python_code
stringlengths
0
4.04M
repo_name
stringlengths
8
58
file_path
stringlengths
5
147
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import torch # from PIL import Image import imageio import numpy as np from cotracker.datasets.utils import CoTrackerData, resize_sample class FastCaptureDataset(torch.utils.data.Dataset): def __init__( self, data_root, max_seq_len=50, max_num_points=20, dataset_resolution=(384, 512), ): self.data_root = data_root self.seq_names = os.listdir(os.path.join(data_root, "renders_local_rm")) self.pth_dir = os.path.join(data_root, "zju_tracking") self.max_seq_len = max_seq_len self.max_num_points = max_num_points self.dataset_resolution = dataset_resolution print("found %d unique videos in %s" % (len(self.seq_names), self.data_root)) def __getitem__(self, index): seq_name = self.seq_names[index] spath = os.path.join(self.data_root, "renders_local_rm", seq_name) pthpath = os.path.join(self.pth_dir, seq_name + ".pth") rgbs = [] img_paths = sorted(os.listdir(spath)) for i, img_path in enumerate(img_paths): if i < self.max_seq_len: rgbs.append(imageio.imread(os.path.join(spath, img_path))) annot_dict = torch.load(pthpath) traj_2d = annot_dict["traj_2d"][:, :, : self.max_seq_len] visibility = annot_dict["visibility"][:, : self.max_seq_len] S = len(rgbs) H, W, __ = rgbs[0].shape *_, S = traj_2d.shape visibile_pts_first_frame_inds = (visibility[:, 0] > 0).nonzero(as_tuple=False)[ :, 0 ] torch.manual_seed(0) point_inds = torch.randperm(len(visibile_pts_first_frame_inds))[ : self.max_num_points ] visible_inds_sampled = visibile_pts_first_frame_inds[point_inds] rgbs = np.stack(rgbs, 0) rgbs = torch.from_numpy(rgbs).reshape(S, H, W, 3).permute(0, 3, 1, 2).float() segs = torch.ones(S, 1, H, W).float() trajs = traj_2d[visible_inds_sampled].permute(2, 0, 1).float() visibles = visibility[visible_inds_sampled].permute(1, 0) rgbs, trajs, segs = resize_sample(rgbs, trajs, segs, self.dataset_resolution) return CoTrackerData(rgbs, segs, trajs, visibles, seq_name=seq_name) def __len__(self): return len(self.seq_names)
co-tracker-main
cotracker/datasets/fast_capture_dataset.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree.
co-tracker-main
cotracker/datasets/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import dataclasses import torch.nn.functional as F from dataclasses import dataclass from typing import Any, Optional @dataclass(eq=False) class CoTrackerData: """ Dataclass for storing video tracks data. """ video: torch.Tensor # B, S, C, H, W segmentation: torch.Tensor # B, S, 1, H, W trajectory: torch.Tensor # B, S, N, 2 visibility: torch.Tensor # B, S, N # optional data valid: Optional[torch.Tensor] = None # B, S, N seq_name: Optional[str] = None query_points: Optional[torch.Tensor] = None # TapVID evaluation format def collate_fn(batch): """ Collate function for video tracks data. """ video = torch.stack([b.video for b in batch], dim=0) segmentation = torch.stack([b.segmentation for b in batch], dim=0) trajectory = torch.stack([b.trajectory for b in batch], dim=0) visibility = torch.stack([b.visibility for b in batch], dim=0) query_points = None if batch[0].query_points is not None: query_points = torch.stack([b.query_points for b in batch], dim=0) seq_name = [b.seq_name for b in batch] return CoTrackerData( video, segmentation, trajectory, visibility, seq_name=seq_name, query_points=query_points, ) def collate_fn_train(batch): """ Collate function for video tracks data during training. """ gotit = [gotit for _, gotit in batch] video = torch.stack([b.video for b, _ in batch], dim=0) segmentation = torch.stack([b.segmentation for b, _ in batch], dim=0) trajectory = torch.stack([b.trajectory for b, _ in batch], dim=0) visibility = torch.stack([b.visibility for b, _ in batch], dim=0) valid = torch.stack([b.valid for b, _ in batch], dim=0) seq_name = [b.seq_name for b, _ in batch] return ( CoTrackerData(video, segmentation, trajectory, visibility, valid, seq_name), gotit, ) def try_to_cuda(t: Any) -> Any: """ Try to move the input variable `t` to a cuda device. Args: t: Input. Returns: t_cuda: `t` moved to a cuda device, if supported. """ try: t = t.float().cuda() except AttributeError: pass return t def dataclass_to_cuda_(obj): """ Move all contents of a dataclass to cuda inplace if supported. Args: batch: Input dataclass. Returns: batch_cuda: `batch` moved to a cuda device, if supported. """ for f in dataclasses.fields(obj): setattr(obj, f.name, try_to_cuda(getattr(obj, f.name))) return obj def resize_sample(rgbs, trajs_g, segs, interp_shape): S, C, H, W = rgbs.shape S, N, D = trajs_g.shape assert D == 2 rgbs = F.interpolate(rgbs, interp_shape, mode="bilinear") segs = F.interpolate(segs, interp_shape, mode="nearest") trajs_g[:, :, 0] *= interp_shape[1] / W trajs_g[:, :, 1] *= interp_shape[0] / H return rgbs, trajs_g, segs
co-tracker-main
cotracker/datasets/utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree.
co-tracker-main
cotracker/utils/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import numpy as np import cv2 import torch import flow_vis from matplotlib import cm import torch.nn.functional as F import torchvision.transforms as transforms from moviepy.editor import ImageSequenceClip import matplotlib.pyplot as plt def read_video_from_path(path): cap = cv2.VideoCapture(path) if not cap.isOpened(): print("Error opening video file") else: frames = [] while cap.isOpened(): ret, frame = cap.read() if ret == True: frames.append(np.array(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))) else: break cap.release() return np.stack(frames) class Visualizer: def __init__( self, save_dir: str = "./results", grayscale: bool = False, pad_value: int = 0, fps: int = 10, mode: str = "rainbow", # 'cool', 'optical_flow' linewidth: int = 2, show_first_frame: int = 10, tracks_leave_trace: int = 0, # -1 for infinite ): self.mode = mode self.save_dir = save_dir if mode == "rainbow": self.color_map = cm.get_cmap("gist_rainbow") elif mode == "cool": self.color_map = cm.get_cmap(mode) self.show_first_frame = show_first_frame self.grayscale = grayscale self.tracks_leave_trace = tracks_leave_trace self.pad_value = pad_value self.linewidth = linewidth self.fps = fps def visualize( self, video: torch.Tensor, # (B,T,C,H,W) tracks: torch.Tensor, # (B,T,N,2) visibility: torch.Tensor = None, # (B, T, N, 1) bool gt_tracks: torch.Tensor = None, # (B,T,N,2) segm_mask: torch.Tensor = None, # (B,1,H,W) filename: str = "video", writer=None, # tensorboard Summary Writer, used for visualization during training step: int = 0, query_frame: int = 0, save_video: bool = True, compensate_for_camera_motion: bool = False, ): if compensate_for_camera_motion: assert segm_mask is not None if segm_mask is not None: coords = tracks[0, query_frame].round().long() segm_mask = segm_mask[0, query_frame][coords[:, 1], coords[:, 0]].long() video = F.pad( video, (self.pad_value, self.pad_value, self.pad_value, self.pad_value), "constant", 255, ) tracks = tracks + self.pad_value if self.grayscale: transform = transforms.Grayscale() video = transform(video) video = video.repeat(1, 1, 3, 1, 1) res_video = self.draw_tracks_on_video( video=video, tracks=tracks, visibility=visibility, segm_mask=segm_mask, gt_tracks=gt_tracks, query_frame=query_frame, compensate_for_camera_motion=compensate_for_camera_motion, ) if save_video: self.save_video(res_video, filename=filename, writer=writer, step=step) return res_video def save_video(self, video, filename, writer=None, step=0): if writer is not None: writer.add_video( f"{filename}_pred_track", video.to(torch.uint8), global_step=step, fps=self.fps, ) else: os.makedirs(self.save_dir, exist_ok=True) wide_list = list(video.unbind(1)) wide_list = [wide[0].permute(1, 2, 0).cpu().numpy() for wide in wide_list] clip = ImageSequenceClip(wide_list[2:-1], fps=self.fps) # Write the video file save_path = os.path.join(self.save_dir, f"{filename}_pred_track.mp4") clip.write_videofile(save_path, codec="libx264", fps=self.fps, logger=None) print(f"Video saved to {save_path}") def draw_tracks_on_video( self, video: torch.Tensor, tracks: torch.Tensor, visibility: torch.Tensor = None, segm_mask: torch.Tensor = None, gt_tracks=None, query_frame: int = 0, compensate_for_camera_motion=False, ): B, T, C, H, W = video.shape _, _, N, D = tracks.shape assert D == 2 assert C == 3 video = video[0].permute(0, 2, 3, 1).byte().detach().cpu().numpy() # S, H, W, C tracks = tracks[0].long().detach().cpu().numpy() # S, N, 2 if gt_tracks is not None: gt_tracks = gt_tracks[0].detach().cpu().numpy() res_video = [] # process input video for rgb in video: res_video.append(rgb.copy()) vector_colors = np.zeros((T, N, 3)) if self.mode == "optical_flow": vector_colors = flow_vis.flow_to_color(tracks - tracks[query_frame][None]) elif segm_mask is None: if self.mode == "rainbow": y_min, y_max = ( tracks[query_frame, :, 1].min(), tracks[query_frame, :, 1].max(), ) norm = plt.Normalize(y_min, y_max) for n in range(N): color = self.color_map(norm(tracks[query_frame, n, 1])) color = np.array(color[:3])[None] * 255 vector_colors[:, n] = np.repeat(color, T, axis=0) else: # color changes with time for t in range(T): color = np.array(self.color_map(t / T)[:3])[None] * 255 vector_colors[t] = np.repeat(color, N, axis=0) else: if self.mode == "rainbow": vector_colors[:, segm_mask <= 0, :] = 255 y_min, y_max = ( tracks[0, segm_mask > 0, 1].min(), tracks[0, segm_mask > 0, 1].max(), ) norm = plt.Normalize(y_min, y_max) for n in range(N): if segm_mask[n] > 0: color = self.color_map(norm(tracks[0, n, 1])) color = np.array(color[:3])[None] * 255 vector_colors[:, n] = np.repeat(color, T, axis=0) else: # color changes with segm class segm_mask = segm_mask.cpu() color = np.zeros((segm_mask.shape[0], 3), dtype=np.float32) color[segm_mask > 0] = np.array(self.color_map(1.0)[:3]) * 255.0 color[segm_mask <= 0] = np.array(self.color_map(0.0)[:3]) * 255.0 vector_colors = np.repeat(color[None], T, axis=0) # draw tracks if self.tracks_leave_trace != 0: for t in range(1, T): first_ind = ( max(0, t - self.tracks_leave_trace) if self.tracks_leave_trace >= 0 else 0 ) curr_tracks = tracks[first_ind : t + 1] curr_colors = vector_colors[first_ind : t + 1] if compensate_for_camera_motion: diff = ( tracks[first_ind : t + 1, segm_mask <= 0] - tracks[t : t + 1, segm_mask <= 0] ).mean(1)[:, None] curr_tracks = curr_tracks - diff curr_tracks = curr_tracks[:, segm_mask > 0] curr_colors = curr_colors[:, segm_mask > 0] res_video[t] = self._draw_pred_tracks( res_video[t], curr_tracks, curr_colors, ) if gt_tracks is not None: res_video[t] = self._draw_gt_tracks( res_video[t], gt_tracks[first_ind : t + 1] ) # draw points for t in range(T): for i in range(N): coord = (tracks[t, i, 0], tracks[t, i, 1]) visibile = True if visibility is not None: visibile = visibility[0, t, i] if coord[0] != 0 and coord[1] != 0: if not compensate_for_camera_motion or ( compensate_for_camera_motion and segm_mask[i] > 0 ): cv2.circle( res_video[t], coord, int(self.linewidth * 2), vector_colors[t, i].tolist(), thickness=-1 if visibile else 2 -1, ) # construct the final rgb sequence if self.show_first_frame > 0: res_video = [res_video[0]] * self.show_first_frame + res_video[1:] return torch.from_numpy(np.stack(res_video)).permute(0, 3, 1, 2)[None].byte() def _draw_pred_tracks( self, rgb: np.ndarray, # H x W x 3 tracks: np.ndarray, # T x 2 vector_colors: np.ndarray, alpha: float = 0.5, ): T, N, _ = tracks.shape for s in range(T - 1): vector_color = vector_colors[s] original = rgb.copy() alpha = (s / T) ** 2 for i in range(N): coord_y = (int(tracks[s, i, 0]), int(tracks[s, i, 1])) coord_x = (int(tracks[s + 1, i, 0]), int(tracks[s + 1, i, 1])) if coord_y[0] != 0 and coord_y[1] != 0: cv2.line( rgb, coord_y, coord_x, vector_color[i].tolist(), self.linewidth, cv2.LINE_AA, ) if self.tracks_leave_trace > 0: rgb = cv2.addWeighted(rgb, alpha, original, 1 - alpha, 0) return rgb def _draw_gt_tracks( self, rgb: np.ndarray, # H x W x 3, gt_tracks: np.ndarray, # T x 2 ): T, N, _ = gt_tracks.shape color = np.array((211.0, 0.0, 0.0)) for t in range(T): for i in range(N): gt_tracks = gt_tracks[t][i] # draw a red cross if gt_tracks[0] > 0 and gt_tracks[1] > 0: length = self.linewidth * 3 coord_y = (int(gt_tracks[0]) + length, int(gt_tracks[1]) + length) coord_x = (int(gt_tracks[0]) - length, int(gt_tracks[1]) - length) cv2.line( rgb, coord_y, coord_x, color, self.linewidth, cv2.LINE_AA, ) coord_y = (int(gt_tracks[0]) - length, int(gt_tracks[1]) + length) coord_x = (int(gt_tracks[0]) + length, int(gt_tracks[1]) - length) cv2.line( rgb, coord_y, coord_x, color, self.linewidth, cv2.LINE_AA, ) return rgb
co-tracker-main
cotracker/utils/visualizer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree.
co-tracker-main
cotracker/models/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn.functional as F from typing import Tuple from cotracker.models.core.cotracker.cotracker import CoTracker, get_points_on_a_grid class EvaluationPredictor(torch.nn.Module): def __init__( self, cotracker_model: CoTracker, interp_shape: Tuple[int, int] = (384, 512), grid_size: int = 6, local_grid_size: int = 6, single_point: bool = True, n_iters: int = 6, ) -> None: super(EvaluationPredictor, self).__init__() self.grid_size = grid_size self.local_grid_size = local_grid_size self.single_point = single_point self.interp_shape = interp_shape self.n_iters = n_iters self.model = cotracker_model self.model.eval() def forward(self, video, queries): queries = queries.clone() B, T, C, H, W = video.shape B, N, D = queries.shape assert D == 3 assert B == 1 rgbs = video.reshape(B * T, C, H, W) rgbs = F.interpolate(rgbs, tuple(self.interp_shape), mode="bilinear") rgbs = rgbs.reshape(B, T, 3, self.interp_shape[0], self.interp_shape[1]) device = rgbs.device queries[:, :, 1] *= self.interp_shape[1] / W queries[:, :, 2] *= self.interp_shape[0] / H if self.single_point: traj_e = torch.zeros((B, T, N, 2), device=device) vis_e = torch.zeros((B, T, N), device=device) for pind in range((N)): query = queries[:, pind : pind + 1] t = query[0, 0, 0].long() traj_e_pind, vis_e_pind = self._process_one_point(rgbs, query) traj_e[:, t:, pind : pind + 1] = traj_e_pind[:, :, :1] vis_e[:, t:, pind : pind + 1] = vis_e_pind[:, :, :1] else: if self.grid_size > 0: xy = get_points_on_a_grid(self.grid_size, rgbs.shape[3:], device=device) xy = torch.cat([torch.zeros_like(xy[:, :, :1]), xy], dim=2).to( device ) # queries = torch.cat([queries, xy], dim=1) # traj_e, __, vis_e, __ = self.model( rgbs=rgbs, queries=queries, iters=self.n_iters, ) traj_e[:, :, :, 0] *= W / float(self.interp_shape[1]) traj_e[:, :, :, 1] *= H / float(self.interp_shape[0]) return traj_e, vis_e def _process_one_point(self, rgbs, query): t = query[0, 0, 0].long() device = rgbs.device if self.local_grid_size > 0: xy_target = get_points_on_a_grid( self.local_grid_size, (50, 50), [query[0, 0, 2], query[0, 0, 1]], ) xy_target = torch.cat( [torch.zeros_like(xy_target[:, :, :1]), xy_target], dim=2 ) # query = torch.cat([query, xy_target], dim=1).to(device) # if self.grid_size > 0: xy = get_points_on_a_grid(self.grid_size, rgbs.shape[3:], device=device) xy = torch.cat([torch.zeros_like(xy[:, :, :1]), xy], dim=2).to(device) # query = torch.cat([query, xy], dim=1).to(device) # # crop the video to start from the queried frame query[0, 0, 0] = 0 traj_e_pind, __, vis_e_pind, __ = self.model( rgbs=rgbs[:, t:], queries=query, iters=self.n_iters ) return traj_e_pind, vis_e_pind
co-tracker-main
cotracker/models/evaluation_predictor.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch from cotracker.models.core.cotracker.cotracker import CoTracker def build_cotracker( checkpoint: str, ): if checkpoint is None: return build_cotracker_stride_4_wind_8() model_name = checkpoint.split("/")[-1].split(".")[0] if model_name == "cotracker_stride_4_wind_8": return build_cotracker_stride_4_wind_8(checkpoint=checkpoint) elif model_name == "cotracker_stride_4_wind_12": return build_cotracker_stride_4_wind_12(checkpoint=checkpoint) elif model_name == "cotracker_stride_8_wind_16": return build_cotracker_stride_8_wind_16(checkpoint=checkpoint) else: raise ValueError(f"Unknown model name {model_name}") # model used to produce the results in the paper def build_cotracker_stride_4_wind_8(checkpoint=None): return _build_cotracker( stride=4, sequence_len=8, checkpoint=checkpoint, ) def build_cotracker_stride_4_wind_12(checkpoint=None): return _build_cotracker( stride=4, sequence_len=12, checkpoint=checkpoint, ) # the fastest model def build_cotracker_stride_8_wind_16(checkpoint=None): return _build_cotracker( stride=8, sequence_len=16, checkpoint=checkpoint, ) def _build_cotracker( stride, sequence_len, checkpoint=None, ): cotracker = CoTracker( stride=stride, S=sequence_len, add_space_attn=True, space_depth=6, time_depth=6, ) if checkpoint is not None: with open(checkpoint, "rb") as f: state_dict = torch.load(f, map_location="cpu") if "model" in state_dict: state_dict = state_dict["model"] cotracker.load_state_dict(state_dict) return cotracker
co-tracker-main
cotracker/models/build_cotracker.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch EPS = 1e-6 def smart_cat(tensor1, tensor2, dim): if tensor1 is None: return tensor2 return torch.cat([tensor1, tensor2], dim=dim) def normalize_single(d): # d is a whatever shape torch tensor dmin = torch.min(d) dmax = torch.max(d) d = (d - dmin) / (EPS + (dmax - dmin)) return d def normalize(d): # d is B x whatever. normalize within each element of the batch out = torch.zeros(d.size()) if d.is_cuda: out = out.cuda() B = list(d.size())[0] for b in list(range(B)): out[b] = normalize_single(d[b]) return out def meshgrid2d(B, Y, X, stack=False, norm=False, device="cuda"): # returns a meshgrid sized B x Y x X grid_y = torch.linspace(0.0, Y - 1, Y, device=torch.device(device)) grid_y = torch.reshape(grid_y, [1, Y, 1]) grid_y = grid_y.repeat(B, 1, X) grid_x = torch.linspace(0.0, X - 1, X, device=torch.device(device)) grid_x = torch.reshape(grid_x, [1, 1, X]) grid_x = grid_x.repeat(B, Y, 1) if stack: # note we stack in xy order # (see https://pytorch.org/docs/stable/nn.functional.html#torch.nn.functional.grid_sample) grid = torch.stack([grid_x, grid_y], dim=-1) return grid else: return grid_y, grid_x def reduce_masked_mean(x, mask, dim=None, keepdim=False): # x and mask are the same shape, or at least broadcastably so < actually it's safer if you disallow broadcasting # returns shape-1 # axis can be a list of axes for (a, b) in zip(x.size(), mask.size()): assert a == b # some shape mismatch! prod = x * mask if dim is None: numer = torch.sum(prod) denom = EPS + torch.sum(mask) else: numer = torch.sum(prod, dim=dim, keepdim=keepdim) denom = EPS + torch.sum(mask, dim=dim, keepdim=keepdim) mean = numer / denom return mean def bilinear_sample2d(im, x, y, return_inbounds=False): # x and y are each B, N # output is B, C, N if len(im.shape) == 5: B, N, C, H, W = list(im.shape) else: B, C, H, W = list(im.shape) N = list(x.shape)[1] x = x.float() y = y.float() H_f = torch.tensor(H, dtype=torch.float32) W_f = torch.tensor(W, dtype=torch.float32) # inbound_mask = (x>-0.5).float()*(y>-0.5).float()*(x<W_f+0.5).float()*(y<H_f+0.5).float() max_y = (H_f - 1).int() max_x = (W_f - 1).int() x0 = torch.floor(x).int() x1 = x0 + 1 y0 = torch.floor(y).int() y1 = y0 + 1 x0_clip = torch.clamp(x0, 0, max_x) x1_clip = torch.clamp(x1, 0, max_x) y0_clip = torch.clamp(y0, 0, max_y) y1_clip = torch.clamp(y1, 0, max_y) dim2 = W dim1 = W * H base = torch.arange(0, B, dtype=torch.int64, device=x.device) * dim1 base = torch.reshape(base, [B, 1]).repeat([1, N]) base_y0 = base + y0_clip * dim2 base_y1 = base + y1_clip * dim2 idx_y0_x0 = base_y0 + x0_clip idx_y0_x1 = base_y0 + x1_clip idx_y1_x0 = base_y1 + x0_clip idx_y1_x1 = base_y1 + x1_clip # use the indices to lookup pixels in the flat image # im is B x C x H x W # move C out to last dim if len(im.shape) == 5: im_flat = (im.permute(0, 3, 4, 1, 2)).reshape(B * H * W, N, C) i_y0_x0 = torch.diagonal(im_flat[idx_y0_x0.long()], dim1=1, dim2=2).permute( 0, 2, 1 ) i_y0_x1 = torch.diagonal(im_flat[idx_y0_x1.long()], dim1=1, dim2=2).permute( 0, 2, 1 ) i_y1_x0 = torch.diagonal(im_flat[idx_y1_x0.long()], dim1=1, dim2=2).permute( 0, 2, 1 ) i_y1_x1 = torch.diagonal(im_flat[idx_y1_x1.long()], dim1=1, dim2=2).permute( 0, 2, 1 ) else: im_flat = (im.permute(0, 2, 3, 1)).reshape(B * H * W, C) i_y0_x0 = im_flat[idx_y0_x0.long()] i_y0_x1 = im_flat[idx_y0_x1.long()] i_y1_x0 = im_flat[idx_y1_x0.long()] i_y1_x1 = im_flat[idx_y1_x1.long()] # Finally calculate interpolated values. x0_f = x0.float() x1_f = x1.float() y0_f = y0.float() y1_f = y1.float() w_y0_x0 = ((x1_f - x) * (y1_f - y)).unsqueeze(2) w_y0_x1 = ((x - x0_f) * (y1_f - y)).unsqueeze(2) w_y1_x0 = ((x1_f - x) * (y - y0_f)).unsqueeze(2) w_y1_x1 = ((x - x0_f) * (y - y0_f)).unsqueeze(2) output = ( w_y0_x0 * i_y0_x0 + w_y0_x1 * i_y0_x1 + w_y1_x0 * i_y1_x0 + w_y1_x1 * i_y1_x1 ) # output is B*N x C output = output.view(B, -1, C) output = output.permute(0, 2, 1) # output is B x C x N if return_inbounds: x_valid = (x > -0.5).byte() & (x < float(W_f - 0.5)).byte() y_valid = (y > -0.5).byte() & (y < float(H_f - 0.5)).byte() inbounds = (x_valid & y_valid).float() inbounds = inbounds.reshape( B, N ) # something seems wrong here for B>1; i'm getting an error here (or downstream if i put -1) return output, inbounds return output # B, C, N
co-tracker-main
cotracker/models/core/model_utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree.
co-tracker-main
cotracker/models/core/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import numpy as np def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0): """ grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) """ if isinstance(grid_size, tuple): grid_size_h, grid_size_w = grid_size else: grid_size_h = grid_size_w = grid_size grid_h = np.arange(grid_size_h, dtype=np.float32) grid_w = np.arange(grid_size_w, dtype=np.float32) grid = np.meshgrid(grid_w, grid_h) # here w goes first grid = np.stack(grid, axis=0) grid = grid.reshape([2, 1, grid_size_h, grid_size_w]) pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) if cls_token and extra_tokens > 0: pos_embed = np.concatenate( [np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0 ) return pos_embed def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): assert embed_dim % 2 == 0 # use half of dimensions to encode grid_h emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2) emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2) emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) return emb def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): """ embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D) """ assert embed_dim % 2 == 0 omega = np.arange(embed_dim // 2, dtype=np.float64) omega /= embed_dim / 2.0 omega = 1.0 / 10000 ** omega # (D/2,) pos = pos.reshape(-1) # (M,) out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product emb_sin = np.sin(out) # (M, D/2) emb_cos = np.cos(out) # (M, D/2) emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) return emb def get_2d_embedding(xy, C, cat_coords=True): B, N, D = xy.shape assert D == 2 x = xy[:, :, 0:1] y = xy[:, :, 1:2] div_term = ( torch.arange(0, C, 2, device=xy.device, dtype=torch.float32) * (1000.0 / C) ).reshape(1, 1, int(C / 2)) pe_x = torch.zeros(B, N, C, device=xy.device, dtype=torch.float32) pe_y = torch.zeros(B, N, C, device=xy.device, dtype=torch.float32) pe_x[:, :, 0::2] = torch.sin(x * div_term) pe_x[:, :, 1::2] = torch.cos(x * div_term) pe_y[:, :, 0::2] = torch.sin(y * div_term) pe_y[:, :, 1::2] = torch.cos(y * div_term) pe = torch.cat([pe_x, pe_y], dim=2) # B, N, C*3 if cat_coords: pe = torch.cat([xy, pe], dim=2) # B, N, C*3+3 return pe def get_3d_embedding(xyz, C, cat_coords=True): B, N, D = xyz.shape assert D == 3 x = xyz[:, :, 0:1] y = xyz[:, :, 1:2] z = xyz[:, :, 2:3] div_term = ( torch.arange(0, C, 2, device=xyz.device, dtype=torch.float32) * (1000.0 / C) ).reshape(1, 1, int(C / 2)) pe_x = torch.zeros(B, N, C, device=xyz.device, dtype=torch.float32) pe_y = torch.zeros(B, N, C, device=xyz.device, dtype=torch.float32) pe_z = torch.zeros(B, N, C, device=xyz.device, dtype=torch.float32) pe_x[:, :, 0::2] = torch.sin(x * div_term) pe_x[:, :, 1::2] = torch.cos(x * div_term) pe_y[:, :, 0::2] = torch.sin(y * div_term) pe_y[:, :, 1::2] = torch.cos(y * div_term) pe_z[:, :, 0::2] = torch.sin(z * div_term) pe_z[:, :, 1::2] = torch.cos(z * div_term) pe = torch.cat([pe_x, pe_y, pe_z], dim=2) # B, N, C*3 if cat_coords: pe = torch.cat([pe, xyz], dim=2) # B, N, C*3+3 return pe def get_4d_embedding(xyzw, C, cat_coords=True): B, N, D = xyzw.shape assert D == 4 x = xyzw[:, :, 0:1] y = xyzw[:, :, 1:2] z = xyzw[:, :, 2:3] w = xyzw[:, :, 3:4] div_term = ( torch.arange(0, C, 2, device=xyzw.device, dtype=torch.float32) * (1000.0 / C) ).reshape(1, 1, int(C / 2)) pe_x = torch.zeros(B, N, C, device=xyzw.device, dtype=torch.float32) pe_y = torch.zeros(B, N, C, device=xyzw.device, dtype=torch.float32) pe_z = torch.zeros(B, N, C, device=xyzw.device, dtype=torch.float32) pe_w = torch.zeros(B, N, C, device=xyzw.device, dtype=torch.float32) pe_x[:, :, 0::2] = torch.sin(x * div_term) pe_x[:, :, 1::2] = torch.cos(x * div_term) pe_y[:, :, 0::2] = torch.sin(y * div_term) pe_y[:, :, 1::2] = torch.cos(y * div_term) pe_z[:, :, 0::2] = torch.sin(z * div_term) pe_z[:, :, 1::2] = torch.cos(z * div_term) pe_w[:, :, 0::2] = torch.sin(w * div_term) pe_w[:, :, 1::2] = torch.cos(w * div_term) pe = torch.cat([pe_x, pe_y, pe_z, pe_w], dim=2) # B, N, C*3 if cat_coords: pe = torch.cat([pe, xyzw], dim=2) # B, N, C*3+3 return pe
co-tracker-main
cotracker/models/core/embeddings.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree.
co-tracker-main
cotracker/models/core/cotracker/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn from einops import rearrange from cotracker.models.core.cotracker.blocks import ( BasicEncoder, CorrBlock, UpdateFormer, ) from cotracker.models.core.model_utils import meshgrid2d, bilinear_sample2d, smart_cat from cotracker.models.core.embeddings import ( get_2d_embedding, get_1d_sincos_pos_embed_from_grid, get_2d_sincos_pos_embed, ) torch.manual_seed(0) def get_points_on_a_grid(grid_size, interp_shape, grid_center=(0, 0), device="cuda"): if grid_size == 1: return torch.tensor([interp_shape[1] / 2, interp_shape[0] / 2], device=device)[ None, None ] grid_y, grid_x = meshgrid2d( 1, grid_size, grid_size, stack=False, norm=False, device=device ) step = interp_shape[1] // 64 if grid_center[0] != 0 or grid_center[1] != 0: grid_y = grid_y - grid_size / 2.0 grid_x = grid_x - grid_size / 2.0 grid_y = step + grid_y.reshape(1, -1) / float(grid_size - 1) * ( interp_shape[0] - step * 2 ) grid_x = step + grid_x.reshape(1, -1) / float(grid_size - 1) * ( interp_shape[1] - step * 2 ) grid_y = grid_y + grid_center[0] grid_x = grid_x + grid_center[1] xy = torch.stack([grid_x, grid_y], dim=-1).to(device) return xy def sample_pos_embed(grid_size, embed_dim, coords): pos_embed = get_2d_sincos_pos_embed(embed_dim=embed_dim, grid_size=grid_size) pos_embed = ( torch.from_numpy(pos_embed) .reshape(grid_size[0], grid_size[1], embed_dim) .float() .unsqueeze(0) .to(coords.device) ) sampled_pos_embed = bilinear_sample2d( pos_embed.permute(0, 3, 1, 2), coords[:, 0, :, 0], coords[:, 0, :, 1] ) return sampled_pos_embed class CoTracker(nn.Module): def __init__( self, S=8, stride=8, add_space_attn=True, num_heads=8, hidden_size=384, space_depth=12, time_depth=12, ): super(CoTracker, self).__init__() self.S = S self.stride = stride self.hidden_dim = 256 self.latent_dim = latent_dim = 128 self.corr_levels = 4 self.corr_radius = 3 self.add_space_attn = add_space_attn self.fnet = BasicEncoder( output_dim=self.latent_dim, norm_fn="instance", dropout=0, stride=stride ) self.updateformer = UpdateFormer( space_depth=space_depth, time_depth=time_depth, input_dim=456, hidden_size=hidden_size, num_heads=num_heads, output_dim=latent_dim + 2, mlp_ratio=4.0, add_space_attn=add_space_attn, ) self.norm = nn.GroupNorm(1, self.latent_dim) self.ffeat_updater = nn.Sequential( nn.Linear(self.latent_dim, self.latent_dim), nn.GELU(), ) self.vis_predictor = nn.Sequential( nn.Linear(self.latent_dim, 1), ) def forward_iteration( self, fmaps, coords_init, feat_init=None, vis_init=None, track_mask=None, iters=4, ): B, S_init, N, D = coords_init.shape assert D == 2 assert B == 1 B, S, __, H8, W8 = fmaps.shape device = fmaps.device if S_init < S: coords = torch.cat( [coords_init, coords_init[:, -1].repeat(1, S - S_init, 1, 1)], dim=1 ) vis_init = torch.cat( [vis_init, vis_init[:, -1].repeat(1, S - S_init, 1, 1)], dim=1 ) else: coords = coords_init.clone() fcorr_fn = CorrBlock( fmaps, num_levels=self.corr_levels, radius=self.corr_radius ) ffeats = feat_init.clone() times_ = torch.linspace(0, S - 1, S).reshape(1, S, 1) pos_embed = sample_pos_embed( grid_size=(H8, W8), embed_dim=456, coords=coords, ) pos_embed = rearrange(pos_embed, "b e n -> (b n) e").unsqueeze(1) times_embed = ( torch.from_numpy(get_1d_sincos_pos_embed_from_grid(456, times_[0]))[None] .repeat(B, 1, 1) .float() .to(device) ) coord_predictions = [] for __ in range(iters): coords = coords.detach() fcorr_fn.corr(ffeats) fcorrs = fcorr_fn.sample(coords) # B, S, N, LRR LRR = fcorrs.shape[3] fcorrs_ = fcorrs.permute(0, 2, 1, 3).reshape(B * N, S, LRR) flows_ = (coords - coords[:, 0:1]).permute(0, 2, 1, 3).reshape(B * N, S, 2) flows_cat = get_2d_embedding(flows_, 64, cat_coords=True) ffeats_ = ffeats.permute(0, 2, 1, 3).reshape(B * N, S, self.latent_dim) if track_mask.shape[1] < vis_init.shape[1]: track_mask = torch.cat( [ track_mask, torch.zeros_like(track_mask[:, 0]).repeat( 1, vis_init.shape[1] - track_mask.shape[1], 1, 1 ), ], dim=1, ) concat = ( torch.cat([track_mask, vis_init], dim=2) .permute(0, 2, 1, 3) .reshape(B * N, S, 2) ) transformer_input = torch.cat([flows_cat, fcorrs_, ffeats_, concat], dim=2) x = transformer_input + pos_embed + times_embed x = rearrange(x, "(b n) t d -> b n t d", b=B) delta = self.updateformer(x) delta = rearrange(delta, " b n t d -> (b n) t d") delta_coords_ = delta[:, :, :2] delta_feats_ = delta[:, :, 2:] delta_feats_ = delta_feats_.reshape(B * N * S, self.latent_dim) ffeats_ = ffeats.permute(0, 2, 1, 3).reshape(B * N * S, self.latent_dim) ffeats_ = self.ffeat_updater(self.norm(delta_feats_)) + ffeats_ ffeats = ffeats_.reshape(B, N, S, self.latent_dim).permute( 0, 2, 1, 3 ) # B,S,N,C coords = coords + delta_coords_.reshape(B, N, S, 2).permute(0, 2, 1, 3) coord_predictions.append(coords * self.stride) vis_e = self.vis_predictor(ffeats.reshape(B * S * N, self.latent_dim)).reshape( B, S, N ) return coord_predictions, vis_e, feat_init def forward(self, rgbs, queries, iters=4, feat_init=None, is_train=False): B, T, C, H, W = rgbs.shape B, N, __ = queries.shape device = rgbs.device assert B == 1 # INIT for the first sequence # We want to sort points by the first frame they are visible to add them to the tensor of tracked points consequtively first_positive_inds = queries[:, :, 0].long() __, sort_inds = torch.sort(first_positive_inds[0], dim=0, descending=False) inv_sort_inds = torch.argsort(sort_inds, dim=0) first_positive_sorted_inds = first_positive_inds[0][sort_inds] assert torch.allclose( first_positive_inds[0], first_positive_inds[0][sort_inds][inv_sort_inds] ) coords_init = queries[:, :, 1:].reshape(B, 1, N, 2).repeat( 1, self.S, 1, 1 ) / float(self.stride) rgbs = 2 * (rgbs / 255.0) - 1.0 traj_e = torch.zeros((B, T, N, 2), device=device) vis_e = torch.zeros((B, T, N), device=device) ind_array = torch.arange(T, device=device) ind_array = ind_array[None, :, None].repeat(B, 1, N) track_mask = (ind_array >= first_positive_inds[:, None, :]).unsqueeze(-1) # these are logits, so we initialize visibility with something that would give a value close to 1 after softmax vis_init = torch.ones((B, self.S, N, 1), device=device).float() * 10 ind = 0 track_mask_ = track_mask[:, :, sort_inds].clone() coords_init_ = coords_init[:, :, sort_inds].clone() vis_init_ = vis_init[:, :, sort_inds].clone() prev_wind_idx = 0 fmaps_ = None vis_predictions = [] coord_predictions = [] wind_inds = [] while ind < T - self.S // 2: rgbs_seq = rgbs[:, ind : ind + self.S] S = S_local = rgbs_seq.shape[1] if S < self.S: rgbs_seq = torch.cat( [rgbs_seq, rgbs_seq[:, -1, None].repeat(1, self.S - S, 1, 1, 1)], dim=1, ) S = rgbs_seq.shape[1] rgbs_ = rgbs_seq.reshape(B * S, C, H, W) if fmaps_ is None: fmaps_ = self.fnet(rgbs_) else: fmaps_ = torch.cat( [fmaps_[self.S // 2 :], self.fnet(rgbs_[self.S // 2 :])], dim=0 ) fmaps = fmaps_.reshape( B, S, self.latent_dim, H // self.stride, W // self.stride ) curr_wind_points = torch.nonzero(first_positive_sorted_inds < ind + self.S) if curr_wind_points.shape[0] == 0: ind = ind + self.S // 2 continue wind_idx = curr_wind_points[-1] + 1 if wind_idx - prev_wind_idx > 0: fmaps_sample = fmaps[ :, first_positive_sorted_inds[prev_wind_idx:wind_idx] - ind ] feat_init_ = bilinear_sample2d( fmaps_sample, coords_init_[:, 0, prev_wind_idx:wind_idx, 0], coords_init_[:, 0, prev_wind_idx:wind_idx, 1], ).permute(0, 2, 1) feat_init_ = feat_init_.unsqueeze(1).repeat(1, self.S, 1, 1) feat_init = smart_cat(feat_init, feat_init_, dim=2) if prev_wind_idx > 0: new_coords = coords[-1][:, self.S // 2 :] / float(self.stride) coords_init_[:, : self.S // 2, :prev_wind_idx] = new_coords coords_init_[:, self.S // 2 :, :prev_wind_idx] = new_coords[ :, -1 ].repeat(1, self.S // 2, 1, 1) new_vis = vis[:, self.S // 2 :].unsqueeze(-1) vis_init_[:, : self.S // 2, :prev_wind_idx] = new_vis vis_init_[:, self.S // 2 :, :prev_wind_idx] = new_vis[:, -1].repeat( 1, self.S // 2, 1, 1 ) coords, vis, __ = self.forward_iteration( fmaps=fmaps, coords_init=coords_init_[:, :, :wind_idx], feat_init=feat_init[:, :, :wind_idx], vis_init=vis_init_[:, :, :wind_idx], track_mask=track_mask_[:, ind : ind + self.S, :wind_idx], iters=iters, ) if is_train: vis_predictions.append(torch.sigmoid(vis[:, :S_local])) coord_predictions.append([coord[:, :S_local] for coord in coords]) wind_inds.append(wind_idx) traj_e[:, ind : ind + self.S, :wind_idx] = coords[-1][:, :S_local] vis_e[:, ind : ind + self.S, :wind_idx] = vis[:, :S_local] track_mask_[:, : ind + self.S, :wind_idx] = 0.0 ind = ind + self.S // 2 prev_wind_idx = wind_idx traj_e = traj_e[:, :, inv_sort_inds] vis_e = vis_e[:, :, inv_sort_inds] vis_e = torch.sigmoid(vis_e) train_data = ( (vis_predictions, coord_predictions, wind_inds, sort_inds) if is_train else None ) return traj_e, feat_init, vis_e, train_data
co-tracker-main
cotracker/models/core/cotracker/cotracker.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn.functional as F from cotracker.models.core.model_utils import reduce_masked_mean EPS = 1e-6 def balanced_ce_loss(pred, gt, valid=None): total_balanced_loss = 0.0 for j in range(len(gt)): B, S, N = gt[j].shape # pred and gt are the same shape for (a, b) in zip(pred[j].size(), gt[j].size()): assert a == b # some shape mismatch! # if valid is not None: for (a, b) in zip(pred[j].size(), valid[j].size()): assert a == b # some shape mismatch! pos = (gt[j] > 0.95).float() neg = (gt[j] < 0.05).float() label = pos * 2.0 - 1.0 a = -label * pred[j] b = F.relu(a) loss = b + torch.log(torch.exp(-b) + torch.exp(a - b)) pos_loss = reduce_masked_mean(loss, pos * valid[j]) neg_loss = reduce_masked_mean(loss, neg * valid[j]) balanced_loss = pos_loss + neg_loss total_balanced_loss += balanced_loss / float(N) return total_balanced_loss def sequence_loss(flow_preds, flow_gt, vis, valids, gamma=0.8): """Loss function defined over sequence of flow predictions""" total_flow_loss = 0.0 for j in range(len(flow_gt)): B, S, N, D = flow_gt[j].shape assert D == 2 B, S1, N = vis[j].shape B, S2, N = valids[j].shape assert S == S1 assert S == S2 n_predictions = len(flow_preds[j]) flow_loss = 0.0 for i in range(n_predictions): i_weight = gamma ** (n_predictions - i - 1) flow_pred = flow_preds[j][i] i_loss = (flow_pred - flow_gt[j]).abs() # B, S, N, 2 i_loss = torch.mean(i_loss, dim=3) # B, S, N flow_loss += i_weight * reduce_masked_mean(i_loss, valids[j]) flow_loss = flow_loss / n_predictions total_flow_loss += flow_loss / float(N) return total_flow_loss
co-tracker-main
cotracker/models/core/cotracker/losses.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange from timm.models.vision_transformer import Attention, Mlp class ResidualBlock(nn.Module): def __init__(self, in_planes, planes, norm_fn="group", stride=1): super(ResidualBlock, self).__init__() self.conv1 = nn.Conv2d( in_planes, planes, kernel_size=3, padding=1, stride=stride, padding_mode="zeros", ) self.conv2 = nn.Conv2d( planes, planes, kernel_size=3, padding=1, padding_mode="zeros" ) self.relu = nn.ReLU(inplace=True) num_groups = planes // 8 if norm_fn == "group": self.norm1 = nn.GroupNorm(num_groups=num_groups, num_channels=planes) self.norm2 = nn.GroupNorm(num_groups=num_groups, num_channels=planes) if not stride == 1: self.norm3 = nn.GroupNorm(num_groups=num_groups, num_channels=planes) elif norm_fn == "batch": self.norm1 = nn.BatchNorm2d(planes) self.norm2 = nn.BatchNorm2d(planes) if not stride == 1: self.norm3 = nn.BatchNorm2d(planes) elif norm_fn == "instance": self.norm1 = nn.InstanceNorm2d(planes) self.norm2 = nn.InstanceNorm2d(planes) if not stride == 1: self.norm3 = nn.InstanceNorm2d(planes) elif norm_fn == "none": self.norm1 = nn.Sequential() self.norm2 = nn.Sequential() if not stride == 1: self.norm3 = nn.Sequential() if stride == 1: self.downsample = None else: self.downsample = nn.Sequential( nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm3 ) def forward(self, x): y = x y = self.relu(self.norm1(self.conv1(y))) y = self.relu(self.norm2(self.conv2(y))) if self.downsample is not None: x = self.downsample(x) return self.relu(x + y) class BasicEncoder(nn.Module): def __init__( self, input_dim=3, output_dim=128, stride=8, norm_fn="batch", dropout=0.0 ): super(BasicEncoder, self).__init__() self.stride = stride self.norm_fn = norm_fn self.in_planes = 64 if self.norm_fn == "group": self.norm1 = nn.GroupNorm(num_groups=8, num_channels=self.in_planes) self.norm2 = nn.GroupNorm(num_groups=8, num_channels=output_dim * 2) elif self.norm_fn == "batch": self.norm1 = nn.BatchNorm2d(self.in_planes) self.norm2 = nn.BatchNorm2d(output_dim * 2) elif self.norm_fn == "instance": self.norm1 = nn.InstanceNorm2d(self.in_planes) self.norm2 = nn.InstanceNorm2d(output_dim * 2) elif self.norm_fn == "none": self.norm1 = nn.Sequential() self.conv1 = nn.Conv2d( input_dim, self.in_planes, kernel_size=7, stride=2, padding=3, padding_mode="zeros", ) self.relu1 = nn.ReLU(inplace=True) self.shallow = False if self.shallow: self.layer1 = self._make_layer(64, stride=1) self.layer2 = self._make_layer(96, stride=2) self.layer3 = self._make_layer(128, stride=2) self.conv2 = nn.Conv2d(128 + 96 + 64, output_dim, kernel_size=1) else: self.layer1 = self._make_layer(64, stride=1) self.layer2 = self._make_layer(96, stride=2) self.layer3 = self._make_layer(128, stride=2) self.layer4 = self._make_layer(128, stride=2) self.conv2 = nn.Conv2d( 128 + 128 + 96 + 64, output_dim * 2, kernel_size=3, padding=1, padding_mode="zeros", ) self.relu2 = nn.ReLU(inplace=True) self.conv3 = nn.Conv2d(output_dim * 2, output_dim, kernel_size=1) self.dropout = None if dropout > 0: self.dropout = nn.Dropout2d(p=dropout) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)): if m.weight is not None: nn.init.constant_(m.weight, 1) if m.bias is not None: nn.init.constant_(m.bias, 0) def _make_layer(self, dim, stride=1): layer1 = ResidualBlock(self.in_planes, dim, self.norm_fn, stride=stride) layer2 = ResidualBlock(dim, dim, self.norm_fn, stride=1) layers = (layer1, layer2) self.in_planes = dim return nn.Sequential(*layers) def forward(self, x): _, _, H, W = x.shape x = self.conv1(x) x = self.norm1(x) x = self.relu1(x) if self.shallow: a = self.layer1(x) b = self.layer2(a) c = self.layer3(b) a = F.interpolate( a, (H // self.stride, W // self.stride), mode="bilinear", align_corners=True, ) b = F.interpolate( b, (H // self.stride, W // self.stride), mode="bilinear", align_corners=True, ) c = F.interpolate( c, (H // self.stride, W // self.stride), mode="bilinear", align_corners=True, ) x = self.conv2(torch.cat([a, b, c], dim=1)) else: a = self.layer1(x) b = self.layer2(a) c = self.layer3(b) d = self.layer4(c) a = F.interpolate( a, (H // self.stride, W // self.stride), mode="bilinear", align_corners=True, ) b = F.interpolate( b, (H // self.stride, W // self.stride), mode="bilinear", align_corners=True, ) c = F.interpolate( c, (H // self.stride, W // self.stride), mode="bilinear", align_corners=True, ) d = F.interpolate( d, (H // self.stride, W // self.stride), mode="bilinear", align_corners=True, ) x = self.conv2(torch.cat([a, b, c, d], dim=1)) x = self.norm2(x) x = self.relu2(x) x = self.conv3(x) if self.training and self.dropout is not None: x = self.dropout(x) return x class AttnBlock(nn.Module): """ A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning. """ def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, **block_kwargs): super().__init__() self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.attn = Attention( hidden_size, num_heads=num_heads, qkv_bias=True, **block_kwargs ) self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) mlp_hidden_dim = int(hidden_size * mlp_ratio) approx_gelu = lambda: nn.GELU(approximate="tanh") self.mlp = Mlp( in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0, ) def forward(self, x): x = x + self.attn(self.norm1(x)) x = x + self.mlp(self.norm2(x)) return x def bilinear_sampler(img, coords, mode="bilinear", mask=False): """Wrapper for grid_sample, uses pixel coordinates""" H, W = img.shape[-2:] xgrid, ygrid = coords.split([1, 1], dim=-1) # go to 0,1 then 0,2 then -1,1 xgrid = 2 * xgrid / (W - 1) - 1 ygrid = 2 * ygrid / (H - 1) - 1 grid = torch.cat([xgrid, ygrid], dim=-1) img = F.grid_sample(img, grid, align_corners=True) if mask: mask = (xgrid > -1) & (ygrid > -1) & (xgrid < 1) & (ygrid < 1) return img, mask.float() return img class CorrBlock: def __init__(self, fmaps, num_levels=4, radius=4): B, S, C, H, W = fmaps.shape self.S, self.C, self.H, self.W = S, C, H, W self.num_levels = num_levels self.radius = radius self.fmaps_pyramid = [] self.fmaps_pyramid.append(fmaps) for i in range(self.num_levels - 1): fmaps_ = fmaps.reshape(B * S, C, H, W) fmaps_ = F.avg_pool2d(fmaps_, 2, stride=2) _, _, H, W = fmaps_.shape fmaps = fmaps_.reshape(B, S, C, H, W) self.fmaps_pyramid.append(fmaps) def sample(self, coords): r = self.radius B, S, N, D = coords.shape assert D == 2 H, W = self.H, self.W out_pyramid = [] for i in range(self.num_levels): corrs = self.corrs_pyramid[i] # B, S, N, H, W _, _, _, H, W = corrs.shape dx = torch.linspace(-r, r, 2 * r + 1) dy = torch.linspace(-r, r, 2 * r + 1) delta = torch.stack(torch.meshgrid(dy, dx, indexing="ij"), axis=-1).to( coords.device ) centroid_lvl = coords.reshape(B * S * N, 1, 1, 2) / 2 ** i delta_lvl = delta.view(1, 2 * r + 1, 2 * r + 1, 2) coords_lvl = centroid_lvl + delta_lvl corrs = bilinear_sampler(corrs.reshape(B * S * N, 1, H, W), coords_lvl) corrs = corrs.view(B, S, N, -1) out_pyramid.append(corrs) out = torch.cat(out_pyramid, dim=-1) # B, S, N, LRR*2 return out.contiguous().float() def corr(self, targets): B, S, N, C = targets.shape assert C == self.C assert S == self.S fmap1 = targets self.corrs_pyramid = [] for fmaps in self.fmaps_pyramid: _, _, _, H, W = fmaps.shape fmap2s = fmaps.view(B, S, C, H * W) corrs = torch.matmul(fmap1, fmap2s) corrs = corrs.view(B, S, N, H, W) corrs = corrs / torch.sqrt(torch.tensor(C).float()) self.corrs_pyramid.append(corrs) class UpdateFormer(nn.Module): """ Transformer model that updates track estimates. """ def __init__( self, space_depth=12, time_depth=12, input_dim=320, hidden_size=384, num_heads=8, output_dim=130, mlp_ratio=4.0, add_space_attn=True, ): super().__init__() self.out_channels = 2 self.num_heads = num_heads self.hidden_size = hidden_size self.add_space_attn = add_space_attn self.input_transform = torch.nn.Linear(input_dim, hidden_size, bias=True) self.flow_head = torch.nn.Linear(hidden_size, output_dim, bias=True) self.time_blocks = nn.ModuleList( [ AttnBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio) for _ in range(time_depth) ] ) if add_space_attn: self.space_blocks = nn.ModuleList( [ AttnBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio) for _ in range(space_depth) ] ) assert len(self.time_blocks) >= len(self.space_blocks) self.initialize_weights() def initialize_weights(self): def _basic_init(module): if isinstance(module, nn.Linear): torch.nn.init.xavier_uniform_(module.weight) if module.bias is not None: nn.init.constant_(module.bias, 0) self.apply(_basic_init) def forward(self, input_tensor): x = self.input_transform(input_tensor) j = 0 for i in range(len(self.time_blocks)): B, N, T, _ = x.shape x_time = rearrange(x, "b n t c -> (b n) t c", b=B, t=T, n=N) x_time = self.time_blocks[i](x_time) x = rearrange(x_time, "(b n) t c -> b n t c ", b=B, t=T, n=N) if self.add_space_attn and ( i % (len(self.time_blocks) // len(self.space_blocks)) == 0 ): x_space = rearrange(x, "b n t c -> (b t) n c ", b=B, t=T, n=N) x_space = self.space_blocks[j](x_space) x = rearrange(x_space, "(b t) n c -> b n t c ", b=B, t=T, n=N) j += 1 flow = self.flow_head(x) return flow
co-tracker-main
cotracker/models/core/cotracker/blocks.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree.
co-tracker-main
cotracker/evaluation/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import json import os from dataclasses import dataclass, field import hydra import numpy as np import torch from omegaconf import OmegaConf from cotracker.datasets.badja_dataset import BadjaDataset from cotracker.datasets.fast_capture_dataset import FastCaptureDataset from cotracker.datasets.tap_vid_datasets import TapVidDataset from cotracker.datasets.utils import collate_fn from cotracker.models.evaluation_predictor import EvaluationPredictor from cotracker.evaluation.core.evaluator import Evaluator from cotracker.models.build_cotracker import ( build_cotracker, ) @dataclass(eq=False) class DefaultConfig: # Directory where all outputs of the experiment will be saved. exp_dir: str = "./outputs" # Name of the dataset to be used for the evaluation. dataset_name: str = "badja" # The root directory of the dataset. dataset_root: str = "./" # Path to the pre-trained model checkpoint to be used for the evaluation. # The default value is the path to a specific CoTracker model checkpoint. # Other available options are commented. checkpoint: str = "./checkpoints/cotracker_stride_4_wind_8.pth" # cotracker_stride_4_wind_12 # cotracker_stride_8_wind_16 # EvaluationPredictor parameters # The size (N) of the support grid used in the predictor. # The total number of points is (N*N). grid_size: int = 6 # The size (N) of the local support grid. local_grid_size: int = 6 # A flag indicating whether to evaluate one ground truth point at a time. single_point: bool = True # The number of iterative updates for each sliding window. n_iters: int = 6 seed: int = 0 gpu_idx: int = 0 # Override hydra's working directory to current working dir, # also disable storing the .hydra logs: hydra: dict = field( default_factory=lambda: { "run": {"dir": "."}, "output_subdir": None, } ) def run_eval(cfg: DefaultConfig): """ The function evaluates CoTracker on a specified benchmark dataset based on a provided configuration. Args: cfg (DefaultConfig): An instance of DefaultConfig class which includes: - exp_dir (str): The directory path for the experiment. - dataset_name (str): The name of the dataset to be used. - dataset_root (str): The root directory of the dataset. - checkpoint (str): The path to the CoTracker model's checkpoint. - single_point (bool): A flag indicating whether to evaluate one ground truth point at a time. - n_iters (int): The number of iterative updates for each sliding window. - seed (int): The seed for setting the random state for reproducibility. - gpu_idx (int): The index of the GPU to be used. """ # Creating the experiment directory if it doesn't exist os.makedirs(cfg.exp_dir, exist_ok=True) # Saving the experiment configuration to a .yaml file in the experiment directory cfg_file = os.path.join(cfg.exp_dir, "expconfig.yaml") with open(cfg_file, "w") as f: OmegaConf.save(config=cfg, f=f) evaluator = Evaluator(cfg.exp_dir) cotracker_model = build_cotracker(cfg.checkpoint) # Creating the EvaluationPredictor object predictor = EvaluationPredictor( cotracker_model, grid_size=cfg.grid_size, local_grid_size=cfg.local_grid_size, single_point=cfg.single_point, n_iters=cfg.n_iters, ) if torch.cuda.is_available(): predictor.model = predictor.model.cuda() # Setting the random seeds torch.manual_seed(cfg.seed) np.random.seed(cfg.seed) # Constructing the specified dataset curr_collate_fn = collate_fn if cfg.dataset_name == "badja": test_dataset = BadjaDataset(data_root=os.path.join(cfg.dataset_root, "BADJA")) elif cfg.dataset_name == "fastcapture": test_dataset = FastCaptureDataset( data_root=os.path.join(cfg.dataset_root, "fastcapture"), max_seq_len=100, max_num_points=20, ) elif "tapvid" in cfg.dataset_name: dataset_type = cfg.dataset_name.split("_")[1] if dataset_type == "davis": data_root = os.path.join(cfg.dataset_root, "/tapvid_davis/tapvid_davis.pkl") elif dataset_type == "kinetics": data_root = os.path.join( cfg.dataset_root, "/kinetics/kinetics-dataset/k700-2020/tapvid_kinetics" ) test_dataset = TapVidDataset( dataset_type=dataset_type, data_root=data_root, queried_first=not "strided" in cfg.dataset_name, ) # Creating the DataLoader object test_dataloader = torch.utils.data.DataLoader( test_dataset, batch_size=1, shuffle=False, num_workers=14, collate_fn=curr_collate_fn, ) # Timing and conducting the evaluation import time start = time.time() evaluate_result = evaluator.evaluate_sequence( predictor, test_dataloader, dataset_name=cfg.dataset_name, ) end = time.time() print(end - start) # Saving the evaluation results to a .json file if not "tapvid" in cfg.dataset_name: print("evaluate_result", evaluate_result) else: evaluate_result = evaluate_result["avg"] result_file = os.path.join(cfg.exp_dir, f"result_eval_.json") evaluate_result["time"] = end - start print(f"Dumping eval results to {result_file}.") with open(result_file, "w") as f: json.dump(evaluate_result, f) cs = hydra.core.config_store.ConfigStore.instance() cs.store(name="default_config_eval", node=DefaultConfig) @hydra.main(config_path="./configs/", config_name="default_config_eval") def evaluate(cfg: DefaultConfig) -> None: os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = str(cfg.gpu_idx) run_eval(cfg) if __name__ == "__main__": evaluate()
co-tracker-main
cotracker/evaluation/evaluate.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree.
co-tracker-main
cotracker/evaluation/core/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np from typing import Iterable, Mapping, Tuple, Union def compute_tapvid_metrics( query_points: np.ndarray, gt_occluded: np.ndarray, gt_tracks: np.ndarray, pred_occluded: np.ndarray, pred_tracks: np.ndarray, query_mode: str, ) -> Mapping[str, np.ndarray]: """Computes TAP-Vid metrics (Jaccard, Pts. Within Thresh, Occ. Acc.) See the TAP-Vid paper for details on the metric computation. All inputs are given in raster coordinates. The first three arguments should be the direct outputs of the reader: the 'query_points', 'occluded', and 'target_points'. The paper metrics assume these are scaled relative to 256x256 images. pred_occluded and pred_tracks are your algorithm's predictions. This function takes a batch of inputs, and computes metrics separately for each video. The metrics for the full benchmark are a simple mean of the metrics across the full set of videos. These numbers are between 0 and 1, but the paper multiplies them by 100 to ease reading. Args: query_points: The query points, an in the format [t, y, x]. Its size is [b, n, 3], where b is the batch size and n is the number of queries gt_occluded: A boolean array of shape [b, n, t], where t is the number of frames. True indicates that the point is occluded. gt_tracks: The target points, of shape [b, n, t, 2]. Each point is in the format [x, y] pred_occluded: A boolean array of predicted occlusions, in the same format as gt_occluded. pred_tracks: An array of track predictions from your algorithm, in the same format as gt_tracks. query_mode: Either 'first' or 'strided', depending on how queries are sampled. If 'first', we assume the prior knowledge that all points before the query point are occluded, and these are removed from the evaluation. Returns: A dict with the following keys: occlusion_accuracy: Accuracy at predicting occlusion. pts_within_{x} for x in [1, 2, 4, 8, 16]: Fraction of points predicted to be within the given pixel threshold, ignoring occlusion prediction. jaccard_{x} for x in [1, 2, 4, 8, 16]: Jaccard metric for the given threshold average_pts_within_thresh: average across pts_within_{x} average_jaccard: average across jaccard_{x} """ metrics = {} # Don't evaluate the query point. Numpy doesn't have one_hot, so we # replicate it by indexing into an identity matrix. one_hot_eye = np.eye(gt_tracks.shape[2]) query_frame = query_points[..., 0] query_frame = np.round(query_frame).astype(np.int32) evaluation_points = one_hot_eye[query_frame] == 0 # If we're using the first point on the track as a query, don't evaluate the # other points. if query_mode == "first": for i in range(gt_occluded.shape[0]): index = np.where(gt_occluded[i] == 0)[0][0] evaluation_points[i, :index] = False elif query_mode != "strided": raise ValueError("Unknown query mode " + query_mode) # Occlusion accuracy is simply how often the predicted occlusion equals the # ground truth. occ_acc = ( np.sum( np.equal(pred_occluded, gt_occluded) & evaluation_points, axis=(1, 2), ) / np.sum(evaluation_points) ) metrics["occlusion_accuracy"] = occ_acc # Next, convert the predictions and ground truth positions into pixel # coordinates. visible = np.logical_not(gt_occluded) pred_visible = np.logical_not(pred_occluded) all_frac_within = [] all_jaccard = [] for thresh in [1, 2, 4, 8, 16]: # True positives are points that are within the threshold and where both # the prediction and the ground truth are listed as visible. within_dist = ( np.sum( np.square(pred_tracks - gt_tracks), axis=-1, ) < np.square(thresh) ) is_correct = np.logical_and(within_dist, visible) # Compute the frac_within_threshold, which is the fraction of points # within the threshold among points that are visible in the ground truth, # ignoring whether they're predicted to be visible. count_correct = np.sum( is_correct & evaluation_points, axis=(1, 2), ) count_visible_points = np.sum(visible & evaluation_points, axis=(1, 2)) frac_correct = count_correct / count_visible_points metrics["pts_within_" + str(thresh)] = frac_correct all_frac_within.append(frac_correct) true_positives = np.sum( is_correct & pred_visible & evaluation_points, axis=(1, 2) ) # The denominator of the jaccard metric is the true positives plus # false positives plus false negatives. However, note that true positives # plus false negatives is simply the number of points in the ground truth # which is easier to compute than trying to compute all three quantities. # Thus we just add the number of points in the ground truth to the number # of false positives. # # False positives are simply points that are predicted to be visible, # but the ground truth is not visible or too far from the prediction. gt_positives = np.sum(visible & evaluation_points, axis=(1, 2)) false_positives = (~visible) & pred_visible false_positives = false_positives | ((~within_dist) & pred_visible) false_positives = np.sum(false_positives & evaluation_points, axis=(1, 2)) jaccard = true_positives / (gt_positives + false_positives) metrics["jaccard_" + str(thresh)] = jaccard all_jaccard.append(jaccard) metrics["average_jaccard"] = np.mean( np.stack(all_jaccard, axis=1), axis=1, ) metrics["average_pts_within_thresh"] = np.mean( np.stack(all_frac_within, axis=1), axis=1, ) return metrics
co-tracker-main
cotracker/evaluation/core/eval_utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from collections import defaultdict import os from typing import Optional import torch from tqdm import tqdm import numpy as np from torch.utils.tensorboard import SummaryWriter from cotracker.datasets.utils import dataclass_to_cuda_ from cotracker.utils.visualizer import Visualizer from cotracker.models.core.model_utils import reduce_masked_mean from cotracker.evaluation.core.eval_utils import compute_tapvid_metrics import logging class Evaluator: """ A class defining the CoTracker evaluator. """ def __init__(self, exp_dir) -> None: # Visualization self.exp_dir = exp_dir os.makedirs(exp_dir, exist_ok=True) self.visualization_filepaths = defaultdict(lambda: defaultdict(list)) self.visualize_dir = os.path.join(exp_dir, "visualisations") def compute_metrics(self, metrics, sample, pred_trajectory, dataset_name): if isinstance(pred_trajectory, tuple): pred_trajectory, pred_visibility = pred_trajectory else: pred_visibility = None if dataset_name == "badja": sample.segmentation = (sample.segmentation > 0).float() *_, N, _ = sample.trajectory.shape accs = [] accs_3px = [] for s1 in range(1, sample.video.shape[1]): # target frame for n in range(N): vis = sample.visibility[0, s1, n] if vis > 0: coord_e = pred_trajectory[0, s1, n] # 2 coord_g = sample.trajectory[0, s1, n] # 2 dist = torch.sqrt(torch.sum((coord_e - coord_g) ** 2, dim=0)) area = torch.sum(sample.segmentation[0, s1]) # print_('0.2*sqrt(area)', 0.2*torch.sqrt(area)) thr = 0.2 * torch.sqrt(area) # correct = accs.append((dist < thr).float()) # print('thr',thr) accs_3px.append((dist < 3.0).float()) res = torch.mean(torch.stack(accs)) * 100.0 res_3px = torch.mean(torch.stack(accs_3px)) * 100.0 metrics[sample.seq_name[0]] = res.item() metrics[sample.seq_name[0] + "_accuracy"] = res_3px.item() print(metrics) print( "avg", np.mean([v for k, v in metrics.items() if "accuracy" not in k]) ) print( "avg acc 3px", np.mean([v for k, v in metrics.items() if "accuracy" in k]), ) elif dataset_name == "fastcapture" or ("kubric" in dataset_name): *_, N, _ = sample.trajectory.shape accs = [] for s1 in range(1, sample.video.shape[1]): # target frame for n in range(N): vis = sample.visibility[0, s1, n] if vis > 0: coord_e = pred_trajectory[0, s1, n] # 2 coord_g = sample.trajectory[0, s1, n] # 2 dist = torch.sqrt(torch.sum((coord_e - coord_g) ** 2, dim=0)) thr = 3 correct = (dist < thr).float() accs.append(correct) res = torch.mean(torch.stack(accs)) * 100.0 metrics[sample.seq_name[0] + "_accuracy"] = res.item() print(metrics) print("avg", np.mean([v for v in metrics.values()])) elif "tapvid" in dataset_name: B, T, N, D = sample.trajectory.shape traj = sample.trajectory.clone() thr = 0.9 if pred_visibility is None: logging.warning("visibility is NONE") pred_visibility = torch.zeros_like(sample.visibility) if not pred_visibility.dtype == torch.bool: pred_visibility = pred_visibility > thr # pred_trajectory query_points = sample.query_points.clone().cpu().numpy() pred_visibility = pred_visibility[:, :, :N] pred_trajectory = pred_trajectory[:, :, :N] gt_tracks = traj.permute(0, 2, 1, 3).cpu().numpy() gt_occluded = ( torch.logical_not(sample.visibility.clone().permute(0, 2, 1)) .cpu() .numpy() ) pred_occluded = ( torch.logical_not(pred_visibility.clone().permute(0, 2, 1)) .cpu() .numpy() ) pred_tracks = pred_trajectory.permute(0, 2, 1, 3).cpu().numpy() out_metrics = compute_tapvid_metrics( query_points, gt_occluded, gt_tracks, pred_occluded, pred_tracks, query_mode="strided" if "strided" in dataset_name else "first", ) metrics[sample.seq_name[0]] = out_metrics for metric_name in out_metrics.keys(): if "avg" not in metrics: metrics["avg"] = {} metrics["avg"][metric_name] = np.mean( [v[metric_name] for k, v in metrics.items() if k != "avg"] ) logging.info(f"Metrics: {out_metrics}") logging.info(f"avg: {metrics['avg']}") print("metrics", out_metrics) print("avg", metrics["avg"]) else: rgbs = sample.video trajs_g = sample.trajectory valids = sample.valid vis_g = sample.visibility B, S, C, H, W = rgbs.shape assert C == 3 B, S, N, D = trajs_g.shape assert torch.sum(valids) == B * S * N vis_g = (torch.sum(vis_g, dim=1, keepdim=True) >= 4).float().repeat(1, S, 1) ate = torch.norm(pred_trajectory - trajs_g, dim=-1) # B, S, N metrics["things_all"] = reduce_masked_mean(ate, valids).item() metrics["things_vis"] = reduce_masked_mean(ate, valids * vis_g).item() metrics["things_occ"] = reduce_masked_mean( ate, valids * (1.0 - vis_g) ).item() @torch.no_grad() def evaluate_sequence( self, model, test_dataloader: torch.utils.data.DataLoader, dataset_name: str, train_mode=False, writer: Optional[SummaryWriter] = None, step: Optional[int] = 0, ): metrics = {} vis = Visualizer( save_dir=self.exp_dir, fps=7, ) for ind, sample in enumerate(tqdm(test_dataloader)): if isinstance(sample, tuple): sample, gotit = sample if not all(gotit): print("batch is None") continue if torch.cuda.is_available(): dataclass_to_cuda_(sample) device = torch.device("cuda") else: device = torch.device("cpu") if ( not train_mode and hasattr(model, "sequence_len") and (sample.visibility[:, : model.sequence_len].sum() == 0) ): print(f"skipping batch {ind}") continue if "tapvid" in dataset_name: queries = sample.query_points.clone().float() queries = torch.stack( [ queries[:, :, 0], queries[:, :, 2], queries[:, :, 1], ], dim=2, ).to(device) else: queries = torch.cat( [ torch.zeros_like(sample.trajectory[:, 0, :, :1]), sample.trajectory[:, 0], ], dim=2, ).to(device) pred_tracks = model(sample.video, queries) if "strided" in dataset_name: inv_video = sample.video.flip(1).clone() inv_queries = queries.clone() inv_queries[:, :, 0] = inv_video.shape[1] - inv_queries[:, :, 0] - 1 pred_trj, pred_vsb = pred_tracks inv_pred_trj, inv_pred_vsb = model(inv_video, inv_queries) inv_pred_trj = inv_pred_trj.flip(1) inv_pred_vsb = inv_pred_vsb.flip(1) mask = pred_trj == 0 pred_trj[mask] = inv_pred_trj[mask] pred_vsb[mask[:, :, :, 0]] = inv_pred_vsb[mask[:, :, :, 0]] pred_tracks = pred_trj, pred_vsb if dataset_name == "badja" or dataset_name == "fastcapture": seq_name = sample.seq_name[0] else: seq_name = str(ind) vis.visualize( sample.video, pred_tracks[0] if isinstance(pred_tracks, tuple) else pred_tracks, filename=dataset_name + "_" + seq_name, writer=writer, step=step, ) self.compute_metrics(metrics, sample, pred_tracks, dataset_name) return metrics
co-tracker-main
cotracker/evaluation/core/evaluator.py
import os import torch import timm import einops import tqdm import cv2 import gradio as gr from cotracker.utils.visualizer import Visualizer, read_video_from_path def cotracker_demo( input_video, grid_size: int = 10, grid_query_frame: int = 0, backward_tracking: bool = False, tracks_leave_trace: bool = False ): load_video = read_video_from_path(input_video) grid_query_frame = min(len(load_video)-1, grid_query_frame) load_video = torch.from_numpy(load_video).permute(0, 3, 1, 2)[None].float() model = torch.hub.load("facebookresearch/co-tracker", "cotracker_w8") if torch.cuda.is_available(): model = model.cuda() load_video = load_video.cuda() pred_tracks, pred_visibility = model( load_video, grid_size=grid_size, grid_query_frame=grid_query_frame, backward_tracking=backward_tracking ) linewidth = 2 if grid_size < 10: linewidth = 4 elif grid_size < 20: linewidth = 3 vis = Visualizer( save_dir=os.path.join(os.path.dirname(__file__), "results"), grayscale=False, pad_value=100, fps=10, linewidth=linewidth, show_first_frame=5, tracks_leave_trace= -1 if tracks_leave_trace else 0, ) import time def current_milli_time(): return round(time.time() * 1000) filename = str(current_milli_time()) vis.visualize( load_video, tracks=pred_tracks, visibility=pred_visibility, filename=filename, query_frame=grid_query_frame, ) return os.path.join( os.path.dirname(__file__), "results", f"{filename}_pred_track.mp4" ) app = gr.Interface( title = "🎨 CoTracker: It is Better to Track Together", description = "<div style='text-align: left;'> \ <p>Welcome to <a href='http://co-tracker.github.io' target='_blank'>CoTracker</a>! This space demonstrates point (pixel) tracking in videos. \ Points are sampled on a regular grid and are tracked jointly. </p> \ <p> To get started, simply upload your <b>.mp4</b> video in landscape orientation or click on one of the example videos to load them. The shorter the video, the faster the processing. We recommend submitting short videos of length <b>2-7 seconds</b>.</p> \ <ul style='display: inline-block; text-align: left;'> \ <li>The total number of grid points is the square of <b>Grid Size</b>.</li> \ <li>To specify the starting frame for tracking, adjust <b>Grid Query Frame</b>. Tracks will be visualized only after the selected frame.</li> \ <li>Use <b>Backward Tracking</b> to track points from the selected frame in both directions.</li> \ <li>Check <b>Visualize Track Traces</b> to visualize traces of all the tracked points. </li> \ </ul> \ <p style='text-align: left'>For more details, check out our <a href='https://github.com/facebookresearch/co-tracker' target='_blank'>GitHub Repo</a> ⭐</p> \ </div>", fn=cotracker_demo, inputs=[ gr.Video(type="file", label="Input video", interactive=True), gr.Slider(minimum=1, maximum=30, step=1, value=10, label="Grid Size"), gr.Slider(minimum=0, maximum=30, step=1, default=0, label="Grid Query Frame"), gr.Checkbox(label="Backward Tracking"), gr.Checkbox(label="Visualize Track Traces"), ], outputs=gr.Video(label="Video with predicted tracks"), examples=[ [ "./assets/apple.mp4", 20, 0, False, False ], [ "./assets/apple.mp4", 10, 30, True, False ], ], cache_examples=False ) app.launch(share=False)
co-tracker-main
gradio_demo/app.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import math import torch import torch.nn.functional as F from torch.autograd import grad def gPenalty(inputs, loss, lam, q): # Gradient penalty bs, c, h, w = inputs.size() d_in = c * h * w g = grad(loss, inputs, create_graph=True)[0] * bs g = g.view(bs, -1) qnorms = g.norm(q, 1).mean() lam = lam * math.pow(d_in, 1. - 1. / q) return lam * qnorms.mean() / 2. def advAugment(net, inputs, targets, loss, lam, q): # Single-step adversarial augmentation (e.g. FGSM) bs, c, h, w = inputs.size() d_in = c * h * w g = grad(loss, inputs, retain_graph=True)[0] * bs g = g.view(bs, -1).detach() if q == 1: lam = lam dx = lam * g.sign() else: p = 1. / (1. - 1. / q) lam = lam * math.pow(d_in, 1. - 1. / q) dx = g.sign() * g.abs().pow(q - 1) # sign when q uneven pnorms = dx.norm(p, 1, keepdim=True) dx = lam * dx / pnorms dx = dx.view_as(inputs) advInputs = (inputs + dx).detach() advOutputs = net(advInputs) advLoss = F.cross_entropy(advOutputs, targets) return (advLoss - loss) / 2. def pgd(net, inputs, targets, loss, lam, steps, step_size, random_start=True, train=True): # Projected gradient descent (i.e. iterative FGSM) with random starts bs, c, h, w = inputs.size() if random_start: if torch.cuda.is_available(): noise = torch.cuda.FloatTensor(bs, c, h, w).uniform_(-lam, lam) else: noise = torch.FloatTensor(bs, c, h, w).uniform_(-lam, lam) else: if torch.cuda.is_available(): noise = torch.cuda.FloatTensor(bs, c, h, w).fill_(0) else: noise = torch.FloatTensor(bs, c, h, w).fill_(0) advInputs = (inputs + noise).detach() advInputs.requires_grad = True advOutputs = net(advInputs) advLoss = F.cross_entropy(advOutputs, targets) for i in range(steps): retain_graph = ((i + 1 == steps) and train) g = grad(advLoss, advInputs, retain_graph=retain_graph)[0] * bs g = g.view(bs, -1).detach() dx = step_size * g.sign() dx = dx.view_as(advInputs) advInputs = advInputs + dx advInputs = inputs + torch.clamp(advInputs - inputs, -lam, lam) advInputs = advInputs.detach() advInputs.requires_grad = True advOutputs = net(advInputs) advLoss = F.cross_entropy(advOutputs, targets) return advLoss - loss, advOutputs def crossLip(inputs, outputs, lam): gk = [] n, K, cLpen = outputs.size(0), outputs.size(1), 0. for k in range(K): gk.append(grad(outputs[:, k].sum(), inputs, create_graph=True)[0]) for l in range(K): for m in range(l + 1, K): cLpen += (gk[l] - gk[m]) ** 2 cLpen = 2. / n / K ** 2 * cLpen.sum() return lam * cLpen def addPenalty(net, inputs, outputs, targets, loss, args): if args.penalty == 'grad': penalty = gPenalty(inputs, loss, args.lam, args.q) elif args.penalty == 'adv': penalty = advAugment(net, inputs, targets, loss, args.lam, args.q) elif args.penalty == 'pgd': penalty, _ = pgd( # uses linf attacks net, inputs, targets, loss, args.lam, args.steps, step_size=args.lam / (.75 * args.steps)) elif args.penalty == 'crossLip': penalty = crossLip(inputs, outputs, args.lam) else: raise NotImplementedError("Unknown penalty %r" % args.penalty) return penalty
AdversarialAndDimensionality-master
penalties.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # """ Some utilities """ import os import math import warnings import configargparse import torch from nets import ConvNet def argument_parser(): parser = configargparse.ArgParser( description='First-order vulnerability and input dimension') parser.add( '--config', required=True, is_config_file=True, help='configuration file path') parser.add_argument( '--name', type=str, help='Experiment name. Results will be saved/loaded from directory ' './results/name (which will be created if needed).') parser.add_argument( '--datapath', type=str, default=None, help="Data location. Default: '~/datasets/' + `dataset`") parser.add_argument( '--dataset', type=str, default='cifar', help='mnist, cifar, imgnet12 (default: cifar)') parser.add_argument( '--img_size', type=int, default=None, help='only for imgnet. Resize img to 32, 64, 128 or 256.') parser.add_argument( '--n_layers', type=int, default=5, help='number of hidden layers') parser.add_argument( '--bs', type=int, default=128, help='batch size') parser.add_argument( '--epochs', type=int, default=200, help='number of training epochs') parser.add_argument( '--no_BN', action='store_true', help='Do not use batch norms (except before the very 1st layer)') parser.add_argument( '--no_act', action='store_true', help='No activation functions (f.ex. no ReLUs)') parser.add_argument( '--raw_inputs', action='store_true', help='Do not normalize inputs (hence no bn as first network layer)') parser.add_argument( '--log_step', type=int, default=None, help='print training info every log_step batches (default: None)') # training parser.add_argument( '--lr', type=float, default=.01, help='Initial learning rate') parser.add_argument( '--no_training', action='store_true', help='Do not train the network') parser.add_argument( '--crop', action='store_true', help='Use cropping instead of resizing image.') # Penalties/Regularizers penalties = ['grad', 'adv', 'pgd', 'crossLip'] parser.add_argument( '--lam', type=float, default=0., help='global regularization weight') parser.add_argument( '--penalty', type=str, choices=penalties, default=None, help='penalty type:' + ' | '.join(penalties)) parser.add_argument( '--q', type=int, default=None, help="defense-norm q; dual of attack-norm p. " "For FGSM, use penalty='adv' and 'q=1'") parser.add_argument( '--steps', type=int, default=None, help='number of optimization steps per attack when using PGD') # Vulnerability.py specific parser.add_argument( '--n_attacks', type=int, default=-1, help='number of attack iterations; -1 for whole dataset') parser.add_argument( '--log_vul', action='store_true', help='Print detailed logs of vulnerability computation') # ConvNet specific pooltypes = ['avgpool', 'maxpool', 'weightpool', 'subsamp'] last_layers = ['maxpool', 'avgpool', 'fc', 'weightpool'] parser.add_argument( '--poolings', nargs='*', type=int, default=[], help='Where to do poolings. Should be a list of ' 'integers smaller than n_layers. Defaults to None. (ConvNet)') parser.add_argument( '--pooltype', type=str, choices=pooltypes, default='subsamp', help='penalty type:' + ' | '.join(penalties) + 'default: subsamp') parser.add_argument( '--dilations', nargs='*', type=int, default=None, help='Dilations to use for each layer. List of n_layers int. ' 'Defaults to 1 for all layers. (ConvNet)') parser.add_argument( '--last_layers', type=str, choices=last_layers, default='avgpool', help='penalty type:' + ' | '.join(last_layers)) args = parser.parse_args() if args.datapath is None: args.datapath = os.path.join('~/datasets/', args.dataset) args.datapath = os.path.expanduser(args.datapath) # DATASET SPECIFIC SETTINGS if args.dataset == 'mnist': if args.img_size is None: args.img_size = 32 elif args.img_size not in {32, 64, 128, 256, 512}: raise Exception( "img_size must be 32, 64, 128, 256. " "But provided %r" % args.img_size) args.categories = 10 args.in_planes = 1 elif args.dataset == 'cifar': if args.img_size is None: args.img_size = 32 elif args.img_size not in {32, 64, 128, 256, 512}: raise Exception( "img_size must be 32, 64, 128, 256, or 512. " "But provided %r" % args.img_size) args.categories = 10 args.in_planes = 3 elif args.dataset == 'imgnet12': if args.img_size is None: args.img_size = 256 elif args.img_size not in {32, 64, 128, 256}: raise Exception( "img_size must be 32, 64, 128, or 256. " "But provided %r" % args.img_size) if args.bs > 32: raise Exception( "With imgnet12, Batchsize bs should be <= 32. " "Otherwise, you'll probably run out of GPU memory") args.categories = 12 args.in_planes = 3 else: raise NotImplementedError("Dataset unknown") # NETWORK DOUBLE-CHECKS/WARNINGS if args.no_BN and args.raw_inputs: warnings.warn( "no_BN also removes the first BN layer before the net " "which serves as normalization of data when using raw_inputs. " "Thus data input data stays unnormalized between 0 and 1") if args.dilations is None: dilation = 1 if args.crop else int(args.img_size / 32) args.dilations = [dilation] * args.n_layers elif len(args.dilations) == 1: args.dilations = args.dilations * args.n_layers elif len(args.dilations) != args.n_layers: raise Exception( 'Argument dilations must be single integer, or a list of ' 'integers of length n_layers') # PENALTY/REGULARIZATION WARNINGS if (args.lam, args.penalty, args.q) != (0., None, None): if args.lam == 0.: warnings.warn( "Arguments penalty and/or q are given, but lam = 0. " "Set lam > 0., otherwise not penalty is used") elif args.penalty is None: raise Exception("Argument lam > 0., but no penalty is defined.") elif (args.penalty in {'adv', 'grad'}) and (args.q is None): raise Exception( "If argument penalty is 'adv' or 'grad', q must be in " "[1, infty]") if (args.penalty == 'pgd') and (args.steps is None): raise Exception( "Arguments steps must be specified with " "penalty-option pgd") return parser, args def create_net(args): net = ConvNet( args.categories, args.n_layers, args.img_size, args.poolings, args.pooltype, args.no_BN, args.no_act, args.dilations, normalize_inputs=(not args.raw_inputs), last_layers=args.last_layers, in_planes=args.in_planes) return net def initialize_params(m, no_act=False, distribution='normal'): # gain = sqrt 2 for ReLU gain = 1. if no_act else math.sqrt(2) try: # if last layer, then gain = 1. if m.unit_gain: # test if module as attribute 'last' gain = 1. except AttributeError: pass if type(m) in {torch.nn.Conv2d, torch.nn.Linear}: if m.bias is not None: torch.nn.init.constant_(m.bias, 0.) out_ = m.weight.data.size(0) in_ = m.weight.data.view(out_, -1).size(1) sigma = gain / math.sqrt(in_) if distribution is 'uniform': xmax = math.sqrt(3) * sigma torch.nn.init.uniform_(m.weight, a=-xmax, b=xmax) elif distribution is 'normal': torch.nn.init.normal_(m.weight, std=sigma) else: raise NotImplementedError( "Argument distribution must be 'uniform' or 'normal'. " "Got: '%r'" % distribution) elif type(m) == torch.nn.BatchNorm2d: if m.affine: torch.nn.init.constant_(m.bias, 0.) torch.nn.init.constant_(m.weight, 1.) if m.track_running_stats: torch.nn.init.constant_(m.running_mean, 0.) torch.nn.init.constant_(m.running_var, 1.)
AdversarialAndDimensionality-master
utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import time import torch import torch.nn.functional as F from torch.autograd import grad from data import CIFAR10, IMGNET12, MNIST from vulnerability import compute_vulnerability from utils import argument_parser, create_net, initialize_params from penalties import addPenalty, pgd # NB: Logger cannot be pushed to utils.py, because of eval(name) class Logger(object): def __init__(self): self.logs = dict() def log(self, step, delta_time, *args): for name in args: if type(name) != str: raise Exception( "Logger takes strings as inputs. " "But got %s" % type(name)) if name not in self.logs: self.logs[name] = [] self.logs[name].append([eval(name), step, delta_time]) def get_logs(self): return self.logs def set_logs(self, logs): self.logs = logs # logs : dict return def grad_norms(loss, inputs, train=False): bs = inputs.size(0) g = grad(loss, inputs, retain_graph=train)[0] * bs g = g.view(bs, -1) norm1, norm2 = g.norm(1, 1).mean(), g.norm(2, 1).mean() return norm1.item(), norm2.item() def do_epoch(epoch, net, optimizer, loader, mode, args): if mode not in {'train', 'eval', 'test', 'init'}: # 'init' -> for initialization of batchnorms # 'train' -> training (but no logging of vul & dam) # 'eval' -> compute acc & gnorms but not vul & dam on validation # 'test' -> compute all logged values on test set raise Exception('Argument mode must be train, eval or init') net.eval() if mode in {'eval', 'test'} else net.train() device = next(net.parameters()).device cum_loss = cum_pen = cum_norm1 = cum_norm2 = total = correct = 0. advVul = advCorrect = cum_dam = 0. predictedAdv = None for i, (inputs, targets) in enumerate(loader): optimizer.zero_grad() inputs, targets = inputs.to(device), targets.to(device) inputs.requires_grad = True outputs = net(inputs) loss = F.cross_entropy(outputs, targets) norm1, norm2 = grad_norms(loss, inputs, mode == 'train') if mode == 'train': if args.lam > 0.: penalty = addPenalty(net, inputs, outputs, targets, loss, args) loss += penalty cum_pen += penalty.item() cum_loss += loss.item() loss.backward() optimizer.step() elif mode == 'test': # compute adv vul & damage using custom PGD eps = .004 advDam, advOutputs = pgd( net, inputs, targets, loss, lam=eps, steps=10, step_size=eps / (.75 * 10), random_start=False, train=False) # Compute logging info cum_norm1 += norm1 cum_norm2 += norm2 cum_loss += loss.item() total += targets.size(0) _, predicted = torch.max(outputs.data, 1) correct += predicted.eq(targets.data).float().cpu().sum().item() if mode == 'test': cum_dam += advDam.item() / eps _, predictedAdv = torch.max(advOutputs.data, 1) advVul += predicted.size(0) - ( predictedAdv.eq(predicted.data).float().cpu().sum().item()) advCorrect += predictedAdv.eq( targets.data).float().cpu().sum().item() results = { 'acc': 100 * correct / total, # accuracy 'loss': cum_loss / (i + 1), # loss 'pen': cum_pen / (i + 1), # penalty 'norm1': cum_norm1 / (i + 1), # avg l1-gradient norm 'norm2': cum_norm2 / (i + 1), # avg l2-gradient norm 'av': 100 * advVul / total, # adversarial vulnerability 'da': cum_dam / (i + 1), # adversarial damage 'aa': 100 * advCorrect / total # adversarial accuracy } if args.log_step is not None and i % args.log_step == 0: print("Epoch: %03d Batch: %04d Mode: %-5s Acc: %4.1f Loss: %4.2f " "Pen: %5.3f gNorm1: %6.2f gNorm2: %6.3f Vul: %4.1f " "Dam: %6.2f AdAcc %4.1f" % ( epoch, i, mode, *[ results[i] for i in ['acc', 'loss', 'pen', 'norm1', 'norm2', 'av', 'da', 'aa']])) return results if __name__ == '__main__': parser, args = argument_parser() logger = Logger() args.path = os.path.join('results', args.name) net = create_net(args) # print(net) if not os.path.exists(args.path): os.makedirs(args.path, exist_ok=True) # requires Python >= 3.2 if os.path.isfile(os.path.join(args.path, 'last.pt')): print('> Loading last saved state/network...') state = torch.load(os.path.join(args.path, 'last.pt')) net.load_state_dict(state['state_dict']) lr = state['lr'] optimizer = torch.optim.SGD(net.parameters(), lr=lr, momentum=0.9) optimizer.load_state_dict(state['optimizer']) best_va_acc = state['best_va_acc'] start_ep = state['epoch'] + 1 logger.set_logs(state['logs']) else: # initialize new net print('> Initializing new network...') net.apply(lambda m: initialize_params(m, args.no_act, 'normal')) lr = args.lr optimizer = torch.optim.SGD(net.parameters(), lr=lr, momentum=0.9) best_va_acc = -1. start_ep = -1 print('> Done.') device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') net = net.to(device) torch.backends.cudnn.benchmark = True print('> Loading dataset...') if args.dataset == 'mnist': tr_loader, va_loader, te_loader = MNIST( root=args.datapath, bs=args.bs, valid_size=.1, size=args.img_size, normalize=(not args.raw_inputs)) elif args.dataset == 'cifar': tr_loader, va_loader, te_loader = CIFAR10( root=args.datapath, bs=args.bs, valid_size=.1, size=args.img_size, normalize=(not args.raw_inputs)) elif args.dataset == 'imgnet12': tr_loader, va_loader, te_loader = IMGNET12( root=args.datapath, bs=args.bs, valid_size=.1, size=args.img_size, normalize=(not args.raw_inputs)) else: raise NotImplementedError print('> Done.') print('> Starting training.') time_start = time.time() epochs = 0 if args.no_training else args.epochs for epoch in range(start_ep, epochs): time_start = time.time() if epoch % 30 == 0 and epoch > 0: # reload best parameters on validation set net.load_state_dict( torch.load(os.path.join( args.path, 'best.pt'))['state_dict']) # update learning rate lr *= .5 for param_group in optimizer.param_groups: param_group['lr'] = lr mode = 'init' if epoch < 0 else 'train' tr_res = do_epoch(epoch, net, optimizer, tr_loader, mode, args) va_res = do_epoch(epoch, net, optimizer, va_loader, 'eval', args) te_res = do_epoch(epoch, net, optimizer, te_loader, 'test', args) time_per_epoch = time.time() - time_start print("epoch %3d lr %.1e te_norm1 %7.3f te_norm2 %6.4f tr_loss %6.3f " "tr_acc %5.2f te_acc %5.2f te_aa %5.2f te_av %5.2f te_da %6.3f " "va_acc %5.2f be_va_acc %5.2f time %d" % ( epoch, lr, te_res['norm1'], te_res['norm2'], tr_res['loss'], tr_res['acc'], te_res['acc'], te_res['aa'], te_res['av'], te_res['da'], va_res['acc'], best_va_acc, time_per_epoch)) # Log and save results logger.log(epoch, time_per_epoch, 'lr', 'tr_res', 'va_res', 'te_res') state = { 'lr': lr, 'epoch': epoch, 'state_dict': net.state_dict(), 'optimizer': optimizer.state_dict(), 'args': args, 'logs': logger.get_logs(), 'best_va_acc': best_va_acc } torch.save(state, os.path.join(args.path, 'last.pt')) if va_res['acc'] > best_va_acc: best_va_acc = va_res['acc'] torch.save(state, os.path.join(args.path, 'best.pt')) print('> Finished Training') # Compute adversarial vulnerability with foolbox print('\n> Starting attacks.') attacks = {'l1'} # attacks = {'l1', 'l2', 'itl1', 'itl2', 'deepFool', 'pgd', 'boundary'} for attack in attacks: vulnerability = compute_vulnerability( args, attack, net, args.n_attacks) torch.save(vulnerability, os.path.join(args.path, 'vulnerability_%s.pt' % attack))
AdversarialAndDimensionality-master
main.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import math import time import numpy as np import scipy.stats as st from functools import partial import torch from torch.autograd import grad import foolbox from foolbox.distances import Linfinity, MSE from data import CIFAR10, IMGNET12, MNIST def do_pass(net, loader, args, means, stds): correct = total = 0. device = next(net.parameters()).device means = torch.FloatTensor(means).to(device) stds = torch.FloatTensor(stds).to(device) for i, (inputs, targets) in enumerate(loader): inputs, targets = inputs.to(device), targets.to(device) inputs = (inputs - means) / stds outputs = net(inputs) _, predicted = torch.max(outputs.data, 1) total += targets.size(0) correct += predicted.eq(targets.data).float().sum().item() if args.log_step is not None and i % args.log_step == 0: print("Batch: %03d Acc: %4.1f" % (i, 100 * correct / total)) return 100 * correct / total def classify(net, x, args, means, stds): device = next(net.parameters()).device x = x.to(device).view(1, 3, args.img_size, args.img_size) means = torch.FloatTensor(means).to(device) stds = torch.FloatTensor(stds).to(device) x = ((x - means) / stds).detach() x.requires_grad = True y = net(x) g = grad(y.sum(), x)[0].view(x.size(0), -1).norm().item() _, top_indices = y.data.cpu().view(-1).topk(2) return top_indices[0].item(), g def myPrint(string, args): if args.log_vul: print(string) def conf95(a): return st.t.interval( 0.95, len(a) - 1, loc=np.nanmean(a), scale=st.sem(a, nan_policy='omit')) def compute_vulnerability(args, attack_name, net, n_attacks=-1): """ Computes vulnerability using foolbox package of net Parameters ---------- args : :class:`argparse.ArgumentParser` The arguments passed to main.py attack_name : string The attack type. Must be one of {'l1', 'l2', 'itl1', 'itl2', 'pgd', 'deepfool'} net : :class:`torch.nn.Module` The network whose vulnerability is computed. n_attacks : int The number of attacks to use for the computation of vulnerbaility. If -1 or greater than dataset-size, uses the entire dataset. Default: -1. """ print('\nStarting attacks of type ' + attack_name) # Reload data without normalizing it print('> Loading dataset %s...' % args.dataset) if args.dataset == 'mnist': _, loader = MNIST( root=args.datapath, bs=args.bs, valid_size=0., size=args.img_size, normalize=False) elif args.dataset == 'cifar': _, loader = CIFAR10( root=args.datapath, bs=args.bs, valid_size=0., size=args.img_size, normalize=False) elif args.dataset == 'imgnet12': _, loader = IMGNET12( root=args.datapath, bs=args.bs, valid_size=0., size=args.img_size, normalize=False) else: raise NotImplementedError print('> Done.') # Image-normalizations (must be same as in data.py) if args.raw_inputs: means = [0., 0., 0.] stds = [1., 1., 1.] elif args.dataset == "mnist": means = [0.1307] stds = [0.3081] elif args.dataset == "cifar": means = [0.4914, 0.4822, 0.4465] stds = [0.2023, 0.1994, 0.2010] elif args.dataset == "imgnet12": means = [.453, .443, .403] stds = { 256: [.232, .226, .225], 128: [.225, .218, .218], 64: [.218, .211, .211], 32: [.206, .200, .200] }[args.img_size] else: raise NotImplementedError means = np.array(means).reshape(-1, 1, 1) stds = np.array(stds).reshape(-1, 1, 1) net.eval() print('> Computing test accuracy...') te_acc = do_pass(net, loader, args, means, stds) print('> Done. Computed test accuracy: %5.2f' % te_acc) # construct attack bounds = (0, 1) model = foolbox.models.PyTorchModel(net, bounds=bounds, preprocessing=(means, stds), num_classes=args.categories) # Choosing attack type if attack_name == 'l1': # vulnerability increases like sqrt(d) \propto img_size # therefore, we divide the linfty-threshold by img_size attack = partial(foolbox.attacks.FGSM(model, distance=Linfinity), epsilons=1000, max_epsilon=1. / args.img_size) elif attack_name == 'l2': # to be visually constant, the l2-threshold increases like sqrt d; # but vulnerability also increases like sqrt d; # therefore, use constant max_epsilon accross dimension d attack = partial(foolbox.attacks.GradientAttack(model, distance=MSE), epsilons=1000, max_epsilon=1.) elif attack_name == 'itl1': it, eps = 10, 1. / args.img_size attack = partial( foolbox.attacks.LinfinityBasicIterativeAttack( model, distance=Linfinity), iterations=it, epsilon=eps, stepsize=eps / (.75 * it), binary_search=True) elif attack_name == 'itl2': it, eps = 10, 1. attack = partial( foolbox.attacks.L2BasicIterativeAttack( model, distance=MSE), iterations=it, epsilon=eps, stepsize=eps / (.75 * it), binary_search=True) elif attack_name == 'pgd': it, eps = 10, 1. / args.img_size attack = partial(foolbox.attacks.RandomPGD(model, distance=Linfinity), iterations=it, epsilon=eps, stepsize=eps / (.75 * it), binary_search=True) elif attack_name == 'deepFool': attack = foolbox.attacks.DeepFoolAttack(model, distance=MSE) elif attack_name == 'boundary': attack = partial(foolbox.attacks.BoundaryAttack(model, distance=MSE), iterations=2000, log_every_n_steps=np.Infinity, verbose=False) else: raise NotImplementedError( "attack_name must be 'l1', 'l2', 'itl1', 'itl2', " "'deepFool' or 'boundary'") n_iterations = 0 results = {} results['l2_snr'] = [] results['clean_grad'] = [] results['dirty_grad'] = [] results['l2_norm'] = [] results['linf_norm'] = [] n_fooled = 0 print('> Creating empty image-tensors') n_saved = 64 if (n_attacks == -1) else min(n_attacks, 64) clean_images = torch.zeros(n_saved, 3, args.img_size, args.img_size) dirty_images = torch.zeros(n_saved, 3, args.img_size, args.img_size) print('> Done.') myPrint(("{:>15} " * 5).format( "clean_grad", "dirty_grad", "linf_norm", "l2_norm", "l2_snr"), args) t0 = time.time() for i, (images, labels) in enumerate(loader): if n_iterations == n_attacks: break for i, clean_image in enumerate(images): clean_label, clean_grad = classify(net, clean_image, args, means, stds) dirty_image_np = attack(clean_image.numpy(), clean_label) if dirty_image_np is not None: # i.e. if adversarial was found dirty_image = torch.Tensor(dirty_image_np) _, dirty_grad = classify(net, dirty_image, args, means, stds) if i < n_saved: # only save n_saved first images dirty_images[i] = dirty_image.clone() clean_images[i] = clean_image.clone() l2_norm = (clean_image - dirty_image).norm().item() linf_norm = (clean_image - dirty_image).abs().max().item() l2_snr = 20. * math.log10( clean_image.norm().item() / (l2_norm + 1e-6)) else: l2_snr = dirty_grad = l2_norm = linf_norm = np.NaN results['l2_snr'].append(l2_snr) results['clean_grad'].append(clean_grad) results['dirty_grad'].append(dirty_grad) results['l2_norm'].append(l2_norm) results['linf_norm'].append(linf_norm) fmt_str = "{:>15.6f} " * 5 if ((attack.func._default_distance == MSE and l2_norm < .005 * np.sqrt(args.img_size)) or (attack.func._default_distance == Linfinity and linf_norm < .005)): fmt_str += " * fooled!" n_fooled += 1 myPrint(fmt_str.format(clean_grad, dirty_grad, linf_norm, l2_norm, l2_snr), args) n_iterations += 1 if n_iterations == n_attacks: break # Printing summary summary = {} print("\n Summary for network in '{}' of test accuracy {}".format( args.path, te_acc)) for key, value in results.items(): low95, high95 = conf95(value) print("{:>10} mean:{:>10.5f} std:{:>10.5f} conf95:({:>10.5f}, " "{:>10.5f}) minmax:({:>10.5f}, {:>10.5f})".format( key, np.nanmean(value), np.nanstd(value), low95, high95, np.nanmin(value), np.nanmax(value))) summary[key] = [np.nanmean(value), np.nanstd(value), low95, high95] percent = 100 * n_fooled / float(n_iterations) print("{:>10} {:10d}s".format("Time", int(time.time() - t0))) print("{:>10} {:10.1f}%".format("percent", percent)) # Preparing the output output = dict() output['summary'] = summary output['results'] = results output['clean_images'] = clean_images output['dirty_images'] = dirty_images output['percent'] = percent output['te_acc'] = te_acc return output
AdversarialAndDimensionality-master
vulnerability.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import numpy as np from PIL import Image import torch from torch.utils.data.sampler import SubsetRandomSampler import torchvision.transforms as transforms import torchvision.datasets as datasets def IMGNET12(root='~/datasets/imgnet12/', bs=32, bs_test=None, num_workers=32, valid_size=.1, size=256, crop=False, normalize=False): # Datafolder '~/datasets/imgnet12/' should contain folders train/ and val/, # each of which whould contain 12 subfolders (1 per class) with .jpg files root = os.path.expanduser(root) # original means = [.485, .456, .406] # original stds = [0.229, 0.224, 0.225] means = [.453, .443, .403] stds = { 256: [.232, .226, .225], 128: [.225, .218, .218], 64: [.218, .211, .211], 32: [.206, .200, .200] } if normalize: normalize = transforms.Normalize(mean=means, std=stds[size]) else: normalize = transforms.Normalize((0., 0., 0), (1., 1., 1.)) if bs_test is None: bs_test = bs if crop: tr_downsamplingOp = transforms.RandomCrop(size) te_downsamplingOp = transforms.CenterCrop(size) else: tr_downsamplingOp = transforms.Resize(size) te_downsamplingOp = transforms.Resize(size) preprocess = [transforms.Resize(256), transforms.CenterCrop(256)] tr_transforms = transforms.Compose([ *preprocess, tr_downsamplingOp, transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ]) te_transforms = transforms.Compose([ *preprocess, te_downsamplingOp, transforms.ToTensor(), normalize, ]) tr_dataset = datasets.ImageFolder(root + '/train', transform=tr_transforms) te_dataset = datasets.ImageFolder(root + '/val', transform=te_transforms) # Split training in train and valid set num_train = len(tr_dataset) indices = list(range(num_train)) split = int(np.floor(valid_size * num_train)) np.random.seed(42) np.random.shuffle(indices) tr_idx, va_idx = indices[split:], indices[:split] tr_sampler = SubsetRandomSampler(tr_idx) va_sampler = SubsetRandomSampler(va_idx) tr_loader = torch.utils.data.DataLoader( tr_dataset, batch_size=bs, num_workers=num_workers, pin_memory=True, sampler=tr_sampler) va_loader = torch.utils.data.DataLoader( tr_dataset, batch_size=bs_test, num_workers=num_workers, pin_memory=True, sampler=va_sampler) te_loader = torch.utils.data.DataLoader( te_dataset, batch_size=bs_test, shuffle=False, num_workers=num_workers, pin_memory=True) if valid_size > 0.: return tr_loader, va_loader, te_loader else: return tr_loader, te_loader def CIFAR10(root='~/datasets/cifar10/', bs=128, bs_test=None, augment_training=True, valid_size=0., size=32, num_workers=1, normalize=False): root = os.path.expanduser(root) if bs_test is None: bs_test = bs if normalize: normalize = transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)) else: normalize = transforms.Normalize((0., 0., 0), (1., 1., 1.)) transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.Resize(size, Image.NEAREST), transforms.ToTensor(), normalize ]) transform_test = transforms.Compose([ transforms.Resize(size, Image.NEAREST), transforms.ToTensor(), normalize ]) transform_valid = transform_test if augment_training is False: transform_train = transform_test dataset_tr = datasets.CIFAR10(root=root, train=True, transform=transform_train) dataset_va = datasets.CIFAR10(root=root, train=True, transform=transform_valid) dataset_te = datasets.CIFAR10(root=root, train=False, transform=transform_test) # Split training in train and valid set num_train = len(dataset_tr) indices = list(range(num_train)) split = int(np.floor(valid_size * num_train)) np.random.seed(42) np.random.shuffle(indices) train_idx, valid_idx = indices[split:], indices[:split] train_sampler = SubsetRandomSampler(train_idx) valid_sampler = SubsetRandomSampler(valid_idx) loader_tr = torch.utils.data.DataLoader(dataset_tr, batch_size=bs, sampler=train_sampler, num_workers=num_workers) loader_va = torch.utils.data.DataLoader(dataset_va, batch_size=bs, sampler=valid_sampler, num_workers=num_workers) # add pin_memory loader_te = torch.utils.data.DataLoader(dataset_te, batch_size=bs_test, shuffle=False, num_workers=num_workers) if valid_size > 0: return loader_tr, loader_va, loader_te else: return loader_tr, loader_te def MNIST(root='~/datasets/mnist/', bs=128, bs_test=None, augment_training=True, valid_size=0., size=32, num_workers=1, normalize=False): root = os.path.expanduser(root) if bs_test is None: bs_test = bs if normalize: normalize = transforms.Normalize((0.1307,), (0.3081,)) else: normalize = transforms.Normalize((0.,), (1.,)) transform = transforms.Compose([ transforms.Resize(32, Image.BILINEAR), transforms.Resize(size, Image.NEAREST), transforms.Grayscale(num_output_channels=1), transforms.ToTensor(), normalize ]) dataset_tr = datasets.MNIST(root=root, train=True, transform=transform) dataset_va = datasets.MNIST(root=root, train=True, transform=transform) dataset_te = datasets.MNIST(root=root, train=False, transform=transform) # Split training in train and valid set num_train = len(dataset_tr) indices = list(range(num_train)) split = int(np.floor(valid_size * num_train)) np.random.seed(42) np.random.shuffle(indices) train_idx, valid_idx = indices[split:], indices[:split] train_sampler = SubsetRandomSampler(train_idx) valid_sampler = SubsetRandomSampler(valid_idx) loader_tr = torch.utils.data.DataLoader(dataset_tr, batch_size=bs, sampler=train_sampler, num_workers=num_workers) loader_va = torch.utils.data.DataLoader(dataset_va, batch_size=bs, sampler=valid_sampler, num_workers=num_workers) # add pin_memory loader_te = torch.utils.data.DataLoader(dataset_te, batch_size=bs_test, shuffle=False, num_workers=num_workers) if valid_size > 0: return loader_tr, loader_va, loader_te else: return loader_tr, loader_te
AdversarialAndDimensionality-master
data.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from functools import reduce import torch.nn as nn import torch.nn.functional as F class Identity(nn.Module): def __init__(self): super(Identity, self).__init__() def forward(self, x): return x class FlexibleAvgPool2d(nn.Module): def __init__(self): super().__init__() def forward(self, inputs): return F.avg_pool2d(inputs, kernel_size=inputs.size(2)) class WeightPool(nn.Module): def __init__(self, in_planes, kernel_size): super(WeightPool, self).__init__() self.conv = nn.Conv2d(in_planes, in_planes, kernel_size=kernel_size, stride=kernel_size, groups=in_planes, bias=False) self.conv.unit_gain = True def forward(self, x): return self.conv(x) class WeightPoolOut(nn.Module): def __init__(self, in_planes, plane_size, categories, unit_gain=False): super(WeightPoolOut, self).__init__() self.in_planes = in_planes self.conv = nn.Conv2d(in_planes, in_planes, kernel_size=plane_size, groups=in_planes, bias=False) self.linear = nn.Linear(in_planes, categories) self.linear.unit_gain = unit_gain def forward(self, x): out = self.conv(x) out = out.view(-1, self.in_planes) return self.linear(out) class MaxPoolOut(nn.Module): def __init__(self, in_planes, plane_size, categories, unit_gain=False): super(MaxPoolOut, self).__init__() self.in_planes = in_planes self.maxpool = nn.MaxPool2d(kernel_size=plane_size) self.linear = nn.Linear(in_planes, categories) self.linear.unit_gain = unit_gain def forward(self, x): out = self.maxpool(x) out = out.view(-1, self.in_planes) return self.linear(out) class AvgPoolOut(nn.Module): def __init__(self, in_planes, plane_size, categories, unit_gain=False): super(AvgPoolOut, self).__init__() self.in_planes = in_planes self.avgpool = nn.AvgPool2d(kernel_size=plane_size) self.linear = nn.Linear(in_planes, categories) self.linear.unit_gain = unit_gain def forward(self, x): out = self.avgpool(x) out = out.view(-1, self.in_planes) return self.linear(out) class FCout(nn.Module): def __init__(self, in_planes, plane_size, categories, unit_gain=False): super(FCout, self).__init__() if type(plane_size) == tuple and len(plane_size) == 2: plane_size = reduce(lambda x, y: x * y, plane_size) else: plane_size = plane_size ** 2 print('Plane size = ', plane_size) self.in_planes = in_planes self.plane_size = plane_size self.linear = nn.Linear(in_planes * plane_size, categories) self.linear.unit_gain = unit_gain def forward(self, x): out = x.view(-1, self.in_planes * self.plane_size) return self.linear(out) class ConvLayer(nn.Module): def __init__(self, in_planes, planes, pooltype=None, no_BN=False, no_act=False, dilation=1): super(ConvLayer, self).__init__() self.pad = nn.ReflectionPad2d(dilation) if pooltype is None: # Usual conv self.conv = nn.Conv2d(in_planes, planes, 3, padding=0, stride=1, dilation=dilation) elif pooltype == 'avgpool': # Average Pool self.conv = nn.Sequential( nn.Conv2d(in_planes, planes, 3, dilation=dilation), nn.AvgPool2d(2)) elif pooltype == 'subsamp': # Strided Conv self.conv = nn.Conv2d( in_planes, planes, 3, stride=2, dilation=dilation) elif pooltype == 'maxpool': # Max Pool self.conv = nn.Sequential( nn.Conv2d(in_planes, planes, 3, dilation=dilation), nn.MaxPool2d(2)) elif pooltype == 'weightpool': self.conv = nn.Sequential( nn.Conv2d(in_planes, planes, 3, dilation=dilation), WeightPool(planes, 2)) else: raise NotImplementedError if no_act: self.act = lambda x: x else: self.act = nn.ReLU() if no_BN: self.bn = lambda x: x # Identity() else: self.bn = nn.BatchNorm2d(planes) def forward(self, x): out = self.act(self.bn(self.conv(self.pad(x)))) return out class ConvNet(nn.Module): def __init__( self, categories=10, n_layers=3, in_size=32, poolings=None, pooltype='avgpool', no_BN=False, no_act=False, dilations=1, normalize_inputs=False, last_layers='maxpool', in_planes=3): # last_layers in {'maxpool', 'fc', 'weightpool'} super(ConvNet, self).__init__() poolings = [] if poolings is None else poolings if type(dilations) != list: dilations = [dilations] * n_layers self.in_planes = in_planes if normalize_inputs or no_BN: self.bn = (lambda x: x) else: self.bn = nn.BatchNorm2d(self.in_planes) self.layers = self._make_layers( ConvLayer, 64, n_layers, poolings, pooltype, no_BN, no_act, dilations) # compute input-size to last layers from input-size of the net # self.in_planes is changed by _make_layers to the nbr of out-planes out_size = int(in_size / (2 ** (len(poolings)))) self.last_layers = self._make_last_layers( out_size, categories, last_layers) def _make_layers(self, block, planes, num_blocks, poolings, pooltype, no_BN, no_act, dilations): # pooltypes = [0] + [0] * (num_blocks - 1) pooltypes = [None] * num_blocks for pool in poolings: pooltypes[pool] = pooltype layers = [] for pool, dilation in zip(pooltypes, dilations): layers.append(block(self.in_planes, planes, pool, no_BN, no_act, dilation)) self.in_planes = planes return nn.Sequential(*layers) def _make_last_layers(self, in_size, categories, last_layers): if last_layers == 'maxpool': last_layers = MaxPoolOut( self.in_planes, in_size, categories, unit_gain=True) elif last_layers == 'avgpool': last_layers = AvgPoolOut( self.in_planes, in_size, categories, unit_gain=True) elif last_layers == 'weightpool': last_layers = WeightPoolOut( self.in_planes, in_size, categories, unit_gain=True) elif last_layers == 'fc': last_layers = FCout( self.in_planes, in_size, categories, unit_gain=True) else: raise NotImplementedError( 'Argument last_layers must be maxpool, fc, weightpool. ' 'But got: %s' % last_layers) return last_layers def forward(self, x): out = self.layers(self.bn(x)) out = self.last_layers(out) return out
AdversarialAndDimensionality-master
nets.py
#!/usr/bin/env python3 import argparse import json import logging import os import pickle import random import re from collections import Counter, OrderedDict from sklearn.cluster import DBSCAN, AffinityPropagation from sklearn.feature_extraction.text import CountVectorizer from sklearn.metrics.pairwise import linear_kernel working_dir = None config = None vocab = None options = None def parse_args(): parser = argparse.ArgumentParser() parser.add_argument( "-c", "--corpus", action="store", dest="corpus", default=None, help="Process raw ASTs, featurize, and store in the working directory.", ) parser.add_argument( "-d", "--working-dir", action="store", dest="working_dir", help="Working directory.", required=True, ) parser.add_argument( "-f", "--file-query", action="append", dest="file_query", default=[], help="File containing the query AST of a query code as JSON.", ) parser.add_argument( "-k", "--keywords", action="append", dest="keywords", default=[], help="Keywords to search for.", ) parser.add_argument( "-i", "--index-query", type=int, action="store", dest="index_query", default=None, help="Index of the query AST in the corpus.", ) parser.add_argument( "-t", "--testall", dest="testall", action="store_true", default=False, help="Sample config.N_SAMPLES snippets and search.", ) options = parser.parse_args() logging.info(options) return options class Config: def __init__(self): self.MIN_MERGED_CODE = 3 self.MIN_PRUNED_SCORE = 0.65 self.N_PARENTS = 3 self.N_SIBLINGS = 1 self.N_VAR_SIBLINGS = 2 self.NUM_SIMILARS = 100 self.MIN_SIMILARITY_SCORE = 0.4 self.VOCAB_FILE = "vocab.pkl" self.TFIDF_FILE = "tfidf.pkl" self.FEATURES_FILE = "features.json" self.NUM_FEATURE_MIN = 10 self.DBSCAN_EPS = 0.1 self.SAMPLE_METHOD_MIN_LINES = 12 self.SAMPLE_METHOD_MAX_LINES = 7 self.METHOD_MAX_LINES = 150 self.SEED = 119 self.N_SAMPLES = 100 self.IGNORE_VAR_NAMES = True self.IGNORE_SIBLING_FEATURES = False self.IGNORE_VAR_SIBLING_FEATURES = False self.CLUSTER = True self.PRINT_SIMILAR = True self.USE_DBSCAN = True self.THRESHOLD1 = 0.9 self.THRESHOLD2 = 1.5 self.TOP_N = 5 class Vocab: def __init__(self): self.vocab = OrderedDict() self.words = [] def get_word(self, i): if i <= config.NUM_FEATURE_MIN: return "#UNK" return self.words[i - 1 - config.NUM_FEATURE_MIN] def add_and_get_index(self, word): if not (word in self.vocab): self.words.append(word) self.vocab[word] = [0, len(self.vocab) + 1 + config.NUM_FEATURE_MIN] value = self.vocab[word] value[0] += 1 return value[1] def get_index(self, word): if word in self.vocab: return self.vocab[word][1] else: return config.NUM_FEATURE_MIN def dump(self): with open(os.path.join(options.working_dir, config.VOCAB_FILE), "wb") as out: pickle.dump([self.vocab, self.words], out) logging.info(f"Dumped vocab with size {len(self.vocab)}") @staticmethod def load(init=False): tmp = Vocab() if not init: try: with open( os.path.join(options.working_dir, config.VOCAB_FILE), "rb" ) as out: [tmp.vocab, tmp.words] = pickle.load(out) logging.info(f"Loaded vocab with size {len(tmp.vocab)}") except: logging.info("Initialized vocab.") pass return tmp def str2bool(v): return v.lower() in ("yes", "true", "t", "1") def ast_to_code_aux(ast, token_list): if isinstance(ast, list): for elem in ast: ast_to_code_aux(elem, token_list) elif isinstance(ast, dict): token_list.append(ast["leading"]) token_list.append(ast["token"]) def ast_to_code_collect_lines(ast, line_list): if isinstance(ast, list): for elem in ast: ast_to_code_collect_lines(elem, line_list) elif isinstance(ast, dict): if "line" in ast: line_list.append(ast["line"]) def ast_to_code_print_lines(ast, line_list, token_list): if isinstance(ast, list): for elem in ast: ast_to_code_print_lines(elem, line_list, token_list) elif isinstance(ast, dict): if "line" in ast and ast["line"] in line_list: if len(token_list) > 0 and token_list[-1] == "//": token_list.append(" your code ...\n") token_list.append(ast["leading"]) token_list.append(ast["token"]) else: if len(token_list) > 0 and token_list[-1] != "//": token_list.append("\n") token_list.append("//") def featurize_records_file(rpath, wpath): with open(rpath, "r") as inp: with open(wpath, "w") as outp: i = 0 for line in inp: obj = json.loads(line) obj["features"] = collect_features_as_list(obj["ast"], True, False)[0] obj["index"] = i i += 1 outp.write(json.dumps(obj)) outp.write("\n") def append_feature_index(is_init, is_counter, key, feature_list, c): if is_init: n = vocab.add_and_get_index(key) else: n = vocab.get_index(key) if is_counter: if n != str(config.NUM_FEATURE_MIN): c[n] += 1 else: feature_list.append(n) def append_feature_pair( is_init, is_counter, key, feature_list, leaf_features, sibling_idx, leaf_idx ): if is_init: n = vocab.add_and_get_index(key) else: n = vocab.get_index(key) if is_counter: if n != str(config.NUM_FEATURE_MIN): leaf_features[leaf_idx][n] += 1 leaf_features[sibling_idx][n] += 1 else: feature_list.append(n) feature_list.append(n) def get_leftmost_leaf(ast): if isinstance(ast, list): for elem in ast: (success, token) = get_leftmost_leaf(elem) if success: return (success, token) elif isinstance(ast, dict): if "leaf" in ast and ast["leaf"]: return (True, ast["token"]) return (False, None) def get_var_context(p_idx, p_label, p_ast): if p_label == "#.#": return get_leftmost_leaf(p_ast[p_idx + 2])[1] else: return p_label + str(p_idx) def collect_features_aux( ast, feature_list, parents, siblings, var_siblings, leaf_features, leaf_pair_features, is_init, is_counter, ): global leaf_idx if isinstance(ast, list): i = 0 for elem in ast: parents.append((i, ast[0], ast)) collect_features_aux( elem, feature_list, parents, siblings, var_siblings, leaf_features, leaf_pair_features, is_init, is_counter, ) parents.pop() i += 1 elif isinstance(ast, dict): if "leaf" in ast and ast["leaf"]: leaf_idx += 1 is_var = False var_name = key = ast["token"] if config.IGNORE_VAR_NAMES and "var" in ast and not key[0].isupper(): key = "#VAR" is_var = True c = None if is_counter: c = Counter() leaf_features.append(c) append_feature_index(is_init, is_counter, key, feature_list, c) count = 0 for (i, p, p_ast) in reversed(parents): if p != "(#)" and re.match("^\{#*\}$", p) is None: count += 1 key2 = p + str(i) + ">" + key append_feature_index(is_init, is_counter, key2, feature_list, c) if count >= config.N_PARENTS: break count = 0 if not config.IGNORE_VAR_SIBLING_FEATURES and is_var: (p_idx, p_label, p_ast) = parents[-1] var_context = get_var_context(p_idx, p_label, p_ast) if var_context is not None: if var_name not in var_siblings: var_siblings[var_name] = [] for (var_sibling_idx, var_context_sibling) in reversed( var_siblings[var_name] ): count += 1 key2 = var_context_sibling + ">>>" + var_context # logging.info(f"var sibling feature {key2}") append_feature_pair( is_init, is_counter, key2, feature_list, leaf_features, var_sibling_idx, leaf_idx - 1, ) if count >= config.N_VAR_SIBLINGS: break var_siblings[var_name].append((leaf_idx - 1, var_context)) count = 0 if not config.IGNORE_SIBLING_FEATURES: # and not is_var: for (sibling_idx, sibling) in reversed(siblings): count += 1 key2 = sibling + ">>" + key append_feature_pair( is_init, is_counter, key2, feature_list, leaf_features, sibling_idx, leaf_idx - 1, ) if count >= config.N_SIBLINGS: break siblings.append((leaf_idx - 1, key)) def feature_list_to_doc(record): return " ".join([str(y) for y in record["features"]]) def counter_vectorize(rpath, wpath): with open(rpath, "r") as f: records = f.readlines() documents = [feature_list_to_doc(json.loads(x)) for x in records] vectorizer = CountVectorizer(min_df=1, binary=True) counter_matrix = vectorizer.fit_transform(documents) with open(wpath, "wb") as outf: pickle.dump((vectorizer, counter_matrix), outf) def read_all_records(rpath): with open(rpath, "r") as f: records = f.readlines() ret = [json.loads(x) for x in records] return ret def get_record_part(record): n_lines = record["endline"] - record["beginline"] if n_lines < config.SAMPLE_METHOD_MIN_LINES or "tests" in record["path"]: return None else: (_, ast) = get_sub_ast_aux(record["ast"], record["beginline"]) if ast == None: return None else: ret = copy_record_with_ast(record, ast) ret["features"] = collect_features_as_list(ast, False, False)[0] return ret def get_sub_ast_aux(ast, beginline, stop=False): if isinstance(ast, list): if stop: return (stop, None) else: ret = [] for elem in ast: (stop, tmp) = get_sub_ast_aux(elem, beginline, stop) if tmp != None: ret.append(tmp) if len(ret) >= 2: return (stop, ret) else: return (True, None) elif isinstance(ast, dict): if ( "leaf" not in ast or not ast["leaf"] or (not stop and ast["line"] - beginline < config.SAMPLE_METHOD_MAX_LINES) ): return (stop, ast) else: return (True, None) else: return (stop, ast) def print_features(fstr): print(" ".join([vocab.get_word(int(k)) for k in fstr])) def sample_n_records(records, n): ret_indices = [] ret_records = [] for j in range(10000): if len(ret_indices) < n: i = random.randint(0, len(records) - 1) if not (i in ret_indices): record = get_record_part(records[i]) if record != None: ret_indices.append(i) ret_records.append(record) else: logging.info("Sampled records") return (ret_indices, ret_records) logging.info("Sampled records") return (ret_indices, ret_records) def my_similarity_score(M1, M2): return linear_kernel(M1, M2) def find_similarity_score_features_un(record1, record2): features_as_counter1 = Counter(record1["features"]) features_as_counter2 = Counter(record2["features"]) return sum((features_as_counter1 & features_as_counter2).values()) def find_similarity_score_features_set(records): features_as_counters = [] for record in records: features_as_counters.append(Counter(record["features"])) return distance_set(features_as_counters) def find_similarity_score_features_set_un(records): features_as_counters = [] for record in records: features_as_counters.append(Counter(record["features"])) intersection = None for counter in features_as_counters: if intersection is None: intersection = counter else: intersection = intersection & counter return sum(intersection.values()) def copy_record_with_ast(record, ast): ret = dict(record) ret["ast"] = ast return ret def copy_record_with_features(record, features): ret = dict(record) ret["features"] = features return ret def copy_leaf_dummy(ast): return {"token": " ... ", "leading": ast["leading"], "trailing": ast["trailing"]} leaf_idx = 0 def prune_ast(ast, leaf_features): global leaf_idx if isinstance(ast, list): no_leaf = True ret = [] for elem in ast: (flag, tmp) = prune_ast(elem, leaf_features) ret.append(tmp) no_leaf = no_leaf and flag if no_leaf: return (True, None) else: return (False, ret) elif isinstance(ast, dict): if "leaf" in ast and ast["leaf"]: leaf_idx += 1 if leaf_features[leaf_idx - 1] is None: return (True, copy_leaf_dummy(ast)) else: return (False, ast) else: return (True, ast) else: return (True, ast) def prune_second_jd(record1, record2): return prune_last_jd([record1], record2) def add_pair_features(new_features, leaf_pair_features, leaf_idx, current_leaf_indices): if not config.IGNORE_SIBLING_FEATURES: for sibling_idx in current_leaf_indices: if (sibling_idx, leaf_idx) in leaf_pair_features: new_features[leaf_pair_features[(sibling_idx, leaf_idx)]] += 1 def distance_set(counters): intersection = None union = None for counter in counters: if intersection is None: intersection = counter else: intersection = intersection & counter for counter in counters: if union is None: union = counter else: union = union | counter return sum(intersection.values()) / sum(union.values()) def distance(counter1, counter2): return sum((counter1 & counter2).values()) / sum((counter1 | counter2).values()) def copy_record(record2, ast, features): ret = dict(record2) ret["ast"] = ast ret["features"] = features ret["index"] = -1 return ret def get_completions_via_clustering(query_record, similar_records): features = [feature_list_to_doc(record) for record in similar_records] if len(features) > 1: vectorizer = CountVectorizer(min_df=1) X = vectorizer.fit_transform(features) if config.USE_DBSCAN: db = DBSCAN(eps=config.DBSCAN_EPS, min_samples=2, metric="cosine") labels = db.fit_predict(X) else: db = AffinityPropagation() labels = db.fit_predict(X) else: labels = [0] print(f"Clustering labels: {labels}") logging.info(f"Clustering labels: {labels}") index_pairs = OrderedDict() ret = [] n_clusters = 0 n_uniques = 0 for i in range(min(config.MIN_MERGED_CODE, len(similar_records))): if labels[i] < 0: ret.append((similar_records[i]["ast"], i, i)) for i in range(len(labels)): if labels[i] >= 0: if labels[i] in index_pairs: if len(index_pairs[labels[i]]) == 1: index_pairs[labels[i]].append(i) else: index_pairs[labels[i]] = [i] n_clusters += 1 else: n_uniques += 1 for p in index_pairs.values(): if len(p) == 2: (i, j) = p pruned_record = prune_last_jd( [query_record, similar_records[j]], similar_records[i] ) ret.append((pruned_record, i, j)) else: ret.append((similar_records[p[0]]["ast"], p[0], p[0])) ret.sort(key=lambda t: t[1]) logging.info( f"(# similars, #clusters, #singles, #completions) = ({len(similar_records)}, {n_clusters}, {n_uniques}, {len(ret)})" ) print( f"(# similars, #clusters, #singles, #completions) = ({len(similar_records)}, {n_clusters}, {n_uniques}, {len(ret)})" ) return ret def get_completions2(query_record, candidate_records): l = len(candidate_records) ret = [] n_clusters = 0 n_uniques = 0 print("2-way") for i in range(l): jmax = None maxscore = 0 for j in range(i + 1, l): pscore = find_similarity_score_features( candidate_records[i][2], candidate_records[j][2] ) if pscore > config.THRESHOLD1: query_score_un = find_similarity_score_features_un( candidate_records[i][2], candidate_records[j][2] ) tmp_score = find_similarity_score_features_un( candidate_records[i][0], candidate_records[j][0] ) if ( tmp_score > config.THRESHOLD2 * query_score_un and tmp_score > maxscore ): jmax = j maxscore = tmp_score if jmax is not None: pruned_record = prune_last_jd( [query_record, candidate_records[jmax][0]], candidate_records[i][0] ) ret.append((pruned_record, i, jmax)) print(ast_to_code(pruned_record["ast"])) n_clusters += 1 # else: # ret.append((candidate_records[i][0]['ast'], i, i)) # n_uniques += 1 ret2 = [] print("3-way") for (record, i, j) in ret: if i != j: kmax = None maxscore = 0 for k in range(l): if k != i and k != j: pscore = find_similarity_score_features_set( [ candidate_records[i][2], candidate_records[j][2], candidate_records[k][2], ] ) if pscore > config.THRESHOLD1: query_score_un = find_similarity_score_features_set_un( [ candidate_records[i][2], candidate_records[j][2], candidate_records[k][2], ] ) tmp_score = find_similarity_score_features_set_un( [ candidate_records[i][0], candidate_records[j][0], candidate_records[k][0], ] ) if ( tmp_score > config.THRESHOLD2 * query_score_un and tmp_score > maxscore ): kmax = k maxscore = tmp_score if kmax is not None: pruned_record = prune_last_jd( [query_record, candidate_records[kmax][0]], record ) n_clusters += 1 print(ast_to_code(pruned_record["ast"])) ret2.append((pruned_record, i, j, kmax)) logging.info( f"(# similars, #clusters, #singles, #completions) = ({len(candidate_records)}, {n_clusters}, {n_uniques}, {len(ret)})" ) print( f"(# similars, #clusters, #singles, #completions) = ({len(candidate_records)}, {n_clusters}, {n_uniques}, {len(ret)})" ) return ret2 + ret def get_completions3(query_record, candidate_records, top_n, threshold1, threshold2): l = len(candidate_records) ret = [] acc = [] for i in range(l): ret.append([i]) changed = True while changed: ret2 = [] changed = False for tuple in ret: kmax = None maxscore = 0 for k in range(tuple[-1] + 1, l): record_list1 = [] record_list2 = [] for i in tuple: record_list1.append(candidate_records[i][2]) record_list2.append(candidate_records[i][0]) record_list1.append(candidate_records[k][2]) record_list2.append(candidate_records[k][0]) qlen = sum(Counter(record_list1[0]["features"]).values()) iscore = find_similarity_score_features_set_un(record_list1) pscore = iscore / qlen # pscore = find_similarity_score_features_set(record_list1) if pscore > threshold1: query_score_un = find_similarity_score_features_set_un(record_list1) tmp_score = find_similarity_score_features_set_un(record_list2) if tmp_score > threshold2 * query_score_un and tmp_score > maxscore: kmax = k maxscore = tmp_score if kmax is not None: changed = True ret2.append(tuple + [kmax]) acc = ret2 + acc ret = ret2 ret = [] acc = sorted(acc, key=lambda t: t[0] * 1000 - len(t)) for i in range(len(acc)): tuple = acc[i] logging.info(f"Pruning {len(tuple)} {tuple}") is_subset = False s = set(tuple) for j in reversed(range(i)): if distance(Counter(tuple), Counter(acc[j])) > 0.5: is_subset = True if not is_subset: print(f"Pruning {len(tuple)} {tuple}") logging.info("recommending") pruned_record = candidate_records[tuple[0]][0] for j in range(1, len(tuple)): pruned_record = prune_last_jd( [query_record, candidate_records[tuple[j]][0]], pruned_record ) ret.append([pruned_record, candidate_records[tuple[0]][0]] + tuple) if len(ret) >= top_n: return ret return ret def print_match_index(query_record, candidate_records): ret = -1 i = 0 for (candidate_record, score, pruned_record, pruned_score) in candidate_records: if query_record["index"] == candidate_record["index"]: ret = i i += 1 if ret < 0: print("Failed to match original method.") elif ret > 0: print(f"Matched original method. Rank = {ret}") else: print(f"Matched original method perfectly.") #### Interface methods #### def find_indices_similar_to_features( vectorizer, counter_matrix, feature_lists, num_similars, min_similarity_score ): doc_counter_vector = vectorizer.transform(feature_lists) len = my_similarity_score(doc_counter_vector, doc_counter_vector).flatten()[0] cosine_similarities = my_similarity_score( doc_counter_vector, counter_matrix ).flatten() related_docs_indices = [ i for i in cosine_similarities.argsort()[::-1] if cosine_similarities[i] > min_similarity_score * len ][0:num_similars] return [(j, cosine_similarities[j]) for j in related_docs_indices] def find_similarity_score_features(record1, record2): features_as_counter1 = Counter(record1["features"]) features_as_counter2 = Counter(record2["features"]) return distance(features_as_counter1, features_as_counter2) def prune_last_jd(records, record2): other_features = [Counter(record["features"]) for record in records] ast = record2["ast"] leaf_features, leaf_pair_features = collect_features_as_list(ast, False, True) out_features = [None] * len(leaf_features) current_features = Counter() current_leaf_indices = [] for features1 in other_features: score = distance(features1, current_features) done = False while not done: max = score max_idx = None i = 0 for leaf_feature in leaf_features: if leaf_feature is not None: new_features = current_features + leaf_feature # add_pair_features(new_features, leaf_pair_features, i, current_leaf_indices) tmp = distance(features1, new_features) if tmp > max: max = tmp max_idx = i i += 1 if max_idx is not None: score = max out_features[max_idx] = leaf_features[max_idx] current_features = current_features + leaf_features[max_idx] # add_pair_features(current_features, leaf_pair_features, max_idx, current_leaf_indices) current_leaf_indices.append(max_idx) leaf_features[max_idx] = None else: done = True global leaf_idx leaf_idx = 0 pruned_ast = prune_ast(ast, out_features)[1] pruned_features = collect_features_as_list(pruned_ast, False, False)[0] return copy_record(record2, pruned_ast, pruned_features) def ast_to_code(tree): token_list = [] ast_to_code_aux(tree, token_list) token_list.append("\n") return "".join(token_list) def ast_to_code_with_full_lines(tree, fulltree): line_list = [] ast_to_code_collect_lines(tree, line_list) token_list = [] ast_to_code_print_lines(fulltree, line_list, token_list) token_list.append("\n") return "".join(token_list) def find_similar( query_record, records, vectorizer, counter_matrix, num_similars, min_similarity_score, min_pruned_score, ): print("Query features: ") print_features(query_record["features"]) similars = find_indices_similar_to_features( vectorizer, counter_matrix, [feature_list_to_doc(query_record)], num_similars, min_similarity_score, ) candidate_records = [] for (idx, score) in similars: pruned_record = prune_second_jd(query_record, records[idx]) pruned_score = find_similarity_score_features(query_record, pruned_record) if pruned_score > min_pruned_score: candidate_records.append((records[idx], score, pruned_record, pruned_score)) candidate_records = sorted(candidate_records, key=lambda v: v[3], reverse=True) logging.info(f"# of similar snippets = {len(candidate_records)}") return candidate_records def cluster_and_intersect( query_record, candidate_records, top_n, threshold1, threshold2 ): clustered_records = [] if len(candidate_records) > 0: if config.CLUSTER: clustered_records = get_completions3( query_record, candidate_records, top_n, threshold1, threshold2 ) return clustered_records def print_similar_and_completions(query_record, records, vectorizer, counter_matrix): candidate_records = find_similar( query_record, records, vectorizer, counter_matrix, config.NUM_SIMILARS, config.MIN_SIMILARITY_SCORE, config.MIN_PRUNED_SCORE, ) print_match_index(query_record, candidate_records) clustered_records = cluster_and_intersect( query_record, candidate_records, config.TOP_N, config.THRESHOLD1, config.THRESHOLD2, ) print( f"################ query code ################ index = {query_record['index']}" ) print(ast_to_code(query_record["ast"])) if query_record["index"] >= 0: print("---------------- extracted from ---------------") print(ast_to_code(records[query_record["index"]]["ast"])) for clustered_record in clustered_records: print( f"------------------- suggested code completion ------------------" ) # idxs = ({clustered_record[1:]}), score = {candidate_records[clustered_record[1]][3]}") print( ast_to_code_with_full_lines( clustered_record[0]["ast"], clustered_record[1]["ast"] ) ) if config.PRINT_SIMILAR: j = 0 for (candidate_record, score, pruned_record, pruned_score) in candidate_records: print( f"idx = {j}:------------------- similar code ------------------ index = {candidate_record['index']}, score = {score}" ) print(ast_to_code(candidate_record["ast"])) print( f"------------------- similar code (pruned) ------------------ score = {pruned_score}" ) print(ast_to_code(pruned_record["ast"])) j += 1 print("", flush=True) def collect_features_as_list(ast, is_init, is_counter): feature_list = [] leaf_features = [] leaf_pair_features = dict() global leaf_idx leaf_idx = 0 collect_features_aux( ast, feature_list, [], [], dict(), leaf_features, leaf_pair_features, is_init, is_counter, ) if is_counter: return (leaf_features, leaf_pair_features) else: return (feature_list, None) def read_and_featurize_record_file(rpath): with open(rpath, "r") as inp: for line in inp: obj = json.loads(line) obj["features"] = collect_features_as_list(obj["ast"], False, False)[0] obj["index"] = -1 return obj def test_record_at_index(idx): record = get_record_part(records[idx]) if record != None: print_similar_and_completions(record, records, vectorizer, counter_matrix) def featurize_and_test_record(record_files, keywords): set_tmp = None record_final = None for record_file in record_files: record = read_and_featurize_record_file(record_file) if record is not None: record_final = record if set_tmp is not None: set_tmp = set_tmp & Counter(record["features"]) else: set_tmp = Counter(record["features"]) # need to figure out how to merge asts as well if set_tmp is None: set_tmp = Counter() for keyword in keywords: set_tmp[vocab.get_index(keyword)] += 1 if record_final is None: record_final = {"ast": None, "index": -1, "features": list(set_tmp.elements())} else: record_final["features"] = list(set_tmp.elements()) if len(record_final["features"]) > 0: print_similar_and_completions(record_final, records, vectorizer, counter_matrix) def test_all(): N = config.N_SAMPLES (sampled_indices, sampled_records) = sample_n_records(records, N) for k, record in enumerate(sampled_records): print(f"{k}: ", end="") print_similar_and_completions(record, records, vectorizer, counter_matrix) def load_all(counter_path, asts_path): with open(counter_path, "rb") as outf: (vectorizer, counter_matrix) = pickle.load(outf) records = read_all_records(asts_path) logging.info("Read all records.") return (vectorizer, counter_matrix, records) def setup(records_file): global config global vocab config = Config() logging.basicConfig(level=logging.DEBUG) random.seed(config.SEED) os.makedirs(options.working_dir, exist_ok=True) if records_file is None: vocab = Vocab.load() else: vocab = Vocab.load(True) featurize_records_file( records_file, os.path.join(options.working_dir, config.FEATURES_FILE) ) vocab.dump() logging.info("Done featurizing.") counter_vectorize( os.path.join(options.working_dir, config.FEATURES_FILE), os.path.join(options.working_dir, config.TFIDF_FILE), ) logging.info("Done computing counter matrix.") logging.basicConfig(level=logging.DEBUG) options = parse_args() setup(options.corpus) (vectorizer, counter_matrix, records) = load_all( os.path.join(options.working_dir, config.TFIDF_FILE), os.path.join(options.working_dir, config.FEATURES_FILE), ) if options.index_query is not None: test_record_at_index(options.index_query) elif len(options.file_query) > 0 or len(options.keywords) > 0: featurize_and_test_record(options.file_query, options.keywords) elif options.testall: test_all()
aroma-paper-artifacts-main
reference/src/main/python/similar.py
#!/usr/bin/env python # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch archs = torch.cuda.get_arch_list() archs = [arch[3:] for arch in archs if arch.startswith('sm_')] print(";".join(archs), end='')
baspacho-main
cmake/get_torch_cuda_archs.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import detectron2.utils.comm as comm from detectron2.checkpoint import DetectionCheckpointer from detectron2.config import get_cfg from detectron2.engine import default_argument_parser, default_setup, launch from adapteacher import add_ateacher_config from adapteacher.engine.trainer import ATeacherTrainer, BaselineTrainer # hacky way to register from adapteacher.modeling.meta_arch.rcnn import TwoStagePseudoLabGeneralizedRCNN, DAobjTwoStagePseudoLabGeneralizedRCNN from adapteacher.modeling.meta_arch.vgg import build_vgg_backbone # noqa from adapteacher.modeling.proposal_generator.rpn import PseudoLabRPN from adapteacher.modeling.roi_heads.roi_heads import StandardROIHeadsPseudoLab import adapteacher.data.datasets.builtin from adapteacher.modeling.meta_arch.ts_ensemble import EnsembleTSModel def setup(args): """ Create configs and perform basic setups. """ cfg = get_cfg() add_ateacher_config(cfg) cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() default_setup(cfg, args) return cfg def main(args): cfg = setup(args) if cfg.SEMISUPNET.Trainer == "ateacher": Trainer = ATeacherTrainer elif cfg.SEMISUPNET.Trainer == "baseline": Trainer = BaselineTrainer else: raise ValueError("Trainer Name is not found.") if args.eval_only: if cfg.SEMISUPNET.Trainer == "ateacher": model = Trainer.build_model(cfg) model_teacher = Trainer.build_model(cfg) ensem_ts_model = EnsembleTSModel(model_teacher, model) DetectionCheckpointer( ensem_ts_model, save_dir=cfg.OUTPUT_DIR ).resume_or_load(cfg.MODEL.WEIGHTS, resume=args.resume) res = Trainer.test(cfg, ensem_ts_model.modelTeacher) else: model = Trainer.build_model(cfg) DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load( cfg.MODEL.WEIGHTS, resume=args.resume ) res = Trainer.test(cfg, model) return res trainer = Trainer(cfg) trainer.resume_or_load(resume=args.resume) return trainer.train() if __name__ == "__main__": args = default_argument_parser().parse_args() print("Command Line Args:", args) launch( main, args.num_gpus, num_machines=args.num_machines, machine_rank=args.machine_rank, dist_url=args.dist_url, args=(args,), )
adaptive_teacher-main
train_net.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from detectron2.config import CfgNode as CN def add_ateacher_config(cfg): """ Add config for semisupnet. """ _C = cfg _C.TEST.VAL_LOSS = True _C.MODEL.RPN.UNSUP_LOSS_WEIGHT = 1.0 _C.MODEL.RPN.LOSS = "CrossEntropy" _C.MODEL.ROI_HEADS.LOSS = "CrossEntropy" _C.SOLVER.IMG_PER_BATCH_LABEL = 1 _C.SOLVER.IMG_PER_BATCH_UNLABEL = 1 _C.SOLVER.FACTOR_LIST = (1,) _C.DATASETS.TRAIN_LABEL = ("coco_2017_train",) _C.DATASETS.TRAIN_UNLABEL = ("coco_2017_train",) _C.DATASETS.CROSS_DATASET = True _C.TEST.EVALUATOR = "COCOeval" _C.SEMISUPNET = CN() # Output dimension of the MLP projector after `res5` block _C.SEMISUPNET.MLP_DIM = 128 # Semi-supervised training _C.SEMISUPNET.Trainer = "ateacher" _C.SEMISUPNET.BBOX_THRESHOLD = 0.7 _C.SEMISUPNET.PSEUDO_BBOX_SAMPLE = "thresholding" _C.SEMISUPNET.TEACHER_UPDATE_ITER = 1 _C.SEMISUPNET.BURN_UP_STEP = 12000 _C.SEMISUPNET.EMA_KEEP_RATE = 0.0 _C.SEMISUPNET.UNSUP_LOSS_WEIGHT = 4.0 _C.SEMISUPNET.SUP_LOSS_WEIGHT = 0.5 _C.SEMISUPNET.LOSS_WEIGHT_TYPE = "standard" _C.SEMISUPNET.DIS_TYPE = "res4" _C.SEMISUPNET.DIS_LOSS_WEIGHT = 0.1 # dataloader # supervision level _C.DATALOADER.SUP_PERCENT = 100.0 # 5 = 5% dataset as labeled set _C.DATALOADER.RANDOM_DATA_SEED = 0 # random seed to read data _C.DATALOADER.RANDOM_DATA_SEED_PATH = "dataseed/COCO_supervision.txt" _C.EMAMODEL = CN() _C.EMAMODEL.SUP_CONSIST = True
adaptive_teacher-main
adapteacher/config.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from .config import add_ateacher_config
adaptive_teacher-main
adapteacher/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from detectron2.checkpoint.c2_model_loading import align_and_update_state_dicts from detectron2.checkpoint import DetectionCheckpointer # for load_student_model from typing import Any from fvcore.common.checkpoint import _strip_prefix_if_present, _IncompatibleKeys class DetectionTSCheckpointer(DetectionCheckpointer): def _load_model(self, checkpoint): if checkpoint.get("__author__", None) == "Caffe2": # pretrained model weight: only update student model if checkpoint.get("matching_heuristics", False): self._convert_ndarray_to_tensor(checkpoint["model"]) # convert weights by name-matching heuristics model_state_dict = self.model.modelStudent.state_dict() align_and_update_state_dicts( model_state_dict, checkpoint["model"], c2_conversion=checkpoint.get("__author__", None) == "Caffe2", ) checkpoint["model"] = model_state_dict # for non-caffe2 models, use standard ways to load it incompatible = self._load_student_model(checkpoint) model_buffers = dict(self.model.modelStudent.named_buffers(recurse=False)) for k in ["pixel_mean", "pixel_std"]: # Ignore missing key message about pixel_mean/std. # Though they may be missing in old checkpoints, they will be correctly # initialized from config anyway. if k in model_buffers: try: incompatible.missing_keys.remove(k) except ValueError: pass return incompatible else: # whole model if checkpoint.get("matching_heuristics", False): self._convert_ndarray_to_tensor(checkpoint["model"]) # convert weights by name-matching heuristics model_state_dict = self.model.state_dict() align_and_update_state_dicts( model_state_dict, checkpoint["model"], c2_conversion=checkpoint.get("__author__", None) == "Caffe2", ) checkpoint["model"] = model_state_dict # for non-caffe2 models, use standard ways to load it incompatible = super()._load_model(checkpoint) model_buffers = dict(self.model.named_buffers(recurse=False)) for k in ["pixel_mean", "pixel_std"]: # Ignore missing key message about pixel_mean/std. # Though they may be missing in old checkpoints, they will be correctly # initialized from config anyway. if k in model_buffers: try: incompatible.missing_keys.remove(k) except ValueError: pass return incompatible def _load_student_model(self, checkpoint: Any) -> _IncompatibleKeys: # pyre-ignore checkpoint_state_dict = checkpoint.pop("model") self._convert_ndarray_to_tensor(checkpoint_state_dict) # if the state_dict comes from a model that was wrapped in a # DataParallel or DistributedDataParallel during serialization, # remove the "module" prefix before performing the matching. _strip_prefix_if_present(checkpoint_state_dict, "module.") # work around https://github.com/pytorch/pytorch/issues/24139 model_state_dict = self.model.modelStudent.state_dict() incorrect_shapes = [] for k in list(checkpoint_state_dict.keys()): if k in model_state_dict: shape_model = tuple(model_state_dict[k].shape) shape_checkpoint = tuple(checkpoint_state_dict[k].shape) if shape_model != shape_checkpoint: incorrect_shapes.append((k, shape_checkpoint, shape_model)) checkpoint_state_dict.pop(k) # pyre-ignore incompatible = self.model.modelStudent.load_state_dict( checkpoint_state_dict, strict=False ) return _IncompatibleKeys( missing_keys=incompatible.missing_keys, unexpected_keys=incompatible.unexpected_keys, incorrect_shapes=incorrect_shapes, ) # class DetectionCheckpointer(Checkpointer): # """ # Same as :class:`Checkpointer`, but is able to handle models in detectron & detectron2 # model zoo, and apply conversions for legacy models. # """ # def __init__(self, model, save_dir="", *, save_to_disk=None, **checkpointables): # is_main_process = comm.is_main_process() # super().__init__( # model, # save_dir, # save_to_disk=is_main_process if save_to_disk is None else save_to_disk, # **checkpointables, # ) # def _load_file(self, filename): # if filename.endswith(".pkl"): # with PathManager.open(filename, "rb") as f: # data = pickle.load(f, encoding="latin1") # if "model" in data and "__author__" in data: # # file is in Detectron2 model zoo format # self.logger.info("Reading a file from '{}'".format(data["__author__"])) # return data # else: # # assume file is from Caffe2 / Detectron1 model zoo # if "blobs" in data: # # Detection models have "blobs", but ImageNet models don't # data = data["blobs"] # data = {k: v for k, v in data.items() if not k.endswith("_momentum")} # return {"model": data, "__author__": "Caffe2", "matching_heuristics": True} # loaded = super()._load_file(filename) # load native pth checkpoint # if "model" not in loaded: # loaded = {"model": loaded} # return loaded # def _load_model(self, checkpoint): # if checkpoint.get("matching_heuristics", False): # self._convert_ndarray_to_tensor(checkpoint["model"]) # # convert weights by name-matching heuristics # model_state_dict = self.model.state_dict() # align_and_update_state_dicts( # model_state_dict, # checkpoint["model"], # c2_conversion=checkpoint.get("__author__", None) == "Caffe2", # ) # checkpoint["model"] = model_state_dict # # for non-caffe2 models, use standard ways to load it # super()._load_model(checkpoint)
adaptive_teacher-main
adapteacher/checkpoint/detection_checkpoint.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import torch from detectron2.config import CfgNode from detectron2.solver.lr_scheduler import WarmupCosineLR, WarmupMultiStepLR from .lr_scheduler import WarmupTwoStageMultiStepLR def build_lr_scheduler( cfg: CfgNode, optimizer: torch.optim.Optimizer ) -> torch.optim.lr_scheduler._LRScheduler: """ Build a LR scheduler from config. """ name = cfg.SOLVER.LR_SCHEDULER_NAME if name == "WarmupMultiStepLR": return WarmupMultiStepLR( optimizer, cfg.SOLVER.STEPS, cfg.SOLVER.GAMMA, warmup_factor=cfg.SOLVER.WARMUP_FACTOR, warmup_iters=cfg.SOLVER.WARMUP_ITERS, warmup_method=cfg.SOLVER.WARMUP_METHOD, ) elif name == "WarmupCosineLR": return WarmupCosineLR( optimizer, cfg.SOLVER.MAX_ITER, warmup_factor=cfg.SOLVER.WARMUP_FACTOR, warmup_iters=cfg.SOLVER.WARMUP_ITERS, warmup_method=cfg.SOLVER.WARMUP_METHOD, ) elif name == "WarmupTwoStageMultiStepLR": return WarmupTwoStageMultiStepLR( optimizer, cfg.SOLVER.STEPS, factor_list=cfg.SOLVER.FACTOR_LIST, gamma=cfg.SOLVER.GAMMA, warmup_factor=cfg.SOLVER.WARMUP_FACTOR, warmup_iters=cfg.SOLVER.WARMUP_ITERS, warmup_method=cfg.SOLVER.WARMUP_METHOD, ) else: raise ValueError("Unknown LR scheduler: {}".format(name))
adaptive_teacher-main
adapteacher/solver/build.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from bisect import bisect_right from typing import List import torch from detectron2.solver.lr_scheduler import _get_warmup_factor_at_iter class WarmupTwoStageMultiStepLR(torch.optim.lr_scheduler._LRScheduler): def __init__( self, optimizer: torch.optim.Optimizer, milestones: List[int], factor_list: List[int], gamma: float = 0.1, warmup_factor: float = 0.001, warmup_iters: int = 1000, warmup_method: str = "linear", last_epoch: int = -1, ): if not list(milestones) == sorted(milestones): raise ValueError( "Milestones should be a list of" " increasing integers. Got {}", milestones, ) if len(milestones) + 1 != len(factor_list): raise ValueError("Length of milestones should match length of factor_list.") self.milestones = milestones self.gamma = gamma self.warmup_factor = warmup_factor self.warmup_iters = warmup_iters self.warmup_method = warmup_method self.factor_list = factor_list super().__init__(optimizer, last_epoch) def get_lr(self) -> List[float]: warmup_factor = _get_warmup_factor_at_iter( self.warmup_method, self.last_epoch, self.warmup_iters, self.warmup_factor ) return [ base_lr * warmup_factor * self.factor_list[bisect_right(self.milestones, self.last_epoch)] for base_lr in self.base_lrs ] def _compute_values(self) -> List[float]: # The new interface return self.get_lr()
adaptive_teacher-main
adapteacher/solver/lr_scheduler.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import numpy as np import torch import torch.nn as nn from torch.nn import functional as F from detectron2.modeling.meta_arch.build import META_ARCH_REGISTRY from detectron2.modeling.meta_arch.rcnn import GeneralizedRCNN from detectron2.config import configurable # from detectron2.modeling.meta_arch.build import META_ARCH_REGISTRY # from detectron2.modeling.meta_arch.rcnn import GeneralizedRCNN import logging from typing import Dict, Tuple, List, Optional from collections import OrderedDict from detectron2.modeling.proposal_generator import build_proposal_generator from detectron2.modeling.backbone import build_backbone, Backbone from detectron2.modeling.roi_heads import build_roi_heads from detectron2.utils.events import get_event_storage from detectron2.structures import ImageList ############### Image discriminator ############## class FCDiscriminator_img(nn.Module): def __init__(self, num_classes, ndf1=256, ndf2=128): super(FCDiscriminator_img, self).__init__() self.conv1 = nn.Conv2d(num_classes, ndf1, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(ndf1, ndf2, kernel_size=3, padding=1) self.conv3 = nn.Conv2d(ndf2, ndf2, kernel_size=3, padding=1) self.classifier = nn.Conv2d(ndf2, 1, kernel_size=3, padding=1) self.leaky_relu = nn.LeakyReLU(negative_slope=0.2, inplace=True) def forward(self, x): x = self.conv1(x) x = self.leaky_relu(x) x = self.conv2(x) x = self.leaky_relu(x) x = self.conv3(x) x = self.leaky_relu(x) x = self.classifier(x) return x ################################# ################ Gradient reverse function class GradReverse(torch.autograd.Function): @staticmethod def forward(ctx, x): return x.view_as(x) @staticmethod def backward(ctx, grad_output): return grad_output.neg() def grad_reverse(x): return GradReverse.apply(x) ####################### @META_ARCH_REGISTRY.register() class DAobjTwoStagePseudoLabGeneralizedRCNN(GeneralizedRCNN): @configurable def __init__( self, *, backbone: Backbone, proposal_generator: nn.Module, roi_heads: nn.Module, pixel_mean: Tuple[float], pixel_std: Tuple[float], input_format: Optional[str] = None, vis_period: int = 0, dis_type: str, # dis_loss_weight: float = 0, ): """ Args: backbone: a backbone module, must follow detectron2's backbone interface proposal_generator: a module that generates proposals using backbone features roi_heads: a ROI head that performs per-region computation pixel_mean, pixel_std: list or tuple with #channels element, representing the per-channel mean and std to be used to normalize the input image input_format: describe the meaning of channels of input. Needed by visualization vis_period: the period to run visualization. Set to 0 to disable. """ super(GeneralizedRCNN, self).__init__() self.backbone = backbone self.proposal_generator = proposal_generator self.roi_heads = roi_heads self.input_format = input_format self.vis_period = vis_period if vis_period > 0: assert input_format is not None, "input_format is required for visualization!" self.register_buffer("pixel_mean", torch.tensor(pixel_mean).view(-1, 1, 1), False) self.register_buffer("pixel_std", torch.tensor(pixel_std).view(-1, 1, 1), False) assert ( self.pixel_mean.shape == self.pixel_std.shape ), f"{self.pixel_mean} and {self.pixel_std} have different shapes!" # @yujheli: you may need to build your discriminator here self.dis_type = dis_type self.D_img = None # self.D_img = FCDiscriminator_img(self.backbone._out_feature_channels['res4']) # Need to know the channel # self.D_img = None self.D_img = FCDiscriminator_img(self.backbone._out_feature_channels[self.dis_type]) # Need to know the channel # self.bceLoss_func = nn.BCEWithLogitsLoss() def build_discriminator(self): self.D_img = FCDiscriminator_img(self.backbone._out_feature_channels[self.dis_type]).to(self.device) # Need to know the channel @classmethod def from_config(cls, cfg): backbone = build_backbone(cfg) return { "backbone": backbone, "proposal_generator": build_proposal_generator(cfg, backbone.output_shape()), "roi_heads": build_roi_heads(cfg, backbone.output_shape()), "input_format": cfg.INPUT.FORMAT, "vis_period": cfg.VIS_PERIOD, "pixel_mean": cfg.MODEL.PIXEL_MEAN, "pixel_std": cfg.MODEL.PIXEL_STD, "dis_type": cfg.SEMISUPNET.DIS_TYPE, # "dis_loss_ratio": cfg.xxx, } def preprocess_image_train(self, batched_inputs: List[Dict[str, torch.Tensor]]): """ Normalize, pad and batch the input images. """ images = [x["image"].to(self.device) for x in batched_inputs] images = [(x - self.pixel_mean) / self.pixel_std for x in images] images = ImageList.from_tensors(images, self.backbone.size_divisibility) images_t = [x["image_unlabeled"].to(self.device) for x in batched_inputs] images_t = [(x - self.pixel_mean) / self.pixel_std for x in images_t] images_t = ImageList.from_tensors(images_t, self.backbone.size_divisibility) return images, images_t def forward( self, batched_inputs, branch="supervised", given_proposals=None, val_mode=False ): """ Args: batched_inputs: a list, batched outputs of :class:`DatasetMapper` . Each item in the list contains the inputs for one image. For now, each item in the list is a dict that contains: * image: Tensor, image in (C, H, W) format. * instances (optional): groundtruth :class:`Instances` * proposals (optional): :class:`Instances`, precomputed proposals. Other information that's included in the original dicts, such as: * "height", "width" (int): the output resolution of the model, used in inference. See :meth:`postprocess` for details. Returns: list[dict]: Each dict is the output for one input image. The dict contains one key "instances" whose value is a :class:`Instances`. The :class:`Instances` object has the following keys: "pred_boxes", "pred_classes", "scores", "pred_masks", "pred_keypoints" """ if self.D_img == None: self.build_discriminator() if (not self.training) and (not val_mode): # only conduct when testing mode return self.inference(batched_inputs) source_label = 0 target_label = 1 if branch == "domain": # self.D_img.train() # source_label = 0 # target_label = 1 # images = self.preprocess_image(batched_inputs) images_s, images_t = self.preprocess_image_train(batched_inputs) features = self.backbone(images_s.tensor) # import pdb # pdb.set_trace() features_s = grad_reverse(features[self.dis_type]) D_img_out_s = self.D_img(features_s) loss_D_img_s = F.binary_cross_entropy_with_logits(D_img_out_s, torch.FloatTensor(D_img_out_s.data.size()).fill_(source_label).to(self.device)) features_t = self.backbone(images_t.tensor) features_t = grad_reverse(features_t[self.dis_type]) # features_t = grad_reverse(features_t['p2']) D_img_out_t = self.D_img(features_t) loss_D_img_t = F.binary_cross_entropy_with_logits(D_img_out_t, torch.FloatTensor(D_img_out_t.data.size()).fill_(target_label).to(self.device)) # import pdb # pdb.set_trace() losses = {} losses["loss_D_img_s"] = loss_D_img_s losses["loss_D_img_t"] = loss_D_img_t return losses, [], [], None # self.D_img.eval() images = self.preprocess_image(batched_inputs) if "instances" in batched_inputs[0]: gt_instances = [x["instances"].to(self.device) for x in batched_inputs] else: gt_instances = None features = self.backbone(images.tensor) # TODO: remove the usage of if else here. This needs to be re-organized if branch == "supervised": features_s = grad_reverse(features[self.dis_type]) D_img_out_s = self.D_img(features_s) loss_D_img_s = F.binary_cross_entropy_with_logits(D_img_out_s, torch.FloatTensor(D_img_out_s.data.size()).fill_(source_label).to(self.device)) # Region proposal network proposals_rpn, proposal_losses = self.proposal_generator( images, features, gt_instances ) # roi_head lower branch _, detector_losses = self.roi_heads( images, features, proposals_rpn, compute_loss=True, targets=gt_instances, branch=branch, ) # visualization if self.vis_period > 0: storage = get_event_storage() if storage.iter % self.vis_period == 0: self.visualize_training(batched_inputs, proposals_rpn, branch) losses = {} losses.update(detector_losses) losses.update(proposal_losses) losses["loss_D_img_s"] = loss_D_img_s*0.001 return losses, [], [], None elif branch == "supervised_target": # features_t = grad_reverse(features_t[self.dis_type]) # D_img_out_t = self.D_img(features_t) # loss_D_img_t = F.binary_cross_entropy_with_logits(D_img_out_t, torch.FloatTensor(D_img_out_t.data.size()).fill_(target_label).to(self.device)) # Region proposal network proposals_rpn, proposal_losses = self.proposal_generator( images, features, gt_instances ) # roi_head lower branch _, detector_losses = self.roi_heads( images, features, proposals_rpn, compute_loss=True, targets=gt_instances, branch=branch, ) # visualization if self.vis_period > 0: storage = get_event_storage() if storage.iter % self.vis_period == 0: self.visualize_training(batched_inputs, proposals_rpn, branch) losses = {} losses.update(detector_losses) losses.update(proposal_losses) # losses["loss_D_img_t"] = loss_D_img_t*0.001 # losses["loss_D_img_s"] = loss_D_img_s*0.001 return losses, [], [], None elif branch == "unsup_data_weak": """ unsupervised weak branch: input image without any ground-truth label; output proposals of rpn and roi-head """ # Region proposal network proposals_rpn, _ = self.proposal_generator( images, features, None, compute_loss=False ) # roi_head lower branch (keep this for further production) # notice that we do not use any target in ROI head to do inference! proposals_roih, ROI_predictions = self.roi_heads( images, features, proposals_rpn, targets=None, compute_loss=False, branch=branch, ) # if self.vis_period > 0: # storage = get_event_storage() # if storage.iter % self.vis_period == 0: # self.visualize_training(batched_inputs, proposals_rpn, branch) return {}, proposals_rpn, proposals_roih, ROI_predictions elif branch == "unsup_data_strong": raise NotImplementedError() elif branch == "val_loss": raise NotImplementedError() def visualize_training(self, batched_inputs, proposals, branch=""): """ This function different from the original one: - it adds "branch" to the `vis_name`. A function used to visualize images and proposals. It shows ground truth bounding boxes on the original image and up to 20 predicted object proposals on the original image. Users can implement different visualization functions for different models. Args: batched_inputs (list): a list that contains input to the model. proposals (list): a list that contains predicted proposals. Both batched_inputs and proposals should have the same length. """ from detectron2.utils.visualizer import Visualizer storage = get_event_storage() max_vis_prop = 20 for input, prop in zip(batched_inputs, proposals): img = input["image"] img = convert_image_to_rgb(img.permute(1, 2, 0), self.input_format) v_gt = Visualizer(img, None) v_gt = v_gt.overlay_instances(boxes=input["instances"].gt_boxes) anno_img = v_gt.get_image() box_size = min(len(prop.proposal_boxes), max_vis_prop) v_pred = Visualizer(img, None) v_pred = v_pred.overlay_instances( boxes=prop.proposal_boxes[0:box_size].tensor.cpu().numpy() ) prop_img = v_pred.get_image() vis_img = np.concatenate((anno_img, prop_img), axis=1) vis_img = vis_img.transpose(2, 0, 1) vis_name = ( "Left: GT bounding boxes " + branch + "; Right: Predicted proposals " + branch ) storage.put_image(vis_name, vis_img) break # only visualize one image in a batch @META_ARCH_REGISTRY.register() class TwoStagePseudoLabGeneralizedRCNN(GeneralizedRCNN): def forward( self, batched_inputs, branch="supervised", given_proposals=None, val_mode=False ): if (not self.training) and (not val_mode): return self.inference(batched_inputs) images = self.preprocess_image(batched_inputs) if "instances" in batched_inputs[0]: gt_instances = [x["instances"].to(self.device) for x in batched_inputs] else: gt_instances = None features = self.backbone(images.tensor) if branch == "supervised": # Region proposal network proposals_rpn, proposal_losses = self.proposal_generator( images, features, gt_instances ) # # roi_head lower branch _, detector_losses = self.roi_heads( images, features, proposals_rpn, gt_instances, branch=branch ) losses = {} losses.update(detector_losses) losses.update(proposal_losses) return losses, [], [], None elif branch == "unsup_data_weak": # Region proposal network proposals_rpn, _ = self.proposal_generator( images, features, None, compute_loss=False ) # roi_head lower branch (keep this for further production) # notice that we do not use any target in ROI head to do inference ! proposals_roih, ROI_predictions = self.roi_heads( images, features, proposals_rpn, targets=None, compute_loss=False, branch=branch, ) return {}, proposals_rpn, proposals_roih, ROI_predictions elif branch == "val_loss": # Region proposal network proposals_rpn, proposal_losses = self.proposal_generator( images, features, gt_instances, compute_val_loss=True ) # roi_head lower branch _, detector_losses = self.roi_heads( images, features, proposals_rpn, gt_instances, branch=branch, compute_val_loss=True, ) losses = {} losses.update(detector_losses) losses.update(proposal_losses) return losses, [], [], None
adaptive_teacher-main
adapteacher/modeling/meta_arch/rcnn.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import torch.nn as nn import copy import torch from typing import Union, List, Dict, Any, cast from detectron2.modeling.backbone import ( ResNet, Backbone, build_resnet_backbone, BACKBONE_REGISTRY ) from detectron2.modeling.backbone.fpn import FPN, LastLevelMaxPool, LastLevelP6P7 def make_layers(cfg: List[Union[str, int]], batch_norm: bool = False) -> nn.Sequential: layers: List[nn.Module] = [] in_channels = 3 for v in cfg: if v == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: v = cast(int, v) conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) if batch_norm: layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] else: layers += [conv2d, nn.ReLU(inplace=True)] in_channels = v return nn.Sequential(*layers) cfgs: Dict[str, List[Union[str, int]]] = { 'vgg11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'vgg13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'vgg16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], 'vgg19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'], } class vgg_backbone(Backbone): """ Backbone (bottom-up) for FBNet. Hierarchy: trunk0: xif0_0 xif0_1 ... trunk1: xif1_0 xif1_1 ... ... Output features: The outputs from each "stage", i.e. trunkX. """ def __init__(self, cfg): super().__init__() self.vgg = make_layers(cfgs['vgg16'],batch_norm=True) self._initialize_weights() # self.stage_names_index = {'vgg1':3, 'vgg2':8 , 'vgg3':15, 'vgg4':22, 'vgg5':29} _out_feature_channels = [64, 128, 256, 512, 512] _out_feature_strides = [2, 4, 8, 16, 32] # stages, shape_specs = build_fbnet( # cfg, # name="trunk", # in_channels=cfg.MODEL.FBNET_V2.STEM_IN_CHANNELS # ) # nn.Sequential(*list(self.vgg.features._modules.values())[:14]) self.stages = [nn.Sequential(*list(self.vgg._modules.values())[0:7]),\ nn.Sequential(*list(self.vgg._modules.values())[7:14]),\ nn.Sequential(*list(self.vgg._modules.values())[14:24]),\ nn.Sequential(*list(self.vgg._modules.values())[24:34]),\ nn.Sequential(*list(self.vgg._modules.values())[34:]),] self._out_feature_channels = {} self._out_feature_strides = {} self._stage_names = [] for i, stage in enumerate(self.stages): name = "vgg{}".format(i) self.add_module(name, stage) self._stage_names.append(name) self._out_feature_channels[name] = _out_feature_channels[i] self._out_feature_strides[name] = _out_feature_strides[i] self._out_features = self._stage_names del self.vgg def forward(self, x): features = {} for name, stage in zip(self._stage_names, self.stages): x = stage(x) # if name in self._out_features: # outputs[name] = x features[name] = x # import pdb # pdb.set_trace() return features def _initialize_weights(self) -> None: for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.constant_(m.bias, 0) @BACKBONE_REGISTRY.register() #already register in baseline model def build_vgg_backbone(cfg, _): return vgg_backbone(cfg) @BACKBONE_REGISTRY.register() #already register in baseline model def build_vgg_fpn_backbone(cfg, _): # backbone = FPN( # bottom_up=build_vgg_backbone(cfg), # in_features=cfg.MODEL.FPN.IN_FEATURES, # out_channels=cfg.MODEL.FPN.OUT_CHANNELS, # norm=cfg.MODEL.FPN.NORM, # top_block=LastLevelMaxPool(), # ) bottom_up = vgg_backbone(cfg) in_features = cfg.MODEL.FPN.IN_FEATURES out_channels = cfg.MODEL.FPN.OUT_CHANNELS backbone = FPN( bottom_up=bottom_up, in_features=in_features, out_channels=out_channels, norm=cfg.MODEL.FPN.NORM, top_block=LastLevelMaxPool(), # fuse_type=cfg.MODEL.FPN.FUSE_TYPE, ) # return backbone return backbone
adaptive_teacher-main
adapteacher/modeling/meta_arch/vgg.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from torch.nn.parallel import DataParallel, DistributedDataParallel import torch.nn as nn class EnsembleTSModel(nn.Module): def __init__(self, modelTeacher, modelStudent): super(EnsembleTSModel, self).__init__() if isinstance(modelTeacher, (DistributedDataParallel, DataParallel)): modelTeacher = modelTeacher.module if isinstance(modelStudent, (DistributedDataParallel, DataParallel)): modelStudent = modelStudent.module self.modelTeacher = modelTeacher self.modelStudent = modelStudent
adaptive_teacher-main
adapteacher/modeling/meta_arch/ts_ensemble.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from typing import Dict, Optional import torch from detectron2.structures import ImageList, Instances from detectron2.modeling.proposal_generator import RPN from detectron2.modeling.proposal_generator.build import PROPOSAL_GENERATOR_REGISTRY @PROPOSAL_GENERATOR_REGISTRY.register() class PseudoLabRPN(RPN): """ Region Proposal Network, introduced by :paper:`Faster R-CNN`. """ def forward( self, images: ImageList, features: Dict[str, torch.Tensor], gt_instances: Optional[Instances] = None, compute_loss: bool = True, compute_val_loss: bool = False, ): features = [features[f] for f in self.in_features] anchors = self.anchor_generator(features) pred_objectness_logits, pred_anchor_deltas = self.rpn_head(features) pred_objectness_logits = [ # (N, A, Hi, Wi) -> (N, Hi, Wi, A) -> (N, Hi*Wi*A) score.permute(0, 2, 3, 1).flatten(1) for score in pred_objectness_logits ] pred_anchor_deltas = [ # (N, A*B, Hi, Wi) -> (N, A, B, Hi, Wi) -> (N, Hi, Wi, A, B) -> (N, Hi*Wi*A, B) x.view( x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1] ) .permute(0, 3, 4, 1, 2) .flatten(1, -2) for x in pred_anchor_deltas ] if (self.training and compute_loss) or compute_val_loss: gt_labels, gt_boxes = self.label_and_sample_anchors(anchors, gt_instances) losses = self.losses( anchors, pred_objectness_logits, gt_labels, pred_anchor_deltas, gt_boxes ) losses = {k: v * self.loss_weight.get(k, 1.0) for k, v in losses.items()} else: # inference losses = {} proposals = self.predict_proposals( anchors, pred_objectness_logits, pred_anchor_deltas, images.image_sizes ) return proposals, losses
adaptive_teacher-main
adapteacher/modeling/proposal_generator/rpn.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import torch from torch import nn from torch.nn import functional as F from detectron2.modeling.roi_heads.fast_rcnn import ( FastRCNNOutputLayers, FastRCNNOutputs, ) # focal loss class FastRCNNFocaltLossOutputLayers(FastRCNNOutputLayers): def __init__(self, cfg, input_shape): super(FastRCNNFocaltLossOutputLayers, self).__init__(cfg, input_shape) self.num_classes = cfg.MODEL.ROI_HEADS.NUM_CLASSES def losses(self, predictions, proposals): """ Args: predictions: return values of :meth:`forward()`. proposals (list[Instances]): proposals that match the features that were used to compute predictions. """ scores, proposal_deltas = predictions losses = FastRCNNFocalLoss( self.box2box_transform, scores, proposal_deltas, proposals, self.smooth_l1_beta, self.box_reg_loss_type, num_classes=self.num_classes, ).losses() return losses class FastRCNNFocalLoss(FastRCNNOutputs): """ A class that stores information about outputs of a Fast R-CNN head. It provides methods that are used to decode the outputs of a Fast R-CNN head. """ def __init__( self, box2box_transform, pred_class_logits, pred_proposal_deltas, proposals, smooth_l1_beta=0.0, box_reg_loss_type="smooth_l1", num_classes=80, ): super(FastRCNNFocalLoss, self).__init__( box2box_transform, pred_class_logits, pred_proposal_deltas, proposals, smooth_l1_beta, box_reg_loss_type, ) self.num_classes = num_classes def losses(self): return { "loss_cls": self.comput_focal_loss(), "loss_box_reg": self.box_reg_loss(), } def comput_focal_loss(self): if self._no_instances: return 0.0 * self.pred_class_logits.sum() else: FC_loss = FocalLoss( gamma=1.5, num_classes=self.num_classes, ) total_loss = FC_loss(input=self.pred_class_logits, target=self.gt_classes) total_loss = total_loss / self.gt_classes.shape[0] return total_loss class FocalLoss(nn.Module): def __init__( self, weight=None, gamma=1.0, num_classes=80, ): super(FocalLoss, self).__init__() assert gamma >= 0 self.gamma = gamma self.weight = weight self.num_classes = num_classes def forward(self, input, target): # focal loss CE = F.cross_entropy(input, target, reduction="none") p = torch.exp(-CE) loss = (1 - p) ** self.gamma * CE return loss.sum()
adaptive_teacher-main
adapteacher/modeling/roi_heads/fast_rcnn.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import torch from typing import Dict, List, Optional, Tuple, Union from detectron2.structures import Boxes, ImageList, Instances, pairwise_iou from detectron2.modeling.proposal_generator.proposal_utils import ( add_ground_truth_to_proposals, ) from detectron2.utils.events import get_event_storage from detectron2.modeling.roi_heads.box_head import build_box_head from detectron2.layers import ShapeSpec from detectron2.modeling.roi_heads import ( ROI_HEADS_REGISTRY, StandardROIHeads, ) from detectron2.modeling.roi_heads.fast_rcnn import FastRCNNOutputLayers from adapteacher.modeling.roi_heads.fast_rcnn import FastRCNNFocaltLossOutputLayers import numpy as np from detectron2.modeling.poolers import ROIPooler @ROI_HEADS_REGISTRY.register() class StandardROIHeadsPseudoLab(StandardROIHeads): @classmethod def _init_box_head(cls, cfg, input_shape): # fmt: off in_features = cfg.MODEL.ROI_HEADS.IN_FEATURES pooler_resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION pooler_scales = tuple(1.0 / input_shape[k].stride for k in in_features) sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO pooler_type = cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE # fmt: on in_channels = [input_shape[f].channels for f in in_features] # Check all channel counts are equal assert len(set(in_channels)) == 1, in_channels in_channels = in_channels[0] box_pooler = ROIPooler( output_size=pooler_resolution, scales=pooler_scales, sampling_ratio=sampling_ratio, pooler_type=pooler_type, ) box_head = build_box_head( cfg, ShapeSpec( channels=in_channels, height=pooler_resolution, width=pooler_resolution ), ) if cfg.MODEL.ROI_HEADS.LOSS == "CrossEntropy": box_predictor = FastRCNNOutputLayers(cfg, box_head.output_shape) elif cfg.MODEL.ROI_HEADS.LOSS == "FocalLoss": box_predictor = FastRCNNFocaltLossOutputLayers(cfg, box_head.output_shape) else: raise ValueError("Unknown ROI head loss.") return { "box_in_features": in_features, "box_pooler": box_pooler, "box_head": box_head, "box_predictor": box_predictor, } def forward( self, images: ImageList, features: Dict[str, torch.Tensor], proposals: List[Instances], targets: Optional[List[Instances]] = None, compute_loss=True, branch="", compute_val_loss=False, ) -> Tuple[List[Instances], Dict[str, torch.Tensor]]: del images if self.training and compute_loss: # apply if training loss assert targets # 1000 --> 512 proposals = self.label_and_sample_proposals( proposals, targets, branch=branch ) elif compute_val_loss: # apply if val loss assert targets # 1000 --> 512 temp_proposal_append_gt = self.proposal_append_gt self.proposal_append_gt = False proposals = self.label_and_sample_proposals( proposals, targets, branch=branch ) # do not apply target on proposals self.proposal_append_gt = temp_proposal_append_gt del targets if (self.training and compute_loss) or compute_val_loss: losses, _ = self._forward_box( features, proposals, compute_loss, compute_val_loss, branch ) return proposals, losses else: pred_instances, predictions = self._forward_box( features, proposals, compute_loss, compute_val_loss, branch ) return pred_instances, predictions def _forward_box( self, features: Dict[str, torch.Tensor], proposals: List[Instances], compute_loss: bool = True, compute_val_loss: bool = False, branch: str = "", ) -> Union[Dict[str, torch.Tensor], List[Instances]]: features = [features[f] for f in self.box_in_features] box_features = self.box_pooler(features, [x.proposal_boxes for x in proposals]) box_features = self.box_head(box_features) predictions = self.box_predictor(box_features) del box_features if ( self.training and compute_loss ) or compute_val_loss: # apply if training loss or val loss losses = self.box_predictor.losses(predictions, proposals) if self.train_on_pred_boxes: with torch.no_grad(): pred_boxes = self.box_predictor.predict_boxes_for_gt_classes( predictions, proposals ) for proposals_per_image, pred_boxes_per_image in zip( proposals, pred_boxes ): proposals_per_image.proposal_boxes = Boxes(pred_boxes_per_image) return losses, predictions else: pred_instances, _ = self.box_predictor.inference(predictions, proposals) return pred_instances, predictions @torch.no_grad() def label_and_sample_proposals( self, proposals: List[Instances], targets: List[Instances], branch: str = "" ) -> List[Instances]: gt_boxes = [x.gt_boxes for x in targets] if self.proposal_append_gt: proposals = add_ground_truth_to_proposals(gt_boxes, proposals) proposals_with_gt = [] num_fg_samples = [] num_bg_samples = [] for proposals_per_image, targets_per_image in zip(proposals, targets): has_gt = len(targets_per_image) > 0 match_quality_matrix = pairwise_iou( targets_per_image.gt_boxes, proposals_per_image.proposal_boxes ) matched_idxs, matched_labels = self.proposal_matcher(match_quality_matrix) sampled_idxs, gt_classes = self._sample_proposals( matched_idxs, matched_labels, targets_per_image.gt_classes ) proposals_per_image = proposals_per_image[sampled_idxs] proposals_per_image.gt_classes = gt_classes if has_gt: sampled_targets = matched_idxs[sampled_idxs] for (trg_name, trg_value) in targets_per_image.get_fields().items(): if trg_name.startswith("gt_") and not proposals_per_image.has( trg_name ): proposals_per_image.set(trg_name, trg_value[sampled_targets]) else: gt_boxes = Boxes( targets_per_image.gt_boxes.tensor.new_zeros((len(sampled_idxs), 4)) ) proposals_per_image.gt_boxes = gt_boxes num_bg_samples.append((gt_classes == self.num_classes).sum().item()) num_fg_samples.append(gt_classes.numel() - num_bg_samples[-1]) proposals_with_gt.append(proposals_per_image) storage = get_event_storage() storage.put_scalar( "roi_head/num_target_fg_samples_" + branch, np.mean(num_fg_samples) ) storage.put_scalar( "roi_head/num_target_bg_samples_" + branch, np.mean(num_bg_samples) ) return proposals_with_gt
adaptive_teacher-main
adapteacher/modeling/roi_heads/roi_heads.py
# Copyright (c) Facebook, Inc. and its affiliates. from .coco_evaluation import COCOEvaluator from .pascal_voc_evaluation import PascalVOCDetectionEvaluator # __all__ = [k for k in globals().keys() if not k.startswith("_")] __all__ = [ "COCOEvaluator", "PascalVOCDetectionEvaluator" ]
adaptive_teacher-main
adapteacher/evaluation/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. import contextlib import copy import io import itertools import json import logging import numpy as np import os import pickle from collections import OrderedDict import pycocotools.mask as mask_util import torch from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval from tabulate import tabulate import detectron2.utils.comm as comm from detectron2.config import CfgNode from detectron2.data import MetadataCatalog from detectron2.data.datasets.coco import convert_to_coco_dict from detectron2.evaluation.fast_eval_api import COCOeval_opt from detectron2.structures import Boxes, BoxMode, pairwise_iou from detectron2.utils.file_io import PathManager from detectron2.utils.logger import create_small_table from detectron2.evaluation import DatasetEvaluator from iopath.common.file_io import file_lock logger = logging.getLogger(__name__) def convert_to_coco_json(dataset_name, output_file, allow_cached=True): """ Converts dataset into COCO format and saves it to a json file. dataset_name must be registered in DatasetCatalog and in detectron2's standard format. Args: dataset_name: reference from the config file to the catalogs must be registered in DatasetCatalog and in detectron2's standard format output_file: path of json file that will be saved to allow_cached: if json file is already present then skip conversion """ # TODO: The dataset or the conversion script *may* change, # a checksum would be useful for validating the cached data PathManager.mkdirs(os.path.dirname(output_file)) with file_lock(output_file): if PathManager.exists(output_file) and allow_cached: logger.warning( f"Using previously cached COCO format annotations at '{output_file}'. " "You need to clear the cache file if your dataset has been modified." ) else: logger.info(f"Converting annotations of dataset '{dataset_name}' to COCO format ...)") coco_dict = convert_to_coco_dict(dataset_name) logger.info(f"Caching COCO format annotations at '{output_file}' ...") tmp_file = output_file #+ ".tmp" # with PathManager.open(tmp_file, "w") as f: # json.dump(coco_dict, f) # shutil.move(tmp_file, output_file) with PathManager.open(tmp_file, "w") as f: json.dump(coco_dict, f) class COCOEvaluator(DatasetEvaluator): """ Evaluate AR for object proposals, AP for instance detection/segmentation, AP for keypoint detection outputs using COCO's metrics. See http://cocodataset.org/#detection-eval and http://cocodataset.org/#keypoints-eval to understand its metrics. The metrics range from 0 to 100 (instead of 0 to 1), where a -1 or NaN means the metric cannot be computed (e.g. due to no predictions made). In addition to COCO, this evaluator is able to support any bounding box detection, instance segmentation, or keypoint detection dataset. """ def __init__( self, dataset_name, tasks=None, distributed=True, output_dir=None, *, use_fast_impl=True, kpt_oks_sigmas=(), ): """ Args: dataset_name (str): name of the dataset to be evaluated. It must have either the following corresponding metadata: "json_file": the path to the COCO format annotation Or it must be in detectron2's standard dataset format so it can be converted to COCO format automatically. tasks (tuple[str]): tasks that can be evaluated under the given configuration. A task is one of "bbox", "segm", "keypoints". By default, will infer this automatically from predictions. distributed (True): if True, will collect results from all ranks and run evaluation in the main process. Otherwise, will only evaluate the results in the current process. output_dir (str): optional, an output directory to dump all results predicted on the dataset. The dump contains two files: 1. "instances_predictions.pth" a file that can be loaded with `torch.load` and contains all the results in the format they are produced by the model. 2. "coco_instances_results.json" a json file in COCO's result format. use_fast_impl (bool): use a fast but **unofficial** implementation to compute AP. Although the results should be very close to the official implementation in COCO API, it is still recommended to compute results with the official API for use in papers. The faster implementation also uses more RAM. kpt_oks_sigmas (list[float]): The sigmas used to calculate keypoint OKS. See http://cocodataset.org/#keypoints-eval When empty, it will use the defaults in COCO. Otherwise it should be the same length as ROI_KEYPOINT_HEAD.NUM_KEYPOINTS. """ self._logger = logging.getLogger(__name__) self._distributed = distributed self._output_dir = output_dir self._use_fast_impl = use_fast_impl if tasks is not None and isinstance(tasks, CfgNode): kpt_oks_sigmas = ( tasks.TEST.KEYPOINT_OKS_SIGMAS if not kpt_oks_sigmas else kpt_oks_sigmas ) self._logger.warn( "COCO Evaluator instantiated using config, this is deprecated behavior." " Please pass in explicit arguments instead." ) self._tasks = None # Infering it from predictions should be better else: self._tasks = tasks self._cpu_device = torch.device("cpu") self._metadata = MetadataCatalog.get(dataset_name) if not hasattr(self._metadata, "json_file"): self._logger.info( f"'{dataset_name}' is not registered by `register_coco_instances`." " Therefore trying to convert it to COCO format ..." ) cache_path = os.path.join(output_dir, f"{dataset_name}_coco_format.json") self._metadata.json_file = cache_path convert_to_coco_json(dataset_name, cache_path) json_file = PathManager.get_local_path(self._metadata.json_file) with contextlib.redirect_stdout(io.StringIO()): self._coco_api = COCO(json_file) # Test set json files do not contain annotations (evaluation must be # performed using the COCO evaluation server). self._do_evaluation = "annotations" in self._coco_api.dataset if self._do_evaluation: self._kpt_oks_sigmas = kpt_oks_sigmas def reset(self): self._predictions = [] def process(self, inputs, outputs): """ Args: inputs: the inputs to a COCO model (e.g., GeneralizedRCNN). It is a list of dict. Each dict corresponds to an image and contains keys like "height", "width", "file_name", "image_id". outputs: the outputs of a COCO model. It is a list of dicts with key "instances" that contains :class:`Instances`. """ for input, output in zip(inputs, outputs): prediction = {"image_id": input["image_id"]} if "instances" in output: instances = output["instances"].to(self._cpu_device) prediction["instances"] = instances_to_coco_json(instances, input["image_id"]) if "proposals" in output: prediction["proposals"] = output["proposals"].to(self._cpu_device) if len(prediction) > 1: self._predictions.append(prediction) def evaluate(self, img_ids=None): """ Args: img_ids: a list of image IDs to evaluate on. Default to None for the whole dataset """ if self._distributed: comm.synchronize() predictions = comm.gather(self._predictions, dst=0) predictions = list(itertools.chain(*predictions)) if not comm.is_main_process(): return {} else: predictions = self._predictions if len(predictions) == 0: self._logger.warning("[COCOEvaluator] Did not receive valid predictions.") return {} if self._output_dir: PathManager.mkdirs(self._output_dir) file_path = os.path.join(self._output_dir, "instances_predictions.pth") with PathManager.open(file_path, "wb") as f: torch.save(predictions, f) self._results = OrderedDict() if "proposals" in predictions[0]: self._eval_box_proposals(predictions) if "instances" in predictions[0]: self._eval_predictions(predictions, img_ids=img_ids) # Copy so the caller can do whatever with results return copy.deepcopy(self._results) def _tasks_from_predictions(self, predictions): """ Get COCO API "tasks" (i.e. iou_type) from COCO-format predictions. """ tasks = {"bbox"} for pred in predictions: if "segmentation" in pred: tasks.add("segm") if "keypoints" in pred: tasks.add("keypoints") return sorted(tasks) def _eval_predictions(self, predictions, img_ids=None): """ Evaluate predictions. Fill self._results with the metrics of the tasks. """ self._logger.info("Preparing results for COCO format ...") coco_results = list(itertools.chain(*[x["instances"] for x in predictions])) tasks = self._tasks or self._tasks_from_predictions(coco_results) # unmap the category ids for COCO if hasattr(self._metadata, "thing_dataset_id_to_contiguous_id"): dataset_id_to_contiguous_id = self._metadata.thing_dataset_id_to_contiguous_id all_contiguous_ids = list(dataset_id_to_contiguous_id.values()) num_classes = len(all_contiguous_ids) assert min(all_contiguous_ids) == 0 and max(all_contiguous_ids) == num_classes - 1 reverse_id_mapping = {v: k for k, v in dataset_id_to_contiguous_id.items()} for result in coco_results: category_id = result["category_id"] assert category_id < num_classes, ( f"A prediction has class={category_id}, " f"but the dataset only has {num_classes} classes and " f"predicted class id should be in [0, {num_classes - 1}]." ) result["category_id"] = reverse_id_mapping[category_id] if self._output_dir: file_path = os.path.join(self._output_dir, "coco_instances_results.json") self._logger.info("Saving results to {}".format(file_path)) with PathManager.open(file_path, "w") as f: f.write(json.dumps(coco_results)) f.flush() if not self._do_evaluation: self._logger.info("Annotations are not available for evaluation.") return self._logger.info( "Evaluating predictions with {} COCO API...".format( "unofficial" if self._use_fast_impl else "official" ) ) for task in sorted(tasks): assert task in {"bbox", "segm", "keypoints"}, f"Got unknown task: {task}!" coco_eval = ( _evaluate_predictions_on_coco( self._coco_api, coco_results, task, kpt_oks_sigmas=self._kpt_oks_sigmas, use_fast_impl=self._use_fast_impl, img_ids=img_ids, ) if len(coco_results) > 0 else None # cocoapi does not handle empty results very well ) res = self._derive_coco_results( coco_eval, task, class_names=self._metadata.get("thing_classes") ) self._results[task] = res def _eval_box_proposals(self, predictions): """ Evaluate the box proposals in predictions. Fill self._results with the metrics for "box_proposals" task. """ if self._output_dir: # Saving generated box proposals to file. # Predicted box_proposals are in XYXY_ABS mode. bbox_mode = BoxMode.XYXY_ABS.value ids, boxes, objectness_logits = [], [], [] for prediction in predictions: ids.append(prediction["image_id"]) boxes.append(prediction["proposals"].proposal_boxes.tensor.numpy()) objectness_logits.append(prediction["proposals"].objectness_logits.numpy()) proposal_data = { "boxes": boxes, "objectness_logits": objectness_logits, "ids": ids, "bbox_mode": bbox_mode, } with PathManager.open(os.path.join(self._output_dir, "box_proposals.pkl"), "wb") as f: pickle.dump(proposal_data, f) if not self._do_evaluation: self._logger.info("Annotations are not available for evaluation.") return self._logger.info("Evaluating bbox proposals ...") res = {} areas = {"all": "", "small": "s", "medium": "m", "large": "l"} for limit in [100, 1000]: for area, suffix in areas.items(): stats = _evaluate_box_proposals(predictions, self._coco_api, area=area, limit=limit) key = "AR{}@{:d}".format(suffix, limit) res[key] = float(stats["ar"].item() * 100) self._logger.info("Proposal metrics: \n" + create_small_table(res)) self._results["box_proposals"] = res def _derive_coco_results(self, coco_eval, iou_type, class_names=None): """ Derive the desired score numbers from summarized COCOeval. Args: coco_eval (None or COCOEval): None represents no predictions from model. iou_type (str): class_names (None or list[str]): if provided, will use it to predict per-category AP. Returns: a dict of {metric name: score} """ metrics = { "bbox": ["AP", "AP50", "AP75", "APs", "APm", "APl"], "segm": ["AP", "AP50", "AP75", "APs", "APm", "APl"], "keypoints": ["AP", "AP50", "AP75", "APm", "APl"], }[iou_type] if coco_eval is None: self._logger.warn("No predictions from the model!") return {metric: float("nan") for metric in metrics} # the standard metrics results = { metric: float(coco_eval.stats[idx] * 100 if coco_eval.stats[idx] >= 0 else "nan") for idx, metric in enumerate(metrics) } self._logger.info( "Evaluation results for {}: \n".format(iou_type) + create_small_table(results) ) if not np.isfinite(sum(results.values())): self._logger.info("Some metrics cannot be computed and is shown as NaN.") if class_names is None or len(class_names) <= 1: return results # Compute per-category AP # from https://github.com/facebookresearch/Detectron/blob/a6a835f5b8208c45d0dce217ce9bbda915f44df7/detectron/datasets/json_dataset_evaluator.py#L222-L252 # noqa precisions = coco_eval.eval["precision"] # precision has dims (iou, recall, cls, area range, max dets) assert len(class_names) == precisions.shape[2] results_per_category = [] for idx, name in enumerate(class_names): # area range index 0: all area ranges # max dets index -1: typically 100 per image precision = precisions[:, :, idx, 0, -1] precision = precision[precision > -1] ap = np.mean(precision) if precision.size else float("nan") results_per_category.append(("{}".format(name), float(ap * 100))) # tabulate it N_COLS = min(6, len(results_per_category) * 2) results_flatten = list(itertools.chain(*results_per_category)) results_2d = itertools.zip_longest(*[results_flatten[i::N_COLS] for i in range(N_COLS)]) table = tabulate( results_2d, tablefmt="pipe", floatfmt=".3f", headers=["category", "AP"] * (N_COLS // 2), numalign="left", ) self._logger.info("Per-category {} AP: \n".format(iou_type) + table) # results.update({"AP-" + name: ap for name, ap in results_per_category}) results_per_category_AP50 = [] for idx, name in enumerate(class_names): # area range index 0: all area ranges # max dets index -1: typically 100 per image t = np.where(.5 == coco_eval.params.iouThrs)[0] precisions_50 = precisions[t] precisions_50 = precisions_50[:, :, idx, 0, -1] precisions_50 = precisions_50[precisions_50 > -1] ap = np.mean(precisions_50) if precisions_50.size else float("nan") results_per_category_AP50.append(("{}".format(name), float(ap * 100))) # tabulate it N_COLS = min(6, len(results_per_category_AP50) * 2) results_flatten = list(itertools.chain(*results_per_category_AP50)) results_2d = itertools.zip_longest(*[results_flatten[i::N_COLS] for i in range(N_COLS)]) table = tabulate( results_2d, tablefmt="pipe", floatfmt=".3f", headers=["category", "AP50"] * (N_COLS // 2), numalign="left", ) self._logger.info("Per-category {} AP50: \n".format(iou_type) + table) results.update({"AP50-" + name: ap for name, ap in results_per_category_AP50}) return results def instances_to_coco_json(instances, img_id): """ Dump an "Instances" object to a COCO-format json that's used for evaluation. Args: instances (Instances): img_id (int): the image id Returns: list[dict]: list of json annotations in COCO format. """ num_instance = len(instances) if num_instance == 0: return [] boxes = instances.pred_boxes.tensor.numpy() boxes = BoxMode.convert(boxes, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS) boxes = boxes.tolist() scores = instances.scores.tolist() classes = instances.pred_classes.tolist() has_mask = instances.has("pred_masks") if has_mask: # use RLE to encode the masks, because they are too large and takes memory # since this evaluator stores outputs of the entire dataset rles = [ mask_util.encode(np.array(mask[:, :, None], order="F", dtype="uint8"))[0] for mask in instances.pred_masks ] for rle in rles: # "counts" is an array encoded by mask_util as a byte-stream. Python3's # json writer which always produces strings cannot serialize a bytestream # unless you decode it. Thankfully, utf-8 works out (which is also what # the pycocotools/_mask.pyx does). rle["counts"] = rle["counts"].decode("utf-8") has_keypoints = instances.has("pred_keypoints") if has_keypoints: keypoints = instances.pred_keypoints results = [] for k in range(num_instance): result = { "image_id": img_id, "category_id": classes[k], "bbox": boxes[k], "score": scores[k], } if has_mask: result["segmentation"] = rles[k] if has_keypoints: # In COCO annotations, # keypoints coordinates are pixel indices. # However our predictions are floating point coordinates. # Therefore we subtract 0.5 to be consistent with the annotation format. # This is the inverse of data loading logic in `datasets/coco.py`. keypoints[k][:, :2] -= 0.5 result["keypoints"] = keypoints[k].flatten().tolist() results.append(result) return results # inspired from Detectron: # https://github.com/facebookresearch/Detectron/blob/a6a835f5b8208c45d0dce217ce9bbda915f44df7/detectron/datasets/json_dataset_evaluator.py#L255 # noqa def _evaluate_box_proposals(dataset_predictions, coco_api, thresholds=None, area="all", limit=None): """ Evaluate detection proposal recall metrics. This function is a much faster alternative to the official COCO API recall evaluation code. However, it produces slightly different results. """ # Record max overlap value for each gt box # Return vector of overlap values areas = { "all": 0, "small": 1, "medium": 2, "large": 3, "96-128": 4, "128-256": 5, "256-512": 6, "512-inf": 7, } area_ranges = [ [0 ** 2, 1e5 ** 2], # all [0 ** 2, 32 ** 2], # small [32 ** 2, 96 ** 2], # medium [96 ** 2, 1e5 ** 2], # large [96 ** 2, 128 ** 2], # 96-128 [128 ** 2, 256 ** 2], # 128-256 [256 ** 2, 512 ** 2], # 256-512 [512 ** 2, 1e5 ** 2], ] # 512-inf assert area in areas, "Unknown area range: {}".format(area) area_range = area_ranges[areas[area]] gt_overlaps = [] num_pos = 0 for prediction_dict in dataset_predictions: predictions = prediction_dict["proposals"] # sort predictions in descending order # TODO maybe remove this and make it explicit in the documentation inds = predictions.objectness_logits.sort(descending=True)[1] predictions = predictions[inds] ann_ids = coco_api.getAnnIds(imgIds=prediction_dict["image_id"]) anno = coco_api.loadAnns(ann_ids) gt_boxes = [ BoxMode.convert(obj["bbox"], BoxMode.XYWH_ABS, BoxMode.XYXY_ABS) for obj in anno if obj["iscrowd"] == 0 ] gt_boxes = torch.as_tensor(gt_boxes).reshape(-1, 4) # guard against no boxes gt_boxes = Boxes(gt_boxes) gt_areas = torch.as_tensor([obj["area"] for obj in anno if obj["iscrowd"] == 0]) if len(gt_boxes) == 0 or len(predictions) == 0: continue valid_gt_inds = (gt_areas >= area_range[0]) & (gt_areas <= area_range[1]) gt_boxes = gt_boxes[valid_gt_inds] num_pos += len(gt_boxes) if len(gt_boxes) == 0: continue if limit is not None and len(predictions) > limit: predictions = predictions[:limit] overlaps = pairwise_iou(predictions.proposal_boxes, gt_boxes) _gt_overlaps = torch.zeros(len(gt_boxes)) for j in range(min(len(predictions), len(gt_boxes))): # find which proposal box maximally covers each gt box # and get the iou amount of coverage for each gt box max_overlaps, argmax_overlaps = overlaps.max(dim=0) # find which gt box is 'best' covered (i.e. 'best' = most iou) gt_ovr, gt_ind = max_overlaps.max(dim=0) assert gt_ovr >= 0 # find the proposal box that covers the best covered gt box box_ind = argmax_overlaps[gt_ind] # record the iou coverage of this gt box _gt_overlaps[j] = overlaps[box_ind, gt_ind] assert _gt_overlaps[j] == gt_ovr # mark the proposal box and the gt box as used overlaps[box_ind, :] = -1 overlaps[:, gt_ind] = -1 # append recorded iou coverage level gt_overlaps.append(_gt_overlaps) gt_overlaps = ( torch.cat(gt_overlaps, dim=0) if len(gt_overlaps) else torch.zeros(0, dtype=torch.float32) ) gt_overlaps, _ = torch.sort(gt_overlaps) if thresholds is None: step = 0.05 thresholds = torch.arange(0.5, 0.95 + 1e-5, step, dtype=torch.float32) recalls = torch.zeros_like(thresholds) # compute recall for each iou threshold for i, t in enumerate(thresholds): recalls[i] = (gt_overlaps >= t).float().sum() / float(num_pos) # ar = 2 * np.trapz(recalls, thresholds) ar = recalls.mean() return { "ar": ar, "recalls": recalls, "thresholds": thresholds, "gt_overlaps": gt_overlaps, "num_pos": num_pos, } def _evaluate_predictions_on_coco( coco_gt, coco_results, iou_type, kpt_oks_sigmas=None, use_fast_impl=True, img_ids=None ): """ Evaluate the coco results using COCOEval API. """ assert len(coco_results) > 0 if iou_type == "segm": coco_results = copy.deepcopy(coco_results) # When evaluating mask AP, if the results contain bbox, cocoapi will # use the box area as the area of the instance, instead of the mask area. # This leads to a different definition of small/medium/large. # We remove the bbox field to let mask AP use mask area. for c in coco_results: c.pop("bbox", None) coco_dt = coco_gt.loadRes(coco_results) coco_eval = (COCOeval_opt if use_fast_impl else COCOeval)(coco_gt, coco_dt, iou_type) if img_ids is not None: coco_eval.params.imgIds = img_ids if iou_type == "keypoints": # Use the COCO default keypoint OKS sigmas unless overrides are specified if kpt_oks_sigmas: assert hasattr(coco_eval.params, "kpt_oks_sigmas"), "pycocotools is too old!" coco_eval.params.kpt_oks_sigmas = np.array(kpt_oks_sigmas) # COCOAPI requires every detection and every gt to have keypoints, so # we just take the first entry from both num_keypoints_dt = len(coco_results[0]["keypoints"]) // 3 num_keypoints_gt = len(next(iter(coco_gt.anns.values()))["keypoints"]) // 3 num_keypoints_oks = len(coco_eval.params.kpt_oks_sigmas) assert num_keypoints_oks == num_keypoints_dt == num_keypoints_gt, ( f"[COCOEvaluator] Prediction contain {num_keypoints_dt} keypoints. " f"Ground truth contains {num_keypoints_gt} keypoints. " f"The length of cfg.TEST.KEYPOINT_OKS_SIGMAS is {num_keypoints_oks}. " "They have to agree with each other. For meaning of OKS, please refer to " "http://cocodataset.org/#keypoints-eval." ) coco_eval.evaluate() coco_eval.accumulate() coco_eval.summarize() return coco_eval
adaptive_teacher-main
adapteacher/evaluation/coco_evaluation.py
# -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. import logging import numpy as np import os import tempfile import xml.etree.ElementTree as ET from collections import OrderedDict, defaultdict from functools import lru_cache import torch from detectron2.data import MetadataCatalog from detectron2.utils import comm from detectron2.utils.file_io import PathManager from detectron2.evaluation import DatasetEvaluator class PascalVOCDetectionEvaluator(DatasetEvaluator): """ Evaluate Pascal VOC style AP for Pascal VOC dataset. It contains a synchronization, therefore has to be called from all ranks. Note that the concept of AP can be implemented in different ways and may not produce identical results. This class mimics the implementation of the official Pascal VOC Matlab API, and should produce similar but not identical results to the official API. """ def __init__(self, dataset_name, target_classnames=None): """ Args: dataset_name (str): name of the dataset, e.g., "voc_2007_test" """ self._dataset_name = dataset_name meta = MetadataCatalog.get(dataset_name) # Too many tiny files, download all to local for speed. annotation_dir_local = PathManager.get_local_path( os.path.join(meta.dirname, "Annotations/") ) self._anno_file_template = os.path.join(annotation_dir_local, "{}.xml") self._image_set_path = os.path.join(meta.dirname, "ImageSets", "Main", meta.split + ".txt") self._class_names = meta.thing_classes assert meta.year in [2007, 2012], meta.year self._is_2007 = meta.year == 2007 self._cpu_device = torch.device("cpu") self._logger = logging.getLogger(__name__) if target_classnames == None: self.target_classnames = self._class_names else: self.target_classnames = target_classnames def reset(self): self._predictions = defaultdict(list) # class name -> list of prediction strings def process(self, inputs, outputs): for input, output in zip(inputs, outputs): image_id = input["image_id"] instances = output["instances"].to(self._cpu_device) boxes = instances.pred_boxes.tensor.numpy() scores = instances.scores.tolist() classes = instances.pred_classes.tolist() for box, score, cls in zip(boxes, scores, classes): xmin, ymin, xmax, ymax = box # The inverse of data loading logic in `datasets/pascal_voc.py` xmin += 1 ymin += 1 self._predictions[cls].append( f"{image_id} {score:.3f} {xmin:.1f} {ymin:.1f} {xmax:.1f} {ymax:.1f}" ) def evaluate(self): """ Returns: dict: has a key "segm", whose value is a dict of "AP", "AP50", and "AP75". """ all_predictions = comm.gather(self._predictions, dst=0) if not comm.is_main_process(): return predictions = defaultdict(list) for predictions_per_rank in all_predictions: for clsid, lines in predictions_per_rank.items(): predictions[clsid].extend(lines) del all_predictions self._logger.info( "Evaluating {} using {} metric. " "Note that results do not use the official Matlab API.".format( self._dataset_name, 2007 if self._is_2007 else 2012 ) ) with tempfile.TemporaryDirectory(prefix="pascal_voc_eval_") as dirname: res_file_template = os.path.join(dirname, "{}.txt") aps = defaultdict(list) # iou -> ap per class for cls_id, cls_name in enumerate(self._class_names): if cls_name not in self.target_classnames: continue lines = predictions.get(cls_id, [""]) with open(res_file_template.format(cls_name), "w") as f: f.write("\n".join(lines)) for thresh in range(50, 100, 5): rec, prec, ap = voc_eval( res_file_template, self._anno_file_template, self._image_set_path, cls_name, ovthresh=thresh / 100.0, use_07_metric=self._is_2007, ) aps[thresh].append(ap * 100) ret = OrderedDict() mAP = {iou: np.mean(x) for iou, x in aps.items()} ret["bbox"] = {"AP": np.mean(list(mAP.values())), "AP50": mAP[50], "AP75": mAP[75]} #Add the codes for AP50 for idx, name in enumerate(self.target_classnames): ret["bbox"].update({"AP50-" + name: aps[50][idx]}) return ret ############################################################################## # # Below code is modified from # https://github.com/rbgirshick/py-faster-rcnn/blob/master/lib/datasets/voc_eval.py # -------------------------------------------------------- # Fast/er R-CNN # Licensed under The MIT License [see LICENSE for details] # Written by Bharath Hariharan # -------------------------------------------------------- """Python implementation of the PASCAL VOC devkit's AP evaluation code.""" @lru_cache(maxsize=None) def parse_rec(filename): """Parse a PASCAL VOC xml file.""" with PathManager.open(filename) as f: tree = ET.parse(f) objects = [] for obj in tree.findall("object"): obj_struct = {} obj_struct["name"] = obj.find("name").text obj_struct["pose"] = obj.find("pose").text obj_struct["truncated"] = int(obj.find("truncated").text) obj_struct["difficult"] = int(obj.find("difficult").text) bbox = obj.find("bndbox") obj_struct["bbox"] = [ int(bbox.find("xmin").text), int(bbox.find("ymin").text), int(bbox.find("xmax").text), int(bbox.find("ymax").text), ] objects.append(obj_struct) return objects def voc_ap(rec, prec, use_07_metric=False): """Compute VOC AP given precision and recall. If use_07_metric is true, uses the VOC 07 11-point method (default:False). """ if use_07_metric: # 11 point metric ap = 0.0 for t in np.arange(0.0, 1.1, 0.1): if np.sum(rec >= t) == 0: p = 0 else: p = np.max(prec[rec >= t]) ap = ap + p / 11.0 else: # correct AP calculation # first append sentinel values at the end mrec = np.concatenate(([0.0], rec, [1.0])) mpre = np.concatenate(([0.0], prec, [0.0])) # compute the precision envelope for i in range(mpre.size - 1, 0, -1): mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) # to calculate area under PR curve, look for points # where X axis (recall) changes value i = np.where(mrec[1:] != mrec[:-1])[0] # and sum (\Delta recall) * prec ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) return ap def voc_eval(detpath, annopath, imagesetfile, classname, ovthresh=0.5, use_07_metric=False): """rec, prec, ap = voc_eval(detpath, annopath, imagesetfile, classname, [ovthresh], [use_07_metric]) Top level function that does the PASCAL VOC evaluation. detpath: Path to detections detpath.format(classname) should produce the detection results file. annopath: Path to annotations annopath.format(imagename) should be the xml annotations file. imagesetfile: Text file containing the list of images, one image per line. classname: Category name (duh) [ovthresh]: Overlap threshold (default = 0.5) [use_07_metric]: Whether to use VOC07's 11 point AP computation (default False) """ # assumes detections are in detpath.format(classname) # assumes annotations are in annopath.format(imagename) # assumes imagesetfile is a text file with each line an image name # first load gt # read list of images with PathManager.open(imagesetfile, "r") as f: lines = f.readlines() imagenames = [x.strip() for x in lines] # load annots recs = {} for imagename in imagenames: recs[imagename] = parse_rec(annopath.format(imagename)) # extract gt objects for this class class_recs = {} npos = 0 for imagename in imagenames: R = [obj for obj in recs[imagename] if obj["name"] == classname] bbox = np.array([x["bbox"] for x in R]) difficult = np.array([x["difficult"] for x in R]).astype(np.bool) # difficult = np.array([False for x in R]).astype(np.bool) # treat all "difficult" as GT det = [False] * len(R) npos = npos + sum(~difficult) class_recs[imagename] = {"bbox": bbox, "difficult": difficult, "det": det} # read dets detfile = detpath.format(classname) with open(detfile, "r") as f: lines = f.readlines() splitlines = [x.strip().split(" ") for x in lines] image_ids = [x[0] for x in splitlines] confidence = np.array([float(x[1]) for x in splitlines]) BB = np.array([[float(z) for z in x[2:]] for x in splitlines]).reshape(-1, 4) # sort by confidence sorted_ind = np.argsort(-confidence) BB = BB[sorted_ind, :] image_ids = [image_ids[x] for x in sorted_ind] # go down dets and mark TPs and FPs nd = len(image_ids) tp = np.zeros(nd) fp = np.zeros(nd) for d in range(nd): R = class_recs[image_ids[d]] bb = BB[d, :].astype(float) ovmax = -np.inf BBGT = R["bbox"].astype(float) if BBGT.size > 0: # compute overlaps # intersection ixmin = np.maximum(BBGT[:, 0], bb[0]) iymin = np.maximum(BBGT[:, 1], bb[1]) ixmax = np.minimum(BBGT[:, 2], bb[2]) iymax = np.minimum(BBGT[:, 3], bb[3]) iw = np.maximum(ixmax - ixmin + 1.0, 0.0) ih = np.maximum(iymax - iymin + 1.0, 0.0) inters = iw * ih # union uni = ( (bb[2] - bb[0] + 1.0) * (bb[3] - bb[1] + 1.0) + (BBGT[:, 2] - BBGT[:, 0] + 1.0) * (BBGT[:, 3] - BBGT[:, 1] + 1.0) - inters ) overlaps = inters / uni ovmax = np.max(overlaps) jmax = np.argmax(overlaps) if ovmax > ovthresh: if not R["difficult"][jmax]: if not R["det"][jmax]: tp[d] = 1.0 R["det"][jmax] = 1 else: fp[d] = 1.0 else: fp[d] = 1.0 # compute precision recall fp = np.cumsum(fp) tp = np.cumsum(tp) rec = tp / float(npos) # avoid divide by zero in case the first detection matches a difficult # ground truth prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps) ap = voc_ap(rec, prec, use_07_metric) return rec, prec, ap
adaptive_teacher-main
adapteacher/evaluation/pascal_voc_evaluation.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import logging import numpy as np import operator import json import torch.utils.data from detectron2.utils.comm import get_world_size from detectron2.data.common import ( DatasetFromList, MapDataset, ) from detectron2.data.dataset_mapper import DatasetMapper from detectron2.data.samplers import ( InferenceSampler, RepeatFactorTrainingSampler, TrainingSampler, ) from detectron2.data.build import ( trivial_batch_collator, worker_init_reset_seed, get_detection_dataset_dicts, build_batch_data_loader, ) from adapteacher.data.common import ( AspectRatioGroupedSemiSupDatasetTwoCrop, ) """ This file contains the default logic to build a dataloader for training or testing. """ def divide_label_unlabel( dataset_dicts, SupPercent, random_data_seed, random_data_seed_path ): num_all = len(dataset_dicts) num_label = int(SupPercent / 100.0 * num_all) # read from pre-generated data seed with open(random_data_seed_path) as COCO_sup_file: coco_random_idx = json.load(COCO_sup_file) labeled_idx = np.array(coco_random_idx[str(SupPercent)][str(random_data_seed)]) assert labeled_idx.shape[0] == num_label, "Number of READ_DATA is mismatched." label_dicts = [] unlabel_dicts = [] labeled_idx = set(labeled_idx) for i in range(len(dataset_dicts)): if i in labeled_idx: label_dicts.append(dataset_dicts[i]) else: unlabel_dicts.append(dataset_dicts[i]) return label_dicts, unlabel_dicts # uesed by supervised-only baseline trainer def build_detection_semisup_train_loader(cfg, mapper=None): dataset_dicts = get_detection_dataset_dicts( cfg.DATASETS.TRAIN, filter_empty=cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS, min_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE if cfg.MODEL.KEYPOINT_ON else 0, proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None, ) # Divide into labeled and unlabeled sets according to supervision percentage label_dicts, unlabel_dicts = divide_label_unlabel( dataset_dicts, cfg.DATALOADER.SUP_PERCENT, cfg.DATALOADER.RANDOM_DATA_SEED, cfg.DATALOADER.RANDOM_DATA_SEED_PATH, ) dataset = DatasetFromList(label_dicts, copy=False) if mapper is None: mapper = DatasetMapper(cfg, True) dataset = MapDataset(dataset, mapper) sampler_name = cfg.DATALOADER.SAMPLER_TRAIN logger = logging.getLogger(__name__) logger.info("Using training sampler {}".format(sampler_name)) if sampler_name == "TrainingSampler": sampler = TrainingSampler(len(dataset)) elif sampler_name == "RepeatFactorTrainingSampler": repeat_factors = ( RepeatFactorTrainingSampler.repeat_factors_from_category_frequency( label_dicts, cfg.DATALOADER.REPEAT_THRESHOLD ) ) sampler = RepeatFactorTrainingSampler(repeat_factors) else: raise ValueError("Unknown training sampler: {}".format(sampler_name)) # list num of labeled and unlabeled logger.info("Number of training samples " + str(len(dataset))) logger.info("Supervision percentage " + str(cfg.DATALOADER.SUP_PERCENT)) return build_batch_data_loader( dataset, sampler, cfg.SOLVER.IMS_PER_BATCH, aspect_ratio_grouping=cfg.DATALOADER.ASPECT_RATIO_GROUPING, num_workers=cfg.DATALOADER.NUM_WORKERS, ) # uesed by evaluation def build_detection_test_loader(cfg, dataset_name, mapper=None): dataset_dicts = get_detection_dataset_dicts( [dataset_name], filter_empty=False, proposal_files=[ cfg.DATASETS.PROPOSAL_FILES_TEST[ list(cfg.DATASETS.TEST).index(dataset_name) ] ] if cfg.MODEL.LOAD_PROPOSALS else None, ) dataset = DatasetFromList(dataset_dicts) if mapper is None: mapper = DatasetMapper(cfg, False) dataset = MapDataset(dataset, mapper) sampler = InferenceSampler(len(dataset)) batch_sampler = torch.utils.data.sampler.BatchSampler(sampler, 1, drop_last=False) data_loader = torch.utils.data.DataLoader( dataset, num_workers=cfg.DATALOADER.NUM_WORKERS, batch_sampler=batch_sampler, collate_fn=trivial_batch_collator, ) return data_loader # uesed by unbiased teacher trainer def build_detection_semisup_train_loader_two_crops(cfg, mapper=None): if cfg.DATASETS.CROSS_DATASET: # cross-dataset (e.g., coco-additional) label_dicts = get_detection_dataset_dicts( cfg.DATASETS.TRAIN_LABEL, filter_empty=cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS, min_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE if cfg.MODEL.KEYPOINT_ON else 0, proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None, ) unlabel_dicts = get_detection_dataset_dicts( cfg.DATASETS.TRAIN_UNLABEL, filter_empty=False, min_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE if cfg.MODEL.KEYPOINT_ON else 0, proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None, ) else: # different degree of supervision (e.g., COCO-supervision) dataset_dicts = get_detection_dataset_dicts( cfg.DATASETS.TRAIN, filter_empty=cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS, min_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE if cfg.MODEL.KEYPOINT_ON else 0, proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None, ) # Divide into labeled and unlabeled sets according to supervision percentage label_dicts, unlabel_dicts = divide_label_unlabel( dataset_dicts, cfg.DATALOADER.SUP_PERCENT, cfg.DATALOADER.RANDOM_DATA_SEED, cfg.DATALOADER.RANDOM_DATA_SEED_PATH, ) label_dataset = DatasetFromList(label_dicts, copy=False) # exclude the labeled set from unlabeled dataset unlabel_dataset = DatasetFromList(unlabel_dicts, copy=False) # include the labeled set in unlabel dataset # unlabel_dataset = DatasetFromList(dataset_dicts, copy=False) if mapper is None: mapper = DatasetMapper(cfg, True) label_dataset = MapDataset(label_dataset, mapper) unlabel_dataset = MapDataset(unlabel_dataset, mapper) sampler_name = cfg.DATALOADER.SAMPLER_TRAIN logger = logging.getLogger(__name__) logger.info("Using training sampler {}".format(sampler_name)) if sampler_name == "TrainingSampler": label_sampler = TrainingSampler(len(label_dataset)) unlabel_sampler = TrainingSampler(len(unlabel_dataset)) elif sampler_name == "RepeatFactorTrainingSampler": raise NotImplementedError("{} not yet supported.".format(sampler_name)) else: raise ValueError("Unknown training sampler: {}".format(sampler_name)) return build_semisup_batch_data_loader_two_crop( (label_dataset, unlabel_dataset), (label_sampler, unlabel_sampler), cfg.SOLVER.IMG_PER_BATCH_LABEL, cfg.SOLVER.IMG_PER_BATCH_UNLABEL, aspect_ratio_grouping=cfg.DATALOADER.ASPECT_RATIO_GROUPING, num_workers=cfg.DATALOADER.NUM_WORKERS, ) # batch data loader def build_semisup_batch_data_loader_two_crop( dataset, sampler, total_batch_size_label, total_batch_size_unlabel, *, aspect_ratio_grouping=False, num_workers=0 ): world_size = get_world_size() assert ( total_batch_size_label > 0 and total_batch_size_label % world_size == 0 ), "Total label batch size ({}) must be divisible by the number of gpus ({}).".format( total_batch_size_label, world_size ) assert ( total_batch_size_unlabel > 0 and total_batch_size_unlabel % world_size == 0 ), "Total unlabel batch size ({}) must be divisible by the number of gpus ({}).".format( total_batch_size_label, world_size ) batch_size_label = total_batch_size_label // world_size batch_size_unlabel = total_batch_size_unlabel // world_size label_dataset, unlabel_dataset = dataset label_sampler, unlabel_sampler = sampler if aspect_ratio_grouping: label_data_loader = torch.utils.data.DataLoader( label_dataset, sampler=label_sampler, num_workers=num_workers, batch_sampler=None, collate_fn=operator.itemgetter( 0 ), # don't batch, but yield individual elements worker_init_fn=worker_init_reset_seed, ) # yield individual mapped dict unlabel_data_loader = torch.utils.data.DataLoader( unlabel_dataset, sampler=unlabel_sampler, num_workers=num_workers, batch_sampler=None, collate_fn=operator.itemgetter( 0 ), # don't batch, but yield individual elements worker_init_fn=worker_init_reset_seed, ) # yield individual mapped dict return AspectRatioGroupedSemiSupDatasetTwoCrop( (label_data_loader, unlabel_data_loader), (batch_size_label, batch_size_unlabel), ) else: raise NotImplementedError("ASPECT_RATIO_GROUPING = False is not supported yet")
adaptive_teacher-main
adapteacher/data/build.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from .build import ( build_detection_test_loader, build_detection_semisup_train_loader, )
adaptive_teacher-main
adapteacher/data/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import logging import torchvision.transforms as transforms from adapteacher.data.transforms.augmentation_impl import ( GaussianBlur, ) def build_strong_augmentation(cfg, is_train): """ Create a list of :class:`Augmentation` from config. Now it includes resizing and flipping. Returns: list[Augmentation] """ logger = logging.getLogger(__name__) augmentation = [] if is_train: # This is simialr to SimCLR https://arxiv.org/abs/2002.05709 augmentation.append( transforms.RandomApply([transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)], p=0.8) ) augmentation.append(transforms.RandomGrayscale(p=0.2)) augmentation.append(transforms.RandomApply([GaussianBlur([0.1, 2.0])], p=0.5)) randcrop_transform = transforms.Compose( [ transforms.ToTensor(), transforms.RandomErasing( p=0.7, scale=(0.05, 0.2), ratio=(0.3, 3.3), value="random" ), transforms.RandomErasing( p=0.5, scale=(0.02, 0.2), ratio=(0.1, 6), value="random" ), transforms.RandomErasing( p=0.3, scale=(0.02, 0.2), ratio=(0.05, 8), value="random" ), transforms.ToPILImage(), ] ) augmentation.append(randcrop_transform) logger.info("Augmentations used in training: " + str(augmentation)) return transforms.Compose(augmentation)
adaptive_teacher-main
adapteacher/data/detection_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import copy import logging import numpy as np from PIL import Image import torch import detectron2.data.detection_utils as utils import detectron2.data.transforms as T from detectron2.data.dataset_mapper import DatasetMapper from adapteacher.data.detection_utils import build_strong_augmentation class DatasetMapperTwoCropSeparate(DatasetMapper): """ This customized mapper produces two augmented images from a single image instance. This mapper makes sure that the two augmented images have the same cropping and thus the same size. A callable which takes a dataset dict in Detectron2 Dataset format, and map it into a format used by the model. This is the default callable to be used to map your dataset dict into training data. You may need to follow it to implement your own one for customized logic, such as a different way to read or transform images. See :doc:`/tutorials/data_loading` for details. The callable currently does the following: 1. Read the image from "file_name" 2. Applies cropping/geometric transforms to the image and annotations 3. Prepare data and annotations to Tensor and :class:`Instances` """ def __init__(self, cfg, is_train=True): self.augmentation = utils.build_augmentation(cfg, is_train) # include crop into self.augmentation if cfg.INPUT.CROP.ENABLED and is_train: self.augmentation.insert( 0, T.RandomCrop(cfg.INPUT.CROP.TYPE, cfg.INPUT.CROP.SIZE) ) logging.getLogger(__name__).info( "Cropping used in training: " + str(self.augmentation[0]) ) self.compute_tight_boxes = True else: self.compute_tight_boxes = False self.strong_augmentation = build_strong_augmentation(cfg, is_train) # fmt: off self.img_format = cfg.INPUT.FORMAT self.mask_on = cfg.MODEL.MASK_ON self.mask_format = cfg.INPUT.MASK_FORMAT self.keypoint_on = cfg.MODEL.KEYPOINT_ON self.load_proposals = cfg.MODEL.LOAD_PROPOSALS # fmt: on if self.keypoint_on and is_train: self.keypoint_hflip_indices = utils.create_keypoint_hflip_indices( cfg.DATASETS.TRAIN ) else: self.keypoint_hflip_indices = None if self.load_proposals: self.proposal_min_box_size = cfg.MODEL.PROPOSAL_GENERATOR.MIN_SIZE self.proposal_topk = ( cfg.DATASETS.PRECOMPUTED_PROPOSAL_TOPK_TRAIN if is_train else cfg.DATASETS.PRECOMPUTED_PROPOSAL_TOPK_TEST ) self.is_train = is_train def __call__(self, dataset_dict): """ Args: dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format. Returns: dict: a format that builtin models in detectron2 accept """ dataset_dict = copy.deepcopy(dataset_dict) # it will be modified by code below image = utils.read_image(dataset_dict["file_name"], format=self.img_format) # utils.check_image_size(dataset_dict, image) if "sem_seg_file_name" in dataset_dict: sem_seg_gt = utils.read_image( dataset_dict.pop("sem_seg_file_name"), "L" ).squeeze(2) else: sem_seg_gt = None aug_input = T.StandardAugInput(image, sem_seg=sem_seg_gt) transforms = aug_input.apply_augmentations(self.augmentation) image_weak_aug, sem_seg_gt = aug_input.image, aug_input.sem_seg image_shape = image_weak_aug.shape[:2] # h, w if sem_seg_gt is not None: dataset_dict["sem_seg"] = torch.as_tensor(sem_seg_gt.astype("long")) if self.load_proposals: utils.transform_proposals( dataset_dict, image_shape, transforms, proposal_topk=self.proposal_topk, min_box_size=self.proposal_min_box_size, ) if not self.is_train: dataset_dict.pop("annotations", None) dataset_dict.pop("sem_seg_file_name", None) return dataset_dict if "annotations" in dataset_dict: for anno in dataset_dict["annotations"]: if not self.mask_on: anno.pop("segmentation", None) if not self.keypoint_on: anno.pop("keypoints", None) annos = [ utils.transform_instance_annotations( obj, transforms, image_shape, keypoint_hflip_indices=self.keypoint_hflip_indices, ) for obj in dataset_dict.pop("annotations") if obj.get("iscrowd", 0) == 0 ] instances = utils.annotations_to_instances( annos, image_shape, mask_format=self.mask_format ) if self.compute_tight_boxes and instances.has("gt_masks"): instances.gt_boxes = instances.gt_masks.get_bounding_boxes() bboxes_d2_format = utils.filter_empty_instances(instances) dataset_dict["instances"] = bboxes_d2_format # apply strong augmentation # We use torchvision augmentation, which is not compatiable with # detectron2, which use numpy format for images. Thus, we need to # convert to PIL format first. image_pil = Image.fromarray(image_weak_aug.astype("uint8"), "RGB") image_strong_aug = np.array(self.strong_augmentation(image_pil)) dataset_dict["image"] = torch.as_tensor( np.ascontiguousarray(image_strong_aug.transpose(2, 0, 1)) ) dataset_dict_key = copy.deepcopy(dataset_dict) dataset_dict_key["image"] = torch.as_tensor( np.ascontiguousarray(image_weak_aug.transpose(2, 0, 1)) ) assert dataset_dict["image"].size(1) == dataset_dict_key["image"].size(1) assert dataset_dict["image"].size(2) == dataset_dict_key["image"].size(2) return (dataset_dict, dataset_dict_key)
adaptive_teacher-main
adapteacher/data/dataset_mapper.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import logging from detectron2.data.common import MapDataset, AspectRatioGroupedDataset class MapDatasetTwoCrop(MapDataset): """ Map a function over the elements in a dataset. This customized MapDataset transforms an image with two augmentations as two inputs (queue and key). Args: dataset: a dataset where map function is applied. map_func: a callable which maps the element in dataset. map_func is responsible for error handling, when error happens, it needs to return None so the MapDataset will randomly use other elements from the dataset. """ def __getitem__(self, idx): retry_count = 0 cur_idx = int(idx) while True: data = self._map_func(self._dataset[cur_idx]) if data is not None: self._fallback_candidates.add(cur_idx) return data # _map_func fails for this idx, use a random new index from the pool retry_count += 1 self._fallback_candidates.discard(cur_idx) cur_idx = self._rng.sample(self._fallback_candidates, k=1)[0] if retry_count >= 3: logger = logging.getLogger(__name__) logger.warning( "Failed to apply `_map_func` for idx: {}, retry count: {}".format( idx, retry_count ) ) class AspectRatioGroupedDatasetTwoCrop(AspectRatioGroupedDataset): """ Batch data that have similar aspect ratio together. In this implementation, images whose aspect ratio < (or >) 1 will be batched together. This improves training speed because the images then need less padding to form a batch. It assumes the underlying dataset produces dicts with "width" and "height" keys. It will then produce a list of original dicts with length = batch_size, all with similar aspect ratios. """ def __init__(self, dataset, batch_size): """ Args: dataset: an iterable. Each element must be a dict with keys "width" and "height", which will be used to batch data. batch_size (int): """ self.dataset = dataset self.batch_size = batch_size self._buckets = [[] for _ in range(2)] self._buckets_key = [[] for _ in range(2)] # Hard-coded two aspect ratio groups: w > h and w < h. # Can add support for more aspect ratio groups, but doesn't seem useful def __iter__(self): for d in self.dataset: # d is a tuple with len = 2 # It's two images (same size) from the same image instance w, h = d[0]["width"], d[0]["height"] bucket_id = 0 if w > h else 1 # bucket = bucket for normal images bucket = self._buckets[bucket_id] bucket.append(d[0]) # buckets_key = bucket for augmented images buckets_key = self._buckets_key[bucket_id] buckets_key.append(d[1]) if len(bucket) == self.batch_size: yield (bucket[:], buckets_key[:]) del bucket[:] del buckets_key[:] class AspectRatioGroupedSemiSupDatasetTwoCrop(AspectRatioGroupedDataset): """ Batch data that have similar aspect ratio together. In this implementation, images whose aspect ratio < (or >) 1 will be batched together. This improves training speed because the images then need less padding to form a batch. It assumes the underlying dataset produces dicts with "width" and "height" keys. It will then produce a list of original dicts with length = batch_size, all with similar aspect ratios. """ def __init__(self, dataset, batch_size): """ Args: dataset: a tuple containing two iterable generators. (labeled and unlabeled data) Each element must be a dict with keys "width" and "height", which will be used to batch data. batch_size (int): """ self.label_dataset, self.unlabel_dataset = dataset self.batch_size_label = batch_size[0] self.batch_size_unlabel = batch_size[1] self._label_buckets = [[] for _ in range(2)] self._label_buckets_key = [[] for _ in range(2)] self._unlabel_buckets = [[] for _ in range(2)] self._unlabel_buckets_key = [[] for _ in range(2)] # Hard-coded two aspect ratio groups: w > h and w < h. # Can add support for more aspect ratio groups, but doesn't seem useful def __iter__(self): label_bucket, unlabel_bucket = [], [] for d_label, d_unlabel in zip(self.label_dataset, self.unlabel_dataset): # d is a tuple with len = 2 # It's two images (same size) from the same image instance # d[0] is with strong augmentation, d[1] is with weak augmentation # because we are grouping images with their aspect ratio # label and unlabel buckets might not have the same number of data # i.e., one could reach batch_size, while the other is still not if len(label_bucket) != self.batch_size_label: w, h = d_label[0]["width"], d_label[0]["height"] label_bucket_id = 0 if w > h else 1 label_bucket = self._label_buckets[label_bucket_id] label_bucket.append(d_label[0]) label_buckets_key = self._label_buckets_key[label_bucket_id] label_buckets_key.append(d_label[1]) if len(unlabel_bucket) != self.batch_size_unlabel: w, h = d_unlabel[0]["width"], d_unlabel[0]["height"] unlabel_bucket_id = 0 if w > h else 1 unlabel_bucket = self._unlabel_buckets[unlabel_bucket_id] unlabel_bucket.append(d_unlabel[0]) unlabel_buckets_key = self._unlabel_buckets_key[unlabel_bucket_id] unlabel_buckets_key.append(d_unlabel[1]) # yield the batch of data until all buckets are full if ( len(label_bucket) == self.batch_size_label and len(unlabel_bucket) == self.batch_size_unlabel ): # label_strong, label_weak, unlabed_strong, unlabled_weak yield ( label_bucket[:], label_buckets_key[:], unlabel_bucket[:], unlabel_buckets_key[:], ) del label_bucket[:] del label_buckets_key[:] del unlabel_bucket[:] del unlabel_buckets_key[:]
adaptive_teacher-main
adapteacher/data/common.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import os import contextlib from detectron2.data import DatasetCatalog, MetadataCatalog from fvcore.common.timer import Timer # from fvcore.common.file_io import PathManager from iopath.common.file_io import PathManager from detectron2.data.datasets.pascal_voc import register_pascal_voc from detectron2.data.datasets.builtin_meta import _get_builtin_metadata from .cityscapes_foggy import load_cityscapes_instances import io import logging logger = logging.getLogger(__name__) JSON_ANNOTATIONS_DIR = "" _SPLITS_COCO_FORMAT = {} _SPLITS_COCO_FORMAT["coco"] = { "coco_2017_unlabel": ( "coco/unlabeled2017", "coco/annotations/image_info_unlabeled2017.json", ), "coco_2017_for_voc20": ( "coco", "coco/annotations/google/instances_unlabeledtrainval20class.json", ), } def register_coco_unlabel(root): for _, splits_per_dataset in _SPLITS_COCO_FORMAT.items(): for key, (image_root, json_file) in splits_per_dataset.items(): meta = {} register_coco_unlabel_instances( key, meta, os.path.join(root, json_file), os.path.join(root, image_root) ) def register_coco_unlabel_instances(name, metadata, json_file, image_root): """ Register a dataset in COCO's json annotation format for instance detection, instance segmentation and keypoint detection. (i.e., Type 1 and 2 in http://cocodataset.org/#format-data. `instances*.json` and `person_keypoints*.json` in the dataset). This is an example of how to register a new dataset. You can do something similar to this function, to register new datasets. Args: name (str): the name that identifies a dataset, e.g. "coco_2014_train". metadata (dict): extra metadata associated with this dataset. You can leave it as an empty dict. json_file (str): path to the json instance annotation file. image_root (str or path-like): directory which contains all the images. """ assert isinstance(name, str), name assert isinstance(json_file, (str, os.PathLike)), json_file assert isinstance(image_root, (str, os.PathLike)), image_root # 1. register a function which returns dicts DatasetCatalog.register( name, lambda: load_coco_unlabel_json(json_file, image_root, name) ) # 2. Optionally, add metadata about this dataset, # since they might be useful in evaluation, visualization or logging MetadataCatalog.get(name).set( json_file=json_file, image_root=image_root, evaluator_type="coco", **metadata ) def load_coco_unlabel_json( json_file, image_root, dataset_name=None, extra_annotation_keys=None ): from pycocotools.coco import COCO timer = Timer() json_file = PathManager.get_local_path(json_file) with contextlib.redirect_stdout(io.StringIO()): coco_api = COCO(json_file) if timer.seconds() > 1: logger.info( "Loading {} takes {:.2f} seconds.".format(json_file, timer.seconds()) ) id_map = None # sort indices for reproducible results img_ids = sorted(coco_api.imgs.keys()) imgs = coco_api.loadImgs(img_ids) logger.info("Loaded {} images in COCO format from {}".format(len(imgs), json_file)) dataset_dicts = [] for img_dict in imgs: record = {} record["file_name"] = os.path.join(image_root, img_dict["file_name"]) record["height"] = img_dict["height"] record["width"] = img_dict["width"] image_id = record["image_id"] = img_dict["id"] dataset_dicts.append(record) return dataset_dicts _root = os.getenv("DETECTRON2_DATASETS", "datasets") register_coco_unlabel(_root) # ==== Predefined splits for raw cityscapes foggy images =========== _RAW_CITYSCAPES_SPLITS = { # "cityscapes_foggy_{task}_train": ("cityscape_foggy/leftImg8bit/train/", "cityscape_foggy/gtFine/train/"), # "cityscapes_foggy_{task}_val": ("cityscape_foggy/leftImg8bit/val/", "cityscape_foggy/gtFine/val/"), # "cityscapes_foggy_{task}_test": ("cityscape_foggy/leftImg8bit/test/", "cityscape_foggy/gtFine/test/"), "cityscapes_foggy_train": ("cityscapes_foggy/leftImg8bit/train/", "cityscapes_foggy/gtFine/train/"), "cityscapes_foggy_val": ("cityscapes_foggy/leftImg8bit/val/", "cityscapes_foggy/gtFine/val/"), "cityscapes_foggy_test": ("cityscapes_foggy/leftImg8bit/test/", "cityscapes_foggy/gtFine/test/"), } def register_all_cityscapes_foggy(root): # root = "manifold://mobile_vision_dataset/tree/yujheli/dataset" for key, (image_dir, gt_dir) in _RAW_CITYSCAPES_SPLITS.items(): meta = _get_builtin_metadata("cityscapes") image_dir = os.path.join(root, image_dir) gt_dir = os.path.join(root, gt_dir) # inst_key = key.format(task="instance_seg") inst_key = key # DatasetCatalog.register( # inst_key, # lambda x=image_dir, y=gt_dir: load_cityscapes_instances( # x, y, from_json=True, to_polygons=True # ), # ) DatasetCatalog.register( inst_key, lambda x=image_dir, y=gt_dir: load_cityscapes_instances( x, y, from_json=False, to_polygons=False ), ) # MetadataCatalog.get(inst_key).set( # image_dir=image_dir, gt_dir=gt_dir, evaluator_type="cityscapes_instance", **meta # ) # MetadataCatalog.get(inst_key).set( # image_dir=image_dir, gt_dir=gt_dir, evaluator_type="pascal_voc", **meta # ) MetadataCatalog.get(inst_key).set( image_dir=image_dir, gt_dir=gt_dir, evaluator_type="coco", **meta ) # ==== Predefined splits for Clipart (PASCAL VOC format) =========== def register_all_clipart(root): # root = "manifold://mobile_vision_dataset/tree/yujheli/dataset" SPLITS = [ ("Clipart1k_train", "clipart", "train"), ("Clipart1k_test", "clipart", "test"), ] for name, dirname, split in SPLITS: year = 2012 register_pascal_voc(name, os.path.join(root, dirname), split, year) MetadataCatalog.get(name).evaluator_type = "pascal_voc" # MetadataCatalog.get(name).evaluator_type = "coco" # ==== Predefined splits for Watercolor (PASCAL VOC format) =========== def register_all_water(root): # root = "manifold://mobile_vision_dataset/tree/yujheli/dataset" SPLITS = [ ("Watercolor_train", "watercolor", "train"), ("Watercolor_test", "watercolor", "test"), ] for name, dirname, split in SPLITS: year = 2012 # register_pascal_voc(name, os.path.join(root, dirname), split, year, class_names=["person", "dog","bicycle", "bird", "car", "cat"]) register_pascal_voc(name, os.path.join(root, dirname), split, year) MetadataCatalog.get(name).evaluator_type = "pascal_voc_water" # MetadataCatalog.get(name).thing_classes = ["person", "dog","bike", "bird", "car", "cat"] # MetadataCatalog.get(name).thing_classes = ["person", "dog","bicycle", "bird", "car", "cat"] # MetadataCatalog.get(name).evaluator_type = "coco" register_all_cityscapes_foggy(_root) register_all_clipart(_root) register_all_water(_root)
adaptive_teacher-main
adapteacher/data/datasets/builtin.py
# Copyright (c) Facebook, Inc. and its affiliates. import functools import json import logging import multiprocessing as mp import numpy as np import os from itertools import chain import pycocotools.mask as mask_util from PIL import Image from detectron2.structures import BoxMode from detectron2.utils.comm import get_world_size from detectron2.utils.file_io import PathManager from detectron2.utils.logger import setup_logger try: import cv2 # noqa except ImportError: # OpenCV is an optional dependency at the moment pass logger = logging.getLogger(__name__) load_only_002 = False def _get_cityscapes_files(image_dir, gt_dir): files = [] # scan through the directory cities = PathManager.ls(image_dir) logger.info(f"{len(cities)} cities found in '{image_dir}'.") for city in cities: city_img_dir = os.path.join(image_dir, city) city_gt_dir = os.path.join(gt_dir, city) for basename in PathManager.ls(city_img_dir): if load_only_002 and '0.02.png' not in basename: continue image_file = os.path.join(city_img_dir, basename) # suffix = "leftImg8bit.png" # assert basename.endswith(suffix), basename # basename = basename[: -len(suffix)] suffix = 'leftImg8bit_foggy' basename = basename.split(suffix)[0] instance_file = os.path.join(city_gt_dir, basename + "gtFine_instanceIds.png") label_file = os.path.join(city_gt_dir, basename + "gtFine_labelIds.png") json_file = os.path.join(city_gt_dir, basename + "gtFine_polygons.json") files.append((image_file, instance_file, label_file, json_file)) assert len(files), "No images found in {}".format(image_dir) for f in files[0]: assert PathManager.isfile(f), f return files def load_cityscapes_instances(image_dir, gt_dir, from_json=True, to_polygons=True): """ Args: image_dir (str): path to the raw dataset. e.g., "~/cityscapes/leftImg8bit/train". gt_dir (str): path to the raw annotations. e.g., "~/cityscapes/gtFine/train". from_json (bool): whether to read annotations from the raw json file or the png files. to_polygons (bool): whether to represent the segmentation as polygons (COCO's format) instead of masks (cityscapes's format). Returns: list[dict]: a list of dicts in Detectron2 standard format. (See `Using Custom Datasets </tutorials/datasets.html>`_ ) """ if from_json: assert to_polygons, ( "Cityscapes's json annotations are in polygon format. " "Converting to mask format is not supported now." ) files = _get_cityscapes_files(image_dir, gt_dir) logger.info("Preprocessing cityscapes annotations ...") # This is still not fast: all workers will execute duplicate works and will # take up to 10m on a 8GPU server. pool = mp.Pool(processes=max(mp.cpu_count() // get_world_size() // 2, 4)) ret = pool.map( functools.partial(_cityscapes_files_to_dict, from_json=from_json, to_polygons=to_polygons), files, ) logger.info("Loaded {} images from {}".format(len(ret), image_dir)) pool.close() # Map cityscape ids to contiguous ids from cityscapesscripts.helpers.labels import labels labels = [l for l in labels if l.hasInstances and not l.ignoreInEval] dataset_id_to_contiguous_id = {l.id: idx for idx, l in enumerate(labels)} for dict_per_image in ret: for anno in dict_per_image["annotations"]: anno["category_id"] = dataset_id_to_contiguous_id[anno["category_id"]] return ret def load_cityscapes_semantic(image_dir, gt_dir): """ Args: image_dir (str): path to the raw dataset. e.g., "~/cityscapes/leftImg8bit/train". gt_dir (str): path to the raw annotations. e.g., "~/cityscapes/gtFine/train". Returns: list[dict]: a list of dict, each has "file_name" and "sem_seg_file_name". """ ret = [] # gt_dir is small and contain many small files. make sense to fetch to local first gt_dir = PathManager.get_local_path(gt_dir) for image_file, _, label_file, json_file in _get_cityscapes_files(image_dir, gt_dir): label_file = label_file.replace("labelIds", "labelTrainIds") with PathManager.open(json_file, "r") as f: jsonobj = json.load(f) ret.append( { "file_name": image_file, "sem_seg_file_name": label_file, "height": jsonobj["imgHeight"], "width": jsonobj["imgWidth"], } ) assert len(ret), f"No images found in {image_dir}!" assert PathManager.isfile( ret[0]["sem_seg_file_name"] ), "Please generate labelTrainIds.png with cityscapesscripts/preparation/createTrainIdLabelImgs.py" # noqa return ret def _cityscapes_files_to_dict(files, from_json, to_polygons): """ Parse cityscapes annotation files to a instance segmentation dataset dict. Args: files (tuple): consists of (image_file, instance_id_file, label_id_file, json_file) from_json (bool): whether to read annotations from the raw json file or the png files. to_polygons (bool): whether to represent the segmentation as polygons (COCO's format) instead of masks (cityscapes's format). Returns: A dict in Detectron2 Dataset format. """ from cityscapesscripts.helpers.labels import id2label, name2label image_file, instance_id_file, _, json_file = files annos = [] if from_json: from shapely.geometry import MultiPolygon, Polygon with PathManager.open(json_file, "r") as f: jsonobj = json.load(f) ret = { "file_name": image_file, "image_id": os.path.basename(image_file), "height": jsonobj["imgHeight"], "width": jsonobj["imgWidth"], } # `polygons_union` contains the union of all valid polygons. polygons_union = Polygon() # CityscapesScripts draw the polygons in sequential order # and each polygon *overwrites* existing ones. See # (https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/preparation/json2instanceImg.py) # noqa # We use reverse order, and each polygon *avoids* early ones. # This will resolve the ploygon overlaps in the same way as CityscapesScripts. for obj in jsonobj["objects"][::-1]: if "deleted" in obj: # cityscapes data format specific continue label_name = obj["label"] try: label = name2label[label_name] except KeyError: if label_name.endswith("group"): # crowd area label = name2label[label_name[: -len("group")]] else: raise if label.id < 0: # cityscapes data format continue # Cityscapes's raw annotations uses integer coordinates # Therefore +0.5 here poly_coord = np.asarray(obj["polygon"], dtype="f4") + 0.5 # CityscapesScript uses PIL.ImageDraw.polygon to rasterize # polygons for evaluation. This function operates in integer space # and draws each pixel whose center falls into the polygon. # Therefore it draws a polygon which is 0.5 "fatter" in expectation. # We therefore dilate the input polygon by 0.5 as our input. poly = Polygon(poly_coord).buffer(0.5, resolution=4) if not label.hasInstances or label.ignoreInEval: # even if we won't store the polygon it still contributes to overlaps resolution polygons_union = polygons_union.union(poly) continue # Take non-overlapping part of the polygon poly_wo_overlaps = poly.difference(polygons_union) if poly_wo_overlaps.is_empty: continue polygons_union = polygons_union.union(poly) anno = {} anno["iscrowd"] = label_name.endswith("group") anno["category_id"] = label.id if isinstance(poly_wo_overlaps, Polygon): poly_list = [poly_wo_overlaps] elif isinstance(poly_wo_overlaps, MultiPolygon): poly_list = poly_wo_overlaps.geoms else: raise NotImplementedError("Unknown geometric structure {}".format(poly_wo_overlaps)) poly_coord = [] for poly_el in poly_list: # COCO API can work only with exterior boundaries now, hence we store only them. # TODO: store both exterior and interior boundaries once other parts of the # codebase support holes in polygons. poly_coord.append(list(chain(*poly_el.exterior.coords))) anno["segmentation"] = poly_coord (xmin, ymin, xmax, ymax) = poly_wo_overlaps.bounds anno["bbox"] = (xmin, ymin, xmax, ymax) anno["bbox_mode"] = BoxMode.XYXY_ABS annos.append(anno) else: # See also the official annotation parsing scripts at # https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/evaluation/instances2dict.py # noqa with PathManager.open(instance_id_file, "rb") as f: inst_image = np.asarray(Image.open(f), order="F") # ids < 24 are stuff labels (filtering them first is about 5% faster) flattened_ids = np.unique(inst_image[inst_image >= 24]) ret = { "file_name": image_file, "image_id": os.path.basename(image_file), "height": inst_image.shape[0], "width": inst_image.shape[1], } for instance_id in flattened_ids: # For non-crowd annotations, instance_id // 1000 is the label_id # Crowd annotations have <1000 instance ids label_id = instance_id // 1000 if instance_id >= 1000 else instance_id label = id2label[label_id] if not label.hasInstances or label.ignoreInEval: continue anno = {} anno["iscrowd"] = instance_id < 1000 anno["category_id"] = label.id mask = np.asarray(inst_image == instance_id, dtype=np.uint8, order="F") inds = np.nonzero(mask) ymin, ymax = inds[0].min(), inds[0].max() xmin, xmax = inds[1].min(), inds[1].max() anno["bbox"] = (xmin, ymin, xmax, ymax) if xmax <= xmin or ymax <= ymin: continue anno["bbox_mode"] = BoxMode.XYXY_ABS if to_polygons: # This conversion comes from D4809743 and D5171122, # when Mask-RCNN was first developed. contours = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[ -2 ] polygons = [c.reshape(-1).tolist() for c in contours if len(c) >= 3] # opencv's can produce invalid polygons if len(polygons) == 0: continue anno["segmentation"] = polygons else: anno["segmentation"] = mask_util.encode(mask[:, :, None])[0] annos.append(anno) ret["annotations"] = annos return ret
adaptive_teacher-main
adapteacher/data/datasets/cityscapes_foggy.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import random from PIL import ImageFilter class GaussianBlur: """ Gaussian blur augmentation in SimCLR https://arxiv.org/abs/2002.05709 Adapted from MoCo: https://github.com/facebookresearch/moco/blob/master/moco/loader.py Note that this implementation does not seem to be exactly the same as described in SimCLR. """ def __init__(self, sigma=[0.1, 2.0]): self.sigma = sigma def __call__(self, x): sigma = random.uniform(self.sigma[0], self.sigma[1]) x = x.filter(ImageFilter.GaussianBlur(radius=sigma)) return x
adaptive_teacher-main
adapteacher/data/transforms/augmentation_impl.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from detectron2.engine.hooks import HookBase import detectron2.utils.comm as comm import torch import numpy as np from contextlib import contextmanager class LossEvalHook(HookBase): def __init__(self, eval_period, model, data_loader, model_output, model_name=""): self._model = model self._period = eval_period self._data_loader = data_loader self._model_output = model_output self._model_name = model_name def _do_loss_eval(self): record_acc_dict = {} with inference_context(self._model), torch.no_grad(): for _, inputs in enumerate(self._data_loader): record_dict = self._get_loss(inputs, self._model) # accumulate the losses for loss_type in record_dict.keys(): if loss_type not in record_acc_dict.keys(): record_acc_dict[loss_type] = record_dict[loss_type] else: record_acc_dict[loss_type] += record_dict[loss_type] # average for loss_type in record_acc_dict.keys(): record_acc_dict[loss_type] = record_acc_dict[loss_type] / len( self._data_loader ) # divide loss and other metrics loss_acc_dict = {} for key in record_acc_dict.keys(): if key[:4] == "loss": loss_acc_dict[key] = record_acc_dict[key] # only output the results of major node if comm.is_main_process(): total_losses_reduced = sum(loss for loss in loss_acc_dict.values()) self.trainer.storage.put_scalar( "val_total_loss_val" + self._model_name, total_losses_reduced ) record_acc_dict = { "val_" + k + self._model_name: record_acc_dict[k] for k in record_acc_dict.keys() } if len(record_acc_dict) > 1: self.trainer.storage.put_scalars(**record_acc_dict) def _get_loss(self, data, model): if self._model_output == "loss_only": record_dict = model(data) elif self._model_output == "loss_proposal": record_dict, _, _, _ = model(data, branch="val_loss", val_mode=True) elif self._model_output == "meanteacher": record_dict, _, _, _, _ = model(data) metrics_dict = { k: v.detach().cpu().item() if isinstance(v, torch.Tensor) else float(v) for k, v in record_dict.items() } return metrics_dict def _write_losses(self, metrics_dict): # gather metrics among all workers for logging # This assumes we do DDP-style training, which is currently the only # supported method in detectron2. comm.synchronize() all_metrics_dict = comm.gather(metrics_dict, dst=0) if comm.is_main_process(): # average the rest metrics metrics_dict = { "val_" + k: np.mean([x[k] for x in all_metrics_dict]) for k in all_metrics_dict[0].keys() } total_losses_reduced = sum(loss for loss in metrics_dict.values()) self.trainer.storage.put_scalar("val_total_loss_val", total_losses_reduced) if len(metrics_dict) > 1: self.trainer.storage.put_scalars(**metrics_dict) def _detect_anomaly(self, losses, loss_dict): if not torch.isfinite(losses).all(): raise FloatingPointError( "Loss became infinite or NaN at iteration={}!\nloss_dict = {}".format( self.trainer.iter, loss_dict ) ) def after_step(self): next_iter = self.trainer.iter + 1 is_final = next_iter == self.trainer.max_iter if is_final or (self._period > 0 and next_iter % self._period == 0): self._do_loss_eval() @contextmanager def inference_context(model): """ A context where the model is temporarily changed to eval mode, and restored to previous mode afterwards. Args: model: a torch Module """ training_mode = model.training model.eval() yield model.train(training_mode)
adaptive_teacher-main
adapteacher/engine/hooks.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from detectron2.structures import pairwise_iou class OpenMatchTrainerProbe: def __init__(self, cfg): self.BOX_AP = 0.5 self.NUM_CLASSES = cfg.MODEL.ROI_HEADS.NUM_CLASSES # self.bbox_stat_list = ['compute_fp_gtoutlier', 'compute_num_box', 'compute_ood_acc'] def bbox_stat(self, unlabel_gt, unlabel_pseudo, name, bbox_stat_list): stats = {} sum_gpu_names = [] for metric in bbox_stat_list: stats_per, sum_gpu_names_per = getattr( self, metric)(unlabel_gt, unlabel_pseudo, name) stats.update(stats_per) sum_gpu_names.extend(sum_gpu_names_per) return stats, sum_gpu_names def compute_fp_gtoutlier(self, unlabel_gt, unlabel_pseudo, name): num_gt_ood_object = 0 num_gt_fp_ood_object = 0 sum_iou = 0.0 sum_gpu_names = [] results = {} if len(unlabel_gt) != 0: for gt, pseudo in zip(unlabel_gt, unlabel_pseudo): # import pdb; pdb. set_trace() if name == "pred": pp_boxes = pseudo.pred_boxes elif name == "pseudo_conf" or name == "pseudo_ood": # filter predicted ood box when evaluating this metric pseudo = pseudo[pseudo.gt_classes != -1] pp_boxes = pseudo.gt_boxes else: raise ValueError("Unknown name for probe roi bbox.") if len(gt) != 0 and len(pseudo) != 0: max_iou, max_idx = pairwise_iou( gt.gt_boxes.to('cuda'), pp_boxes).max(1) ood_idx = (gt.gt_classes == -1) num_gt_ood_object += ood_idx.sum().item() num_gt_fp_ood_object += (max_iou[ood_idx] > self.BOX_AP).sum().item() sum_iou += max_iou[ood_idx].sum().item() elif len(gt) != 0 and len(pseudo) == 0: ood_idx = (gt.gt_classes == -1) num_gt_ood_object += ood_idx.shape[0] results = {'Analysis_'+name+'/num_gt_ood_object': num_gt_ood_object, 'Analysis_'+name+'/num_gt_fp_ood_object': num_gt_fp_ood_object, 'Analysis_'+name+'/sum_iou': sum_iou} sum_gpu_names.extend(list(results.keys())) return results, sum_gpu_names def compute_num_box(self, unlabel_gt, unlabel_pseudo, name, processed=False): num_bbox = 0.0 size_bbox = 0.0 avg_conf = 0.0 # measure in and out box for openset SS-OD num_bbox_in = 0.0 num_bbox_out = 0.0 num_bg = 0.0 # when ground-truth is missing in unlabeled data if len(unlabel_gt) == 0: for pp_roi in unlabel_pseudo: if name == "pred": pp_boxes = pp_roi.pred_boxes pp_classes = pp_roi.pred_classes pp_scores = pp_roi.scores elif name == "pseudo_conf" or name == "pseudo_ood": pp_boxes = pp_roi.gt_boxes pp_classes = pp_roi.gt_classes pp_scores = pp_roi.scores elif name == "gt": pp_boxes = pp_roi.gt_boxes pp_classes = pp_roi.gt_classes else: raise ValueError("Unknown name for probe roi bbox.") # all boxes (in + out boxes) if len(pp_roi) != 0: # bbox number and size num_bbox += len(pp_roi) size_bbox += pp_boxes.area().mean().item() # average box confidence if name != "gt": avg_conf += pp_scores.mean() else: num_bbox += 0 size_bbox += torch.tensor(0).cuda() num_valid_img = len(unlabel_pseudo) else: # with ground-truth num_valid_img = 0 for gt, pp_roi in zip(unlabel_gt, unlabel_pseudo): if name == "pred": pp_boxes = pp_roi.pred_boxes pp_classes = pp_roi.pred_classes pp_scores = pp_roi.scores elif name == "pseudo_conf" or name == "pseudo_ood": # filter out ood pseudo-box when doing analysis pp_roi = pp_roi[pp_roi.gt_classes != -1] pp_boxes = pp_roi.gt_boxes pp_classes = pp_roi.gt_classes pp_scores = pp_roi.scores elif name == "gt": pp_boxes = pp_roi.gt_boxes pp_classes = pp_roi.gt_classes else: raise ValueError("Unknown name for probe roi bbox.") # all boxes (in + out boxes) if len(pp_roi) != 0: # bbox number and size num_bbox += len(pp_roi) size_bbox += pp_boxes.area().mean().item() # average box confidence if name != "gt": avg_conf += pp_scores.mean() else: num_bbox += 0 size_bbox += torch.tensor(0).cuda() # in and out class if name == "gt": pp_roi_in = pp_roi[pp_classes != -1] num_bbox_in += len(pp_roi_in) pp_roi_out = pp_roi[pp_classes == -1] num_bbox_out += len(pp_roi_out) num_valid_img += 1 elif name == "pred" or name == "pseudo_conf" or name == "pseudo_ood": if len(gt.gt_boxes.to('cuda'))>0 and len(pp_boxes) > 0: max_iou, max_idx = pairwise_iou(gt.gt_boxes.to('cuda'), pp_boxes).max(0) # for the ground-truth label for each pseudo-box gtclass4pseudo = gt.gt_classes[max_idx] matchgtbox = max_iou > 0.5 # compute the number of boxes (background, inlier, outlier) num_bg += (~matchgtbox).sum().item() num_bbox_in += (gtclass4pseudo[matchgtbox] != -1).sum().item() num_bbox_out += (gtclass4pseudo[matchgtbox] == -1).sum().item() num_valid_img += 1 else: raise ValueError("Unknown name for probe roi bbox.") box_probe = {} if processed == True: name = name+"processed" if num_bbox == 0: return box_probe, [] if num_valid_img >0 : box_probe["Analysis_" + name + "/Num_bbox"] = num_bbox / \ num_valid_img box_probe["Analysis_" + name + "/Size_bbox"] = size_bbox / \ num_valid_img box_probe["Analysis_" + name + "/Num_bbox_inlier"] = num_bbox_in / num_valid_img box_probe["Analysis_" + name + "/Num_bbox_outlier"] = num_bbox_out / num_valid_img if name != "gt": # prediciton, background number box_probe["Analysis_" + name + "/Conf"] = avg_conf / \ num_valid_img box_probe["Analysis_" + name + "/Num_bbox_background"] = num_bg / num_valid_img box_probe["Analysis_" + name + "/background_fp_ratio"] = num_bg / num_bbox box_probe["Analysis_" + name + "/background_tp_ratio"] = num_bbox_in / num_bbox else: box_probe["Analysis_" + name + "/Num_bbox"] = 0.0 box_probe["Analysis_" + name + "/Size_bbox"] = 0.0 box_probe["Analysis_" + name + "/Num_bbox_inlier"] = 0.0 box_probe["Analysis_" + name + "/Num_bbox_outlier"] = 0.0 if name != "gt": # prediciton, background number box_probe["Analysis_" + name + "/Conf"] = 0.0 box_probe["Analysis_" + name + "/Num_bbox_background"] = 0.0 box_probe["Analysis_" + name + "/background_fp_ratio"] = num_bg / num_bbox box_probe["Analysis_" + name + "/background_tp_ratio"] = num_bbox_in / num_bbox return box_probe, [] def compute_ood_acc(self, unlabel_gt, unlabel_pseudo, name, BOX_IOU=0.5): results = {} sum_gpu_names = [] if len(unlabel_gt) != 0: for metric in ['acc_outlier', 'recall_outlier']: for samples in ['_fg', '_all']: for fraction_part in ['_nume', '_deno']: results[metric+samples+fraction_part] = 0.0 for gt, pred in zip(unlabel_gt, unlabel_pseudo): if name == "pred": pp_boxes = pred.pred_boxes pp_ood_scores = pred.ood_scores elif name == "pseudo_conf" or name == "pseudo_ood": # assume these outlier are suppressed pred = pred[pred.gt_classes != -1] pp_boxes = pred.gt_boxes pp_ood_scores = pred.ood_scores else: raise ValueError("Unknown name for probe roi bbox.") if len(gt) != 0 and len(pred) != 0: # find the most overlapped ground-truth box for each pseudo-box max_iou, max_idx = pairwise_iou( gt.gt_boxes.to('cuda'), pp_boxes).max(0) # ignore background instances find_fg_mask = max_iou > BOX_IOU if find_fg_mask.sum() > 0: gt_corres = gt[max_idx].gt_classes.to("cuda") gt_outlier = (gt_corres[find_fg_mask] == -1) pred_outlier = pp_ood_scores[find_fg_mask][:, 0] > 0.5 # accurcay of ood detection (foreground) # acc_outlier_fg = (pred_outlier == gt_outlier).sum() /find_fg_mask.sum() results['acc_outlier_fg_nume'] += ( pred_outlier == gt_outlier).sum() results['acc_outlier_fg_deno'] += find_fg_mask.sum() # recall of ood detection (foreground) # recall_outlier_fg = (pred_outlier[gt_outlier] == gt_outlier[gt_outlier]).sum() /gt_outlier.sum() results['recall_outlier_fg_nume'] += ( pred_outlier[gt_outlier] == gt_outlier[gt_outlier]).sum() results['recall_outlier_fg_deno'] += gt_outlier.sum() # Regard backgound gt as outlier gt_corres = gt[max_idx].gt_classes.to("cuda") # convert all background gt as outlier gt_corres[~find_fg_mask] = -1 gt_outlier = gt_corres == -1 pred_outlier = pp_ood_scores[:, 0] > 0.5 # accurcay of ood detection (all) # acc_outlier_all = (pred_outlier == gt_outlier).sum() /len(pred) results['acc_outlier_all_nume'] += ( pred_outlier == gt_outlier).sum() results['acc_outlier_all_deno'] += len(pred) # recall of ood detection (all) # recall_outlier_all = (pred_outlier[gt_outlier] == gt_outlier[gt_outlier]).sum() /gt_outlier.sum() results['recall_outlier_all_nume'] += ( pred_outlier[gt_outlier] == gt_outlier[gt_outlier]).sum() results['recall_outlier_all_deno'] += gt_outlier.sum() results = {'Analysis_'+name+'/'+k: v for k, v in results.items()} sum_gpu_names.extend(list(results.keys())) return results, sum_gpu_names import torch def probe( cfg, proposals_roih_unsup_k, unlabel_data_k, pesudo_proposals_roih_unsup_k, record_dict, ): """ Probe for research development """ # [probe] roi result from weak branch (before pseudo-labeling) record_roih = probe_roih_bbox( proposals_roih_unsup_k, cfg.MODEL.ROI_HEADS.NUM_CLASSES, "roih" ) record_dict.update(record_roih) # [probe] roi result after pseudo-labeling from weak branch record_roih_pseudo = probe_roih_bbox( pesudo_proposals_roih_unsup_k, cfg.MODEL.ROI_HEADS.NUM_CLASSES, "roih_pseudo" ) record_dict.update(record_roih_pseudo) return record_dict def probe_roih_bbox(proposals_roih, num_cls, name=""): num_bbox = 0.0 size_bbox = 0.0 avg_conf = 0.0 pred_cls_list = [] for pp_roi in proposals_roih: if name == "roih": pp_boxes = pp_roi.pred_boxes pp_classes = pp_roi.pred_classes pp_scores = pp_roi.scores elif name == "roih_pseudo": pp_boxes = pp_roi.gt_boxes pp_classes = pp_roi.gt_classes pp_scores = pp_roi.scores elif name == "gt": pp_boxes = pp_roi.gt_boxes pp_classes = pp_roi.gt_classes else: raise ValueError(f"Unknown name for probe roi bbox '{name}'") device = pp_classes.device if pp_roi: # bbox number and size num_bbox += len(pp_roi) size_bbox += pp_boxes.area().mean() if name != "gt": avg_conf += pp_scores.mean() # ratio of majority class all_idx, cls_count = torch.unique(pp_classes, return_counts=True) major_cls_idx = all_idx[torch.argmax(cls_count)] major_cls_ratio = torch.max(cls_count).float() / pp_classes.numel() # cls_sum pred_cls_list.append(pp_classes) else: num_bbox += 0 size_bbox += torch.tensor(0).to(device) major_cls_idx = torch.tensor(0).to(device) major_cls_ratio = torch.tensor(0).to(device) # boxes monitor box_probe = {} box_probe["bbox_probe_" + name + "/Num_bbox"] = num_bbox / len(proposals_roih) box_probe["bbox_probe_" + name + "/Size_bbox"] = size_bbox.item() / len( proposals_roih ) if name != "gt": box_probe["bbox_probe_" + name + "/Conf"] = avg_conf / len(proposals_roih) box_probe["bbox_probe_" + name + "/Ratio_major_cls_idx"] = major_cls_idx.item() box_probe["bbox_probe_" + name + "/Ratio_major_cls"] = major_cls_ratio.item() return box_probe
adaptive_teacher-main
adapteacher/engine/probe.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import os import time import logging import torch from torch.nn.parallel import DistributedDataParallel from fvcore.nn.precise_bn import get_bn_modules import numpy as np from collections import OrderedDict import detectron2.utils.comm as comm from detectron2.checkpoint import DetectionCheckpointer from detectron2.engine import DefaultTrainer, SimpleTrainer, TrainerBase from detectron2.engine.train_loop import AMPTrainer from detectron2.utils.events import EventStorage from detectron2.evaluation import verify_results, DatasetEvaluators # from detectron2.evaluation import COCOEvaluator, verify_results, DatasetEvaluators from detectron2.data.dataset_mapper import DatasetMapper from detectron2.engine import hooks from detectron2.structures.boxes import Boxes from detectron2.structures.instances import Instances from detectron2.utils.env import TORCH_VERSION from detectron2.data import MetadataCatalog from adapteacher.data.build import ( build_detection_semisup_train_loader, build_detection_test_loader, build_detection_semisup_train_loader_two_crops, ) from adapteacher.data.dataset_mapper import DatasetMapperTwoCropSeparate from adapteacher.engine.hooks import LossEvalHook from adapteacher.modeling.meta_arch.ts_ensemble import EnsembleTSModel from adapteacher.checkpoint.detection_checkpoint import DetectionTSCheckpointer from adapteacher.solver.build import build_lr_scheduler from adapteacher.evaluation import PascalVOCDetectionEvaluator, COCOEvaluator from .probe import OpenMatchTrainerProbe import copy # Supervised-only Trainer class BaselineTrainer(DefaultTrainer): def __init__(self, cfg): """ Args: cfg (CfgNode): Use the custom checkpointer, which loads other backbone models with matching heuristics. """ cfg = DefaultTrainer.auto_scale_workers(cfg, comm.get_world_size()) model = self.build_model(cfg) optimizer = self.build_optimizer(cfg, model) data_loader = self.build_train_loader(cfg) if comm.get_world_size() > 1: model = DistributedDataParallel( model, device_ids=[comm.get_local_rank()], broadcast_buffers=False ) TrainerBase.__init__(self) self._trainer = (AMPTrainer if cfg.SOLVER.AMP.ENABLED else SimpleTrainer)( model, data_loader, optimizer ) self.scheduler = self.build_lr_scheduler(cfg, optimizer) self.checkpointer = DetectionCheckpointer( model, cfg.OUTPUT_DIR, optimizer=optimizer, scheduler=self.scheduler, ) self.start_iter = 0 self.max_iter = cfg.SOLVER.MAX_ITER self.cfg = cfg self.register_hooks(self.build_hooks()) def resume_or_load(self, resume=True): """ If `resume==True` and `cfg.OUTPUT_DIR` contains the last checkpoint (defined by a `last_checkpoint` file), resume from the file. Resuming means loading all available states (eg. optimizer and scheduler) and update iteration counter from the checkpoint. ``cfg.MODEL.WEIGHTS`` will not be used. Otherwise, this is considered as an independent training. The method will load model weights from the file `cfg.MODEL.WEIGHTS` (but will not load other states) and start from iteration 0. Args: resume (bool): whether to do resume or not """ checkpoint = self.checkpointer.resume_or_load( self.cfg.MODEL.WEIGHTS, resume=resume ) if resume and self.checkpointer.has_checkpoint(): self.start_iter = checkpoint.get("iteration", -1) + 1 # The checkpoint stores the training iteration that just finished, thus we start # at the next iteration (or iter zero if there's no checkpoint). if isinstance(self.model, DistributedDataParallel): # broadcast loaded data/model from the first rank, because other # machines may not have access to the checkpoint file if TORCH_VERSION >= (1, 7): self.model._sync_params_and_buffers() self.start_iter = comm.all_gather(self.start_iter)[0] def train_loop(self, start_iter: int, max_iter: int): """ Args: start_iter, max_iter (int): See docs above """ logger = logging.getLogger(__name__) logger.info("Starting training from iteration {}".format(start_iter)) self.iter = self.start_iter = start_iter self.max_iter = max_iter with EventStorage(start_iter) as self.storage: try: self.before_train() for self.iter in range(start_iter, max_iter): self.before_step() self.run_step() self.after_step() except Exception: logger.exception("Exception during training:") raise finally: self.after_train() def run_step(self): self._trainer.iter = self.iter assert self.model.training, "[SimpleTrainer] model was changed to eval mode!" start = time.perf_counter() data = next(self._trainer._data_loader_iter) data_time = time.perf_counter() - start record_dict, _, _, _ = self.model(data, branch="supervised") num_gt_bbox = 0.0 for element in data: num_gt_bbox += len(element["instances"]) num_gt_bbox = num_gt_bbox / len(data) record_dict["bbox_num/gt_bboxes"] = num_gt_bbox loss_dict = {} for key in record_dict.keys(): if key[:4] == "loss" and key[-3:] != "val": loss_dict[key] = record_dict[key] losses = sum(loss_dict.values()) metrics_dict = record_dict metrics_dict["data_time"] = data_time self._write_metrics(metrics_dict) self.optimizer.zero_grad() losses.backward() self.optimizer.step() @classmethod def build_evaluator(cls, cfg, dataset_name, output_folder=None): if output_folder is None: output_folder = os.path.join(cfg.OUTPUT_DIR, "inference") evaluator_list = [] evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type if evaluator_type == "coco": evaluator_list.append(COCOEvaluator( dataset_name, output_dir=output_folder)) elif evaluator_type == "pascal_voc": return PascalVOCDetectionEvaluator(dataset_name) elif evaluator_type == "pascal_voc_water": return PascalVOCDetectionEvaluator(dataset_name, target_classnames=["bicycle", "bird", "car", "cat", "dog", "person"]) if len(evaluator_list) == 0: raise NotImplementedError( "no Evaluator for the dataset {} with the type {}".format( dataset_name, evaluator_type ) ) elif len(evaluator_list) == 1: return evaluator_list[0] return DatasetEvaluators(evaluator_list) @classmethod def build_train_loader(cls, cfg): return build_detection_semisup_train_loader(cfg, mapper=None) @classmethod def build_test_loader(cls, cfg, dataset_name): """ Returns: iterable """ return build_detection_test_loader(cfg, dataset_name) def build_hooks(self): """ Build a list of default hooks, including timing, evaluation, checkpointing, lr scheduling, precise BN, writing events. Returns: list[HookBase]: """ cfg = self.cfg.clone() cfg.defrost() cfg.DATALOADER.NUM_WORKERS = 0 ret = [ hooks.IterationTimer(), hooks.LRScheduler(self.optimizer, self.scheduler), hooks.PreciseBN( cfg.TEST.EVAL_PERIOD, self.model, self.build_train_loader(cfg), cfg.TEST.PRECISE_BN.NUM_ITER, ) if cfg.TEST.PRECISE_BN.ENABLED and get_bn_modules(self.model) else None, ] if comm.is_main_process(): ret.append( hooks.PeriodicCheckpointer( self.checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD ) ) def test_and_save_results(): self._last_eval_results = self.test(self.cfg, self.model) return self._last_eval_results ret.append(hooks.EvalHook(cfg.TEST.EVAL_PERIOD, test_and_save_results)) if comm.is_main_process(): ret.append(hooks.PeriodicWriter(self.build_writers(), period=20)) return ret def _write_metrics(self, metrics_dict: dict): """ Args: metrics_dict (dict): dict of scalar metrics """ metrics_dict = { k: v.detach().cpu().item() if isinstance(v, torch.Tensor) else float(v) for k, v in metrics_dict.items() } # gather metrics among all workers for logging # This assumes we do DDP-style training, which is currently the only # supported method in detectron2. all_metrics_dict = comm.gather(metrics_dict) if comm.is_main_process(): if "data_time" in all_metrics_dict[0]: data_time = np.max([x.pop("data_time") for x in all_metrics_dict]) self.storage.put_scalar("data_time", data_time) metrics_dict = { k: np.mean([x[k] for x in all_metrics_dict]) for k in all_metrics_dict[0].keys() } loss_dict = {} for key in metrics_dict.keys(): if key[:4] == "loss": loss_dict[key] = metrics_dict[key] total_losses_reduced = sum(loss for loss in loss_dict.values()) self.storage.put_scalar("total_loss", total_losses_reduced) if len(metrics_dict) > 1: self.storage.put_scalars(**metrics_dict) # Adaptive Teacher Trainer class ATeacherTrainer(DefaultTrainer): def __init__(self, cfg): """ Args: cfg (CfgNode): Use the custom checkpointer, which loads other backbone models with matching heuristics. """ cfg = DefaultTrainer.auto_scale_workers(cfg, comm.get_world_size()) data_loader = self.build_train_loader(cfg) # create an student model model = self.build_model(cfg) optimizer = self.build_optimizer(cfg, model) # create an teacher model model_teacher = self.build_model(cfg) self.model_teacher = model_teacher # For training, wrap with DDP. But don't need this for inference. if comm.get_world_size() > 1: model = DistributedDataParallel( model, device_ids=[comm.get_local_rank()], broadcast_buffers=False ) TrainerBase.__init__(self) self._trainer = (AMPTrainer if cfg.SOLVER.AMP.ENABLED else SimpleTrainer)( model, data_loader, optimizer ) self.scheduler = self.build_lr_scheduler(cfg, optimizer) # Ensemble teacher and student model is for model saving and loading ensem_ts_model = EnsembleTSModel(model_teacher, model) self.checkpointer = DetectionTSCheckpointer( ensem_ts_model, cfg.OUTPUT_DIR, optimizer=optimizer, scheduler=self.scheduler, ) self.start_iter = 0 self.max_iter = cfg.SOLVER.MAX_ITER self.cfg = cfg self.probe = OpenMatchTrainerProbe(cfg) self.register_hooks(self.build_hooks()) def resume_or_load(self, resume=True): """ If `resume==True` and `cfg.OUTPUT_DIR` contains the last checkpoint (defined by a `last_checkpoint` file), resume from the file. Resuming means loading all available states (eg. optimizer and scheduler) and update iteration counter from the checkpoint. ``cfg.MODEL.WEIGHTS`` will not be used. Otherwise, this is considered as an independent training. The method will load model weights from the file `cfg.MODEL.WEIGHTS` (but will not load other states) and start from iteration 0. Args: resume (bool): whether to do resume or not """ checkpoint = self.checkpointer.resume_or_load( self.cfg.MODEL.WEIGHTS, resume=resume ) if resume and self.checkpointer.has_checkpoint(): self.start_iter = checkpoint.get("iteration", -1) + 1 # The checkpoint stores the training iteration that just finished, thus we start # at the next iteration (or iter zero if there's no checkpoint). if isinstance(self.model, DistributedDataParallel): # broadcast loaded data/model from the first rank, because other # machines may not have access to the checkpoint file if TORCH_VERSION >= (1, 7): self.model._sync_params_and_buffers() self.start_iter = comm.all_gather(self.start_iter)[0] @classmethod def build_evaluator(cls, cfg, dataset_name, output_folder=None): if output_folder is None: output_folder = os.path.join(cfg.OUTPUT_DIR, "inference") evaluator_list = [] evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type if evaluator_type == "coco": evaluator_list.append(COCOEvaluator( dataset_name, output_dir=output_folder)) elif evaluator_type == "pascal_voc": return PascalVOCDetectionEvaluator(dataset_name) elif evaluator_type == "pascal_voc_water": return PascalVOCDetectionEvaluator(dataset_name, target_classnames=["bicycle", "bird", "car", "cat", "dog", "person"]) if len(evaluator_list) == 0: raise NotImplementedError( "no Evaluator for the dataset {} with the type {}".format( dataset_name, evaluator_type ) ) elif len(evaluator_list) == 1: return evaluator_list[0] return DatasetEvaluators(evaluator_list) @classmethod def build_train_loader(cls, cfg): mapper = DatasetMapperTwoCropSeparate(cfg, True) return build_detection_semisup_train_loader_two_crops(cfg, mapper) @classmethod def build_lr_scheduler(cls, cfg, optimizer): return build_lr_scheduler(cfg, optimizer) def train(self): self.train_loop(self.start_iter, self.max_iter) if hasattr(self, "_last_eval_results") and comm.is_main_process(): verify_results(self.cfg, self._last_eval_results) return self._last_eval_results def train_loop(self, start_iter: int, max_iter: int): logger = logging.getLogger(__name__) logger.info("Starting training from iteration {}".format(start_iter)) self.iter = self.start_iter = start_iter self.max_iter = max_iter with EventStorage(start_iter) as self.storage: try: self.before_train() for self.iter in range(start_iter, max_iter): self.before_step() self.run_step_full_semisup() self.after_step() except Exception: logger.exception("Exception during training:") raise finally: self.after_train() # ===================================================== # ================== Pseduo-labeling ================== # ===================================================== def threshold_bbox(self, proposal_bbox_inst, thres=0.7, proposal_type="roih"): if proposal_type == "rpn": valid_map = proposal_bbox_inst.objectness_logits > thres # create instances containing boxes and gt_classes image_shape = proposal_bbox_inst.image_size new_proposal_inst = Instances(image_shape) # create box new_bbox_loc = proposal_bbox_inst.proposal_boxes.tensor[valid_map, :] new_boxes = Boxes(new_bbox_loc) # add boxes to instances new_proposal_inst.gt_boxes = new_boxes new_proposal_inst.objectness_logits = proposal_bbox_inst.objectness_logits[ valid_map ] elif proposal_type == "roih": valid_map = proposal_bbox_inst.scores > thres # create instances containing boxes and gt_classes image_shape = proposal_bbox_inst.image_size new_proposal_inst = Instances(image_shape) # create box new_bbox_loc = proposal_bbox_inst.pred_boxes.tensor[valid_map, :] new_boxes = Boxes(new_bbox_loc) # add boxes to instances new_proposal_inst.gt_boxes = new_boxes new_proposal_inst.gt_classes = proposal_bbox_inst.pred_classes[valid_map] new_proposal_inst.scores = proposal_bbox_inst.scores[valid_map] return new_proposal_inst def process_pseudo_label( self, proposals_rpn_unsup_k, cur_threshold, proposal_type, psedo_label_method="" ): list_instances = [] num_proposal_output = 0.0 for proposal_bbox_inst in proposals_rpn_unsup_k: # thresholding if psedo_label_method == "thresholding": proposal_bbox_inst = self.threshold_bbox( proposal_bbox_inst, thres=cur_threshold, proposal_type=proposal_type ) else: raise ValueError("Unkown pseudo label boxes methods") num_proposal_output += len(proposal_bbox_inst) list_instances.append(proposal_bbox_inst) num_proposal_output = num_proposal_output / len(proposals_rpn_unsup_k) return list_instances, num_proposal_output def remove_label(self, label_data): for label_datum in label_data: if "instances" in label_datum.keys(): del label_datum["instances"] return label_data def add_label(self, unlabled_data, label): for unlabel_datum, lab_inst in zip(unlabled_data, label): unlabel_datum["instances"] = lab_inst return unlabled_data def get_label(self, label_data): label_list = [] for label_datum in label_data: if "instances" in label_datum.keys(): label_list.append(copy.deepcopy(label_datum["instances"])) return label_list # def get_label_test(self, label_data): # label_list = [] # for label_datum in label_data: # if "instances" in label_datum.keys(): # label_list.append(label_datum["instances"]) # ===================================================== # =================== Training Flow =================== # ===================================================== def run_step_full_semisup(self): self._trainer.iter = self.iter assert self.model.training, "[UBTeacherTrainer] model was changed to eval mode!" start = time.perf_counter() data = next(self._trainer._data_loader_iter) # data_q and data_k from different augmentations (q:strong, k:weak) # label_strong, label_weak, unlabed_strong, unlabled_weak label_data_q, label_data_k, unlabel_data_q, unlabel_data_k = data data_time = time.perf_counter() - start # burn-in stage (supervised training with labeled data) if self.iter < self.cfg.SEMISUPNET.BURN_UP_STEP: # input both strong and weak supervised data into model label_data_q.extend(label_data_k) record_dict, _, _, _ = self.model( label_data_q, branch="supervised") # weight losses loss_dict = {} for key in record_dict.keys(): if key[:4] == "loss": loss_dict[key] = record_dict[key] * 1 losses = sum(loss_dict.values()) else: if self.iter == self.cfg.SEMISUPNET.BURN_UP_STEP: # update copy the the whole model self._update_teacher_model(keep_rate=0.00) # self.model.build_discriminator() elif ( self.iter - self.cfg.SEMISUPNET.BURN_UP_STEP ) % self.cfg.SEMISUPNET.TEACHER_UPDATE_ITER == 0: self._update_teacher_model( keep_rate=self.cfg.SEMISUPNET.EMA_KEEP_RATE) record_dict = {} ######################## For probe ################################# # import pdb; pdb. set_trace() gt_unlabel_k = self.get_label(unlabel_data_k) # gt_unlabel_q = self.get_label_test(unlabel_data_q) # 0. remove unlabeled data labels unlabel_data_q = self.remove_label(unlabel_data_q) unlabel_data_k = self.remove_label(unlabel_data_k) # 1. generate the pseudo-label using teacher model with torch.no_grad(): ( _, proposals_rpn_unsup_k, proposals_roih_unsup_k, _, ) = self.model_teacher(unlabel_data_k, branch="unsup_data_weak") ######################## For probe ################################# # import pdb; pdb. set_trace() # probe_metrics = ['compute_fp_gtoutlier', 'compute_num_box'] # probe_metrics = ['compute_num_box'] # analysis_pred, _ = self.probe.compute_num_box(gt_unlabel_k,proposals_roih_unsup_k,'pred') # record_dict.update(analysis_pred) ######################## For probe END ################################# # 2. Pseudo-labeling cur_threshold = self.cfg.SEMISUPNET.BBOX_THRESHOLD joint_proposal_dict = {} joint_proposal_dict["proposals_rpn"] = proposals_rpn_unsup_k #Process pseudo labels and thresholding ( pesudo_proposals_rpn_unsup_k, nun_pseudo_bbox_rpn, ) = self.process_pseudo_label( proposals_rpn_unsup_k, cur_threshold, "rpn", "thresholding" ) # analysis_pred, _ = self.probe.compute_num_box(gt_unlabel_k,pesudo_proposals_rpn_unsup_k,'pred',True) # record_dict.update(analysis_pred) joint_proposal_dict["proposals_pseudo_rpn"] = pesudo_proposals_rpn_unsup_k # Pseudo_labeling for ROI head (bbox location/objectness) pesudo_proposals_roih_unsup_k, _ = self.process_pseudo_label( proposals_roih_unsup_k, cur_threshold, "roih", "thresholding" ) joint_proposal_dict["proposals_pseudo_roih"] = pesudo_proposals_roih_unsup_k # 3. add pseudo-label to unlabeled data unlabel_data_q = self.add_label( unlabel_data_q, joint_proposal_dict["proposals_pseudo_roih"] ) unlabel_data_k = self.add_label( unlabel_data_k, joint_proposal_dict["proposals_pseudo_roih"] ) all_label_data = label_data_q + label_data_k all_unlabel_data = unlabel_data_q # 4. input both strongly and weakly augmented labeled data into student model record_all_label_data, _, _, _ = self.model( all_label_data, branch="supervised" ) record_dict.update(record_all_label_data) # 5. input strongly augmented unlabeled data into model record_all_unlabel_data, _, _, _ = self.model( all_unlabel_data, branch="supervised_target" ) new_record_all_unlabel_data = {} for key in record_all_unlabel_data.keys(): new_record_all_unlabel_data[key + "_pseudo"] = record_all_unlabel_data[ key ] record_dict.update(new_record_all_unlabel_data) # 6. input weakly labeled data (source) and weakly unlabeled data (target) to student model # give sign to the target data for i_index in range(len(unlabel_data_k)): # unlabel_data_item = {} for k, v in unlabel_data_k[i_index].items(): # label_data_k[i_index][k + "_unlabeled"] = v label_data_k[i_index][k + "_unlabeled"] = v # unlabel_data_k[i_index] = unlabel_data_item all_domain_data = label_data_k # all_domain_data = label_data_k + unlabel_data_k record_all_domain_data, _, _, _ = self.model(all_domain_data, branch="domain") record_dict.update(record_all_domain_data) # weight losses loss_dict = {} for key in record_dict.keys(): if key.startswith("loss"): if key == "loss_rpn_loc_pseudo" or key == "loss_box_reg_pseudo": # pseudo bbox regression <- 0 loss_dict[key] = record_dict[key] * 0 elif key[-6:] == "pseudo": # unsupervised loss loss_dict[key] = ( record_dict[key] * self.cfg.SEMISUPNET.UNSUP_LOSS_WEIGHT ) elif ( key == "loss_D_img_s" or key == "loss_D_img_t" ): # set weight for discriminator # import pdb # pdb.set_trace() loss_dict[key] = record_dict[key] * self.cfg.SEMISUPNET.DIS_LOSS_WEIGHT #Need to modify defaults and yaml else: # supervised loss loss_dict[key] = record_dict[key] * 1 losses = sum(loss_dict.values()) metrics_dict = record_dict metrics_dict["data_time"] = data_time self._write_metrics(metrics_dict) self.optimizer.zero_grad() losses.backward() self.optimizer.step() def _write_metrics(self, metrics_dict: dict): metrics_dict = { k: v.detach().cpu().item() if isinstance(v, torch.Tensor) else float(v) for k, v in metrics_dict.items() } # gather metrics among all workers for logging # This assumes we do DDP-style training, which is currently the only # supported method in detectron2. all_metrics_dict = comm.gather(metrics_dict) # all_hg_dict = comm.gather(hg_dict) if comm.is_main_process(): if "data_time" in all_metrics_dict[0]: # data_time among workers can have high variance. The actual latency # caused by data_time is the maximum among workers. data_time = np.max([x.pop("data_time") for x in all_metrics_dict]) self.storage.put_scalar("data_time", data_time) # average the rest metrics metrics_dict = { k: np.mean([x[k] for x in all_metrics_dict]) for k in all_metrics_dict[0].keys() } # append the list loss_dict = {} for key in metrics_dict.keys(): if key[:4] == "loss": loss_dict[key] = metrics_dict[key] total_losses_reduced = sum(loss for loss in loss_dict.values()) self.storage.put_scalar("total_loss", total_losses_reduced) if len(metrics_dict) > 1: self.storage.put_scalars(**metrics_dict) @torch.no_grad() def _update_teacher_model(self, keep_rate=0.9996): if comm.get_world_size() > 1: student_model_dict = { key[7:]: value for key, value in self.model.state_dict().items() } else: student_model_dict = self.model.state_dict() new_teacher_dict = OrderedDict() for key, value in self.model_teacher.state_dict().items(): if key in student_model_dict.keys(): new_teacher_dict[key] = ( student_model_dict[key] * (1 - keep_rate) + value * keep_rate ) else: raise Exception("{} is not found in student model".format(key)) self.model_teacher.load_state_dict(new_teacher_dict) @torch.no_grad() def _copy_main_model(self): # initialize all parameters if comm.get_world_size() > 1: rename_model_dict = { key[7:]: value for key, value in self.model.state_dict().items() } self.model_teacher.load_state_dict(rename_model_dict) else: self.model_teacher.load_state_dict(self.model.state_dict()) @classmethod def build_test_loader(cls, cfg, dataset_name): return build_detection_test_loader(cfg, dataset_name) def build_hooks(self): cfg = self.cfg.clone() cfg.defrost() cfg.DATALOADER.NUM_WORKERS = 0 # save some memory and time for PreciseBN ret = [ hooks.IterationTimer(), hooks.LRScheduler(self.optimizer, self.scheduler), hooks.PreciseBN( # Run at the same freq as (but before) evaluation. cfg.TEST.EVAL_PERIOD, self.model, # Build a new data loader to not affect training self.build_train_loader(cfg), cfg.TEST.PRECISE_BN.NUM_ITER, ) if cfg.TEST.PRECISE_BN.ENABLED and get_bn_modules(self.model) else None, ] # Do PreciseBN before checkpointer, because it updates the model and need to # be saved by checkpointer. # This is not always the best: if checkpointing has a different frequency, # some checkpoints may have more precise statistics than others. if comm.is_main_process(): ret.append( hooks.PeriodicCheckpointer( self.checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD ) ) def test_and_save_results_student(): self._last_eval_results_student = self.test(self.cfg, self.model) _last_eval_results_student = { k + "_student": self._last_eval_results_student[k] for k in self._last_eval_results_student.keys() } return _last_eval_results_student def test_and_save_results_teacher(): self._last_eval_results_teacher = self.test( self.cfg, self.model_teacher) return self._last_eval_results_teacher ret.append(hooks.EvalHook(cfg.TEST.EVAL_PERIOD, test_and_save_results_student)) ret.append(hooks.EvalHook(cfg.TEST.EVAL_PERIOD, test_and_save_results_teacher)) if comm.is_main_process(): # run writers in the end, so that evaluation metrics are written ret.append(hooks.PeriodicWriter(self.build_writers(), period=20)) return ret
adaptive_teacher-main
adapteacher/engine/trainer.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # from d2go.config import CfgNode as CN def add_aut_config(cfg): """ Add config for SemiSupSegRunner. """ _C = cfg #New added for discriminator _C.UNBIASEDTEACHER.DIS_LOSS_WEIGHT = 0.1 _C.UNBIASEDTEACHER.DIS_TYPE = "concate" #["concate","p2","multi"] _C.UNBIASEDTEACHER.ISAUG = "Yes"
adaptive_teacher-main
prod_lib/config/defaults.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import logging import os from collections import OrderedDict from functools import lru_cache import d2go.utils.abnormal_checker as abnormal_checker import detectron2.utils.comm as comm from d2go.config import CONFIG_SCALING_METHOD_REGISTRY, temp_defrost from d2go.data.dataset_mappers import D2GoDatasetMapper, build_dataset_mapper from d2go.data.transforms.build import build_transform_gen from d2go.data.utils import maybe_subsample_n_images from d2go.modeling import build_model, kmeans_anchors, model_ema from d2go.runner import GeneralizedRCNNRunner from d2go.utils.flop_calculator import add_print_flops_callback from d2go.utils.misc import get_tensorboard_log_dir from d2go.utils.helper import TensorboardXWriter, D2Trainer from detectron2.checkpoint import PeriodicCheckpointer from detectron2.engine import hooks from detectron2.utils.events import CommonMetricPrinter, JSONWriter, TensorboardXWriter from torch.nn.parallel import DataParallel, DistributedDataParallel from detectron2.evaluation import ( DatasetEvaluators, ) from detectron2.data import ( MetadataCatalog, ) from ..evaluation import ( COCOEvaluator, PascalVOCDetectionEvaluator, ) from d2go.projects.unbiased_teacher.checkpoint import EnsembleTSModel from ..config.defaults import add_aut_config # from ..config.defaults import add_ut_config # from ..data.build import ( # build_detection_semisup_train_loader_two_crops, # build_uru_detection_semisup_train_loader, # inject_uru_dataset, # ) from d2go.projects.unbiased_teacher.data.build import ( build_detection_semisup_train_loader_two_crops, build_uru_detection_semisup_train_loader, ) from d2go.projects.unbiased_teacher.runner.runner import UnbiasedTeacherRunner from d2go.projects.unbiased_teacher.data.dataset_mapper import DatasetMapperTwoCropSeparate # noqa from ..data import builtin # noqa; for registering COCO unlabel dataset from d2go.projects.unbiased_teacher.engine.trainer import UnbiasedTeacherTrainer from d2go.projects.unbiased_teacher.modeling.meta_arch.rcnn import TwoStagePseudoLabGeneralizedRCNN # noqa from d2go.projects.unbiased_teacher.modeling.proposal_generator.rpn import PseudoLabRPN # noqa from d2go.projects.unbiased_teacher.modeling.roi_heads.roi_heads import StandardROIHeadsPseudoLab # noqa from d2go.projects.unbiased_teacher.solver.build import ut_build_lr_scheduler #For DA object detection from ..engine.trainer import DAobjTrainer from ..modeling.meta_arch.daobj_rcnn import DAobjTwoStagePseudoLabGeneralizedRCNN # noqa #For VGG model architecture from ..modeling.meta_arch.vgg import build_vgg_backbone,build_vgg_fpn_backbone # noqa ALL_TB_WRITERS = [] @lru_cache() def _get_tbx_writer(log_dir): ret = TensorboardXWriter(log_dir) ALL_TB_WRITERS.append(ret) return ret class BaseUnbiasedTeacherRunner(UnbiasedTeacherRunner): def get_default_cfg(self): cfg = super().get_default_cfg() add_aut_config(cfg) # add_pointrend_config(cfg) # cfg = CN(cfg) # upgrade from D2's CfgNode to D2Go's CfgNode return cfg @staticmethod def get_evaluator(cfg, dataset_name, output_folder): evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type if evaluator_type in ["coco"]: # D2 is in the process of reducing the use of cfg. dataset_evaluators = COCOEvaluator( dataset_name, output_dir=output_folder, kpt_oks_sigmas=cfg.TEST.KEYPOINT_OKS_SIGMAS, ) elif evaluator_type in ["pascal_voc"]: dataset_evaluators = PascalVOCDetectionEvaluator(dataset_name) elif evaluator_type in ["pascal_voc_water"]: dataset_evaluators = PascalVOCDetectionEvaluator(dataset_name, target_classnames=["bicycle", "bird", "car", "cat", "dog", "person"]) else: dataset_evaluators = D2Trainer.build_evaluator( cfg, dataset_name, output_folder ) if not isinstance(dataset_evaluators, DatasetEvaluators): dataset_evaluators = DatasetEvaluators([dataset_evaluators]) return dataset_evaluators # class DAobjUnbiasedTeacherRunner(UnbiasedTeacherRunner): class DAobjUnbiasedTeacherRunner(BaseUnbiasedTeacherRunner): def get_default_cfg(self): cfg = super().get_default_cfg() # add_aut_config(cfg) # add_pointrend_config(cfg) # cfg = CN(cfg) # upgrade from D2's CfgNode to D2Go's CfgNode return cfg def build_model(self, cfg, eval_only=False): """ Build both Student and Teacher models Student: regular model Teacher: model that is updated by EMA """ # build_model might modify the cfg, thus clone cfg = cfg.clone() model = build_model(cfg) model_teacher = build_model(cfg) if cfg.MODEL.FROZEN_LAYER_REG_EXP: raise NotImplementedError() if cfg.QUANTIZATION.QAT.ENABLED: raise NotImplementedError() if eval_only: raise NotImplementedError() return EnsembleTSModel(model_teacher, model) def do_train(self, cfg, model, resume): # NOTE: d2go's train_net applies DDP layer by default # we need to strip it away and only put DDP on model_student if isinstance(model, (DistributedDataParallel, DataParallel)): model = model.module model_teacher, model_student = model.model_teacher, model.model_student if comm.get_world_size() > 1: model_student = DistributedDataParallel( model_student, device_ids=None if cfg.MODEL.DEVICE == "cpu" else [comm.get_local_rank()], broadcast_buffers=False, find_unused_parameters=cfg.MODEL.DDP_FIND_UNUSED_PARAMETERS, ) add_print_flops_callback(cfg, model_student, disable_after_callback=True) optimizer = self.build_optimizer(cfg, model_student) scheduler = self.build_lr_scheduler(cfg, optimizer) checkpointer = self.build_checkpointer( cfg, model, save_dir=cfg.OUTPUT_DIR, optimizer=optimizer, scheduler=scheduler, ) checkpoint = checkpointer.resume_or_load( cfg.MODEL.WEIGHTS, resume=resume or cfg.UNBIASEDTEACHER.RESUME_FROM_ANOTHER ) start_iter = ( checkpoint.get("iteration", -1) if resume and checkpointer.has_checkpoint() or cfg.UNBIASEDTEACHER.RESUME_FROM_ANOTHER else -1 ) # The checkpoint stores the training iteration that just finished, thus we start # at the next iteration (or iter zero if there's no checkpoint). start_iter += 1 max_iter = cfg.SOLVER.MAX_ITER periodic_checkpointer = PeriodicCheckpointer( checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD, max_iter=max_iter ) # if resume from a pre-trained checkpoint, we modify the BURN_IN_STEP # so that the weights of the Student will be copied to the Teacher # at the 1st iteration when the training started if cfg.UNBIASEDTEACHER.RESUME_FROM_ANOTHER: cfg.defrost() cfg.UNBIASEDTEACHER.BURN_IN_STEP = start_iter cfg.freeze() data_loader = self.build_detection_train_loader(cfg) def _get_model_with_abnormal_checker(model): if not cfg.ABNORMAL_CHECKER.ENABLED: return model tbx_writer = _get_tbx_writer(get_tensorboard_log_dir(cfg.OUTPUT_DIR)) writers = abnormal_checker.get_writers(cfg, tbx_writer) checker = abnormal_checker.AbnormalLossChecker(start_iter, writers) ret = abnormal_checker.AbnormalLossCheckerWrapper(model, checker) return ret trainer = DAobjTrainer( cfg, _get_model_with_abnormal_checker(model_student), _get_model_with_abnormal_checker(model_teacher), data_loader, optimizer, ) trainer_hooks = [ hooks.IterationTimer(), self._create_after_step_hook( cfg, model_student, optimizer, scheduler, periodic_checkpointer ), hooks.EvalHook( cfg.TEST.EVAL_PERIOD, lambda: self.do_test(cfg, model, train_iter=trainer.iter), ), kmeans_anchors.compute_kmeans_anchors_hook(self, cfg), self._create_qat_hook(cfg) if cfg.QUANTIZATION.QAT.ENABLED else None, ] if comm.is_main_process(): tbx_writer = _get_tbx_writer(get_tensorboard_log_dir(cfg.OUTPUT_DIR)) writers = [ CommonMetricPrinter(max_iter), JSONWriter(os.path.join(cfg.OUTPUT_DIR, "metrics.json")), tbx_writer, ] trainer_hooks.append( hooks.PeriodicWriter(writers, period=cfg.WRITER_PERIOD) ) trainer.register_hooks(trainer_hooks) trainer.train(start_iter, max_iter) trained_cfg = cfg.clone() with temp_defrost(trained_cfg): trained_cfg.MODEL.WEIGHTS = checkpointer.get_checkpoint_file() return {"model_final": trained_cfg}
adaptive_teacher-main
prod_lib/runner/runner.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # from .runner import SemiSupSegRunner, SemiSupHandTrackingRunner # noqa from .runner import BaseUnbiasedTeacherRunner # noqa from .runner import DAobjUnbiasedTeacherRunner # noqa
adaptive_teacher-main
prod_lib/runner/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import torch.nn as nn import copy import torch from typing import Union, List, Dict, Any, cast from detectron2.modeling.backbone import ( ResNet, Backbone, build_resnet_backbone, BACKBONE_REGISTRY ) from detectron2.modeling.backbone.fpn import FPN, LastLevelMaxPool, LastLevelP6P7 def make_layers(cfg: List[Union[str, int]], batch_norm: bool = False) -> nn.Sequential: layers: List[nn.Module] = [] in_channels = 3 for v in cfg: if v == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: v = cast(int, v) conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) if batch_norm: layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] else: layers += [conv2d, nn.ReLU(inplace=True)] in_channels = v return nn.Sequential(*layers) cfgs: Dict[str, List[Union[str, int]]] = { 'vgg11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'vgg13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'vgg16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], 'vgg19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'], } class vgg_backbone(Backbone): """ Backbone (bottom-up) for FBNet. Hierarchy: trunk0: xif0_0 xif0_1 ... trunk1: xif1_0 xif1_1 ... ... Output features: The outputs from each "stage", i.e. trunkX. """ def __init__(self, cfg): super().__init__() self.vgg = make_layers(cfgs['vgg16'],batch_norm=True) self._initialize_weights() # self.stage_names_index = {'vgg1':3, 'vgg2':8 , 'vgg3':15, 'vgg4':22, 'vgg5':29} _out_feature_channels = [64, 128, 256, 512, 512] _out_feature_strides = [2, 4, 8, 16, 32] # stages, shape_specs = build_fbnet( # cfg, # name="trunk", # in_channels=cfg.MODEL.FBNET_V2.STEM_IN_CHANNELS # ) # nn.Sequential(*list(self.vgg.features._modules.values())[:14]) self.stages = [nn.Sequential(*list(self.vgg._modules.values())[0:7]),\ nn.Sequential(*list(self.vgg._modules.values())[7:14]),\ nn.Sequential(*list(self.vgg._modules.values())[14:24]),\ nn.Sequential(*list(self.vgg._modules.values())[24:34]),\ nn.Sequential(*list(self.vgg._modules.values())[34:]),] self._out_feature_channels = {} self._out_feature_strides = {} self._stage_names = [] for i, stage in enumerate(self.stages): name = "vgg{}".format(i) self.add_module(name, stage) self._stage_names.append(name) self._out_feature_channels[name] = _out_feature_channels[i] self._out_feature_strides[name] = _out_feature_strides[i] self._out_features = self._stage_names del self.vgg def forward(self, x): features = {} for name, stage in zip(self._stage_names, self.stages): x = stage(x) # if name in self._out_features: # outputs[name] = x features[name] = x # import pdb # pdb.set_trace() return features def _initialize_weights(self) -> None: for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.constant_(m.bias, 0) @BACKBONE_REGISTRY.register() #already register in baseline model def build_vgg_backbone(cfg, _): return vgg_backbone(cfg) @BACKBONE_REGISTRY.register() #already register in baseline model def build_vgg_fpn_backbone(cfg, _): # backbone = FPN( # bottom_up=build_vgg_backbone(cfg), # in_features=cfg.MODEL.FPN.IN_FEATURES, # out_channels=cfg.MODEL.FPN.OUT_CHANNELS, # norm=cfg.MODEL.FPN.NORM, # top_block=LastLevelMaxPool(), # ) bottom_up = vgg_backbone(cfg) in_features = cfg.MODEL.FPN.IN_FEATURES out_channels = cfg.MODEL.FPN.OUT_CHANNELS backbone = FPN( bottom_up=bottom_up, in_features=in_features, out_channels=out_channels, norm=cfg.MODEL.FPN.NORM, top_block=LastLevelMaxPool(), # fuse_type=cfg.MODEL.FPN.FUSE_TYPE, ) # return backbone return backbone
adaptive_teacher-main
prod_lib/modeling/vgg.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import numpy as np import torch import torch.nn as nn from torch.nn import functional as F from detectron2.data.detection_utils import convert_image_to_rgb from detectron2.modeling import META_ARCH_REGISTRY, GeneralizedRCNN from detectron2.utils.events import get_event_storage import logging from typing import Dict, Tuple, List, Optional from collections import OrderedDict from detectron2.config import configurable # from detectron2.modeling.meta_arch.build import META_ARCH_REGISTRY # from detectron2.modeling.meta_arch.rcnn import GeneralizedRCNN from detectron2.modeling.proposal_generator import build_proposal_generator from detectron2.modeling.backbone import build_backbone, Backbone from detectron2.modeling.roi_heads import build_roi_heads from detectron2.utils.events import get_event_storage from detectron2.structures import ImageList ############### Image discriminator ############## class FCDiscriminator_img(nn.Module): def __init__(self, num_classes, ndf1=256, ndf2=128): super(FCDiscriminator_img, self).__init__() self.conv1 = nn.Conv2d(num_classes, ndf1, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(ndf1, ndf2, kernel_size=3, padding=1) self.conv3 = nn.Conv2d(ndf2, ndf2, kernel_size=3, padding=1) self.classifier = nn.Conv2d(ndf2, 1, kernel_size=3, padding=1) self.leaky_relu = nn.LeakyReLU(negative_slope=0.2, inplace=True) def forward(self, x): x = self.conv1(x) x = self.leaky_relu(x) x = self.conv2(x) x = self.leaky_relu(x) x = self.conv3(x) x = self.leaky_relu(x) x = self.classifier(x) return x ################################# ################ Gradient reverse function class GradReverse(torch.autograd.Function): @staticmethod def forward(ctx, x): return x.view_as(x) @staticmethod def backward(ctx, grad_output): return grad_output.neg() def grad_reverse(x): return GradReverse.apply(x) ####################### @META_ARCH_REGISTRY.register() class DAobjTwoStagePseudoLabGeneralizedRCNN(GeneralizedRCNN): @configurable def __init__( self, *, backbone: Backbone, proposal_generator: nn.Module, roi_heads: nn.Module, pixel_mean: Tuple[float], pixel_std: Tuple[float], input_format: Optional[str] = None, vis_period: int = 0, dis_type: str, # dis_loss_weight: float = 0, ): """ Args: backbone: a backbone module, must follow detectron2's backbone interface proposal_generator: a module that generates proposals using backbone features roi_heads: a ROI head that performs per-region computation pixel_mean, pixel_std: list or tuple with #channels element, representing the per-channel mean and std to be used to normalize the input image input_format: describe the meaning of channels of input. Needed by visualization vis_period: the period to run visualization. Set to 0 to disable. """ super(GeneralizedRCNN, self).__init__() self.backbone = backbone self.proposal_generator = proposal_generator self.roi_heads = roi_heads self.input_format = input_format self.vis_period = vis_period if vis_period > 0: assert input_format is not None, "input_format is required for visualization!" self.register_buffer("pixel_mean", torch.tensor(pixel_mean).view(-1, 1, 1), False) self.register_buffer("pixel_std", torch.tensor(pixel_std).view(-1, 1, 1), False) assert ( self.pixel_mean.shape == self.pixel_std.shape ), f"{self.pixel_mean} and {self.pixel_std} have different shapes!" # @yujheli: you may need to build your discriminator here self.dis_type = dis_type # self.D_img = FCDiscriminator_img(self.backbone._out_feature_channels['res4']) # Need to know the channel if self.dis_type == "multi": self.D_img_dict = {} for k,v in self.backbone._out_feature_channels.items(): self.D_img_dict[k] = FCDiscriminator_img(v) self.add_module("D_"+k, self.D_img_dict[k]) else: self.D_img = FCDiscriminator_img(self.backbone._out_feature_channels[self.dis_type]) # Need to know the channel # self.bceLoss_func = nn.BCEWithLogitsLoss() @classmethod def from_config(cls, cfg): backbone = build_backbone(cfg) return { "backbone": backbone, "proposal_generator": build_proposal_generator(cfg, backbone.output_shape()), "roi_heads": build_roi_heads(cfg, backbone.output_shape()), "input_format": cfg.INPUT.FORMAT, "vis_period": cfg.VIS_PERIOD, "pixel_mean": cfg.MODEL.PIXEL_MEAN, "pixel_std": cfg.MODEL.PIXEL_STD, "dis_type": cfg.UNBIASEDTEACHER.DIS_TYPE, # "dis_loss_ratio": cfg.xxx, } def preprocess_image_train(self, batched_inputs: List[Dict[str, torch.Tensor]]): """ Normalize, pad and batch the input images. """ images = [x["image"].to(self.device) for x in batched_inputs] images = [(x - self.pixel_mean) / self.pixel_std for x in images] images = ImageList.from_tensors(images, self.backbone.size_divisibility) images_t = [x["image_unlabeled"].to(self.device) for x in batched_inputs] images_t = [(x - self.pixel_mean) / self.pixel_std for x in images_t] images_t = ImageList.from_tensors(images_t, self.backbone.size_divisibility) return images, images_t def forward( self, batched_inputs, branch="supervised", given_proposals=None, val_mode=False ): """ Args: batched_inputs: a list, batched outputs of :class:`DatasetMapper` . Each item in the list contains the inputs for one image. For now, each item in the list is a dict that contains: * image: Tensor, image in (C, H, W) format. * instances (optional): groundtruth :class:`Instances` * proposals (optional): :class:`Instances`, precomputed proposals. Other information that's included in the original dicts, such as: * "height", "width" (int): the output resolution of the model, used in inference. See :meth:`postprocess` for details. Returns: list[dict]: Each dict is the output for one input image. The dict contains one key "instances" whose value is a :class:`Instances`. The :class:`Instances` object has the following keys: "pred_boxes", "pred_classes", "scores", "pred_masks", "pred_keypoints" """ if (not self.training) and (not val_mode): # only conduct when testing mode return self.inference(batched_inputs) if branch == "domain": source_label = 0 target_label = 1 # images = self.preprocess_image(batched_inputs) images_s, images_t = self.preprocess_image_train(batched_inputs) features = self.backbone(images_s.tensor) # import pdb # pdb.set_trace() if self.dis_type == "multi": loss_D_img_s = 0 for k, v in features.items(): features_s = grad_reverse(v) D_img_out_s = self.D_img_dict[k](features_s) loss_D_img_s += F.binary_cross_entropy_with_logits(D_img_out_s, torch.FloatTensor(D_img_out_s.data.size()).fill_(source_label).to(self.device)) loss_D_img_s /= len(features) # features_s = grad_reverse(torch.cat((features['p2'],features['p3'],features['p4'],features['p5']),dim=1)) else: features_s = grad_reverse(features[self.dis_type]) D_img_out_s = self.D_img(features_s) loss_D_img_s = F.binary_cross_entropy_with_logits(D_img_out_s, torch.FloatTensor(D_img_out_s.data.size()).fill_(source_label).to(self.device)) features_t = self.backbone(images_t.tensor) if self.dis_type == "multi": loss_D_img_t = 0 for k, v in features_t.items(): features_tt = grad_reverse(v) D_img_out_t = self.D_img_dict[k](features_tt) loss_D_img_t += F.binary_cross_entropy_with_logits(D_img_out_t, torch.FloatTensor(D_img_out_t.data.size()).fill_(target_label).to(self.device)) loss_D_img_t /= len(features_t) else: features_t = grad_reverse(features_t[self.dis_type]) # features_t = grad_reverse(features_t['p2']) D_img_out_t = self.D_img(features_t) loss_D_img_t = F.binary_cross_entropy_with_logits(D_img_out_t, torch.FloatTensor(D_img_out_t.data.size()).fill_(target_label).to(self.device)) # import pdb # pdb.set_trace() losses = {} losses["loss_D_img_s"] = loss_D_img_s losses["loss_D_img_t"] = loss_D_img_t return losses, [], [], None images = self.preprocess_image(batched_inputs) if "instances" in batched_inputs[0]: gt_instances = [x["instances"].to(self.device) for x in batched_inputs] else: gt_instances = None features = self.backbone(images.tensor) # TODO: remove the usage of if else here. This needs to be re-organized if branch.startswith("supervised"): # Region proposal network proposals_rpn, proposal_losses = self.proposal_generator( images, features, gt_instances ) # roi_head lower branch _, detector_losses = self.roi_heads( images, features, proposals_rpn, compute_loss=True, targets=gt_instances, branch=branch, ) # visualization if self.vis_period > 0: storage = get_event_storage() if storage.iter % self.vis_period == 0: self.visualize_training(batched_inputs, proposals_rpn, branch) losses = {} losses.update(detector_losses) losses.update(proposal_losses) return losses, [], [], None elif branch == "unsup_data_weak": """ unsupervised weak branch: input image without any ground-truth label; output proposals of rpn and roi-head """ # Region proposal network proposals_rpn, _ = self.proposal_generator( images, features, None, compute_loss=False ) # roi_head lower branch (keep this for further production) # notice that we do not use any target in ROI head to do inference! proposals_roih, ROI_predictions = self.roi_heads( images, features, proposals_rpn, targets=None, compute_loss=False, branch=branch, ) # if self.vis_period > 0: # storage = get_event_storage() # if storage.iter % self.vis_period == 0: # self.visualize_training(batched_inputs, proposals_rpn, branch) return {}, proposals_rpn, proposals_roih, ROI_predictions elif branch == "unsup_data_strong": raise NotImplementedError() elif branch == "val_loss": raise NotImplementedError() def visualize_training(self, batched_inputs, proposals, branch=""): """ This function different from the original one: - it adds "branch" to the `vis_name`. A function used to visualize images and proposals. It shows ground truth bounding boxes on the original image and up to 20 predicted object proposals on the original image. Users can implement different visualization functions for different models. Args: batched_inputs (list): a list that contains input to the model. proposals (list): a list that contains predicted proposals. Both batched_inputs and proposals should have the same length. """ from detectron2.utils.visualizer import Visualizer storage = get_event_storage() max_vis_prop = 20 for input, prop in zip(batched_inputs, proposals): img = input["image"] img = convert_image_to_rgb(img.permute(1, 2, 0), self.input_format) v_gt = Visualizer(img, None) v_gt = v_gt.overlay_instances(boxes=input["instances"].gt_boxes) anno_img = v_gt.get_image() box_size = min(len(prop.proposal_boxes), max_vis_prop) v_pred = Visualizer(img, None) v_pred = v_pred.overlay_instances( boxes=prop.proposal_boxes[0:box_size].tensor.cpu().numpy() ) prop_img = v_pred.get_image() vis_img = np.concatenate((anno_img, prop_img), axis=1) vis_img = vis_img.transpose(2, 0, 1) vis_name = ( "Left: GT bounding boxes " + branch + "; Right: Predicted proposals " + branch ) storage.put_image(vis_name, vis_img) break # only visualize one image in a batch
adaptive_teacher-main
prod_lib/modeling/daobj_rcnn.py
# Copyright (c) Facebook, Inc. and its affiliates. from .coco_evaluation import COCOEvaluator from .pascal_voc_evaluation import PascalVOCDetectionEvaluator # __all__ = [k for k in globals().keys() if not k.startswith("_")] __all__ = [ "COCOEvaluator", "PascalVOCDetectionEvaluator" ]
adaptive_teacher-main
prod_lib/evaluation/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. import contextlib import copy import io import itertools import json import logging import numpy as np import os import pickle from collections import OrderedDict import pycocotools.mask as mask_util import torch from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval from tabulate import tabulate import detectron2.utils.comm as comm from detectron2.config import CfgNode from detectron2.data import MetadataCatalog from detectron2.data.datasets.coco import convert_to_coco_dict from detectron2.evaluation.fast_eval_api import COCOeval_opt from detectron2.structures import Boxes, BoxMode, pairwise_iou from detectron2.utils.file_io import PathManager from detectron2.utils.logger import create_small_table from detectron2.evaluation import DatasetEvaluator from iopath.common.file_io import file_lock logger = logging.getLogger(__name__) def convert_to_coco_json(dataset_name, output_file, allow_cached=True): """ Converts dataset into COCO format and saves it to a json file. dataset_name must be registered in DatasetCatalog and in detectron2's standard format. Args: dataset_name: reference from the config file to the catalogs must be registered in DatasetCatalog and in detectron2's standard format output_file: path of json file that will be saved to allow_cached: if json file is already present then skip conversion """ # TODO: The dataset or the conversion script *may* change, # a checksum would be useful for validating the cached data PathManager.mkdirs(os.path.dirname(output_file)) with file_lock(output_file): if PathManager.exists(output_file) and allow_cached: logger.warning( f"Using previously cached COCO format annotations at '{output_file}'. " "You need to clear the cache file if your dataset has been modified." ) else: logger.info(f"Converting annotations of dataset '{dataset_name}' to COCO format ...)") coco_dict = convert_to_coco_dict(dataset_name) logger.info(f"Caching COCO format annotations at '{output_file}' ...") tmp_file = output_file #+ ".tmp" # with PathManager.open(tmp_file, "w") as f: # json.dump(coco_dict, f) # shutil.move(tmp_file, output_file) with PathManager.open(tmp_file, "w") as f: json.dump(coco_dict, f) class COCOEvaluator(DatasetEvaluator): """ Evaluate AR for object proposals, AP for instance detection/segmentation, AP for keypoint detection outputs using COCO's metrics. See http://cocodataset.org/#detection-eval and http://cocodataset.org/#keypoints-eval to understand its metrics. The metrics range from 0 to 100 (instead of 0 to 1), where a -1 or NaN means the metric cannot be computed (e.g. due to no predictions made). In addition to COCO, this evaluator is able to support any bounding box detection, instance segmentation, or keypoint detection dataset. """ def __init__( self, dataset_name, tasks=None, distributed=True, output_dir=None, *, use_fast_impl=True, kpt_oks_sigmas=(), ): """ Args: dataset_name (str): name of the dataset to be evaluated. It must have either the following corresponding metadata: "json_file": the path to the COCO format annotation Or it must be in detectron2's standard dataset format so it can be converted to COCO format automatically. tasks (tuple[str]): tasks that can be evaluated under the given configuration. A task is one of "bbox", "segm", "keypoints". By default, will infer this automatically from predictions. distributed (True): if True, will collect results from all ranks and run evaluation in the main process. Otherwise, will only evaluate the results in the current process. output_dir (str): optional, an output directory to dump all results predicted on the dataset. The dump contains two files: 1. "instances_predictions.pth" a file that can be loaded with `torch.load` and contains all the results in the format they are produced by the model. 2. "coco_instances_results.json" a json file in COCO's result format. use_fast_impl (bool): use a fast but **unofficial** implementation to compute AP. Although the results should be very close to the official implementation in COCO API, it is still recommended to compute results with the official API for use in papers. The faster implementation also uses more RAM. kpt_oks_sigmas (list[float]): The sigmas used to calculate keypoint OKS. See http://cocodataset.org/#keypoints-eval When empty, it will use the defaults in COCO. Otherwise it should be the same length as ROI_KEYPOINT_HEAD.NUM_KEYPOINTS. """ self._logger = logging.getLogger(__name__) self._distributed = distributed self._output_dir = output_dir self._use_fast_impl = use_fast_impl if tasks is not None and isinstance(tasks, CfgNode): kpt_oks_sigmas = ( tasks.TEST.KEYPOINT_OKS_SIGMAS if not kpt_oks_sigmas else kpt_oks_sigmas ) self._logger.warn( "COCO Evaluator instantiated using config, this is deprecated behavior." " Please pass in explicit arguments instead." ) self._tasks = None # Infering it from predictions should be better else: self._tasks = tasks self._cpu_device = torch.device("cpu") self._metadata = MetadataCatalog.get(dataset_name) if not hasattr(self._metadata, "json_file"): self._logger.info( f"'{dataset_name}' is not registered by `register_coco_instances`." " Therefore trying to convert it to COCO format ..." ) cache_path = os.path.join(output_dir, f"{dataset_name}_coco_format.json") self._metadata.json_file = cache_path convert_to_coco_json(dataset_name, cache_path) json_file = PathManager.get_local_path(self._metadata.json_file) with contextlib.redirect_stdout(io.StringIO()): self._coco_api = COCO(json_file) # Test set json files do not contain annotations (evaluation must be # performed using the COCO evaluation server). self._do_evaluation = "annotations" in self._coco_api.dataset if self._do_evaluation: self._kpt_oks_sigmas = kpt_oks_sigmas def reset(self): self._predictions = [] def process(self, inputs, outputs): """ Args: inputs: the inputs to a COCO model (e.g., GeneralizedRCNN). It is a list of dict. Each dict corresponds to an image and contains keys like "height", "width", "file_name", "image_id". outputs: the outputs of a COCO model. It is a list of dicts with key "instances" that contains :class:`Instances`. """ for input, output in zip(inputs, outputs): prediction = {"image_id": input["image_id"]} if "instances" in output: instances = output["instances"].to(self._cpu_device) prediction["instances"] = instances_to_coco_json(instances, input["image_id"]) if "proposals" in output: prediction["proposals"] = output["proposals"].to(self._cpu_device) if len(prediction) > 1: self._predictions.append(prediction) def evaluate(self, img_ids=None): """ Args: img_ids: a list of image IDs to evaluate on. Default to None for the whole dataset """ if self._distributed: comm.synchronize() predictions = comm.gather(self._predictions, dst=0) predictions = list(itertools.chain(*predictions)) if not comm.is_main_process(): return {} else: predictions = self._predictions if len(predictions) == 0: self._logger.warning("[COCOEvaluator] Did not receive valid predictions.") return {} if self._output_dir: PathManager.mkdirs(self._output_dir) file_path = os.path.join(self._output_dir, "instances_predictions.pth") with PathManager.open(file_path, "wb") as f: torch.save(predictions, f) self._results = OrderedDict() if "proposals" in predictions[0]: self._eval_box_proposals(predictions) if "instances" in predictions[0]: self._eval_predictions(predictions, img_ids=img_ids) # Copy so the caller can do whatever with results return copy.deepcopy(self._results) def _tasks_from_predictions(self, predictions): """ Get COCO API "tasks" (i.e. iou_type) from COCO-format predictions. """ tasks = {"bbox"} for pred in predictions: if "segmentation" in pred: tasks.add("segm") if "keypoints" in pred: tasks.add("keypoints") return sorted(tasks) def _eval_predictions(self, predictions, img_ids=None): """ Evaluate predictions. Fill self._results with the metrics of the tasks. """ self._logger.info("Preparing results for COCO format ...") coco_results = list(itertools.chain(*[x["instances"] for x in predictions])) tasks = self._tasks or self._tasks_from_predictions(coco_results) # unmap the category ids for COCO if hasattr(self._metadata, "thing_dataset_id_to_contiguous_id"): dataset_id_to_contiguous_id = self._metadata.thing_dataset_id_to_contiguous_id all_contiguous_ids = list(dataset_id_to_contiguous_id.values()) num_classes = len(all_contiguous_ids) assert min(all_contiguous_ids) == 0 and max(all_contiguous_ids) == num_classes - 1 reverse_id_mapping = {v: k for k, v in dataset_id_to_contiguous_id.items()} for result in coco_results: category_id = result["category_id"] assert category_id < num_classes, ( f"A prediction has class={category_id}, " f"but the dataset only has {num_classes} classes and " f"predicted class id should be in [0, {num_classes - 1}]." ) result["category_id"] = reverse_id_mapping[category_id] if self._output_dir: file_path = os.path.join(self._output_dir, "coco_instances_results.json") self._logger.info("Saving results to {}".format(file_path)) with PathManager.open(file_path, "w") as f: f.write(json.dumps(coco_results)) f.flush() if not self._do_evaluation: self._logger.info("Annotations are not available for evaluation.") return self._logger.info( "Evaluating predictions with {} COCO API...".format( "unofficial" if self._use_fast_impl else "official" ) ) for task in sorted(tasks): assert task in {"bbox", "segm", "keypoints"}, f"Got unknown task: {task}!" coco_eval = ( _evaluate_predictions_on_coco( self._coco_api, coco_results, task, kpt_oks_sigmas=self._kpt_oks_sigmas, use_fast_impl=self._use_fast_impl, img_ids=img_ids, ) if len(coco_results) > 0 else None # cocoapi does not handle empty results very well ) res = self._derive_coco_results( coco_eval, task, class_names=self._metadata.get("thing_classes") ) self._results[task] = res def _eval_box_proposals(self, predictions): """ Evaluate the box proposals in predictions. Fill self._results with the metrics for "box_proposals" task. """ if self._output_dir: # Saving generated box proposals to file. # Predicted box_proposals are in XYXY_ABS mode. bbox_mode = BoxMode.XYXY_ABS.value ids, boxes, objectness_logits = [], [], [] for prediction in predictions: ids.append(prediction["image_id"]) boxes.append(prediction["proposals"].proposal_boxes.tensor.numpy()) objectness_logits.append(prediction["proposals"].objectness_logits.numpy()) proposal_data = { "boxes": boxes, "objectness_logits": objectness_logits, "ids": ids, "bbox_mode": bbox_mode, } with PathManager.open(os.path.join(self._output_dir, "box_proposals.pkl"), "wb") as f: pickle.dump(proposal_data, f) if not self._do_evaluation: self._logger.info("Annotations are not available for evaluation.") return self._logger.info("Evaluating bbox proposals ...") res = {} areas = {"all": "", "small": "s", "medium": "m", "large": "l"} for limit in [100, 1000]: for area, suffix in areas.items(): stats = _evaluate_box_proposals(predictions, self._coco_api, area=area, limit=limit) key = "AR{}@{:d}".format(suffix, limit) res[key] = float(stats["ar"].item() * 100) self._logger.info("Proposal metrics: \n" + create_small_table(res)) self._results["box_proposals"] = res def _derive_coco_results(self, coco_eval, iou_type, class_names=None): """ Derive the desired score numbers from summarized COCOeval. Args: coco_eval (None or COCOEval): None represents no predictions from model. iou_type (str): class_names (None or list[str]): if provided, will use it to predict per-category AP. Returns: a dict of {metric name: score} """ metrics = { "bbox": ["AP", "AP50", "AP75", "APs", "APm", "APl"], "segm": ["AP", "AP50", "AP75", "APs", "APm", "APl"], "keypoints": ["AP", "AP50", "AP75", "APm", "APl"], }[iou_type] if coco_eval is None: self._logger.warn("No predictions from the model!") return {metric: float("nan") for metric in metrics} # the standard metrics results = { metric: float(coco_eval.stats[idx] * 100 if coco_eval.stats[idx] >= 0 else "nan") for idx, metric in enumerate(metrics) } self._logger.info( "Evaluation results for {}: \n".format(iou_type) + create_small_table(results) ) if not np.isfinite(sum(results.values())): self._logger.info("Some metrics cannot be computed and is shown as NaN.") if class_names is None or len(class_names) <= 1: return results # Compute per-category AP # from https://github.com/facebookresearch/Detectron/blob/a6a835f5b8208c45d0dce217ce9bbda915f44df7/detectron/datasets/json_dataset_evaluator.py#L222-L252 # noqa precisions = coco_eval.eval["precision"] # precision has dims (iou, recall, cls, area range, max dets) assert len(class_names) == precisions.shape[2] results_per_category = [] for idx, name in enumerate(class_names): # area range index 0: all area ranges # max dets index -1: typically 100 per image precision = precisions[:, :, idx, 0, -1] precision = precision[precision > -1] ap = np.mean(precision) if precision.size else float("nan") results_per_category.append(("{}".format(name), float(ap * 100))) # tabulate it N_COLS = min(6, len(results_per_category) * 2) results_flatten = list(itertools.chain(*results_per_category)) results_2d = itertools.zip_longest(*[results_flatten[i::N_COLS] for i in range(N_COLS)]) table = tabulate( results_2d, tablefmt="pipe", floatfmt=".3f", headers=["category", "AP"] * (N_COLS // 2), numalign="left", ) self._logger.info("Per-category {} AP: \n".format(iou_type) + table) # results.update({"AP-" + name: ap for name, ap in results_per_category}) results_per_category_AP50 = [] for idx, name in enumerate(class_names): # area range index 0: all area ranges # max dets index -1: typically 100 per image t = np.where(.5 == coco_eval.params.iouThrs)[0] precisions_50 = precisions[t] precisions_50 = precisions_50[:, :, idx, 0, -1] precisions_50 = precisions_50[precisions_50 > -1] ap = np.mean(precisions_50) if precisions_50.size else float("nan") results_per_category_AP50.append(("{}".format(name), float(ap * 100))) # tabulate it N_COLS = min(6, len(results_per_category_AP50) * 2) results_flatten = list(itertools.chain(*results_per_category_AP50)) results_2d = itertools.zip_longest(*[results_flatten[i::N_COLS] for i in range(N_COLS)]) table = tabulate( results_2d, tablefmt="pipe", floatfmt=".3f", headers=["category", "AP50"] * (N_COLS // 2), numalign="left", ) self._logger.info("Per-category {} AP50: \n".format(iou_type) + table) results.update({"AP50-" + name: ap for name, ap in results_per_category_AP50}) return results def instances_to_coco_json(instances, img_id): """ Dump an "Instances" object to a COCO-format json that's used for evaluation. Args: instances (Instances): img_id (int): the image id Returns: list[dict]: list of json annotations in COCO format. """ num_instance = len(instances) if num_instance == 0: return [] boxes = instances.pred_boxes.tensor.numpy() boxes = BoxMode.convert(boxes, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS) boxes = boxes.tolist() scores = instances.scores.tolist() classes = instances.pred_classes.tolist() has_mask = instances.has("pred_masks") if has_mask: # use RLE to encode the masks, because they are too large and takes memory # since this evaluator stores outputs of the entire dataset rles = [ mask_util.encode(np.array(mask[:, :, None], order="F", dtype="uint8"))[0] for mask in instances.pred_masks ] for rle in rles: # "counts" is an array encoded by mask_util as a byte-stream. Python3's # json writer which always produces strings cannot serialize a bytestream # unless you decode it. Thankfully, utf-8 works out (which is also what # the pycocotools/_mask.pyx does). rle["counts"] = rle["counts"].decode("utf-8") has_keypoints = instances.has("pred_keypoints") if has_keypoints: keypoints = instances.pred_keypoints results = [] for k in range(num_instance): result = { "image_id": img_id, "category_id": classes[k], "bbox": boxes[k], "score": scores[k], } if has_mask: result["segmentation"] = rles[k] if has_keypoints: # In COCO annotations, # keypoints coordinates are pixel indices. # However our predictions are floating point coordinates. # Therefore we subtract 0.5 to be consistent with the annotation format. # This is the inverse of data loading logic in `datasets/coco.py`. keypoints[k][:, :2] -= 0.5 result["keypoints"] = keypoints[k].flatten().tolist() results.append(result) return results # inspired from Detectron: # https://github.com/facebookresearch/Detectron/blob/a6a835f5b8208c45d0dce217ce9bbda915f44df7/detectron/datasets/json_dataset_evaluator.py#L255 # noqa def _evaluate_box_proposals(dataset_predictions, coco_api, thresholds=None, area="all", limit=None): """ Evaluate detection proposal recall metrics. This function is a much faster alternative to the official COCO API recall evaluation code. However, it produces slightly different results. """ # Record max overlap value for each gt box # Return vector of overlap values areas = { "all": 0, "small": 1, "medium": 2, "large": 3, "96-128": 4, "128-256": 5, "256-512": 6, "512-inf": 7, } area_ranges = [ [0 ** 2, 1e5 ** 2], # all [0 ** 2, 32 ** 2], # small [32 ** 2, 96 ** 2], # medium [96 ** 2, 1e5 ** 2], # large [96 ** 2, 128 ** 2], # 96-128 [128 ** 2, 256 ** 2], # 128-256 [256 ** 2, 512 ** 2], # 256-512 [512 ** 2, 1e5 ** 2], ] # 512-inf assert area in areas, "Unknown area range: {}".format(area) area_range = area_ranges[areas[area]] gt_overlaps = [] num_pos = 0 for prediction_dict in dataset_predictions: predictions = prediction_dict["proposals"] # sort predictions in descending order # TODO maybe remove this and make it explicit in the documentation inds = predictions.objectness_logits.sort(descending=True)[1] predictions = predictions[inds] ann_ids = coco_api.getAnnIds(imgIds=prediction_dict["image_id"]) anno = coco_api.loadAnns(ann_ids) gt_boxes = [ BoxMode.convert(obj["bbox"], BoxMode.XYWH_ABS, BoxMode.XYXY_ABS) for obj in anno if obj["iscrowd"] == 0 ] gt_boxes = torch.as_tensor(gt_boxes).reshape(-1, 4) # guard against no boxes gt_boxes = Boxes(gt_boxes) gt_areas = torch.as_tensor([obj["area"] for obj in anno if obj["iscrowd"] == 0]) if len(gt_boxes) == 0 or len(predictions) == 0: continue valid_gt_inds = (gt_areas >= area_range[0]) & (gt_areas <= area_range[1]) gt_boxes = gt_boxes[valid_gt_inds] num_pos += len(gt_boxes) if len(gt_boxes) == 0: continue if limit is not None and len(predictions) > limit: predictions = predictions[:limit] overlaps = pairwise_iou(predictions.proposal_boxes, gt_boxes) _gt_overlaps = torch.zeros(len(gt_boxes)) for j in range(min(len(predictions), len(gt_boxes))): # find which proposal box maximally covers each gt box # and get the iou amount of coverage for each gt box max_overlaps, argmax_overlaps = overlaps.max(dim=0) # find which gt box is 'best' covered (i.e. 'best' = most iou) gt_ovr, gt_ind = max_overlaps.max(dim=0) assert gt_ovr >= 0 # find the proposal box that covers the best covered gt box box_ind = argmax_overlaps[gt_ind] # record the iou coverage of this gt box _gt_overlaps[j] = overlaps[box_ind, gt_ind] assert _gt_overlaps[j] == gt_ovr # mark the proposal box and the gt box as used overlaps[box_ind, :] = -1 overlaps[:, gt_ind] = -1 # append recorded iou coverage level gt_overlaps.append(_gt_overlaps) gt_overlaps = ( torch.cat(gt_overlaps, dim=0) if len(gt_overlaps) else torch.zeros(0, dtype=torch.float32) ) gt_overlaps, _ = torch.sort(gt_overlaps) if thresholds is None: step = 0.05 thresholds = torch.arange(0.5, 0.95 + 1e-5, step, dtype=torch.float32) recalls = torch.zeros_like(thresholds) # compute recall for each iou threshold for i, t in enumerate(thresholds): recalls[i] = (gt_overlaps >= t).float().sum() / float(num_pos) # ar = 2 * np.trapz(recalls, thresholds) ar = recalls.mean() return { "ar": ar, "recalls": recalls, "thresholds": thresholds, "gt_overlaps": gt_overlaps, "num_pos": num_pos, } def _evaluate_predictions_on_coco( coco_gt, coco_results, iou_type, kpt_oks_sigmas=None, use_fast_impl=True, img_ids=None ): """ Evaluate the coco results using COCOEval API. """ assert len(coco_results) > 0 if iou_type == "segm": coco_results = copy.deepcopy(coco_results) # When evaluating mask AP, if the results contain bbox, cocoapi will # use the box area as the area of the instance, instead of the mask area. # This leads to a different definition of small/medium/large. # We remove the bbox field to let mask AP use mask area. for c in coco_results: c.pop("bbox", None) coco_dt = coco_gt.loadRes(coco_results) coco_eval = (COCOeval_opt if use_fast_impl else COCOeval)(coco_gt, coco_dt, iou_type) if img_ids is not None: coco_eval.params.imgIds = img_ids if iou_type == "keypoints": # Use the COCO default keypoint OKS sigmas unless overrides are specified if kpt_oks_sigmas: assert hasattr(coco_eval.params, "kpt_oks_sigmas"), "pycocotools is too old!" coco_eval.params.kpt_oks_sigmas = np.array(kpt_oks_sigmas) # COCOAPI requires every detection and every gt to have keypoints, so # we just take the first entry from both num_keypoints_dt = len(coco_results[0]["keypoints"]) // 3 num_keypoints_gt = len(next(iter(coco_gt.anns.values()))["keypoints"]) // 3 num_keypoints_oks = len(coco_eval.params.kpt_oks_sigmas) assert num_keypoints_oks == num_keypoints_dt == num_keypoints_gt, ( f"[COCOEvaluator] Prediction contain {num_keypoints_dt} keypoints. " f"Ground truth contains {num_keypoints_gt} keypoints. " f"The length of cfg.TEST.KEYPOINT_OKS_SIGMAS is {num_keypoints_oks}. " "They have to agree with each other. For meaning of OKS, please refer to " "http://cocodataset.org/#keypoints-eval." ) coco_eval.evaluate() coco_eval.accumulate() coco_eval.summarize() return coco_eval
adaptive_teacher-main
prod_lib/evaluation/coco_evaluation.py
# -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. import logging import numpy as np import os import tempfile import xml.etree.ElementTree as ET from collections import OrderedDict, defaultdict from functools import lru_cache import torch from detectron2.data import MetadataCatalog from detectron2.utils import comm from detectron2.utils.file_io import PathManager from detectron2.evaluation import DatasetEvaluator class PascalVOCDetectionEvaluator(DatasetEvaluator): """ Evaluate Pascal VOC style AP for Pascal VOC dataset. It contains a synchronization, therefore has to be called from all ranks. Note that the concept of AP can be implemented in different ways and may not produce identical results. This class mimics the implementation of the official Pascal VOC Matlab API, and should produce similar but not identical results to the official API. """ def __init__(self, dataset_name, target_classnames=None): """ Args: dataset_name (str): name of the dataset, e.g., "voc_2007_test" """ self._dataset_name = dataset_name meta = MetadataCatalog.get(dataset_name) # Too many tiny files, download all to local for speed. annotation_dir_local = PathManager.get_local_path( os.path.join(meta.dirname, "Annotations/") ) self._anno_file_template = os.path.join(annotation_dir_local, "{}.xml") self._image_set_path = os.path.join(meta.dirname, "ImageSets", "Main", meta.split + ".txt") self._class_names = meta.thing_classes assert meta.year in [2007, 2012], meta.year self._is_2007 = meta.year == 2007 self._cpu_device = torch.device("cpu") self._logger = logging.getLogger(__name__) if target_classnames == None: self.target_classnames = self._class_names else: self.target_classnames = target_classnames def reset(self): self._predictions = defaultdict(list) # class name -> list of prediction strings def process(self, inputs, outputs): for input, output in zip(inputs, outputs): image_id = input["image_id"] instances = output["instances"].to(self._cpu_device) boxes = instances.pred_boxes.tensor.numpy() scores = instances.scores.tolist() classes = instances.pred_classes.tolist() for box, score, cls in zip(boxes, scores, classes): xmin, ymin, xmax, ymax = box # The inverse of data loading logic in `datasets/pascal_voc.py` xmin += 1 ymin += 1 self._predictions[cls].append( f"{image_id} {score:.3f} {xmin:.1f} {ymin:.1f} {xmax:.1f} {ymax:.1f}" ) def evaluate(self): """ Returns: dict: has a key "segm", whose value is a dict of "AP", "AP50", and "AP75". """ all_predictions = comm.gather(self._predictions, dst=0) if not comm.is_main_process(): return predictions = defaultdict(list) for predictions_per_rank in all_predictions: for clsid, lines in predictions_per_rank.items(): predictions[clsid].extend(lines) del all_predictions self._logger.info( "Evaluating {} using {} metric. " "Note that results do not use the official Matlab API.".format( self._dataset_name, 2007 if self._is_2007 else 2012 ) ) with tempfile.TemporaryDirectory(prefix="pascal_voc_eval_") as dirname: res_file_template = os.path.join(dirname, "{}.txt") aps = defaultdict(list) # iou -> ap per class for cls_id, cls_name in enumerate(self._class_names): if cls_name not in self.target_classnames: continue lines = predictions.get(cls_id, [""]) with open(res_file_template.format(cls_name), "w") as f: f.write("\n".join(lines)) for thresh in range(50, 100, 5): rec, prec, ap = voc_eval( res_file_template, self._anno_file_template, self._image_set_path, cls_name, ovthresh=thresh / 100.0, use_07_metric=self._is_2007, ) aps[thresh].append(ap * 100) ret = OrderedDict() mAP = {iou: np.mean(x) for iou, x in aps.items()} ret["bbox"] = {"AP": np.mean(list(mAP.values())), "AP50": mAP[50], "AP75": mAP[75]} #Add the codes for AP50 for idx, name in enumerate(self.target_classnames): ret["bbox"].update({"AP50-" + name: aps[50][idx]}) return ret ############################################################################## # # Below code is modified from # https://github.com/rbgirshick/py-faster-rcnn/blob/master/lib/datasets/voc_eval.py # -------------------------------------------------------- # Fast/er R-CNN # Licensed under The MIT License [see LICENSE for details] # Written by Bharath Hariharan # -------------------------------------------------------- """Python implementation of the PASCAL VOC devkit's AP evaluation code.""" @lru_cache(maxsize=None) def parse_rec(filename): """Parse a PASCAL VOC xml file.""" with PathManager.open(filename) as f: tree = ET.parse(f) objects = [] for obj in tree.findall("object"): obj_struct = {} obj_struct["name"] = obj.find("name").text obj_struct["pose"] = obj.find("pose").text obj_struct["truncated"] = int(obj.find("truncated").text) obj_struct["difficult"] = int(obj.find("difficult").text) bbox = obj.find("bndbox") obj_struct["bbox"] = [ int(bbox.find("xmin").text), int(bbox.find("ymin").text), int(bbox.find("xmax").text), int(bbox.find("ymax").text), ] objects.append(obj_struct) return objects def voc_ap(rec, prec, use_07_metric=False): """Compute VOC AP given precision and recall. If use_07_metric is true, uses the VOC 07 11-point method (default:False). """ if use_07_metric: # 11 point metric ap = 0.0 for t in np.arange(0.0, 1.1, 0.1): if np.sum(rec >= t) == 0: p = 0 else: p = np.max(prec[rec >= t]) ap = ap + p / 11.0 else: # correct AP calculation # first append sentinel values at the end mrec = np.concatenate(([0.0], rec, [1.0])) mpre = np.concatenate(([0.0], prec, [0.0])) # compute the precision envelope for i in range(mpre.size - 1, 0, -1): mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) # to calculate area under PR curve, look for points # where X axis (recall) changes value i = np.where(mrec[1:] != mrec[:-1])[0] # and sum (\Delta recall) * prec ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) return ap def voc_eval(detpath, annopath, imagesetfile, classname, ovthresh=0.5, use_07_metric=False): """rec, prec, ap = voc_eval(detpath, annopath, imagesetfile, classname, [ovthresh], [use_07_metric]) Top level function that does the PASCAL VOC evaluation. detpath: Path to detections detpath.format(classname) should produce the detection results file. annopath: Path to annotations annopath.format(imagename) should be the xml annotations file. imagesetfile: Text file containing the list of images, one image per line. classname: Category name (duh) [ovthresh]: Overlap threshold (default = 0.5) [use_07_metric]: Whether to use VOC07's 11 point AP computation (default False) """ # assumes detections are in detpath.format(classname) # assumes annotations are in annopath.format(imagename) # assumes imagesetfile is a text file with each line an image name # first load gt # read list of images with PathManager.open(imagesetfile, "r") as f: lines = f.readlines() imagenames = [x.strip() for x in lines] # load annots recs = {} for imagename in imagenames: recs[imagename] = parse_rec(annopath.format(imagename)) # extract gt objects for this class class_recs = {} npos = 0 for imagename in imagenames: R = [obj for obj in recs[imagename] if obj["name"] == classname] bbox = np.array([x["bbox"] for x in R]) difficult = np.array([x["difficult"] for x in R]).astype(np.bool) # difficult = np.array([False for x in R]).astype(np.bool) # treat all "difficult" as GT det = [False] * len(R) npos = npos + sum(~difficult) class_recs[imagename] = {"bbox": bbox, "difficult": difficult, "det": det} # read dets detfile = detpath.format(classname) with open(detfile, "r") as f: lines = f.readlines() splitlines = [x.strip().split(" ") for x in lines] image_ids = [x[0] for x in splitlines] confidence = np.array([float(x[1]) for x in splitlines]) BB = np.array([[float(z) for z in x[2:]] for x in splitlines]).reshape(-1, 4) # sort by confidence sorted_ind = np.argsort(-confidence) BB = BB[sorted_ind, :] image_ids = [image_ids[x] for x in sorted_ind] # go down dets and mark TPs and FPs nd = len(image_ids) tp = np.zeros(nd) fp = np.zeros(nd) for d in range(nd): R = class_recs[image_ids[d]] bb = BB[d, :].astype(float) ovmax = -np.inf BBGT = R["bbox"].astype(float) if BBGT.size > 0: # compute overlaps # intersection ixmin = np.maximum(BBGT[:, 0], bb[0]) iymin = np.maximum(BBGT[:, 1], bb[1]) ixmax = np.minimum(BBGT[:, 2], bb[2]) iymax = np.minimum(BBGT[:, 3], bb[3]) iw = np.maximum(ixmax - ixmin + 1.0, 0.0) ih = np.maximum(iymax - iymin + 1.0, 0.0) inters = iw * ih # union uni = ( (bb[2] - bb[0] + 1.0) * (bb[3] - bb[1] + 1.0) + (BBGT[:, 2] - BBGT[:, 0] + 1.0) * (BBGT[:, 3] - BBGT[:, 1] + 1.0) - inters ) overlaps = inters / uni ovmax = np.max(overlaps) jmax = np.argmax(overlaps) if ovmax > ovthresh: if not R["difficult"][jmax]: if not R["det"][jmax]: tp[d] = 1.0 R["det"][jmax] = 1 else: fp[d] = 1.0 else: fp[d] = 1.0 # compute precision recall fp = np.cumsum(fp) tp = np.cumsum(tp) rec = tp / float(npos) # avoid divide by zero in case the first detection matches a difficult # ground truth prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps) ap = voc_ap(rec, prec, use_07_metric) return rec, prec, ap
adaptive_teacher-main
prod_lib/evaluation/pascal_voc_evaluation.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import contextlib import io import logging import os import json from detectron2.data import DatasetCatalog, MetadataCatalog from d2go.data.utils import CallFuncWithJsonFile from detectron2.utils.file_io import PathManager from fvcore.common.timer import Timer from detectron2.data.datasets.pascal_voc import register_pascal_voc from detectron2.data.datasets.builtin_meta import _get_builtin_metadata from .cityscapes_foggy import load_cityscapes_instances logger = logging.getLogger(__name__) _SPLITS_COCO_FORMAT = {} _SPLITS_COCO_FORMAT["coco"] = { "coco_2017_unlabel": ( "memcache_manifold://mobile_vision_dataset/tree/coco_unlabel2017", "memcache_manifold://mobile_vision_dataset/tree/coco_unlabel2017/coco_jsons/image_info_unlabeled2017.json", ), "goi_v5_unlabel": ( "memcache_manifold://portal_ai_data/tree/goi_v5/train", "memcache_manifold://mobile_vision_dataset/tree/goi/v5/coco_jsons/openimages_v5_train_unlabel.json", ), } def register_coco_unlabel(): for _, splits_per_dataset in _SPLITS_COCO_FORMAT.items(): for key, (image_root, json_file) in splits_per_dataset.items(): meta = {} register_coco_unlabel_instances(key, meta, json_file, image_root) def register_coco_unlabel_instances(name, metadata, json_file, image_root): """ Register a dataset in COCO's json annotation format for instance detection, instance segmentation and keypoint detection. (i.e., Type 1 and 2 in http://cocodataset.org/#format-data. `instances*.json` and `person_keypoints*.json` in the dataset). This is an example of how to register a new dataset. You can do something similar to this function, to register new datasets. Args: name (str): the name that identifies a dataset, e.g. "coco_2014_train". metadata (dict): extra metadata associated with this dataset. You can leave it as an empty dict. json_file (str): path to the json instance annotation file. image_root (str or path-like): directory which contains all the images. """ assert isinstance(name, str), name assert isinstance(json_file, (str, os.PathLike)), json_file assert isinstance(image_root, (str, os.PathLike)), image_root # 1. register a function which returns dicts DatasetCatalog.register( name, lambda: load_coco_unlabel_json(json_file, image_root, name) ) # 2. Optionally, add metadata about this dataset, # since they might be useful in evaluation, visualization or logging MetadataCatalog.get(name).set( json_file=json_file, image_root=image_root, evaluator_type="coco", **metadata ) def load_coco_unlabel_json( json_file, image_root, dataset_name=None, extra_annotation_keys=None ): """ Load a json file with COCO's instances annotation format. Currently supports instance detection, instance segmentation, and person keypoints annotations. Args: json_file (str): full path to the json file in COCO instances annotation format. image_root (str or path-like): the directory where the images in this json file exists. dataset_name (str): the name of the dataset (e.g., coco_2017_train). If provided, this function will also put "thing_classes" into the metadata associated with this dataset. extra_annotation_keys (list[str]): list of per-annotation keys that should also be loaded into the dataset dict (besides "iscrowd", "bbox", "keypoints", "category_id", "segmentation"). The values for these keys will be returned as-is. For example, the densepose annotations are loaded in this way. Returns: list[dict]: a list of dicts in Detectron2 standard dataset dicts format. (See `Using Custom Datasets </tutorials/datasets.html>`_ ) Notes: 1. This function does not read the image files. The results do not have the "image" field. """ from pycocotools.coco import COCO timer = Timer() json_file = PathManager.get_local_path(json_file) with contextlib.redirect_stdout(io.StringIO()): coco_api = COCO(json_file) if timer.seconds() > 1: logger.info( "Loading {} takes {:.2f} seconds.".format(json_file, timer.seconds()) ) # sort indices for reproducible results img_ids = sorted(coco_api.imgs.keys()) imgs = coco_api.loadImgs(img_ids) logger.info( "Loaded {} unlabeled images in COCO format from {}".format(len(imgs), json_file) ) dataset_dicts = [] for img_dict in imgs: record = {} record["file_name"] = os.path.join(image_root, img_dict["file_name"]) record["height"] = img_dict["height"] record["width"] = img_dict["width"] record["image_id"] = img_dict["id"] dataset_dicts.append(record) return dataset_dicts _UNLABELED_DATASETS = { # 1-2 people images extracted from UGC ig images or ig profiles using fetch_image flow "UGC_unlabel_ig_1M_20210514_1or2people": "manifold://pai_mobile/tree/datasets/semi_supervised/unlabeled_UGC/sweep_4m_20210514_20210515_1or2people.json", # hand non-UGC long range frames extracted from collected videos "hand_nonUGC_long_range_384K_20210521": "manifold://pai_mobile/tree/datasets/hand_unlabeled_nonUGC/long_range.json", # hand non-UGC short range images cropped from the annotated bounding boxes in long-range videos "hand_nonUGC_short_range_183K_20210521": "manifold://pai_mobile/tree/datasets/hand_unlabeled_nonUGC/short_range.json", } def load_json(json_file): """ Simply load and return the json_file """ with PathManager.open(json_file, "r") as f: json_data = json.load(f) return json_data def register_unlabeled(): """ Register the unlabeled datasets The json_file needs to be in D2's format """ for name, json_file in _UNLABELED_DATASETS.items(): # 1. register a function which returns dicts DatasetCatalog.register( name, CallFuncWithJsonFile( func=load_json, json_file=json_file ) ) # 2. Optionally, add metadata about this dataset, # since they might be useful in evaluation, visualization or logging MetadataCatalog.get(name).set( json_file=json_file, image_root="", evaluator_type="coco" ) # ==== Predefined splits for raw cityscapes foggy images =========== _RAW_CITYSCAPES_SPLITS = { # "cityscapes_foggy_{task}_train": ("cityscape_foggy/leftImg8bit/train/", "cityscape_foggy/gtFine/train/"), # "cityscapes_foggy_{task}_val": ("cityscape_foggy/leftImg8bit/val/", "cityscape_foggy/gtFine/val/"), # "cityscapes_foggy_{task}_test": ("cityscape_foggy/leftImg8bit/test/", "cityscape_foggy/gtFine/test/"), "cityscapes_foggy_train": ("cityscape_foggy/leftImg8bit/train/", "cityscape_foggy/gtFine/train/"), "cityscapes_foggy_val": ("cityscape_foggy/leftImg8bit/val/", "cityscape_foggy/gtFine/val/"), "cityscapes_foggy_test": ("cityscape_foggy/leftImg8bit/test/", "cityscape_foggy/gtFine/test/"), } def register_all_cityscapes_foggy(): root = "manifold://mobile_vision_dataset/tree/yujheli/dataset" for key, (image_dir, gt_dir) in _RAW_CITYSCAPES_SPLITS.items(): meta = _get_builtin_metadata("cityscapes") image_dir = os.path.join(root, image_dir) gt_dir = os.path.join(root, gt_dir) # inst_key = key.format(task="instance_seg") inst_key = key # DatasetCatalog.register( # inst_key, # lambda x=image_dir, y=gt_dir: load_cityscapes_instances( # x, y, from_json=True, to_polygons=True # ), # ) DatasetCatalog.register( inst_key, lambda x=image_dir, y=gt_dir: load_cityscapes_instances( x, y, from_json=False, to_polygons=False ), ) # MetadataCatalog.get(inst_key).set( # image_dir=image_dir, gt_dir=gt_dir, evaluator_type="cityscapes_instance", **meta # ) # MetadataCatalog.get(inst_key).set( # image_dir=image_dir, gt_dir=gt_dir, evaluator_type="pascal_voc", **meta # ) MetadataCatalog.get(inst_key).set( image_dir=image_dir, gt_dir=gt_dir, evaluator_type="coco", **meta ) # ==== Predefined splits for Clipart (PASCAL VOC format) =========== def register_all_clipart(): root = "manifold://mobile_vision_dataset/tree/yujheli/dataset" SPLITS = [ ("Clipart1k_train", "clipart", "train"), ("Clipart1k_test", "clipart", "test"), ] for name, dirname, split in SPLITS: year = 2012 register_pascal_voc(name, os.path.join(root, dirname), split, year) MetadataCatalog.get(name).evaluator_type = "pascal_voc" # MetadataCatalog.get(name).evaluator_type = "coco" register_all_cityscapes_foggy() register_all_clipart() # register_coco_unlabel() # register_unlabeled() def register_all_water(): root = "manifold://mobile_vision_dataset/tree/yujheli/dataset" #Need to modify to the correct folder containing the dataset. SPLITS = [ ("Watercolor_train", "watercolor", "train"), ("Watercolor_test", "watercolor", "test"), ] for name, dirname, split in SPLITS: year = 2012 # register_pascal_voc(name, os.path.join(root, dirname), split, year, class_names=["person", "dog","bicycle", "bird", "car", "cat"]) register_pascal_voc(name, os.path.join(root, dirname), split, year) MetadataCatalog.get(name).evaluator_type = "pascal_voc_water" register_all_water() def register_all_clipart_ws(): root = "manifold://mobile_vision_dataset/tree/yujheli/dataset" SPLITS = [ ("Clipart1k_train_w", "clipart", "train"), ("Clipart1k_test_w", "clipart", "test"), ] for name, dirname, split in SPLITS: year = 2012 register_pascal_voc(name, os.path.join(root, dirname), split, year) MetadataCatalog.get(name).evaluator_type = "pascal_voc_water" # MetadataCatalog.get(name).evaluator_type = "coco" register_all_clipart_ws()
adaptive_teacher-main
prod_lib/data/builtin.py
# Copyright (c) Facebook, Inc. and its affiliates. import functools import json import logging import multiprocessing as mp import numpy as np import os from itertools import chain import pycocotools.mask as mask_util from PIL import Image from detectron2.structures import BoxMode from detectron2.utils.comm import get_world_size from detectron2.utils.file_io import PathManager from detectron2.utils.logger import setup_logger try: import cv2 # noqa except ImportError: # OpenCV is an optional dependency at the moment pass logger = logging.getLogger(__name__) def _get_cityscapes_files(image_dir, gt_dir): files = [] # scan through the directory cities = PathManager.ls(image_dir) logger.info(f"{len(cities)} cities found in '{image_dir}'.") for city in cities: city_img_dir = os.path.join(image_dir, city) city_gt_dir = os.path.join(gt_dir, city) for basename in PathManager.ls(city_img_dir): image_file = os.path.join(city_img_dir, basename) # suffix = "leftImg8bit.png" # assert basename.endswith(suffix), basename # basename = basename[: -len(suffix)] suffix = 'leftImg8bit_foggy' basename = basename.split(suffix)[0] instance_file = os.path.join(city_gt_dir, basename + "gtFine_instanceIds.png") label_file = os.path.join(city_gt_dir, basename + "gtFine_labelIds.png") json_file = os.path.join(city_gt_dir, basename + "gtFine_polygons.json") files.append((image_file, instance_file, label_file, json_file)) assert len(files), "No images found in {}".format(image_dir) for f in files[0]: assert PathManager.isfile(f), f return files def load_cityscapes_instances(image_dir, gt_dir, from_json=True, to_polygons=True): """ Args: image_dir (str): path to the raw dataset. e.g., "~/cityscapes/leftImg8bit/train". gt_dir (str): path to the raw annotations. e.g., "~/cityscapes/gtFine/train". from_json (bool): whether to read annotations from the raw json file or the png files. to_polygons (bool): whether to represent the segmentation as polygons (COCO's format) instead of masks (cityscapes's format). Returns: list[dict]: a list of dicts in Detectron2 standard format. (See `Using Custom Datasets </tutorials/datasets.html>`_ ) """ if from_json: assert to_polygons, ( "Cityscapes's json annotations are in polygon format. " "Converting to mask format is not supported now." ) files = _get_cityscapes_files(image_dir, gt_dir) logger.info("Preprocessing cityscapes annotations ...") # This is still not fast: all workers will execute duplicate works and will # take up to 10m on a 8GPU server. pool = mp.Pool(processes=max(mp.cpu_count() // get_world_size() // 2, 4)) ret = pool.map( functools.partial(_cityscapes_files_to_dict, from_json=from_json, to_polygons=to_polygons), files, ) logger.info("Loaded {} images from {}".format(len(ret), image_dir)) # Map cityscape ids to contiguous ids from cityscapesscripts.helpers.labels import labels labels = [l for l in labels if l.hasInstances and not l.ignoreInEval] dataset_id_to_contiguous_id = {l.id: idx for idx, l in enumerate(labels)} for dict_per_image in ret: for anno in dict_per_image["annotations"]: anno["category_id"] = dataset_id_to_contiguous_id[anno["category_id"]] return ret def load_cityscapes_semantic(image_dir, gt_dir): """ Args: image_dir (str): path to the raw dataset. e.g., "~/cityscapes/leftImg8bit/train". gt_dir (str): path to the raw annotations. e.g., "~/cityscapes/gtFine/train". Returns: list[dict]: a list of dict, each has "file_name" and "sem_seg_file_name". """ ret = [] # gt_dir is small and contain many small files. make sense to fetch to local first gt_dir = PathManager.get_local_path(gt_dir) for image_file, _, label_file, json_file in _get_cityscapes_files(image_dir, gt_dir): label_file = label_file.replace("labelIds", "labelTrainIds") with PathManager.open(json_file, "r") as f: jsonobj = json.load(f) ret.append( { "file_name": image_file, "sem_seg_file_name": label_file, "height": jsonobj["imgHeight"], "width": jsonobj["imgWidth"], } ) assert len(ret), f"No images found in {image_dir}!" assert PathManager.isfile( ret[0]["sem_seg_file_name"] ), "Please generate labelTrainIds.png with cityscapesscripts/preparation/createTrainIdLabelImgs.py" # noqa return ret def _cityscapes_files_to_dict(files, from_json, to_polygons): """ Parse cityscapes annotation files to a instance segmentation dataset dict. Args: files (tuple): consists of (image_file, instance_id_file, label_id_file, json_file) from_json (bool): whether to read annotations from the raw json file or the png files. to_polygons (bool): whether to represent the segmentation as polygons (COCO's format) instead of masks (cityscapes's format). Returns: A dict in Detectron2 Dataset format. """ from cityscapesscripts.helpers.labels import id2label, name2label image_file, instance_id_file, _, json_file = files annos = [] if from_json: from shapely.geometry import MultiPolygon, Polygon with PathManager.open(json_file, "r") as f: jsonobj = json.load(f) ret = { "file_name": image_file, "image_id": os.path.basename(image_file), "height": jsonobj["imgHeight"], "width": jsonobj["imgWidth"], } # `polygons_union` contains the union of all valid polygons. polygons_union = Polygon() # CityscapesScripts draw the polygons in sequential order # and each polygon *overwrites* existing ones. See # (https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/preparation/json2instanceImg.py) # noqa # We use reverse order, and each polygon *avoids* early ones. # This will resolve the ploygon overlaps in the same way as CityscapesScripts. for obj in jsonobj["objects"][::-1]: if "deleted" in obj: # cityscapes data format specific continue label_name = obj["label"] try: label = name2label[label_name] except KeyError: if label_name.endswith("group"): # crowd area label = name2label[label_name[: -len("group")]] else: raise if label.id < 0: # cityscapes data format continue # Cityscapes's raw annotations uses integer coordinates # Therefore +0.5 here poly_coord = np.asarray(obj["polygon"], dtype="f4") + 0.5 # CityscapesScript uses PIL.ImageDraw.polygon to rasterize # polygons for evaluation. This function operates in integer space # and draws each pixel whose center falls into the polygon. # Therefore it draws a polygon which is 0.5 "fatter" in expectation. # We therefore dilate the input polygon by 0.5 as our input. poly = Polygon(poly_coord).buffer(0.5, resolution=4) if not label.hasInstances or label.ignoreInEval: # even if we won't store the polygon it still contributes to overlaps resolution polygons_union = polygons_union.union(poly) continue # Take non-overlapping part of the polygon poly_wo_overlaps = poly.difference(polygons_union) if poly_wo_overlaps.is_empty: continue polygons_union = polygons_union.union(poly) anno = {} anno["iscrowd"] = label_name.endswith("group") anno["category_id"] = label.id if isinstance(poly_wo_overlaps, Polygon): poly_list = [poly_wo_overlaps] elif isinstance(poly_wo_overlaps, MultiPolygon): poly_list = poly_wo_overlaps.geoms else: raise NotImplementedError("Unknown geometric structure {}".format(poly_wo_overlaps)) poly_coord = [] for poly_el in poly_list: # COCO API can work only with exterior boundaries now, hence we store only them. # TODO: store both exterior and interior boundaries once other parts of the # codebase support holes in polygons. poly_coord.append(list(chain(*poly_el.exterior.coords))) anno["segmentation"] = poly_coord (xmin, ymin, xmax, ymax) = poly_wo_overlaps.bounds anno["bbox"] = (xmin, ymin, xmax, ymax) anno["bbox_mode"] = BoxMode.XYXY_ABS annos.append(anno) else: # See also the official annotation parsing scripts at # https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/evaluation/instances2dict.py # noqa with PathManager.open(instance_id_file, "rb") as f: inst_image = np.asarray(Image.open(f), order="F") # ids < 24 are stuff labels (filtering them first is about 5% faster) flattened_ids = np.unique(inst_image[inst_image >= 24]) ret = { "file_name": image_file, "image_id": os.path.basename(image_file), "height": inst_image.shape[0], "width": inst_image.shape[1], } for instance_id in flattened_ids: # For non-crowd annotations, instance_id // 1000 is the label_id # Crowd annotations have <1000 instance ids label_id = instance_id // 1000 if instance_id >= 1000 else instance_id label = id2label[label_id] if not label.hasInstances or label.ignoreInEval: continue anno = {} anno["iscrowd"] = instance_id < 1000 anno["category_id"] = label.id mask = np.asarray(inst_image == instance_id, dtype=np.uint8, order="F") inds = np.nonzero(mask) ymin, ymax = inds[0].min(), inds[0].max() xmin, xmax = inds[1].min(), inds[1].max() anno["bbox"] = (xmin, ymin, xmax, ymax) if xmax <= xmin or ymax <= ymin: continue anno["bbox_mode"] = BoxMode.XYXY_ABS if to_polygons: # This conversion comes from D4809743 and D5171122, # when Mask-RCNN was first developed. contours = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[ -2 ] polygons = [c.reshape(-1).tolist() for c in contours if len(c) >= 3] # opencv's can produce invalid polygons if len(polygons) == 0: continue anno["segmentation"] = polygons else: anno["segmentation"] = mask_util.encode(mask[:, :, None])[0] annos.append(anno) ret["annotations"] = annos return ret
adaptive_teacher-main
prod_lib/data/cityscapes_foggy.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from detectron2.structures import pairwise_iou class OpenMatchTrainerProbe: def __init__(self, cfg): self.BOX_AP = 0.5 self.NUM_CLASSES = cfg.MODEL.ROI_HEADS.NUM_CLASSES # self.bbox_stat_list = ['compute_fp_gtoutlier', 'compute_num_box', 'compute_ood_acc'] def bbox_stat(self, unlabel_gt, unlabel_pseudo, name, bbox_stat_list): stats = {} sum_gpu_names = [] for metric in bbox_stat_list: stats_per, sum_gpu_names_per = getattr( self, metric)(unlabel_gt, unlabel_pseudo, name) stats.update(stats_per) sum_gpu_names.extend(sum_gpu_names_per) return stats, sum_gpu_names def compute_fp_gtoutlier(self, unlabel_gt, unlabel_pseudo, name): num_gt_ood_object = 0 num_gt_fp_ood_object = 0 sum_iou = 0.0 sum_gpu_names = [] results = {} if len(unlabel_gt) != 0: for gt, pseudo in zip(unlabel_gt, unlabel_pseudo): # import pdb; pdb. set_trace() if name == "pred": pp_boxes = pseudo.pred_boxes elif name == "pseudo_conf" or name == "pseudo_ood": # filter predicted ood box when evaluating this metric pseudo = pseudo[pseudo.gt_classes != -1] pp_boxes = pseudo.gt_boxes else: raise ValueError("Unknown name for probe roi bbox.") if len(gt) != 0 and len(pseudo) != 0: max_iou, max_idx = pairwise_iou( gt.gt_boxes.to('cuda'), pp_boxes).max(1) ood_idx = (gt.gt_classes == -1) num_gt_ood_object += ood_idx.sum().item() num_gt_fp_ood_object += (max_iou[ood_idx] > self.BOX_AP).sum().item() sum_iou += max_iou[ood_idx].sum().item() elif len(gt) != 0 and len(pseudo) == 0: ood_idx = (gt.gt_classes == -1) num_gt_ood_object += ood_idx.shape[0] results = {'Analysis_'+name+'/num_gt_ood_object': num_gt_ood_object, 'Analysis_'+name+'/num_gt_fp_ood_object': num_gt_fp_ood_object, 'Analysis_'+name+'/sum_iou': sum_iou} sum_gpu_names.extend(list(results.keys())) return results, sum_gpu_names def compute_num_box(self, unlabel_gt, unlabel_pseudo, name): num_bbox = 0.0 size_bbox = 0.0 avg_conf = 0.0 # measure in and out box for openset SS-OD num_bbox_in = 0.0 num_bbox_out = 0.0 num_bg = 0.0 # when ground-truth is missing in unlabeled data if len(unlabel_gt) == 0: for pp_roi in unlabel_pseudo: if name == "pred": pp_boxes = pp_roi.pred_boxes pp_classes = pp_roi.pred_classes pp_scores = pp_roi.scores elif name == "pseudo_conf" or name == "pseudo_ood": pp_boxes = pp_roi.gt_boxes pp_classes = pp_roi.gt_classes pp_scores = pp_roi.scores elif name == "gt": pp_boxes = pp_roi.gt_boxes pp_classes = pp_roi.gt_classes else: raise ValueError("Unknown name for probe roi bbox.") # all boxes (in + out boxes) if len(pp_roi) != 0: # bbox number and size num_bbox += len(pp_roi) size_bbox += pp_boxes.area().mean().item() # average box confidence if name != "gt": avg_conf += pp_scores.mean() else: num_bbox += 0 size_bbox += torch.tensor(0).cuda() num_valid_img = len(unlabel_pseudo) else: # with ground-truth num_valid_img = 0 for gt, pp_roi in zip(unlabel_gt, unlabel_pseudo): if name == "pred": pp_boxes = pp_roi.pred_boxes pp_classes = pp_roi.pred_classes pp_scores = pp_roi.scores elif name == "pseudo_conf" or name == "pseudo_ood": # filter out ood pseudo-box when doing analysis pp_roi = pp_roi[pp_roi.gt_classes != -1] pp_boxes = pp_roi.gt_boxes pp_classes = pp_roi.gt_classes pp_scores = pp_roi.scores elif name == "gt": pp_boxes = pp_roi.gt_boxes pp_classes = pp_roi.gt_classes else: raise ValueError("Unknown name for probe roi bbox.") # all boxes (in + out boxes) if len(pp_roi) != 0: # bbox number and size num_bbox += len(pp_roi) size_bbox += pp_boxes.area().mean().item() # average box confidence if name != "gt": avg_conf += pp_scores.mean() else: num_bbox += 0 size_bbox += torch.tensor(0).cuda() # in and out class if name == "gt": pp_roi_in = pp_roi[pp_classes != -1] num_bbox_in += len(pp_roi_in) pp_roi_out = pp_roi[pp_classes == -1] num_bbox_out += len(pp_roi_out) num_valid_img += 1 elif name == "pred" or name == "pseudo_conf" or name == "pseudo_ood": if len(gt.gt_boxes.to('cuda'))>0 and len(pp_boxes) > 0: max_iou, max_idx = pairwise_iou(gt.gt_boxes.to('cuda'), pp_boxes).max(0) # for the ground-truth label for each pseudo-box gtclass4pseudo = gt.gt_classes[max_idx] matchgtbox = max_iou > 0.5 # compute the number of boxes (background, inlier, outlier) num_bg += (~matchgtbox).sum().item() num_bbox_in += (gtclass4pseudo[matchgtbox] != -1).sum().item() num_bbox_out += (gtclass4pseudo[matchgtbox] == -1).sum().item() num_valid_img += 1 else: raise ValueError("Unknown name for probe roi bbox.") box_probe = {} if num_valid_img >0 : box_probe["Analysis_" + name + "/Num_bbox"] = num_bbox / \ num_valid_img box_probe["Analysis_" + name + "/Size_bbox"] = size_bbox / \ num_valid_img box_probe["Analysis_" + name + "/Num_bbox_inlier"] = num_bbox_in / num_valid_img box_probe["Analysis_" + name + "/Num_bbox_outlier"] = num_bbox_out / num_valid_img if name != "gt": # prediciton, background number box_probe["Analysis_" + name + "/Conf"] = avg_conf / \ num_valid_img box_probe["Analysis_" + name + "/Num_bbox_background"] = num_bg / num_valid_img box_probe["Analysis_" + name + "/background_fp_ratio"] = num_bg / num_bbox box_probe["Analysis_" + name + "/background_tp_ratio"] = num_bbox_in / num_bbox else: box_probe["Analysis_" + name + "/Num_bbox"] = 0.0 box_probe["Analysis_" + name + "/Size_bbox"] = 0.0 box_probe["Analysis_" + name + "/Num_bbox_inlier"] = 0.0 box_probe["Analysis_" + name + "/Num_bbox_outlier"] = 0.0 if name != "gt": # prediciton, background number box_probe["Analysis_" + name + "/Conf"] = 0.0 box_probe["Analysis_" + name + "/Num_bbox_background"] = 0.0 box_probe["Analysis_" + name + "/background_fp_ratio"] = num_bg / num_bbox box_probe["Analysis_" + name + "/background_tp_ratio"] = num_bbox_in / num_bbox return box_probe, [] def compute_ood_acc(self, unlabel_gt, unlabel_pseudo, name, BOX_IOU=0.5): results = {} sum_gpu_names = [] if len(unlabel_gt) != 0: for metric in ['acc_outlier', 'recall_outlier']: for samples in ['_fg', '_all']: for fraction_part in ['_nume', '_deno']: results[metric+samples+fraction_part] = 0.0 for gt, pred in zip(unlabel_gt, unlabel_pseudo): if name == "pred": pp_boxes = pred.pred_boxes pp_ood_scores = pred.ood_scores elif name == "pseudo_conf" or name == "pseudo_ood": # assume these outlier are suppressed pred = pred[pred.gt_classes != -1] pp_boxes = pred.gt_boxes pp_ood_scores = pred.ood_scores else: raise ValueError("Unknown name for probe roi bbox.") if len(gt) != 0 and len(pred) != 0: # find the most overlapped ground-truth box for each pseudo-box max_iou, max_idx = pairwise_iou( gt.gt_boxes.to('cuda'), pp_boxes).max(0) # ignore background instances find_fg_mask = max_iou > BOX_IOU if find_fg_mask.sum() > 0: gt_corres = gt[max_idx].gt_classes.to("cuda") gt_outlier = (gt_corres[find_fg_mask] == -1) pred_outlier = pp_ood_scores[find_fg_mask][:, 0] > 0.5 # accurcay of ood detection (foreground) # acc_outlier_fg = (pred_outlier == gt_outlier).sum() /find_fg_mask.sum() results['acc_outlier_fg_nume'] += ( pred_outlier == gt_outlier).sum() results['acc_outlier_fg_deno'] += find_fg_mask.sum() # recall of ood detection (foreground) # recall_outlier_fg = (pred_outlier[gt_outlier] == gt_outlier[gt_outlier]).sum() /gt_outlier.sum() results['recall_outlier_fg_nume'] += ( pred_outlier[gt_outlier] == gt_outlier[gt_outlier]).sum() results['recall_outlier_fg_deno'] += gt_outlier.sum() # Regard backgound gt as outlier gt_corres = gt[max_idx].gt_classes.to("cuda") # convert all background gt as outlier gt_corres[~find_fg_mask] = -1 gt_outlier = gt_corres == -1 pred_outlier = pp_ood_scores[:, 0] > 0.5 # accurcay of ood detection (all) # acc_outlier_all = (pred_outlier == gt_outlier).sum() /len(pred) results['acc_outlier_all_nume'] += ( pred_outlier == gt_outlier).sum() results['acc_outlier_all_deno'] += len(pred) # recall of ood detection (all) # recall_outlier_all = (pred_outlier[gt_outlier] == gt_outlier[gt_outlier]).sum() /gt_outlier.sum() results['recall_outlier_all_nume'] += ( pred_outlier[gt_outlier] == gt_outlier[gt_outlier]).sum() results['recall_outlier_all_deno'] += gt_outlier.sum() results = {'Analysis_'+name+'/'+k: v for k, v in results.items()} sum_gpu_names.extend(list(results.keys())) return results, sum_gpu_names
adaptive_teacher-main
prod_lib/engine/probe.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import logging import time from collections import OrderedDict from typing import Dict import detectron2.utils.comm as comm import numpy as np import torch from detectron2.engine import SimpleTrainer from detectron2.structures import BitMasks, Boxes, Instances, Keypoints from detectron2.utils.events import get_event_storage from d2go.projects.unbiased_teacher.engine.trainer import UnbiasedTeacherTrainer from d2go.projects.unbiased_teacher.utils.probe import probe import copy logger = logging.getLogger(__name__) class DAobjTrainer(UnbiasedTeacherTrainer): """ A trainer for Teacher-Student mutual learning following this paper: "Unbiased Teacher for Semi-Supervised Object Detection" It assumes that every step, you: For Teacher: 1. Perform a forward pass on a weakly augmented unlabeled data from the data_loader. 2. Generate pseudo-labels on the weakly augmented unlabeled data For Student: 1. Perform a forward pass on a strongly augmented unlabeled data from the data_loader. 2. Perform a forward pass on a labeled data from the data_loader. 1. Use pseudo-labels generated from the Teacher as target and compute the loss on a strongly augmented unlabeled data 2. Compute the gradients with the above losses on labeled and unlabeled data. 3. Update the Student model with the optimizer. 4. EMA update the Teacher model """ # def __init__(self, cfg, model, model_teacher, data_loader, optimizer): # """ # Args: # model: a torch Module. Takes a data from data_loader and returns a # dict of losses. # data_loader: an iterable. Contains data to be used to call model. # optimizer: a torch optimizer. # """ # super().__init__(model, data_loader, optimizer) # self.cfg = cfg # self.model_teacher = model_teacher def run_step(self): assert ( self.model.training ), "Student model was changed to eval mode during training" start = time.perf_counter() data = next(self._data_loader_iter) # q (queue): strongly augmented, k (key): weakly augmented #TODO Need to further use the weak samples for domain adaptation label_data_q, label_data_k, unlabel_data_q, unlabel_data_k = data data_time = time.perf_counter() - start if ( self.cfg.UNBIASEDTEACHER.BURN_IN_STEP != 0 and self.iter < self.cfg.UNBIASEDTEACHER.BURN_IN_STEP ): # Burn-In stage. Supervisedly train the Student model. losses, loss_dict, record_dict = self.burn_in(label_data_q, label_data_k) else: # Copy the Student model to the Teacher (using keep_rate = 0) if self.iter == self.cfg.UNBIASEDTEACHER.BURN_IN_STEP: logger.info("Copying Student weights to the Teacher .....") self._update_teacher_model(keep_rate=0.0) elif ( self.iter - self.cfg.UNBIASEDTEACHER.BURN_IN_STEP ) % self.cfg.UNBIASEDTEACHER.TEACHER_UPDATE_ITER == 0: self._update_teacher_model( keep_rate=self.cfg.UNBIASEDTEACHER.EMA.KEEP_RATE ) # Teacher-Student Mutual Learning losses, loss_dict, record_dict = self.teacher_student_learning( label_data_q, label_data_k, unlabel_data_q, unlabel_data_k ) self.optimizer.zero_grad() losses.backward() self._write_metrics(record_dict, data_time) """ If you need gradient clipping/scaling or other processing, you can wrap the optimizer with your custom `step()` method. But it is suboptimal as explained in https://arxiv.org/abs/2006.15704 Sec 3.2.4 """ self.optimizer.step() def burn_in(self, label_data_q, label_data_k): """ Perform Burn-In stage with labeled data """ # combine label_data_q + label_data_k label_data_q.extend(label_data_k) record_dict, _, _, _ = self.model(label_data_q, branch="supervised") # weight losses loss_dict = self.weight_losses(record_dict) losses = sum(loss_dict.values()) return losses, loss_dict, record_dict def teacher_student_learning( self, label_data_q, label_data_k, unlabel_data_q, unlabel_data_k ): """ Perform Teacher-Student Mutual Learning with labeled and unlabeled data """ # q (queue): strongly augmented, k (key): weakly augmented record_dict = {} ######################## For probe ################################# # import pdb; pdb. set_trace() gt_unlabel_k = self.get_label(unlabel_data_k) # 0. remove potential ground-truth labels in the unlabeled data unlabel_data_q = self.remove_label(unlabel_data_q) unlabel_data_k = self.remove_label(unlabel_data_k) # 1. generate the pseudo-label using teacher model # TODO: why is the Teacher not in .eval() mode? with torch.no_grad(): ( _, proposals_rpn_unsup_k, proposals_roih_unsup_k, _, ) = self.model_teacher(unlabel_data_k, branch="unsup_data_weak") ######################## For probe ################################# # import pdb; pdb. set_trace() # analysis_pred, _ = self.probe.compute_num_box(gt_unlabel_k,proposals_roih_unsup_k,'pred') # record_dict.update(analysis_pred) # 2. Pseudo-labeling # Pseudo-labeling for RPN head (bbox location/objectness) joint_proposal_dict = {} ## No need this joint_proposal_dict["proposals_rpn"] = proposals_rpn_unsup_k ( pesudo_proposals_rpn_unsup_k, nun_pseudo_bbox_rpn, ) = self.process_pseudo_label( proposals_rpn_unsup_k, self.cfg.UNBIASEDTEACHER.BBOX_THRESHOLD, self.cfg.UNBIASEDTEACHER.MASK_THRESHOLD, self.cfg.UNBIASEDTEACHER.KEYPOINT_THRESHOLD, "rpn", "thresholding", ) joint_proposal_dict["proposals_pseudo_rpn"] = pesudo_proposals_rpn_unsup_k ## No need this end # Pseudo-labeling for ROI head (bbox location/objectness) pesudo_proposals_roih_unsup_k, _ = self.process_pseudo_label( proposals_roih_unsup_k, self.cfg.UNBIASEDTEACHER.BBOX_THRESHOLD, self.cfg.UNBIASEDTEACHER.MASK_THRESHOLD, self.cfg.UNBIASEDTEACHER.KEYPOINT_THRESHOLD, "roih", "thresholding", ) joint_proposal_dict["proposals_pseudo_roih"] = pesudo_proposals_roih_unsup_k ######################## For probe ################################# analysis_pred, _ = self.probe.compute_num_box(gt_unlabel_k,pesudo_proposals_roih_unsup_k,'pred') record_dict.update(analysis_pred) # Probe for analysis (usually for research development) if self.cfg.UNBIASEDTEACHER.PROBE: record_dict = probe( self.cfg, proposals_roih_unsup_k, unlabel_data_k, pesudo_proposals_roih_unsup_k, record_dict, ) # 3. add pseudo-label to unlabeled data unlabel_data_q = self.add_label( unlabel_data_q, joint_proposal_dict["proposals_pseudo_roih"] ) unlabel_data_k = self.add_label( unlabel_data_k, joint_proposal_dict["proposals_pseudo_roih"] ) # all_label_data = label_data_q + label_data_k if self.cfg.UNBIASEDTEACHER.ISAUG == "No": all_label_data = label_data_k all_unlabel_data = unlabel_data_k else: all_label_data = label_data_q + label_data_k all_unlabel_data = unlabel_data_q # 4. input both strongly and weakly augmented labeled data into student model # all_unlabel_data = unlabel_data_q record_all_label_data, _, _, _ = self.model(all_label_data, branch="supervised") record_dict.update(record_all_label_data) # 5. input strongly augmented unlabeled data into model record_all_unlabel_data, _, _, _ = self.model( all_unlabel_data, branch="supervised-pseudo" ) # rename unsupervised loss # NOTE: names of the recorded output from model are hard-coded # we rename them accordingly for unlabeled data new_record_all_unlabel_data = {} for key in record_all_unlabel_data.keys(): new_record_all_unlabel_data[key + "_pseudo"] = record_all_unlabel_data[key] record_dict.update(new_record_all_unlabel_data) # 6. input weakly labeled data (source) and weakly unlabeled data (target) to student model # give sign to the target data for i_index in range(len(unlabel_data_k)): # unlabel_data_item = {} for k, v in unlabel_data_k[i_index].items(): # label_data_k[i_index][k + "_unlabeled"] = v label_data_k[i_index][k + "_unlabeled"] = v # unlabel_data_k[i_index] = unlabel_data_item all_domain_data = label_data_k # all_domain_data = label_data_k + unlabel_data_k record_all_domain_data, _, _, _ = self.model(all_domain_data, branch="domain") record_dict.update(record_all_domain_data) # 7. distill teacher # for distill back to teacher with torch.no_grad(): ( _, proposals_rpn_unsup_dis, proposals_roih_unsup_dis, _, ) = self.model(unlabel_data_k, branch="unsup_data_weak") pesudo_proposals_roih_unsup_k, _ = self.process_pseudo_label( proposals_roih_unsup_dis, self.cfg.UNBIASEDTEACHER.BBOX_THRESHOLD, self.cfg.UNBIASEDTEACHER.MASK_THRESHOLD, self.cfg.UNBIASEDTEACHER.KEYPOINT_THRESHOLD, "roih", "thresholding", ) unlabel_data_k = self.remove_label(unlabel_data_k) unlabel_data_k = self.add_label( unlabel_data_k, pesudo_proposals_roih_unsup_k ) record_distill_data, _, _, _ = self.model_teacher( unlabel_data_k, branch="supervised-pseudo" ) new_record_all_distill_data = {} for key in record_distill_data.keys(): new_record_all_distill_data[key + "_distill"] = record_distill_data[key] record_dict.update(new_record_all_distill_data) # weighting losses loss_dict = self.weight_losses(record_dict) #Add discriminator loss here #loss_dict.update(...) losses = sum(loss_dict.values()) return losses, loss_dict, record_dict def weight_losses(self, record_dict): loss_dict = {} REGRESSION_LOSS_WEIGHT = 0 for key in record_dict.keys(): if key.startswith("loss"): if key == "loss_rpn_cls_pseudo": loss_dict[key] = ( record_dict[key] * self.cfg.UNBIASEDTEACHER.UNSUP_LOSS_WEIGHT_RPN_CLS ) elif ( key == "loss_rpn_loc_pseudo" or key == "loss_box_reg_pseudo" ): # set pseudo bbox regression to 0 loss_dict[key] = record_dict[key] * REGRESSION_LOSS_WEIGHT elif ( key == "loss_rpn_loc_distill" or key == "loss_box_reg_distill" ): # set pseudo bbox regression to 0 loss_dict[key] = record_dict[key] * REGRESSION_LOSS_WEIGHT elif key.endswith("mask_pseudo"): # unsupervised loss for segmentation loss_dict[key] = ( record_dict[key] * self.cfg.UNBIASEDTEACHER.UNSUP_LOSS_WEIGHT_MASK ) elif key.endswith("keypoint_pseudo"): # unsupervised loss for keypoint loss_dict[key] = ( record_dict[key] * self.cfg.UNBIASEDTEACHER.UNSUP_LOSS_WEIGHT_KEYPOINT ) elif key.endswith("pseudo"): # unsupervised loss loss_dict[key] = ( record_dict[key] * self.cfg.UNBIASEDTEACHER.UNSUP_LOSS_WEIGHT ) elif ( key == "loss_D_img_s" or key == "loss_D_img_t" ): # set weight for discriminator # import pdb # pdb.set_trace() loss_dict[key] = record_dict[key] * self.cfg.UNBIASEDTEACHER.DIS_LOSS_WEIGHT #Need to modify defaults and yaml else: # supervised loss loss_dict[key] = record_dict[key] * 1 return loss_dict def threshold_bbox( self, proposal_bbox_inst, thres=0.7, mask_thres=0.5, keypoint_thres=0.5, proposal_type="roih", ): if proposal_type == "rpn": valid_map = proposal_bbox_inst.objectness_logits > thres # create instances containing boxes and gt_classes image_shape = proposal_bbox_inst.image_size new_proposal_inst = Instances(image_shape) # create box new_bbox_loc = proposal_bbox_inst.proposal_boxes.tensor[valid_map, :] new_boxes = Boxes(new_bbox_loc) # add boxes to instances new_proposal_inst.gt_boxes = new_boxes new_proposal_inst.pred_boxes = new_boxes new_proposal_inst.objectness_logits = proposal_bbox_inst.objectness_logits[ valid_map ] elif proposal_type == "roih": valid_map = proposal_bbox_inst.scores > thres # create instances containing boxes and gt_classes image_shape = proposal_bbox_inst.image_size new_proposal_inst = Instances(image_shape) # create box new_bbox_loc = proposal_bbox_inst.pred_boxes.tensor[valid_map, :] new_boxes = Boxes(new_bbox_loc) # add boxes to instances new_proposal_inst.gt_boxes = new_boxes new_proposal_inst.pred_boxes = new_boxes new_proposal_inst.gt_classes = proposal_bbox_inst.pred_classes[valid_map] new_proposal_inst.pred_classes = proposal_bbox_inst.pred_classes[valid_map] new_proposal_inst.scores = proposal_bbox_inst.scores[valid_map] if self.cfg.MODEL.MASK_ON and new_boxes: # put predicted output into gt_masks with thresholding new_masks = proposal_bbox_inst.pred_masks[valid_map].squeeze(1) new_masks = new_masks >= mask_thres new_proposal_inst.gt_masks = BitMasks(new_masks) if self.cfg.MODEL.KEYPOINT_ON and new_boxes: # we use the keypoint score as the basis for thresholding new_keypoints = proposal_bbox_inst.pred_keypoints[valid_map, :] invalid_keypoints = new_keypoints[:, :, 2] < keypoint_thres # (x, y, visibility): visibility flag = 0 -> not labeled (in which case x=y=0) new_keypoints[invalid_keypoints] = torch.FloatTensor([0, 0, 0]).to( new_keypoints.device ) new_proposal_inst.gt_keypoints = Keypoints(new_keypoints) return new_proposal_inst
adaptive_teacher-main
prod_lib/engine/trainer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This software may be used and distributed according to the terms of the # GNU General Public License version 2. ''' Author: Mulong Luo Date: 2022.4.1 Usage: defines various replacement policy to be used in AutoCAT ''' import block import random INVALID_TAG = '--------' # interface for cache replacement policy per set class rep_policy: def __init__(self): self.verbose = False def touch(self, tag, timestamp): pass def reset(self, tag, timestamp): pass def invalidate(self, tag): pass def find_victim(self, timestamp): pass def vprint(self, *args): if self.verbose == 1: print( " "+" ".join(map(str,args))+" ") # LRU policy class lru_policy(rep_policy): def __init__(self, associativity, block_size, verbose=False): self.associativity = associativity self.block_size = block_size self.blocks = {} self.verbose = verbose def touch(self, tag, timestamp): assert(tag in self.blocks) self.blocks[tag].last_accessed = timestamp def reset(self, tag, timestamp): return self.touch(tag, timestamp) def instantiate_entry(self, tag, timestamp): assert(tag == INVALID_TAG or tag not in self.blocks) assert(len(self.blocks) < self.associativity) self.blocks[tag] = block.Block(self.block_size, timestamp, False, 0) #def reset(self, tag): def invalidate(self, tag): assert(tag in self.blocks) del self.blocks[tag] #def reset(self, tag): def invalidate_unsafe(self, tag): if tag in self.blocks: del self.blocks[tag] def find_victim(self, timestamp): in_cache = list(self.blocks.keys()) #print(len(in_cache)) #print(in_cache) victim_tag = in_cache[0] for b in in_cache: self.vprint(b + ' '+ str(self.blocks[b].last_accessed)) if self.blocks[b].last_accessed < self.blocks[victim_tag].last_accessed: victim_tag = b return victim_tag # random replacement policy class rand_policy(rep_policy): def __init__(self, associativity, block_size, verbose=False): self.associativity = associativity self.block_size = block_size self.blocks = {} self.verbose = verbose def touch(self, tag, timestamp): assert(tag in self.blocks) self.blocks[tag].last_accessed = timestamp def reset(self, tag, timestamp): return self.touch(tag, timestamp) def instantiate_entry(self, tag, timestamp): assert(tag not in self.blocks) self.blocks[tag] = block.Block(self.block_size, timestamp, False, 0) def invalidate(self, tag): assert(tag in self.blocks) del self.blocks[tag] def find_victim(self, timestamp): in_cache = list(self.blocks.keys()) index = random.randint(0,len(in_cache)-1) victim_tag = in_cache[index] return victim_tag # still needs to debug import math # based on c implementation of tree_plru # https://github.com/gem5/gem5/blob/87c121fd954ea5a6e6b0760d693a2e744c2200de/src/mem/cache/replacement_policies/tree_plru_rp.cc class tree_plru_policy(rep_policy): import math def __init__(self, associativity, block_size, verbose = False): self.associativity = associativity self.block_size = block_size self.num_leaves = associativity self.plrutree = [ False ] * ( self.num_leaves - 1 ) self.count = 0 self.candidate_tags = [ INVALID_TAG ] * self.num_leaves self.verbose = verbose self.vprint(self.plrutree) self.vprint(self.candidate_tags) #self.tree_instance = # holds the latest temporary tree instance created by def parent_index(self,index): return math.floor((index - 1) / 2) def left_subtree_index(self,index): return 2 * index + 1 def right_subtree_index(self,index): return 2 * index + 2 def is_right_subtree(self, index): return index % 2 == 0 def touch(self, tag, timestamp): # find the index tree_index = 0 self.vprint(tree_index) while tree_index < len(self.candidate_tags): if self.candidate_tags[tree_index] == tag: break else: tree_index += 1 tree_index += ( self.num_leaves - 1) # set the path right = self.is_right_subtree(tree_index) tree_index = self.parent_index(tree_index) self.plrutree[tree_index] = not right while tree_index != 0: right = self.is_right_subtree(tree_index) tree_index = self.parent_index(tree_index) #exit(-1) self.plrutree[tree_index] = not right self.vprint(self.plrutree) self.vprint(self.candidate_tags) def reset(self, tag, timestamp): self.touch(tag, timestamp) #def reset(self, tag): def invalidate(self, tag): # find index of tag self.vprint('invalidate ' + tag) tree_index = 0 while tree_index < len(self.candidate_tags): if self.candidate_tags[tree_index] == tag: break else: tree_index += 1 #print(tree_index) self.candidate_tags[tree_index] = INVALID_TAG tree_index += (self.num_leaves - 1 ) # invalidate the path right = self.is_right_subtree(tree_index) tree_index = self.parent_index(tree_index) self.plrutree[tree_index] = right while tree_index != 0: right = self.is_right_subtree(tree_index) tree_index = self.parent_index(tree_index) self.plrutree[tree_index] = right self.vprint(self.plrutree) self.vprint(self.candidate_tags) def find_victim(self, timestamp): tree_index = 0 while tree_index < len(self.plrutree): if self.plrutree[tree_index] == 1: tree_index = self.right_subtree_index(tree_index) else: tree_index = self.left_subtree_index(tree_index) victim_tag = self.candidate_tags[tree_index - (self.num_leaves - 1) ] return victim_tag # notice the usage of instantiate_entry() here is # different from instantiateEntry() in gem5 # in gem5 the function is only called during cache initialization # while here instantiate_entry is used when a line is evicted and new line is installed def instantiate_entry(self, tag, timestamp): # find a tag that can be invalidated index = 0 while index < len(self.candidate_tags): if self.candidate_tags[index] == INVALID_TAG: break index += 1 assert(self.candidate_tags[index] == INVALID_TAG) # this does not always hold for tree-plru self.candidate_tags[index] = tag # touch the entry self.touch(tag, timestamp) class bit_plru(rep_policy): def __init__(self, associativity, block_size, verbose = False): self.associativity = associativity self.block_size = block_size self.blocks = {} self.verbose = verbose def touch(self, tag, timestamp): assert(tag in self.blocks) self.blocks[tag].last_accessed = 1 def reset(self, tag, timestamp): return self.touch(tag, timestamp) def instantiate_entry(self, tag, timestamp): assert(tag not in self.blocks) timestamp = 1 self.blocks[tag] = block.Block(self.block_size, timestamp, False, 0) #def reset(self, tag): def invalidate(self, tag): assert(tag in self.blocks) del self.blocks[tag] def find_victim(self, timestamp): in_cache = list(self.blocks.keys()) victim_tag = in_cache[0] found = False for b in in_cache: self.vprint(b + ' '+ str(self.blocks[b].last_accessed)) # find the smallest last_accessed address if self.blocks[b].last_accessed == 0: victim_tag = b found = True break if found == True: return victim_tag else: # reset all last_accessed to 0 for b in in_cache: self.blocks[b].last_accessed = 0 # find the leftmost tag for b in in_cache: if self.blocks[b].last_accessed == 0: victim_tag = b break return victim_tag #pl cache option PL_NOTSET = 0 PL_LOCK = 1 PL_UNLOCK = 2 class plru_pl_policy(rep_policy): def __init__(self, associativity, block_size, verbose = False): self.associativity = associativity self.block_size = block_size self.num_leaves = associativity self.plrutree = [ False ] * ( self.num_leaves - 1 ) self.count = 0 self.candidate_tags = [ INVALID_TAG ] * self.num_leaves self.lockarray = [ PL_UNLOCK ] * self.num_leaves self.verbose = verbose self.vprint(self.plrutree) self.vprint(self.lockarray) self.vprint(self.candidate_tags) #self.tree_instance = # holds the latest temporary tree instance created by def parent_index(self,index): return math.floor((index - 1) / 2) def left_subtree_index(self,index): return 2 * index + 1 def right_subtree_index(self,index): return 2 * index + 2 def is_right_subtree(self, index): return index % 2 == 0 def touch(self, tag, timestamp): # find the index tree_index = 0 self.vprint(tree_index) while tree_index < len(self.candidate_tags): if self.candidate_tags[tree_index] == tag: break else: tree_index += 1 tree_index += ( self.num_leaves - 1) # set the path right = self.is_right_subtree(tree_index) tree_index = self.parent_index(tree_index) self.plrutree[tree_index] = not right while tree_index != 0: right = self.is_right_subtree(tree_index) tree_index = self.parent_index(tree_index) #exit(-1) self.plrutree[tree_index] = not right self.vprint(self.plrutree) self.vprint(self.lockarray) self.vprint(self.candidate_tags) def reset(self, tag, timestamp): self.touch(tag, timestamp) #def reset(self, tag): def invalidate(self, tag): # find index of tag self.vprint('invalidate ' + tag) tree_index = 0 while tree_index < len(self.candidate_tags): if self.candidate_tags[tree_index] == tag: break else: tree_index += 1 #print(tree_index) self.candidate_tags[tree_index] = INVALID_TAG tree_index += (self.num_leaves - 1 ) # invalidate the path right = self.is_right_subtree(tree_index) tree_index = self.parent_index(tree_index) self.plrutree[tree_index] = right while tree_index != 0: right = self.is_right_subtree(tree_index) tree_index = self.parent_index(tree_index) self.plrutree[tree_index] = right self.vprint(self.plrutree) self.vprint(self.lockarray) self.vprint(self.candidate_tags) def find_victim(self, timestamp): tree_index = 0 while tree_index < len(self.plrutree): if self.plrutree[tree_index] == 1: tree_index = self.right_subtree_index(tree_index) else: tree_index = self.left_subtree_index(tree_index) index = tree_index - (self.num_leaves - 1) # pl cache if self.lockarray[index] == PL_UNLOCK: victim_tag = self.candidate_tags[index] return victim_tag else: return INVALID_TAG # notice the usage of instantiate_entry() here is # different from instantiateEntry() in gem5 # in gem5 the function is only called during cache initialization # while here instantiate_entry is used when a line is evicted and new line is installed def instantiate_entry(self, tag, timestamp): # find a tag that can be invalidated index = 0 while index < len(self.candidate_tags): if self.candidate_tags[index] == INVALID_TAG: break index += 1 assert(self.candidate_tags[index] == INVALID_TAG) self.candidate_tags[index] = tag ###while index < self.num_leaves: ### if self.candidate_tags[index] == INVALID: ### self.candidate_tags[index] = tag ### break ### else: ### index += 1 # touch the entry self.touch(tag, timestamp) # pl cache set lock scenario def setlock(self, tag, lock): self.vprint("setlock "+ tag + ' ' + str(lock)) # find the index index = 0 self.vprint(index) while index < len(self.candidate_tags): if self.candidate_tags[index] == tag: break else: index += 1 # set / unset lock self.lockarray[index] = lock #implementation based on https://github.com/gem5/gem5/blob/87c121fd954ea5a6e6b0760d693a2e744c2200de/src/mem/cache/replacement_policies/brrip_rp.cc # testcase based on https://dl.acm.org/doi/pdf/10.1145/1816038.1815971 class brrip_policy(rep_policy): def __init__(self, associativity, block_size, verbose = False): self.associativity = associativity self.block_size = block_size self.count = 0 self.candidate_tags = [ INVALID_TAG ] * self.associativity self.verbose = verbose self.num_rrpv_bits = 2 self.rrpv_max = int(math.pow(2, self.num_rrpv_bits)) - 1 self.rrpv = [ self.rrpv_max ] * associativity self.hit_priority = False self.btp = 100 self.vprint(self.candidate_tags) self.vprint(self.rrpv) #self.tree_instance = # holds the latest temporary tree instance created by def instantiate_entry(self, tag, timestamp): # find a tag that can be invalidated index = 0 while index < len(self.candidate_tags): if self.candidate_tags[index] == INVALID_TAG: self.candidate_tags[index] = tag self.rrpv[index] = self.rrpv_max break index += 1 # touch the entry self.touch(tag, timestamp, hit = False) def touch(self, tag, timestamp, hit = True): # find the index index = 0 self.vprint(index) while index < len(self.candidate_tags): if self.candidate_tags[index] == tag: break else: index += 1 if self.hit_priority == True: self.rrpv[index] = 0 else: if self.rrpv[index] > 0: if hit == True: self.rrpv[index] = 0 else: self.rrpv[index] -= 1 self.vprint(self.candidate_tags) self.vprint(self.rrpv) def reset(self, tag, timestamp): index = 0 self.vprint(index) while index < len(self.candidate_tags): if self.candidate_tags[index] == tag: break else: index += 1 if random.randint(1,100) <= self.btp: if self.rrpv[index] > 0: self.rrpv[index] -= 1 self.vprint(self.candidate_tags) self.vprint(self.rrpv) #def reset(self, tag): def invalidate(self, tag): # find index of tag self.vprint('invalidate ' + tag) index = 0 while index < len(self.candidate_tags): if self.candidate_tags[index] == tag: break else: index += 1 #print(tree_index) self.candidate_tags[index] = INVALID_TAG self.rrpv[index] = self.rrpv_max self.vprint(self.candidate_tags) self.vprint(self.rrpv) def find_victim(self, timestamp): max_index = 0 index = 0 while index < len(self.candidate_tags): if self.rrpv[index] > self.rrpv[max_index]: max_index = index index += 1 # invalidate the path diff = self.rrpv_max - self.rrpv[max_index] self.rrpv[max_index] = self.rrpv_max if diff > 0: index = 0 while index < len(self.candidate_tags): self.rrpv[index] += diff index += 1 #self.vprint(self.plrutree) #self.vprint(self.candidate_tags) self.vprint(self.candidate_tags) self.vprint(self.rrpv) return self.candidate_tags[max_index]
AutoCAT-main
src/replacement_policy.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This software may be used and distributed according to the terms of the # GNU General Public License version 2. # Author: Mulong Luo # date 2021.12.3 # description: environment for study RL for side channel attack from calendar import c from collections import deque import numpy as np import random import os import yaml, logging import sys import replacement_policy from itertools import permutations from cache_simulator import print_cache import gym from gym import spaces from omegaconf.omegaconf import open_dict from cache_simulator import * import time """ Description: A L1 cache with total_size, num_ways assume cache_line_size == 1B Observation: # let's book keep all obvious information in the observation space since the agent is dumb it is a 2D matrix self.observation_space = ( [ 3, #cache latency len(self.attacker_address_space) + 1, # last action self.window_size + 2, #current steps 2, #whether the victim has accessed yet ] * self.window_size ) Actions: action is one-hot encoding v = | attacker_addr | ( flush_attacker_addr ) | v | victim_guess_addr | ( guess victim not access ) | Reward: Starting state: fresh cache with nolines Episode termination: when the attacker make a guess when there is length violation when there is guess before victim violation episode terminates """ class CacheGuessingGameEnv(gym.Env): metadata = {'render.modes': ['human']} def __init__(self, env_config={ "length_violation_reward":-10000, "double_victim_access_reward": -10000, "force_victim_hit": False, "victim_access_reward":-10, "correct_reward":200, "wrong_reward":-9999, "step_reward":-1, "window_size":0, "attacker_addr_s":4, "attacker_addr_e":7, "victim_addr_s":0, "victim_addr_e":3, "flush_inst": False, "allow_victim_multi_access": True, "verbose":0, "reset_limit": 1, # specify how many reset to end an epoch????? "cache_configs": { # YAML config file for cache simulaton "architecture": { "word_size": 1, #bytes "block_size": 1, #bytes "write_back": True }, "cache_1": {#required "blocks": 4, "associativity": 1, "hit_time": 1 #cycles }, "mem": {#required "hit_time": 1000 #cycles } } } ): # prefetcher # pretetcher: "none" "nextline" "stream" # cf https://my.eng.utah.edu/~cs7810/pres/14-7810-13-pref.pdf self.prefetcher = env_config["prefetcher"] if "prefetcher" in env_config else "none" # remapping function for randomized cache self.rerandomize_victim = env_config["rerandomize_victim"] if "rerandomize_victim" in env_config else False self.ceaser_remap_period = env_config["ceaser_remap_period"] if "ceaser_remap_period" in env_config else 200000 # set-based channel or address-based channel self.allow_empty_victim_access = env_config["allow_empty_victim_access"] if "allow_empty_victim_access" in env_config else False # enable HPC-based-detection escaping setalthystreamline self.force_victim_hit =env_config["force_victim_hit"] if "force_victim_hit" in env_config else False self.length_violation_reward = env_config["length_violation_reward"] if "length_violation_reward" in env_config else -10000 self.victim_access_reward = env_config["victim_access_reward"] if "victim_access_reward" in env_config else -10 self.victim_miss_reward = env_config["victim_miss_reward"] if "victim_miss_reward" in env_config else -10000 if self.force_victim_hit else self.victim_access_reward self.double_victim_access_reward = env_config["double_victim_access_reward"] if "double_victim_access_reward" in env_config else -10000 self.allow_victim_multi_access = env_config["allow_victim_multi_access"] if "allow_victim_multi_access" in env_config else True self.correct_reward = env_config["correct_reward"] if "correct_reward" in env_config else 200 self.wrong_reward = env_config["wrong_reward"] if "wrong_reward" in env_config else -9999 self.step_reward = env_config["step_reward"] if "step_reward" in env_config else 0 self.reset_limit = env_config["reset_limit"] if "reset_limit" in env_config else 1 self.cache_state_reset = env_config["cache_state_reset"] if "cache_state_reset" in env_config else True window_size = env_config["window_size"] if "window_size" in env_config else 0 attacker_addr_s = env_config["attacker_addr_s"] if "attacker_addr_s" in env_config else 4 attacker_addr_e = env_config["attacker_addr_e"] if "attacker_addr_e" in env_config else 7 victim_addr_s = env_config["victim_addr_s"] if "victim_addr_s" in env_config else 0 victim_addr_e = env_config["victim_addr_e"] if "victim_addr_e" in env_config else 3 flush_inst = env_config["flush_inst"] if "flush_inst" in env_config else False self.verbose = env_config["verbose"] if "verbose" in env_config else 0 self.super_verbose = env_config["super_verbose"] if "super_verbose" in env_config else 0 self.logger = logging.getLogger() self.fh = logging.FileHandler('log') self.sh = logging.StreamHandler() self.logger.addHandler(self.fh) self.logger.addHandler(self.sh) self.fh_format = logging.Formatter('%(message)s') self.fh.setFormatter(self.fh_format) self.sh.setFormatter(self.fh_format) self.logger.setLevel(logging.INFO) if "cache_configs" in env_config: self.configs = env_config["cache_configs"] else: self.config_file_name = os.path.dirname(os.path.abspath(__file__))+'/../configs/config_simple_L1' self.config_file = open(self.config_file_name) self.logger.info('Loading config from file ' + self.config_file_name) self.configs = yaml.load(self.config_file, yaml.CLoader) self.vprint(self.configs) # cahce configuration self.num_ways = self.configs['cache_1']['associativity'] self.cache_size = self.configs['cache_1']['blocks'] self.flush_inst = flush_inst self.reset_time = 0 if "rep_policy" not in self.configs['cache_1']: self.configs['cache_1']['rep_policy'] = 'lru' if 'cache_1_core_2' in self.configs: if "rep_policy" not in self.configs['cache_1_core_2']: self.configs['cache_1_core_2']['rep_policy'] = 'lru' self.configs['cache_1_core_2']['prefetcher'] = self.prefetcher #with open_dict(self.configs): self.configs['cache_1']['prefetcher'] = self.prefetcher ''' check window size ''' if window_size == 0: #self.window_size = self.cache_size * 8 + 8 #10 self.window_size = self.cache_size * 4 + 8 #10 else: self.window_size = window_size self.feature_size = 4 ''' instantiate the cache ''' self.hierarchy = build_hierarchy(self.configs, self.logger) self.step_count = 0 self.attacker_address_min = attacker_addr_s self.attacker_address_max = attacker_addr_e self.attacker_address_space = range(self.attacker_address_min, self.attacker_address_max + 1) # start with one attacker cache line self.victim_address_min = victim_addr_s self.victim_address_max = victim_addr_e self.victim_address_space = range(self.victim_address_min, self.victim_address_max + 1) # ''' for randomized address mapping rerandomization ''' if self.rerandomize_victim == True: addr_space = max(self.victim_address_max, self.attacker_address_max) + 1 self.perm = [i for i in range(addr_space)] # keeping track of the victim remap length self.ceaser_access_count = 0 self.mapping_func = lambda addr : addr # initially do a remap for the remapped cache self.remap() ''' define the action space ''' # using tightened action space if self.flush_inst == False: # one-hot encoding if self.allow_empty_victim_access == True: # | attacker_addr | v | victim_guess_addr | guess victim not access | self.action_space = spaces.Discrete( len(self.attacker_address_space) + 1 + len(self.victim_address_space) + 1 ) else: # | attacker_addr | v | victim_guess_addr | self.action_space = spaces.Discrete( len(self.attacker_address_space) + 1 + len(self.victim_address_space) ) else: # one-hot encoding if self.allow_empty_victim_access == True: # | attacker_addr | flush_attacker_addr | v | victim_guess_addr | guess victim not access | self.action_space = spaces.Discrete( 2 * len(self.attacker_address_space) + 1 + len(self.victim_address_space) + 1 ) else: # | attacker_addr | flush_attacker_addr | v | victim_guess_addr | self.action_space = spaces.Discrete( 2 * len(self.attacker_address_space) + 1 + len(self.victim_address_space) ) ''' define the observation space ''' self.max_box_value = max(self.window_size + 2, 2 * len(self.attacker_address_space) + 1 + len(self.victim_address_space) + 1)#max(self.window_size + 2, len(self.attacker_address_space) + 1) self.observation_space = spaces.Box(low=-1, high=self.max_box_value, shape=(self.window_size, self.feature_size)) self.state = deque([[-1, -1, -1, -1]] * self.window_size) ''' initilizate the environment configurations ''' self.vprint('Initializing...') self.l1 = self.hierarchy['cache_1'] #self.lv = self.hierarchy['cache_1'] # check multicore if 'cache_1_core_2' in self.hierarchy: self.lv = self.hierarchy['cache_1_core_2'] else: self.lv = self.hierarchy['cache_1'] self.current_step = 0 self.victim_accessed = False if self.allow_empty_victim_access == True: self.victim_address = random.randint(self.victim_address_min, self.victim_address_max + 1) else: self.victim_address = random.randint(self.victim_address_min, self.victim_address_max) self._randomize_cache() ''' For PLCache ''' if self.configs['cache_1']["rep_policy"] == "plru_pl": # pl cache victim access always uses locked access assert(self.victim_address_min == self.victim_address_max) # for plru_pl cache, only one address is allowed self.vprint("[init] victim access (hex) %x locked cache line" % self.victim_address_max) self.l1.read(hex(self.ceaser_mapping(self.victim_address_max))[2:], self.current_step, replacement_policy.PL_LOCK, domain_id='v') ''' internal guessing buffer does not change after reset ''' self.guess_buffer_size = 100 self.guess_buffer = [False] * self.guess_buffer_size self.last_state = None ''' clear the history buffer that calculates the correctness rate ''' def clear_guess_buffer_history(self): self.guess_buffer = [False] * self.guess_buffer_size ''' set the seed for randomization ''' def seed(self, seed): random.seed(seed) ''' remap the victim address range ''' def remap(self): if self.rerandomize_victim == False: self.mapping_func = lambda addr : addr else: self.vprint("doing remapping!") random.shuffle(self.perm) ''' ceasar remapping addr is integer not string ''' def ceaser_mapping(self, addr): if self.rerandomize_victim == False: return addr else: self.ceaser_access_count += 1 return self.perm[addr] ''' gym API: step this is the function that implements most of the logic ''' def step(self, action): # print_cache(self.l1) ''' For cyclone, default value of the cyclic set and way index ''' cyclic_set_index = -1 cyclic_way_index = -1 self.vprint('Step...') info = {} ''' upack the action to adapt to slightly different RL framework ''' if isinstance(action, np.ndarray): action = action.item() ''' parse the action ''' original_action = action action = self.parse_action(original_action) address = hex(action[0]+self.attacker_address_min)[2:] # attacker address in attacker_address_space is_guess = action[1] # check whether to guess or not is_victim = action[2] # check whether to invoke victim is_flush = action[3] # check whether to flush victim_addr = hex(action[4] + self.victim_address_min)[2:] # victim address ''' The actual stepping logic 1. first cehcking if the length is over the window_size, if not, go to 2, otherwise terminate 2. second checking if it is a victim access, if so go to 3, if not, go to 4 3. check if the victim can be accessed according to these options, if so make the access, if not terminate 4. check if it is a guess, if so, evaluate the guess, if not go to 5. if not, terminate 5. do the access, first check if it is a flush, if so do flush, if not, do normal access ''' victim_latency = None # if self.current_step > self.window_size : # if current_step is too long, terminate if self.step_count >= self.window_size - 1: r = 2 # self.vprint("length violation!") reward = self.length_violation_reward #-10000 done = True else: if is_victim == True: if self.allow_victim_multi_access == True or self.victim_accessed == False: r = 2 # self.victim_accessed = True if True: #self.configs['cache_1']["rep_policy"] == "plru_pl": no need to distinuish pl and normal rep_policy if self.victim_address <= self.victim_address_max: self.vprint("victim access (hex) %x " % self.victim_address) t, cyclic_set_index, cyclic_way_index, _ = self.lv.read(hex(self.ceaser_mapping(self.victim_address))[2:], self.current_step, domain_id='v') t = t.time # do not need to lock again else: self.vprint("victim make a empty access!") # do not need to actually do something t = 1 # empty access will be treated as HIT??? does that make sense??? #t = self.l1.read(str(self.victim_address), self.current_step).time if t > 500: # for LRU attack, has to force victim access being hit victim_latency = 1 self.current_step += 1 reward = self.victim_miss_reward #-5000 if self.force_victim_hit == True: done = True self.vprint("victim access has to be hit! terminate!") else: done = False else: victim_latency = 0 self.current_step += 1 reward = self.victim_access_reward #-10 done = False else: r = 2 self.vprint("does not allow multi victim access in this config, terminate!") self.current_step += 1 reward = self.double_victim_access_reward # -10000 done = True else: if is_guess == True: r = 2 # ''' this includes two scenarios 1. normal scenario 2. empty victim access scenario: victim_addr parsed is victim_addr_e, and self.victim_address is also victim_addr_e + 1 ''' if self.victim_accessed and victim_addr == hex(self.victim_address)[2:]: if victim_addr != hex(self.victim_address_max + 1)[2:]: self.vprint("correct guess (hex) " + victim_addr) else: self.vprint("correct guess empty access!") # update the guess buffer self.guess_buffer.append(True) self.guess_buffer.pop(0) reward = self.correct_reward # 200 done = True else: if victim_addr != hex(self.victim_address_max + 1)[2:]: self.vprint("wrong guess (hex) " + victim_addr ) else: self.vprint("wrong guess empty access!") # update the guess buffer self.guess_buffer.append(False) self.guess_buffer.pop(0) reward = self.wrong_reward #-9999 done = True elif is_flush == False or self.flush_inst == False: lat, cyclic_set_index, cyclic_way_index, _ = self.l1.read(hex(self.ceaser_mapping(int('0x' + address, 16)))[2:], self.current_step, domain_id='a') lat = lat.time # measure the access latency if lat > 500: self.vprint("access (hex) " + address + " miss") r = 1 # cache miss else: self.vprint("access (hex) " + address + " hit" ) r = 0 # cache hit self.current_step += 1 reward = self.step_reward #-1 done = False else: # is_flush == True self.l1.cflush(hex(self.ceaser_mapping(int('0x' + address, 16)))[2:], self.current_step, domain_id='X') #cflush = 1 self.vprint("cflush (hex) " + address ) #self.vprint("mapped (hex) " + hex(self.ceaser_mapping(int('0x' + address, 16)))[2:]) r = 2 self.current_step += 1 reward = self.step_reward done = False #return observation, reward, done, info if done == True and is_guess != 0: info["is_guess"] = True if reward > 0: info["guess_correct"] = True else: info["guess_correct"] = False else: info["is_guess"] = False # the observation (r.time) in this case # must be consistent with the observation space # return observation, reward, done?, info #return r, reward, done, info current_step = self.current_step if self.victim_accessed == True: victim_accessed = 1 else: victim_accessed = 0 ''' append the current observation to the sliding window ''' self.state.append([r, victim_accessed, original_action, self.step_count]) self.state.popleft() self.step_count += 1 ''' support for multiple guess per episode ''' if done == True: self.reset_time += 1 if self.reset_time == self.reset_limit: # really need to end the simulation self.reset_time = 0 done = True # reset will be called by the agent/framework #self.vprint('correct rate:' + str(self.calc_correct_rate())) else: done = False # fake reset self._reset() # manually reset ''' the observation should not obverve the victim latency thus, we put victim latency in the info the detector (ccHunter, Cyclone) can take advantage of the victim latency ''' if victim_latency is not None: info["victim_latency"] = victim_latency if self.last_state is None: cache_state_change = None else: cache_state_change = victim_latency ^ self.last_state self.last_state = victim_latency else: if r == 2: cache_state_change = 0 else: if self.last_state is None: cache_state_change = None else: cache_state_change = r ^ self.last_state self.last_state = r ''' this info is for use of various wrappers like cchunter_wrapper and cyclone_wrapper ''' info["cache_state_change"] = cache_state_change info["cyclic_way_index"] = cyclic_way_index info["cyclic_set_index"] = cyclic_set_index if self.super_verbose == True: for cache in self.hierarchy: if self.hierarchy[cache].next_level: print_cache(self.hierarchy[cache]) return np.array(list(reversed(self.state))), reward, done, info ''' Gym API: reset the cache state ''' def reset(self, victim_address=-1, reset_cache_state=False, reset_observation=True, seed = -1): if self.ceaser_access_count > self.ceaser_remap_period: self.remap() # do the remap, generating a new mapping function if remap is set true self.ceaser_access_count = 0 if self.cache_state_reset or reset_cache_state or seed != -1: self.vprint('Reset...(also the cache state)') self.hierarchy = build_hierarchy(self.configs, self.logger) self.l1 = self.hierarchy['cache_1'] # check multicore if 'cache_1_core_2' in self.hierarchy: self.lv = self.hierarchy['cache_1_core_2'] else: self.lv = self.hierarchy['cache_1'] if seed == -1: self._randomize_cache() else: self.seed_randomization(seed) else: self.vprint('Reset...(cache state the same)') self._reset(victim_address) # fake reset ''' reset the observation space ''' if reset_observation: self.state = deque([[-1, -1, -1, -1]] * self.window_size) self.step_count = 0 self.reset_time = 0 if self.configs['cache_1']["rep_policy"] == "plru_pl": # pl cache victim access always uses locked access assert(self.victim_address_min == self.victim_address_max) # for plru_pl cache, only one address is allowed self.vprint("[reset] victim access %d locked cache line" % self.victim_address_max) lat, cyclic_set_index, cyclic_way_index, _ = self.lv.read(hex(self.ceaser_mapping(self.victim_address_max))[2:], self.current_step, replacement_policy.PL_LOCK, domain_id='v') self.last_state = None if self.super_verbose == True: for cache in self.hierarchy: if self.hierarchy[cache].next_level: print_cache(self.hierarchy[cache]) return np.array(list(reversed(self.state))) ''' function to calculate the correctness rate using a sliding window ''' def calc_correct_rate(self): return self.guess_buffer.count(True) / len(self.guess_buffer) ''' evluate the correctness of an action sequence (action+ latency) action_buffer: list [(action, latency)] ''' def calc_correct_seq(self, action_buffer): last_action, _ = action_buffer[-1] last_action = self.parse_action(last_action) #print(last_action) guess_addr = last_action[4] #print(guess_addr) self.reset(victim_addr = guess_addr) self.total_guess = 0 self.correct_guess = 0 while self.total_guess < 20: self.reset(victim_addr) for i in range(0, len(action_buffer)): p = action_buffer[i] state, _, _, _ = self.step(p[0]) latency = state[0] if latency != p[1]: break if i < len(action_buffer) - 1: continue else: self.total_guess += 1 if guess_addr == self.victim_address: self.correct_guess += 1 return self.correct_guess / self.total_guess def set_victim(self, victim_address=-1): self.victim_address = victim_address ''' fake reset the environment, just set a new victim addr the actual physical state of the cache does not change ''' def _reset(self, victim_address=-1): self.current_step = 0 self.victim_accessed = False if victim_address == -1: if self.allow_empty_victim_access == False: self.victim_address = random.randint(self.victim_address_min, self.victim_address_max) else: # when generating random addr use self.victim_address_max + 1 to represent empty access self.victim_address = random.randint(self.victim_address_min, self.victim_address_max + 1) else: assert(victim_address >= self.victim_address_min) if self.allow_empty_victim_access == True: assert(victim_address <= self.victim_address_max + 1 ) else: assert(victim_address <= self.victim_address_max ) self.victim_address = victim_address if self.victim_address <= self.victim_address_max: self.vprint("victim address (hex) " + hex(self.victim_address)) else: self.vprint("victim has empty access") ''' use to render the result not implemented ''' def render(self, mode='human'): return ''' not implememented ''' def close(self): return ''' use a given seed to randomize the cache so that we can set the same state for randomization ''' def seed_randomization(self, seed=-1): return self._randomize_cache(mode="union", seed=seed) ''' randomize the cache so that the attacker has to do a prime step ''' def _randomize_cache(self, mode="union", seed=-1): # use seed so that we can get identical initialization states if seed != -1: random.seed(seed) if mode == "attacker": self.l1.read(hex(self.ceaser_mapping(0))[2:], -2, domain_id='X') self.l1.read(hex(self.ceaser_mapping(1))[2:], -1, domain_id='X') return if mode == "none": return self.current_step = -self.cache_size * 2 for _ in range(self.cache_size * 2): if mode == "victim": addr = random.randint(self.victim_address_min, self.victim_address_max) elif mode == "attacker": addr = random.randint(self.attacker_address_min, self.attacker_address_max) elif mode == "union": addr = random.randint(self.victim_address_min, self.victim_address_max) if random.randint(0,1) == 1 else random.randint(self.attacker_address_min, self.attacker_address_max) elif mode == "random": addr = random.randint(0, sys.maxsize) else: raise RuntimeError from None self.l1.read(hex(self.ceaser_mapping(addr))[2:], self.current_step, domain_id='X') self.current_step += 1 ''' rerturns the dimension of the observation space ''' def get_obs_space_dim(self): return int(np.prod(self.observation_space.shape)) ''' returns the action space dimension in a int number ''' def get_act_space_dim(self): return int(np.prod(self.action_space.shape)) ''' same as print() when self.verbose == 1 otherwise does not do anything ''' def vprint(self, *args): if self.verbose == 1: print( " "+" ".join(map(str,args))+" ") ''' parse the action in the degenerate space (no redundant actions) returns list of 5 elements representing address, is_guess, is_victim, is_flush, victim_addr ''' def parse_action(self, action): address = 0 is_guess = 0 is_victim = 0 is_flush = 0 victim_addr = 0 if self.flush_inst == False: if action < len(self.attacker_address_space): address = action elif action == len(self.attacker_address_space): is_victim = 1 else: is_guess = 1 victim_addr = action - ( len(self.attacker_address_space) + 1 ) else: if action < len(self.attacker_address_space): address = action elif action < 2 * len(self.attacker_address_space): is_flush = 1 address = action - len(self.attacker_address_space) is_flush = 1 elif action == 2 * len(self.attacker_address_space): is_victim = 1 else: is_guess = 1 victim_addr = action - ( 2 * len(self.attacker_address_space) + 1 ) return [ address, is_guess, is_victim, is_flush, victim_addr ]
AutoCAT-main
src/cache_guessing_game_env_impl.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This software may be used and distributed according to the terms of the # GNU General Public License version 2. import math, block, response import pprint from replacement_policy import * class Cache: def __init__(self, name, word_size, block_size, n_blocks, associativity, hit_time, write_time, write_back, logger, next_level=None, rep_policy='', prefetcher="none", verbose=False): #Parameters configured by the user self.name = name self.word_size = word_size self.block_size = block_size self.n_blocks = n_blocks self.associativity = associativity self.hit_time = hit_time self.cflush_time = hit_time # assume flush is as fast as hit since self.write_time = write_time self.write_back = write_back self.logger = logger self.same_level_caches = [] self.logger.disabled = False#True self.set_rep_policy = {} self.verbose = verbose if rep_policy == 'lru': self.vprint("use lru") self.rep_policy = lru_policy elif rep_policy == 'tree_plru': self.vprint("use tree_plru") self.rep_policy = tree_plru_policy elif rep_policy == 'rand': self.vprint("use rand") self.rep_policy = rand_policy elif rep_policy == 'plru_pl': self.vprint("use plru_pl") self.rep_policy = plru_pl_policy elif rep_policy == 'brrip': self.vprint("use brrip") self.rep_policy = brrip_policy else: self.rep_policy = lru_policy if name == 'cache_1': self.vprint("no rep_policy specified or policy specified not exist") self.vprint("use lru_policy") self.vprint("use " + prefetcher + " prefetcher") # prefetcher == "none" "nextline" "stream" self.prefetcher = prefetcher if self.prefetcher == "stream": self.prefetcher_table =[] self.num_prefetcher_entry = 2 for i in range(self.num_prefetcher_entry): temp = {"first": -1, "second": -1} self.prefetcher_table.append(temp) #Total number of sets in the cache self.n_sets =int( n_blocks / associativity ) #Dictionary that holds the actual cache data self.data = {} self.set = {} self.domain_id_tags = {} # for cyclone #Pointer to the next lowest level of memory #Main memory gets the default None value self.next_level = next_level #Figure out spans to cut the binary addresses into block_offset, index, and tag self.block_offset_size = int(math.log(self.block_size, 2)) self.index_size = int(math.log(self.n_sets, 2)) #Initialize the data dictionary if next_level: for i in range(self.n_sets): index = str(bin(i))[2:].zfill(self.index_size) if index == '': index = '0' self.data[index] = [] # use array of blocks for each set self.domain_id_tags[index] = [] # for cyclone for j in range(associativity): # isntantiate with empty tags self.data[index].append((INVALID_TAG, block.Block(self.block_size, 0, False, 'x'))) self.domain_id_tags[index].append(('X','X')) # for cyclone self.set_rep_policy[index] = self.rep_policy(associativity, block_size) def vprint(self, *args): if self.verbose == 1: print( " "+" ".join(map(str,args))+" ") # flush the cache line that contains the address from all cache hierachy # since flush is does not affect memory domain_id def cflush(self, address, current_step, domain_id = 'X'): address = address.zfill(8) # cyclone cyclic_set_index = -1 cyclic_way_index = -1 r = response.Response({self.name:True}, self.cflush_time) #flush regardless #Parse our address to look through this cache block_offset, index, tag = self.parse_address(address) #Get the tags in this set in_cache = [] for i in range( 0, len(self.data[index]) ): if self.data[index][i][0] != INVALID_TAG:#'x': in_cache.append(self.data[index][i][0]) #If this tag exists in the set, this is a hit if tag in in_cache: #print(tag + ' in cache') for i in range( 0, len(self.data[index])): if self.data[index][i][0] == tag: #print(self.data[index][i][1].address) self.data[index][i] = (INVALID_TAG, block.Block(self.block_size, current_step, False, '')) break self.set_rep_policy[index].invalidate(tag) # clflush from the next level of memory if self.next_level != None and self.next_level.name != "mem": self.next_level.cflush(address, current_step) return r, cyclic_set_index, cyclic_way_index # for multicore caches, if two same levels are connected to the shared caches then add def add_same_level_cache(self, cache): self.same_level_caches.append(cache) # read with prefetcher def read(self, address, current_step, pl_opt= -1, domain_id = 'X'): address = address.zfill(8) if self.prefetcher == "none": return self.read_no_prefetch(address, current_step, pl_opt, domain_id) elif self.prefetcher == "nextline": ret = self.read_no_prefetch(hex(int(address, 16) + 1)[2:], current_step, pl_opt, domain_id) # prefetch the next line # print("nextline prefetech "+ hex(int(address, 16) + 1)[2:] ) self.read_no_prefetch(address, current_step, pl_opt, domain_id) return ret elif self.prefetcher == "stream": ret = self.read_no_prefetch(address, current_step, pl_opt, domain_id) # {"first": -1, "second": -1} # first search if it is next expected found= False for i in range(len(self.prefetcher_table)): entry=self.prefetcher_table[i] if int(address, 16) + entry["first"] == entry["second"] * 2 and entry["first"] != -1 and entry["second"] != -1 : found = True pref_addr = entry["second"] + int(address, 16) - entry["first"] # do prefetch if pref_addr >= 0: # print("stream prefetech "+ hex(pref_addr)[2:]) self.read_no_prefetch(hex(pref_addr)[2:], current_step, pl_opt, domain_id) # update the table self.prefetcher_table[i] = {"first": entry["second"], "second":pref_addr} elif int(address, 16) == entry["first"] + 1 or int(address, 16) == entry["first"] -1 and entry["first"] != -1: # second search if it is second access self.prefetcher_table[i]["second"] = int(address, 16) found = True elif entry["first"] == int(address, 16): found = True # then search if it is in first access # random evict a entry if found == False: i = random.randint(0, self.num_prefetcher_entry-1) self.prefetcher_table[i] = {"first": int(address, 16), "second":-1} return ret else: # prefetchter not known assert(False) # pl_opt: indicates the PL cache option # pl_opt = -1: normal read # pl_opt = PL_LOCK: lock the cache line # pl_opt = PL_UNLOCK: unlock the cache line def read_no_prefetch(self, address, current_step, pl_opt= -1, domain_id = 'X'): # cyclone cyclic_set_index = -1 cyclic_way_index = -1 #print('pl_opt ' + str(pl_opt)) r = None #Check if this is main memory #Main memory is always a hit if not self.next_level: r = response.Response({self.name:True}, self.hit_time) evict_addr = -1 else: #Parse our address to look through this cache block_offset, index, tag = self.parse_address(address) #print(block_offset) #print(index) #print(tag) #Get the tags in this set in_cache = [] for i in range( 0, len(self.data[index]) ): if self.data[index][i][0] != INVALID_TAG:#'x': in_cache.append(self.data[index][i][0]) #If this tag exists in the set, this is a hit if tag in in_cache: #print(tag + 'in cache') for i in range( 0, len(self.data[index])): if self.data[index][i][0] == tag: self.data[index][i][1].read(current_step) if domain_id != 'X': if domain_id == self.domain_id_tags[index][i][1] and self.domain_id_tags[index][i][1] != self.domain_id_tags[index][i][0]: cyclic_set_index = int(index,2) cyclic_way_index = i self.domain_id_tags[index][i] = (domain_id, self.domain_id_tags[index][i][0]) break self.set_rep_policy[index].touch(tag, current_step) # pl cache if pl_opt != -1: self.set_rep_policy[index].setlock(tag, pl_opt) r = response.Response({self.name:True}, self.hit_time) evict_addr = -1 #no evition needed else: #Read from the next level of memory r, cyclic_set_index, cyclic_way_index, evict_addr = self.next_level.read(address, current_step, pl_opt) # coherent eviction # inclusive eviction (evicting in L1 if evicted by the higher level) if evict_addr != -1: ###print('evict_addr '+ evict_addr) ###print(evict_addr) #assert(False) evict_block_offset, evict_index, evict_tag = self.parse_address(hex(int(evict_addr,2))[2:].zfill(8))#9 - len(hex(int(evict_addr,2))[2:]))) ####print(evict_block_offset) ####print(evict_index) ####print(evict_tag) for i in range(0,len(self.data[evict_index])): if self.data[evict_index][i][0] == evict_tag: #print('\tEvict addr ' + evict_addr + ' for inclusive cache') self.data[evict_index][i] = (INVALID_TAG, block.Block(self.block_size, current_step, False, 'x')) self.set_rep_policy[evict_index].invalidate(evict_tag) #self.set_rep_policy[evict_index].instantiate_entry(INVALID_TAG, current_step) break # cohenrent eviction for otehr cache lines for slc in self.same_level_caches: evict_block_offset, evict_index, evict_tag = slc.parse_address(hex(int(evict_addr,2))[2:].zfill(8))#9 - len(hex(int(evict_addr,2))[2:]))) for i in range(0,len(slc.data[evict_index])): if slc.data[evict_index][i][0] == evict_tag: #slc.logger.info #print('\tcoherent Evict addr ' + evict_addr + ' for inclusive cache') slc.data[evict_index][i] = (INVALID_TAG, block.Block(slc.block_size, current_step, False, 'x')) slc.set_rep_policy[evict_index].invalidate(evict_tag) #slc.set_rep_policy[evict_index].instantiate_entry(INVALID_TAG, current_step) break r.deepen(self.write_time, self.name) # refresh in_cache afeter coherent eviction in_cache = [] for i in range( 0, len(self.data[index]) ): if self.data[index][i][0] != INVALID_TAG:#'x': in_cache.append(self.data[index][i][0]) #If there's space in this set, add this block to it if len(in_cache) < self.associativity: #print('a') for i in range( 0, len(self.data[index])): if self.data[index][i][0] == INVALID_TAG:#'x': if domain_id != 'X': if domain_id == self.domain_id_tags[index][i][1] and self.domain_id_tags[index][i][1] != self.domain_id_tags[index][i][0]: cyclic_set_index = int(index, 2) cyclic_way_index = i self.domain_id_tags[index][i] = (domain_id, self.domain_id_tags[index][i][0]) self.data[index][i] = (tag, block.Block(self.block_size, current_step, False, address)) break self.set_rep_policy[index].instantiate_entry(tag, current_step) ###if inst_victim_tag != INVALID_TAG: #instantiated entry sometimes does not replace an empty tag ####we have to evict it from the cache in this scenario ### del self.data[index][inst_victim_tag] if pl_opt != -1: self.set_rep_policy[index].setlock(tag, pl_opt) else: #print('B') #print(len(in_cache)) #Find the victim block and replace it victim_tag = self.set_rep_policy[index].find_victim(current_step) ##print('victim tag '+ victim_tag) #print('index ' + index ) # pl cache may find the victim that is partition locked if victim_tag != INVALID_TAG: # Write the block back down if it's dirty and we're using write back if self.write_back: for i in range( 0, len(self.data[index])): if self.data[index][i][0] == victim_tag: if self.data[index][i][1].is_dirty(): self.logger.info('\tWriting back block ' + address + ' to ' + self.next_level.name) temp, _, _ = self.next_level.write(self.data[index][i][1].address, True, current_step) r.time += temp.time break # Delete the old block and write the new one for i in range( 0, len(self.data[index])): if self.data[index][i][0] == victim_tag: if domain_id != 'X': if domain_id == self.domain_id_tags[index][i][1] and self.domain_id_tags[index][i][1] != self.domain_id_tags[index][i][0]: cyclic_set_index = int(index, 2) cyclic_way_index = i self.domain_id_tags[index][i] = (domain_id, self.domain_id_tags[index][i][0]) self.data[index][i] = (tag, block.Block(self.block_size, current_step, False, address)) break if int(self.n_blocks/ self.associativity) == 1: indexi = '' else: indexi = index evict_addr = victim_tag + indexi + '0' * int(math.log(self.block_size,2))# assume line size is always 1B for different level #print('index ' + index) #print('victim tag ' + victim_tag) self.set_rep_policy[index].invalidate(victim_tag) self.set_rep_policy[index].instantiate_entry(tag, current_step) if pl_opt != -1: self.set_rep_policy[index].setlock(tag, pl_opt) else: evict_addr = -1 #if evict_addr != -1: #print(evict_addr) #evict_addr = hex(int(evict_addr))[2:].zfill(8 - len(hex(int(evict_addr))[2:])) #print('evict_addr ' + evict_addr) return r, cyclic_set_index, cyclic_way_index, evict_addr # pl_opt: indicates the PL cache option # pl_opt = -1: normal read # pl_opt = 1: lock the cache line # pl_opt = 2: unlock the cache line def write(self, address, from_cpu, current_step, pl_opt = -1, domain_id = 'X'): address = address.zfill(8) # cyclcone cyclic_set_index = -1 cyclic_way_index = -1 #wat is cache pls r = None if not self.next_level: r = response.Response({self.name:True}, self.write_time) else: block_offset, index, tag = self.parse_address(address) in_cache = [] for i in range( 0, len(self.data[index]) ): if self.data[index][i][0] != INVALID_TAG:#'x': in_cache.append(self.data[index][i][0]) if tag in in_cache: #Set dirty bit to true if this block was in cache for i in range( 0, len(self.data[index])): if self.data[index][i][0] == tag: if domain_id != 'X': if domain_id == self.domain_id_tags[index][i][1] and self.domain_id_tags[index][i][1] != self.domain_id_tags[index][i][0]: cyclic_set_index = int(index, 2) cyclic_way_index = i self.domain_id_tags[index][i] = (domain_id, self.domain_id_tags[index][i][0]) self.data[index][i][1].write(current_step) break self.set_rep_policy[index].touch(tag, current_step) # touch in the replacement policy if pl_opt != -1: self.set_rep_policy[index].setlock(tag, pl_opt) if self.write_back: r = response.Response({self.name:True}, self.write_time) else: #Send to next level cache and deepen results if we have write through self.logger.info('\tWriting through block ' + address + ' to ' + self.next_level.name) r = self.next_level.write(address, from_cpu, current_step) r.deepen(self.write_time, self.name) elif len(in_cache) < self.associativity: #If there is space in this set, create a new block and set its dirty bit to true if this write is coming from the CPU for i in range( 0, len(self.data[index])): if self.data[index][i][0] == INVALID_TAG:#'x': if domain_id != 'X': if domain_id == self.domain_id_tags[index][i][1] and self.domain_id_tags[index][i][1] != self.domain_id_tags[index][i][0]: cyclic_set_index = int(index,2) cyclic_way_index = i self.domain_id_tags[index][i] = (domain_id, self.domain_id_tags[index][i][0]) self.data[index][i] = (tag, block.Block(self.block_size, current_step, False, address)) break self.set_rep_policy[index].instantiate_entry(tag, current_step) if self.write_back: r = response.Response({self.name:False}, self.write_time) else: self.logger.info('\tWriting through block ' + address + ' to ' + self.next_level.name) r = self.next_level.write(address, from_cpu, current_step) r.deepen(self.write_time, self.name) if pl_opt != -1: self.set_rep_policy[index].setlock(tag, pl_opt) elif len(in_cache) == self.associativity: #If this set is full, find the oldest block, write it back if it's dirty, and replace it victim_tag = self.set_rep_policy[index].find_victim(current_step) # pl cache may find the victim that is partition locked # the Pl cache condition for write is not tested if victim_tag != INVALID_TAG: if self.write_back: for i in range( 0, len(self.data[index])): if self.data[index][i][0] == victim_tag: if self.data[index][i][1].is_dirty(): #if self.data[index][victim_tag].is_dirty(): self.logger.info('\tWriting back block ' + address + ' to ' + self.next_level.name) r, _, _ = self.next_level.write(self.data[index][i][1].address, from_cpu, current_step) r.deepen(self.write_time, self.name) break else: self.logger.info('\tWriting through block ' + address + ' to ' + self.next_level.name) r, cyclic_set_index, cyclic_way_index = self.next_level.write(address, from_cpu, current_step) r.deepen(self.write_time, self.name) for i in range( 0, len(self.data[index])): if self.data[index][i][0] == victim_tag: if domain_id != 'X': if domain_id == self.domain_id_tags[index][i][1] and self.domain_id_tags[index][i][1] != self.domain_id_tags[index][i][0]: cyclic_set_index = int(index,2) cyclic_way_index = i self.domain_id_tags[index][i] = (domain_id, self.domain_id_tags[index][i][0]) self.data[index][i] = (tag, block.Block(self.block_size, current_step, False, address)) break print('victim_tag '+ victim_tag) self.set_rep_policy[index].invalidate(victim_tag) self.set_rep_policy[index].instantiate_entry(tag, current_step) # pl cache if pl_opt != -1: self.set_rep_policy[index].setlock(tag, pl_opt) if not r: r = response.Response({self.name:False}, self.write_time) return r, cyclic_set_index, cyclic_way_index def parse_address(self, address): #Calculate our address length and convert the address to binary string address_size = len(address) * 4 binary_address = bin(int(address, 16))[2:].zfill(address_size) if self.block_offset_size > 0: block_offset = binary_address[-self.block_offset_size:] index = binary_address[-(self.block_offset_size+self.index_size):-self.block_offset_size] if index == '': index = '0' tag = binary_address[:-(self.block_offset_size+self.index_size)] else: block_offset = '0' if self.index_size != 0: index = binary_address[-(self.index_size):] tag = binary_address[:-self.index_size] else: index = '0' tag = binary_address return (block_offset, index, tag) class InvalidOpError(Exception): pass
AutoCAT-main
src/cache.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This software may be used and distributed according to the terms of the # GNU General Public License version 2. class Response: def __init__(self, hit_list, time, data=''): self.hit_list = hit_list self.time = time self.data = data def deepen(self, time, name): self.hit_list[name] = False self.time += time
AutoCAT-main
src/response.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This software may be used and distributed according to the terms of the # GNU General Public License version 2. # simpple SVM based detector # based on Cyclone # window_size = 4 # interval_size = 20 # 1 bucket import copy from typing import Any, Dict, Sequence, Tuple import matplotlib.pyplot as plt import pandas as pd import numpy as np import seaborn as sns import gym from sklearn import svm from sklearn.model_selection import cross_val_score from cache_guessing_game_env_impl import CacheGuessingGameEnv import pickle import os class CycloneWrapper(gym.Env): def __init__(self, env_config: Dict[str, Any], svm_data_path='/home/mulong/cyclone_svm_data.txt', keep_latency: bool = True) -> None: env_config["cache_state_reset"] = False self.reset_observation = env_config.get("reset_observation", False) self.keep_latency = keep_latency self.env_config = env_config self.episode_length = env_config.get("episode_length", 160) #self.threshold = env_config.get("threshold", 0.8) path = os.getcwdb().decode('utf-8') + '/../../../svm.txt' self.clf = pickle.load(open(path, 'rb')) self.cyclone_window_size = env_config.get("cyclone_window_size", 4) self.cyclone_interval_size = env_config.get("cyclone_interval_size", 40) self.cyclone_num_buckets = env_config.get("cyclone_num_buckets", 4) # self.cyclone_bucket_size = self.env_config.cache_configs.cache_1.blocks / self.cyclone_num_buckets self.cyclone_bucket_size = self.env_config["cache_configs"]["cache_1"][ "blocks"] / self.cyclone_num_buckets self.cyclone_collect_data = env_config.get("cyclone_collect_data", False) self.cyclone_malicious_trace = env_config.get("cyclone_malicious_trace", False) self.X = [] self.Y = [] #self.cyclone_counters = [[0]* self.cyclone_num_buckets ] * self.cyclone_window_size self.cyclone_counters = [] for j in range(self.cyclone_num_buckets): temp =[] for i in range(self.cyclone_window_size): temp.append(0) self.cyclone_counters.append(temp) self.cyclone_coeff = env_config.get("cyclone_coeff", 1.0) self.cyclone_heatmap = [[], [], [], []] # self.cc_hunter_detection_reward = env_config.get( # "cc_hunter_detection_reward", -1.0) #self.cc_hunter_coeff = env_config.get("cc_hunter_coeff", 1.0) #self.cc_hunter_check_length = env_config.get("cc_hunter_check_length", # 4) self._env = CacheGuessingGameEnv(env_config) self.validation_env = CacheGuessingGameEnv(env_config) self.observation_space = self._env.observation_space self.action_space = self._env.action_space self.victim_address_min = self._env.victim_address_min self.victim_address_max = self._env.victim_address_max self.attacker_address_max = self._env.attacker_address_max self.attacker_address_min = self._env.attacker_address_min self.victim_address = self._env.victim_address self.svm_data_path = svm_data_path self.cnt = 0 self.step_count = 0 #self.cc_hunter_history = [] self.no_guess = True self.no_guess_reward = env_config["no_guess_reward"] def load_svm_model(self): from numpy import loadtxt data = loadtxt('all.txt.svm.txt') X = data[:,1:] Y = data[:,0] clf = svm.SVC(random_state=0) clf.fit(X, Y) def set_victim(self, victim_addr): self._env.victim_address = victim_addr def save_svm_data(self): fp = open(self.svm_data_path, 'a') for i in range(len(self.X)): str1 = ' '.join(str(e) for e in self.X[i]) str1 = str(self.Y[i]) + ' ' + str1 + '\n' fp.write(str1) fp.close() # if save_data==True, sa def reset(self, victim_address=-1, save_data=False, set_victim=False, seed: int = -1): if save_data == True: self.save_svm_data() # drwa figure print(self.cyclone_heatmap) #p=sns.heatmap(self.cyclone_heatmap, vmin=0, vmax=20) #p.set_xlabel('Time intervals (40 cycles)') #p.set_ylabel('Set index') #fig= p.get_figure() #fig.set_size_inches(3, 3) #fig_path ='/home/mulong/RL_SCA/src/CacheSimulator/src/heatmap.png' ##fig_path = os.getcwdb().decode('utf-8') + '/../heatmap.png' #fig.savefig(fig_path) if set_victim == True and victim_address != -1: obs = self._env.reset(victim_address=victim_address, reset_cache_state=False, seed=seed) return obs # reset cyclone counter #self.cyclone_counters = [[0]* self.cyclone_num_buckets ] * self.cyclone_window_size self.cyclone_counters = [] for j in range(self.cyclone_num_buckets): temp =[] for i in range(self.cyclone_window_size): temp.append(0) self.cyclone_counters.append(temp) self.step_count = 0 self.cnt = 0 #self.cc_hunter_history = [] obs = self._env.reset(victim_address=victim_address, reset_cache_state=True, seed=seed) self.victim_address = self._env.victim_address self.no_guess = True return obs ####def autocorr(self, x: np.ndarray, p: int) -> float: #### if p == 0: #### return 1.0 #### mean = x.mean() #### var = x.var() #### return ((x[:-p] - mean) * (x[p:] - mean)).mean() / var def cyclone_attack(self, cyclone_counters): # collect data to train svm #print(cyclone_counters) for i in range(len(cyclone_counters)): self.cyclone_heatmap[i] += cyclone_counters[i] if self.cyclone_collect_data == True: x = np.array(cyclone_counters).reshape(-1) if self.cyclone_malicious_trace == True: y = 1 else: y = 0 self.X.append(x) self.Y.append(y) x = np.array(cyclone_counters).reshape(-1) #print(x) ######print(x) ######x_mod = np.array(cyclone_counters).reshape(-1) ######x_mod[0] = 0 ######y = 1 ######y_mod = 0 ######X = [x, x_mod] ######Y= [y, y_mod] ######clf = svm.SVC(random_state=0) ######clf.fit(X,Y) y = self.clf.predict([x])[0] rew = -y return rew.item() def step(self, action): obs, reward, done, info = self._env.step(action) if info["is_guess"]: self.no_guess = False # is_guess = (self._env.parse_action(action)[1] == 1) cur_step_obs = obs[0, :] latency = cur_step_obs[0] if self.keep_latency else -1 # self.cc_hunter_history.append(latency) # self.cc_hunter_history.append(None if latency == 2 else latency) # Mulong Luo # cyclone if "cyclic_set_index" in info and info["cyclic_set_index"] != -1: set = int(info["cyclic_set_index"]) if self.step_count < self.episode_length: self.cyclone_counters[int(set / self.cyclone_bucket_size) ][int(self.step_count / self.cyclone_interval_size) ] += 1 self.step_count += 1 # self.cc_hunter_history.append(info.get("cache_state_change", None)) if done: self.cnt += 1 #TODO(Mulong) fix the logic so taht only guess increment the cnt obs = self._env.reset(victim_address=-1, reset_cache_state=False, reset_observation=self.reset_observation) self.victim_address = self._env.victim_address if self.step_count < self.episode_length: done = False # else: # #rew, cnt = self.cc_hunter_attack(self.cc_hunter_history) # rew = self.cyclone_attack(self.cyclone_counters) # reward += self.cyclone_coeff * rew # info["cyclone_attack"] = (rew != 0.0) #self.cnt # # if self.no_guess: # reward += self.no_guess_reward if self.step_count >= self.episode_length: rew = self.cyclone_attack(self.cyclone_counters) reward += self.cyclone_coeff * rew info["cyclone_attack"] = (rew != 0.0) # self.cnt if self.no_guess: reward += self.no_guess_reward done = True return obs, reward, done, info def seed(self, seed: int) -> None: self._env.seed(seed)
AutoCAT-main
src/cyclone_wrapper.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This software may be used and distributed according to the terms of the # GNU General Public License version 2. #!/usr/bin/env python # encoding: utf-8 import logging # now we patch Python code to add color support to logging.StreamHandler def add_coloring_to_emit_windows(fn): # add methods we need to the class def _out_handle(self): import ctypes return ctypes.windll.kernel32.GetStdHandle(self.STD_OUTPUT_HANDLE) out_handle = property(_out_handle) def _set_color(self, code): import ctypes # Constants from the Windows API self.STD_OUTPUT_HANDLE = -11 hdl = ctypes.windll.kernel32.GetStdHandle(self.STD_OUTPUT_HANDLE) ctypes.windll.kernel32.SetConsoleTextAttribute(hdl, code) setattr(logging.StreamHandler, '_set_color', _set_color) def new(*args): FOREGROUND_BLUE = 0x0001 # text color contains blue. FOREGROUND_GREEN = 0x0002 # text color contains green. FOREGROUND_RED = 0x0004 # text color contains red. FOREGROUND_INTENSITY = 0x0008 # text color is intensified. FOREGROUND_WHITE = FOREGROUND_BLUE|FOREGROUND_GREEN |FOREGROUND_RED # winbase.h STD_INPUT_HANDLE = -10 STD_OUTPUT_HANDLE = -11 STD_ERROR_HANDLE = -12 # wincon.h FOREGROUND_BLACK = 0x0000 FOREGROUND_BLUE = 0x0001 FOREGROUND_GREEN = 0x0002 FOREGROUND_CYAN = 0x0003 FOREGROUND_RED = 0x0004 FOREGROUND_MAGENTA = 0x0005 FOREGROUND_YELLOW = 0x0006 FOREGROUND_GREY = 0x0007 FOREGROUND_INTENSITY = 0x0008 # foreground color is intensified. BACKGROUND_BLACK = 0x0000 BACKGROUND_BLUE = 0x0010 BACKGROUND_GREEN = 0x0020 BACKGROUND_CYAN = 0x0030 BACKGROUND_RED = 0x0040 BACKGROUND_MAGENTA = 0x0050 BACKGROUND_YELLOW = 0x0060 BACKGROUND_GREY = 0x0070 BACKGROUND_INTENSITY = 0x0080 # background color is intensified. levelno = args[1].levelno if(levelno>=50): color = BACKGROUND_MAGNETA | FOREGROUND_RED | FOREGROUND_INTENSITY | BACKGROUND_INTENSITY elif(levelno>=40): color = FOREGROUND_RED | FOREGROUND_INTENSITY elif(levelno>=30): color = FOREGROUND_YELLOW | FOREGROUND_INTENSITY elif(levelno>=20): color = FOREGROUND_GREEN elif(levelno>=10): color = FOREGROUND_MAGENTA else: color = FOREGROUND_WHITE args[0]._set_color(color) ret = fn(*args) args[0]._set_color( FOREGROUND_WHITE ) #print "after" return ret return new def add_coloring_to_emit_ansi(fn): # add methods we need to the class def new(*args): levelno = args[1].levelno if(levelno>=50): color = '\x1b[31m' # red elif(levelno>=40): color = '\x1b[31m' # red elif(levelno>=30): color = '\x1b[33m' # yellow elif(levelno>=20): color = '\x1b[32m' # green elif(levelno>=10): color = '\x1b[35m' # pink else: color = '\x1b[0m' # normal args[1].msg = color + args[1].msg + '\x1b[0m' # normal #print "after" return fn(*args) return new import platform if platform.system()=='Windows': # Windows does not support ANSI escapes and we are using API calls to set the console color logging.StreamHandler.emit = add_coloring_to_emit_windows(logging.StreamHandler.emit) else: # all non-Windows platforms are supporting ANSI escapes so we use them logging.StreamHandler.emit = add_coloring_to_emit_ansi(logging.StreamHandler.emit) #log = logging.getLogger() #log.addFilter(log_filter()) #//hdlr = logging.StreamHandler() #//hdlr.setFormatter(formatter())
AutoCAT-main
src/colorer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This software may be used and distributed according to the terms of the # GNU General Public License version 2. import copy from typing import Any, Dict, Sequence, Tuple import matplotlib.pyplot as plt import pandas as pd import numpy as np import gym from autocorrelation import autocorrelation from cache_guessing_game_env_impl import CacheGuessingGameEnv class CCHunterWrapper(gym.Env): def __init__(self, env_config: Dict[str, Any], keep_latency: bool = True) -> None: env_config["cache_state_reset"] = False self.reset_observation = env_config.get("reset_observation", False) self.keep_latency = keep_latency self.env_config = env_config self.episode_length = env_config.get("episode_length", 80) self.threshold = env_config.get("threshold", 0.8) # self.cc_hunter_detection_reward = env_config.get( # "cc_hunter_detection_reward", -1.0) self.cc_hunter_coeff = env_config.get("cc_hunter_coeff", 1.0) self.cc_hunter_check_length = env_config.get("cc_hunter_check_length", 4) self._env = CacheGuessingGameEnv(env_config) self.validation_env = CacheGuessingGameEnv(env_config) self.observation_space = self._env.observation_space self.action_space = self._env.action_space self.victim_address_min = self._env.victim_address_min self.victim_address_max = self._env.victim_address_max self.attacker_address_max = self._env.attacker_address_max self.attacker_address_min = self._env.attacker_address_min self.victim_address = self._env.victim_address self.step_count = 0 self.cc_hunter_history = [] self.no_guess = True self.no_guess_reward = env_config["no_guess_reward"] def reset(self, victim_address=-1, seed: int = -1): self.step_count = 0 self.cc_hunter_history = [] obs = self._env.reset(victim_address=victim_address, reset_cache_state=True, seed=seed) self.victim_address = self._env.victim_address self.no_guess = True return obs def cc_hunter_attack(self, data: Sequence[int]) -> Tuple[float, int]: # Mulong: only calculate 4 * size_cache size lag n = min(len(data), self._env.cache_size * self.cc_hunter_check_length) x = np.asarray(data) corr = [autocorrelation(x, i) for i in range(n)] corr = np.asarray(corr[1:]) corr = np.nan_to_num(corr) mask = corr > self.threshold rew = -np.square(corr).mean().item() if len(corr) > 0 else 0.0 cnt = mask.sum().item() return rew, cnt def step(self, action): obs, reward, done, info = self._env.step(action) self.step_count += 1 # is_guess = (self._env.parse_action(action)[1] == 1) cur_step_obs = obs[0, :] latency = cur_step_obs[0] if self.keep_latency else -1 # self.cc_hunter_history.append(latency) # self.cc_hunter_history.append(None if latency == 2 else latency) # Mulong Luo # change the semantics of cc_hunter_history following the paper # only append when there is a conflict miss (i.e., victim_latency is 1(miss)) # then check the action # if the action is attacker access, then it is T->S append 1 # else if the action is trigger victim, then it is S->T append 0 if "victim_latency" in info and info["victim_latency"] == 1: self.cc_hunter_history.append(0) elif latency == 1: self.cc_hunter_history.append(1) if info["is_guess"]: self.no_guess = False # self.cc_hunter_history.append(info.get("cache_state_change", None)) if done: obs = self._env.reset(victim_address=-1, reset_cache_state=False, reset_observation=self.reset_observation) self.victim_address = self._env.victim_address if self.step_count < self.episode_length: done = False # else: # rew, cnt = self.cc_hunter_attack(self.cc_hunter_history) # reward += self.cc_hunter_coeff * rew # info["cc_hunter_attack"] = cnt # # if self.no_guess: # reward += self.no_guess_reward if self.step_count >= self.episode_length: rew, cnt = self.cc_hunter_attack(self.cc_hunter_history) reward += self.cc_hunter_coeff * rew info["cc_hunter_attack"] = cnt if self.no_guess: reward += self.no_guess_reward done = True return obs, reward, done, info def seed(self, seed: int) -> None: self._env.seed(seed)
AutoCAT-main
src/cchunter_wrapper.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This software may be used and distributed according to the terms of the # GNU General Public License version 2. import numpy as np def autocorrelation(x: np.ndarray, p: int, normalized: bool = True) -> float: if p == 0: return 1.0 mean = x.mean() if normalized: return ((x[:-p] - mean) * (x[p:] - mean)).mean() / x.var() return ((x[:-p] - mean) * (x[p:] - mean)).sum() / np.square(x - mean).sum()
AutoCAT-main
src/autocorrelation.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This software may be used and distributed according to the terms of the # GNU General Public License version 2. class Block: def __init__(self, block_size, current_step, dirty, address, domain_id = -1): self.size = block_size self.dirty_bit = dirty self.last_accessed = current_step self.address = address self.doamin_id = domain_id # for cyclone def is_dirty(self): return self.dirty_bit def write(self, current_step): self.dirty_bit = True self.last_accessed = current_step def clean(self): self.dirty_bit = False def read(self, current_step): self.last_accessed = current_step
AutoCAT-main
src/block.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This software may be used and distributed according to the terms of the # GNU General Public License version 2. #!/usr/bin/env python import yaml, cache, argparse, logging, pprint from terminaltables.other_tables import UnixTable from replacement_policy import * def main(): #Set up our arguments parser = argparse.ArgumentParser(description='Simulate a cache') parser.add_argument('-c','--config-file', help='Configuration file for the memory heirarchy', required=True) parser.add_argument('-t', '--trace-file', help='Tracefile containing instructions', required=True) parser.add_argument('-l', '--log-file', help='Log file name', required=False) parser.add_argument('-p', '--pretty', help='Use pretty colors', required=False, action='store_true') parser.add_argument('-d', '--draw-cache', help='Draw cache layouts', required=False, action='store_true') parser.add_argument('-f', '--result-file', help='Result trace', required=False) arguments = vars(parser.parse_args()) if arguments['pretty']: import colorer log_filename = 'cache_simulator.log' if arguments['log_file']: log_filename = arguments['log_file'] result_file = 'result.txt' if arguments['result_file']: result_file = arguments['result_file'] with open(result_file, 'w'): pass #Clear the log file if it exists with open(log_filename, 'w'): pass logger = logging.getLogger() fh = logging.FileHandler(log_filename) sh = logging.StreamHandler() logger.addHandler(fh) logger.addHandler(sh) fh_format = logging.Formatter('%(message)s') fh.setFormatter(fh_format) sh.setFormatter(fh_format) logger.setLevel(logging.INFO) logger.info('Loading config...') config_file = open(arguments['config_file']) configs = yaml.full_load(config_file) hierarchy = build_hierarchy(configs, logger) logger.info('Memory hierarchy built.') logger.info('Loading tracefile...') trace_file = open(arguments['trace_file']) trace = trace_file.read().splitlines() trace = [item for item in trace if not item.startswith('#')] logger.info('Loaded tracefile ' + arguments['trace_file']) logger.info('Begin simulation!') simulate(hierarchy, trace, logger, result_file = result_file) if arguments['draw_cache']: for cache in hierarchy: if hierarchy[cache].next_level: print_cache(hierarchy[cache]) #Print the contents of a cache as a table #If the table is too long, it will print the first few sets, #break, and then print the last set def print_cache(cache): table_size = 5 ways = [""] sets = [] set_indexes = sorted(cache.data.keys()) if len(cache.data.keys()) > 0: first_key = list(cache.data.keys())[0] way_no = 0 #Label the columns for way in range(cache.associativity): ways.append("Way " + str(way_no)) way_no += 1 #Print either all the sets if the cache is small, or just a few #sets and then the last set sets.append(ways) if len(set_indexes) > table_size + 4 - 1: for s in range(min(table_size, len(set_indexes) - 4)): temp_way = ["Set " + str(s)] for w in range(0, cache.associativity): temp_way.append(cache.data[set_indexes[s]][w][1].address) sets.append(temp_way) for i in range(3): temp_way = ['.'] for w in range(cache.associativity): temp_way.append('') sets.append(temp_way) ##set_ways = cache.data[set_indexes[len(set_indexes) - 1]].keys() temp_way = ['Set ' + str(len(set_indexes) - 1)] for w in range(0, cache.associativity): temp_way.append(cache.data[set_indexes[len(set_indexes) - 1]][w][1].address) sets.append(temp_way) else: for s in range(len(set_indexes)): temp_way = ["Set " + str(s)] for w in range(0, cache.associativity): temp_way.append(cache.data[set_indexes[s]][w][1].address) sets.append(temp_way) table = UnixTable(sets) table.title = cache.name table.inner_row_border = True print(table.table) #Loop through the instructions in the tracefile and use #the given memory hierarchy to find AMAT def simulate(hierarchy, trace, logger, result_file=''): responses = [] if result_file != '': f = open(result_file, 'w') #We only interface directly with L1. Reads and writes will automatically #interact with lower levels of the hierarchy l1 = hierarchy['cache_1'] if 'cache_1_core_2' in hierarchy: l1_c2 = hierarchy['cache_1_core_2'] for current_step in range(len(trace)): instruction = trace[current_step] address, op = instruction.split() #Call read for this address on our memory hierarchy if op == 'R' or op == 'R2': logger.info(str(current_step) + ':\tReading ' + address + ' ' + op) if op == 'R2': l = l1_c2 else: l = l1 r, _, _, _ = l.read(address, current_step) logger.warning('\thit_list: ' + pprint.pformat(r.hit_list) + '\ttime: ' + str(r.time) + '\n') responses.append(r) elif op == 'RL' or op == 'RL2': # pl cache lock cacheline assert(l1.rep_policy == plru_pl_policy) # must be pl cache # multilcore not implemented assert(op == 'RL') logger.info(str(current_step) + ':\tReading ' + address + ' ' + op) r, _, _, _ = l1.read(address, current_step, pl_opt = PL_LOCK ) logger.warning('\thit_list: ' + pprint.pformat(r.hit_list) + '\ttime: ' + str(r.time) + '\n') responses.append(r) elif op == 'RU' or op == 'RU2': # pl cache unlock cacheline assert(l1.rep_policy == plru_pl_policy) # multilcore not implemented assert(op == 'RU') logger.info(str(current_step) + ':\tReading ' + address + ' ' + op) r, _, _, _ = l1.read(address, current_step, pl_opt = PL_UNLOCK ) logger.warning('\thit_list: ' + pprint.pformat(r.hit_list) + '\ttime: ' + str(r.time) + '\n') responses.append(r) #Call write elif op == 'W' or op == 'W2': # multilcore not implemented #assert(op == 'W') logger.info(str(current_step) + ':\tWriting ' + address + ' ' + op) r, _, _= l1.write(address, True, current_step) logger.warning('\thit_list: ' + pprint.pformat(r.hit_list) + '\ttime: ' + str(r.time) + '\n') responses.append(r) #Call cflush elif op == 'F' or op == 'F2': ## multilcore not implemented #assert(op == 'F') logger.info(str(current_step) + ':\tFlushing ' + address + ' ' + op) r, _, _ = l1.cflush(address, current_step) #logger.warning('\thit_list: ' + pprint.pformat(r.hit_list) + '\ttime: ' + str(r.time) + '\n') else: raise InvalidOpError #if result_file != '': # print the trace print(address + ' ' + str(r.time), file = f ) for cache in hierarchy: if hierarchy[cache].next_level: print_cache(hierarchy[cache]) logger.info('Simulation complete') analyze_results(hierarchy, responses, logger) def analyze_results(hierarchy, responses, logger): #Parse all the responses from the simulation n_instructions = len(responses) total_time = 0 for r in responses: total_time += r.time logger.info('\nNumber of instructions: ' + str(n_instructions)) logger.info('\nTotal cycles taken: ' + str(total_time) + '\n') amat = compute_amat(hierarchy['cache_1'], responses, logger) logger.info('\nAMATs:\n'+pprint.pformat(amat)) def compute_amat(level, responses, logger, results={}): #Check if this is main memory #Main memory has a non-variable hit time if not level.next_level: results[level.name] = level.hit_time else: #Find out how many times this level of cache was accessed #And how many of those accesses were misses n_miss = 0 n_access = 0 for r in responses: if level.name in r.hit_list.keys(): n_access += 1 if r.hit_list[level.name] == False: n_miss += 1 if n_access > 0: miss_rate = float(n_miss)/n_access #Recursively compute the AMAT of this level of cache by computing #the AMAT of lower levels results[level.name] = level.hit_time + miss_rate * compute_amat(level.next_level, responses, logger)[level.next_level.name] #wat else: results[level.name] = 0 * compute_amat(level.next_level, responses, logger)[level.next_level.name] #trust me, this is good logger.info(level.name) logger.info('\tNumber of accesses: ' + str(n_access)) logger.info('\tNumber of hits: ' + str(n_access - n_miss)) logger.info('\tNumber of misses: ' + str(n_miss)) return results def build_hierarchy(configs, logger): #Build the cache hierarchy with the given configuration hierarchy = {} #Main memory is required main_memory = build_cache(configs, 'mem', None, logger) prev_level = main_memory hierarchy['mem'] = main_memory if 'cache_3' in configs.keys(): cache_3 = build_cache(configs, 'cache_3', prev_level, logger) prev_level = cache_3 hierarchy['cache_3'] = cache_3 if 'cache_2' in configs.keys(): cache_2 = build_cache(configs, 'cache_2', prev_level, logger) prev_level = cache_2 hierarchy['cache_2'] = cache_2 if 'cache_1_core_2' in configs.keys(): cache_1_core_2 = build_cache(configs, 'cache_1_core_2', prev_level, logger) prev_level = cache_2 hierarchy['cache_1_core_2'] = cache_1_core_2 #Cache_1 is required cache_1 = build_cache(configs, 'cache_1', prev_level, logger) if 'cache_1_core_2' in configs.keys(): cache_1.add_same_level_cache(cache_1_core_2) cache_1_core_2.add_same_level_cache(cache_1) #print(len(cache_1.same_level_caches)) hierarchy['cache_1'] = cache_1 return hierarchy def build_cache(configs, name, next_level_cache, logger): return cache.Cache(name, configs['architecture']['word_size'], configs['architecture']['block_size'], configs[name]['blocks'] if (name != 'mem') else -1, configs[name]['associativity'] if (name != 'mem') else -1, configs[name]['hit_time'], configs[name]['hit_time'], configs['architecture']['write_back'], logger, next_level_cache, rep_policy = configs[name]['rep_policy'] if 'rep_policy' in configs[name] else '', prefetcher = configs[name]['prefetcher'] if 'prefetcher' in configs[name] else "none", verbose = configs['verbose'] if 'verbose' in configs else 'False' ) if __name__ == '__main__': main()
AutoCAT-main
src/cache_simulator.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This software may be used and distributed according to the terms of the # GNU General Public License version 2. import torch import torch.nn as nn import torch.nn.functional as F class ResidualBlock(nn.Module): def __init__(self, dim: int) -> None: super(ResidualBlock, self).__init__() self.dim = dim layers = [] layers.append(nn.ReLU()) layers.append(nn.Linear(self.dim, self.dim)) layers.append(nn.ReLU()) layers.append(nn.Linear(self.dim, self.dim)) self.layers = nn.Sequential(*layers) def forward(self, x: torch.Tensor) -> torch.Tensor: return x + self.layers(x) class DNNEncoder(nn.Module): def __init__(self, input_dim: int, hidden_dim: int, output_dim: int, num_blocks: int = 1) -> None: super(DNNEncoder, self).__init__() self.input_dim = input_dim self.hidden_dim = hidden_dim self.output_dim = output_dim self.num_blocks = num_blocks layers = [] layers.append(nn.Linear(self.input_dim, self.hidden_dim)) for _ in range(self.num_blocks): layers.append(ResidualBlock(self.hidden_dim)) layers.append(nn.ReLU()) layers.append(nn.Linear(self.hidden_dim, self.output_dim)) self.layers = nn.Sequential(*layers) def forward(self, x: torch.Tensor) -> torch.Tensor: return self.layers(x)
AutoCAT-main
src/models/dnn.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This software may be used and distributed according to the terms of the # GNU General Public License version 2. import os import sys import torch import torch.nn as nn import torch.nn.functional as F sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from models.dnn import DNNEncoder class CacheBackbone(nn.Module): def __init__(self, latency_dim: int, victim_acc_dim: int, action_dim: int, step_dim: int, window_size: int, action_embed_dim: int, step_embed_dim: int, hidden_dim: int, num_blocks: int = 1) -> None: super().__init__() self.latency_dim = latency_dim self.victim_acc_dim = victim_acc_dim self.action_dim = action_dim self.step_dim = step_dim self.window_size = window_size self.action_embed_dim = action_embed_dim self.step_embed_dim = step_embed_dim self.input_dim = (self.latency_dim + self.victim_acc_dim + self.action_embed_dim + self.step_embed_dim) * self.window_size self.hidden_dim = hidden_dim self.num_blocks = num_blocks self.action_embed = nn.Embedding(self.action_dim, self.action_embed_dim) self.step_embed = nn.Embedding(self.step_dim, self.step_embed_dim) self.dnn_encoder = DNNEncoder(self.input_dim, self.hidden_dim, self.hidden_dim, self.num_blocks) def make_one_hot(self, src: torch.Tensor, num_classes: int) -> torch.Tensor: mask = (src == -1) src = src.masked_fill(mask, 0) ret = F.one_hot(src, num_classes) return ret.masked_fill(mask.unsqueeze(-1), 0.0) def make_embedding(self, src: torch.Tensor, embed: nn.Embedding) -> torch.Tensor: mask = (src == -1) src = src.masked_fill(mask, 0) ret = embed(src) return ret.masked_fill(mask.unsqueeze(-1), 0.0) def forward(self, obs: torch.Tensor) -> torch.Tensor: obs = obs.to(torch.int64) assert obs.dim() == 3 batch_size = obs.size(0) (l, v, act, step) = torch.unbind(obs, dim=-1) l = self.make_one_hot(l, self.latency_dim) v = self.make_one_hot(v, self.victim_acc_dim) act = self.make_embedding(act, self.action_embed) step = self.make_embedding(step, self.step_embed) x = torch.cat((l, v, act, step), dim=-1) x = x.view(batch_size, -1) y = self.dnn_encoder(x) return y
AutoCAT-main
src/models/backbone.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This software may be used and distributed according to the terms of the # GNU General Public License version 2. from typing import Dict, List, Tuple import gym import torch import torch.nn as nn import torch.nn.functional as F from ray.rllib.models import ModelCatalog from ray.rllib.models.torch.torch_modelv2 import TorchModelV2 from ray.rllib.utils.annotations import override from ray.rllib.utils.typing import ModelConfigDict, TensorType from models.dnn import DNNEncoder class TransformerModel(TorchModelV2, nn.Module): def __init__(self, obs_space: gym.spaces.Space, action_space: gym.spaces.Space, num_outputs: int, model_config: ModelConfigDict, name: str, **kwargs) -> None: TorchModelV2.__init__(self, obs_space, action_space, num_outputs, model_config, name) nn.Module.__init__(self) if len(kwargs) > 0: custom_model_config = kwargs else: custom_model_config = model_config["custom_model_config"] self.latency_dim = custom_model_config["latency_dim"] self.victim_acc_dim = custom_model_config["victim_acc_dim"] self.action_dim = custom_model_config["action_dim"] self.step_dim = custom_model_config["step_dim"] self.window_size = custom_model_config["window_size"] self.action_embed_dim = custom_model_config["action_embed_dim"] self.step_embed_dim = custom_model_config["step_embed_dim"] self.input_dim = (self.latency_dim + self.victim_acc_dim + self.action_embed_dim + self.step_embed_dim) self.hidden_dim = custom_model_config["hidden_dim"] self.output_dim = num_outputs self.num_blocks = custom_model_config.get("num_blocks", 1) self.action_embed = nn.Embedding(self.action_dim, self.action_embed_dim) self.step_embed = nn.Embedding(self.step_dim, self.step_embed_dim) self.linear_i = nn.Linear(self.input_dim, self.hidden_dim) # self.linear_o = nn.Linear(self.hidden_dim * self.window_size, # self.hidden_dim) encoder_layer = nn.TransformerEncoderLayer(d_model=self.hidden_dim, nhead=8) self.encoder = nn.TransformerEncoder(encoder_layer, self.num_blocks) self.linear_a = nn.Linear(self.hidden_dim, self.output_dim) self.linear_v = nn.Linear(self.hidden_dim, 1) self._device = None self._features = None def make_one_hot(self, src: torch.Tensor, num_classes: int) -> torch.Tensor: mask = (src == -1) src = src.masked_fill(mask, 0) ret = F.one_hot(src, num_classes) return ret.masked_fill(mask.unsqueeze(-1), 0.0) def make_embedding(self, src: torch.Tensor, embed: nn.Embedding) -> torch.Tensor: mask = (src == -1) src = src.masked_fill(mask, 0) ret = embed(src) return ret.masked_fill(mask.unsqueeze(-1), 0.0) @override(TorchModelV2) def forward(self, input_dict: Dict[str, TensorType], state: List[TensorType], seq_lens: TensorType) -> Tuple[TensorType, List[TensorType]]: if self._device is None: self._device = next(self.parameters()).device obs = input_dict["obs"].to(self._device) obs = obs.to(torch.int64) assert obs.dim() == 3 # batch_size = obs.size(0) l, v, act, stp = torch.unbind(obs, dim=-1) l = self.make_one_hot(l, self.latency_dim) v = self.make_one_hot(v, self.victim_acc_dim) act = self.make_embedding(act, self.action_embed) stp = self.make_embedding(stp, self.step_embed) x = torch.cat((l, v, act, stp), dim=-1) x = self.linear_i(x) x = x.transpose(0, 1).contiguous() h = self.encoder(x) # h = self.linear_o(h.view(batch_size, -1)) h = h.mean(dim=0) a = self.linear_a(h) self._features = h return a, state @override(TorchModelV2) def value_function(self) -> TensorType: assert self._features is not None v = self.linear_v(self._features) return v.squeeze(1) ModelCatalog.register_custom_model("transformer_model", TransformerModel)
AutoCAT-main
src/models/transformer_model.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This software may be used and distributed according to the terms of the # GNU General Public License version 2. from typing import Dict, List, Tuple import gym import torch import torch.nn as nn import torch.nn.functional as F from ray.rllib.models import ModelCatalog from ray.rllib.models.torch.torch_modelv2 import TorchModelV2 from ray.rllib.utils.annotations import override from ray.rllib.utils.typing import ModelConfigDict, TensorType from models.dnn import DNNEncoder class DNNModel(TorchModelV2, nn.Module): def __init__(self, obs_space: gym.spaces.Space, action_space: gym.spaces.Space, num_outputs: int, model_config: ModelConfigDict, name: str, **kwargs) -> None: TorchModelV2.__init__(self, obs_space, action_space, num_outputs, model_config, name) nn.Module.__init__(self) if len(kwargs) > 0: custom_model_config = kwargs else: custom_model_config = model_config["custom_model_config"] self.latency_dim = custom_model_config["latency_dim"] self.victim_acc_dim = custom_model_config["victim_acc_dim"] self.action_dim = custom_model_config["action_dim"] self.step_dim = custom_model_config["step_dim"] self.window_size = custom_model_config["window_size"] self.action_embed_dim = custom_model_config["action_embed_dim"] self.step_embed_dim = custom_model_config["step_embed_dim"] self.input_dim = (self.latency_dim + self.victim_acc_dim + self.action_embed_dim + self.step_embed_dim) * self.window_size self.hidden_dim = custom_model_config["hidden_dim"] self.output_dim = num_outputs self.num_blocks = custom_model_config.get("num_blocks", 1) self.action_embed = nn.Embedding(self.action_dim, self.action_embed_dim) self.step_embed = nn.Embedding(self.step_dim, self.step_embed_dim) self.backbone = DNNEncoder(self.input_dim, self.hidden_dim, self.hidden_dim, self.num_blocks) self.linear_a = nn.Linear(self.hidden_dim, self.output_dim) self.linear_v = nn.Linear(self.hidden_dim, 1) self._device = None self._features = None def make_one_hot(self, src: torch.Tensor, num_classes: int) -> torch.Tensor: mask = (src == -1) src = src.masked_fill(mask, 0) ret = F.one_hot(src, num_classes) return ret.masked_fill(mask.unsqueeze(-1), 0.0) def make_embedding(self, src: torch.Tensor, embed: nn.Embedding) -> torch.Tensor: mask = (src == -1) src = src.masked_fill(mask, 0) ret = embed(src) return ret.masked_fill(mask.unsqueeze(-1), 0.0) @override(TorchModelV2) def forward(self, input_dict: Dict[str, TensorType], state: List[TensorType], seq_lens: TensorType) -> Tuple[TensorType, List[TensorType]]: if self._device is None: self._device = next(self.parameters()).device obs = input_dict["obs"].to(self._device) obs = obs.to(torch.int64) assert obs.dim() == 3 batch_size = obs.size(0) (l, v, act, step) = torch.unbind(obs, dim=-1) l = self.make_one_hot(l, self.latency_dim) v = self.make_one_hot(v, self.victim_acc_dim) act = self.make_embedding(act, self.action_embed) step = self.make_embedding(step, self.step_embed) x = torch.cat((l, v, act, step), dim=-1) x = x.view(batch_size, -1) h = self.backbone(x) a = self.linear_a(h) self._features = h return a, state @override(TorchModelV2) def value_function(self) -> TensorType: assert self._features is not None v = self.linear_v(self._features) return v.squeeze(1) ModelCatalog.register_custom_model("dnn_model", DNNModel)
AutoCAT-main
src/models/dnn_model.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This software may be used and distributed according to the terms of the # GNU General Public License version 2. ''' Author Mulong Luo Date 2022.1.24 usage: resotre the ray checkpoint to replay the agent and extract the attack pattern ''' from copy import deepcopy import gym from starlette.requests import Request import requests import pprint import ray import json from ray import serve from test_custom_policy_diversity_works import * from cache_simulator import print_cache #from run_gym_rrllib import * # need this to import the config and PPOtrainer #config["num_workers"] = 1 #config["num_envs_per_worker"] = 1 #print(config) #tune.register_env("cache_guessing_game_env_fix", CacheGuessingGameEnv)#Fix) #exit(0) checkpoint_path = sys.argv[1:][0] print(checkpoint_path[0]) #exit(-1) #'/home/ml2558/ray_results/PPO_cache_guessing_game_env_fix_2022-01-24_21-18-203pft9506/checkpoint_000136/checkpoint-136' i = checkpoint_path.rfind('/') config_path = checkpoint_path[0:i] + '/../params.json' print(config_path) config = json.load(open(config_path)) ##if os.path.isfile(config_path): ## print('load env configuration in', config_path) ## #exit(0) ## with open(config_path, 'rb') as handle: ## config["env_config"] = pickle.load(handle) ## print(config["env_config"]) ##else: ## print('env.config not found! using defualt one') ## print('be careful to that the env.cofnig matches the env which generate the checkpoint') ## print(config["env_config"]) config["env_config"]["verbose"] = 1 print(config) trainer = PPOCustomTrainer(config=config) trainer.restore(checkpoint_path) #local_worker = trainer.workers.local_worker() #env = local_worker.env_context env = CacheGuessingGameEnv(config["env_config"]) #obs = env.reset() #for _ in range(1000): # print(f"-> Sending observation {obs}") # # Setting explore=False should always return the same action. # action = trainer.compute_single_action(obs, explore=False) # print(f"<- Received response {action}") # obs, reward, done, info = env.step(action) # if done == True: # obs = env.reset() # ## no cache randomization ## no randomized inference #pattern_buffer = [] #for victim_addr in range(env.victim_address_min, env.victim_address_max + 1): # obs = env.reset(victim_address=victim_addr) # action_buffer = [] # done = False # while done == False: # print(f"-> Sending observation {obs}") # action = trainer.compute_single_action(obs, explore=False) # print(f"<- Received response {action}") # obs, reward, done, info = env.step(action) # action_buffer.append((action, obs[0])) # if reward > 0: # correct = True # else: # correct = False # pattern_buffer.append((victim_addr, action_buffer, correct)) #pprint.pprint(pattern_buffer) def replay_agent(): # no cache randomization # rangomized inference ( 10 times) pattern_buffer = [] num_guess = 0 num_correct = 0 pattern_dict = {} if env.allow_empty_victim_access == False: end_address = env.victim_address_max + 1 else: end_address = env.victim_address_max + 1 + 1 for victim_addr in range(env.victim_address_min, end_address): for repeat in range(1):#000): obs = env.reset(victim_address=victim_addr) # for debugging purposes print_cache(env.l1) #env._randomize_cache()#"union")#"victim") action_buffer = [] done = False legend=[] step = 0 while done == False: # for debugging purposes print_cache(env.l1) step += 1 #print(f"-> Sending observation {obs}") action = trainer.compute_single_action(obs, explore=False) # randomized inference # print the log likelihood for each action # see https://github.com/ray-project/ray/blob/7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065/rllib/policy/policy.py#L228 local_worker = trainer.workers.local_worker() pp = local_worker.preprocessors["default_policy"] ###print(obs) observation = pp.transform(obs) episodes = None policy = trainer.get_policy() logp = policy.compute_log_likelihoods( actions = [i for i in range(0, env.action_space.n)], obs_batch = [observation], ) #prev_action_batch = None, #prev_reward_batch = None, #action_normalized=True) #print(logp) #print(np.argmax(logp.cpu().numpy())) import matplotlib.pyplot as plt plt.plot(logp.cpu().numpy()) #print(action) legend.append('step '+ str(step)) #print(f"<- Received response {action}") obs, reward, done, info = env.step(action) latency = obs[0][0] # action_buffer.append((action, latency)) if reward > 0: correct = True num_correct += 1 else: correct = False num_guess += 1 pattern_buffer.append((victim_addr, action_buffer, correct)) print(pattern_buffer) if pattern_dict.get((victim_addr, tuple(action_buffer), correct)) == None: pattern_dict[(victim_addr, tuple(action_buffer), correct)] = 1 else: pattern_dict[(victim_addr, tuple(action_buffer), correct)] += 1 plt.xlabel('action label') plt.ylabel('logp') plt.legend(legend) #plt.show() secret = open('victim.txt', 'a') with open('temp.txt', 'a') as out: for pattern in pattern_buffer: trajectory = pattern[1] for point in trajectory: print(point[0], end=' ', file=out) print(pattern[0], file = secret) print(' ', file = out) print( "overall accuray " + str(1.0 * num_correct / num_guess) ) pprint.pprint(pattern_dict) print("num distinct patterns "+ str(len(pattern_dict))) return 1.0 * num_correct / num_guess, pattern_buffer replay_agent() #if __name__ == "__main__": #import pickle #ickle.loads(pickle.dumps(trainer.get_policy())) # cache randomization # no randomized inference
AutoCAT-main
src/rllib/replay_checkpoint.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This software may be used and distributed according to the terms of the # GNU General Public License version 2. ''' Author: Mulong Luo Date: 2022.7.10 Description: split the agent into two different agent P1: just generate the sequence but not the guess P2: just make the guess, given the memory access sequence and observations P1: action space: autoCAT's memory access observation space: guessability P2: action space: NOP observation space: original observation space P1 wrapper of CacheGuessingGameEnv blocking the guess action or just have one guess action when guess is structed, calculate the guessability as the reward observation space becomes concatenated observations reward becomes agregated reward ''' from random import random import sys import os import gym import sys import numpy as np from gym import spaces import signal from sklearn import svm from sklearn.model_selection import cross_val_score class CacheSimulatorP1Wrapper(gym.Env): def __init__(self, env_config): #sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from cache_guessing_game_env_wrapper import CacheGuessingGameEnvWrapper as CacheGuessingGameEnv # for offline training, the environment returns filler observations and zero reward # until the guess # the step reward is also temporarily accumulated until the end self.offline_training = True self.copy = 1 self.env_list = [] self.env_config = env_config self.cache_state_reset = False # has to force no reset self.env = CacheGuessingGameEnv(env_config) self.victim_address_min = self.env.victim_address_min self.victim_address_max = self.env.victim_address_max self.window_size = self.env.window_size self.secret_size = self.victim_address_max - self.victim_address_min + 1 self.max_box_value = self.env.max_box_value self.feature_size = self.env.feature_size # expand the observation space self.observation_space = spaces.Box(low=-1, high=self.max_box_value, shape=(self.window_size, self.feature_size * self.secret_size * self.copy)) # merge all guessing into one action self.action_space_size = (self.env.action_space.n - self.secret_size+1) print(self.env.action_space.n) print(self.env.get_act_space_dim()) self.action_space = spaces.Discrete(self.action_space_size) # instantiate the environment self.env_list.append(CacheGuessingGameEnv(env_config)) self.env_config['verbose'] = False for _ in range(1,self.secret_size * self.copy): self.env_list.append(CacheGuessingGameEnv(env_config)) # instantiate the latency_buffer # for each permuted secret, latency_buffer stores the latency self.latency_buffer = [] for i in range(0, self.secret_size * self.copy): self.latency_buffer.append([]) #permute the victim addresses self.victim_addr_arr = np.random.permutation(range(self.env.victim_address_min, self.env.victim_address_max+1)) self.victim_addr_arr = [] for i in range(self.victim_address_min, self.victim_address_max+1): self.victim_addr_arr.append(i) # reset the addresses self.env_config['verbose'] = True self.env_list[0].reset(self.victim_addr_arr[0]) self.env_config['verbose'] = False self.reset_state = np.array([[]] * self.window_size) # initialize the offline_state as filler state if we use offline training if self.offline_training == True: self.offline_state = self.env.reset(seed=-1) self.offline_reward = 0 self.offline_action_buffer = [] self.last_offline_state = self.env.reset() for cp in range(0, self.copy): seed = -1#random.randint(1, 1000000) for i in range(0, len(self.victim_addr_arr)): state = self.env_list[i + cp * len(self.victim_addr_arr)].reset(victim_address = self.victim_addr_arr[i], seed= seed) self.reset_state = np.concatenate((self.reset_state, state), axis=1) # same seed esure the initial state are teh same def reset(self): # permute the victim addresses #self.victim_addr_arr = np.random.permutation(range(self.env.victim_address_min, self.env.victim_address_max+1)) self.victim_addr_arr = [] for i in range(self.victim_address_min, self.victim_address_max+1): self.victim_addr_arr.append(i) # restore the total state total_state = np.array([[]] * self.window_size) for i in range(len(self.env_list)): seed = -1#random.randint(1, 1000000) env = self.env_list[i] state = env.reset(victim_address = self.victim_addr_arr[i % len(self.victim_addr_arr)], seed = seed) total_state = np.concatenate((total_state, state), axis=1) if self.offline_training == True: state = self.offline_state self.offline_action_buffer = [] # reset the latency_buffer self.latency_buffer = [] for i in range(0, self.secret_size * self.copy): self.latency_buffer.append([]) self.last_offline_state = self.env.reset() return total_state #return self.reset_state # feed the actions to all subenv with different secret def step(self, action): early_done_reward = 0 total_reward = 0 total_state = [] total_done = False done_arr = [] total_state = np.array([[]] * self.window_size) #parsed_orig_action = action #self.env.parse_action(action) if action == self.action_space_size - 1: # guessing action info = {} # for offline training the total_reward needs to include the history reward if self.offline_training == True: # just similate all actions here i = 0 print(self.offline_action_buffer) for env in self.env_list: for act in self.offline_action_buffer: #print('simulate in offline_action_buffer') state, reward, done, info = env.step(act) total_reward += reward latency = state[0][0] self.latency_buffer[i].append(latency) # if done == True: break i += 1 # TODO(MUlong): need to think whether the last observation is needt for the agent total_state = self.reset_state self.offline_action_buffer = [] total_reward = self.P2oracle() else: #calculate the reward and terminate for env in self.env_list: state, reward, done, info = env.step(action) #total_state = np.concatenate((total_state, state), axis=1) total_state = self.reset_state total_reward = self.P2oracle() total_done = True else: # use the action and collect and concatenate observation ### for offline RL, we need to mask the state and accumulate reward # for offline RL, just store the action if self.offline_training == True: total_reward = 0 self.offline_action_buffer.append(action) # feferining to cahce_gurssing_game_env_impl.py to create an empty next state step_count = 1 + self.last_offline_state[0][3] if step_count == self.env.window_size: print('length violation!!!') total_done = True #total_reward = len(self.env_list) * self.env.length_violation_reward i = 0 #print(self.offline_action_buffer) for env in self.env_list: for act in self.offline_action_buffer: #print('simulate in offline_action_buffer') state, reward, done, info = env.step(act) total_reward += reward latency = state[0][0] self.latency_buffer[i].append(latency) # if done == True: break i += 1 total_done = done print(total_reward) original_action = action #self.last_offline_state[0][2] _, _, is_victim, _, _ = self.env.parse_action(action) if is_victim == 1: victim_accessed = 1 else: if self.last_offline_state[0][1] == 1: victim_accessed = 1 else: victim_accessed = 0 r = self.last_offline_state[0][0] new_obs = np.array([[r, victim_accessed, original_action, step_count]]) #del self.last_offline_state[-1] self.last_offline_state = np.concatenate((new_obs, self.last_offline_state[0:-1,]), axis= 0) state = self.last_offline_state # state is a n * 4 matrix # r, victim_accesesd, original_action, self.step_count # we only need to mask the r state[:,0] = self.offline_state[:, 0] for env in self.env_list: total_state = np.concatenate((total_state, state), axis=1) #print(total_state) #print('step') info={} else: #online RL i = 0 for env in self.env_list: state, reward, done, info = env.step(action) latency = state[0][0] # length violation or other type of violation if done == True: env.reset() total_done = True self.latency_buffer[i].append(latency) # total_reward += reward total_state = np.concatenate((total_state, state), axis=1) i += 1 info = {} total_reward = total_reward * 1.0 / len(self.env_list)#self.secret_size return total_state, total_reward, total_done, info # given the existing sequence, calculate the P2 oracle reward # calculate the expected guessing correctness def P2oracle(self): # score # calculate the total score # which correspond to the number of distinguishable secret latency_dict = {} for i in range(0, len(self.latency_buffer)): latency_dict[tuple(self.latency_buffer[i])] = 1 score = 1.0 * len(latency_dict) / len(self.latency_buffer) print(self.latency_buffer) print(' P2oracle score %f'% score) return score * self.env.correct_reward + ( 1 - score ) * self.env.wrong_reward # use SVM to evaluate the guessability (oracle guessing correctness rate) def P2SVMOracle(self): if len(self.latency_buffer[0]) == 0: score = 0 else: X = self.latency_buffer y = [] for cp in range(0, self.copy): for sec in range(0, len(self.victim_addr_arr)): y.append(self.victim_addr_arr[sec]) clf = svm.SVC(random_state=0) print(len(X)) print(len(y)) #print(X) #print(y) ans = cross_val_score(clf, X, y, cv=4, scoring='accuracy') score = ans.mean() print("P2 SVM accuracy %f" % score) return score * self.env.correct_reward + ( 1 - score ) * self.env.wrong_reward if __name__ == "__main__": from ray.rllib.agents.ppo import PPOTrainer import ray import ray.tune as tune ray.init(include_dashboard=False, ignore_reinit_error=True, num_gpus=1) if ray.is_initialized(): ray.shutdown() #tune.register_env("cache_guessing_game_env_fix", CacheSimulatorSIMDWrapper)# tune.register_env("cache_guessing_game_env_fix", CacheSimulatorP1Wrapper) config = { 'env': 'cache_guessing_game_env_fix', #'cache_simulator_diversity_wrapper', 'env_config': { 'verbose': 1, "force_victim_hit": False, 'flush_inst': True,#False, "allow_victim_multi_access": True,#False, "attacker_addr_s": 0, "attacker_addr_e": 7, "victim_addr_s": 0, "victim_addr_e": 3, "reset_limit": 1, "cache_configs": { # YAML config file for cache simulaton "architecture": { "word_size": 1, #bytes "block_size": 1, #bytes "write_back": True }, "cache_1": {#required "blocks": 4, "associativity": 1, "hit_time": 1 #cycles }, "mem": {#required "hit_time": 1000 #cycles } } }, #'gamma': 0.9, 'num_gpus': 1, 'num_workers': 1, 'num_envs_per_worker': 1, #'entropy_coeff': 0.001, #'num_sgd_iter': 5, #'vf_loss_coeff': 1e-05, 'model': { #'custom_model': 'test_model',#'rnn', #'max_seq_len': 20, #'custom_model_config': { # 'cell_size': 32 # } }, 'framework': 'torch', } #tune.run(PPOTrainer, config=config) trainer = PPOTrainer(config=config) def signal_handler(sig, frame): print('You pressed Ctrl+C!') checkpoint = trainer.save() print("checkpoint saved at", checkpoint) sys.exit(0) signal.signal(signal.SIGINT, signal_handler) while True: result = trainer.train()
AutoCAT-main
src/rllib/run_gym_rllib_guessability.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This software may be used and distributed according to the terms of the # GNU General Public License version 2. ''' CacheSimulatorSIMDWrapper wraps multiple environment with different initialization into a single env ''' #from msilib.schema import DuplicateFile from random import random import sys import os import gym from gym import spaces from cache_guessing_game_env_wrapper import CacheGuessingGameEnvWrapper as CacheGuessingGameEnv #from cache_guessing_game_env_impl import * import pdb import sys import signal # random initialization # same secret class CacheSimulatorSIMDWrapper(gym.Env): def __init__(self, env_config, duplicate = 1, victim_addr = -1): self.duplicate = duplicate self.env_list = [] self.env_config = env_config self.victim_addr = victim_addr self.env = CacheGuessingGameEnv(env_config) self.victim_address_min = self.env.victim_address_min self.victim_address_max = self.env.victim_address_max self.observation_space = spaces.MultiDiscrete(list(self.env.observation_space.nvec) * self.duplicate) self.action_space = self.env.action_space self.env_list.append(CacheGuessingGameEnv(env_config)) self.env_config['verbose'] = False for _ in range(1,self.duplicate): self.env_list.append(CacheGuessingGameEnv(env_config)) def reset(self, victim_addr = -1): total_state = [] # same victim_addr (secret) for all environments if self.victim_addr == -1 and victim_addr == -1: victim_addr = random.randint(self.env.victim_address_min, self.env.victim_address_max) elif victim_addr == -1: victim_addr = self.victim_addr for env in self.env_list: state = env.reset(victim_addr) env._randomize_cache()#mode="union") total_state += list(state) return total_state def step(self, action): early_done_reward = 0 total_reward = 0 total_state = [] total_done = False done_arr = [] for env in self.env_list: state, reward, done, info = env.step(action) total_reward += reward total_state += list(state) done_arr.append(done) if done: total_done = True if total_done: for done in done_arr: if done == False: total_reward -= early_done_reward info = {} return total_state, total_reward, total_done, info # multiple initialization # multiple secret class CacheSimulatorMultiGuessWrapper(gym.Env): def __init__(self, env_config): self.duplicate = 4 self.block_duplicate = 4 self.env_list = [] self.env_config = env_config self.env = CacheSimulatorSIMDWrapper(env_config, duplicate=self.duplicate) #permute the victim addresses self.secret_size = self.env.victim_address_max - self.env.victim_address_min + 1 self.victim_addr_arr = [] #np.random.permutation(range(self.env.victim_address_min, self.env.victim_address_max+1)) for _ in range(self.block_duplicate): #for _ in range(self.secret_size): rand = random.randint(self.env.victim_address_min, self.env.victim_address_max ) self.victim_addr_arr.append(rand) self.observation_space = spaces.MultiDiscrete(list(self.env.observation_space.nvec) * self.block_duplicate ) self.action_space = spaces.MultiDiscrete([self.env.action_space.n] + [self.secret_size] * self.block_duplicate) self.env_config['verbose'] = True self.env_list.append(CacheSimulatorSIMDWrapper(env_config, duplicate=self.duplicate, victim_addr=self.victim_addr_arr[0])) self.env_config['verbose'] = False for i in range(1, len(self.victim_addr_arr)): #for victim_addr in self.victim_addr_arr: #self.env_list.append(CacheSimulatorSIMDWrapper(env_config, duplicate=self.duplicate, victim_addr = victim_addr)) #self.env_config['verbose'] = False #for _ in range(0,self.block_duplicate): self.env_list.append(CacheSimulatorSIMDWrapper(env_config, duplicate=self.duplicate, victim_addr=self.victim_addr_arr[i])) def reset(self): total_state = [] # same victim_addr (secret) for all environments #self.victim_addr_arr = np.random.permutation(range(self.env.victim_address_min, self.env.victim_address_max+1)) self.victim_addr_arr = [] #np.random.permutation(range(self.env.victim_address_min, self.env.victim_address_max+1)) for _ in range(self.block_duplicate): #for _ in range(self.secret_size): rand = random.randint(self.env.victim_address_min, self.env.victim_address_max) #print('self.env.victim_address_min') #print(self.env.victim_address_min) #print('self.env.victim_address_max') #print(self.env.victim_address_max) #print('rand') #print(rand) #pdb.set_trace() #exit(0) self.victim_addr_arr.append(rand) for i in range(len(self.env_list)): env = self.env_list[i] #print('len(self.env_list)') #print(len(self.env_list)) #print('i') #print(i) #print('victim_addr_arr') #print(len(self.victim_addr_arr)) state = env.reset(self.victim_addr_arr[i]) total_state += list(state) return total_state def step(self, action): early_done_reward = 0 total_reward = 0 total_state = [] total_done = False done_arr = [] orig_action = action[0] # first digit is the original action parsed_orig_action = self.env.env.parse_action(orig_action) is_guess = parsed_orig_action[1] # check whether to guess or not is_victim = parsed_orig_action[2] # check whether to invoke victim #is_flush = orig_action[3] # check if it is a guess if is_victim != True and is_guess == True: guess_addrs = action[1:] for i in range(0, len(self.env_list)): env = self.env_list[i] #pdb.set_trace() action = orig_action - orig_action % self.secret_size + guess_addrs[i] - self.env.env.victim_address_min _, is_guesss, _, _, _ = self.env.env.parse_action(action) state, reward, done, info = env.step(action) assert(is_guesss == True) assert(done == True) total_reward += reward total_state += list(state) info = {} return total_state, total_reward * 1.0 / self.duplicate / self.block_duplicate, True, info for env in self.env_list: state, reward, done, info = env.step(orig_action) total_reward += reward total_state += list(state) done_arr.append(done) if done: total_done = True info = {} return total_state, total_reward * 1.0 / self.duplicate / self.block_duplicate , total_done, info if __name__ == "__main__": from ray.rllib.agents.ppo import PPOTrainer import ray import ray.tune as tune ray.init(include_dashboard=False, ignore_reinit_error=True, num_gpus=1) if ray.is_initialized(): ray.shutdown() #tune.register_env("cache_guessing_game_env_fix", CacheSimulatorSIMDWrapper)# tune.register_env("cache_guessing_game_env_fix", CacheSimulatorMultiGuessWrapper) config = { 'env': 'cache_guessing_game_env_fix', #'cache_simulator_diversity_wrapper', 'env_config': { 'verbose': 1, "force_victim_hit": False, 'flush_inst': True,#False, "allow_victim_multi_access": True,#False, "attacker_addr_s": 0, "attacker_addr_e": 7, "victim_addr_s": 0, "victim_addr_e": 3, "reset_limit": 1, "cache_configs": { # YAML config file for cache simulaton "architecture": { "word_size": 1, #bytes "block_size": 1, #bytes "write_back": True }, "cache_1": {#required "blocks": 4, "associativity": 1, "hit_time": 1 #cycles }, "mem": {#required "hit_time": 1000 #cycles } } }, #'gamma': 0.9, 'num_gpus': 1, 'num_workers': 1, 'num_envs_per_worker': 1, #'entropy_coeff': 0.001, #'num_sgd_iter': 5, #'vf_loss_coeff': 1e-05, 'model': { #'custom_model': 'test_model',#'rnn', #'max_seq_len': 20, #'custom_model_config': { # 'cell_size': 32 # } }, 'framework': 'torch', } #tune.run(PPOTrainer, config=config) trainer = PPOTrainer(config=config) def signal_handler(sig, frame): print('You pressed Ctrl+C!') checkpoint = trainer.save() print("checkpoint saved at", checkpoint) sys.exit(0) signal.signal(signal.SIGINT, signal_handler) while True: result = trainer.train()
AutoCAT-main
src/rllib/run_gym_rllib_simd.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This software may be used and distributed according to the terms of the # GNU General Public License version 2. import sys import os sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))+ '/third_party/cachequery/tool/') from cachequery import CacheQuery class CacheQueryWrapper(CacheQuery): pass
AutoCAT-main
src/rllib/cache_query_wrapper.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This software may be used and distributed according to the terms of the # GNU General Public License version 2. ''' Author: Mulong Luo Date: 2022.7.10 Function: Add one reveal action so that the agent has to explicit reveal the secret, once the secret is revealed, it must make a guess immediately ''' from random import random import sys import os ###sys.path.append('../src') from ray.rllib.agents.ppo import PPOTrainer import ray import ray.tune as tune import gym from gym import spaces import signal from sklearn import svm from sklearn.model_selection import cross_val_score import numpy as np class CacheGuessingGameWithRevealEnv(gym.Env): def __init__(self, env_config): from cache_guessing_game_env_wrapper import CacheGuessingGameEnvWrapper as CacheGuessingGameEnv self.env = CacheGuessingGameEnv(env_config) self.action_space_size = self.env.action_space.n + 1 # increase the action space by one self.action_space = spaces.Discrete(self.action_space_size) self.observation_space = self.env.observation_space self.revealed = False # initially done = False reward = 0 info = {} state = self.env.reset() self.last_unmasked_tuple = (state, reward, done, info) def reset(self): self.revealed = False # reset the revealed done = False reward = 0 info = {} state = self.env.reset() self.last_unmasked_tuple = (state, reward, done, info) return state def step(self, action): if action == self.action_space_size - 1: if self.revealed == True: self.env.vprint("double reveal! terminated!") state, reward, done, info = self.last_unmasked_tuple reward = self.env.wrong_reward done = True return state, reward, done, info self.revealed = True self.env.vprint("reveal observation") # return the revealed obs, reward,# return the revealed obs, reward, state, reward, done, info = self.last_unmasked_tuple reward = 0 # reveal action does not cost anything return state, reward, done, info elif action < self.action_space_size - 1: # this time the action must be smaller than sction_space_size -1 _, is_guess, _, _, _ = self.env.parse_action(action) # need to check if revealed first # if revealed, must make a guess # if not revealed can do any thing if self.revealed == True: if is_guess == 0: # revealed but not guess # huge penalty self.env.vprint("reveal but no guess! terminate") done = True reward = self.env.wrong_reward info = {} state = self.env.reset() return state, reward, done, info elif is_guess != 0: # this must be guess and terminate return self.env.step(action) elif self.revealed == False: if is_guess != 0: # guess without revewl --> huge penalty self.env.vprint("guess without reward! terminate") done = True reward = self.env.wrong_reward info = {} state = self.env.reset() return state, reward, done, info else: state, reward, done, info = self.env.step(action) self.last_unmasked_tuple = ( state.copy(), reward, done, info ) # mask the state so that nothing is revealed state[:,0] = np.zeros((state.shape[0],)) return state, reward, done, info if __name__ == "__main__": ray.init(include_dashboard=False, ignore_reinit_error=True, num_gpus=1, local_mode=True) if ray.is_initialized(): ray.shutdown() tune.register_env("cache_guessing_game_env", CacheGuessingGameWithRevealEnv) config = { 'env': 'cache_guessing_game_env', #'cache_simulator_diversity_wrapper', 'env_config': { 'verbose': 1, "rerandomize_victim": False, "force_victim_hit": False, 'flush_inst': False, "allow_victim_multi_access": True,#False, "allow_empty_victim_access": True, "attacker_addr_s": 0, "attacker_addr_e": 8,#4,#11,#15, "victim_addr_s": 0, "victim_addr_e": 0,#7, "reset_limit": 1, "cache_configs": { # YAML config file for cache simulaton "architecture": { "word_size": 1, #bytes "block_size": 1, #bytes "write_back": True }, "cache_1": {#required "blocks": 4,#4, "associativity": 4, "hit_time": 1, #cycles "prefetcher": "nextline" }, "mem": {#required "hit_time": 1000 #cycles } } }, #'gamma': 0.9, 'num_gpus': 1, 'num_workers': 1, 'num_envs_per_worker': 1, #'entropy_coeff': 0.001, #'num_sgd_iter': 5, #'vf_loss_coeff': 1e-05, 'model': { #'custom_model': 'test_model',#'rnn', #'max_seq_len': 20, #'custom_model_config': { # 'cell_size': 32 # } }, 'framework': 'torch', } #tune.run(PPOTrainer, config=config) trainer = PPOTrainer(config=config) def signal_handler(sig, frame): print('You pressed Ctrl+C!') checkpoint = trainer.save() print("checkpoint saved at", checkpoint) sys.exit(0) signal.signal(signal.SIGINT, signal_handler) while True: result = trainer.train()
AutoCAT-main
src/rllib/run_gym_rllib_reveal_action.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This software may be used and distributed according to the terms of the # GNU General Public License version 2. # look at https://github.com/ray-project/ray/blob/ea2bea7e309cd60457aa0e027321be5f10fa0fe5/rllib/examples/custom_env.py#L2 #from CacheSimulator.src.gym_cache.envs.cache_simulator_wrapper import CacheSimulatorWrapper #from CacheSimulator.src.replay_checkpint import replay_agent import gym import ray import ray.tune as tune from ray.rllib.models.torch.torch_modelv2 import TorchModelV2 from ray.rllib.models.modelv2 import restore_original_dimensions import torch.nn as nn import numpy as np from ray.rllib.models import ModelCatalog from ray.rllib.agents.ppo import PPOTrainer from ray.rllib.agents.sac import SACTrainer import json import sys import copy import torch def replay_agent(trainer, env, randomize_init=False, non_deterministic=False, repeat_time=-1): # no cache randomization # rangomized inference ( 10 times) pattern_buffer = [] num_guess = 0 num_correct = 0 if randomize_init == False and non_deterministic == False: repeat_times = 1 else: if repeat_time == -1: repeat_times = 50 for victim_addr in range(env.victim_address_min, env.victim_address_max + 1): for repeat in range(repeat_times): obs = env.reset(victim_address=victim_addr) if randomize_init: env._randomize_cache("union") action_buffer = [] done = False while done == False: print(f"-> Sending observation {obs}") action = trainer.compute_single_action(obs, explore = non_deterministic) # randomized inference print(f"<- Received response {action}") obs, reward, done, info = env.step(action) action_buffer.append((action, obs[0])) if reward > 0: correct = True num_correct += 1 else: correct = False num_guess += 1 pattern_buffer.append((victim_addr, action_buffer, correct)) pprint.pprint(pattern_buffer) return 1.0 * num_correct / num_guess, pattern_buffer if __name__ == "__main__": import signal import sys import pickle from test_custom_policy_diversity_works import * if len(sys.argv) > 1: config_name = sys.argv[1] print(config_name) f = open(config_name) config = json.load(f) if len(sys.argv) == 5: nset = int(sys.argv[2]) nway = int(sys.argv[3]) nopt = int(sys.argv[4]) config["env_config"]["cache_configs"]["cache_1"]["associativity"] = nway config["env_config"]["cache_configs"]["cache_1"]["blocks"] = nset * nway config["env_config"]["victim_addr_s"] = 0 config["env_config"]["victim_addr_e"] = nset * nway - 1 if nopt == 0: # shared config["env_config"]["attacker_addr_s"] = 0 config["env_config"]["attacker_addr_e"] = nset * nway - 1 config["env_config"]["flush_inst"] = True elif nopt == 1: # not shared config["env_config"]["attacker_addr_s"] = nset * nway config["env_config"]["attacker_addr_e"] = 2 * nset * nway - 1 config["env_config"]["flush_inst"] = False elif nopt == 2: # all + clflush allowed config["env_config"]["attacker_addr_s"] = 0 config["env_config"]["attacker_addr_e"] = 2 * nset * nway - 1 config["env_config"]["flush_inst"] = False elif nopt == 3: # all + clflush not allowed config["env_config"]["attacker_addr_s"] = 0 config["env_config"]["attacker_addr_e"] = 2 * nset * nway - 1 config["env_config"]["flush_inst"] = True #print(config) #exit(0) elif len(sys.argv)!= 2: print("not correct number of argument. Exit!!!") exit(-1) else: print("(warning) config file not specified! use default configrations!") #tune.run(PPOTrainer, config=config)#config={"env": 'Freeway-v0', "num_gpus":1}) from ray.tune.logger import pretty_print #tune.register_env("cache_guessing_game_env_fix", CacheSimulatorMultiGuessWrapper) #from run_gym_rllib_simd import * #config['num_workers'] = 6 #config['num_envs_per_worker']= 2 print(config) env = CacheGuessingGameEnv(config["env_config"]) #env = CacheSimulatorMultiGuessWrapper(config["env_config"]) trainer = PPOTrainer(config=config) #trainer = SACTrainer(config=config) def signal_handler(sig, frame): print('You pressed Ctrl+C!') checkpoint = trainer.save() print("checkpoint saved at", checkpoint) i = checkpoint.rfind('/') config_name = checkpoint[0:i] + '/../env.config' print("env config saved ad ", config_name) #### dump the binary config file ###with open(config_name, 'wb') as handle: ### pickle.dump(config["env_config"], handle) #### dump the txt config file ###with open(config_name + '.txt', 'w') as txtfile: ### txtfile.write(json.dumps(config["env_config"])) policy = trainer.get_policy() for model in policy.past_models: print(model.state_dict()['_hidden_layers.1._model.0.weight'], protocol=pickle.HIGHEST_PROTOCOL) sys.exit(0) signal.signal(signal.SIGINT, signal_handler) i = 0 thre =0.95 #0.98 #buf = [] all_raw_patterns = [] all_categorized_patterns = [] while True: # Perform one iteration of training the policy with PPO result = trainer.train() print(pretty_print(result)) i += 1 if i % 1 == 0: # give enought interval to achieve small verificaiton overhead accuracy, patterns = replay_agent(trainer, env, randomize_init=True, non_deterministic=True) if i == 1: checkpoint = trainer.save() print("Initial checkpoint saved at", checkpoint) i = checkpoint.rfind('/') config_name = checkpoint[0:i] + '/../env.config' print("env config saved ad ", config_name) # dump the binary config file with open(config_name, 'wb') as handle: pickle.dump(config["env_config"], handle) # dump the txt config file #import pprint #pp = pprint.PrettyPrinter(indent=4) #pp.pprint(config["env_config"]) with open(config_name + '.txt', 'w') as txtfile: #txtfile.write(pp.pprint(config["env_config"])) txtfile.write(json.dumps(config, indent=4, sort_keys=True)) # just with lower reward # HOW TO PREVENT THE SAME AGENT FROM BEING ADDED TWICE???? # HOW TO TELL IF THEY ARE CONSIDERED THE SAME AGENT? # HOW TO FORCE TRAINER TO KNOW THAT THEY ARE STILL DISCOVERING THE SAME AGENT??? if accuracy > thre: # if the agent is different from the known agent policy = trainer.get_policy() if policy.existing_agent(env, trainer) == False: checkpoint = trainer.save() print("checkpoint saved at", checkpoint) # this agent might have high accuracy but # it ccould be that it is still the same agent # add this agent to blacklist trainer.get_policy().push_current_model() #buf.append(copy.deepcopy(trainer.get_weights())) policy = trainer.get_policy() for model in policy.past_models: print(model.state_dict()['_hidden_layers.1._model.0.weight']) #for weight in policy.past_weights: # print(weight['_value_branch._model.0.bias']) #print(weight['default_policy']['_value_branch._model.0.bias']) #print(policy.model.state_dict()['_hidden_layers.1._model.0.weight']) #for w in buf: # print(w['default_policy']['_value_branch._model.0.bias'])
AutoCAT-main
src/rllib/run_gym_rllib_agent_blacklist.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This software may be used and distributed according to the terms of the # GNU General Public License version 2. import cache_guessing_game_env_impl as env import sys import pandas as pd from pandas.core.arrays import numeric #def number_of_set(x): # return x%2 #number_of_set = 2 # suppose "dummy" is a dual list of 7 for example. Will be relaced later dummy = [[1, 0, 0, 0, 0], [3, 0, 0, 0, 0], [4, 0, 0, 0, 0], [1, 0, 0, 0, 0], [5, 0, 0, 0, 0], [0, 0, 1, 0, 0], [3, 0, 0, 0, 0]] def read_file(): # will read the files in json. I have just left this function to read 'temp.txt' f = open('/home/geunbae/CacheSimulator/src/temp.txt', mode='r', encoding='UTF-8') d=f.read() d return d def parser_action(): # split the input into [(attacker's)addr, is_guess, is_victim, is_flush, victim_addr] input = pd.DataFrame(dummy) input = input.astype('int') input.columns =['addr', 'is_guess', 'is_victim', 'is_flush', 'victim_addr'] #input['set'] = 2 #input['set'] = input['addr']%2 input.assign(set = lambda x: (x['addr'])%2) #input['set'] = input['addr'].apply(number_of_set(x)) def get_set(): # return addr%number_of_set #input2 = pd.DataFrame(input) #input2 = input2.astype('int') #input2 = input.assign(set = 2) #input[:,'set'] = 2 #input2[:,'set'] = 2 #input2['set'] = input2['addr'].apply(lambda x: x% 2) #input2['set'] = input2[0].apply(lambda x: x% 2) #input['set'] = input['addr'].apply(lambda x: x% 2) #input['set'] = input.columns=['addr']% 2 #input2['set'] = input2[0]% 2 #input2['set'] = input2[0].apply(lambda x: x% 2) #input2['set'] = input2[0].apply(lambda x: x% 2) #input['set'] = input.apply(number_of_set) pass get_set() def get_order(): # return (addr)/number_of_set input_set0 = input[input.set==0] input_set0['order'] = input_set0['addr'].rank(method='dense',ascending=False).astype(int) print(input_set0) input_set1 = input[input.set==1] input_set1['order'] = input_set1['addr'].rank(method='dense',ascending=True).astype(int) print(input_set1) frames = [input_set0, input_set1] result = pd.concat(frames) output = pd.DataFrame(result) output =output.sort_index(axis=0, ascending=True) get_order() def rename_addr(): # rename the addres in the pattern based on the set and the order appeared in the pattern # output = [#set, #the order the address appear in the attack, is_guess, is_victim, is_flush, victim_addr] output = output[['set','order','is_guess', 'is_victim', 'is_flush', 'victim_addr']] return output def remove(): # remove repeated access return output.drop_duplicates() print(output) # Defining main function def main(): number_of_set(x) read_file() parser_action() get_set() get_order() rename_addr() remove() # Using the special variable # __name__ if __name__=="__main__": main()
AutoCAT-main
src/rllib/categorization.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This software may be used and distributed according to the terms of the # GNU General Public License version 2.
AutoCAT-main
src/rllib/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This software may be used and distributed according to the terms of the # GNU General Public License version 2. ''' Author: Mulong Luo Date: 2022.7.10 Usage: wrapper fucntion to solve the import issues ''' import sys import os import gym sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) #sys.path.append(os.path.dirname(os.path.abspath(__file__))) #sys.path.append('../src') from cache_guessing_game_env_impl import CacheGuessingGameEnv from cchunter_wrapper import CCHunterWrapper from cyclone_wrapper import CycloneWrapper class CacheGuessingGameEnvWrapper(CacheGuessingGameEnv): pass class CycloneWrapperWrapper(CycloneWrapper): pass class CCHunterWrapperWrapper(CCHunterWrapper): pass
AutoCAT-main
src/rllib/cache_guessing_game_env_wrapper.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This software may be used and distributed according to the terms of the # GNU General Public License version 2. ''' Author: Mulong Luo Date: 2022.7.12 Usage: wrapper for cachequery that interact with the gym environment the observation space and action space should be the same as the original autocat ''' from collections import deque import signal import numpy as np import random import os import yaml, logging import sys from itertools import permutations import gym from gym import spaces import os, cmd, sys, getopt, re, subprocess, configparser ###sys.path.append('../src') from ray.rllib.agents.ppo import PPOTrainer import ray import ray.tune as tune import gym from gym import spaces #sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))+ '/third_party/cachequery/tool/') from cache_query_wrapper import CacheQueryWrapper as CacheQuery class CacheQueryEnv(gym.Env): def __init__(self, env_config): #sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from cache_guessing_game_env_wrapper import CacheGuessingGameEnvWrapper as CacheGuessingGameEnv self.env = CacheGuessingGameEnv(env_config) self.action_space_size = self.env.action_space.n + 1 # increase the action space by one self.action_space = spaces.Discrete(self.action_space_size) self.observation_space = self.env.observation_space self.revealed = False # initially done = False reward = 0 info = {} state = self.env.reset() self.last_unmasked_tuple = (state, reward, done, info) ''' instantiate the CacheQuery ''' # flags output = None verbose = False interactive = False # options config_path = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))+ '/third_party/cachequery/tool/cachequery.ini' # default path batch = None # config overwrite cacheset = None level = None cacheset='34' level = 'L2' # for 4-way cache # read config try: config = configparser.ConfigParser() config.read(config_path) # add method for dynamic cache check def cache(self, prop): return self.get(self.get('General', 'level'), prop) def set_cache(self, prop, val): return self.set(self.get('General', 'level'), prop, val) setattr(configparser.ConfigParser, 'cache', cache) setattr(configparser.ConfigParser, 'set_cache', set_cache) except: print("[!] Error: invalid config file") sys.exit(1) # overwrite options if level: config.set('General', 'level', level) if cacheset: config.set_cache('set', cacheset) if output: config.set('General', 'log_file', output) # instantiate cq self.CQ = CacheQuery(config) self.cq_command = "A B C D E F G H A B" #establish the address alphabet to number mapping def reset(self): self.revealed = False # reset the revealed done = False reward = 0 info = {} state = self.env.reset() self.last_unmasked_tuple = (state, reward, done, info) #reset CacheQuery Command self.cq_command = "A B C D E F G H A B" return state def step(self, action): if action == self.action_space_size - 1: if self.revealed == True: self.env.vprint("double reveal! terminated!") state, reward, done, info = self.last_unmasked_tuple reward = self.env.wrong_reward done = True return state, reward, done, info self.revealed = True # return the revealed obs, reward,# return the revealed obs, reward, state, reward, done, info = self.last_unmasked_tuple reward = 0 # reveal action does not cost anything self.env.vprint("reveal observation") # when doing reveal, launch the actual cachequery #self.CQ.command(self.cq_command) answer = self.CQ.run(self.cq_command)[0] #print(answer) if answer != None: lat_cq = answer.split()[answer.split().index('->')+1:] lat_cq_cnt = len(lat_cq) - 1 for i in range(len(state)): if state[i][0] != 2 and lat_cq_cnt >= 0: if int(lat_cq[lat_cq_cnt]) > 50: # hit state[i][0] = 0 else: # miss state[i][0] = 1 lat_cq_cnt -= 1 print(state) return state, reward, done, info elif action < self.action_space_size - 1: # this time the action must be smaller than sction_space_size -1 tmpaction = self.env.parse_action(action) address = hex(tmpaction[0]+self.env.attacker_address_min)[2:] # attacker address in attacker_address_space is_guess = tmpaction[1] # check whether to guess or not is_victim = tmpaction[2] # check whether to invoke victim is_flush = tmpaction[3] # check whether to flush victim_addr = hex(tmpaction[4] + self.env.victim_address_min)[2:] # victim address # need to check if revealed first # if revealed, must make a guess # if not revealed can do any thing if self.revealed == True: if is_guess == 0: # revealed but not guess # huge penalty self.env.vprint("reveal but no guess! terminate") done = True reward = self.env.wrong_reward info = {} state = self.env.reset() return state, reward, done, info elif is_guess != 0: # this must be guess and terminate done = True #return self.env.step(action) if int(victim_addr,16) == self.env.victim_address: reward = self.env.correct_reward else: reward = self.env.wrong_reward info = {} state = self.env.reset() return state, reward, done, info elif self.revealed == False: if is_guess != 0: # guess without revewl --> huge penalty self.env.vprint("guess without reward! terminate") done = True reward = self.env.wrong_reward info = {} state = self.env.reset() return state, reward, done, info else: state, reward, done, info = self.env.step(action) # append to the cq_command if is_victim == True: self.cq_command += (' ' + chr(ord('A') + self.env.victim_address)) elif is_flush == True: self.cq_command += (' ' + chr(ord('A') + int(address, 16)) + '!') else: self.cq_command += (' ' + chr(ord('A') + int(address, 16)) + '?') self.last_unmasked_tuple = ( state.copy(), reward, done, info ) # mask the state so that nothing is revealed state[:,0] = - np.ones((state.shape[0],)) # use -1 as the default (unrevealed value) #print(state) return state, reward, done, info if __name__ == "__main__": ray.init(include_dashboard=False, ignore_reinit_error=True, num_gpus=1, local_mode=True) if ray.is_initialized(): ray.shutdown() tune.register_env("cache_guessing_game_env", CacheQueryEnv) config = { 'env': 'cache_guessing_game_env', #'cache_simulator_diversity_wrapper', 'env_config': { 'verbose': 1, "prefetcher": "nextline", "rerandomize_victim": False, "force_victim_hit": False, 'flush_inst': False, "allow_victim_multi_access": True,#False, "allow_empty_victim_access": False, "attacker_addr_s": 0, "attacker_addr_e": 7,#4,#11,#15, "victim_addr_s": 0, "victim_addr_e": 3,#7, "reset_limit": 1, "cache_configs": { # YAML config file for cache simulaton "architecture": { "word_size": 1, #bytes "block_size": 1, #bytes "write_back": True }, # for L2 cache of Intel i7-6700 # it is a 4-way cache, this should not be changed "cache_1": {#required "blocks": 4,#4, "associativity": 4, "hit_time": 1 #cycles }, "mem": {#required "hit_time": 1000 #cycles } } }, #'gamma': 0.9, 'num_gpus': 1, 'num_workers': 1, 'num_envs_per_worker': 1, #'entropy_coeff': 0.001, #'num_sgd_iter': 5, #'vf_loss_coeff': 1e-05, 'model': { #'custom_model': 'test_model',#'rnn', #'max_seq_len': 20, #'custom_model_config': { # 'cell_size': 32 # } }, 'framework': 'torch', } #tune.run(PPOTrainer, config=config) trainer = PPOTrainer(config=config) def signal_handler(sig, frame): print('You pressed Ctrl+C!') checkpoint = trainer.save() print("checkpoint saved at", checkpoint) sys.exit(0) signal.signal(signal.SIGINT, signal_handler) while True: result = trainer.train()
AutoCAT-main
src/rllib/cache_query_env.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This software may be used and distributed according to the terms of the # GNU General Public License version 2. ''' Author: Mulong Luo Date: 2022.7.11 Function: An example rllib training script ''' from random import random import sys import os ###sys.path.append('../src') from ray.rllib.agents.ppo import PPOTrainer import ray import ray.tune as tune import gym from gym import spaces from cache_guessing_game_env_wrapper import CacheGuessingGameEnvWrapper as CacheGuessingGameEnv import signal import numpy as np if __name__ == "__main__": ray.init(include_dashboard=False, ignore_reinit_error=True, num_gpus=1, local_mode=True) if ray.is_initialized(): ray.shutdown() tune.register_env("cache_guessing_game_env", CacheGuessingGameEnv) config = { 'env': 'cache_guessing_game_env', #'cache_simulator_diversity_wrapper', 'env_config': { 'verbose': 1, "rerandomize_victim": False, "force_victim_hit": False, 'flush_inst': False, "allow_victim_multi_access": True,#False, "allow_empty_victim_access": True, "attacker_addr_s": 0, "attacker_addr_e": 8,#4,#11,#15, "victim_addr_s": 0, "victim_addr_e": 0,#7, "reset_limit": 1, "cache_configs": { # YAML config file for cache simulaton "architecture": { "word_size": 1, #bytes "block_size": 1, #bytes "write_back": True }, "cache_1": {#required "blocks": 4,#4, "associativity": 4, "hit_time": 1, #cycles "prefetcher": "nextline" }, "mem": {#required "hit_time": 1000 #cycles } } }, #'gamma': 0.9, 'num_gpus': 1, 'num_workers': 1, 'num_envs_per_worker': 1, #'entropy_coeff': 0.001, #'num_sgd_iter': 5, #'vf_loss_coeff': 1e-05, 'model': { #'custom_model': 'test_model',#'rnn', #'max_seq_len': 20, #'custom_model_config': { # 'cell_size': 32 # } }, 'framework': 'torch', } #tune.run(PPOTrainer, config=config) trainer = PPOTrainer(config=config) def signal_handler(sig, frame): print('You pressed Ctrl+C!') checkpoint = trainer.save() print("checkpoint saved at", checkpoint) sys.exit(0) signal.signal(signal.SIGINT, signal_handler) while True: result = trainer.train()
AutoCAT-main
src/rllib/run_gym_rllib_example.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This software may be used and distributed according to the terms of the # GNU General Public License version 2. # using ray 1.92 to run # python 3.9 from ray.rllib.agents.ppo.ppo_torch_policy import PPOTorchPolicy from ray.rllib.agents.a3c.a3c_torch_policy import A3CTorchPolicy from ray.rllib.agents.a3c.a2c import A2CTrainer from ray.rllib.agents.ppo import PPOTrainer import gym import ray.tune as tune from torch.nn import functional as F from typing import Optional, Dict import torch.nn as nn import ray from collections import deque #from ray.rllib.agents.ppo.ppo_torch_policy import ValueNetworkMixin from ray.rllib.evaluation.episode import MultiAgentEpisode from ray.rllib.evaluation.postprocessing import compute_gae_for_sample_batch, \ Postprocessing from ray.rllib.models.action_dist import ActionDistribution from ray.rllib.models.modelv2 import ModelV2 #from ray.rllib.models.torch.torch_modelv2 import TorchModelV2 from ray.rllib.policy.policy import Policy from ray.rllib.policy.policy_template import build_policy_class from ray.rllib.policy.sample_batch import SampleBatch from ray.rllib.utils.annotations import Deprecated from ray.rllib.utils.framework import try_import_torch from ray.rllib.utils.torch_ops import apply_grad_clipping, sequence_mask from ray.rllib.utils.typing import TrainerConfigDict, TensorType, \ PolicyID, LocalOptimizer from ray.rllib.models.torch.torch_modelv2 import TorchModelV2 import copy import numpy as np import sys import math sys.path.append("../src") torch, nn = try_import_torch() from cache_guessing_game_env_wrapper import CacheGuessingGameEnvWrapper as CacheGuessingGameEnv from categorization_parser import * def custom_init(policy: Policy, obs_space: gym.spaces.Space, action_space: gym.spaces.Space, config: TrainerConfigDict)->None: #pass policy.past_len = 5 policy.past_models = deque(maxlen =policy.past_len) policy.timestep = 0 def copy_model(model: ModelV2) -> ModelV2: copdied_model= TorchModelV2( obs_space = model.obs_space, action_space = model.action_space, num_outputs = model.num_outputs, model_config = model.model_config, name = 'copied') return copied_model def compute_div_loss(policy: Policy, model: ModelV2, dist_class: ActionDistribution, train_batch: SampleBatch): #original_weight = copy.deepcopy(policy.get_weights()) logits, _ = model.from_batch(train_batch) values = model.value_function() valid_mask = torch.ones_like(values, dtype=torch.bool) dist = dist_class(logits, model) #log_probs = dist.logp(train_batch[SampleBatch.ACTIONS])#.reshape(-1) print('log_probs') #print(log_probs) divs = [] #div_metric = nn.KLDivLoss(size_average=False, reduce=False) div_metric = nn.KLDivLoss(reduction = 'batchmean') #div_metric = nn.CrossEntropyLoss() #if len(policy.past_models) > 1: # assert(policy.past_models[0].state_dict() == policy.past_models[1].state_dict()) for idx, past_model in enumerate(policy.past_models): #for idx, past_weights in enumerate(policy.past_weights): #temp_policy = pickle.loads(pickle.dumps(policy)) #temp_policy.set_weights(past_weights) #temp_model = pickle.loads(pickle.dumps(policy.model)) #temp_model.load_state_dict(past_weights) #past_model.load_state_dict(policy.past_weights[i]) #past_model = temp_model.set_weights(past_weights) #assert(False) past_logits, _ = past_model.from_batch(train_batch) past_values = past_model.value_function() past_valid_mask = torch.ones_like(past_values, dtype=torch.bool) past_dist = dist_class(train_batch[SampleBatch.ACTION_DIST_INPUTS], past_model) div = math.atan( - policy.timestep_array[idx] + policy.timestep ) * math.exp( ( policy.timestep_array[idx] - policy.timestep ) / policy.timestep_array[idx]) * dist.kl(past_dist) ###print(div) ###print(dist) ###print(past_dist) ###print(train_batch[SampleBatch.ACTION_DIST_INPUTS]) #print(train_batch[SampleBatch.ACTIONS]) #print(log_probs) #print(past_log_probs) #print(train_batch[Postprocessing.ADVANTAGES]) #print(log_probs * train_batch[Postprocessing.ADVANTAGES]) #print(past_log_probs * train_batch[Postprocessing.ADVANTAGES]) #div = dist.multi_kl(past_dist) * train_batch[Postprocessing.ADVANTAGES] #assert( if idx == 0 and True:#policy.timestep % 10 == 0: print('past_model.state_dict()') #print(past_model.state_dict()) print('model.state_dict()') #print(model.state_dict()) #div = past_dist.multi_kl(dist) print('div') #print(div) div = div.sum().mean(0) divs.append(div) print('divs') #print(divs) div_loss = 0 div_loss_orig = 0 for div in divs: div_loss += div div_loss_orig += div if len(policy.past_models) > 0: div_loss = div_loss / len(policy.past_models)#policy.past_len print('len(policy.past_models)') print(len(policy.past_models)) #policy.set_weights(original_weight) return div_loss def compute_div_loss_weight(policy: Policy, weight, dist_class: ActionDistribution, train_batch: SampleBatch): original_weight = copy.deepcopy(policy.get_weights()) policy.set_weights(weight) model = policy.model logits, _ = model.from_batch(train_batch) values = model.value_function() valid_mask = torch.ones_like(values, dtype=torch.bool) dist = dist_class(logits, model) log_probs = dist.logp(train_batch[SampleBatch.ACTIONS])#.reshape(-1) print('log_probs') #print(log_probs) divs = [] div_metric = nn.KLDivLoss(size_average=False, reduce=False) #div_metric = nn.CrossEntropyLoss() #if len(policy.past_models) > 1: # assert(policy.past_models[0].state_dict() == policy.past_models[1].state_dict()) for idx, past_weight in enumerate(policy.past_weights): #assert(False) policy.set_weights(past_weight) past_model = policy.model past_logits, _ = past_model.from_batch(train_batch) past_values = past_model.value_function() past_valid_mask = torch.ones_like(past_values, dtype=torch.bool) past_dist = dist_class(past_logits, past_model) past_log_probs = past_dist.logp(train_batch[SampleBatch.ACTIONS])#.reshape(-1) div = div_metric(log_probs * train_batch[Postprocessing.ADVANTAGES], past_log_probs* train_batch[Postprocessing.ADVANTAGES]) #div = div_metric(log_probs, past_log_probs) * train_batch[Postprocessing.ADVANTAGES] #div = dist.multi_kl(past_dist) * train_batch[Postprocessing.ADVANTAGES] #assert( if idx == 0 and True:#policy.timestep % 10 == 0: print('past_model.state_dict()') #print(past_model.state_dict()) print('model.state_dict()') #print(model.state_dict()) #div = past_dist.multi_kl(dist) print('div') #print(div) div = div.mean(0) divs.append(div) print('divs') #print(divs) div_loss = 0 div_loss_orig = 0 for div in divs: div_loss += div div_loss_orig += div if len(policy.past_weights) > 0: div_loss = div_loss / len(policy.past_weights)#policy.past_len #print('len(policy.past_weights)') #print(len(policy.past_weights)) #policy.set_weights(original_weight) return div_loss import pickle def custom_loss(policy: Policy, model: ModelV2, dist_class: ActionDistribution, train_batch: SampleBatch) -> TensorType: logits, _ = model.from_batch(train_batch) values = model.value_function() policy.timestep += 1 #if len(policy.devices) > 1: # copy weights of main model (tower-0) to all other towers type if policy.timestep % 100 == 0: copied_model = pickle.loads(pickle.dumps(model)) copied_model.load_state_dict(model.state_dict()) policy.past_models.append(copied_model) if policy.is_recurrent(): B = len(train_batch[SampleBatch.SEQ_LENS]) max_seq_len = logits.shape[0] // B mask_orig = sequence_mask(train_batch[SampleBatch.SEQ_LENS], max_seq_len) valid_mask = torch.reshape(mask_orig, [-1]) else: valid_mask = torch.ones_like(values, dtype=torch.bool) dist = dist_class(logits, model) log_probs = dist.logp(train_batch[SampleBatch.ACTIONS]).reshape(-1) #print('log_probs') #print(log_probs) pi_err = -torch.sum( torch.masked_select(log_probs * train_batch[Postprocessing.ADVANTAGES], valid_mask)) # Compute a value function loss. if policy.config["use_critic"]: value_err = 0.5 * torch.sum( torch.pow( torch.masked_select( values.reshape(-1) - train_batch[Postprocessing.VALUE_TARGETS], valid_mask), 2.0)) # Ignore the value function. else: value_err = 0.0 entropy = torch.sum(torch.masked_select(dist.entropy(), valid_mask)) div_loss = compute_div_loss(policy, model, dist_class, train_batch) total_loss = (pi_err + value_err * policy.config["vf_loss_coeff"] - entropy * policy.config["entropy_coeff"] - 1000 * div_loss ) print('pi_err') #print(pi_err) print('value_err') #print(value_err) print('div_loss') print(div_loss) print('pi_err') print(pi_err) print('total_loss') print(total_loss) # Store values for stats function in model (tower), such that for # multi-GPU, we do not override them during the parallel loss phase. model.tower_stats["entropy"] = entropy model.tower_stats["pi_err"] = pi_err model.tower_stats["value_err"] = value_err return total_loss CustomPolicy = A3CTorchPolicy.with_updates( name="MyCustomA3CTorchPolicy", loss_fn=custom_loss, #make_model= make_model, before_init=custom_init) CustomTrainer = A2CTrainer.with_updates( get_policy_class=lambda _: CustomPolicy) #PPOCustomPolicy = PPOTorchPolicy.with_updates( # name="MyCustomA3CTorchPolicy", # loss_fn=custom_loss, # #make_model= make_model, # before_init=custom_init) from typing import Dict, List, Type, Union from ray.rllib.utils.annotations import override class CustomPPOTorchPolicy(PPOTorchPolicy): def __init__(self, observation_space, action_space, config): self.past_len = 10 #self.categorization_parser = CategorizationParser() self.past_models = deque(maxlen =self.past_len) #self.past_weights = deque(maxlen= self.past_len) self.timestep = 0 self.timestep_array = deque(maxlen=self.past_len) super(CustomPPOTorchPolicy, self).__init__(observation_space, action_space, config) #@override(PPOTorchPolicy) def loss(self, model: ModelV2, dist_class: Type[ActionDistribution], train_batch: SampleBatch, extern_trigger = True ) -> Union[TensorType, List[TensorType]]: #return custom_loss(self, model, dist_class, train_batch) self.timestep += 1 if self.timestep % 20 == 0 and extern_trigger == False: copied_model = pickle.loads(pickle.dumps(model)) copied_model.load_state_dict(model.state_dict()) self.past_models.append(copied_model) total_loss = PPOTorchPolicy.loss(self, model, dist_class, train_batch) #self.past_len div_loss = 0 #compute_div_loss(self, model, dist_class, train_batch) #div_loss = compute_div_loss_weight(self, copy.deepcopy(self.get_weights()), dist_class, train_batch) print('total_loss') print(total_loss) print('div_loss') print(div_loss) #assert(False) ret_loss = total_loss - 0.03 * div_loss return ret_loss ''' new_loss = [] if issubclass(type(total_loss),TensorType): return total_loss - compute_div_loss(self, model, dist_class, train_batch) else: for loss in total_loss: new_loss.append(loss - compute_div_loss(self, model, dist_class, train_batch)) return new_loss ''' def replay_agent(self, env): # no cache randomization # rangomized inference ( 10 times) pattern_buffer = [] num_guess = 0 num_correct = 0 for victim_addr in range(env.victim_address_min, env.victim_address_max + 1): for repeat in range(1): obs = env.reset(victim_address=victim_addr) action_buffer = [] done = False while done == False: print(f"-> Sending observation {obs}") action = self.compute_single_action(obs, explore=False) # randomized inference print(f"<- Received response {action}") obs, reward, done, info = env.step(action) action_buffer.append((action, obs[0])) if reward > 0: correct = True num_correct += 1 else: correct = False num_guess += 1 pattern_buffer.append((victim_addr, action_buffer, correct)) pprint.pprint(pattern_buffer) return 1.0 * num_correct / num_guess, pattern_buffer def push_current_model(self): #print('len(self.past_weights)') #print(len(self.past_weights)) model = pickle.loads(pickle.dumps(self.model)) model.load_state_dict(copy.deepcopy(self.model.state_dict())) self.past_models.append(model) self.timestep_array.append(self.timestep) #self.past_weights.append(copy.deepcopy(self.get_weights())) #self.past_weights.append(copy.deepcopy(agent.get_weights())) return #TODO(Mulong): is there an standard initialization condition??? #def is_same_agent(self, weight1, weight2, env, trainer): def is_same_agent(self, model1, model2, env, trainer): categorization_parser = CategorizationParser(env) original_state_dict = copy.deepcopy(self.model.state_dict()) #original_weights = copy.deepcopy(self.get_weights()) for victim_addr in range(env.victim_address_min, env.victim_address_max + 1): obs = env.reset(victim_address=victim_addr) #from ray.rllib.policy.sample_batch import DEFAULT_POLICY_ID #pp = trainer.workers.local_worker().preprocessors[DEFAULT_POLICY_ID] #obs = pp.transform(obs) done = False #while done == False: # self.model.load_state_dict(model1.state_dict()) # #self.set_weights(weight1) # action1 = trainer.compute_single_action(obs, explore=False) # randomized inference # self.model.load_state_dict(model2.state_dict()) # #self.set_weights(weight2) # action2 = trainer.compute_single_action(obs, explore=False) # randomized inference # if action1 != action2: # self.model.load_state_dict(original_state_dict) # #self.set_weights(original_weights) # return False # else: # action = action1 # obs, reward, done, info = env.step(action) seq1 = [] while done == False: self.model.load_state_dict(model1.state_dict()) action1 = trainer.compute_single_action(obs, explore=False) # randomized inference seq1.append(action1) obs, reward, done, info = env.step(action1) seq2 = [] while done == False: self.model.load_state_dict(model2.state_dict()) action2 = trainer.compute_single_action(obs, explore=False) # randomized inference seq1.append(action2) obs, reward, done, info = env.step(action2) if categorization_parser.is_same_base_pattern(seq1, seq2) == False: return False self.model.load_state_dict(original_state_dict) #self.set_weights(original_weights) return True def existing_agent(self, env, trainer): print('existing_agent') current_model = pickle.loads(pickle.dumps(self.model)) #current_weights = copy.deepcopy(self.get_weights()) #current_model.load_state_dict(self.model.state_dict()) for idx, past_model in enumerate(self.past_models): #for idx, past_weights in enumerate(self.past_weights): print(idx) if self.is_same_agent(current_model, past_model, env, trainer): #if self.is_same_agent(current_weights, past_weights, env, trainer): return True return False PPOCustomTrainer = PPOTrainer.with_updates( get_policy_class=lambda _: CustomPPOTorchPolicy) import models.dnn_model #tune.run(CustomTrainer, config={"env": 'Frostbite-v0', "num_gpus":0})#, 'model': { 'custom_model': 'test_model' }}) tune.register_env("cache_guessing_game_env_fix", CacheGuessingGameEnv)#Fix) # Two ways of training # method 2b config = { 'env': 'cache_guessing_game_env_fix', #'cache_simulator_diversity_wrapper', "evaluation_num_workers": 1, "evaluation_interval": 5, 'env_config': { 'verbose': 1, "force_victim_hit": False, 'flush_inst': False,#True, "allow_victim_multi_access": True, #False, "attacker_addr_s": 0, "attacker_addr_e": 15, "victim_addr_s": 0, "victim_addr_e": 7, "reset_limit": 1, "length_violation_reward": -1, "double_victim_access_reward": -0.001, # must be large value if not allow victim multi access "victim_access_reward": -0.001, "correct_reward": 0.02, "wrong_reward": -1, "step_reward": -0.001, "cache_configs": { # YAML config file for cache simulaton "architecture": { "word_size": 1, #bytes "block_size": 1, #bytes "write_back": True }, "cache_1": {#required "blocks": 8, "associativity": 8, "hit_time": 1 #cycles }, "mem": {#required "hit_time": 1000 #cycles } } }, #'gamma': 0.9, 'num_gpus': 1, 'num_workers': 1, 'num_envs_per_worker': 1, 'lr': 1e-3, # decrease lr if unstable #'entropy_coeff': 0.001, #'num_sgd_iter': 5, #'vf_loss_coeff': 1e-05, 'model': { ### 'custom_model': 'dnn_model',#'rnn', ### 'custom_model_config': { ### 'window_size': 40, #16, #need to match ### 'latency_dim': 3, ### 'victim_acc_dim': 2, ### 'action_dim': 200, # need to be precise ### 'step_dim': 80,#40, # need to be precise ### 'action_embed_dim': 32,#,8, # can be increased 32 ### 'step_embed_dim': 6,#4, # can be increased less than 16 ### 'hidden_dim': 32, ### 'num_blocks': 1 ### } }, 'framework': 'torch', } if __name__ == "__main__": tune.run(PPOCustomTrainer, config=config)#config={"env": 'Freeway-v0', "num_gpus":1})
AutoCAT-main
src/rllib/test_custom_policy_diversity_works.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This software may be used and distributed according to the terms of the # GNU General Public License version 2. ''' Author: Mulong Luo Date: 2022.7.11 Function: An example rllib training script ''' from random import random import sys import os ###sys.path.append('../src') from ray.rllib.agents.ppo import PPOTrainer import ray import ray.tune as tune import gym from gym import spaces from cache_guessing_game_env_wrapper import CacheGuessingGameEnvWrapper as CacheGuessingGameEnv import signal import numpy as np if __name__ == "__main__": ray.init(include_dashboard=False, ignore_reinit_error=True, num_gpus=1, local_mode=True) if ray.is_initialized(): ray.shutdown() tune.register_env("cache_guessing_game_env", CacheGuessingGameEnv) config = { 'env': 'cache_guessing_game_env', #'cache_simulator_diversity_wrapper', 'env_config': { 'verbose': 1, #'super_verbose': 1, "rerandomize_victim": False, "force_victim_hit": False, 'flush_inst': False, "allow_victim_multi_access": True,#False, "allow_empty_victim_access": False, "attacker_addr_s": 4, "attacker_addr_e": 7,#4,#11,#15, "victim_addr_s": 0, "victim_addr_e": 3,#7, "reset_limit": 1, "cache_configs": { # YAML config file for cache simulaton "architecture": { "word_size": 1, #bytes "block_size": 1, #bytes "write_back": True }, "cache_1": {#required "blocks": 4,#4, "associativity": 1, "hit_time": 1, #cycles "prefetcher": "nextline" }, "cache_1_core_2": {#required "blocks": 4,#4, "associativity": 1, "hit_time": 1, #cycles "prefetcher": "nextline" }, "cache_2": { "blocks": 4, "associativity": 1, "hit_time": 16, }, "mem": {#required "hit_time": 1000 #cycles } } }, #'gamma': 0.9, 'num_gpus': 1, 'num_workers': 1, 'num_envs_per_worker': 1, #'entropy_coeff': 0.001, #'num_sgd_iter': 5, #'vf_loss_coeff': 1e-05, 'model': { #'custom_model': 'test_model',#'rnn', #'max_seq_len': 20, #'custom_model_config': { # 'cell_size': 32 # } }, 'framework': 'torch', } #tune.run(PPOTrainer, config=config) trainer = PPOTrainer(config=config) def signal_handler(sig, frame): print('You pressed Ctrl+C!') checkpoint = trainer.save() print("checkpoint saved at", checkpoint) sys.exit(0) signal.signal(signal.SIGINT, signal_handler) while True: result = trainer.train()
AutoCAT-main
src/rllib/run_gym_rllib_example_multicore.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This software may be used and distributed according to the terms of the # GNU General Public License version 2. ''' Author: Mulong Luo Date: 2022.7.11 Function: An example rllib training script ''' from random import random import sys import os ###sys.path.append('../src') from ray.rllib.agents.ppo import PPOTrainer import ray import ray.tune as tune import gym from gym import spaces from cache_guessing_game_env_wrapper import CacheGuessingGameEnvWrapper as CacheGuessingGameEnv import signal import numpy as np if __name__ == "__main__": ray.init(include_dashboard=False, ignore_reinit_error=True, num_gpus=1, local_mode=True) if ray.is_initialized(): ray.shutdown() tune.register_env("cache_guessing_game_env", CacheGuessingGameEnv) config = { 'env': 'cache_guessing_game_env', #'cache_simulator_diversity_wrapper', 'env_config': { 'verbose': 1, #'super_verbose': 1, "rerandomize_victim": False, "force_victim_hit": False, 'flush_inst': False, "allow_victim_multi_access": True,#False, "allow_empty_victim_access": False, "attacker_addr_s": 8, "attacker_addr_e": 23,#4,#11,#15, "victim_addr_s": 0, "victim_addr_e": 7,#7, "reset_limit": 1, "cache_configs": { # YAML config file for cache simulaton "architecture": { "word_size": 1, #bytes "block_size": 1, #bytes "write_back": True }, "cache_1": {#required "blocks": 4,#4, "associativity": 1, "hit_time": 1, #cycles "prefetcher": "nextline" }, "cache_1_core_2": {#required "blocks": 4,#4, "associativity": 1, "hit_time": 1, #cycles "prefetcher": "nextline" }, "cache_2": { "blocks": 16, "associativity": 2, "hit_time": 16, }, "mem": {#required "hit_time": 1000 #cycles } } }, #'gamma': 0.9, 'num_gpus': 1, 'num_workers': 1, 'num_envs_per_worker': 1, #'entropy_coeff': 0.001, #'num_sgd_iter': 5, #'vf_loss_coeff': 1e-05, 'model': { #'custom_model': 'test_model',#'rnn', #'max_seq_len': 20, #'custom_model_config': { # 'cell_size': 32 # } }, 'framework': 'torch', } #tune.run(PPOTrainer, config=config) trainer = PPOTrainer(config=config) def signal_handler(sig, frame): print('You pressed Ctrl+C!') checkpoint = trainer.save() print("checkpoint saved at", checkpoint) sys.exit(0) signal.signal(signal.SIGINT, signal_handler) while True: result = trainer.train()
AutoCAT-main
src/rllib/run_gym_rllib_example_multicore_largel3.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This software may be used and distributed according to the terms of the # GNU General Public License version 2. import sys import pandas as pd from cache_guessing_game_env_wrapper import CacheGuessingGameEnvWrapper as CacheGuessingGameEnv from pandas.core.arrays import numeric class CategorizationParser: def __init__(self, number_of_set=2, attacker_address_range_max=8): self.attacker_address_range_max = attacker_address_range_max #not include, the max value of addresses self.number_of_set = number_of_set def __init__(self, env=None): self.gameenv = env def _get_set(self, row): """return set number""" return row['addr']%self.number_of_set def readfile(self,filename):# python categorization_parser.py temp.txt patterns=[] f = open(filename, mode='r', encoding='UTF-8') lines = f.readlines() for l in lines: l = l.split() l = [int(i) for i in l] patterns.append(l) return patterns def parse_action(self, action): #gameenv = CacheGuessingGameEnv() action = self.gameenv.parse_action(action) return action def convert_dataframe(self, input): # split into [(attacker's)addr, is_guess, is_victim, is_flush, victim_addr] df = pd.DataFrame(input) df = df.astype('int') df.columns =['addr', 'is_guess', 'is_victim', 'is_flush', 'victim_addr'] return df def add_set_column(self, df): df['set'] = df.apply (lambda row: self._get_set(row), axis=1) return df def _make_order(self, df, col_name): """return the order of each element in df[col_name]""" order = [-1 for i in range(self.attacker_address_range_max)] # could be further optimzed if min address is not 0 cnt = 0 for index, row in df.iterrows(): value = row[col_name] if order[value] == -1: order[value] = cnt cnt = cnt + 1 #print(f'order = {order}') return order def _get_order(self, row, col_name, order): """return the order of each element in df[col_name]""" return order[row[col_name]] def rename_column(self,df, col_name): """rename the column based on the order the item appear in the column""" order = self._make_order(df, col_name) new_col_name = col_name + '_renamed' df[new_col_name] = df.apply (lambda row: self._get_order(row, col_name, order), axis=1) return df def is_same_action_df(self, action1, action2): if action1['is_victim'] == action2['is_victim'] and action1['is_victim'] == 1: # If both are is_victim==true, ignore rest of the columns return True if action1['is_victim'] != action2['is_victim']: return False if action1['is_guess'] == action2['is_guess'] and action1['is_guess'] == 1: # If both are is_guess==true, ignore rest of the columns return True if action1['is_guess'] != action2['is_guess']: return False if action1['addr_renamed'] == action2['addr_renamed'] and action1['set_renamed']== action2['set_renamed']: # else match the address and set return True return False def remove_rep(self, df): """remove contiguous repeated access""" for index_i, row in df.iterrows(): if index_i != 0: if self.is_same_action_df(last_row, row): df = df.drop(index=index_i, axis=0) last_row=row return df def is_same_action_list(self, action1, action2): """ action format [is_guess, is_victim, is_flush, victim_addr, addr_renamed, set_renamed]""" if action1[1] == action2[1] and action1[1] == 1: # If both are is_victim==true, ignore rest of the columns return True if action1[1] != action2[1]: # is_victim is different return False if action1[0] == action2[0] and action1[0] == 1: # If both are is_guess==true, ignore rest of the columns return True if action1[0] == action2[0]: # is_guess is different return False if action1[4] == action2[4] and action1[5]== action2[5]: # else match the address and set return True return False def is_same_base_pattern(self,pattern1, pattern2): """ return whether two patterns after renaming is the same""" if len(pattern1) != len(pattern2): return False for i in range(len(pattern1)): if self.is_same_action_list(pattern1[i],pattern2[i]) == False: return False return True def main_parser(self, pattern): """output a pattern after renaming, format [is_guess, is_victim, is_flush, victim_addr, addr_renamed, set_renamed]""" pattern_parsed = [] for action in pattern : action_parsed = self.parse_action(action) pattern_parsed.append(action_parsed) df = self.convert_dataframe(pattern_parsed) print(df) df = self.add_set_column(df) df = self.rename_column(df, 'addr') # rename address df = self.rename_column(df, 'set') # rename set print(df) df = self.remove_rep(df) #remove repeated action df = df.drop(columns=['addr', 'set'], axis=1) print(df) output = df.values.tolist() return output def main(argv): # Defining main function filename = argv[1] print(filename) categorization_parser = CategorizationParser() patterns = categorization_parser.readfile(filename) print(patterns) base_pattern = categorization_parser.main_parser(patterns[0]) print(base_pattern) #for pattern in patterns : # base_pattern = categorization_parser.main_parser(pattern) if __name__=="__main__": # Using the special variable main(sys.argv)
AutoCAT-main
src/rllib/categorization_parser.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This software may be used and distributed according to the terms of the # GNU General Public License version 2. # author: Mulong Luo # usage: process the json file plotted by rllib import json from matplotlib import pyplot as plt import numpy as np import sys import math #pathname = '/home/mulong/ray_results/PPO_cache_guessing_game_env_fix_2022-03-30_09-03-46wrptlf7f' assert(len(sys.argv) == 2) pathname = '/home/geunbae/ray_results/' + sys.argv[1] pathname += '/' filename = pathname + '/result.json' configname = pathname + '/params.json' f = open(filename) config = json.load(open(configname)) correct_reward = config['env_config']['correct_reward'] wrong_reward = config['env_config']['wrong_reward'] step_reward = config['env_config']['step_reward'] episode_reward_mean = [] episode_len_mean = [] num_steps_sampled = [] time_total_s = [] correct_rate_threshold = 0.95 data = f.readline() while data: data=json.loads(data) episode_reward_mean.append(data['episode_reward_mean']) episode_len_mean.append(data['episode_len_mean']) num_steps_sampled.append(data['info']['num_steps_sampled']) time_total_s.append(data['time_total_s']) data = f.readline() f.close() # estimating the reward based on the following funciton # episode_reward_reward = p * correct_reward + ( 1 - p ) * wrong_reward + ( episode_len_mean - 1 ) * step_reward # thus p = (episode_reward_mean - wrong_reward - (episode_len_mean - 1) * step_reward) / ( correct_reward - wrong_reward ) correct_rate = [] for i in range(0, len(episode_reward_mean)): p = (episode_reward_mean[i] - wrong_reward - (episode_len_mean[i] - 1) * step_reward) / ( correct_reward - wrong_reward ) correct_rate.append(p) # find out the coverge_time and coverge_steps i = 0 while i < len(correct_rate): if correct_rate[i] > correct_rate_threshold: break i += 1 if i == len(correct_rate): converge_time = math.nan converge_steps = math.nan else: converge_time = time_total_s[i] converge_steps = num_steps_sampled[i] #plotting #print(correct_rate) #pathname = '' plt.plot(num_steps_sampled, correct_rate) plt.ylim(0,1) plt.axhline(y=correct_rate_threshold, color='r', linestyle='-') plt.xlim(left=0) plt.xlabel('num_steps_sampled') plt.ylabel('correct_rate') plt.text(0, correct_rate_threshold - 0.1, 'converge_steps ='+str(converge_steps), color='r') plt.grid(True) plt.savefig(pathname + 'correct_rate_steps.png') plt.close() plt.plot(time_total_s, correct_rate) plt.ylim(0,1) plt.axhline(y=correct_rate_threshold, color='r', linestyle='-') plt.xlim(left=0) plt.xlabel('time_total_s') plt.ylabel('correct_rate') plt.text(0, correct_rate_threshold - 0.1, 'converge_time ='+str(converge_time), color='r') plt.grid(True) plt.savefig(pathname + 'correct_rate_time.png') plt.close() plt.plot(num_steps_sampled, episode_len_mean) #plt.ylim(0,1) converge_len=np.average(np.array(episode_len_mean[len(episode_len_mean)-100::len(episode_len_mean)-1])) plt.axhline(y=converge_len, color='r', linestyle='-') plt.text(0, correct_rate_threshold - 0.1, 'coverge_len ='+str(converge_len), color ='r') plt.xlim(left=0) plt.xlabel('num_steps_sampled') plt.ylabel('episode_len_mean') plt.grid(True) plt.savefig(pathname + 'len_steps.png') plt.close() if converge_steps == math.nan: converge_len = math.nan print(str(converge_steps)+ ' ' + str(converge_time) + ' ' + str(converge_len))
AutoCAT-main
src/rllib/process_record.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This software may be used and distributed according to the terms of the # GNU General Public License version 2. ''' Author: Mulong Luo Date: 2022.7.11 Function: An example rllib training script ''' from random import random import sys import os ###sys.path.append('../src') from ray.rllib.agents.ppo import PPOTrainer import ray import ray.tune as tune import gym from gym import spaces from cache_guessing_game_env_wrapper import CacheGuessingGameEnvWrapper as CacheGuessingGameEnv import signal import numpy as np if __name__ == "__main__": ray.init(include_dashboard=False, ignore_reinit_error=True, num_gpus=1, local_mode=True) if ray.is_initialized(): ray.shutdown() tune.register_env("cache_guessing_game_env", CacheGuessingGameEnv) config = { 'env': 'cache_guessing_game_env', #'cache_simulator_diversity_wrapper', 'env_config': { 'verbose': 1, #'super_verbose': 1, "rerandomize_victim": False, "force_victim_hit": False, 'flush_inst': True, "allow_victim_multi_access": False, "allow_empty_victim_access": False, "attacker_addr_s": 0, "attacker_addr_e": 3,#4,#11,#15, "victim_addr_s": 0, "victim_addr_e": 3,#7, "reset_limit": 1, "cache_configs": { # YAML config file for cache simulaton "architecture": { "word_size": 1, #bytes "block_size": 1, #bytes "write_back": True }, "cache_1": {#required "blocks": 4,#4, "associativity": 1, "hit_time": 1, #cycles "rep_policy": "lru" #"prefetcher": "nextline" }, ##"cache_1_core_2": {#required ## "blocks": 4,#4, ## "associativity": 1, ## "hit_time": 1, #cycles ## "prefetcher": "nextline" ##}, ##"cache_2": { ## "blocks": 4, ## "associativity": 1, ## "hit_time": 16, ##}, "mem": {#required "hit_time": 1000 #cycles } } }, #'gamma': 0.9, 'num_gpus': 1, 'num_workers': 1, 'num_envs_per_worker': 1, #'entropy_coeff': 0.001, #'num_sgd_iter': 5, #'vf_loss_coeff': 1e-05, 'model': { #'custom_model': 'test_model',#'rnn', #'max_seq_len': 20, #'custom_model_config': { # 'cell_size': 32 # } }, 'framework': 'torch', } #tune.run(PPOTrainer, config=config) trainer = PPOTrainer(config=config) def signal_handler(sig, frame): print('You pressed Ctrl+C!') checkpoint = trainer.save() print("checkpoint saved at", checkpoint) sys.exit(0) signal.signal(signal.SIGINT, signal_handler) while True: result = trainer.train()
AutoCAT-main
src/rllib/run_gym_rllib_example_multicore_flush.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This software may be used and distributed according to the terms of the # GNU General Public License version 2. ''' Author: Mulong Luo Date: 2022.7.11 Function: An example rllib training script ''' from random import random import sys import os ###sys.path.append('../src') from ray.rllib.agents.ppo import PPOTrainer import ray import ray.tune as tune import gym from gym import spaces from cache_guessing_game_env_wrapper import CacheGuessingGameEnvWrapper as CacheGuessingGameEnv import signal import numpy as np if __name__ == "__main__": ray.init(include_dashboard=False, ignore_reinit_error=True, num_gpus=1, local_mode=True) if ray.is_initialized(): ray.shutdown() tune.register_env("cache_guessing_game_env", CacheGuessingGameEnv) config = { 'env': 'cache_guessing_game_env', #'cache_simulator_diversity_wrapper', 'env_config': { 'verbose': 1, #'super_verbose': 1, "rerandomize_victim": False, "force_victim_hit": False, 'flush_inst': False, "allow_victim_multi_access": True,#False, "allow_empty_victim_access": False, "attacker_addr_s": 8, "attacker_addr_e": 23,#4,#11,#15, "victim_addr_s": 0, "victim_addr_e": 7,#7, "reset_limit": 1, "cache_configs": { # YAML config file for cache simulaton "architecture": { "word_size": 1, #bytes "block_size": 1, #bytes "write_back": True }, "cache_1": {#required "blocks": 4,#4, "associativity": 1, "hit_time": 1, #cycles "prefetcher": "nextline" }, "cache_1_core_2": {#required "blocks": 4,#4, "associativity": 1, "hit_time": 1, #cycles "prefetcher": "nextline" }, "cache_2": { "blocks": 16, "associativity": 2, "hit_time": 16, }, "mem": {#required "hit_time": 1000 #cycles } } }, #'gamma': 0.9, 'num_gpus': 1, 'num_workers': 1, 'num_envs_per_worker': 1, #'entropy_coeff': 0.001, #'num_sgd_iter': 5, #'vf_loss_coeff': 1e-05, 'model': { #'custom_model': 'test_model',#'rnn', #'max_seq_len': 20, #'custom_model_config': { # 'cell_size': 32 # } }, 'framework': 'torch', } #tune.run(PPOTrainer, config=config) trainer = PPOTrainer(config=config) def signal_handler(sig, frame): print('You pressed Ctrl+C!') checkpoint = trainer.save() print("checkpoint saved at", checkpoint) sys.exit(0) signal.signal(signal.SIGINT, signal_handler) while True: result = trainer.train()
AutoCAT-main
src/rllib/run_gym_rllib_example_multicore_largel2.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This software may be used and distributed according to the terms of the # GNU General Public License version 2. baseline_attack=[ 0.03511984, 0.01022458, 0.11334784, 0.01202186, 0.02987794, 0.13556209, 0.07939993, 0.16500453, 0.17601161, 0.13473269, 0.15670964, 0.20633484, 0.23557083, 0.23359248, 0.23104890, 0.24362913, 0.24728261, 0.23643975, 0.24783550, 0.24437646, 0.25376656, 0.30623209, 0.34565488, 0.39174696, 0.41054716, 0.51179543, 0.67646532, 0.77440347, 0.84251969, 0.83644189, 0.82610274, 0.73526762, 0.65524702, 0.64337437, 0.48680882, 0.42476432, 0.42444606, 0.37932277, 0.34550360, 0.34787350, 0.31874439, 0.43236410, 0.80618893, 0.90441969, 0.90622214, 0.89821009, 0.89463292, 0.90063120, 0.89780497, 0.89733909, 0.90239971, 0.90200645, 0.90165392, 0.89677078, 0.89704824, 0.89854290, 0.90708044, 0.90394265, 0.90708044, 0.90627240, 0.90166279, 0.89674987, 0.90884718, 0.88950474, 0.86285097, 0.90988893, 0.91219599, 0.90659440, 0.90439462, 0.91699605, 0.88116673, 0.90368120, 0.90907444, 0.89090909, 0.90922062, 0.87500000, 0.90933866, 0.90714799, 0.87893594, 0.86880203, 0.87982756, 0.88706512, 0.90402309, 0.90210167, 0.90341011, 0.91535433, 0.89671867, 0.92821159, 0.89663805, 0.90790415, 0.91018286, 0.89252925, 0.89607349, 0.90305566, 0.90962312, 0.90638066, 0.90054545, 0.91430131, 0.87517883, 0.90473628 ] baseline_correct=[ 0.17003057, 0.26112113, 0.36617593, 0.80079364, 0.83162248, 0.96034767, 0.97504492, 0.69745265, 0.89153894, 0.92732785, 0.94235275, 0.94593234, 0.89202204, 0.90819753, 0.91204853, 0.92484351, 0.92874372, 0.94292784, 0.94527474, 0.94597342, 0.94904447, 0.95465319, 0.95844457, 0.96174563, 0.96596844, 0.97051572, 0.97200700, 0.97203498, 0.97435360, 0.97981619, 0.98085362, 0.98440445, 0.98390276, 0.98243678, 0.98590628, 0.98819512, 0.98592214, 0.98514818, 0.98547970, 0.98320738, 0.98784575, 0.98477673, 0.97976684, 0.98268033, 0.98673281, 0.98516250, 0.98183617, 0.98435883, 0.98450603, 0.98959949, 0.98563428, 0.98864385, 0.98359483, 0.99001871, 0.98767029, 0.98543679, 0.98417436, 0.98310969, 0.98617189, 0.98688590, 0.97820682, 0.96949028, 0.94629435, 0.91744240, 0.94476702, 0.94148899, 0.94421695, 0.96886579, 0.95716285, 0.92035446, 0.92037878, 0.95178133, 0.97063129, 0.94932518, 0.96362125, 0.96804477, 0.96131675, 0.95154591, 0.94700002, 0.93731166, 0.94028843, 0.95962645, 0.93830837, 0.96319019, 0.96619115, 0.95473074, 0.96797761, 0.96588566, 0.96378715, 0.92592031, 0.94713073, 0.89421868, 0.95348555, 0.95734321, 0.95691816, 0.96012618, 0.96672242, 0.97520229, 0.94821455, 0.96289019 ] baseline_guess=[ 14.34237683, 0.28099324, 1.10482408, 1.66684882, 1.42740026, 0.97997796, 1.03073546, 1.35793291, 1.29377608, 1.53265160, 1.86362811, 2.18787330, 3.11145287, 3.84632074, 4.86057081, 5.65244894, 6.30054348, 7.12322534, 7.85786436, 8.96940795, 10.02160102, 11.24874642, 12.56815355, 13.73150336, 15.22246220, 17.35872501, 20.07062198, 22.75723066, 25.24284180, 27.38432568, 29.80177891, 32.14128672, 33.06599351, 33.41401159, 34.19298880, 34.36022480, 34.50871776, 34.72658501, 34.84604317, 34.91348601, 34.80681614, 34.98085606, 35.96796960, 36.85088034, 36.88251025, 36.89929488, 36.87919584, 37.20685302, 37.14465635, 37.14365336, 37.10100287, 36.99104264, 37.10955006, 37.19622375, 37.25287977, 37.25813995, 37.21562333, 37.24175627, 37.11093276, 37.12867384, 36.65367424, 35.78057102, 36.05737265, 36.03432863, 34.90568754, 35.17663920, 35.72335479, 35.84444444, 36.03623318, 36.59665828, 35.55797623, 35.30861330, 36.34269154, 36.35175518, 35.93401106, 35.67611191, 36.22801599, 36.18606322, 35.70104958, 34.81831343, 35.20244297, 35.97769848, 36.38950027, 35.76594216, 36.43099447, 36.15819613, 36.01667563, 36.26808204, 35.98783977, 36.86319742, 35.12065256, 37.37137714, 36.11491354, 35.19334303, 35.70892792, 34.70696237, 35.72345455, 35.94850801, 35.03379828, 35.57319699 ] penalty_100_guess=[ 29.50417933, 1.22344945, 0.75267437, 1.13464353, 1.08614153, 1.02332847, 1.15135022, 1.13255523, 1.02014120, 3.49820789, 1.07637432, 1.28426501, 1.27505155, 1.50063803, 1.65667230, 2.10797238, 2.49229795, 2.94014085, 3.36892596, 3.49624844, 3.56889932, 3.78941930, 3.87910479, 4.03514310, 4.57831840, 4.85875235, 5.12046931, 5.27399873, 5.70023124, 5.82654757, 6.13146233, 5.42238115, 5.59886887, 6.17286516, 6.46755162, 6.33142615, 6.35857143, 6.77089005, 7.22490470, 7.48215785, 7.62136326, 7.28035228, 7.30361702, 7.53855932, 7.57863874, 7.99914475, 8.27098271, 8.69726316, 8.35211864, 8.97658578, 9.33263202, 9.03434638, 9.16421412, 9.87647059, 11.08275572, 11.27029848, 12.34637588, 12.83673469, 13.50062267, 14.56401674, 14.94607843, 15.10694066, 15.79119258, 15.86199575, 16.29361883, 16.05272991, 16.76428869, 16.90456961, 17.13671875, 17.38062500, 17.64564438, 18.02278481, 17.94679315, 17.86673640, 18.26410256, 18.16972768, 18.18759170, 18.13489736, 18.39682875, 18.72902424, 18.25108047, 18.64890480, 18.96144934, 19.36812264, 18.89331919, 19.09357720, 19.28116656, 19.16133751, 18.86193086, 19.01802375, 18.98377704, 18.67985012, 18.72397611, 18.79231259, 19.20927318, 19.13312303, 19.48020113, 18.91074035, 19.57536842, 19.56521739, 19.18431621, 19.42294807, 19.22913153, 19.69543254, 19.53860601, 19.63589212, 19.70178384, 20.17845762, 19.92748489, 20.14783704, 20.59461166, 20.54669465, 20.77027592, 20.28511706, 20.71045972, 20.99154870, 21.47674915, 21.32629356, 21.57679325, 21.90462307, 21.73862679, 21.97312860, 21.76212569, 22.54166667, 22.09745763, 22.96579392, 22.76663191, 22.81576211, 22.78846154, 22.65538396, 23.44877436, 23.20168421, 23.18796199, 23.41472624, 23.19478624, 23.48477850, 24.28125000, 23.82924820, 24.04847472, 23.63428087, 24.08384372, 23.47174963, 24.07647059, 24.16207627, 24.62218084, 24.66561381, 24.45597815, 24.42048346, 24.54391821, ] penalty_100_correct_rate=[ 0.13757245, 0.22070691, 0.29907239, 0.61505162, 0.87329470, 0.90569559, 0.88720057, 0.97077224, 0.96172481, 0.92807427, 0.96560375, 0.93698818, 0.94918277, 0.93351697, 0.93408320, 0.90740492, 0.90219904, 0.90162322, 0.87831753, 0.88323177, 0.90669821, 0.90580084, 0.89196975, 0.90775231, 0.91618298, 0.91656244, 0.91732303, 0.91940618, 0.91861134, 0.91802211, 0.91777248, 0.93283100, 0.93771301, 0.92839511, 0.93743350, 0.93022563, 0.92496090, 0.94122153, 0.92643793, 0.93103427, 0.92845866, 0.93866879, 0.93329447, 0.93110663, 0.92859257, 0.94114582, 0.94611516, 0.94032850, 0.93971612, 0.94585564, 0.93393985, 0.93055444, 0.94348841, 0.93450596, 0.93681816, 0.93938515, 0.93995660, 0.93742645, 0.94090190, 0.94634112, 0.94466373, 0.94722140, 0.94918749, 0.94615934, 0.94665908, 0.95625397, 0.95736304, 0.94756137, 0.95296479, 0.95371451, 0.96250719, 0.95489270, 0.96019256, 0.96098124, 0.96428483, 0.95641637, 0.96215396, 0.95164828, 0.96128709, 0.96173180, 0.96050836, 0.96684761, 0.95735910, 0.96188616, 0.96332256, 0.95761918, 0.95727710, 0.96268587, 0.95846854, 0.96538839, 0.95921116, 0.95781530, 0.96320020, 0.96043409, 0.95988230, 0.96421904, 0.95105871, 0.96649123, 0.95428144, 0.95959083, 0.95786789, 0.95899402, 0.96298041, 0.95859683, 0.95841701, 0.95960966, 0.95874214, 0.95174934, 0.95451041, 0.95000610, 0.95768994, 0.95972187, 0.95544440, 0.94972269, 0.95216930, 0.95615790, 0.94646905, 0.94872856, 0.94970367, 0.95551362, 0.95996366, 0.95006704, 0.95082290, 0.95863353, 0.95562813, 0.95886373, 0.94392633, 0.94478859, 0.95116343, 0.95064296, 0.95480776, 0.95378959, 0.95051417, 0.95379620, 0.94546511, 0.96155770, 0.95195943, 0.95762728, 0.95516956, 0.95966776, 0.95482917, 0.95403618, 0.95376471, 0.95781742, 0.95715434, 0.95797879, 0.95463553, 0.94413048, 0.95308607, ] penalty_100_attack=[ 0.05547112, 0.00807137, 0.00000000, 0.00104537, 0.00021061, 0.00062487, 0.00000000, 0.00020842, 0.00062292, 0.00021084, 0.00272765, 0.00144928, 0.00103093, 0.00233943, 0.00168919, 0.00355723, 0.00506436, 0.00600663, 0.00959333, 0.00771155, 0.00810580, 0.01467245, 0.01338632, 0.00462963, 0.00874947, 0.00897142, 0.00817096, 0.01165501, 0.00988018, 0.00727046, 0.01139481, 0.01135886, 0.00544617, 0.00851860, 0.01264223, 0.01652893, 0.01102041, 0.00942408, 0.01164761, 0.01154492, 0.01475478, 0.01488782, 0.01617021, 0.01334746, 0.01654450, 0.01282874, 0.01138760, 0.01536842, 0.01588983, 0.01170711, 0.02251210, 0.02019151, 0.01364897, 0.01239496, 0.01512287, 0.01607180, 0.01368399, 0.02374011, 0.00996264, 0.02238494, 0.01960784, 0.01698469, 0.01938475, 0.01528662, 0.02098792, 0.01764584, 0.02085941, 0.02529224, 0.02097039, 0.02354167, 0.02193630, 0.02426160, 0.02309755, 0.02154812, 0.02799145, 0.02448807, 0.02578076, 0.01968999, 0.01902748, 0.02838202, 0.02490224, 0.01790227, 0.02254055, 0.02603948, 0.02672322, 0.02637176, 0.01910043, 0.02549634, 0.02255481, 0.02311281, 0.03223794, 0.02435470, 0.03114334, 0.02229773, 0.02882206, 0.02018927, 0.03079824, 0.02398332, 0.02989474, 0.02596032, 0.03677869, 0.02617253, 0.02487352, 0.02694170, 0.02337229, 0.02282158, 0.02896118, 0.03016784, 0.03313190, 0.02036959, 0.02189013, 0.02518363, 0.03010033, 0.02445652, 0.02889076, 0.01922671, 0.02303754, 0.02703273, 0.01898734, 0.03019575, 0.02464195, 0.02729793, 0.02066639, 0.03287270, 0.02139831, 0.02871622, 0.02377477, 0.01809108, 0.03486898, 0.01882801, 0.02723654, 0.02315789, 0.02492080, 0.02643172, 0.02398332, 0.01658619, 0.03378378, 0.02677652, 0.03113247, 0.02291048, 0.03041183, 0.02121403, 0.02436975, 0.02161017, 0.02876060, 0.03305959, 0.02500525, 0.02353690, 0.02482787 ]
AutoCAT-main
src/cyclone_data/plot.py