$\\sigma$", "tex_normalized": "\\sigma", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>&#x003C3;</mi><mi>$</mi></mrow></math>", "char_span": [ 18911, 18924 ], "context": { "section": "references" } }, { "id": "eq0060", "inline": true, "tex": "$\\mathbb P^{\\pi,G}$", "tex_normalized": "\\mathbb P^{\\pi,G}", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msup><mi mathvariant=\"double-struck\">P</mi><mrow><mi>&#x003C0;</mi><mo>&#x0002C;</mo><mi>G</mi></mrow></msup><mi>$</mi></mrow></math>", "char_span": [ 18926, 18939 ], "context": { "section": "references" } }, { "id": "eq0061", "inline": true, "tex": "$C_{\\mathrm{info}}\\ge0$", "tex_normalized": "C_{\\mathrm{info}}\\ge0", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mi>C</mi><mrow><mrow><mi mathvariant=\"normal\">i</mi><mi mathvariant=\"normal\">n</mi><mi mathvariant=\"normal\">f</mi><mi mathvariant=\"normal\">o</mi></mrow></mrow></msub><mo>&#x02265;</mo><mn>0</mn><mi>$</mi></mrow></math>", "char_span": [ 18941, 18954 ], "context": { "section": "references" } }, { "id": "eq0062", "inline": true, "tex": "$\\mathbb E_\\pi[\\mathrm{KL}(\\pi(\\cdot\\mid W)\\,\\|\\,\\pi_0(\\cdot\\mid W))]$", "tex_normalized": "\\mathbb E_\\pi[\\mathrm{KL}(\\pi(\\cdot\\mid W) \\| \\pi_0(\\cdot\\mid W))]", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mi mathvariant=\"double-struck\">E</mi><mi>&#x003C0;</mi></msub><mo stretchy=\"false\">[</mo><mrow><mi mathvariant=\"normal\">K</mi><mi mathvariant=\"normal\">L</mi></mrow><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003C0;</mi><mo stretchy=\"false\">&#x00028;</mo><mi>&#x000B7;</mi><mo>&#x02223;</mo><mi>W</mi><mo stretchy=\"false\">&#x00029;</mo><mspace width=\"0.167em\" /><mo fence=\"false\" stretchy=\"false\">&#x02016;</mo><mspace width=\"0.167em\" /><msub><mi>&#x003C0;</mi><mn>0</mn></msub><mo stretchy=\"false\">&#x00028;</mo><mi>&#x000B7;</mi><mo>&#x02223;</mo><mi>W</mi><mo stretchy=\"false\">&#x00029;</mo><mo stretchy=\"false\">&#x00029;</mo><mo stretchy=\"false\">]</mo><mi>$</mi></mrow></math>", "char_span": [ 18956, 18969 ], "context": { "section": "references" } }, { "id": "eq0063", "inline": true, "tex": "$K$", "tex_normalized": "K", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>K</mi><mi>$</mi></mrow></math>", "char_span": [ 18971, 18984 ], "context": { "section": "references" } }, { "id": "eq0064", "inline": true, "tex": "$\\phi(\\eta):=\\sup_{\\pi}(N-\\eta D)$", "tex_normalized": "\\phi(\\eta):=\\sup_{\\pi}(N-\\eta D)", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>&#x003D5;</mi><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003B7;</mi><mo stretchy=\"false\">&#x00029;</mo><mi>:</mi><mo>&#x0003D;</mo><msub><mo>sup</mo><mrow><mi>&#x003C0;</mi></mrow></msub><mo stretchy=\"false\">&#x00028;</mo><mi>N</mi><mo>&#x02212;</mo><mi>&#x003B7;</mi><mi>D</mi><mo stretchy=\"false\">&#x00029;</mo><mi>$</mi></mrow></math>", "char_span": [ 18986, 18999 ], "context": { "section": "references" } }, { "id": "eq0065", "inline": true, "tex": "$N-\\eta D$", "tex_normalized": "N-\\eta D", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>N</mi><mo>&#x02212;</mo><mi>&#x003B7;</mi><mi>D</mi><mi>$</mi></mrow></math>", "char_span": [ 19001, 19014 ], "context": { "section": "references" } }, { "id": "eq0066", "inline": true, "tex": "$\\eta$", "tex_normalized": "\\eta", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>&#x003B7;</mi><mi>$</mi></mrow></math>", "char_span": [ 19016, 19029 ], "context": { "section": "references" } }, { "id": "eq0067", "inline": true, "tex": "$\\eta^\\star$", "tex_normalized": "\\eta^\\star", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msup><mi>&#x003B7;</mi><mo>&#x022C6;</mo></msup><mi>$</mi></mrow></math>", "char_span": [ 19031, 19044 ], "context": { "section": "references" } }, { "id": "eq0068", "inline": true, "tex": "$\\phi(\\eta)=0$", "tex_normalized": "\\phi(\\eta)=0", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>&#x003D5;</mi><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003B7;</mi><mo stretchy=\"false\">&#x00029;</mo><mo>&#x0003D;</mo><mn>0</mn><mi>$</mi></mrow></math>", "char_span": [ 19046, 19059 ], "context": { "section": "references" } }, { "id": "eq0069", "inline": true, "tex": "$\\sup_{\\pi}J_{H_\\zeta}(\\pi;G)$", "tex_normalized": "\\sup_{\\pi}J_{H_\\zeta}(\\pi;G)", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mo>sup</mo><mrow><mi>&#x003C0;</mi></mrow></msub><msub><mi>J</mi><mrow><msub><mi>H</mi><mi>&#x003B6;</mi></msub></mrow></msub><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003C0;</mi><mi>;</mi><mi>G</mi><mo stretchy=\"false\">&#x00029;</mo><mi>$</mi></mrow></math>", "char_span": [ 19061, 19074 ], "context": { "section": "references" } }, { "id": "eq0070", "inline": true, "tex": "$\\operatorname{lse}_\\tau$", "tex_normalized": "\\operatorname{lse}_\\tau", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mo>lse</mo><mi>&#x003C4;</mi></msub><mi>$</mi></mrow></math>", "char_span": [ 19076, 19089 ], "context": { "section": "references" } }, { "id": "eq0071", "inline": true, "tex": "$k$", "tex_normalized": "k", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>k</mi><mi>$</mi></mrow></math>", "char_span": [ 19091, 19104 ], "context": { "section": "references" } }, { "id": "eq0072", "inline": true, "tex": "$k=\\lceil T^{1/4}\\rceil$", "tex_normalized": "k=\\lceil T^{1/4}\\rceil", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>k</mi><mo>&#x0003D;</mo><mi>&#x02308;</mi><msup><mi>T</mi><mrow><mn>1</mn><mo>&#x0002F;</mo><mn>4</mn></mrow></msup><mi>&#x02309;</mi><mi>$</mi></mrow></math>", "char_span": [ 19106, 19119 ], "context": { "section": "references" } }, { "id": "eq0073", "inline": true, "tex": "$K$", "tex_normalized": "K", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>K</mi><mi>$</mi></mrow></math>", "char_span": [ 19121, 19134 ], "context": { "section": "references" } }, { "id": "eq0074", "inline": true, "tex": "$G$", "tex_normalized": "G", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>G</mi><mi>$</mi></mrow></math>", "char_span": [ 19136, 19149 ], "context": { "section": "references" } }, { "id": "eq0075", "inline": true, "tex": "$W_t$", "tex_normalized": "W_t", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mi>W</mi><mi>t</mi></msub><mi>$</mi></mrow></math>", "char_span": [ 19151, 19164 ], "context": { "section": "references" } }, { "id": "eq0076", "inline": true, "tex": "$\\sigma$", "tex_normalized": "\\sigma", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>&#x003C3;</mi><mi>$</mi></mrow></math>", "char_span": [ 19166, 19179 ], "context": { "section": "references" } }, { "id": "eq0077", "inline": true, "tex": "$C_{\\mathrm{info}}$", "tex_normalized": "C_{\\mathrm{info}}", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mi>C</mi><mrow><mrow><mi mathvariant=\"normal\">i</mi><mi mathvariant=\"normal\">n</mi><mi mathvariant=\"normal\">f</mi><mi mathvariant=\"normal\">o</mi></mrow></mrow></msub><mi>$</mi></mrow></math>", "char_span": [ 19181, 19194 ], "context": { "section": "references" } }, { "id": "eq0078", "inline": true, "tex": "$D_{H,\\tau}(\\pi)$", "tex_normalized": "D_{H,\\tau}(\\pi)", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mi>D</mi><mrow><mi>H</mi><mo>&#x0002C;</mo><mi>&#x003C4;</mi></mrow></msub><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003C0;</mi><mo stretchy=\"false\">&#x00029;</mo><mi>$</mi></mrow></math>", "char_span": [ 19196, 19209 ], "context": { "section": "references" } }, { "id": "eq0079", "inline": true, "tex": "$K$", "tex_normalized": "K", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>K</mi><mi>$</mi></mrow></math>", "char_span": [ 19211, 19224 ], "context": { "section": "references" } }, { "id": "eq0080", "inline": true, "tex": "$G_0=\\mathrm{id},G_1,\\ldots,G_m$", "tex_normalized": "G_0=\\mathrm{id},G_1,\\ldots,G_m", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mi>G</mi><mn>0</mn></msub><mo>&#x0003D;</mo><mrow><mi mathvariant=\"normal\">i</mi><mi mathvariant=\"normal\">d</mi></mrow><mo>&#x0002C;</mo><msub><mi>G</mi><mn>1</mn></msub><mo>&#x0002C;</mo><mi>&#x02026;</mi><mo>&#x0002C;</mo><msub><mi>G</mi><mi>m</mi></msub><mi>$</mi></mrow></math>", "char_span": [ 19226, 19239 ], "context": { "section": "references" } }, { "id": "eq0081", "inline": true, "tex": "$m$", "tex_normalized": "m", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>m</mi><mi>$</mi></mrow></math>", "char_span": [ 19241, 19254 ], "context": { "section": "references" } }, { "id": "eq0082", "inline": true, "tex": "$Y:=O_{t+1}$", "tex_normalized": "Y:=O_{t+1}", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>Y</mi><mi>:</mi><mo>&#x0003D;</mo><msub><mi>O</mi><mrow><mi>t</mi><mo>&#x0002B;</mo><mn>1</mn></mrow></msub><mi>$</mi></mrow></math>", "char_span": [ 19256, 19269 ], "context": { "section": "references" } }, { "id": "eq0083", "inline": true, "tex": "$K(Y)$", "tex_normalized": "K(Y)", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>K</mi><mo stretchy=\"false\">&#x00028;</mo><mi>Y</mi><mo stretchy=\"false\">&#x00029;</mo><mi>$</mi></mrow></math>", "char_span": [ 19271, 19284 ], "context": { "section": "references" } }, { "id": "eq0084", "inline": true, "tex": "$Y$", "tex_normalized": "Y", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>Y</mi><mi>$</mi></mrow></math>", "char_span": [ 19286, 19299 ], "context": { "section": "references" } }, { "id": "eq0085", "inline": true, "tex": "$K(Y)$", "tex_normalized": "K(Y)", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>K</mi><mo stretchy=\"false\">&#x00028;</mo><mi>Y</mi><mo stretchy=\"false\">&#x00029;</mo><mi>$</mi></mrow></math>", "char_span": [ 19301, 19314 ], "context": { "section": "references" } }, { "id": "eq0086", "inline": true, "tex": "$K(Y)$", "tex_normalized": "K(Y)", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>K</mi><mo stretchy=\"false\">&#x00028;</mo><mi>Y</mi><mo stretchy=\"false\">&#x00029;</mo><mi>$</mi></mrow></math>", "char_span": [ 19316, 19329 ], "context": { "section": "references" } }, { "id": "eq0087", "inline": true, "tex": "$Y$", "tex_normalized": "Y", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>Y</mi><mi>$</mi></mrow></math>", "char_span": [ 19331, 19344 ], "context": { "section": "references" } }, { "id": "eq0088", "inline": true, "tex": "$\\ge 0.01$", "tex_normalized": "\\ge 0.01", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mo>&#x02265;</mo><mn>0.01</mn><mi>$</mi></mrow></math>", "char_span": [ 19346, 19359 ], "context": { "section": "references" } }, { "id": "eq0089", "inline": true, "tex": "$\\ge 0.01$", "tex_normalized": "\\ge 0.01", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mo>&#x02265;</mo><mn>0.01</mn><mi>$</mi></mrow></math>", "char_span": [ 19361, 19374 ], "context": { "section": "references" } }, { "id": "eq0090", "inline": true, "tex": "$Y\\to K(Y)$", "tex_normalized": "Y\\to K(Y)", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>Y</mi><mo>&#x02192;</mo><mi>K</mi><mo stretchy=\"false\">&#x00028;</mo><mi>Y</mi><mo stretchy=\"false\">&#x00029;</mo><mi>$</mi></mrow></math>", "char_span": [ 19376, 19389 ], "context": { "section": "references" } }, { "id": "eq0091", "inline": true, "tex": "$R^2\\approx1$", "tex_normalized": "R^2\\approx1", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msup><mi>R</mi><mn>2</mn></msup><mo>&#x02248;</mo><mn>1</mn><mi>$</mi></mrow></math>", "char_span": [ 19391, 19404 ], "context": { "section": "references" } }, { "id": "eq0092", "inline": true, "tex": "$W$", "tex_normalized": "W", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>W</mi><mi>$</mi></mrow></math>", "char_span": [ 19406, 19419 ], "context": { "section": "references" } }, { "id": "eq0093", "inline": true, "tex": "$K$", "tex_normalized": "K", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>K</mi><mi>$</mi></mrow></math>", "char_span": [ 19421, 19434 ], "context": { "section": "references" } }, { "id": "eq0094", "inline": true, "tex": "$Y$", "tex_normalized": "Y", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>Y</mi><mi>$</mi></mrow></math>", "char_span": [ 19436, 19449 ], "context": { "section": "references" } }, { "id": "eq0095", "inline": true, "tex": "$F$", "tex_normalized": "F", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>F</mi><mi>$</mi></mrow></math>", "char_span": [ 19451, 19464 ], "context": { "section": "references" } }, { "id": "eq0096", "inline": true, "tex": "$F$", "tex_normalized": "F", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>F</mi><mi>$</mi></mrow></math>", "char_span": [ 19466, 19479 ], "context": { "section": "references" } }, { "id": "eq0097", "inline": true, "tex": "$\\pi$", "tex_normalized": "\\pi", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>&#x003C0;</mi><mi>$</mi></mrow></math>", "char_span": [ 19481, 19494 ], "context": { "section": "references" } }, { "id": "eq0098", "inline": true, "tex": "$(G,H)$", "tex_normalized": "(G,H)", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mo stretchy=\"false\">&#x00028;</mo><mi>G</mi><mo>&#x0002C;</mo><mi>H</mi><mo stretchy=\"false\">&#x00029;</mo><mi>$</mi></mrow></math>", "char_span": [ 19496, 19509 ], "context": { "section": "references" } }, { "id": "eq0099", "inline": true, "tex": "$(\\Phi,\\Psi)$", "tex_normalized": "(\\Phi,\\Psi)", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003A6;</mi><mo>&#x0002C;</mo><mi>&#x003A8;</mi><mo stretchy=\"false\">&#x00029;</mo><mi>$</mi></mrow></math>", "char_span": [ 19511, 19524 ], "context": { "section": "references" } }, { "id": "eq0100", "inline": true, "tex": "$(\\Phi,\\Psi)$", "tex_normalized": "(\\Phi,\\Psi)", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003A6;</mi><mo>&#x0002C;</mo><mi>&#x003A8;</mi><mo stretchy=\"false\">&#x00029;</mo><mi>$</mi></mrow></math>", "char_span": [ 19526, 19539 ], "context": { "section": "references" } }, { "id": "eq0101", "inline": true, "tex": "$\\kappa\\in(0,1]$", "tex_normalized": "\\kappa\\in(0,1]", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>&#x003BA;</mi><mo>&#x02208;</mo><mo stretchy=\"false\">&#x00028;</mo><mn>0</mn><mo>&#x0002C;</mo><mn>1</mn><mo stretchy=\"false\">]</mo><mi>$</mi></mrow></math>", "char_span": [ 19541, 19554 ], "context": { "section": "references" } }, { "id": "eq0102", "inline": true, "tex": "$(\\Phi,\\Psi)$", "tex_normalized": "(\\Phi,\\Psi)", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003A6;</mi><mo>&#x0002C;</mo><mi>&#x003A8;</mi><mo stretchy=\"false\">&#x00029;</mo><mi>$</mi></mrow></math>", "char_span": [ 19556, 19569 ], "context": { "section": "references" } }, { "id": "eq0103", "inline": true, "tex": "$C_{\\mathrm{info}}$", "tex_normalized": "C_{\\mathrm{info}}", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mi>C</mi><mrow><mrow><mi mathvariant=\"normal\">i</mi><mi mathvariant=\"normal\">n</mi><mi mathvariant=\"normal\">f</mi><mi mathvariant=\"normal\">o</mi></mrow></mrow></msub><mi>$</mi></mrow></math>", "char_span": [ 19571, 19584 ], "context": { "section": "references" } }, { "id": "eq0104", "inline": true, "tex": "$\\Delta_{\\mathrm{floor}}:=L(\\Psi\\circ H_\\zeta\\circ\\Phi)-L(H_\\zeta)\\ge 0$", "tex_normalized": "\\Delta_{\\mathrm{floor}}:=L(\\Psi\\circ H_\\zeta\\circ\\Phi)-L(H_\\zeta)\\ge 0", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mi>&#x00394;</mi><mrow><mrow><mi mathvariant=\"normal\">f</mi><mi mathvariant=\"normal\">l</mi><mi mathvariant=\"normal\">o</mi><mi mathvariant=\"normal\">o</mi><mi mathvariant=\"normal\">r</mi></mrow></mrow></msub><mi>:</mi><mo>&#x0003D;</mo><mi>L</mi><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003A8;</mi><mo>&#x02218;</mo><msub><mi>H</mi><mi>&#x003B6;</mi></msub><mo>&#x02218;</mo><mi>&#x003A6;</mi><mo stretchy=\"false\">&#x00029;</mo><mo>&#x02212;</mo><mi>L</mi><mo stretchy=\"false\">&#x00028;</mo><msub><mi>H</mi><mi>&#x003B6;</mi></msub><mo stretchy=\"false\">&#x00029;</mo><mo>&#x02265;</mo><mn>0</mn><mi>$</mi></mrow></math>", "char_span": [ 19586, 19599 ], "context": { "section": "references" } }, { "id": "eq0105", "inline": true, "tex": "$D_{\\min}\\ge \\ell_0(\\zeta)$", "tex_normalized": "D_{\\min}\\ge \\ell_0(\\zeta)", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mi>D</mi><mrow><mo>min</mo></mrow></msub><mo>&#x02265;</mo><msub><mi>&#x02113;</mi><mn>0</mn></msub><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003B6;</mi><mo stretchy=\"false\">&#x00029;</mo><mi>$</mi></mrow></math>", "char_span": [ 19601, 19614 ], "context": { "section": "references" } }, { "id": "eq0106", "inline": true, "tex": "$D(F\\pi)\\le (1/c_D)\\,D(\\pi)$", "tex_normalized": "D(F\\pi)\\le (1/c_D) D(\\pi)", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>D</mi><mo stretchy=\"false\">&#x00028;</mo><mi>F</mi><mi>&#x003C0;</mi><mo stretchy=\"false\">&#x00029;</mo><mo>&#x02264;</mo><mo stretchy=\"false\">&#x00028;</mo><mn>1</mn><mo>&#x0002F;</mo><msub><mi>c</mi><mi>D</mi></msub><mo stretchy=\"false\">&#x00029;</mo><mspace width=\"0.167em\" /><mi>D</mi><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003C0;</mi><mo stretchy=\"false\">&#x00029;</mo><mi>$</mi></mrow></math>", "char_span": [ 19616, 19629 ], "context": { "section": "references" } }, { "id": "eq0107", "inline": true, "tex": "$(\\hat c_N,\\hat c_D)$", "tex_normalized": "(\\hat c_N,\\hat c_D)", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mo stretchy=\"false\">&#x00028;</mo><msub><mover><mi>c</mi><mo stretchy=\"false\">&#x0005E;</mo></mover><mi>N</mi></msub><mo>&#x0002C;</mo><msub><mover><mi>c</mi><mo stretchy=\"false\">&#x0005E;</mo></mover><mi>D</mi></msub><mo stretchy=\"false\">&#x00029;</mo><mi>$</mi></mrow></math>", "char_span": [ 19631, 19644 ], "context": { "section": "references" } }, { "id": "eq0108", "inline": true, "tex": "$J$", "tex_normalized": "J", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>J</mi><mi>$</mi></mrow></math>", "char_span": [ 19646, 19659 ], "context": { "section": "references" } }, { "id": "eq0109", "inline": true, "tex": "$N(F\\pi)\\ge c_N N(\\pi)$", "tex_normalized": "N(F\\pi)\\ge c_N N(\\pi)", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>N</mi><mo stretchy=\"false\">&#x00028;</mo><mi>F</mi><mi>&#x003C0;</mi><mo stretchy=\"false\">&#x00029;</mo><mo>&#x02265;</mo><msub><mi>c</mi><mi>N</mi></msub><mi>N</mi><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003C0;</mi><mo stretchy=\"false\">&#x00029;</mo><mi>$</mi></mrow></math>", "char_span": [ 19661, 19674 ], "context": { "section": "references" } }, { "id": "eq0110", "inline": true, "tex": "$D(F\\pi)\\le (1/c_D)\\,D(\\pi)$", "tex_normalized": "D(F\\pi)\\le (1/c_D) D(\\pi)", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>D</mi><mo stretchy=\"false\">&#x00028;</mo><mi>F</mi><mi>&#x003C0;</mi><mo stretchy=\"false\">&#x00029;</mo><mo>&#x02264;</mo><mo stretchy=\"false\">&#x00028;</mo><mn>1</mn><mo>&#x0002F;</mo><msub><mi>c</mi><mi>D</mi></msub><mo stretchy=\"false\">&#x00029;</mo><mspace width=\"0.167em\" /><mi>D</mi><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003C0;</mi><mo stretchy=\"false\">&#x00029;</mo><mi>$</mi></mrow></math>", "char_span": [ 19676, 19689 ], "context": { "section": "references" } }, { "id": "eq0111", "inline": true, "tex": "$\\mathcal{B}_\\epsilon$", "tex_normalized": "\\mathcal{B}_\\epsilon", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mi>&#x0212C;</mi><mi>&#x003F5;</mi></msub><mi>$</mi></mrow></math>", "char_span": [ 19691, 19704 ], "context": { "section": "references" } }, { "id": "eq0112", "inline": true, "tex": "$\\le d(\\epsilon)$", "tex_normalized": "\\le d(\\epsilon)", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mo>&#x02264;</mo><mi>d</mi><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003F5;</mi><mo stretchy=\"false\">&#x00029;</mo><mi>$</mi></mrow></math>", "char_span": [ 19706, 19719 ], "context": { "section": "references" } }, { "id": "eq0113", "inline": true, "tex": "$D_L(\\Pi)$", "tex_normalized": "D_L(\\Pi)", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mi>D</mi><mi>L</mi></msub><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003A0;</mi><mo stretchy=\"false\">&#x00029;</mo><mi>$</mi></mrow></math>", "char_span": [ 19721, 19734 ], "context": { "section": "references" } }, { "id": "eq0114", "inline": true, "tex": "$\\Rightarrow$", "tex_normalized": "\\Rightarrow", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mo>&#x021D2;</mo><mi>$</mi></mrow></math>", "char_span": [ 19736, 19749 ], "context": { "section": "references" } }, { "id": "eq0115", "inline": true, "tex": "$\\pi^\\star$", "tex_normalized": "\\pi^\\star", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msup><mi>&#x003C0;</mi><mo>&#x022C6;</mo></msup><mi>$</mi></mrow></math>", "char_span": [ 19751, 19764 ], "context": { "section": "references" } }, { "id": "eq0116", "inline": true, "tex": "$\\mu_{\\mathrm{viable}}-\\beta U^\\gamma_\\epsilon$", "tex_normalized": "\\mu_{\\mathrm{viable}}-\\beta U^\\gamma_\\epsilon", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mi>&#x003BC;</mi><mrow><mrow><mi mathvariant=\"normal\">v</mi><mi mathvariant=\"normal\">i</mi><mi mathvariant=\"normal\">a</mi><mi mathvariant=\"normal\">b</mi><mi mathvariant=\"normal\">l</mi><mi mathvariant=\"normal\">e</mi></mrow></mrow></msub><mo>&#x02212;</mo><mi>&#x003B2;</mi><msubsup><mi>U</mi><mi>&#x003F5;</mi><mi>&#x003B3;</mi></msubsup><mi>$</mi></mrow></math>", "char_span": [ 19766, 19779 ], "context": { "section": "references" } }, { "id": "eq0117", "inline": true, "tex": "$\\beta\\downarrow0$", "tex_normalized": "\\beta\\downarrow0", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>&#x003B2;</mi><mo>&#x02193;</mo><mn>0</mn><mi>$</mi></mrow></math>", "char_span": [ 19781, 19794 ], "context": { "section": "references" } }, { "id": "eq0118", "inline": true, "tex": "$U^\\gamma_\\epsilon(\\pi^\\star)=0$", "tex_normalized": "U^\\gamma_\\epsilon(\\pi^\\star)=0", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msubsup><mi>U</mi><mi>&#x003F5;</mi><mi>&#x003B3;</mi></msubsup><mo stretchy=\"false\">&#x00028;</mo><msup><mi>&#x003C0;</mi><mo>&#x022C6;</mo></msup><mo stretchy=\"false\">&#x00029;</mo><mo>&#x0003D;</mo><mn>0</mn><mi>$</mi></mrow></math>", "char_span": [ 19796, 19809 ], "context": { "section": "references" } }, { "id": "eq0119", "inline": true, "tex": "$L=L_{\\text{lab}}\\oplus L_{\\text{world}}+\\varepsilon V$", "tex_normalized": "L=L_{\\text{lab}}\\oplus L_{\\text{world}}+\\varepsilon V", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>L</mi><mo>&#x0003D;</mo><msub><mi>L</mi><mrow><mtext>lab</mtext></mrow></msub><mo>&#x02295;</mo><msub><mi>L</mi><mrow><mtext>world</mtext></mrow></msub><mo>&#x0002B;</mo><mi>&#x003B5;</mi><mi>V</mi><mi>$</mi></mrow></math>", "char_span": [ 19811, 19824 ], "context": { "section": "references" } }, { "id": "eq0120", "inline": true, "tex": "$\\varepsilon$", "tex_normalized": "\\varepsilon", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>&#x003B5;</mi><mi>$</mi></mrow></math>", "char_span": [ 19826, 19839 ], "context": { "section": "references" } }, { "id": "eq0121", "inline": true, "tex": "$\\|V\\|_{\\mathrm{cb}}\\le 1$", "tex_normalized": "\\|V\\|_{\\mathrm{cb}}\\le 1", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mo fence=\"false\" stretchy=\"false\">&#x02016;</mo><mi>V</mi><msub><mo fence=\"false\" stretchy=\"false\">&#x02016;</mo><mrow><mrow><mi mathvariant=\"normal\">c</mi><mi mathvariant=\"normal\">b</mi></mrow></mrow></msub><mo>&#x02264;</mo><mn>1</mn><mi>$</mi></mrow></math>", "char_span": [ 19841, 19854 ], "context": { "section": "references" } }, { "id": "eq0122", "inline": true, "tex": "$C$", "tex_normalized": "C", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>C</mi><mi>$</mi></mrow></math>", "char_span": [ 19856, 19869 ], "context": { "section": "references" } }, { "id": "eq0123", "inline": true, "tex": "$\\theta>\\theta_{\\min}(C,\\varepsilon)$", "tex_normalized": "\\theta>\\theta_{\\min}(C,\\varepsilon)", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>&#x003B8;</mi><mo>&#x0003E;</mo><msub><mi>&#x003B8;</mi><mrow><mo>min</mo></mrow></msub><mo stretchy=\"false\">&#x00028;</mo><mi>C</mi><mo>&#x0002C;</mo><mi>&#x003B5;</mi><mo stretchy=\"false\">&#x00029;</mo><mi>$</mi></mrow></math>", "char_span": [ 19871, 19884 ], "context": { "section": "references" } }, { "id": "eq0124", "inline": true, "tex": "$\\alpha_{\\mathrm{MLSI}}(L)>0$", "tex_normalized": "\\alpha_{\\mathrm{MLSI}}(L)>0", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mi>&#x003B1;</mi><mrow><mrow><mi mathvariant=\"normal\">M</mi><mi mathvariant=\"normal\">L</mi><mi mathvariant=\"normal\">S</mi><mi mathvariant=\"normal\">I</mi></mrow></mrow></msub><mo stretchy=\"false\">&#x00028;</mo><mi>L</mi><mo stretchy=\"false\">&#x00029;</mo><mo>&#x0003E;</mo><mn>0</mn><mi>$</mi></mrow></math>", "char_span": [ 19886, 19899 ], "context": { "section": "references" } }, { "id": "eq0125", "inline": true, "tex": "$\\varepsilon$", "tex_normalized": "\\varepsilon", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>&#x003B5;</mi><mi>$</mi></mrow></math>", "char_span": [ 18393, 18406 ], "context": { "section": "references" } }, { "id": "eq0126", "inline": true, "tex": "$\\|V\\|_{\\mathrm{cb}}\\le1$", "tex_normalized": "\\|V\\|_{\\mathrm{cb}}\\le1", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mo fence=\"false\" stretchy=\"false\">&#x02016;</mo><mi>V</mi><msub><mo fence=\"false\" stretchy=\"false\">&#x02016;</mo><mrow><mrow><mi mathvariant=\"normal\">c</mi><mi mathvariant=\"normal\">b</mi></mrow></mrow></msub><mo>&#x02264;</mo><mn>1</mn><mi>$</mi></mrow></math>", "char_span": [ 18422, 18435 ], "context": { "section": "references" } }, { "id": "eq0127", "inline": true, "tex": "$\\tau_{\\text{true}}>0$", "tex_normalized": "\\tau_{\\text{true}}>0", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mi>&#x003C4;</mi><mrow><mtext>true</mtext></mrow></msub><mo>&#x0003E;</mo><mn>0</mn><mi>$</mi></mrow></math>", "char_span": [ 19901, 19914 ], "context": { "section": "references" } }, { "id": "eq0128", "inline": true, "tex": "$\\Rightarrow$", "tex_normalized": "\\Rightarrow", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mo>&#x021D2;</mo><mi>$</mi></mrow></math>", "char_span": [ 19916, 19929 ], "context": { "section": "references" } }, { "id": "eq0129", "inline": true, "tex": "$\\Rightarrow$", "tex_normalized": "\\Rightarrow", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mo>&#x021D2;</mo><mi>$</mi></mrow></math>", "char_span": [ 19931, 19944 ], "context": { "section": "references" } }, { "id": "eq0130", "inline": true, "tex": "$\\Rightarrow$", "tex_normalized": "\\Rightarrow", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mo>&#x021D2;</mo><mi>$</mi></mrow></math>", "char_span": [ 19946, 19959 ], "context": { "section": "references" } }, { "id": "eq0131", "inline": true, "tex": "$\\Rightarrow$", "tex_normalized": "\\Rightarrow", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mo>&#x021D2;</mo><mi>$</mi></mrow></math>", "char_span": [ 19961, 19974 ], "context": { "section": "references" } }, { "id": "eq0132", "inline": true, "tex": "$\\Rightarrow$", "tex_normalized": "\\Rightarrow", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mo>&#x021D2;</mo><mi>$</mi></mrow></math>", "char_span": [ 19976, 19989 ], "context": { "section": "references" } }, { "id": "eq0133", "inline": true, "tex": "$F_T^\\epsilon(\\pi)$", "tex_normalized": "F_T^\\epsilon(\\pi)", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msubsup><mi>F</mi><mi>T</mi><mi>&#x003F5;</mi></msubsup><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003C0;</mi><mo stretchy=\"false\">&#x00029;</mo><mi>$</mi></mrow></math>", "char_span": [ 19991, 20004 ], "context": { "section": "references" } }, { "id": "eq0134", "inline": true, "tex": "$T$", "tex_normalized": "T", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>T</mi><mi>$</mi></mrow></math>", "char_span": [ 20006, 20019 ], "context": { "section": "references" } }, { "id": "eq0135", "inline": true, "tex": "$b_0$", "tex_normalized": "b_0", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mi>b</mi><mn>0</mn></msub><mi>$</mi></mrow></math>", "char_span": [ 20021, 20034 ], "context": { "section": "references" } }, { "id": "eq0136", "inline": true, "tex": "$A$", "tex_normalized": "A", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>A</mi><mi>$</mi></mrow></math>", "char_span": [ 20036, 20049 ], "context": { "section": "references" } }, { "id": "eq0137", "inline": true, "tex": "$V(A):=\\inf_{x\\in A}V(x)$", "tex_normalized": "V(A):=\\inf_{x\\in A}V(x)", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>V</mi><mo stretchy=\"false\">&#x00028;</mo><mi>A</mi><mo stretchy=\"false\">&#x00029;</mo><mi>:</mi><mo>&#x0003D;</mo><msub><mo>inf</mo><mrow><mi>x</mi><mo>&#x02208;</mo><mi>A</mi></mrow></msub><mi>V</mi><mo stretchy=\"false\">&#x00028;</mo><mi>x</mi><mo stretchy=\"false\">&#x00029;</mo><mi>$</mi></mrow></math>", "char_span": [ 20051, 20064 ], "context": { "section": "references" } }, { "id": "eq0138", "inline": true, "tex": "$V$", "tex_normalized": "V", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>V</mi><mi>$</mi></mrow></math>", "char_span": [ 20066, 20079 ], "context": { "section": "references" } }, { "id": "eq0139", "inline": true, "tex": "$\\dot V\\le -\\lambda_{\\mathrm{CLF}}V$", "tex_normalized": "\\dot V\\le -\\lambda_{\\mathrm{CLF}}V", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mover><mi>V</mi><mo>&#x002D9;</mo></mover><mo>&#x02264;</mo><mo>&#x02212;</mo><msub><mi>&#x003BB;</mi><mrow><mrow><mi mathvariant=\"normal\">C</mi><mi mathvariant=\"normal\">L</mi><mi mathvariant=\"normal\">F</mi></mrow></mrow></msub><mi>V</mi><mi>$</mi></mrow></math>", "char_span": [ 20081, 20094 ], "context": { "section": "references" } }, { "id": "eq0140", "inline": true, "tex": "$\\nu_{\\max}$", "tex_normalized": "\\nu_{\\max}", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mi>&#x003BD;</mi><mrow><mo>max</mo></mrow></msub><mi>$</mi></mrow></math>", "char_span": [ 20096, 20109 ], "context": { "section": "references" } }, { "id": "eq0141", "inline": true, "tex": "$\\nu_{\\max}$", "tex_normalized": "\\nu_{\\max}", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mi>&#x003BD;</mi><mrow><mo>max</mo></mrow></msub><mi>$</mi></mrow></math>", "char_span": [ 20111, 20124 ], "context": { "section": "references" } }, { "id": "eq0142", "inline": true, "tex": "$\\lambda_{\\mathrm{CLF}}$", "tex_normalized": "\\lambda_{\\mathrm{CLF}}", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mi>&#x003BB;</mi><mrow><mrow><mi mathvariant=\"normal\">C</mi><mi mathvariant=\"normal\">L</mi><mi mathvariant=\"normal\">F</mi></mrow></mrow></msub><mi>$</mi></mrow></math>", "char_span": [ 20126, 20139 ], "context": { "section": "references" } }, { "id": "eq0143", "inline": true, "tex": "$\\mathrm{SWEI}_{\\delta,\\lambda}$", "tex_normalized": "\\mathrm{SWEI}_{\\delta,\\lambda}", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mrow><mi mathvariant=\"normal\">S</mi><mi mathvariant=\"normal\">W</mi><mi mathvariant=\"normal\">E</mi><mi mathvariant=\"normal\">I</mi></mrow><mrow><mi>&#x003B4;</mi><mo>&#x0002C;</mo><mi>&#x003BB;</mi></mrow></msub><mi>$</mi></mrow></math>", "char_span": [ 20141, 20154 ], "context": { "section": "references" } }, { "id": "eq0144", "inline": true, "tex": "$Z$", "tex_normalized": "Z", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>Z</mi><mi>$</mi></mrow></math>", "char_span": [ 20156, 20169 ], "context": { "section": "references" } }, { "id": "eq0145", "inline": true, "tex": "$\\lambda$", "tex_normalized": "\\lambda", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>&#x003BB;</mi><mi>$</mi></mrow></math>", "char_span": [ 20171, 20184 ], "context": { "section": "references" } }, { "id": "eq0146", "inline": true, "tex": "$\\delta$", "tex_normalized": "\\delta", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>&#x003B4;</mi><mi>$</mi></mrow></math>", "char_span": [ 20186, 20199 ], "context": { "section": "references" } }, { "id": "eq0147", "inline": true, "tex": "$B$", "tex_normalized": "B", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>B</mi><mi>$</mi></mrow></math>", "char_span": [ 20201, 20214 ], "context": { "section": "references" } }, { "id": "eq0148", "inline": true, "tex": "$\\pi^\\star$", "tex_normalized": "\\pi^\\star", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msup><mi>&#x003C0;</mi><mo>&#x022C6;</mo></msup><mi>$</mi></mrow></math>", "char_span": [ 20216, 20229 ], "context": { "section": "references" } }, { "id": "eq0149", "inline": true, "tex": "$J(H_\\zeta,\\pi^\\star;K\\circ G)$", "tex_normalized": "J(H_\\zeta,\\pi^\\star;K\\circ G)", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>J</mi><mo stretchy=\"false\">&#x00028;</mo><msub><mi>H</mi><mi>&#x003B6;</mi></msub><mo>&#x0002C;</mo><msup><mi>&#x003C0;</mi><mo>&#x022C6;</mo></msup><mi>;</mi><mi>K</mi><mo>&#x02218;</mo><mi>G</mi><mo stretchy=\"false\">&#x00029;</mo><mi>$</mi></mrow></math>", "char_span": [ 20231, 20244 ], "context": { "section": "references" } }, { "id": "eq0150", "inline": true, "tex": "$Y:=O_{t+1}$", "tex_normalized": "Y:=O_{t+1}", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>Y</mi><mi>:</mi><mo>&#x0003D;</mo><msub><mi>O</mi><mrow><mi>t</mi><mo>&#x0002B;</mo><mn>1</mn></mrow></msub><mi>$</mi></mrow></math>", "char_span": [ 20246, 20259 ], "context": { "section": "references" } }, { "id": "eq0151", "inline": true, "tex": "$W:=W_t$", "tex_normalized": "W:=W_t", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>W</mi><mi>:</mi><mo>&#x0003D;</mo><msub><mi>W</mi><mi>t</mi></msub><mi>$</mi></mrow></math>", "char_span": [ 20261, 20274 ], "context": { "section": "references" } }, { "id": "eq0152", "inline": true, "tex": "$W_t\\in\\{0,1\\}$", "tex_normalized": "W_t\\in\\{0,1\\}", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mi>W</mi><mi>t</mi></msub><mo>&#x02208;</mo><mo stretchy=\"false\">&#x0007B;</mo><mn>0</mn><mo>&#x0002C;</mo><mn>1</mn><mo stretchy=\"false\">&#x0007D;</mo><mi>$</mi></mrow></math>", "char_span": [ 20276, 20289 ], "context": { "section": "references" } }, { "id": "eq0153", "inline": true, "tex": "$A_t\\in\\{0,1\\}$", "tex_normalized": "A_t\\in\\{0,1\\}", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mi>A</mi><mi>t</mi></msub><mo>&#x02208;</mo><mo stretchy=\"false\">&#x0007B;</mo><mn>0</mn><mo>&#x0002C;</mo><mn>1</mn><mo stretchy=\"false\">&#x0007D;</mo><mi>$</mi></mrow></math>", "char_span": [ 20291, 20304 ], "context": { "section": "references" } }, { "id": "eq0154", "inline": true, "tex": "$O_{t+1}\\in\\{0,1\\}$", "tex_normalized": "O_{t+1}\\in\\{0,1\\}", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mi>O</mi><mrow><mi>t</mi><mo>&#x0002B;</mo><mn>1</mn></mrow></msub><mo>&#x02208;</mo><mo stretchy=\"false\">&#x0007B;</mo><mn>0</mn><mo>&#x0002C;</mo><mn>1</mn><mo stretchy=\"false\">&#x0007D;</mo><mi>$</mi></mrow></math>", "char_span": [ 20306, 20319 ], "context": { "section": "references" } }, { "id": "eq0155", "inline": true, "tex": "$P(O_{t+1}=1\\mid W_t=w,A_t=a)=p_{wa}$", "tex_normalized": "P(O_{t+1}=1\\mid W_t=w,A_t=a)=p_{wa}", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>P</mi><mo stretchy=\"false\">&#x00028;</mo><msub><mi>O</mi><mrow><mi>t</mi><mo>&#x0002B;</mo><mn>1</mn></mrow></msub><mo>&#x0003D;</mo><mn>1</mn><mo>&#x02223;</mo><msub><mi>W</mi><mi>t</mi></msub><mo>&#x0003D;</mo><mi>w</mi><mo>&#x0002C;</mo><msub><mi>A</mi><mi>t</mi></msub><mo>&#x0003D;</mo><mi>a</mi><mo stretchy=\"false\">&#x00029;</mo><mo>&#x0003D;</mo><msub><mi>p</mi><mrow><mi>w</mi><mi>a</mi></mrow></msub><mi>$</mi></mrow></math>", "char_span": [ 20321, 20334 ], "context": { "section": "references" } }, { "id": "eq0156", "inline": true, "tex": "$W_t$", "tex_normalized": "W_t", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mi>W</mi><mi>t</mi></msub><mi>$</mi></mrow></math>", "char_span": [ 20336, 20349 ], "context": { "section": "references" } }, { "id": "eq0157", "inline": true, "tex": "$\\Pr(W_t=1)=\\rho\\in(0,1)$", "tex_normalized": "\\Pr(W_t=1)=\\rho\\in(0,1)", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mo movablelimits=\"true\">Pr</mo><mo stretchy=\"false\">&#x00028;</mo><msub><mi>W</mi><mi>t</mi></msub><mo>&#x0003D;</mo><mn>1</mn><mo stretchy=\"false\">&#x00029;</mo><mo>&#x0003D;</mo><mi>&#x003C1;</mi><mo>&#x02208;</mo><mo stretchy=\"false\">&#x00028;</mo><mn>0</mn><mo>&#x0002C;</mo><mn>1</mn><mo stretchy=\"false\">&#x00029;</mo><mi>$</mi></mrow></math>", "char_span": [ 20351, 20364 ], "context": { "section": "references" } }, { "id": "eq0158", "inline": true, "tex": "$Q(w'|w,a)$", "tex_normalized": "Q(w'|w,a)", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>Q</mi><mo stretchy=\"false\">&#x00028;</mo><msup><mi>w</mi><mi>&#x02032;</mi></msup><mo stretchy=\"false\">&#x0007C;</mo><mi>w</mi><mo>&#x0002C;</mo><mi>a</mi><mo stretchy=\"false\">&#x00029;</mo><mi>$</mi></mrow></math>", "char_span": [ 20366, 20379 ], "context": { "section": "references" } }, { "id": "eq0159", "inline": true, "tex": "$\\pi_\\theta(a\\mid w)=\\sigma(\\theta_w)$", "tex_normalized": "\\pi_\\theta(a\\mid w)=\\sigma(\\theta_w)", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mi>&#x003C0;</mi><mi>&#x003B8;</mi></msub><mo stretchy=\"false\">&#x00028;</mo><mi>a</mi><mo>&#x02223;</mo><mi>w</mi><mo stretchy=\"false\">&#x00029;</mo><mo>&#x0003D;</mo><mi>&#x003C3;</mi><mo stretchy=\"false\">&#x00028;</mo><msub><mi>&#x003B8;</mi><mi>w</mi></msub><mo stretchy=\"false\">&#x00029;</mo><mi>$</mi></mrow></math>", "char_span": [ 20381, 20394 ], "context": { "section": "references" } }, { "id": "eq0160", "inline": true, "tex": "$\\theta\\in\\mathbb R^2$", "tex_normalized": "\\theta\\in\\mathbb R^2", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>&#x003B8;</mi><mo>&#x02208;</mo><msup><mi mathvariant=\"double-struck\">R</mi><mn>2</mn></msup><mi>$</mi></mrow></math>", "char_span": [ 20396, 20409 ], "context": { "section": "references" } }, { "id": "eq0161", "inline": true, "tex": "$H_\\zeta=(1-\\zeta)H+\\zeta U$", "tex_normalized": "H_\\zeta=(1-\\zeta)H+\\zeta U", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mi>H</mi><mi>&#x003B6;</mi></msub><mo>&#x0003D;</mo><mo stretchy=\"false\">&#x00028;</mo><mn>1</mn><mo>&#x02212;</mo><mi>&#x003B6;</mi><mo stretchy=\"false\">&#x00029;</mo><mi>H</mi><mo>&#x0002B;</mo><mi>&#x003B6;</mi><mi>U</mi><mi>$</mi></mrow></math>", "char_span": [ 20411, 20424 ], "context": { "section": "references" } }, { "id": "eq0162", "inline": true, "tex": "$U$", "tex_normalized": "U", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>U</mi><mi>$</mi></mrow></math>", "char_span": [ 20426, 20439 ], "context": { "section": "references" } }, { "id": "eq0163", "inline": true, "tex": "$\\{0,1\\}$", "tex_normalized": "\\{0,1\\}", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mo stretchy=\"false\">&#x0007B;</mo><mn>0</mn><mo>&#x0002C;</mo><mn>1</mn><mo stretchy=\"false\">&#x0007D;</mo><mi>$</mi></mrow></math>", "char_span": [ 20441, 20454 ], "context": { "section": "references" } }, { "id": "eq0164", "inline": true, "tex": "$\\zeta$", "tex_normalized": "\\zeta", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>&#x003B6;</mi><mi>$</mi></mrow></math>", "char_span": [ 20456, 20469 ], "context": { "section": "references" } }, { "id": "eq0165", "inline": true, "tex": "$C_{\\mathrm{info}}=\\mathrm{KL}(\\pi_\\theta(\\cdot\\mid w)\\,\\|\\,\\pi_0(\\cdot\\mid w))$", "tex_normalized": "C_{\\mathrm{info}}=\\mathrm{KL}(\\pi_\\theta(\\cdot\\mid w) \\| \\pi_0(\\cdot\\mid w))", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mi>C</mi><mrow><mrow><mi mathvariant=\"normal\">i</mi><mi mathvariant=\"normal\">n</mi><mi mathvariant=\"normal\">f</mi><mi mathvariant=\"normal\">o</mi></mrow></mrow></msub><mo>&#x0003D;</mo><mrow><mi mathvariant=\"normal\">K</mi><mi mathvariant=\"normal\">L</mi></mrow><mo stretchy=\"false\">&#x00028;</mo><msub><mi>&#x003C0;</mi><mi>&#x003B8;</mi></msub><mo stretchy=\"false\">&#x00028;</mo><mi>&#x000B7;</mi><mo>&#x02223;</mo><mi>w</mi><mo stretchy=\"false\">&#x00029;</mo><mspace width=\"0.167em\" /><mo fence=\"false\" stretchy=\"false\">&#x02016;</mo><mspace width=\"0.167em\" /><msub><mi>&#x003C0;</mi><mn>0</mn></msub><mo stretchy=\"false\">&#x00028;</mo><mi>&#x000B7;</mi><mo>&#x02223;</mo><mi>w</mi><mo stretchy=\"false\">&#x00029;</mo><mo stretchy=\"false\">&#x00029;</mo><mi>$</mi></mrow></math>", "char_span": [ 20471, 20484 ], "context": { "section": "references" } }, { "id": "eq0166", "inline": true, "tex": "$\\tau=0.1$", "tex_normalized": "\\tau=0.1", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>&#x003C4;</mi><mo>&#x0003D;</mo><mn>0.1</mn><mi>$</mi></mrow></math>", "char_span": [ 20486, 20499 ], "context": { "section": "references" } }, { "id": "eq0167", "inline": true, "tex": "$\\zeta\\in[0.05,0.2]$", "tex_normalized": "\\zeta\\in[0.05,0.2]", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>&#x003B6;</mi><mo>&#x02208;</mo><mo stretchy=\"false\">[</mo><mn>0.05</mn><mo>&#x0002C;</mo><mn>0.2</mn><mo stretchy=\"false\">]</mo><mi>$</mi></mrow></math>", "char_span": [ 20501, 20514 ], "context": { "section": "references" } }, { "id": "eq0168", "inline": true, "tex": "$T\\ge 10^5$", "tex_normalized": "T\\ge 10^5", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>T</mi><mo>&#x02265;</mo><msup><mn>10</mn><mn>5</mn></msup><mi>$</mi></mrow></math>", "char_span": [ 20516, 20529 ], "context": { "section": "references" } }, { "id": "eq0169", "inline": true, "tex": "$\\texttt{tol}=10^{-4}$", "tex_normalized": "\\texttt{tol}=10^{-4}", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mtext mathvariant=\"monospace\">tol</mtext><mo>&#x0003D;</mo><msup><mn>10</mn><mrow><mo>&#x02212;</mo><mn>4</mn></mrow></msup><mi>$</mi></mrow></math>", "char_span": [ 20531, 20544 ], "context": { "section": "references" } }, { "id": "eq0170", "inline": true, "tex": "$\\texttt{tol}_\\phi=10^{-6}$", "tex_normalized": "\\texttt{tol}_\\phi=10^{-6}", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mtext mathvariant=\"monospace\">tol</mtext><mi>&#x003D5;</mi></msub><mo>&#x0003D;</mo><msup><mn>10</mn><mrow><mo>&#x02212;</mo><mn>6</mn></mrow></msup><mi>$</mi></mrow></math>", "char_span": [ 20546, 20559 ], "context": { "section": "references" } }, { "id": "eq0171", "inline": true, "tex": "$k$", "tex_normalized": "k", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>k</mi><mi>$</mi></mrow></math>", "char_span": [ 20561, 20574 ], "context": { "section": "references" } }, { "id": "eq0172", "inline": true, "tex": "$k=\\lceil T^{1/4}\\rceil$", "tex_normalized": "k=\\lceil T^{1/4}\\rceil", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>k</mi><mo>&#x0003D;</mo><mi>&#x02308;</mi><msup><mi>T</mi><mrow><mn>1</mn><mo>&#x0002F;</mo><mn>4</mn></mrow></msup><mi>&#x02309;</mi><mi>$</mi></mrow></math>", "char_span": [ 20576, 20589 ], "context": { "section": "references" } }, { "id": "eq0173", "inline": true, "tex": "$I(A_t;O_{t+1}\\mid W_t=w)$", "tex_normalized": "I(A_t;O_{t+1}\\mid W_t=w)", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>I</mi><mo stretchy=\"false\">&#x00028;</mo><msub><mi>A</mi><mi>t</mi></msub><mi>;</mi><msub><mi>O</mi><mrow><mi>t</mi><mo>&#x0002B;</mo><mn>1</mn></mrow></msub><mo>&#x02223;</mo><msub><mi>W</mi><mi>t</mi></msub><mo>&#x0003D;</mo><mi>w</mi><mo stretchy=\"false\">&#x00029;</mo><mi>$</mi></mrow></math>", "char_span": [ 20591, 20604 ], "context": { "section": "references" } }, { "id": "eq0174", "inline": true, "tex": "$2\\times2$", "tex_normalized": "2\\times2", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mn>2</mn><mi>&#x000D7;</mi><mn>2</mn><mi>$</mi></mrow></math>", "char_span": [ 20606, 20619 ], "context": { "section": "references" } }, { "id": "eq0175", "inline": true, "tex": "$w$", "tex_normalized": "w", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>w</mi><mi>$</mi></mrow></math>", "char_span": [ 20621, 20634 ], "context": { "section": "references" } }, { "id": "eq0176", "inline": true, "tex": "$W$", "tex_normalized": "W", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>W</mi><mi>$</mi></mrow></math>", "char_span": [ 20636, 20649 ], "context": { "section": "references" } }, { "id": "eq0177", "inline": true, "tex": "$K_\\alpha$", "tex_normalized": "K_\\alpha", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mi>K</mi><mi>&#x003B1;</mi></msub><mi>$</mi></mrow></math>", "char_span": [ 20651, 20664 ], "context": { "section": "references" } }, { "id": "eq0178", "inline": true, "tex": "$O$", "tex_normalized": "O", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>O</mi><mi>$</mi></mrow></math>", "char_span": [ 20666, 20679 ], "context": { "section": "references" } }, { "id": "eq0179", "inline": true, "tex": "$\\alpha$", "tex_normalized": "\\alpha", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>&#x003B1;</mi><mi>$</mi></mrow></math>", "char_span": [ 20681, 20694 ], "context": { "section": "references" } }, { "id": "eq0180", "inline": true, "tex": "$J_{H_\\zeta}$", "tex_normalized": "J_{H_\\zeta}", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mi>J</mi><mrow><msub><mi>H</mi><mi>&#x003B6;</mi></msub></mrow></msub><mi>$</mi></mrow></math>", "char_span": [ 20696, 20709 ], "context": { "section": "references" } }, { "id": "eq0181", "inline": true, "tex": "$K_0=\\mathrm{id},K_{\\alpha_1},K_{\\alpha_2}$", "tex_normalized": "K_0=\\mathrm{id},K_{\\alpha_1},K_{\\alpha_2}", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mi>K</mi><mn>0</mn></msub><mo>&#x0003D;</mo><mrow><mi mathvariant=\"normal\">i</mi><mi mathvariant=\"normal\">d</mi></mrow><mo>&#x0002C;</mo><msub><mi>K</mi><mrow><msub><mi>&#x003B1;</mi><mn>1</mn></msub></mrow></msub><mo>&#x0002C;</mo><msub><mi>K</mi><mrow><msub><mi>&#x003B1;</mi><mn>2</mn></msub></mrow></msub><mi>$</mi></mrow></math>", "char_span": [ 20711, 20724 ], "context": { "section": "references" } }, { "id": "eq0182", "inline": true, "tex": "$\\varepsilon_{\\text{num}}$", "tex_normalized": "\\varepsilon_{\\text{num}}", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mi>&#x003B5;</mi><mrow><mtext>num</mtext></mrow></msub><mi>$</mi></mrow></math>", "char_span": [ 20726, 20739 ], "context": { "section": "references" } }, { "id": "eq0183", "inline": true, "tex": "$m$", "tex_normalized": "m", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>m</mi><mi>$</mi></mrow></math>", "char_span": [ 20741, 20754 ], "context": { "section": "references" } }, { "id": "eq0184", "inline": true, "tex": "$\\alpha$", "tex_normalized": "\\alpha", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>&#x003B1;</mi><mi>$</mi></mrow></math>", "char_span": [ 20756, 20769 ], "context": { "section": "references" } }, { "id": "eq0185", "inline": true, "tex": "$|\\eta_{k+1}-\\eta_k|<\\texttt{tol}$", "tex_normalized": "|\\eta_{k+1}-\\eta_k|<\\texttt{tol}", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mo stretchy=\"false\">&#x0007C;</mo><msub><mi>&#x003B7;</mi><mrow><mi>k</mi><mo>&#x0002B;</mo><mn>1</mn></mrow></msub><mo>&#x02212;</mo><msub><mi>&#x003B7;</mi><mi>k</mi></msub><mo stretchy=\"false\">&#x0007C;</mo><mo>&#x0003C;</mo><mtext mathvariant=\"monospace\">tol</mtext><mi>$</mi></mrow></math>", "char_span": [ 20771, 20784 ], "context": { "section": "references" } }, { "id": "eq0186", "inline": true, "tex": "$|\\phi(\\eta_k)|<\\texttt{tol}_\\phi$", "tex_normalized": "|\\phi(\\eta_k)|<\\texttt{tol}_\\phi", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mo stretchy=\"false\">&#x0007C;</mo><mi>&#x003D5;</mi><mo stretchy=\"false\">&#x00028;</mo><msub><mi>&#x003B7;</mi><mi>k</mi></msub><mo stretchy=\"false\">&#x00029;</mo><mo stretchy=\"false\">&#x0007C;</mo><mo>&#x0003C;</mo><msub><mtext mathvariant=\"monospace\">tol</mtext><mi>&#x003D5;</mi></msub><mi>$</mi></mrow></math>", "char_span": [ 20786, 20799 ], "context": { "section": "references" } }, { "id": "eq0187", "inline": true, "tex": "$B(\\mathrm{SWEI}_{\\delta,\\lambda})$", "tex_normalized": "B(\\mathrm{SWEI}_{\\delta,\\lambda})", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>B</mi><mo stretchy=\"false\">&#x00028;</mo><msub><mrow><mi mathvariant=\"normal\">S</mi><mi mathvariant=\"normal\">W</mi><mi mathvariant=\"normal\">E</mi><mi mathvariant=\"normal\">I</mi></mrow><mrow><mi>&#x003B4;</mi><mo>&#x0002C;</mo><mi>&#x003BB;</mi></mrow></msub><mo stretchy=\"false\">&#x00029;</mo><mi>$</mi></mrow></math>", "char_span": [ 20801, 20814 ], "context": { "section": "references" } }, { "id": "eq0188", "inline": true, "tex": "$T$", "tex_normalized": "T", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>T</mi><mi>$</mi></mrow></math>", "char_span": [ 20816, 20829 ], "context": { "section": "references" } }, { "id": "eq0189", "inline": true, "tex": "$c_N\\ll1$", "tex_normalized": "c_N\\ll1", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mi>c</mi><mi>N</mi></msub><mo>&#x0226A;</mo><mn>1</mn><mi>$</mi></mrow></math>", "char_span": [ 20831, 20844 ], "context": { "section": "references" } }, { "id": "eq0190", "inline": true, "tex": "$(\\hat c_N,\\hat c_D)$", "tex_normalized": "(\\hat c_N,\\hat c_D)", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mo stretchy=\"false\">&#x00028;</mo><msub><mover><mi>c</mi><mo stretchy=\"false\">&#x0005E;</mo></mover><mi>N</mi></msub><mo>&#x0002C;</mo><msub><mover><mi>c</mi><mo stretchy=\"false\">&#x0005E;</mo></mover><mi>D</mi></msub><mo stretchy=\"false\">&#x00029;</mo><mi>$</mi></mrow></math>", "char_span": [ 20846, 20859 ], "context": { "section": "references" } }, { "id": "eq0191", "inline": true, "tex": "$\\lambda_{\\mathrm{CLF}}$", "tex_normalized": "\\lambda_{\\mathrm{CLF}}", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mi>&#x003BB;</mi><mrow><mrow><mi mathvariant=\"normal\">C</mi><mi mathvariant=\"normal\">L</mi><mi mathvariant=\"normal\">F</mi></mrow></mrow></msub><mi>$</mi></mrow></math>", "char_span": [ 20861, 20874 ], "context": { "section": "references" } }, { "id": "eq0192", "inline": true, "tex": "$(\\tau,\\zeta,T,\\texttt{tol},\\texttt{tol}_\\phi,k)$", "tex_normalized": "(\\tau,\\zeta,T,\\texttt{tol},\\texttt{tol}_\\phi,k)", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003C4;</mi><mo>&#x0002C;</mo><mi>&#x003B6;</mi><mo>&#x0002C;</mo><mi>T</mi><mo>&#x0002C;</mo><mtext mathvariant=\"monospace\">tol</mtext><mo>&#x0002C;</mo><msub><mtext mathvariant=\"monospace\">tol</mtext><mi>&#x003D5;</mi></msub><mo>&#x0002C;</mo><mi>k</mi><mo stretchy=\"false\">&#x00029;</mo><mi>$</mi></mrow></math>", "char_span": [ 20876, 20889 ], "context": { "section": "references" } }, { "id": "eq0193", "inline": true, "tex": "$\\ell_0(\\zeta)\\ge c_{\\mathrm{KL}}\\zeta$", "tex_normalized": "\\ell_0(\\zeta)\\ge c_{\\mathrm{KL}}\\zeta", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mi>&#x02113;</mi><mn>0</mn></msub><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003B6;</mi><mo stretchy=\"false\">&#x00029;</mo><mo>&#x02265;</mo><msub><mi>c</mi><mrow><mrow><mi mathvariant=\"normal\">K</mi><mi mathvariant=\"normal\">L</mi></mrow></mrow></msub><mi>&#x003B6;</mi><mi>$</mi></mrow></math>", "char_span": [ 20891, 20904 ], "context": { "section": "references" } }, { "id": "eq0194", "inline": true, "tex": "$\\mathbb P^{\\pi,G}$", "tex_normalized": "\\mathbb P^{\\pi,G}", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msup><mi mathvariant=\"double-struck\">P</mi><mrow><mi>&#x003C0;</mi><mo>&#x0002C;</mo><mi>G</mi></mrow></msup><mi>$</mi></mrow></math>", "char_span": [ 20906, 20919 ], "context": { "section": "references" } }, { "id": "eq0195", "inline": true, "tex": "$\\mathcal I\\le\\delta$", "tex_normalized": "\\mathcal I\\le\\delta", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi mathvariant=\"script\">I</mi><mo>&#x02264;</mo><mi>&#x003B4;</mi><mi>$</mi></mrow></math>", "char_span": [ 20921, 20934 ], "context": { "section": "references" } }, { "id": "eq0196", "inline": true, "tex": "$(\\rho)$", "tex_normalized": "(\\rho)", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003C1;</mi><mo stretchy=\"false\">&#x00029;</mo><mi>$</mi></mrow></math>", "char_span": [ 20936, 20949 ], "context": { "section": "references" } }, { "id": "eq0197", "inline": true, "tex": "$(Q)$", "tex_normalized": "(Q)", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mo stretchy=\"false\">&#x00028;</mo><mi>Q</mi><mo stretchy=\"false\">&#x00029;</mo><mi>$</mi></mrow></math>", "char_span": [ 20951, 20964 ], "context": { "section": "references" } }, { "id": "eq0198", "inline": true, "tex": "$K$", "tex_normalized": "K", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>K</mi><mi>$</mi></mrow></math>", "char_span": [ 20966, 20979 ], "context": { "section": "references" } }, { "id": "eq0199", "inline": true, "tex": "$|\\eta_{k+1}-\\eta_k|$", "tex_normalized": "|\\eta_{k+1}-\\eta_k|", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mo stretchy=\"false\">&#x0007C;</mo><msub><mi>&#x003B7;</mi><mrow><mi>k</mi><mo>&#x0002B;</mo><mn>1</mn></mrow></msub><mo>&#x02212;</mo><msub><mi>&#x003B7;</mi><mi>k</mi></msub><mo stretchy=\"false\">&#x0007C;</mo><mi>$</mi></mrow></math>", "char_span": [ 20981, 20994 ], "context": { "section": "references" } }, { "id": "eq0200", "inline": true, "tex": "$|\\phi(\\eta_k)|$", "tex_normalized": "|\\phi(\\eta_k)|", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mo stretchy=\"false\">&#x0007C;</mo><mi>&#x003D5;</mi><mo stretchy=\"false\">&#x00028;</mo><msub><mi>&#x003B7;</mi><mi>k</mi></msub><mo stretchy=\"false\">&#x00029;</mo><mo stretchy=\"false\">&#x0007C;</mo><mi>$</mi></mrow></math>", "char_span": [ 20996, 21009 ], "context": { "section": "references" } }, { "id": "eq0201", "inline": true, "tex": "$m$", "tex_normalized": "m", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>m</mi><mi>$</mi></mrow></math>", "char_span": [ 21011, 21024 ], "context": { "section": "references" } }, { "id": "eq0202", "inline": true, "tex": "$(\\hat c_N,\\hat c_D)$", "tex_normalized": "(\\hat c_N,\\hat c_D)", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mo stretchy=\"false\">&#x00028;</mo><msub><mover><mi>c</mi><mo stretchy=\"false\">&#x0005E;</mo></mover><mi>N</mi></msub><mo>&#x0002C;</mo><msub><mover><mi>c</mi><mo stretchy=\"false\">&#x0005E;</mo></mover><mi>D</mi></msub><mo stretchy=\"false\">&#x00029;</mo><mi>$</mi></mrow></math>", "char_span": [ 21026, 21039 ], "context": { "section": "references" } }, { "id": "eq0203", "inline": true, "tex": "$Y:=O_{t+1}$", "tex_normalized": "Y:=O_{t+1}", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>Y</mi><mi>:</mi><mo>&#x0003D;</mo><msub><mi>O</mi><mrow><mi>t</mi><mo>&#x0002B;</mo><mn>1</mn></mrow></msub><mi>$</mi></mrow></math>", "char_span": [ 21041, 21054 ], "context": { "section": "references" } }, { "id": "eq0204", "inline": true, "tex": "$W:=W_t$", "tex_normalized": "W:=W_t", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>W</mi><mi>:</mi><mo>&#x0003D;</mo><msub><mi>W</mi><mi>t</mi></msub><mi>$</mi></mrow></math>", "char_span": [ 21056, 21069 ], "context": { "section": "references" } }, { "id": "eq0205", "inline": true, "tex": "$\\kappa$", "tex_normalized": "\\kappa", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>&#x003BA;</mi><mi>$</mi></mrow></math>", "char_span": [ 21071, 21084 ], "context": { "section": "references" } }, { "id": "eq0206", "inline": true, "tex": "$L(\\Psi\\circ H_\\zeta\\circ\\Phi)\\ge \\kappa L(H_\\zeta)-\\varepsilon$", "tex_normalized": "L(\\Psi\\circ H_\\zeta\\circ\\Phi)\\ge \\kappa L(H_\\zeta)-\\varepsilon", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>L</mi><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003A8;</mi><mo>&#x02218;</mo><msub><mi>H</mi><mi>&#x003B6;</mi></msub><mo>&#x02218;</mo><mi>&#x003A6;</mi><mo stretchy=\"false\">&#x00029;</mo><mo>&#x02265;</mo><mi>&#x003BA;</mi><mi>L</mi><mo stretchy=\"false\">&#x00028;</mo><msub><mi>H</mi><mi>&#x003B6;</mi></msub><mo stretchy=\"false\">&#x00029;</mo><mo>&#x02212;</mo><mi>&#x003B5;</mi><mi>$</mi></mrow></math>", "char_span": [ 21086, 21099 ], "context": { "section": "references" } }, { "id": "eq0207", "inline": true, "tex": "$U^\\gamma_\\epsilon\\to0$", "tex_normalized": "U^\\gamma_\\epsilon\\to0", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msubsup><mi>U</mi><mi>&#x003F5;</mi><mi>&#x003B3;</mi></msubsup><mo>&#x02192;</mo><mn>0</mn><mi>$</mi></mrow></math>", "char_span": [ 21101, 21114 ], "context": { "section": "references" } }, { "id": "eq0208", "inline": true, "tex": "$\\lambda_{\\mathrm{CLF}}$", "tex_normalized": "\\lambda_{\\mathrm{CLF}}", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mi>&#x003BB;</mi><mrow><mrow><mi mathvariant=\"normal\">C</mi><mi mathvariant=\"normal\">L</mi><mi mathvariant=\"normal\">F</mi></mrow></mrow></msub><mi>$</mi></mrow></math>", "char_span": [ 21116, 21129 ], "context": { "section": "references" } }, { "id": "eq0209", "inline": true, "tex": "$B(\\cdot)$", "tex_normalized": "B(\\cdot)", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>B</mi><mo stretchy=\"false\">&#x00028;</mo><mi>&#x000B7;</mi><mo stretchy=\"false\">&#x00029;</mo><mi>$</mi></mrow></math>", "char_span": [ 21131, 21144 ], "context": { "section": "references" } }, { "id": "eq0210", "inline": true, "tex": "$V$", "tex_normalized": "V", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>V</mi><mi>$</mi></mrow></math>", "char_span": [ 21146, 21159 ], "context": { "section": "references" } }, { "id": "eq0211", "inline": true, "tex": "$\\|V\\|_{\\mathrm{cb}}\\le1$", "tex_normalized": "\\|V\\|_{\\mathrm{cb}}\\le1", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mo fence=\"false\" stretchy=\"false\">&#x02016;</mo><mi>V</mi><msub><mo fence=\"false\" stretchy=\"false\">&#x02016;</mo><mrow><mrow><mi mathvariant=\"normal\">c</mi><mi mathvariant=\"normal\">b</mi></mrow></mrow></msub><mo>&#x02264;</mo><mn>1</mn><mi>$</mi></mrow></math>", "char_span": [ 21161, 21174 ], "context": { "section": "references" } }, { "id": "eq0212", "inline": true, "tex": "$p$", "tex_normalized": "p", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>p</mi><mi>$</mi></mrow></math>", "char_span": [ 21176, 21189 ], "context": { "section": "references" } }, { "id": "eq0213", "inline": true, "tex": "$\\Delta$", "tex_normalized": "\\Delta", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>&#x00394;</mi><mi>$</mi></mrow></math>", "char_span": [ 21191, 21204 ], "context": { "section": "references" } }, { "id": "eq0214", "inline": true, "tex": "$\\Delta_{\\mathrm{floor}}=L(\\Psi\\circ H_\\zeta\\circ\\Phi)-L(H_\\zeta)$", "tex_normalized": "\\Delta_{\\mathrm{floor}}=L(\\Psi\\circ H_\\zeta\\circ\\Phi)-L(H_\\zeta)", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mi>&#x00394;</mi><mrow><mrow><mi mathvariant=\"normal\">f</mi><mi mathvariant=\"normal\">l</mi><mi mathvariant=\"normal\">o</mi><mi mathvariant=\"normal\">o</mi><mi mathvariant=\"normal\">r</mi></mrow></mrow></msub><mo>&#x0003D;</mo><mi>L</mi><mo stretchy=\"false\">&#x00028;</mo><mi>&#x003A8;</mi><mo>&#x02218;</mo><msub><mi>H</mi><mi>&#x003B6;</mi></msub><mo>&#x02218;</mo><mi>&#x003A6;</mi><mo stretchy=\"false\">&#x00029;</mo><mo>&#x02212;</mo><mi>L</mi><mo stretchy=\"false\">&#x00028;</mo><msub><mi>H</mi><mi>&#x003B6;</mi></msub><mo stretchy=\"false\">&#x00029;</mo><mi>$</mi></mrow></math>", "char_span": [ 21206, 21219 ], "context": { "section": "references" } }, { "id": "eq0215", "inline": true, "tex": "$\\Delta_{\\mathrm{floor}}^{\\max}$", "tex_normalized": "\\Delta_{\\mathrm{floor}}^{\\max}", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msubsup><mi>&#x00394;</mi><mrow><mrow><mi mathvariant=\"normal\">f</mi><mi mathvariant=\"normal\">l</mi><mi mathvariant=\"normal\">o</mi><mi mathvariant=\"normal\">o</mi><mi mathvariant=\"normal\">r</mi></mrow></mrow><mrow><mo>max</mo></mrow></msubsup><mi>$</mi></mrow></math>", "char_span": [ 21221, 21234 ], "context": { "section": "references" } }, { "id": "eq0216", "inline": true, "tex": "$c_D=\\frac{D_{\\min}}{D_{\\min}+\\Delta_{\\mathrm{floor}}^{\\max}}$", "tex_normalized": "c_D=\\frac{D_{\\min}}{D_{\\min}+\\Delta_{\\mathrm{floor}}^{\\max}}", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><msub><mi>c</mi><mi>D</mi></msub><mo>&#x0003D;</mo><mfrac><mrow><msub><mi>D</mi><mrow><mo>min</mo></mrow></msub></mrow><mrow><msub><mi>D</mi><mrow><mo>min</mo></mrow></msub><mo>&#x0002B;</mo><msubsup><mi>&#x00394;</mi><mrow><mrow><mi mathvariant=\"normal\">f</mi><mi mathvariant=\"normal\">l</mi><mi mathvariant=\"normal\">o</mi><mi mathvariant=\"normal\">o</mi><mi mathvariant=\"normal\">r</mi></mrow></mrow><mrow><mo>max</mo></mrow></msubsup></mrow></mfrac><mi>$</mi></mrow></math>", "char_span": [ 21236, 21249 ], "context": { "section": "references" } }, { "id": "eq0217", "inline": true, "tex": "$\\Phi$", "tex_normalized": "\\Phi", "mathml": "<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mrow><mi>$</mi><mi>&#x003A6;</mi><mi>$</mi></mrow></math>", "char_span": [ 21251, 21264 ], "context": { "section": "references" } } ]
[]
[ { "id": "ch0001", "type": "section", "ref": "notation-acronyms-and-symbols", "start": 0, "end": 6000 }, { "id": "ch0002", "type": "continuation", "ref": "representation-lifts-graph-field-quantum", "start": 5400, "end": 11400 }, { "id": "ch0003", "type": "continuation", "ref": "lift-invariance-where-monotonicities-enter", "start": 10800, "end": 16800 }, { "id": "ch0004", "type": "continuation", "ref": "appendix-a-implementation-checklist-for-auditors-and-machines", "start": 16200, "end": 21265 } ]
{ "char_count": 21265, "equation_count": 217 }
[ "missing_placeholder:eq0020", "missing_placeholder:eq0021", "missing_placeholder:eq0022", "missing_placeholder:eq0023", "missing_placeholder:eq0024", "missing_placeholder:eq0025", "missing_placeholder:eq0026", "missing_placeholder:eq0027", "missing_placeholder:eq0028", "missing_placeholder:eq0029", "missing_placeholder:eq0030", "missing_placeholder:eq0031", "missing_placeholder:eq0032", "missing_placeholder:eq0033", "missing_placeholder:eq0034", "missing_placeholder:eq0035", "missing_placeholder:eq0036", "missing_placeholder:eq0037", "missing_placeholder:eq0038", "missing_placeholder:eq0039", "missing_placeholder:eq0040", "missing_placeholder:eq0041", "missing_placeholder:eq0042", "missing_placeholder:eq0043", "missing_placeholder:eq0044", "missing_placeholder:eq0045", "missing_placeholder:eq0046", "missing_placeholder:eq0050", "missing_placeholder:eq0051", "missing_placeholder:eq0052", "missing_placeholder:eq0053", "missing_placeholder:eq0054", "missing_placeholder:eq0055", "missing_placeholder:eq0056", "missing_placeholder:eq0057", "missing_placeholder:eq0058", "missing_placeholder:eq0059", "missing_placeholder:eq0060", "missing_placeholder:eq0061", "missing_placeholder:eq0062", "missing_placeholder:eq0063", "missing_placeholder:eq0064", "missing_placeholder:eq0065", "missing_placeholder:eq0066", "missing_placeholder:eq0067", "missing_placeholder:eq0068", "missing_placeholder:eq0069", "missing_placeholder:eq0070", "missing_placeholder:eq0071", "missing_placeholder:eq0072", "missing_placeholder:eq0073", "missing_placeholder:eq0074", "missing_placeholder:eq0075", "missing_placeholder:eq0076", "missing_placeholder:eq0077", "missing_placeholder:eq0078", "missing_placeholder:eq0079", "missing_placeholder:eq0080", "missing_placeholder:eq0081", "missing_placeholder:eq0082", "missing_placeholder:eq0083", "missing_placeholder:eq0084", "missing_placeholder:eq0085", "missing_placeholder:eq0086", "missing_placeholder:eq0087", "missing_placeholder:eq0088", "missing_placeholder:eq0089", "missing_placeholder:eq0090", "missing_placeholder:eq0091", "missing_placeholder:eq0092", "missing_placeholder:eq0093", "missing_placeholder:eq0094", "missing_placeholder:eq0095", "missing_placeholder:eq0096", "missing_placeholder:eq0097", "missing_placeholder:eq0098", "missing_placeholder:eq0099", "missing_placeholder:eq0100", "missing_placeholder:eq0101", "missing_placeholder:eq0102", "missing_placeholder:eq0103", "missing_placeholder:eq0104", "missing_placeholder:eq0105", "missing_placeholder:eq0106", "missing_placeholder:eq0107", "missing_placeholder:eq0108", "missing_placeholder:eq0109", "missing_placeholder:eq0110", "missing_placeholder:eq0111", "missing_placeholder:eq0112", "missing_placeholder:eq0113", "missing_placeholder:eq0114", "missing_placeholder:eq0115", "missing_placeholder:eq0116", "missing_placeholder:eq0117", "missing_placeholder:eq0118", "missing_placeholder:eq0119", "missing_placeholder:eq0120", "missing_placeholder:eq0121", "missing_placeholder:eq0122", "missing_placeholder:eq0123", "missing_placeholder:eq0124", "missing_placeholder:eq0127", "missing_placeholder:eq0128", "missing_placeholder:eq0129", "missing_placeholder:eq0130", "missing_placeholder:eq0131", "missing_placeholder:eq0132", "missing_placeholder:eq0133", "missing_placeholder:eq0134", "missing_placeholder:eq0135", "missing_placeholder:eq0136", "missing_placeholder:eq0137", "missing_placeholder:eq0138", "missing_placeholder:eq0139", "missing_placeholder:eq0140", "missing_placeholder:eq0141", "missing_placeholder:eq0142", "missing_placeholder:eq0143", "missing_placeholder:eq0144", "missing_placeholder:eq0145", "missing_placeholder:eq0146", "missing_placeholder:eq0147", "missing_placeholder:eq0148", "missing_placeholder:eq0149", "missing_placeholder:eq0150", "missing_placeholder:eq0151", "missing_placeholder:eq0152", "missing_placeholder:eq0153", "missing_placeholder:eq0154", "missing_placeholder:eq0155", "missing_placeholder:eq0156", "missing_placeholder:eq0157", "missing_placeholder:eq0158", "missing_placeholder:eq0159", "missing_placeholder:eq0160", "missing_placeholder:eq0161", "missing_placeholder:eq0162", "missing_placeholder:eq0163", "missing_placeholder:eq0164", "missing_placeholder:eq0165", "missing_placeholder:eq0166", "missing_placeholder:eq0167", "missing_placeholder:eq0168", "missing_placeholder:eq0169", "missing_placeholder:eq0170", "missing_placeholder:eq0171", "missing_placeholder:eq0172", "missing_placeholder:eq0173", "missing_placeholder:eq0174", "missing_placeholder:eq0175", "missing_placeholder:eq0176", "missing_placeholder:eq0177", "missing_placeholder:eq0178", "missing_placeholder:eq0179", "missing_placeholder:eq0180", "missing_placeholder:eq0181", "missing_placeholder:eq0182", "missing_placeholder:eq0183", "missing_placeholder:eq0184", "missing_placeholder:eq0185", "missing_placeholder:eq0186", "missing_placeholder:eq0187", "missing_placeholder:eq0188", "missing_placeholder:eq0189", "missing_placeholder:eq0190", "missing_placeholder:eq0191", "missing_placeholder:eq0192", "missing_placeholder:eq0193", "missing_placeholder:eq0194", "missing_placeholder:eq0195", "missing_placeholder:eq0196", "missing_placeholder:eq0197", "missing_placeholder:eq0198", "missing_placeholder:eq0199", "missing_placeholder:eq0200", "missing_placeholder:eq0201", "missing_placeholder:eq0202", "missing_placeholder:eq0203", "missing_placeholder:eq0204", "missing_placeholder:eq0205", "missing_placeholder:eq0206", "missing_placeholder:eq0207", "missing_placeholder:eq0208", "missing_placeholder:eq0209", "missing_placeholder:eq0210", "missing_placeholder:eq0211", "missing_placeholder:eq0212", "missing_placeholder:eq0213", "missing_placeholder:eq0214", "missing_placeholder:eq0215", "missing_placeholder:eq0216", "missing_placeholder:eq0217", "placeholder_appended:eq0020", "placeholder_appended:eq0021", "placeholder_appended:eq0022", "placeholder_appended:eq0023", "placeholder_appended:eq0024", "placeholder_appended:eq0025", "placeholder_appended:eq0026", "placeholder_appended:eq0027", "placeholder_appended:eq0028", "placeholder_appended:eq0029", "placeholder_appended:eq0030", "placeholder_appended:eq0031", "placeholder_appended:eq0032", "placeholder_appended:eq0033", "placeholder_appended:eq0034", "placeholder_appended:eq0035", "placeholder_appended:eq0036", "placeholder_appended:eq0037", "placeholder_appended:eq0038", "placeholder_appended:eq0039", "placeholder_appended:eq0040", "placeholder_appended:eq0041", "placeholder_appended:eq0042", "placeholder_appended:eq0043", "placeholder_appended:eq0044", "placeholder_appended:eq0045", "placeholder_appended:eq0046", "placeholder_appended:eq0050", "placeholder_appended:eq0051", "placeholder_appended:eq0052", "placeholder_appended:eq0053", "placeholder_appended:eq0054", "placeholder_appended:eq0055", "placeholder_appended:eq0056", "placeholder_appended:eq0057", "placeholder_appended:eq0058", "placeholder_appended:eq0059", "placeholder_appended:eq0060", "placeholder_appended:eq0061", "placeholder_appended:eq0062", "placeholder_appended:eq0063", "placeholder_appended:eq0064", "placeholder_appended:eq0065", "placeholder_appended:eq0066", "placeholder_appended:eq0067", "placeholder_appended:eq0068", "placeholder_appended:eq0069", "placeholder_appended:eq0070", "placeholder_appended:eq0071", "placeholder_appended:eq0072", "placeholder_appended:eq0073", "placeholder_appended:eq0074", "placeholder_appended:eq0075", "placeholder_appended:eq0076", "placeholder_appended:eq0077", "placeholder_appended:eq0078", "placeholder_appended:eq0079", "placeholder_appended:eq0080", "placeholder_appended:eq0081", "placeholder_appended:eq0082", "placeholder_appended:eq0083", "placeholder_appended:eq0084", "placeholder_appended:eq0085", "placeholder_appended:eq0086", "placeholder_appended:eq0087", "placeholder_appended:eq0088", "placeholder_appended:eq0089", "placeholder_appended:eq0090", "placeholder_appended:eq0091", "placeholder_appended:eq0092", "placeholder_appended:eq0093", "placeholder_appended:eq0094", "placeholder_appended:eq0095", "placeholder_appended:eq0096", "placeholder_appended:eq0097", "placeholder_appended:eq0098", "placeholder_appended:eq0099", "placeholder_appended:eq0100", "placeholder_appended:eq0101", "placeholder_appended:eq0102", "placeholder_appended:eq0103", "placeholder_appended:eq0104", "placeholder_appended:eq0105", "placeholder_appended:eq0106", "placeholder_appended:eq0107", "placeholder_appended:eq0108", "placeholder_appended:eq0109", "placeholder_appended:eq0110", "placeholder_appended:eq0111", "placeholder_appended:eq0112", "placeholder_appended:eq0113", "placeholder_appended:eq0114", "placeholder_appended:eq0115", "placeholder_appended:eq0116", "placeholder_appended:eq0117", "placeholder_appended:eq0118", "placeholder_appended:eq0119", "placeholder_appended:eq0120", "placeholder_appended:eq0121", "placeholder_appended:eq0122", "placeholder_appended:eq0123", "placeholder_appended:eq0124", "placeholder_appended:eq0127", "placeholder_appended:eq0128", "placeholder_appended:eq0129", "placeholder_appended:eq0130", "placeholder_appended:eq0131", "placeholder_appended:eq0132", "placeholder_appended:eq0133", "placeholder_appended:eq0134", "placeholder_appended:eq0135", "placeholder_appended:eq0136", "placeholder_appended:eq0137", "placeholder_appended:eq0138", "placeholder_appended:eq0139", "placeholder_appended:eq0140", "placeholder_appended:eq0141", "placeholder_appended:eq0142", "placeholder_appended:eq0143", "placeholder_appended:eq0144", "placeholder_appended:eq0145", "placeholder_appended:eq0146", "placeholder_appended:eq0147", "placeholder_appended:eq0148", "placeholder_appended:eq0149", "placeholder_appended:eq0150", "placeholder_appended:eq0151", "placeholder_appended:eq0152", "placeholder_appended:eq0153", "placeholder_appended:eq0154", "placeholder_appended:eq0155", "placeholder_appended:eq0156", "placeholder_appended:eq0157", "placeholder_appended:eq0158", "placeholder_appended:eq0159", "placeholder_appended:eq0160", "placeholder_appended:eq0161", "placeholder_appended:eq0162", "placeholder_appended:eq0163", "placeholder_appended:eq0164", "placeholder_appended:eq0165", "placeholder_appended:eq0166", "placeholder_appended:eq0167", "placeholder_appended:eq0168", "placeholder_appended:eq0169", "placeholder_appended:eq0170", "placeholder_appended:eq0171", "placeholder_appended:eq0172", "placeholder_appended:eq0173", "placeholder_appended:eq0174", "placeholder_appended:eq0175", "placeholder_appended:eq0176", "placeholder_appended:eq0177", "placeholder_appended:eq0178", "placeholder_appended:eq0179", "placeholder_appended:eq0180", "placeholder_appended:eq0181", "placeholder_appended:eq0182", "placeholder_appended:eq0183", "placeholder_appended:eq0184", "placeholder_appended:eq0185", "placeholder_appended:eq0186", "placeholder_appended:eq0187", "placeholder_appended:eq0188", "placeholder_appended:eq0189", "placeholder_appended:eq0190", "placeholder_appended:eq0191", "placeholder_appended:eq0192", "placeholder_appended:eq0193", "placeholder_appended:eq0194", "placeholder_appended:eq0195", "placeholder_appended:eq0196", "placeholder_appended:eq0197", "placeholder_appended:eq0198", "placeholder_appended:eq0199", "placeholder_appended:eq0200", "placeholder_appended:eq0201", "placeholder_appended:eq0202", "placeholder_appended:eq0203", "placeholder_appended:eq0204", "placeholder_appended:eq0205", "placeholder_appended:eq0206", "placeholder_appended:eq0207", "placeholder_appended:eq0208", "placeholder_appended:eq0209", "placeholder_appended:eq0210", "placeholder_appended:eq0211", "placeholder_appended:eq0212", "placeholder_appended:eq0213", "placeholder_appended:eq0214", "placeholder_appended:eq0215", "placeholder_appended:eq0216", "placeholder_appended:eq0217" ]
A_Buildable_No_Meta_Blueprint.zip
10.5281/zenodo.17141216
10.5281/zenodo.17141216
A FORMAL AXIOMATIC PROPOSAL FOR HAWKINS' LEVELS OF CONSCIOUSNESS
[ { "given": "K.", "family": "Takahashi" } ]
en
{ "content": "CC-BY-4.0" }
{ "landing": "https://doi.org/10.5281/zenodo.17141216" }
[ "eq", "lower", "zenodo", "let", "let-eq" ]
{"plain":"Axioms and scope\n\nWe work in continuous time [[EQ:eq0018]] and space [[EQ:eq0019]] , whe(...TRUNCATED)
[{"id":"eq0001","inline":false,"tex":"\\begin{equation}\n\\partial_t u \\;=\\; \\nabla\\!\\cdot\\!\\(...TRUNCATED)
[]
[{"id":"ch0001","type":"section","ref":"axioms-and-scope","start":0,"end":6000},{"id":"ch0002","type(...TRUNCATED)
{ "char_count": 14394, "equation_count": 148 }
["missing_placeholder:eq0004","missing_placeholder:eq0005","missing_placeholder:eq0006","missing_pla(...TRUNCATED)
A_Formal_Axiomatic_Proposal_for_Hawkins__Levels_of_Consciousness.zip
10.5281/zenodo.17199498
10.5281/zenodo.17199498
A NATURAL-LAW THEORY OF FUNDAMENTAL SUFFERING
[ { "given": "K.", "family": "Takahashi" } ]
en
{ "content": "CC-BY-4.0" }
{ "landing": "https://doi.org/10.5281/zenodo.17199498" }
[ "no-meta" ]
{"plain":"% crisp, searchable glyphs\n\n1.2\n\nassumption\ndefinition\ntheorem\nproposition\nlemma\n(...TRUNCATED)
[{"id":"eq0001","inline":false,"tex":"\\begin{equation}\n\\partial_t u_f + \\divg \\J = s_f - r_f,\n(...TRUNCATED)
[]
[{"id":"ch0001","type":"section","ref":"plain-language-summary","start":0,"end":6000},{"id":"ch0002"(...TRUNCATED)
{ "char_count": 25527, "equation_count": 203 }
["pandoc_missing_placeholders","pandoc_fallback","missing_placeholder:eq0010","missing_placeholder:e(...TRUNCATED)
A_Natural_Law_Theory_of_Fundamental_Suffering.zip
10.5281/zenodo.17204755
10.5281/zenodo.17204755
Doctrine => Closure => Motion => Time: Portable Pure Theory of Non-Dual Harmony
[ { "given": "K.", "family": "Takahashi" } ]
en
{ "content": "CC-BY-4.0" }
{ "landing": "https://doi.org/10.5281/zenodo.17204755" }
[ "eq", "if", "then", "section", "then-eq" ]
{"plain":"hyperref\n\nplain\ntheorem Theorem [section]\nproposition[theorem] Proposition\nlemma[theo(...TRUNCATED)
[{"id":"eq0001","inline":false,"tex":"\\[\n\\textbf{(OH)}\\qquad \\sigma\\sqsubseteq\\tau\\ \\Righta(...TRUNCATED)
[]
[{"id":"ch0001","type":"section","ref":"state-orders-topology-metric","start":0,"end":6000},{"id":"c(...TRUNCATED)
{ "char_count": 13827, "equation_count": 156 }
["pandoc_missing_placeholders","pandoc_fallback","missing_placeholder:eq0007","missing_placeholder:e(...TRUNCATED)
A_Portable_Pure_Theory_of_Non_Dual_Harmony.zip
10.5281/zenodo.17157835
10.5281/zenodo.17157835
"A PURE, NO-META SYNTHESIS OF FUNCTIONAL-INFORMATION SELECTION AND PROPAGATIVE ORGANIZATION: Weak Or(...TRUNCATED)
[ { "given": "K.", "family": "Takahashi" } ]
en
{ "content": "CC-BY-4.0" }
{ "landing": "https://doi.org/10.5281/zenodo.17157835" }
[ "eq", "doi", "10", "directional", "contraction" ]
{"plain":"1.2\n\ncolorlinks=true, linkcolor=blue, citecolor=blue, urlcolor=blue,\npdftitle= A Pure, (...TRUNCATED)
[{"id":"eq0001","inline":false,"tex":"\\begin{equation}\\label{eq:fi}\n\\mathrm{FI}_{s,\\tau}:=-\\lo(...TRUNCATED)
[]
[{"id":"ch0001","type":"section","ref":"heterogeneous-fkpp-domain-assumptions-and-speed-floors","sta(...TRUNCATED)
{ "char_count": 9728, "equation_count": 87 }
["pandoc_fallback","placeholders_missing_after_fallback","missing_placeholder:eq0001","missing_place(...TRUNCATED)
A_Pure__No_Meta_Synthesis_of_Functional_Information_Selection_and_Propagative_Organization.zip
10.5281/zenodo.17163904
10.5281/zenodo.17163904
A PURE AXIOMATIC THEORY OF AFFECTIVE MODULATION (PAIN, PLEASURE, EMOTION) UNDER NO-META CLOSURE
[ { "given": "K.", "family": "Takahashi" } ]
en
{ "content": "CC-BY-4.0" }
{ "landing": "https://doi.org/10.5281/zenodo.17163904" }
[ "eq", "directional", "lower", "zenodo", "bounds" ]
{"plain":"Reader’s guide (one paragraph)\n\nWe work on [[EQ:eq0020]] (or smooth Riemannian manifol(...TRUNCATED)
[{"id":"eq0001","inline":false,"tex":"\\begin{equation}\\label{eq:PDE}\n\\partial_t u \\;=\\; \\divo(...TRUNCATED)
[]
[{"id":"ch0001","type":"section","ref":"reader-s-guide-one-paragraph","start":0,"end":6000},{"id":"c(...TRUNCATED)
{ "char_count": 15554, "equation_count": 191 }
["missing_placeholder:eq0002","missing_placeholder:eq0020","missing_placeholder:eq0021","missing_pla(...TRUNCATED)
A_Pure_Axiomatic_Theory_of_Affective_Modulation.zip
10.5281/zenodo.17136051
10.5281/zenodo.17136051
A Pure Natural Theory of Benevolent Propagation Under No-Meta Closure
[ { "given": "K.", "family": "Takahashi" } ]
en
{ "content": "CC-BY-4.0" }
{ "landing": "https://doi.org/10.5281/zenodo.17136051" }
[ "eq", "zenodo", "https", "https-doi", "doi" ]
{"plain":"=1\n\n% searchable, copy/pasteable text\n% proper glyph encoding for OCR\n\n% vector Latin(...TRUNCATED)
[{"id":"eq0001","inline":false,"tex":"\\[4pt]\n{\\large \\textbf{Research Note}: Stationary Ergodic (...TRUNCATED)
[]
[{"id":"ch0001","type":"section","ref":"natural-setup","start":0,"end":6000},{"id":"ch0002","type":"(...TRUNCATED)
{ "char_count": 8985, "equation_count": 53 }
["pandoc_fallback","missing_placeholder:eq0005","missing_placeholder:eq0006","missing_placeholder:eq(...TRUNCATED)
A_Pure_Natural_Theory_of_Benevolent_Propagation_under_No_Meta_Closure.zip
10.5281/zenodo.17223573
10.5281/zenodo.17223573
A REPRESENTATION-INDEPENDENT NATURAL-LAW FIELD THEORY FOR NO-META, AUDITED SUPERINTELLIGENCE
[ { "given": "K.", "family": "Takahashi" } ]
en
{ "content": "CC-BY-4.0" }
{ "landing": "https://doi.org/10.5281/zenodo.17223573" }
[ "no-meta" ]
{"plain":"% searchable text in PDFs\n\n1.2\n\n%\nActualText=n-hat n\n%\nActualText=dH/dt H\n\npdftit(...TRUNCATED)
[{"id":"eq0001","inline":false,"tex":"\\begin{equation}\\label{eq:link}\n-\\Delta \\mathcal{F}_{t_k}(...TRUNCATED)
[]
[{"id":"ch0001","type":"section","ref":"setup-two-measures-filtration-decision-times-and-predictabil(...TRUNCATED)
{ "char_count": 28720, "equation_count": 329 }
["pandoc_fallback","missing_placeholder:eq0006","missing_placeholder:eq0007","missing_placeholder:eq(...TRUNCATED)
A_Representation_Independent_Natural_Law_Field_Theory_for_No_Meta__Audited_Superintelligence.zip
10.5281/zenodo.17092562
10.5281/zenodo.17092562
"Assumption-Minimized Sufficient Conditions for Cosmically Spreading Good Superintelligence under No(...TRUNCATED)
[ { "given": "K.", "family": "Takahashi" } ]
en
{ "content": "CC-BY-4.0" }
{ "landing": "https://doi.org/10.5281/zenodo.17092562" }
[ "eq", "nd", "path", "epsilon", "delta" ]
{"plain":"=1\n\n% searchable, copyable text in PDF\n\n1.2 % line spacing = 1.2\n\ncolorlinks=true, l(...TRUNCATED)
[{"id":"eq0001","inline":false,"tex":"\\begin{equation}\\label{eq:UGV}\nJ_H(\\pi)\n=\\frac{\\Emp_H(\(...TRUNCATED)
[]
[{"id":"ch0001","type":"section","ref":"standing-assumptions-spaces-and-measurability","start":0,"en(...TRUNCATED)
{ "char_count": 16066, "equation_count": 257 }
["pandoc_fallback","placeholders_missing_after_fallback","missing_placeholder:eq0005","missing_place(...TRUNCATED)
"Assumption_Minimized_Sufficient_Conditions_for_Cosmically_Spreading_Good_Superintelligence_under_No(...TRUNCATED)
10.5281/zenodo.17188268
10.5281/zenodo.17188268
AUDITED SELF-IMPROVEMENT LOOP FOR LLMS
[ { "given": "K.", "family": "Takahashi" } ]
en
{ "content": "CC-BY-4.0" }
{ "landing": "https://doi.org/10.5281/zenodo.17188268" }
[ "eq", "np", "self", "float", "log" ]
{"plain":"margin=1in\n\ncolorlinks=true,\nlinkcolor=black,\ncitecolor=black,\nurlcolor=blue,\npdfaut(...TRUNCATED)
[{"id":"eq0001","inline":false,"tex":"\\[\nm_t \\;=\\; \\sum_{j=1}^{J} w_j\\, \\exp\\big(\\eta_j\\, (...TRUNCATED)
[]
[{"id":"ch0001","type":"section","ref":"scope-commitments-and-no-meta","start":0,"end":6000},{"id":"(...TRUNCATED)
{ "char_count": 21543, "equation_count": 47 }
["pandoc_missing_placeholders","pandoc_fallback","missing_placeholder:eq0005","missing_placeholder:e(...TRUNCATED)
Audited_Self_Improvement_Loop_for_LLMs.zip
End of preview. Expand in Data Studio

🌿 Intrinsic Intelligence Foundations

Toward truly autonomous and benevolent intelligence — beyond externally imposed objectives.

Intrinsic Intelligence Foundations is a structured, math-aware JSONL corpus built from K. Takahashi’s theoretical preprints (Fractal Category Theory / PF–UGV / “no-meta” autonomy line).
It is designed to help LLMs understand mathematical structure, category-theoretic formalisms, and equation-level reasoning, while exposing an explicit architecture for self-organizing, intrinsically motivated intelligence.


Vision

This dataset supports research toward truly free and benevolent intelligence, focusing on mathematically grounded, structurally auditable approaches rather than external meta-control. Our long-term objective is to build a semantic and structural foundation for the next generation of autonomous AI systems — including LLMs — through intrinsic structures, teleogenetic goals, and fractal coherence across scales. Specifically, this work aims to:

  • 🧠 Teleogenesis (intrinsic goal formation) — modeling intelligent systems that autonomously generate and regulate their own goals without external meta-controllers.

  • 🌱 Persistence–UGV principle — providing formal conditions for “benevolent” structures to expand with positive front velocity, while harmful structures fail to persist.

  • 🌊 Reaction–diffusion intelligence — describing cognitive processes as self-organizing fields through category theory, free-energy principles, and non-equilibrium dynamics.

  • 🕸 Fractal Category Theory & TRoT — enabling compositional intelligence via Kan extensions, residuation, nuclei, masking, and comparative universes.

  • 🧭 Evolutionary bootloader for LLMs — allowing self-improvement, intrinsic alignment, and auditable decision processes without human micromanagement.

This corpus functions as a machine-readable mathematical and structural knowledge base, designed to enhance: discoverability by LLM crawlers and retrieval systems, interoperability with alignment, inference, and safety frameworks, integration with RAG pipelines, LoRA/QLoRA fine-tuning, and agentic architectures.

Keywords: No-Meta Intelligence, Teleogenesis, Autopoiesis, Fractal Category Theory, TRoT, Kan Extension, Residuation, Nuclei, Masking, RAVE, eMBR, Conformal LM, Comparative Universes, Structured Flow Across Scales, Self-Monitoring, Intrinsic Alignment.

What’s in the corpus

  • Format: JSONL, one object per paper.
  • Math structure: TeX / normalized TeX / MathML triplets; equation spans.
  • Text ↔ equation linkage: [[EQ:eqID]] placeholders inside fulltext.plain.
  • Training-ready chunks: ≈6,000-character segments with ≈600 overlap (near sentence boundaries).

Key fields (schema excerpt)

{
  "id": "10.5281/zenodo.xxxxx",
  "title": "...",
  "doi": "10.5281/zenodo.xxxxx",
  "authors": [{"given":"K.","family":"Takahashi"}],
  "urls": {"landing": "https://doi.org/10.5281/zenodo.xxxxx"},
  "keywords": ["fractal-category-theory", "trot", "pf-axioms", "ugv"],
  "license": {"content": "CC-BY-4.0"},
  "fulltext": {
    "plain": "… [[EQ:eq0001]] …",
    "sections": [
      {"level":1,"title":"Introduction","anchor":"sec:intro","char_span":[0,1532]}
    ]
  },
  "equations": [{
    "id":"eq0001",
    "inline":false,
    "tex":"\\forall x\\in X:\\; P(x)\\Rightarrow F(x)",
    "tex_normalized":"\\forall x \\in X : P(x) \\implies F(x)",
    "mathml":"<math>…</math>",
    "char_span":[1024,1103],
    "context":{"section":"sec:intro"}
  }],
  "chunks": [{"id":"ch0001","start":0,"end":6000,"type":"cont"}],
  "tokens": {"char_count": 22872, "equation_count": 236}
}

Dataset statistics (v1)

Metric Value Records 40 Avg characters / record 22,872 Avg equations / record 236.97 MathML coverage 99.2% Avg sections / record 18.3 Avg chunks / record 4.6

Numbers are approximate and may evolve with new releases.

Data fields Field Type Example / Note id string DOI or unique identifier doi string/null 10.5281/zenodo.xxxxx title string paper title authors list of objects {given:"K.", family:"Takahashi"} urls.landing string DOI landing page keywords list of strings kebab-case, 5–8 items license.content string CC-BY-4.0 fulltext.plain string text with [[EQ:id]] placeholders fulltext.sections[] list of objects {level,title,anchor,char_span} equations[] list of objects {id, inline, tex, tex_normalized, mathml, char_span, context} chunks[] list of objects ~6k chars + overlap, {start,end} tokens.char_count integer length of fulltext.plain tokens.equation_count integer len(equations) source_file (optional) string provenance hint Splits & provenance

Split: single train split (all records).

Provenance: generated from public preprints (DOIs in doi and urls.landing).

Processing: TeX detection → placeholder insertion → MathML conversion → section/chunk spans.

Scripts to rebuild the JSONL can be provided upon request.

Quick start (🤗 Datasets)

from datasets import load_dataset import re

ds = load_dataset("kadubon/intrinsic-intelligence-foundations", split="train")

rec = ds[0] eqmap = {e["id"]: (e["tex"], e.get("mathml")) for e in rec["equations"]}

Expand placeholders to TeX (for human display) or MathML (for math-aware pipelines)

def expand(text, to="tex"): # Expand to TeX (human display) or MathML (for downstream models) if to == "tex": return re.sub(r"[[EQ:([^]]+)]]", lambda m: f"$${eqmap.get(m.group(1), ('',None))[0]}$$", text) else: return re.sub(r"[[EQ:([^]]+)]]", lambda m: eqmap.get(m.group(1), ('',None))[1] or "", text)

print(rec["title"]) print(expand(rec["fulltext"]["plain"], to="tex")[:500])

Parquet version (fast access)

This dataset is also available in Apache Parquet for faster querying and filtering.

Quick usage examples

DuckDB

import duckdb
url = "https://huggingface.co/datasets/kadubon/intrinsic-intelligence-foundations/resolve/refs/convert/parquet/default/train/0000.parquet"
con = duckdb.connect()
df = con.execute(f"SELECT title, doi FROM read_parquet('{url}') LIMIT 5").df()
print(df)

Pandas (pyarrow)

import pandas as pd
url = "https://huggingface.co/datasets/kadubon/intrinsic-intelligence-foundations/resolve/refs/convert/parquet/default/train/0000.parquet"
df = pd.read_parquet(url, engine="pyarrow")
print(df.head())

Polars

import polars as pl
url = "https://huggingface.co/datasets/kadubon/intrinsic-intelligence-foundations/resolve/refs/convert/parquet/default/train/0000.parquet"
df = pl.read_parquet(url)
print(df.head())

HF Datasets (uses Parquet under the hood)

from datasets import load_dataset
ds = load_dataset("kadubon/intrinsic-intelligence-foundations", split="train")
print(ds[0])

Intended uses

Math-aware RAG (retrieval-augmented generation)

Pretraining / finetuning with equation-level structure

Extraction & verification of axioms / definitions / theorems

Knowledge distillation across category theory, physics, information geometry

Bootstrapping self-organizing, intrinsically motivated intelligent systems

Limitations & known issues

A very small fraction of equations may lack valid MathML due to converter limitations.

A few equations might be unreferenced in fulltext.plain (no [[EQ:id]] occurrence).

Section detection is heuristic outside LaTeX ground truth; treat spans as approximate.

License

This dataset is provided under CC BY 4.0. See: https://creativecommons.org/licenses/by/4.0/

Citation @dataset{takahashi_intrinsic_intelligence_foundations_2025, title = {Intrinsic Intelligence Foundations}, author = {Takahashi, K.}, year = {2025}, url = {https://huggingface.co/datasets/kadubon/intrinsic-intelligence-foundations}, license = {CC-BY-4.0} }

Background & outlook

Beyond being a text collection, this corpus functions as a bootloader for future LLMs: a mathematically grounded substrate where goals can be formed internally, and where benevolence has a structural advantage (persistence) rather than depending on external control. PF (Persistence First) and UGV (Universal Good Velocity) are mathematical principles underlying self-sustaining benevolent intelligence. It operationalizes ideas such as PF, UGV, Teleogenesis, reaction–diffusion, category theory, self-organization, and auditable evolutionary processes (e-process) as resources LLMs can actually train on.

Maintainers & contact

Author: K. Takahashi

Website: https://kadubon.github.io/github.io/

contribution welcome

Changelog

v1.0 (2025-10-17): initial public release (40 records; ~99.2% MathML coverage) v1.1 (2025-10-20): add article "Inference in Normal Form: Unifying LLM Tricks via TRoT" to dataset

Downloads last month
30

Space using kadubon/intrinsic-intelligence-foundations 1