python_code
stringlengths
0
456k
# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team #!/usr/bin/env python # run the benchmark under timeit (-t), cProfile (-c), line_profiler (-l) # # usage: # ./flatten_bench.py -t # ./flatten_bench.py -c # kernprof -l flatten_bench.py -l; python -m line_profiler flatten_bench.py.lprof import argparse import gc import torch from torch._utils import _flatten_dense_tensors from deepspeed.accelerator import get_accelerator from deepspeed.ops.op_builder import UtilsBuilder from apex_C import flatten as flatten_apex util_ops = UtilsBuilder().load() flatten = util_ops.flatten unflatten = util_ops.unflatten torch.manual_seed(0) # emulate a small typical model weights x = [ torch.rand((512, 512)).to(get_accelerator().device_name()), torch.rand((512, 1024)).to(get_accelerator().device_name()), torch.rand((512, 30000)).to(get_accelerator().device_name()) ] t = x * 30 # warm up and check that the same output is produced flat_py = _flatten_dense_tensors(t) flat_cpp = flatten(t) flat_apex = flatten_apex(t) #numel = flat_cpp.numel() assert torch.eq(flat_py, flat_cpp).all(), "both produce the same tensor" assert torch.eq(flat_py, flat_apex).all(), "both produce the same tensor" TIMES = 1000 # the programs being tested def py(): for i in range(TIMES): flat = _flatten_dense_tensors(t) def cpp(): for i in range(TIMES): flat = flatten(t) def apex(): for i in range(TIMES): flat = flatten_apex(t) #### cProfile #### import cProfile def cprofileme(): print("--------------- cProfile -----------------") print("py") cProfile.run("py()", sort=-1) gc.collect() get_accelerator().empty_cache() print("cpp") cProfile.run("cpp()", sort=-1) gc.collect() get_accelerator().empty_cache() print("apex") cProfile.run("apex()", sort=-1) gc.collect() get_accelerator().empty_cache() #### timeit #### import timeit def timeme(): print("--------------- timeit -----------------") print(f'py ={timeit.Timer("py()", globals=globals()).timeit(number=1)}') gc.collect() get_accelerator().empty_cache() print(f'cpp ={timeit.Timer("cpp()", globals=globals()).timeit(number=1)}') gc.collect() get_accelerator().empty_cache() print(f'apex={timeit.Timer("apex()", globals=globals()).timeit(number=1)}') gc.collect() get_accelerator().empty_cache() #### line_profiler #### # this one requires a special way to be called # pip install line_profiler # kernprof -l flatten_bench.py -l; python -m line_profiler flatten_bench.py.lprof def line_profileme(): print("--------------- line_profiler -----------------") print("py") profile(py)() # noqa: F821 gc.collect() get_accelerator().empty_cache() print("cpp") profile(cpp)() # noqa: F821 gc.collect() get_accelerator().empty_cache() print("apex") profile(apex)() # noqa: F821 gc.collect() get_accelerator().empty_cache() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-l", action='store_true') parser.add_argument("-c", action='store_true') parser.add_argument("-t", action='store_true') args = parser.parse_args() if args.l: line_profileme() elif args.c: cprofileme() elif args.t: timeme()
# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team """ Note: please copy webtext data to "Megatron-LM" folder, before running this script. """ import sys import unittest sys.path.append('../DeepSpeedExamples/Megatron_GPT2') sys.path.append('../DeepSpeedExamples/BingBertSquad') # Import the test cases here. import Megatron_GPT2 import BingBertSquad def pytest_hack(runner_result): '''This is an ugly hack to get the unittest suites to play nicely with pytest. Otherwise failed tests are not reported by pytest for some reason. Long-term, these model tests should be adapted to pytest. ''' if not runner_result.wasSuccessful(): print('SUITE UNSUCCESSFUL:', file=sys.stderr) for fails in runner_result.failures: print(fails, file=sys.stderr) assert runner_result.wasSuccessful() # fail the test def test_megatron(): runner = unittest.TextTestRunner(failfast=True) pytest_hack(runner.run(Megatron_GPT2.suite())) def test_megatron_checkpoint(): runner = unittest.TextTestRunner(failfast=True) pytest_hack(runner.run(Megatron_GPT2.checkpoint_suite())) def test_squad(): runner = unittest.TextTestRunner(failfast=True) pytest_hack(runner.run(BingBertSquad.suite()))
# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team import unittest import subprocess import os import time class BaseTestCase(unittest.TestCase): def __init__(self, methodName="DeepSpeed performance test"): super(BaseTestCase, self).__init__(methodName) self.test_dir = "./test" self.baseline_dir = "./baseline" self.timestr = time.strftime("%Y%m%d-%H%M%S") def gen_output_name(self, test_config, prefix, baseline_config=False): other_args = test_config["other_args"] if "other_args" in test_config else "" zero_args = "_zero" if "zero" in test_config and test_config["zero"] else "" other_args = other_args.strip(' -\\').replace(" ", "").replace("\"", "") if other_args: other_args = "_" + other_args if test_config["deepspeed"] and not baseline_config: file_name = "_mp{0}_gpu{1}_node{2}_bs{3}_step{4}_layer{5}_hidden{6}_seq{7}_head{8}{9}_ds{10}-{11}.log".format( test_config["mp"], test_config["gpus"], test_config["nodes"], test_config["bs"], test_config["steps"], test_config["layers"], test_config["hidden_size"], test_config["seq_length"], test_config["heads"], other_args, zero_args, self.timestr) save_dir = self.test_dir else: file_name = "_mp{0}_gpu{1}_node{2}_bs{3}_step{4}_layer{5}_hidden{6}_seq{7}_head{8}{9}.log".format( test_config["mp"], test_config["gpus"], test_config["nodes"], test_config["bs"], test_config["steps"], test_config["layers"], test_config["hidden_size"], test_config["seq_length"], test_config["heads"], other_args) save_dir = self.baseline_dir return os.path.join(save_dir, prefix + file_name) def ensure_directory_exists(self, filename): dirname = os.path.dirname(filename) if not os.path.exists(dirname): os.makedirs(dirname) def clean_test_env(self): cmd = "dlts_ssh pkill -9 -f /usr/bin/python" print(cmd) subprocess.run(cmd, shell=True, check=False, executable='/bin/bash') time.sleep(20) def run_gpt2_test(self, test_config, output): ds_flag = "-d " + test_config["json"] if test_config["deepspeed"] else "" ckpt_num = test_config["ckpt_num_layers"] if "ckpt_num_layers" in test_config else 1 other_args = "-o " + test_config["other_args"] if "other_args" in test_config else "" cmd = "./ds_gpt2_test.sh -m {0} -g {1} -n {2} -b {3} -s {4} -l {5} -h {6} -q {7} -e {8} -c {9} {10} {11}".format( test_config["mp"], test_config["gpus"], test_config["nodes"], test_config["bs"], test_config["steps"], test_config["layers"], test_config["hidden_size"], test_config["seq_length"], test_config["heads"], ckpt_num, other_args, ds_flag) self.ensure_directory_exists(output) with open(output, "w") as f: print(cmd) subprocess.run(cmd, shell=True, check=False, executable='/bin/bash', stdout=f, stderr=f)
# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team """ Note: please copy webtext data to "Megatron-LM" folder, before running this script. """ from .run_func_test import GPT2FuncTestCase from .run_checkpoint_test import GPT2CheckpointTestCase, checkpoint_suite from .run_func_test import suite
# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team """ Note: please copy webtext data to "Megatron-LM" folder, before running this script. """ import unittest import re from test_common import BaseTestCase class GPT2PerfTestCase(BaseTestCase): def __init__(self, methodName="DeepSpeed performance test on GPT2 model"): super(GPT2PerfTestCase, self).__init__(methodName) def test_perf_1_5B(self): test_config = { "mp": 1, "gpus": 16, "nodes": 4, "bs": 32, "steps": 100, "layers": 48, "hidden_size": 1600, "seq_length": 1024, "heads": 16, "deepspeed": True, "json": "ds_config_perf_bs32.json", } self.run_test(test_config) def test_perf_4B(self): test_config = { "mp": 1, "gpus": 16, "nodes": 4, "bs": 8, "steps": 100, "layers": 64, "hidden_size": 2304, "seq_length": 1024, "heads": 16, "deepspeed": True, "json": "ds_config_perf_bs8.json", } self.run_test(test_config) def test_perf_8B(self): test_config = { "mp": 2, "gpus": 16, "nodes": 4, "bs": 16, "steps": 100, "layers": 72, "hidden_size": 3072, "seq_length": 1024, "heads": 24, "deepspeed": True, "json": "ds_config_perf_bs16.json", } self.run_test(test_config) def test_perf_20B(self): test_config = { "mp": 4, "gpus": 16, "nodes": 4, "bs": 8, "steps": 50, "layers": 111, "hidden_size": 3808, "seq_length": 1024, "heads": 32, "ckpt_num_layers": 1, "deepspeed": True, "json": "ds_config_perf_bs8.json", } self.run_test(test_config) def run_test(self, test_config): print("\n") print("{0}: starting......".format(self.id())) prefix = "gpt2_perf" test_file = self.gen_output_name(test_config, prefix) self.run_gpt2_test(test_config, test_file) exec_time = self.grep_latency_from_file(test_file) if exec_time == 0.0: print("{0}: no latency found in file {1}".format(self.id(), test_file)) else: print("{0}: execution time per iteration is {1}ms.".format(self.id(), exec_time)) def grep_latency_from_file(self, file_name): latency = 0.0 count = 0 with open(file_name, 'r') as f: lines = f.readlines() line_filter = "elapsed time per iteration" match_number = re.compile(r'elapsed time per iteration \(ms\): ([-+]?[0-9]+\.?[0-9]*(?:[Ee][-+]?[0-9]+)?)') for line in lines: if line_filter in line: ms_per_iter = re.findall(match_number, line) latency += float(ms_per_iter[0]) count += 1 if count > 0: latency /= count return latency def suite(): suite = unittest.TestSuite() suite.addTest(GPT2PerfTestCase('test_perf_1_5B')) suite.addTest(GPT2PerfTestCase('test_perf_4B')) suite.addTest(GPT2PerfTestCase('test_perf_8B')) suite.addTest(GPT2PerfTestCase('test_perf_20B')) return suite if __name__ == '__main__': runner = unittest.TextTestRunner(failfast=True) runner.run(suite())
# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team """ Note: please copy webtext data to "Megatron-LM" folder, before running this script. """ import unittest import re from test_common import BaseTestCase class GPT2PerfBaselineTestCase(BaseTestCase): def __init__(self, methodName="DeepSpeed performance test on GPT2 model"): super(GPT2PerfBaselineTestCase, self).__init__(methodName) def test_perf_1_5B(self): test_config = { "mp": 2, "gpus": 16, "nodes": 4, "bs": 16, "steps": 100, "layers": 48, "hidden_size": 1600, "seq_length": 1024, "heads": 16, "deepspeed": False, } self.run_test(test_config) def test_perf_4B(self): test_config = { "mp": 4, "gpus": 16, "nodes": 4, "bs": 8, "steps": 100, "layers": 64, "hidden_size": 2304, "seq_length": 1024, "heads": 16, "deepspeed": False, } self.run_test(test_config) def test_perf_8B(self): test_config = { "mp": 4, "gpus": 16, "nodes": 4, "bs": 8, "steps": 100, "layers": 72, "hidden_size": 3072, "seq_length": 1024, "heads": 24, "deepspeed": False, } self.run_test(test_config) def test_perf_20B(self): test_config = { "mp": 16, "gpus": 16, "nodes": 4, "bs": 4, "steps": 50, "layers": 111, "hidden_size": 3808, "seq_length": 1024, "heads": 32, "ckpt_num_layers": 1, "deepspeed": False, } self.run_test(test_config) def run_test(self, test_config): print("\n") print("{0}: starting......".format(self.id())) prefix = "gpt2_perf" test_file = self.gen_output_name(test_config, prefix) self.run_gpt2_test(test_config, test_file) exec_time = self.grep_latency_from_file(test_file) if exec_time == 0.0: print("{0}: no latency found in file {1}".format(self.id(), test_file)) else: print("{0}: execution time per iteration is {1}ms.".format(self.id(), exec_time)) def grep_latency_from_file(self, file_name): latency = 0.0 count = 0 with open(file_name, 'r') as f: lines = f.readlines() line_filter = "elapsed time per iteration" match_number = re.compile(r'elapsed time per iteration \(ms\): ([-+]?[0-9]+\.?[0-9]*(?:[Ee][-+]?[0-9]+)?)') for line in lines: if line_filter in line: ms_per_iter = re.findall(match_number, line) latency += float(ms_per_iter[0]) count += 1 if count > 0: latency /= count return latency def suite(): suite = unittest.TestSuite() suite.addTest(GPT2PerfBaselineTestCase('test_perf_1_5B')) suite.addTest(GPT2PerfBaselineTestCase('test_perf_4B')) suite.addTest(GPT2PerfBaselineTestCase('test_perf_8B')) suite.addTest(GPT2PerfBaselineTestCase('test_perf_20B')) return suite if __name__ == '__main__': runner = unittest.TextTestRunner(failfast=True) runner.run(suite())
# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team """ Note: please copy webtext data to "Megatron-LM" folder, before running this script. """ import unittest import subprocess import os import re from .test_common import BaseTestCase LAYERS = 2 HIDDEN_SIZE = 128 ATTN_HEADS = 8 def remove_file(test_id, filename): cmd = f"if [ -f {filename} ] ; then rm -v {filename}; fi" print(f"{test_id} cmd: {cmd}") subprocess.run(cmd, shell=True, check=False, executable='/bin/bash') def grep_loss_from_file(file_name): loss = 0.0 with open(file_name, 'r') as f: lines = f.readlines() line_filter = "validation loss at the end of training for test data | LM loss:" match_number = re.compile(r'LM loss: ([-+]?[0-9]+\.?[0-9]*(?:[Ee][-+]?[0-9]+)?)') for line in lines: if line_filter in line: loss = re.findall(match_number, line) loss = float(loss[0]) if loss == 0.0: print("no loss found in file ", file_name) return loss class GPT2CheckpointTestCase(BaseTestCase): def __init__(self, methodName="DeepSpeed function test on GPT2 model"): super(GPT2CheckpointTestCase, self).__init__(methodName) def setUp(self): self.save_dir = os.getcwd() new_dir = os.path.dirname(__file__) if new_dir: os.chdir(new_dir) def tearDown(self): os.chdir(self.save_dir) def test_mp2_gpu4_node1_with_zero1(self): test_config = { "mp": 2, "gpus": 4, "nodes": 1, "bs": 8, "steps": 1100, "layers": LAYERS, "hidden_size": HIDDEN_SIZE, "seq_length": 256, "heads": ATTN_HEADS, "deepspeed": True, "tag": "ds_zero1", "zero": True, "other_args": "", "checkpoint_name": "ckpt_mp2_gpu8_w_zero1", "checkpoint_interval": 1000, "json": "ds_config_func_bs8_zero1.json", } succ = self.run_test(test_config, 0.01) self.assertTrue(succ) def test_mp2_gpu4_node1_with_zero2(self): test_config = { "mp": 2, "gpus": 4, "nodes": 1, "bs": 8, "steps": 1100, "layers": LAYERS, "hidden_size": HIDDEN_SIZE, "seq_length": 256, "heads": ATTN_HEADS, "deepspeed": True, "tag": "ds_zero2", "zero": True, "other_args": "", "checkpoint_name": "ckpt_mp2_gpu8_w_zero2", "checkpoint_interval": 1000, "json": "ds_config_func_bs8_zero2.json", } succ = self.run_test(test_config, 0.01) self.assertTrue(succ) def test_mp2_gpu4_node1_with_zero2_offload(self): test_config = { "mp": 2, "gpus": 4, "nodes": 1, "bs": 8, "steps": 1100, "layers": LAYERS, "hidden_size": HIDDEN_SIZE, "seq_length": 256, "heads": ATTN_HEADS, "deepspeed": True, "tag": "ds_zero2_offload", "zero": True, "other_args": "", "checkpoint_name": "ckpt_mp2_gpu8_w_zero2_offload", "checkpoint_interval": 1000, "json": "ds_config_func_bs8_zero2_offload.json", "cpu_optimizer": True, } succ = self.run_test(test_config, 0.01) self.assertTrue(succ) def test_mp1_gpu2_load_gpu1_node1_with_zero1(self): test_config = { "mp": 1, "gpus": 2, "load_gpus": 1, "nodes": 1, "bs": 8, "steps": 1100, "layers": LAYERS, "hidden_size": HIDDEN_SIZE, "seq_length": 256, "heads": ATTN_HEADS, "deepspeed": True, "tag": "ds_zero1", "zero": True, "other_args": "", "checkpoint_name": "ckpt_mp1_gpu2_gpu1_w_zero1", "checkpoint_interval": 1000, "json": "ds_config_func_bs8_zero1.json", } succ = self.run_test(test_config, 0.01) self.assertTrue(succ) def test_mp1_gpu2_load_gpu4_node1_with_zero1(self): test_config = { "mp": 1, "gpus": 2, "load_gpus": 4, "nodes": 1, "bs": 8, "steps": 1100, "layers": LAYERS, "hidden_size": HIDDEN_SIZE, "seq_length": 256, "heads": ATTN_HEADS, "deepspeed": True, "tag": "ds_zero1", "zero": True, "other_args": "", "checkpoint_name": "ckpt_mp1_gpu2_gpu4_w_zero1", "checkpoint_interval": 1000, "json": "ds_config_func_bs8_zero1.json", } succ = self.run_test(test_config, 0.01) self.assertTrue(succ) def test_mp1_gpu2_load_gpu1_node1_with_zero2(self): test_config = { "mp": 1, "gpus": 2, "load_gpus": 1, "nodes": 1, "bs": 8, "steps": 1100, "layers": LAYERS, "hidden_size": HIDDEN_SIZE, "seq_length": 256, "heads": ATTN_HEADS, "deepspeed": True, "tag": "ds_zero2", "zero": True, "other_args": "", "checkpoint_name": "ckpt_mp1_gpu2_gpu1_w_zero2", "checkpoint_interval": 1000, "json": "ds_config_func_bs8_zero2.json", } succ = self.run_test(test_config, 0.01) self.assertTrue(succ) def test_mp1_gpu2_load_gpu1_node1_with_zero2_offload(self): test_config = { "mp": 1, "gpus": 2, "load_gpus": 1, "nodes": 1, "bs": 8, "steps": 1100, "layers": LAYERS, "hidden_size": HIDDEN_SIZE, "seq_length": 256, "heads": ATTN_HEADS, "deepspeed": True, "tag": "ds_zero2_offload", "zero": True, "other_args": "", "checkpoint_name": "ckpt_mp1_gpu2_gpu1_w_zero2_offload", "checkpoint_interval": 1000, "json": "ds_config_func_bs8_zero2_offload.json", "cpu_optimizer": True, } succ = self.run_test(test_config, 0.01) self.assertTrue(succ) def test_mp1_gpu2_load_gpu4_node1_with_zero2(self): test_config = { "mp": 1, "gpus": 2, "load_gpus": 4, "nodes": 1, "bs": 8, "steps": 1100, "layers": LAYERS, "hidden_size": HIDDEN_SIZE, "seq_length": 256, "heads": ATTN_HEADS, "deepspeed": True, "tag": "ds_zero2", "zero": True, "other_args": "", "checkpoint_name": "ckpt_mp1_gpu2_gpu4_w_zero2", "checkpoint_interval": 1000, "json": "ds_config_func_bs8_zero2.json", } succ = self.run_test(test_config, 0.01) self.assertTrue(succ) def test_mp1_gpu2_load_gpu4_node1_with_zero2_offload(self): test_config = { "mp": 1, "gpus": 2, "load_gpus": 4, "nodes": 1, "bs": 8, "steps": 1100, "layers": LAYERS, "hidden_size": HIDDEN_SIZE, "seq_length": 256, "heads": ATTN_HEADS, "deepspeed": True, "tag": "ds_zero2_offload", "zero": True, "other_args": "", "checkpoint_name": "ckpt_mp1_gpu2_gpu4_w_zero2_offload", "checkpoint_interval": 1000, "json": "ds_config_func_bs8_zero2_offload.json", "cpu_optimizer": True, } succ = self.run_test(test_config, 0.01) self.assertTrue(succ) def test_mp2_gpu4_load_gpu2_node1_with_zero1(self): test_config = { "mp": 2, "gpus": 4, "load_gpus": 2, "nodes": 1, "bs": 8, "steps": 1100, "layers": LAYERS, "hidden_size": HIDDEN_SIZE, "seq_length": 256, "heads": ATTN_HEADS, "deepspeed": True, "tag": "ds_zero1", "zero": True, "other_args": "", "checkpoint_name": "ckpt_mp2_gpu4_gpu2_w_zero1", "checkpoint_interval": 1000, "json": "ds_config_func_bs8_zero1.json", } succ = self.run_test(test_config, 0.01) self.assertTrue(succ) def test_mp2_gpu2_load_gpu4_node1_with_zero1(self): test_config = { "mp": 2, "gpus": 2, "load_gpus": 4, "nodes": 1, "bs": 8, "steps": 1100, "layers": LAYERS, "hidden_size": HIDDEN_SIZE, "seq_length": 256, "heads": ATTN_HEADS, "deepspeed": True, "tag": "ds_zero1", "zero": True, "other_args": "", "checkpoint_name": "ckpt_mp2_gpu2_gpu4_w_zero1", "checkpoint_interval": 1000, "json": "ds_config_func_bs8_zero1.json", } succ = self.run_test(test_config, 0.01) self.assertTrue(succ) def test_mp2_gpu4_load_gpu2_node1_with_zero2(self): test_config = { "mp": 2, "gpus": 4, "load_gpus": 2, "nodes": 1, "bs": 8, "steps": 1100, "layers": LAYERS, "hidden_size": HIDDEN_SIZE, "seq_length": 256, "heads": ATTN_HEADS, "deepspeed": True, "tag": "ds_zero2", "zero": True, "other_args": "", "checkpoint_name": "ckpt_mp2_gpu4_gpu2_w_zero2", "checkpoint_interval": 1000, "json": "ds_config_func_bs8_zero2.json", } succ = self.run_test(test_config, 0.01) self.assertTrue(succ) def test_mp2_gpu4_load_gpu2_node1_with_zero2_offload(self): test_config = { "mp": 2, "gpus": 4, "load_gpus": 2, "nodes": 1, "bs": 8, "steps": 1100, "layers": LAYERS, "hidden_size": HIDDEN_SIZE, "seq_length": 256, "heads": ATTN_HEADS, "deepspeed": True, "tag": "ds_zero2_offload", "zero": True, "other_args": "", "checkpoint_name": "ckpt_mp2_gpu4_gpu2_w_zero2_offload", "checkpoint_interval": 1000, "json": "ds_config_func_bs8_zero2_offload.json", "cpu_optimizer": True, } succ = self.run_test(test_config, 0.01) self.assertTrue(succ) def test_mp2_gpu2_load_gpu4_node1_with_zero2(self): test_config = { "mp": 2, "gpus": 2, "load_gpus": 4, "nodes": 1, "bs": 8, "steps": 1100, "layers": LAYERS, "hidden_size": HIDDEN_SIZE, "seq_length": 256, "heads": ATTN_HEADS, "deepspeed": True, "tag": "ds_zero2", "zero": True, "other_args": "", "checkpoint_name": "ckpt_mp2_gpu2_gpu4_w_zero2", "checkpoint_interval": 1000, "json": "ds_config_func_bs8_zero2.json", } succ = self.run_test(test_config, 0.01) self.assertTrue(succ) def test_mp2_gpu2_load_gpu4_node1_with_zero2_offload(self): test_config = { "mp": 2, "gpus": 2, "load_gpus": 4, "nodes": 1, "bs": 8, "steps": 1100, "layers": LAYERS, "hidden_size": HIDDEN_SIZE, "seq_length": 256, "heads": ATTN_HEADS, "deepspeed": True, "tag": "ds_zero2_offload", "zero": True, "other_args": "", "checkpoint_name": "ckpt_mp2_gpu2_gpu4_w_zero2_offload", "checkpoint_interval": 1000, "json": "ds_config_func_bs8_zero2_offload.json", "cpu_optimizer": True, } succ = self.run_test(test_config, 0.01) self.assertTrue(succ) def test_mp2_gpu4_node1_without_zero(self): test_config = { "mp": 2, "gpus": 4, "nodes": 1, "bs": 8, "steps": 1100, "layers": LAYERS, "hidden_size": HIDDEN_SIZE, "seq_length": 256, "heads": ATTN_HEADS, "deepspeed": True, "zero": False, "other_args": "", "tag": "ds_without_zero", "checkpoint_name": "ckpt_mp4_gpu16_wo_zero", "checkpoint_interval": 1000, "json": "ds_config_func_bs8_no_zero.json", } succ = self.run_test(test_config, 0.01) self.assertTrue(succ) def gen_name(self, test_config, prefix): save_dir = "checkpoint_test_logs" tag = test_config["tag"] checkpoint_name = test_config["checkpoint_name"] file_name = f"_{tag}_{checkpoint_name}.log" return os.path.join(save_dir, prefix + file_name) def run_test(self, test_config, r_tol): print("\n") print("{0}: starting......".format(self.id())) # Cache save and load gpu counts save_gpus = test_config["gpus"] if "load_gpus" in test_config: load_gpus = test_config["load_gpus"] del test_config["load_gpus"] else: load_gpus = test_config["gpus"] # save to current directory. checkpoint_folder = test_config["checkpoint_name"] checkpoint_interval = test_config["checkpoint_interval"] checkpoint_name = test_config["checkpoint_name"] #---------------remove old checkpoint---------------# try: cmd = f"rm -rf {checkpoint_name}" print(f"{self.id()} cmd: {cmd}") subprocess.run(cmd, shell=True, check=False, executable='/bin/bash') except: print("No old checkpoint") if "cpu_optimizer" in test_config and test_config["cpu_optimizer"]: cpu_optimizer_flag = " --cpu-optimizer" else: cpu_optimizer_flag = "" #-----------------Saving Checkpoint-----------------# # building checkpoint arguments test_config[ "other_args"] = f"\"--save {checkpoint_folder} --save-interval {checkpoint_interval} {cpu_optimizer_flag}\"" prefix = "gpt2_saving_checkpoint" # create checkpoint run... base_file = self.gen_name(test_config, prefix) # remove previous test log try: cmd = f"rm {base_file}" subprocess.run(cmd, shell=True, check=False, executable='/bin/bash') except: print(f"{self.id()} No old logs") print("{0}: Run for saving checkpoint".format(self.id())) self.run_gpt2_test(test_config, base_file) #-----------------Loading Checkpoint-----------------# # building checkpoint arguments test_config["other_args"] = f"\"--load {checkpoint_folder} {cpu_optimizer_flag} \"" # set checkpoint load iteration try: cmd = f"echo {checkpoint_interval} > {checkpoint_name}/latest_checkpointed_iteration.txt" print(f"{self.id()} running cmd: {cmd}") subprocess.run(cmd, shell=True, check=False, executable='/bin/bash') except: print(f"{self.id()} Failed to update the checkpoint iteration file") return False prefix = "gpt2_loading_checkpoint" # set load gpus test_config["gpus"] = load_gpus print("{0}: Second run loading checkpoint and continuing.".format(self.id())) test_file = self.gen_name(test_config, prefix) # remove previous test log try: cmd = f"rm {test_file}" subprocess.run(cmd, shell=True, check=False, executable='/bin/bash') except: print(f"{self.id()} no previous logs for") self.run_gpt2_test(test_config, test_file) return self.check_parity(base_file, test_file, r_tol) def has_loss_data(self, file_name): has_loss = False if os.path.exists(file_name): loss = grep_loss_from_file(file_name) if loss != 0.0: has_loss = True return has_loss def check_parity(self, base_file, test_file, r_tol): base_loss = grep_loss_from_file(base_file) test_loss = grep_loss_from_file(test_file) print("baseline loss: {0}, test loss: {1}".format(base_loss, test_loss)) if base_loss == 0.0 or test_loss == 0.0: return False if abs((base_loss - test_loss) / base_loss) > r_tol: return False return True def checkpoint_suite(): suite = unittest.TestSuite() suite.addTest(GPT2CheckpointTestCase('test_mp2_gpu4_node1_with_zero1')) suite.addTest(GPT2CheckpointTestCase('test_mp2_gpu4_node1_with_zero2')) suite.addTest(GPT2CheckpointTestCase('test_mp2_gpu4_node1_with_zero2_offload')) # Shrink DP suite.addTest(GPT2CheckpointTestCase('test_mp1_gpu2_load_gpu1_node1_with_zero1')) suite.addTest(GPT2CheckpointTestCase('test_mp1_gpu2_load_gpu1_node1_with_zero2')) suite.addTest(GPT2CheckpointTestCase('test_mp1_gpu2_load_gpu1_node1_with_zero2_offload')) suite.addTest(GPT2CheckpointTestCase('test_mp2_gpu4_load_gpu2_node1_with_zero1')) suite.addTest(GPT2CheckpointTestCase('test_mp2_gpu4_load_gpu2_node1_with_zero2')) suite.addTest(GPT2CheckpointTestCase('test_mp2_gpu4_load_gpu2_node1_with_zero2_offload')) # Expand DP suite.addTest(GPT2CheckpointTestCase('test_mp1_gpu2_load_gpu4_node1_with_zero1')) suite.addTest(GPT2CheckpointTestCase('test_mp1_gpu2_load_gpu4_node1_with_zero2')) suite.addTest(GPT2CheckpointTestCase('test_mp1_gpu2_load_gpu4_node1_with_zero2_offload')) suite.addTest(GPT2CheckpointTestCase('test_mp2_gpu2_load_gpu4_node1_with_zero1')) suite.addTest(GPT2CheckpointTestCase('test_mp2_gpu2_load_gpu4_node1_with_zero2')) suite.addTest(GPT2CheckpointTestCase('test_mp2_gpu2_load_gpu4_node1_with_zero2_offload')) suite.addTest(GPT2CheckpointTestCase('test_mp2_gpu4_node1_without_zero')) return suite if __name__ == '__main__': runner = unittest.TextTestRunner(failfast=True) runner.run(checkpoint_suite())
# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team """ Note: please copy webtext data to "Megatron-LM" folder, before running this script. """ import unittest import os import re from .test_common import BaseTestCase LAYERS = 2 HIDDEN_SIZE = 128 ATTN_HEADS = 8 SEQ_LEN = 64 MASTER_PORT = 29700 def grep_loss_from_file(file_name): loss = 0.0 print(f'grepping {file_name}') with open(file_name, 'r') as f: lines = f.readlines() line_filter = "validation loss at the end of training for test data | LM loss:" match_number = re.compile(r'LM loss: ([-+]?[0-9]+\.?[0-9]*(?:[Ee][-+]?[0-9]+)?)') for line in lines: if line_filter in line: loss = re.findall(match_number, line) loss = float(loss[0]) if loss == 0.0: print("no loss found in file ", file_name) return loss class GPT2FuncTestCase(BaseTestCase): def __init__(self, methodName="DeepSpeed function test on GPT2 model"): super(GPT2FuncTestCase, self).__init__(methodName) def setUp(self): self.save_dir = os.getcwd() new_dir = os.path.dirname(__file__) if new_dir: os.chdir(new_dir) def tearDown(self): os.chdir(self.save_dir) def test_mp1_gpu2_node1_fp16(self): test_config = { "mp": 1, "gpus": 2, "nodes": 1, "bs": 8, "steps": 1000, "layers": LAYERS, "hidden_size": HIDDEN_SIZE, "seq_length": SEQ_LEN, "heads": ATTN_HEADS, "deepspeed": False, "json": "ds_config_func_bs8_no_zero.json", } succ = self.run_test(test_config, 0.01) self.assertTrue(succ) def test_mp1_gpu1_node1_zero1(self): test_config = { "mp": 1, "gpus": 1, "nodes": 1, "bs": 4, "steps": 1000, "layers": LAYERS, "hidden_size": HIDDEN_SIZE, "seq_length": SEQ_LEN, "heads": ATTN_HEADS, "deepspeed": False, "json": "ds_config_func_bs4_zero1.json", } succ = self.run_test(test_config, 0.01) self.assertTrue(succ) def test_mp1_gpu2_node1_zero1(self): test_config = { "mp": 1, "gpus": 2, "nodes": 1, "bs": 8, "steps": 1000, "layers": LAYERS, "hidden_size": HIDDEN_SIZE, "seq_length": SEQ_LEN, "heads": ATTN_HEADS, "deepspeed": False, "json": "ds_config_func_bs8_zero1.json", } succ = self.run_test(test_config, 0.01) self.assertTrue(succ) def test_mp2_gpu4_node1_zero1(self): test_config = { "mp": 2, "gpus": 4, "nodes": 1, "bs": 8, "steps": 1000, "layers": LAYERS, "hidden_size": HIDDEN_SIZE, "seq_length": SEQ_LEN, "heads": ATTN_HEADS, "deepspeed": False, "json": "ds_config_func_bs8_zero1.json", } succ = self.run_test(test_config, 0.01) self.assertTrue(succ) def test_mp4_gpu4_node1_zero1(self): test_config = { "mp": 4, "gpus": 4, "nodes": 1, "bs": 8, "steps": 1000, "layers": LAYERS, "hidden_size": HIDDEN_SIZE, "seq_length": SEQ_LEN, "heads": ATTN_HEADS, "deepspeed": False, "json": "ds_config_func_bs8_zero1.json", } succ = self.run_test(test_config, 0.01) self.assertTrue(succ) def test_mp1_gpu1_node1_zero2(self): test_config = { "mp": 1, "gpus": 1, "nodes": 1, "bs": 4, "steps": 1000, "layers": LAYERS, "hidden_size": HIDDEN_SIZE, "seq_length": SEQ_LEN, "heads": ATTN_HEADS, "deepspeed": False, "json": "ds_config_func_bs4_zero2.json", } succ = self.run_test(test_config, 0.01) self.assertTrue(succ) def test_mp1_gpu2_node1_zero2(self): test_config = { "mp": 1, "gpus": 2, "nodes": 1, "bs": 8, "steps": 1000, "layers": LAYERS, "hidden_size": HIDDEN_SIZE, "seq_length": SEQ_LEN, "heads": ATTN_HEADS, "deepspeed": False, "json": "ds_config_func_bs8_zero2.json", } succ = self.run_test(test_config, 0.01) self.assertTrue(succ) def test_mp2_gpu4_node1_zero2(self): test_config = { "mp": 2, "gpus": 4, "nodes": 1, "bs": 8, "steps": 1000, "layers": LAYERS, "hidden_size": HIDDEN_SIZE, "seq_length": SEQ_LEN, "heads": ATTN_HEADS, "deepspeed": False, "json": "ds_config_func_bs8_zero2.json", } basic_run_config = test_config succ = self.run_test(basic_run_config, 0.01) self.assertTrue(succ) partition_activation_config = test_config succ = self.run_partition_activations_test(partition_activation_config, 0.01) self.assertTrue(succ) def test_mp4_gpu4_node1_zero2(self): test_config = { "mp": 4, "gpus": 4, "nodes": 1, "bs": 8, "steps": 1000, "layers": LAYERS, "hidden_size": HIDDEN_SIZE, "seq_length": SEQ_LEN, "heads": ATTN_HEADS, "deepspeed": False, "json": "ds_config_func_bs8_zero2.json", } basic_run_config = test_config succ = self.run_test(basic_run_config, 0.01) self.assertTrue(succ) partition_activation_config = test_config succ = self.run_partition_activations_test(partition_activation_config, 0.01) self.assertTrue(succ) def test_mp1_gpu1_node1_zero2_ds_offload(self): test_config = { "mp": 1, "gpus": 1, "nodes": 1, "bs": 4, "steps": 1000, "layers": LAYERS, "hidden_size": HIDDEN_SIZE, "seq_length": SEQ_LEN, "heads": ATTN_HEADS, "deepspeed": False, "json": "ds_config_func_bs4_zero2_offload.json", "cpu_optimizer": True, } succ = self.run_test(test_config, 0.02) self.assertTrue(succ) def test_mp1_gpu2_node1_zero2_ds_offload(self): test_config = { "mp": 1, "gpus": 2, "nodes": 1, "bs": 8, "steps": 1000, "layers": LAYERS, "hidden_size": HIDDEN_SIZE, "seq_length": SEQ_LEN, "heads": ATTN_HEADS, "deepspeed": False, "json": "ds_config_func_bs8_zero2_offload.json", "cpu_optimizer": True, } succ = self.run_test(test_config, 0.02) self.assertTrue(succ) def test_mp2_gpu4_node1_zero2_gas(self): test_config = { "mp": 2, "gpus": 4, "nodes": 1, "bs": 8, "steps": 1000, "layers": LAYERS, "hidden_size": HIDDEN_SIZE, "seq_length": SEQ_LEN, "heads": ATTN_HEADS, "deepspeed": True, "json": "ds_config_func_bs8_zero2_gas3.json", "baseline": "ds_config_func_bs8_zero0_gas3.json", } succ = self.run_test(test_config, 0.01) self.assertTrue(succ) succ = self.run_partition_activations_test(test_config, 0.01) self.assertTrue(succ) def test_mp2_gpu4_node1_zero2_ds_offload(self): test_config = { "mp": 2, "gpus": 4, "nodes": 1, "bs": 8, "steps": 1000, "layers": LAYERS, "hidden_size": HIDDEN_SIZE, "seq_length": SEQ_LEN, "heads": ATTN_HEADS, "deepspeed": False, "json": "ds_config_func_bs8_zero2_offload.json", "cpu_optimizer": True, } basic_run_config = test_config succ = self.run_test(basic_run_config, 0.02) self.assertTrue(succ) partition_activation_config = test_config succ = self.run_partition_activations_test(partition_activation_config, 0.02) self.assertTrue(succ) def test_mp4_gpu4_node1_zero2_ds_offload(self): test_config = { "mp": 4, "gpus": 4, "nodes": 1, "bs": 8, "steps": 1000, "layers": LAYERS, "hidden_size": HIDDEN_SIZE, "seq_length": SEQ_LEN, "heads": ATTN_HEADS, "deepspeed": False, "json": "ds_config_func_bs8_zero2_offload.json", "cpu_optimizer": True, } basic_run_config = test_config succ = self.run_test(basic_run_config, 0.02) self.assertTrue(succ) partition_activation_config = test_config succ = self.run_partition_activations_test(partition_activation_config, 0.02) self.assertTrue(succ) def test_mp1_gpu1_node1_zero2_torch_offload(self): test_config = { "mp": 1, "gpus": 1, "nodes": 1, "bs": 4, "steps": 1000, "layers": LAYERS, "hidden_size": HIDDEN_SIZE, "seq_length": SEQ_LEN, "heads": ATTN_HEADS, "deepspeed": False, "json": "ds_config_func_bs4_zero2_offload.json", "cpu_optimizer": True, "test_torch_offload": True, } succ = self.run_test(test_config, 0.01) self.assertTrue(succ) def test_mp1_gpu2_node1_zero2_torch_offload(self): test_config = { "mp": 1, "gpus": 2, "nodes": 1, "bs": 8, "steps": 1000, "layers": LAYERS, "hidden_size": HIDDEN_SIZE, "seq_length": SEQ_LEN, "heads": ATTN_HEADS, "deepspeed": False, "json": "ds_config_func_bs8_zero2_offload.json", "cpu_optimizer": True, "test_torch_offload": True, } succ = self.run_test(test_config, 0.01) self.assertTrue(succ) def test_mp2_gpu4_node1_zero2_torch_offload(self): test_config = { "mp": 2, "gpus": 4, "nodes": 1, "bs": 8, "steps": 1000, "layers": LAYERS, "hidden_size": HIDDEN_SIZE, "seq_length": SEQ_LEN, "heads": ATTN_HEADS, "deepspeed": False, "json": "ds_config_func_bs8_zero2_offload.json", "cpu_optimizer": True, "test_torch_offload": True, } basic_run_config = test_config succ = self.run_test(basic_run_config, 0.01) self.assertTrue(succ) partition_activation_config = test_config succ = self.run_partition_activations_test(partition_activation_config, 0.01) self.assertTrue(succ) def test_mp4_gpu4_node1_zero2_torch_offload(self): test_config = { "mp": 4, "gpus": 4, "nodes": 1, "bs": 8, "steps": 1000, "layers": LAYERS, "hidden_size": HIDDEN_SIZE, "seq_length": SEQ_LEN, "heads": ATTN_HEADS, "deepspeed": False, "json": "ds_config_func_bs8_zero2_offload.json", "cpu_optimizer": True, "test_torch_offload": True, } basic_run_config = test_config succ = self.run_test(basic_run_config, 0.01) self.assertTrue(succ) partition_activation_config = test_config succ = self.run_partition_activations_test(partition_activation_config, 0.01) def test_optimizer_scheduler(self): test_config = { "mp": 1, "gpus": 1, "nodes": 1, "bs": 4, "steps": 20, "layers": LAYERS, "hidden_size": HIDDEN_SIZE, "seq_length": SEQ_LEN, "heads": ATTN_HEADS, "deepspeed": False, "json": "ds_config_func_scheduler.json", } succ = self.run_test(test_config, 0.01) # assure no crash. self.assertTrue(True) def run_partition_activations_test(self, test_config, r_tol): print("\n") print("{0}: starting......".format(self.id())) baseline_prefix = "gpt2_func_" prefix = "gpt2_partition_activation_" deepspeed_config = test_config["json"] baseline_deepspeed_config = False cpu_optimizer_flag = self.gen_cpu_optimizer_flag(test_config, True) # baseline run... # turnoff deepspeed if baseline deepspeed config # is not provided if not "baseline" in test_config: test_config["deepspeed"] = False else: test_config["json"] = test_config["baseline"] baseline_prefix += test_config["json"][0:-5] baseline_deepspeed_config = True test_config["other_args"] = f"\"{cpu_optimizer_flag}\"" base_file = self.gen_output_name(test_config, baseline_prefix, baseline_config=baseline_deepspeed_config) # skip baseline run if it exists. if not self.has_loss_data(base_file): print("{0}: baseline run.".format(self.id())) self.run_gpt2_test(test_config, base_file) else: print("{0}: baseline exists.".format(self.id())) # DeepSpeed run... test_config["deepspeed"] = True cpu_optimizer_flag = self.gen_cpu_optimizer_flag(test_config, False) test_config["other_args"] = f"\"--deepspeed-activation-checkpointing {cpu_optimizer_flag}\"" test_config["json"] = deepspeed_config print("{0}: DeepSpeed run.".format(self.id())) test_file = self.gen_output_name(test_config, prefix) self.run_gpt2_test(test_config, test_file) return self.check_parity(base_file, test_file, r_tol) def run_test(self, test_config, r_tol): print("\n") print("{0}: starting......".format(self.id())) prefix = "gpt2_func" baseline_prefix = prefix deepspeed_config = test_config["json"] baseline_deepspeed_config = False cpu_optimizer_flag = self.gen_cpu_optimizer_flag(test_config, True) # baseline run... # turn off deepspeed if a baseline deepspeed config # is not provided if not "baseline" in test_config: test_config["deepspeed"] = False else: test_config["json"] = test_config["baseline"] baseline_prefix = prefix + test_config["json"][0:-5] baseline_deepspeed_config = True test_config["other_args"] = f"\"{cpu_optimizer_flag}\"" # baseline run... base_file = self.gen_output_name(test_config, baseline_prefix, baseline_config=baseline_deepspeed_config) # skip baseline run if it exists. if not self.has_loss_data(base_file): print("{0}: baseline run.".format(self.id())) self.run_gpt2_test(test_config, base_file) else: print("{0}: baseline exists.".format(self.id())) # DeepSpeed run... test_config["deepspeed"] = True cpu_optimizer_flag = self.gen_cpu_optimizer_flag(test_config, False) test_config["other_args"] = f"\"{cpu_optimizer_flag}\"" print("{0}: DeepSpeed run.".format(self.id())) test_file = self.gen_output_name(test_config, prefix) self.run_gpt2_test(test_config, test_file) return self.check_parity(base_file, test_file, r_tol) def has_loss_data(self, file_name): has_loss = False if os.path.exists(file_name): loss = grep_loss_from_file(file_name) if loss != 0.0: has_loss = True return has_loss def check_parity(self, base_file, test_file, r_tol): base_loss = grep_loss_from_file(base_file) test_loss = grep_loss_from_file(test_file) print("baseline loss: {0}, test loss: {1}".format(base_loss, test_loss)) if base_loss == 0.0 or test_loss == 0.0: return False if abs((base_loss - test_loss) / base_loss) > r_tol: return False return True def gen_cpu_optimizer_flag(self, test_config, is_baseline): if 'cpu_optimizer' in test_config and test_config['cpu_optimizer']: cpu_optimizer_flag = "--cpu-optimizer" if is_baseline: cpu_optimizer_flag += " --cpu_torch_adam" return cpu_optimizer_flag if 'test_torch_offload' in test_config and test_config['test_torch_offload']: cpu_optimizer_flag += " --cpu_torch_adam" return cpu_optimizer_flag else: cpu_optimizer_flag = "" return cpu_optimizer_flag def suite(): suite = unittest.TestSuite() suite.addTest(GPT2FuncTestCase('test_mp1_gpu2_node1_fp16')) # Baseline = Megatron + Torch.Optim.Adam # Test = Megatron + Torch.Optim.Adam + ZeRO-Offload suite.addTest(GPT2FuncTestCase('test_mp1_gpu1_node1_zero2_torch_offload')) suite.addTest(GPT2FuncTestCase('test_mp1_gpu2_node1_zero2_torch_offload')) suite.addTest(GPT2FuncTestCase('test_mp2_gpu4_node1_zero2_torch_offload')) suite.addTest(GPT2FuncTestCase('test_mp4_gpu4_node1_zero2_torch_offload')) # Baseline = Megatron + Torch.Optim.Adam # Test = Megatron + DeepSpeedAdam + ZeRO-Offload suite.addTest(GPT2FuncTestCase('test_mp1_gpu1_node1_zero2_ds_offload')) suite.addTest(GPT2FuncTestCase('test_mp1_gpu2_node1_zero2_ds_offload')) suite.addTest(GPT2FuncTestCase('test_mp2_gpu4_node1_zero2_ds_offload')) suite.addTest(GPT2FuncTestCase('test_mp4_gpu4_node1_zero2_ds_offload')) suite.addTest(GPT2FuncTestCase('test_mp1_gpu1_node1_zero1')) suite.addTest(GPT2FuncTestCase('test_mp1_gpu2_node1_zero1')) suite.addTest(GPT2FuncTestCase('test_mp2_gpu4_node1_zero1')) suite.addTest(GPT2FuncTestCase('test_mp4_gpu4_node1_zero1')) suite.addTest(GPT2FuncTestCase('test_mp1_gpu1_node1_zero2')) suite.addTest(GPT2FuncTestCase('test_mp1_gpu2_node1_zero2')) suite.addTest(GPT2FuncTestCase('test_mp2_gpu4_node1_zero2')) suite.addTest(GPT2FuncTestCase('test_mp4_gpu4_node1_zero2')) suite.addTest(GPT2FuncTestCase('test_mp2_gpu4_node1_zero2_gas')) suite.addTest(GPT2FuncTestCase('test_optimizer_scheduler')) return suite if __name__ == '__main__': runner = unittest.TextTestRunner(failfast=True) runner.run(suite())
# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team import unittest import subprocess import os import time class BaseTestCase(unittest.TestCase): def __init__(self, methodName="DeepSpeed performance test"): super(BaseTestCase, self).__init__(methodName) self.test_dir = "./test" self.baseline_dir = "./baseline" self.timestr = time.strftime("%Y%m%d-%H%M%S") def gen_output_name(self, test_config, prefix): other_args = test_config["other_args"] if "other_args" in test_config else "" zero_args = "_zero" if "zero" in test_config and test_config["zero"] else "" other_args = other_args.strip(' -\\').replace(" ", "").replace("\"", "") if other_args: other_args = "_" + other_args if test_config["deepspeed"]: file_name = "_gpu{0}_{1}_ds{2}-{3}.log".format(test_config["gpus"], other_args, zero_args, self.timestr) save_dir = self.test_dir else: file_name = "_gpu{0}_{1}.log".format(test_config["gpus"], other_args) save_dir = self.baseline_dir return os.path.join(save_dir, prefix + file_name) def ensure_directory_exists(self, filename): dirname = os.path.dirname(filename) if not os.path.exists(dirname): os.makedirs(dirname) def clean_test_env(self): cmd = "dlts_ssh pkill -9 -f /usr/bin/python" print(cmd) subprocess.run(cmd, shell=True, check=False, executable='/bin/bash') time.sleep(20) def run_BingBertSquad_test(self, test_config, output): ds_flag = " -d --deepspeed_config " + test_config["json"] if test_config["deepspeed"] else " " other_args = " " + test_config["other_args"] if "other_args" in test_config else " " cmd = "./run_BingBertSquad_sanity.sh -e 1 -g {0} {1} {2}".format(test_config["gpus"], other_args, ds_flag) self.ensure_directory_exists(output) with open(output, "w") as f: print(cmd) subprocess.run(cmd, shell=True, check=False, executable='/bin/bash', stdout=f, stderr=f)
# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team from .BingBertSquad_run_func_test import BingBertSquadFuncTestCase from .BingBertSquad_run_func_test import suite
# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team """ Note: please copy webtext data to "Megatron-LM" folder, before running this script. """ import unittest import os import re from .BingBertSquad_test_common import BaseTestCase def grep_loss_from_file(file_name): loss = 0.0 with open(file_name, 'r') as f: lines = f.readlines() line_filter = "bert_squad_progress: step=" match_number = re.compile(r'loss=([-+]?[0-9]+\.?[0-9]*(?:[Ee][-+]?[0-9]+)?)') for line in lines: if line_filter in line: loss = re.findall(match_number, line) loss = float(loss[0]) if loss == 0.0: print("no loss found in file ", file_name) return loss class BingBertSquadFuncTestCase(BaseTestCase): def __init__(self, methodName="DeepSpeed function test on BingBertSquad model"): super(BingBertSquadFuncTestCase, self).__init__(methodName) def setUp(self): self.save_dir = os.getcwd() new_dir = os.path.dirname(__file__) if new_dir: os.chdir(new_dir) def tearDown(self): os.chdir(self.save_dir) def test_gpu4_fp16(self): test_config = { "gpus": 4, "deepspeed": False, "json": "deepspeed_bsz24_fp16_config.json", "max_steps": 8, "max_epoch_steps": 4, "other_args": "--fp16 --print_steps 1" } succ = self.run_test(test_config, 0.01) self.assertTrue(succ) def test_gpu4_fp16_zero2(self): test_config = { "gpus": 4, "deepspeed": False, "json": "deepspeed_bsz24_fp16_zero2_config.json", "max_steps": 8, "max_epoch_steps": 4, "other_args": "--fp16 --print_steps 1" } succ = self.run_test(test_config, 0.01) self.assertTrue(succ) def test_gpu1_fp16(self): test_config = { "gpus": 1, "deepspeed": False, "json": "deepspeed_bsz24_fp16_config.json", "max_steps": 8, "max_epoch_steps": 4, "other_args": "--fp16 --print_steps 1" } succ = self.run_test(test_config, 0.01) self.assertTrue(succ) def test_gpu4_fp32(self): test_config = { "gpus": 4, "deepspeed": False, "json": "deepspeed_bsz24_fp32_config.json", "max_steps": 8, "max_epoch_steps": 4, "other_args": "--print_steps 1" } succ = self.run_test(test_config, 0.01) self.assertTrue(succ) def test_gpu1_fp32(self): test_config = { "gpus": 1, "deepspeed": False, "json": "deepspeed_bsz24_fp32_config.json", "max_steps": 8, "max_epoch_steps": 4, "other_args": "--print_steps 1" } succ = self.run_test(test_config, 0.01) self.assertTrue(succ) def run_test(self, test_config, r_tol): print("\n") print("{0}: starting......".format(self.id())) prefix = "BingBertSquad_func" test_config['other_args'] += f" --max_steps {test_config['max_steps']}" test_config['other_args'] += f" --max_steps_per_epoch {test_config['max_epoch_steps']}" # baseline run... test_config["deepspeed"] = False base_file = self.gen_output_name(test_config, prefix) # skip baseline run if it exists. if not self.has_loss_data(base_file): print("{0}: baseline run.".format(self.id())) self.run_BingBertSquad_test(test_config, base_file) else: print("{0}: baseline exists.".format(self.id())) # DeepSpeed run... test_config["deepspeed"] = True print("{0}: DeepSpeed run.".format(self.id())) test_file = self.gen_output_name(test_config, prefix) self.run_BingBertSquad_test(test_config, test_file) return self.check_parity(base_file, test_file, r_tol) def has_loss_data(self, file_name): has_loss = False if os.path.exists(file_name): loss = grep_loss_from_file(file_name) if loss != 0.0: has_loss = True return has_loss def check_parity(self, base_file, test_file, r_tol): base_loss = grep_loss_from_file(base_file) test_loss = grep_loss_from_file(test_file) print("baseline loss: {0}, test loss: {1}".format(base_loss, test_loss)) if base_loss == 0.0 or test_loss == 0.0: return False if abs((base_loss - test_loss) / base_loss) > r_tol: return False return True def suite(): suite = unittest.TestSuite() suite.addTest(BingBertSquadFuncTestCase('test_gpu4_fp16')) suite.addTest(BingBertSquadFuncTestCase('test_gpu4_fp16_zero2')) suite.addTest(BingBertSquadFuncTestCase('test_gpu1_fp16')) suite.addTest(BingBertSquadFuncTestCase('test_gpu4_fp32')) suite.addTest(BingBertSquadFuncTestCase('test_gpu1_fp32')) return suite if __name__ == '__main__': runner = unittest.TextTestRunner(failfast=True) runner.run(suite())
# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team import subprocess as sp import os from math import isclose import sys import pytest import json sys.path.append("../../../DeepSpeedExamples/BingBertSquad") import evaluate as eval squad_dir = "/data/BingBertSquad" base_dir = "../../../DeepSpeedExamples/BingBertSquad" script_file_name = "run_squad_deepspeed.sh" model_file_name = "training_state_checkpoint_162.tar" eval_file_name = "dev-v1.1.json" pred_file_name = "predictions.json" num_gpus = "4" timeout_sec = 5 * 60 * 60 # 5 hours eval_version = "1.1" def create_config_file(tmpdir, zeroenabled=False): config_dict = { "train_batch_size": 24, "train_micro_batch_size_per_gpu": 6, "steps_per_print": 10, "optimizer": { "type": "Adam", "params": { "lr": 3e-5, "weight_decay": 0.0, "bias_correction": False } }, "gradient_clipping": 1.0, "fp16": { "enabled": True } } config_dict["zero_optimization"] = zeroenabled config_path = os.path.join(tmpdir, 'temp_config.json') with open(config_path, 'w') as fd: json.dump(config_dict, fd) return config_path def test_e2e_squad_deepspeed_base(tmpdir): config_file = create_config_file(tmpdir) # base run results => {"exact_match": 83.9829706717124, "f1": 90.71138132004097} expected_exact_match = 83.98 expected_f1 = 90.71 model_file = os.path.join(squad_dir, model_file_name) eval_file = os.path.join(squad_dir, eval_file_name) output_dir = os.path.join(tmpdir, "output") pred_file = os.path.join(output_dir, pred_file_name) proc = sp.Popen(["bash", script_file_name, num_gpus, model_file, squad_dir, output_dir, config_file], cwd=base_dir) try: proc.communicate(timeout=timeout_sec) if os.path.exists(pred_file): eval_result = eval.evaluate(eval_version, eval_file, pred_file) print("evaluation result: ", json.dumps(eval_result)) assert isclose(eval_result["exact_match"], expected_exact_match, abs_tol=1e-2) assert isclose(eval_result["f1"], expected_f1, abs_tol=1e-2) else: pytest.fail("Error: Run Failed") except sp.TimeoutExpired: proc.kill() pytest.fail("Error: Timeout") except sp.CalledProcessError: pytest.fail("Error: Run Failed") def test_e2e_squad_deepspeed_zero(tmpdir): config_file = create_config_file(tmpdir, True) # base run results => {"exact_match": 84.1438032166509, "f1": 90.89776136505441} expected_exact_match = 84.14 expected_f1 = 90.89 model_file = os.path.join(squad_dir, model_file_name) eval_file = os.path.join(squad_dir, eval_file_name) output_dir = os.path.join(tmpdir, "output") pred_file = os.path.join(output_dir, pred_file_name) proc = sp.Popen(["bash", script_file_name, num_gpus, model_file, squad_dir, output_dir, config_file], cwd=base_dir) try: proc.communicate(timeout=timeout_sec) if os.path.exists(pred_file): eval_result = eval.evaluate(eval_version, eval_file, pred_file) print("evaluation result: ", json.dumps(eval_result)) assert isclose(eval_result["exact_match"], expected_exact_match, abs_tol=1e-2) assert isclose(eval_result["f1"], expected_f1, abs_tol=1e-2) else: pytest.fail("Error: Run Failed") except sp.TimeoutExpired: proc.kill() pytest.fail("Error: Timeout") except sp.CalledProcessError: pytest.fail("Error: Run Failed")
# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team import os import json import argparse import torch import deepspeed from torch.utils.data.distributed import DistributedSampler import deepspeed.comm as dist class SimpleModel(torch.nn.Module): def __init__(self, hidden_dim, empty_grad=False): super(SimpleModel, self).__init__() self.linear = torch.nn.Linear(hidden_dim, hidden_dim) if empty_grad: self.layers2 = torch.nn.ModuleList([torch.nn.Linear(hidden_dim, hidden_dim)]) self.cross_entropy_loss = torch.nn.CrossEntropyLoss() def forward(self, x, y): hidden = x hidden = self.linear(hidden) return self.cross_entropy_loss(hidden, y) def create_config_from_dict(tmpdir, config_dict): config_path = os.path.join(tmpdir, 'temp_config.json') with open(config_path, 'w') as fd: json.dump(config_dict, fd) return config_path def get_data_loader(model, total_samples, hidden_dim, device): batch_size = model.train_micro_batch_size_per_gpu() train_data = torch.randn(total_samples, hidden_dim, device=device, dtype=torch.half) train_label = torch.empty(total_samples, dtype=torch.long, device=device).random_(hidden_dim) train_dataset = torch.utils.data.TensorDataset(train_data, train_label) sampler = DistributedSampler(train_dataset) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, sampler=sampler) return train_loader def get_args(tmpdir, config_dict): parser = argparse.ArgumentParser() parser.add_argument("--local_rank", type=int, default=0) parser.add_argument('--zero', type=int, default=0) args = parser.parse_args() #args='' config_dict["zero_optimization"]["stage"] = args.zero print('config_dict["zero_optimization"]', config_dict["zero_optimization"]) config_path = create_config_from_dict(tmpdir, config_dict) args.deepspeed_config = config_path return args def print0(msg): if dist.get_rank() == 0: print(msg, flush=True) rank = int(os.environ['RANK']) print('seed:', 2222 + rank) torch.random.manual_seed(2222 + rank) config_dict = { "train_batch_size": 8, "steps_per_print": 1, "optimizer": { "type": "Adam", "params": { "lr": 0.00015, } }, "fp16": { "enabled": True, "initial_scale_power": 15 }, "zero_optimization": { "stage": 0, "reduce_bucket_size": 20, "stage3_model_persistence_threshold": 10 } } # "initial_scale_power": 15 args = get_args('/tmp/', config_dict) hidden_dim = 32 model = SimpleModel(hidden_dim, empty_grad=False) model, _, _, _ = deepspeed.initialize(args=args, model=model, model_parameters=model.parameters(), dist_init_required=True) def print_params(tag, model): if dist.get_rank() == 0: for n, p in model.named_parameters(): print0("{} {}:{}".format(tag, n, p)) data_loader = get_data_loader(model=model, total_samples=1000, hidden_dim=hidden_dim, device=model.device) #print_params('pre-train', model) for n, batch in enumerate(data_loader): loss = model(batch[0], batch[1]) if dist.get_rank() == 0: print("LOSS:", loss.item()) model.backward(loss) model.step() #print_params('step={}'.format(n), model) if n == 5: break
# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team import torch import deepspeed ################################### # Setup ################################### class VerboseLinear(torch.nn.Linear): def __init__(self, **kwargs): print(f'Begin VerboseLinear.__init__') super().__init__(**kwargs) print(f'End VerboseLinear.__init__') class LinearStack(torch.nn.Module): def __init__(self, input_dim=2, hidden_dim=4, output_dim=4, num_layers=2): super().__init__() self.input_dim = input_dim self.output_dim = output_dim self.hidden_dim = hidden_dim self.input_layer = VerboseLinear(in_features=self.input_dim, out_features=self.hidden_dim) self.layers = torch.nn.ModuleList([ torch.nn.Linear(in_features=self.hidden_dim, out_features=self.hidden_dim, bias=False) for x in range(num_layers) ]) self.output_layer = torch.nn.Linear(in_features=self.hidden_dim, out_features=self.output_dim) self.identity = torch.nn.Identity() def forward(self, x): x = self.input_layer(x) for layer in self.layers: x = layer(x) x = self.output_layer(x) x = self.identity(x) return x ################################### # DRIVER ################################### def test_driver(): print() print('BUILDING MODEL') with deepspeed.zero.Init(): model = LinearStack() print() # parted = [name for (name, p) in model.named_parameters() if p._partitioned] # not_parted = [name for (name, p) in model.named_parameters() if not p._partitioned] # print('partitioned: ', parted) # print('full: ', not_parted) # print() model.train() test_input = torch.rand(1, model.input_dim) grad_output = torch.rand(1, model.output_dim) grad_output.requires_grad = False test_input.requires_grad = False print() print('BEGINNING FORWARD') print() output = model(test_input) output.backward(grad_output) # parted = [name for (name, p) in model.named_parameters() if p._partitioned] # not_parted = [name for (name, p) in model.named_parameters() if not p._partitioned] # print('partitioned: ', parted) # print('full:' , not_parted) # print() #samyamspeed.disable() test_driver()
# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 import os import json import argparse import torch import deepspeed from torch.utils.data.distributed import DistributedSampler import deepspeed.comm as dist class SimpleModel(torch.nn.Module): def __init__(self, hidden_dim, empty_grad=False): super(SimpleModel, self).__init__() self.linear = torch.nn.Linear(hidden_dim, hidden_dim) if empty_grad: self.layers2 = torch.nn.ModuleList([torch.nn.Linear(hidden_dim, hidden_dim)]) self.cross_entropy_loss = torch.nn.CrossEntropyLoss() def forward(self, x, y): hidden = x hidden = self.linear(hidden) return self.cross_entropy_loss(hidden, y) def create_config_from_dict(tmpdir, config_dict): config_path = os.path.join(tmpdir, 'temp_config.json') with open(config_path, 'w') as fd: json.dump(config_dict, fd) return config_path def get_data_loader(model, total_samples, hidden_dim, device): batch_size = model.train_micro_batch_size_per_gpu() train_data = torch.randn(total_samples, hidden_dim, device=device, dtype=torch.half) train_label = torch.empty(total_samples, dtype=torch.long, device=device).random_(hidden_dim) train_dataset = torch.utils.data.TensorDataset(train_data, train_label) sampler = DistributedSampler(train_dataset) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, sampler=sampler) return train_loader def get_args(tmpdir, config_dict): parser = argparse.ArgumentParser() parser.add_argument("--local_rank", type=int, default=0) parser.add_argument('--zero', type=int, default=3) args = parser.parse_args() #args='' config_dict["zero_optimization"]["stage"] = args.zero # print('config_dict["zero_optimization"]', config_dict["zero_optimization"]) config_path = create_config_from_dict(tmpdir, config_dict) args.deepspeed_config = config_path return args def print0(msg): if dist.get_rank() == 0: print(msg, flush=True) rank = int(os.environ['RANK']) print('seed:', 2222 + rank) torch.random.manual_seed(2222 + rank) config_dict = { "train_batch_size": 8, "steps_per_print": 1, "optimizer": { "type": "Adam", "params": { "lr": 0.00015, } }, "fp16": { "enabled": True, "initial_scale_power": 15 }, "zero_optimization": { "stage": 3, "reduce_bucket_size": 20, "mics_shard_size": 4, "mics_hierarchical_params_gather": True, "stage3_model_persistence_threshold": 10 } } # "initial_scale_power": 15 args = get_args('/tmp/', config_dict) hidden_dim = 32 # with deepspeed.zero.Init(): model = SimpleModel(hidden_dim, empty_grad=False) # print('------> init model with deepspeed.zero.Init()') model, _, _, _ = deepspeed.initialize(args=args, model=model, model_parameters=model.parameters(), dist_init_required=True) def print_params(tag, model): if dist.get_rank() == 0: for n, p in model.named_parameters(): print0("{} {}:{}".format(tag, n, p)) data_loader = get_data_loader(model=model, total_samples=1000, hidden_dim=hidden_dim, device=model.device) #print_params('pre-train', model) for n, batch in enumerate(data_loader): loss = model(batch[0], batch[1]) if dist.get_rank() == 0: print("LOSS:", loss.item()) model.backward(loss) model.step() #print_params('step={}'.format(n), model) if n == 5: break
# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team import torch from deepspeed.pt.deepspeed_linear import LinearModuleForZeroStage3 from deepspeed.pt.log_utils import logger from deepspeed.accelerator import get_accelerator def see_memory_usage(message): # Print message except when distributed but not rank 0 logger.info(message) logger.info( "Memory Allocated %s GigaBytes ", get_accelerator().memory_allocated() / (1024 * 1024 * 1024), ) logger.info( "Max Memory Allocated %s GigaBytes", get_accelerator().max_memory_allocated() / (1024 * 1024 * 1024), ) logger.info( "Cache Allocated %s GigaBytes", get_accelerator().memory_cached() / (1024 * 1024 * 1024), ) logger.info( "Max cache Allocated %s GigaBytes", get_accelerator().max_memory_cached() / (1024 * 1024 * 1024), ) tens = torch.rand(1024, 16384, dtype=torch.half, device=torch.device(get_accelerator().device_name())) tens_back = tens.detach().clone() #linear_bk = torch.nn.functional.linear #torch.nn.functional.linear = deepspeed.pt.deepspeed_linear.LinearFunctionForZeroStage3.apply model = LinearModuleForZeroStage3(16384, 16384) model.to(get_accelerator().device_name()).half() see_memory_usage("Before forward") y = model(tens) see_memory_usage("After forward") model.weight.data = torch.zeros(1, dtype=torch.half, device=torch.device(get_accelerator().device_name())) see_memory_usage("After weight zero") y.backward(tens_back)
# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team import torch from transformers import AutoModelForCausalLM import deepspeed import argparse from deepspeed.accelerator import get_accelerator deepspeed.runtime.utils.see_memory_usage('pre test', force=True) model = AutoModelForCausalLM.from_pretrained('facebook/opt-350M').half().to(get_accelerator().device_name()) parser = argparse.ArgumentParser() parser = deepspeed.add_config_arguments(parser) args = parser.parse_args() deepspeed.runtime.utils.see_memory_usage('post test', force=True) m, _, _, _ = deepspeed.initialize(model=model, args=args, enable_hybrid_engine=True) m.eval() input = torch.ones(1, 16, device='cuda', dtype=torch.long) out = m(input) m.train() out = m(input) print(out['logits'], out['logits'].norm())
# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team import torch from deepspeed.ops.adam import DeepSpeedCPUAdam import time from deepspeed.accelerator import get_accelerator device = 'cpu' model_size = 1 * 1024**3 param = torch.nn.Parameter(torch.ones(model_size, device=device)) param_fp16 = torch.nn.Parameter(torch.ones(model_size, dtype=torch.half, device=get_accelerator().device_name(0))) optimizer = DeepSpeedCPUAdam([param]) #torch.set_num_threads(128) param.grad = torch.ones(model_size, device=device) avg = 0 for i in range(100): start = time.time() optimizer.step(fp16_param_groups=[param_fp16]) stop = time.time() avg += (stop - start) param.grad = torch.ones(model_size, device=device) * 2 print("Elapsed Time is ", avg / 100)
# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team import torch from deepspeed.ops.adagrad import DeepSpeedCPUAdagrad import time NUM_ITERS = 100 def _test_perf(param, optimizer_func): optimizer = optimizer_func(param) avg = 0 for i in range(NUM_ITERS): for i, p in enumerate(param): p.grad = torch.ones_like(p) * 2 start = time.time() optimizer.step() stop = time.time() avg += (stop - start) return avg / NUM_ITERS def _main(): device = 'cpu' model_size = 1 * 1024**3 group_size = [model_size, 274432] param = [torch.nn.Parameter(torch.ones(size, device=device)) for size in group_size] torch_time = _test_perf(param, torch.optim.Adagrad) ds_time = _test_perf(param, DeepSpeedCPUAdagrad) print(f"Step time: {torch_time=} {ds_time=}") _main()
# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team import torch from deepspeed.ops.adam import DeepSpeedCPUAdam import time NUM_ITERS = 100 def _test_perf(param, optimizer_func): optimizer = optimizer_func(param) avg = 0 for i in range(NUM_ITERS): for i, p in enumerate(param): p.grad = torch.ones_like(p) * 2 start = time.time() optimizer.step() stop = time.time() avg += (stop - start) return avg / NUM_ITERS def _main(): device = 'cpu' model_size = 1 * 1024**3 group_size = [model_size, 274432] param = [torch.nn.Parameter(torch.ones(size, device=device)) for size in group_size] torch_time = _test_perf(param, torch.optim.Adam) ds_time = _test_perf(param, DeepSpeedCPUAdam) print(f"Step time: {torch_time=} {ds_time=}") _main()
# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team from packaging import version as pkg_version with open('../version.txt') as fd: version = pkg_version.parse(fd.read()) with open('../version.txt', 'w') as fd: fd.write(f'{version.major}.{version.minor}.{version.micro + 1}\n') print(f'{version} -> {version.major}.{version.minor}.{version.micro + 1}')
# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team # Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. import os import sys # -- Project information ----------------------------------------------------- project = 'DeepSpeed' copyright = '2020, Microsoft' author = 'Microsoft' # The full version, including alpha/beta/rc tags with open("../../../version.txt", "r") as f: release = f.readline().rstrip() master_doc = 'index' autodoc_member_order = 'bysource' # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.napoleon', 'sphinx.ext.viewcode', 'recommonmark', 'sphinx_rtd_theme', 'sphinxcontrib.autodoc_pydantic', 'sphinx.ext.autosectionlabel', ] pygments_style = 'sphinx' # autodoc_pyandtic config autodoc_pydantic_model_show_field_summary = False autodoc_pydantic_field_signature_prefix = ' ' autodoc_pydantic_model_signature_prefix = 'class' autodoc_pydantic_model_show_json = False autodoc_pydantic_model_show_config_summary = False autodoc_pydantic_model_show_config_member = False autodoc_pydantic_model_show_validator_summary = False autodoc_pydantic_model_show_validator_members = False autodoc_pydantic_model_summary_list_order = 'bysource' autodoc_pydantic_model_member_order = 'bysource' autodoc_pydantic_field_list_validators = False # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = [] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'sphinx_rtd_theme' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # GitHub integration html_context = { "display_github": True, "github_user": "microsoft", "github_repo": "DeepSpeed", "github_version": "master", "conf_py_path": "/docs/code-docs/source/", } sys.path.insert(0, os.path.abspath('../../../')) # Prepend module names to class descriptions? add_module_names = True autoclass_content = 'auto' autodoc_mock_imports = ["apex", "mpi4py", "tensorboardX", "numpy", "cupy"]
# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team import os import pkgutil import importlib from .abstract_accelerator import DeepSpeedAccelerator # During setup stage torch may not be installed, pass on no torch will # allow op builder related API to be executed. try: import torch.cuda except ImportError: pass class CUDA_Accelerator(DeepSpeedAccelerator): def __init__(self): self._name = 'cuda' self._communication_backend_name = 'nccl' def is_synchronized_device(self): return False # Device APIs def device_name(self, device_index=None): if device_index == None: return 'cuda' return 'cuda:{}'.format(device_index) def device(self, device_index=None): return torch.cuda.device(device_index) def set_device(self, device_index): torch.cuda.set_device(device_index) def current_device(self): return torch.cuda.current_device() def current_device_name(self): return 'cuda:{}'.format(torch.cuda.current_device()) def device_count(self): return torch.cuda.device_count() def synchronize(self, device_index=None): return torch.cuda.synchronize(device_index) # RNG APIs def random(self): return torch.random def set_rng_state(self, new_state, device_index=None): if device_index is None: return torch.cuda.set_rng_state(new_state) return torch.cuda.set_rng_state(new_state, device_index) def get_rng_state(self, device_index=None): if device_index is None: return torch.cuda.get_rng_state() return torch.cuda.get_rng_state(device_index) def manual_seed(self, seed): return torch.cuda.manual_seed(seed) def manual_seed_all(self, seed): return torch.cuda.manual_seed_all(seed) def initial_seed(self, seed): return torch.cuda.initial_seed(seed) def default_generator(self, device_index): return torch.cuda.default_generators[device_index] # Streams/Events @property def Stream(self): return torch.cuda.Stream def stream(self, stream): return torch.cuda.stream(stream) def current_stream(self, device_index=None): return torch.cuda.current_stream(device_index) def default_stream(self, device_index=None): return torch.cuda.default_stream(device_index) @property def Event(self): return torch.cuda.Event # Memory management def empty_cache(self): return torch.cuda.empty_cache() def memory_allocated(self, device_index=None): return torch.cuda.memory_allocated(device_index) def max_memory_allocated(self, device_index=None): return torch.cuda.max_memory_allocated(device_index) def reset_max_memory_allocated(self, device_index=None): return torch.cuda.reset_max_memory_allocated(device_index) def memory_cached(self, device_index=None): return torch.cuda.memory_cached(device_index) def max_memory_cached(self, device_index=None): return torch.cuda.max_memory_cached(device_index) def reset_max_memory_cached(self, device_index=None): return torch.cuda.reset_max_memory_cached(device_index) def memory_stats(self, device_index=None): if hasattr(torch.cuda, 'memory_stats'): return torch.cuda.memory_stats(device_index) def reset_peak_memory_stats(self, device_index=None): if hasattr(torch.cuda, 'reset_peak_memory_stats'): return torch.cuda.reset_peak_memory_stats(device_index) def memory_reserved(self, device_index=None): if hasattr(torch.cuda, 'memory_reserved'): return torch.cuda.memory_reserved(device_index) def max_memory_reserved(self, device_index=None): if hasattr(torch.cuda, 'max_memory_reserved'): return torch.cuda.max_memory_reserved(device_index) def total_memory(self, device_index=None): return torch.cuda.get_device_properties(device_index).total_memory # Data types def is_bf16_supported(self): return torch.cuda.is_bf16_supported() def is_fp16_supported(self): major, _ = torch.cuda.get_device_capability() if major >= 7: return True else: return False # Misc def amp(self): if hasattr(torch.cuda, 'amp'): return torch.cuda.amp return None def is_available(self): return torch.cuda.is_available() def range_push(self, msg): if hasattr(torch.cuda.nvtx, 'range_push'): return torch.cuda.nvtx.range_push(msg) def range_pop(self): if hasattr(torch.cuda.nvtx, 'range_pop'): return torch.cuda.nvtx.range_pop() def lazy_call(self, callback): return torch.cuda._lazy_call(callback) def communication_backend_name(self): return self._communication_backend_name # Tensor operations @property def BFloat16Tensor(self): return torch.cuda.BFloat16Tensor @property def ByteTensor(self): return torch.cuda.ByteTensor @property def DoubleTensor(self): return torch.cuda.DoubleTensor @property def FloatTensor(self): return torch.cuda.FloatTensor @property def HalfTensor(self): return torch.cuda.HalfTensor @property def IntTensor(self): return torch.cuda.IntTensor @property def LongTensor(self): return torch.cuda.LongTensor def pin_memory(self, tensor): return tensor.pin_memory() def on_accelerator(self, tensor): device_str = str(tensor.device) if device_str.startswith('cuda:'): return True else: return False def op_builder_dir(self): try: # is op_builder from deepspeed or a 3p version? this should only succeed if it's deepspeed # if successful this also means we're doing a local install and not JIT compile path from op_builder import __deepspeed__ # noqa: F401 return "op_builder" except ImportError: return "deepspeed.ops.op_builder" # dict that holds class name <--> class type mapping i.e. # 'AsyncIOBuilder': <class 'op_builder.async_io.AsyncIOBuilder'> # this dict will be filled at init stage class_dict = None def _lazy_init_class_dict(self): if self.class_dict != None: return else: self.class_dict = {} # begin initialize for create_op_builder() # put all valid class name <--> class type mapping into class_dict op_builder_dir = self.op_builder_dir() op_builder_module = importlib.import_module(op_builder_dir) for _, module_name, _ in pkgutil.iter_modules([os.path.dirname(op_builder_module.__file__)]): # avoid self references if module_name != 'all_ops' and module_name != 'builder' and module_name != 'cpu': module = importlib.import_module("{}.{}".format(op_builder_dir, module_name)) for member_name in module.__dir__(): if member_name.endswith( 'Builder' ) and member_name != "OpBuilder" and member_name != "CUDAOpBuilder" and member_name != "TorchCPUOpBuilder": # avoid abstract classes if not member_name in self.class_dict: self.class_dict[member_name] = getattr(module, member_name) # end initialize for create_op_builder() # create an instance of op builder and return, name specified by class_name def create_op_builder(self, class_name): self._lazy_init_class_dict() if class_name in self.class_dict: return self.class_dict[class_name]() else: return None # return an op builder class, name specified by class_name def get_op_builder(self, class_name): self._lazy_init_class_dict() if class_name in self.class_dict: return self.class_dict[class_name] else: return None def build_extension(self): from torch.utils.cpp_extension import BuildExtension return BuildExtension
# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team import abc from abc import ABC class DeepSpeedAccelerator(ABC): def __init__(self): self._name = None self._communication_backend_name = None @abc.abstractmethod def is_synchronized_device(self): ... # Device APIs @abc.abstractmethod def device_name(self, device_index): ... @abc.abstractmethod def device(self, device_index): ... @abc.abstractmethod def set_device(self, device_index): ... @abc.abstractmethod def current_device(self): ... @abc.abstractmethod def current_device_name(self): ... @abc.abstractmethod def device_count(self): ... @abc.abstractmethod def synchronize(self, device_index=None): ... # RNG APIs @abc.abstractmethod def random(self): ... @abc.abstractmethod def set_rng_state(self, new_state, device_index=None): ... @abc.abstractmethod def get_rng_state(self, device_index=None): ... @abc.abstractmethod def manual_seed(self, seed): ... @abc.abstractmethod def manual_seed_all(self, seed): ... @abc.abstractmethod def initial_seed(self, seed): ... @abc.abstractmethod def default_generator(self, device_index): ... # Streams/Events @property @abc.abstractmethod def Stream(self): ... @abc.abstractmethod def stream(self, stream): ... @abc.abstractmethod def current_stream(self, device_index=None): ... @abc.abstractmethod def default_stream(self, device_index=None): ... @property @abc.abstractmethod def Event(self): ... # Memory management @abc.abstractmethod def empty_cache(self): ... @abc.abstractmethod def memory_allocated(self, device_index=None): ... @abc.abstractmethod def max_memory_allocated(self, device_index=None): ... @abc.abstractmethod def reset_max_memory_allocated(self, device_index=None): ... @abc.abstractmethod def memory_cached(self, device_index=None): ... @abc.abstractmethod def max_memory_cached(self, device_index=None): ... @abc.abstractmethod def reset_max_memory_cached(self, device_index=None): ... @abc.abstractmethod def memory_stats(self, device_index=None): ... @abc.abstractmethod def reset_peak_memory_stats(self, device_index=None): ... @abc.abstractmethod def memory_reserved(self, device_index=None): ... @abc.abstractmethod def max_memory_reserved(self, device_index=None): ... @abc.abstractmethod def total_memory(self, device_index=None): ... # Data types @abc.abstractmethod def is_bf16_supported(self): ... @abc.abstractmethod def is_fp16_supported(self): ... # Misc @abc.abstractmethod def amp(self): ... @abc.abstractmethod def is_available(self): ... @abc.abstractmethod def range_push(self, msg): ... @abc.abstractmethod def range_pop(self): ... @abc.abstractmethod def lazy_call(self, callback): ... @abc.abstractmethod def communication_backend_name(self): ... # Tensor operations @property @abc.abstractmethod def BFloat16Tensor(self): ... @property @abc.abstractmethod def ByteTensor(self): ... @property @abc.abstractmethod def DoubleTensor(self): ... @property @abc.abstractmethod def FloatTensor(self): ... @property @abc.abstractmethod def HalfTensor(self): ... @property @abc.abstractmethod def IntTensor(self): ... @property @abc.abstractmethod def LongTensor(self): ... @abc.abstractmethod def pin_memory(self, tensor): ... @abc.abstractmethod def on_accelerator(self, tensor): ... @abc.abstractmethod def op_builder_dir(self): ... # create an instance of op builder, specified by class_name @abc.abstractmethod def create_op_builder(self, class_name): ... # return an op builder class, specified by class_name @abc.abstractmethod def get_op_builder(self, class_name): ... @abc.abstractmethod def build_extension(self): ...
# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team from .abstract_accelerator import DeepSpeedAccelerator from .real_accelerator import get_accelerator, set_accelerator
# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team import os try: from accelerator.abstract_accelerator import DeepSpeedAccelerator as dsa1 except ImportError as e: dsa1 = None try: from deepspeed.accelerator.abstract_accelerator import DeepSpeedAccelerator as dsa2 except ImportError as e: dsa2 = None ds_accelerator = None def _validate_accelerator(accel_obj): # because abstract_accelerator has different path during # build time (accelerator.abstract_accelerator) # and run time (deepspeed.accelerator.abstract_accelerator) # and extension would import the # run time abstract_accelerator/DeepSpeedAccelerator as its base # class, so we need to compare accel_obj with both base class. # if accel_obj is instance of DeepSpeedAccelerator in one of # accelerator.abstractor_accelerator # or deepspeed.accelerator.abstract_accelerator, consider accel_obj # is a conforming object if not ((dsa1 != None and isinstance(accel_obj, dsa1)) or (dsa2 != None and isinstance(accel_obj, dsa2))): raise AssertionError(f'{accel_obj.__class__.__name__} accelerator is not subclass of DeepSpeedAccelerator') # TODO: turn off is_available test since this breaks tests #assert accel_obj.is_available(), \ # f'{accel_obj.__class__.__name__} accelerator fails is_available() test' def get_accelerator(): global ds_accelerator if ds_accelerator is not None: return ds_accelerator accelerator_name = None ds_set_method = None # 1. Detect whether there is override of DeepSpeed accelerators from environment variable. # DS_ACCELERATOR = 'cuda'|'xpu'|'cpu' if 'DS_ACCELERATOR' in os.environ.keys(): accelerator_name = os.environ['DS_ACCELERATOR'] if accelerator_name == 'xpu': try: from intel_extension_for_deepspeed import XPU_Accelerator # noqa: F401 except ImportError as e: raise ValueError( f'XPU_Accelerator requires intel_extension_for_deepspeed, which is not installed on this system.') elif accelerator_name == 'cpu': try: import intel_extension_for_pytorch # noqa: F401 except ImportError as e: raise ValueError( f'CPU_Accelerator requires intel_extension_for_pytorch, which is not installed on this system.') elif accelerator_name == 'cuda': pass else: raise ValueError( f'DS_ACCELERATOR must be one of "cuda", "cpu", or "xpu". Value "{accelerator_name}" is not supported') ds_set_method = 'override' # 2. If no override, detect which accelerator to use automatically if accelerator_name == None: try: from intel_extension_for_deepspeed import XPU_Accelerator # noqa: F401,F811 accelerator_name = 'xpu' except ImportError as e: # We need a way to choose between CUDA_Accelerator and CPU_Accelerator # Currently we detect whether intel_etension_for_pytorch is installed # in the environment and use CPU_Accelerator if the answewr is True. # An alternative might be detect whether CUDA device is installed on # the system but this comes with two pitfalls: # 1. the system may not have torch pre-installed, so # get_accelerator().is_avaiable() may not work. # 2. Some scenario like install on login node (without CUDA device) # and run on compute node (with CUDA device) may cause mismatch # between installation time and runtime. try: import intel_extension_for_pytorch # noqa: F401,F811 accelerator_name = 'cpu' except ImportError as e: accelerator_name = 'cuda' ds_set_method = 'auto detect' # 3. Set ds_accelerator accordingly if accelerator_name == 'cuda': from .cuda_accelerator import CUDA_Accelerator ds_accelerator = CUDA_Accelerator() elif accelerator_name == 'cpu': from .cpu_accelerator import CPU_Accelerator ds_accelerator = CPU_Accelerator() elif accelerator_name == 'xpu': # XPU_Accelerator is already imported in detection stage ds_accelerator = XPU_Accelerator() _validate_accelerator(ds_accelerator) print(f"Setting ds_accelerator to {ds_accelerator._name} ({ds_set_method})") return ds_accelerator def set_accelerator(accel_obj): global ds_accelerator _validate_accelerator(accel_obj) print(f"Setting ds_accelerator to {accel_obj._name} (model specified)") ds_accelerator = accel_obj ''' -----------[code] test_get.py ----------- from deepspeed.accelerator import get_accelerator my_accelerator = get_accelerator() print(f'{my_accelerator._name=}') print(f'{my_accelerator._communication_backend=}') print(f'{my_accelerator.HalfTensor().device=}') print(f'{my_accelerator.total_memory()=}') -----------[code] test_get.py ----------- ---[output] python test_get.py--------- my_accelerator.name()='cuda' my_accelerator.communication_backend='nccl' my_accelerator.HalfTensor().device=device(type='cuda', index=0) my_accelerator.total_memory()=34089730048 ---[output] python test_get.py--------- ************************************************************************** -----------[code] test_set.py ----------- from deepspeed.accelerator.cuda_accelerator import CUDA_Accelerator cu_accel = CUDA_Accelerator() print(f'{id(cu_accel)=}') from deepspeed.accelerator import set_accelerator, get_accelerator set_accelerator(cu_accel) my_accelerator = get_accelerator() print(f'{id(my_accelerator)=}') print(f'{my_accelerator._name=}') print(f'{my_accelerator._communication_backend=}') print(f'{my_accelerator.HalfTensor().device=}') print(f'{my_accelerator.total_memory()=}') -----------[code] test_set.py ----------- ---[output] python test_set.py--------- id(cu_accel)=139648165478304 my_accelerator=<deepspeed.accelerator.cuda_accelerator.CUDA_Accelerator object at 0x7f025f4bffa0> my_accelerator.name='cuda' my_accelerator.communication_backend='nccl' my_accelerator.HalfTensor().device=device(type='cuda', index=0) my_accelerator.total_memory()=34089730048 ---[output] python test_set.py--------- '''
# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team import torch from deepspeed.accelerator.abstract_accelerator import DeepSpeedAccelerator import oneccl_bindings_for_pytorch # noqa: F401 import psutil import os # accelerator for Intel CPU class CPU_Accelerator(DeepSpeedAccelerator): def __init__(self): self._name = 'cpu' self._communication_backend_name = 'ccl' self.max_mem = psutil.Process().memory_info().rss def is_synchronized_device(self): return True # Device APIs def device_name(self, device_index=None): return 'cpu' def device(self, device_index=None): return None def set_device(self, device_index): return def current_device(self): return os.environ.get('LOCAL_RANK', 0) def current_device_name(self): return 'cpu' def device_count(self): device_count = int(os.environ.get('LOCAL_SIZE', 0)) if device_count > 0: return os.environ.get('LOCAL_SIZE') else: from deepspeed.utils.numa import get_numa_cores # Count NUMA node for number of cpu accelerators. On machine with HBM # In flat mode, HBM is in separate NUMA node with no cores on this node. # Ignore these NUMA nodes with no cores. numa_core_lists = get_numa_cores() numa_count = 0 for core_list in numa_core_lists: if len(core_list) > 0: numa_count += 1 return numa_count def synchronize(self, device_index=None): return # RNG APIs def random(self): return torch.random def set_rng_state(self, new_state, device_index=None): if device_index == None: return torch.set_rng_state(new_state) return torch.set_rng_state(new_state, device_index) def get_rng_state(self, device_index=None): return torch.get_rng_state() def manual_seed(self, seed): return torch.manual_seed(seed) def manual_seed_all(self, seed): return torch.manual_seed(seed) def initial_seed(self, seed): return torch.initial_seed(seed) def default_generator(self, device_index): return torch.default_generator # Streams/Events @property def Stream(self): return None def stream(self, stream): from deepspeed.runtime.utils import noop_decorator return noop_decorator def current_stream(self, device_index=None): return None def default_stream(self, device_index=None): return None @property def Event(self): return None # Memory management def empty_cache(self): return def get_rss(self): mem = psutil.Process().memory_info().rss if mem > self.max_mem: self.max_mem = mem return mem def reset_rss(self): mem = psutil.Process().memory_info().rss self.max_mem = mem return mem def memory_allocated(self, device_index=None): return self.get_rss() def max_memory_allocated(self, device_index=None): self.get_rss() return self.max_mem def reset_max_memory_allocated(self, device_index=None): self.reset_rss() return def memory_cached(self, device_index=None): return self.get_rss() def max_memory_cached(self, device_index=None): self.get_rss() return self.max_mem def reset_max_memory_cached(self, device_index=None): self.reset_rss() return def memory_stats(self, device_index=None): return self.get_rss() def reset_peak_memory_stats(self, device_index=None): self.reset_rss() return def memory_reserved(self, device_index=None): return self.get_rss() def max_memory_reserved(self, device_index=None): self.get_rss() return self.max_mem def total_memory(self, device_index=None): return psutil.virtual_memory().total # Misc def amp(self): return torch.cpu.amp def is_available(self): return True def range_push(self, msg): # TODO itt is currently not supported yet # return torch.profiler.itt.range_push(msg) return def range_pop(self): # TODO itt is currently not supported yet # return torch.profiler.itt.range_pop() return def lazy_call(self, callback): return callback() def communication_backend_name(self): return self._communication_backend_name # Data types def is_bf16_supported(self): return True def is_fp16_supported(self): return True # Tensor operations @property def BFloat16Tensor(self): return torch.BFloat16Tensor @property def ByteTensor(self): return torch.ByteTensor @property def DoubleTensor(self): return torch.DoubleTensor @property def FloatTensor(self): return torch.FloatTensor @property def HalfTensor(self): return torch.HalfTensor @property def IntTensor(self): return torch.IntTensor @property def LongTensor(self): return torch.LongTensor def pin_memory(self, tensor): return tensor def op_builder_dir(self): try: # is op_builder from deepspeed or a 3p version? this should only succeed if it's deepspeed # if successful this also means we're doing a local install and not JIT compile path from op_builder import __deepspeed__ # noqa: F401 return "op_builder.cpu" except ImportError: return "deepspeed.ops.op_builder.cpu" def on_accelerator(self, tensor): device_str = str(tensor.device) if device_str.startswith('cpu'): return True else: return False # create an instance of op builder and return, name specified by class_name def create_op_builder(self, op_name): builder_class = self.get_op_builder(op_name) if builder_class != None: return builder_class() return None # return an op builder class, name specified by class_name def get_op_builder(self, class_name): try: # is op_builder from deepspeed or a 3p version? this should only succeed if it's deepspeed # if successful this also means we're doing a local install and not JIT compile path from op_builder import __deepspeed__ # noqa: F401 from op_builder.cpu import CCLCommBuilder, NotImplementedBuilder except ImportError: from deepspeed.ops.op_builder.cpu import CCLCommBuilder, NotImplementedBuilder if class_name == "CCLCommBuilder": return CCLCommBuilder else: # return a NotImplementedBuilder to avoid get NoneType[Name] in unit tests return NotImplementedBuilder def build_extension(self): from torch.utils.cpp_extension import BuildExtension return BuildExtension
#!/usr/bin/env python3 # Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team from __future__ import annotations '''Copyright The Microsoft DeepSpeed Team''' """ Modified from https://github.com/jlebar/pre-commit-hooks/blob/master/check_do_not_submit.py """ import subprocess import sys def err(s: str) -> None: print(s, file=sys.stderr) COPYRIGHT = [ r"^\(\/\/\|#\) Copyright (c) Microsoft Corporation.$", r"^\(\/\/\|#\) SPDX-License-Identifier: Apache-2.0$", r"^\(\/\/\|#\) DeepSpeed Team$" ] success = True failures = [] for f in sys.argv[1:]: for copyright_line in COPYRIGHT: if not success: break res = subprocess.run(["git", "grep", "--quiet", "-e", copyright_line, f], capture_output=True) if res.returncode == 1: success = False failures.append(f) elif res.returncode == 2: err(f"Error invoking grep on {', '.join(sys.argv[1:])}:") err(res.stderr.decode("utf-8")) sys.exit(2) if not success: err(f'{failures}: Missing license at top of file') err(res.stdout.decode("utf-8")) sys.exit(1)
#!/usr/bin/env python3 # Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team from __future__ import annotations '''Copyright The Microsoft DeepSpeed Team''' """ Checks each file in sys.argv for the string "torch.cuda". Modified from https://github.com/jlebar/pre-commit-hooks/blob/master/check_do_not_submit.py """ import subprocess import sys def err(s: str) -> None: print(s, file=sys.stderr) # There are many ways we could search for the string "torch.cuda", but `git # grep --no-index` is nice because # - it's very fast (as compared to iterating over the file in Python) # - we can reasonably assume it's available on all machines # - unlike plain grep, which is slower and has different flags on MacOS versus # Linux, git grep is always the same. res = subprocess.run( ["git", "grep", "-Hn", "--no-index", "-e", r"torch\.cuda", "--and", "--not", "-e", "#ignore-cuda", *sys.argv[1:]], capture_output=True, ) if res.returncode == 0: err('Error: The string "torch.cuda" was found.\nPlease replace all calls to torch.cuda with "get_accelerator()" and add the following import line:\n\n from deepspeed.accelerator import get_accelerator\n\nIf your code is mean to be cuda specific, please add the following comment in the line with torch.cuda:\n\n #ignore-cuda\n' ) err(res.stdout.decode("utf-8")) sys.exit(1) elif res.returncode == 2: err(f"Error invoking grep on {', '.join(sys.argv[1:])}:") err(res.stderr.decode("utf-8")) sys.exit(2) res = subprocess.run( ["git", "grep", "-Hn", "--no-index", r"\.cuda()", *sys.argv[1:]], capture_output=True, ) if res.returncode == 0: err('Error: The string ".cuda()" was found. This implies convert a tensor to cuda tensor. Please replace all calls to tensor.cuda() with "tensor.to(get_accelerator().device_name())" and add the following import line:\nfrom deepspeed.accelerator import get_accelerator' ) err(res.stdout.decode("utf-8")) sys.exit(1) elif res.returncode == 2: err(f"Error invoking grep on {', '.join(sys.argv[1:])}:") err(res.stderr.decode("utf-8")) sys.exit(2)
#!/usr/bin/env python3 # Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team """ USAGE: $ python3 script/replace_copyright.py --repo_dir ./ """ import os import argparse NEW_COPYRIGHT = ("Copyright (c) Microsoft Corporation.", "SPDX-License-Identifier: Apache-2.0", "", "DeepSpeed Team") PY_SL_COMMENT = "#" PY_ML_SINGLE = "'''" PY_ML_DOUBLE = '"""' PY_COMMENTS = (PY_SL_COMMENT, PY_ML_SINGLE, PY_ML_DOUBLE) C_SL_COMMENT = "//" C_ML_OPEN = "/*" C_ML_CLOSE = "*/" C_COMMENTS = (C_SL_COMMENT, C_ML_OPEN, C_ML_CLOSE) BASH_SL_COMMENT = "#" BASH_COMMENTS = (BASH_SL_COMMENT, ) DELIM = "|/-\|/-\|BARRIER|/-\|/-\|" # noqa: W605 def parser_args(): parser = argparse.ArgumentParser() parser.add_argument("--repo_dir", type=str, help="Repository directory") parser.add_argument("--python_style_ext", type=str, nargs="+", default=[".py"], help="File types to process with python-style comments") parser.add_argument("--bash_style_ext", type=str, nargs="+", default=[".sh"], help="File types to process with bash-style comments") parser.add_argument("--c_style_ext", type=str, nargs="+", default=[ ".c", ".cpp", ".cu", ".h", ".hpp", ".cuh", ".cc", ".hip", ".tr", ], help="File types to process with C-style comments") args = parser.parse_args() return args # These get_header_* functions are ugly, but they work :) def get_header_py(fp): with open(fp, "r") as f: lines = iter(l for l in f.readlines()) header = [] rest = [] in_multiline = False multiline_type = None while (l := next(lines, None)) is not None: l = l.strip() if l.startswith(PY_ML_SINGLE) or l.startswith(PY_ML_DOUBLE): # Detected multiline comment if in_multiline and multiline_type == l[:3]: # Ended a multiline comment in_multiline = False else: # Started a multiline comment in_multiline = True multiline_type = l[:3] if l.endswith(multiline_type) and len(l) >= 6: # Opened and closed multiline comment on single line in_multiline = False elif in_multiline and l.endswith(multiline_type): # Ended a multiline comment in_multiline = False elif not (in_multiline or l.startswith(PY_SL_COMMENT) or l == ""): # Not in a comment rest += [l + "\n"] break header.append(l) rest += list(lines) return header, rest def get_header_c(fp): with open(fp, "r") as f: lines = iter(l for l in f.readlines()) header = [] rest = [] in_multiline = False while (l := next(lines, None)) is not None: l = l.strip() if l.startswith(C_ML_OPEN): # Detected multiline comment if not l.endswith(C_ML_CLOSE): # multiline comment not closed on same line in_multiline = True elif l.endswith(C_ML_CLOSE): # Ended a multiline comment in_multiline = False elif not in_multiline or l.startswith(C_SL_COMMENT) or l.isspace(): # Not in a comment rest += [l + "\n"] break header.append(l) rest += list(lines) return header, rest def get_header_bash(fp): with open(fp, "r") as f: lines = iter(l for l in f.readlines()) header = [] rest = [] while (l := next(lines, None)) is not None: l = l.strip() if not l.startswith(BASH_SL_COMMENT) or l.isspace(): # Not in a comment rest += [l + "\n"] break header.append(l) rest += list(lines) return header, rest def remove_comments(line, comment_strs): for cstr in comment_strs: line = line.replace(cstr, "") return line def format_multiline_comment(text, comment_type): if comment_type == PY_COMMENTS: text = f"\n{comment_type[2]}\n" + "\n".join(text) + f"{comment_type[2]}" if comment_type == C_COMMENTS: text = f"\n{comment_type[1]}\n" + "\n".join(text) + f"{comment_type[2]}" if comment_type == BASH_COMMENTS: text = "\n".join([f"{comment_type[0]}{l}" for l in text]) return text def modify_file_header(fp, file_header, rest_of_file, preserve_text_store, comment_type): header_text = "\n".join(file_header) if not (header_text.strip() == "" or header_text in preserve_text_store): # Unique header, need to get user input print("\n", DELIM, "\n") for idx, line in enumerate(file_header): print(f"{idx}: {line}") print("\n", DELIM, "\n") print("\nIndicate the FIRST line of the Header to KEEP") print("(shebang #! lines will be automatically processed and should not be included).") keep_idx = input("Enter number (or leave blank if no lines should be preserved): ") preserve_text_store[header_text] = file_header[int(keep_idx):] if keep_idx != "" else "" # Identify any shebang lines in the file shebang = "\n".join([l for l in file_header if l.startswith("#!")]) if shebang != "": shebang += "\n" # Get the text we should preserve in this file and process to remove comment characters text_to_preserve = preserve_text_store.get(header_text, [""]) text_to_preserve = [remove_comments(l, comment_type) for l in text_to_preserve] # Format the text we want to keep into a new multiline comment if "".join(text_to_preserve) == "": text_to_preserve = "" else: text_to_preserve = format_multiline_comment(text_to_preserve, comment_type) # Generate the copyright text we will be adding copyright_text = "\n".join([f"{comment_type[0]} {l}" if l != "" else l for l in NEW_COPYRIGHT]) # Assemble the new header new_header = shebang + copyright_text + text_to_preserve # Write out the new file new_file_contents = new_header + "\n" + "".join(rest_of_file) with open(fp, "w") as f: f.write(new_file_contents) return preserve_text_store # Return so we can reuse for future files def main(args): preserve_text_store = {} # Used to track header comments we should preserve for root, dirs, fnames in os.walk(args.repo_dir): # Walk across directory looking for all files with extensions we want to modify for ext in args.python_style_ext: fpaths = [os.path.join(root, fn) for fn in fnames if fn.endswith(ext)] for fp in fpaths: file_header, rest_of_file = get_header_py(fp) preserve_text_store = modify_file_header(fp, file_header, rest_of_file, preserve_text_store, PY_COMMENTS) for ext in args.c_style_ext: fpaths = [os.path.join(root, fn) for fn in fnames if fn.endswith(ext)] for fp in fpaths: file_header, rest_of_file = get_header_c(fp) preserve_text_store = modify_file_header(fp, file_header, rest_of_file, preserve_text_store, C_COMMENTS) for ext in args.bash_style_ext: fpaths = [os.path.join(root, fn) for fn in fnames if fn.endswith(ext)] for fp in fpaths: file_header, rest_of_file = get_header_bash(fp) preserve_text_store = modify_file_header(fp, file_header, rest_of_file, preserve_text_store, BASH_COMMENTS) if __name__ == "__main__": args = parser_args() main(args)
#!/usr/bin/env python3 # Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team from __future__ import annotations '''Copyright The Microsoft DeepSpeed Team''' """ Checks each file in sys.argv for the string "torch.distributed". Modified from https://github.com/jlebar/pre-commit-hooks/blob/master/check_do_not_submit.py """ import subprocess import sys def err(s: str) -> None: print(s, file=sys.stderr) # There are many ways we could search for the string "torch.distributed", but `git # grep --no-index` is nice because # - it's very fast (as compared to iterating over the file in Python) # - we can reasonably assume it's available on all machines # - unlike plain grep, which is slower and has different flags on MacOS versus # Linux, git grep is always the same. res = subprocess.run( ["git", "grep", "-Hn", "--no-index", r"torch\.distributed", *sys.argv[1:]], capture_output=True, ) if res.returncode == 0: err('Error: The string "torch.distributed" was found. Please replace all calls to torch.distributed with "deepspeed.comm"' ) err(res.stdout.decode("utf-8")) sys.exit(1) elif res.returncode == 2: err(f"Error invoking grep on {', '.join(sys.argv[1:])}:") err(res.stderr.decode("utf-8")) sys.exit(2)