Dataset Viewer
Auto-converted to Parquet
python_code
stringlengths
0
869k
from setuptools import setup, find_packages setup( name='coinrun', packages=find_packages(), version='0.0.1', )
import numpy as np from coinrun import setup_utils, make def random_agent(num_envs=1, max_steps=100000): setup_utils.setup_and_load(use_cmd_line_args=False) env = make('standard', num_envs=num_envs) for step in range(max_steps): acts = np.array([env.action_space.sample() for _ in range(env.num_envs)]) _obs, rews, _dones, _infos = env.step(acts) print("step", step, "rews", rews) env.close() if __name__ == '__main__': random_agent()
""" Load an agent trained with train_agent.py and """ import time import tensorflow as tf import numpy as np from coinrun import setup_utils import coinrun.main_utils as utils from coinrun.config import Config from coinrun import policies, wrappers mpi_print = utils.mpi_print def create_act_model(sess, env, nenvs): ob_space = env.observation_space ac_space = env.action_space policy = policies.get_policy() act = policy(sess, ob_space, ac_space, nenvs, 1, reuse=False) return act def enjoy_env_sess(sess): should_render = True should_eval = Config.TRAIN_EVAL or Config.TEST_EVAL rep_count = Config.REP if should_eval: env = utils.make_general_env(Config.NUM_EVAL) should_render = False else: env = utils.make_general_env(1) env = wrappers.add_final_wrappers(env) if should_render: from gym.envs.classic_control import rendering nenvs = env.num_envs agent = create_act_model(sess, env, nenvs) sess.run(tf.global_variables_initializer()) loaded_params = utils.load_params_for_scope(sess, 'model') if not loaded_params: print('NO SAVED PARAMS LOADED') obs = env.reset() t_step = 0 if should_render: viewer = rendering.SimpleImageViewer() should_render_obs = not Config.IS_HIGH_RES def maybe_render(info=None): if should_render and not should_render_obs: env.render() maybe_render() scores = np.array([0] * nenvs) score_counts = np.array([0] * nenvs) curr_rews = np.zeros((nenvs, 3)) def should_continue(): if should_eval: return np.sum(score_counts) < rep_count * nenvs return True state = agent.initial_state done = np.zeros(nenvs) while should_continue(): action, values, state, _ = agent.step(obs, state, done) obs, rew, done, info = env.step(action) if should_render and should_render_obs: if np.shape(obs)[-1] % 3 == 0: ob_frame = obs[0,:,:,-3:] else: ob_frame = obs[0,:,:,-1] ob_frame = np.stack([ob_frame] * 3, axis=2) viewer.imshow(ob_frame) curr_rews[:,0] += rew for i, d in enumerate(done): if d: if score_counts[i] < rep_count: score_counts[i] += 1 if 'episode' in info[i]: scores[i] += info[i].get('episode')['r'] if t_step % 100 == 0: mpi_print('t', t_step, values[0], done[0], rew[0], curr_rews[0], np.shape(obs)) maybe_render(info[0]) t_step += 1 if should_render: time.sleep(.02) if done[0]: if should_render: mpi_print('ep_rew', curr_rews) curr_rews[:] = 0 result = 0 if should_eval: mean_score = np.mean(scores) / rep_count max_idx = np.argmax(scores) mpi_print('scores', scores / rep_count) print('mean_score', mean_score) mpi_print('max idx', max_idx) mpi_mean_score = utils.mpi_average([mean_score]) mpi_print('mpi_mean', mpi_mean_score) result = mean_score return result def main(): utils.setup_mpi_gpus() setup_utils.setup_and_load() with tf.Session() as sess: enjoy_env_sess(sess) if __name__ == '__main__': main()
""" Train an agent using a PPO2 based on OpenAI Baselines. """ import time from mpi4py import MPI import tensorflow as tf from baselines.common import set_global_seeds import coinrun.main_utils as utils from coinrun import setup_utils, policies, wrappers, ppo2 from coinrun.config import Config def main(): args = setup_utils.setup_and_load() comm = MPI.COMM_WORLD rank = comm.Get_rank() seed = int(time.time()) % 10000 set_global_seeds(seed * 100 + rank) utils.setup_mpi_gpus() config = tf.ConfigProto() config.gpu_options.allow_growth = True # pylint: disable=E1101 nenvs = Config.NUM_ENVS total_timesteps = int(256e6) save_interval = args.save_interval env = utils.make_general_env(nenvs, seed=rank) with tf.Session(config=config): env = wrappers.add_final_wrappers(env) policy = policies.get_policy() ppo2.learn(policy=policy, env=env, save_interval=save_interval, nsteps=Config.NUM_STEPS, nminibatches=Config.NUM_MINIBATCHES, lam=0.95, gamma=Config.GAMMA, noptepochs=Config.PPO_EPOCHS, log_interval=1, ent_coef=Config.ENTROPY_COEFF, lr=lambda f : f * Config.LEARNING_RATE, cliprange=lambda f : f * 0.2, total_timesteps=total_timesteps) if __name__ == '__main__': main()
from mpi4py import MPI import argparse import os class ConfigSingle(object): """ A global config object that can be initialized from command line arguments or keyword arguments. """ def __init__(self): self.WORKDIR = './saved_models/' self.TB_DIR = '/tmp/tensorflow' if not os.path.exists(self.WORKDIR): os.makedirs(self.WORKDIR, exist_ok=True) self.LOG_ALL_MPI = True self.SYNC_FROM_ROOT = True arg_keys = [] bool_keys = [] type_keys = [] # The runid, used to determine the name for save files. type_keys.append(('runid', 'run_id', str, 'tmp')) # The runid whose parameters and settings you want to load. type_keys.append(('resid', 'restore_id', str, None)) # The game to be played. # One of {'standard', 'platform', 'maze'} (for CoinRun, CoinRun-Platforms, Random-Mazes) type_keys.append(('gamet', 'game_type', str, 'standard', True)) # The convolutional architecture to use # One of {'nature', 'impala', 'impalalarge'} type_keys.append(('arch', 'architecture', str, 'impala', True)) # Should the model include an LSTM type_keys.append(('lstm', 'use_lstm', int, 0, True)) # The number of parallel environments to run type_keys.append(('ne', 'num_envs', int, 32, True)) # The number of levels in the training set. # If NUM_LEVELS = 0, the training set is unbounded. All level seeds will be randomly generated. # Use SET_SEED = -1 and NUM_LEVELS = 500 to train with the same levels in the paper. type_keys.append(('nlev', 'num_levels', int, 0, True)) # Provided as a seed for training set generation. # If SET_SEED = -1, this seed is not used and level seeds with be drawn from the range [0, NUM_LEVELS). # Use SET_SEED = -1 and NUM_LEVELS = 500 to train with the same levels in the paper. # NOTE: This value must and will be saved, in order to use the same training set for evaluation and/or visualization. type_keys.append(('set-seed', 'set_seed', int, -1, True)) # PPO Hyperparameters type_keys.append(('ns', 'num_steps', int, 256)) type_keys.append(('nmb', 'num_minibatches', int, 8)) type_keys.append(('ppoeps', 'ppo_epochs', int, 3)) type_keys.append(('ent', 'entropy_coeff', float, .01)) type_keys.append(('lr', 'learning_rate', float, 5e-4)) type_keys.append(('gamma', 'gamma', float, 0.999)) # Should the agent's velocity be painted in the upper left corner of observations. # 1/0 means True/False # PAINT_VEL_INFO = -1 uses smart defaulting -- will default to 1 if GAME_TYPE is 'standard' (CoinRun), 0 otherwise type_keys.append(('pvi', 'paint_vel_info', int, -1, True)) # Should batch normalization be used after each convolutional layer # 1/0 means True/False # This code only supports training-mode batch normalization (normalizing with statistics of the current batch). # In practice, we found this is nearly as effective as tracking the moving average of the statistics. # NOTE: Only applies to IMPALA and IMPALA-Large architectures type_keys.append(('norm', 'use_batch_norm', int, 0, True)) # What dropout probability to use after each convolutional layer # NOTE: Only applies to IMPALA and IMPALA-Large architectures type_keys.append(('dropout', 'dropout', float, 0.0, True)) # Should data augmentation be used # 1/0 means True/False type_keys.append(('uda', 'use_data_augmentation', int, 0)) # The l2 penalty to use during training type_keys.append(('l2', 'l2_weight', float, 0.0)) # The probability the agent's action is replaced with a random action type_keys.append(('eps', 'epsilon_greedy', float, 0.0)) # The number of frames to stack for each observation. # No frame stack is necessary if PAINT_VEL_INFO = 1 type_keys.append(('fs', 'frame_stack', int, 1, True)) # Should observations be transformed to grayscale # 1/0 means True/False type_keys.append(('ubw', 'use_black_white', int, 0, True)) # Overwrite the latest save file after this many updates type_keys.append(('si', 'save_interval', int, 10)) # The number of evaluation environments to use type_keys.append(('num-eval', 'num_eval', int, 20, True)) # The number of episodes to evaluate with each evaluation environment type_keys.append(('rep', 'rep', int, 1)) # Should half the workers act solely has test workers for evaluation # These workers will run on test levels and not contributing to training bool_keys.append(('test', 'test')) # Perform evaluation with all levels sampled from the training set bool_keys.append(('train-eval', 'train_eval')) # Perform evaluation with all levels sampled from the test set (unseen levels of high difficulty) bool_keys.append(('test-eval', 'test_eval')) # Only generate high difficulty levels bool_keys.append(('highd', 'high_difficulty')) # Use high resolution images for rendering bool_keys.append(('hres', 'is_high_res')) self.RES_KEYS = [] for tk in type_keys: arg_keys.append(self.process_field(tk[1])) if (len(tk) > 4) and tk[4]: self.RES_KEYS.append(tk[1]) for bk in bool_keys: arg_keys.append(bk[1]) if (len(bk) > 2) and bk[2]: self.RES_KEYS.append(bk[1]) self.arg_keys = arg_keys self.bool_keys = bool_keys self.type_keys = type_keys self.load_data = {} self.args_dict = {} def is_test_rank(self): if self.TEST: rank = MPI.COMM_WORLD.Get_rank() return rank % 2 == 1 return False def get_test_frac(self): return .5 if self.TEST else 0 def get_load_data(self, load_key='default'): if not load_key in self.load_data: return None return self.load_data[load_key] def set_load_data(self, ld, load_key='default'): self.load_data[load_key] = ld def process_field(self, name): return name.replace('-','_') def deprocess_field(self, name): return name.replace('_','-') def parse_all_args(self, args): assert isinstance(args, argparse.Namespace), 'expected argparse.Namespace object' update_dict = vars(args) self.parse_args_dict(update_dict) def parse_args_dict(self, update_dict): self.args_dict.update(update_dict) for ak in self.args_dict: val = self.args_dict[ak] if isinstance(val, str): val = self.process_field(val) setattr(self, ak.upper(), val) self.compute_args_dependencies() def compute_args_dependencies(self): if self.is_test_rank(): self.NUM_LEVELS = 0 self.USE_DATA_AUGMENTATION = 0 self.EPSILON_GREEDY = 0 self.HIGH_DIFFICULTY = 1 if self.PAINT_VEL_INFO < 0: if self.GAME_TYPE == 'standard': self.PAINT_VEL_INFO = 1 else: self.PAINT_VEL_INFO = 0 if self.TEST_EVAL: self.NUM_LEVELS = 0 self.HIGH_DIFFICULTY = 1 self.TRAIN_TEST_COMM = MPI.COMM_WORLD.Split(1 if self.is_test_rank() else 0, 0) def get_load_filename(self, base_name=None, restore_id=None): if restore_id is None: restore_id = Config.RESTORE_ID if restore_id is None: return None filename = Config.get_save_file_for_rank(0, self.process_field(restore_id), base_name=base_name) return filename def get_save_path(self, runid=None): return self.WORKDIR + self.get_save_file(runid) def get_save_file_for_rank(self, rank, runid=None, base_name=None): if runid is None: runid = self.RUN_ID extra = '' if base_name is not None: extra = '_' + base_name return 'sav_' + runid + extra + '_' + str(rank) def get_save_file(self, runid=None, base_name=None): comm = MPI.COMM_WORLD rank = comm.Get_rank() return self.get_save_file_for_rank(rank, runid, base_name=base_name) def get_arg_text(self): arg_strs = [] for key in self.args_dict: arg_strs.append(key + '=' + str(self.args_dict[key])) return arg_strs def get_args_dict(self): _args_dict = {} _args_dict.update(self.args_dict) return _args_dict def initialize_args(self, use_cmd_line_args=True, **kwargs): default_args = {} for tk in self.type_keys: default_args[self.process_field(tk[1])] = tk[3] for bk in self.bool_keys: default_args[bk[1]] = False default_args.update(kwargs) parser = argparse.ArgumentParser() for tk in self.type_keys: parser.add_argument('-' + tk[0], '--' + self.deprocess_field(tk[1]), type=tk[2], default=default_args[tk[1]]) for bk in self.bool_keys: parser.add_argument('--' + bk[0], dest=bk[1], action='store_true') bk_kwargs = {bk[1]: default_args[bk[1]]} parser.set_defaults(**bk_kwargs) if use_cmd_line_args: args = parser.parse_args() else: args = parser.parse_args(args=[]) self.parse_all_args(args) return args Config = ConfigSingle()
""" This is a copy of PPO from openai/baselines (https://github.com/openai/baselines/blob/52255beda5f5c8760b0ae1f676aa656bb1a61f80/baselines/ppo2/ppo2.py) with some minor changes. """ import time import joblib import numpy as np import tensorflow as tf from collections import deque from mpi4py import MPI from coinrun.tb_utils import TB_Writer import coinrun.main_utils as utils from coinrun.config import Config mpi_print = utils.mpi_print from baselines.common.runners import AbstractEnvRunner from baselines.common.tf_util import initialize from baselines.common.mpi_util import sync_from_root class MpiAdamOptimizer(tf.train.AdamOptimizer): """Adam optimizer that averages gradients across mpi processes.""" def __init__(self, comm, **kwargs): self.comm = comm self.train_frac = 1.0 - Config.get_test_frac() tf.train.AdamOptimizer.__init__(self, **kwargs) def compute_gradients(self, loss, var_list, **kwargs): grads_and_vars = tf.train.AdamOptimizer.compute_gradients(self, loss, var_list, **kwargs) grads_and_vars = [(g, v) for g, v in grads_and_vars if g is not None] flat_grad = tf.concat([tf.reshape(g, (-1,)) for g, v in grads_and_vars], axis=0) if Config.is_test_rank(): flat_grad = tf.zeros_like(flat_grad) shapes = [v.shape.as_list() for g, v in grads_and_vars] sizes = [int(np.prod(s)) for s in shapes] num_tasks = self.comm.Get_size() buf = np.zeros(sum(sizes), np.float32) def _collect_grads(flat_grad): self.comm.Allreduce(flat_grad, buf, op=MPI.SUM) np.divide(buf, float(num_tasks) * self.train_frac, out=buf) return buf avg_flat_grad = tf.py_func(_collect_grads, [flat_grad], tf.float32) avg_flat_grad.set_shape(flat_grad.shape) avg_grads = tf.split(avg_flat_grad, sizes, axis=0) avg_grads_and_vars = [(tf.reshape(g, v.shape), v) for g, (_, v) in zip(avg_grads, grads_and_vars)] return avg_grads_and_vars class Model(object): def __init__(self, *, policy, ob_space, ac_space, nbatch_act, nbatch_train, nsteps, ent_coef, vf_coef, max_grad_norm): sess = tf.get_default_session() train_model = policy(sess, ob_space, ac_space, nbatch_train, nsteps) norm_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) act_model = policy(sess, ob_space, ac_space, nbatch_act, 1) A = train_model.pdtype.sample_placeholder([None]) ADV = tf.placeholder(tf.float32, [None]) R = tf.placeholder(tf.float32, [None]) OLDNEGLOGPAC = tf.placeholder(tf.float32, [None]) OLDVPRED = tf.placeholder(tf.float32, [None]) LR = tf.placeholder(tf.float32, []) CLIPRANGE = tf.placeholder(tf.float32, []) neglogpac = train_model.pd.neglogp(A) entropy = tf.reduce_mean(train_model.pd.entropy()) vpred = train_model.vf vpredclipped = OLDVPRED + tf.clip_by_value(train_model.vf - OLDVPRED, - CLIPRANGE, CLIPRANGE) vf_losses1 = tf.square(vpred - R) vf_losses2 = tf.square(vpredclipped - R) vf_loss = .5 * tf.reduce_mean(tf.maximum(vf_losses1, vf_losses2)) ratio = tf.exp(OLDNEGLOGPAC - neglogpac) pg_losses = -ADV * ratio pg_losses2 = -ADV * tf.clip_by_value(ratio, 1.0 - CLIPRANGE, 1.0 + CLIPRANGE) pg_loss = tf.reduce_mean(tf.maximum(pg_losses, pg_losses2)) approxkl = .5 * tf.reduce_mean(tf.square(neglogpac - OLDNEGLOGPAC)) clipfrac = tf.reduce_mean(tf.to_float(tf.greater(tf.abs(ratio - 1.0), CLIPRANGE))) params = tf.trainable_variables() weight_params = [v for v in params if '/b' not in v.name] total_num_params = 0 for p in params: shape = p.get_shape().as_list() num_params = np.prod(shape) mpi_print('param', p, num_params) total_num_params += num_params mpi_print('total num params:', total_num_params) l2_loss = tf.reduce_sum([tf.nn.l2_loss(v) for v in weight_params]) loss = pg_loss - entropy * ent_coef + vf_loss * vf_coef + l2_loss * Config.L2_WEIGHT if Config.SYNC_FROM_ROOT: trainer = MpiAdamOptimizer(MPI.COMM_WORLD, learning_rate=LR, epsilon=1e-5) else: trainer = tf.train.AdamOptimizer(learning_rate=LR, epsilon=1e-5) grads_and_var = trainer.compute_gradients(loss, params) grads, var = zip(*grads_and_var) if max_grad_norm is not None: grads, _grad_norm = tf.clip_by_global_norm(grads, max_grad_norm) grads_and_var = list(zip(grads, var)) _train = trainer.apply_gradients(grads_and_var) def train(lr, cliprange, obs, returns, masks, actions, values, neglogpacs, states=None): advs = returns - values adv_mean = np.mean(advs, axis=0, keepdims=True) adv_std = np.std(advs, axis=0, keepdims=True) advs = (advs - adv_mean) / (adv_std + 1e-8) td_map = {train_model.X:obs, A:actions, ADV:advs, R:returns, LR:lr, CLIPRANGE:cliprange, OLDNEGLOGPAC:neglogpacs, OLDVPRED:values} if states is not None: td_map[train_model.S] = states td_map[train_model.M] = masks return sess.run( [pg_loss, vf_loss, entropy, approxkl, clipfrac, l2_loss, _train], td_map )[:-1] self.loss_names = ['policy_loss', 'value_loss', 'policy_entropy', 'approxkl', 'clipfrac', 'l2_loss'] def save(save_path): ps = sess.run(params) joblib.dump(ps, save_path) def load(load_path): loaded_params = joblib.load(load_path) restores = [] for p, loaded_p in zip(params, loaded_params): restores.append(p.assign(loaded_p)) sess.run(restores) self.train = train self.train_model = train_model self.act_model = act_model self.step = act_model.step self.value = act_model.value self.initial_state = act_model.initial_state self.save = save self.load = load if Config.SYNC_FROM_ROOT: if MPI.COMM_WORLD.Get_rank() == 0: initialize() global_variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope="") sync_from_root(sess, global_variables) #pylint: disable=E1101 else: initialize() class Runner(AbstractEnvRunner): def __init__(self, *, env, model, nsteps, gamma, lam): super().__init__(env=env, model=model, nsteps=nsteps) self.lam = lam self.gamma = gamma def run(self): # Here, we init the lists that will contain the mb of experiences mb_obs, mb_rewards, mb_actions, mb_values, mb_dones, mb_neglogpacs = [],[],[],[],[],[] mb_states = self.states epinfos = [] # For n in range number of steps for _ in range(self.nsteps): # Given observations, get action value and neglopacs # We already have self.obs because Runner superclass run self.obs[:] = env.reset() on init actions, values, self.states, neglogpacs = self.model.step(self.obs, self.states, self.dones) mb_obs.append(self.obs.copy()) mb_actions.append(actions) mb_values.append(values) mb_neglogpacs.append(neglogpacs) mb_dones.append(self.dones) # Take actions in env and look the results # Infos contains a ton of useful informations self.obs[:], rewards, self.dones, infos = self.env.step(actions) for info in infos: maybeepinfo = info.get('episode') if maybeepinfo: epinfos.append(maybeepinfo) mb_rewards.append(rewards) #batch of steps to batch of rollouts mb_obs = np.asarray(mb_obs, dtype=self.obs.dtype) mb_rewards = np.asarray(mb_rewards, dtype=np.float32) mb_actions = np.asarray(mb_actions) mb_values = np.asarray(mb_values, dtype=np.float32) mb_neglogpacs = np.asarray(mb_neglogpacs, dtype=np.float32) mb_dones = np.asarray(mb_dones, dtype=np.bool) last_values = self.model.value(self.obs, self.states, self.dones) # discount/bootstrap off value fn mb_returns = np.zeros_like(mb_rewards) mb_advs = np.zeros_like(mb_rewards) lastgaelam = 0 for t in reversed(range(self.nsteps)): if t == self.nsteps - 1: nextnonterminal = 1.0 - self.dones nextvalues = last_values else: nextnonterminal = 1.0 - mb_dones[t+1] nextvalues = mb_values[t+1] delta = mb_rewards[t] + self.gamma * nextvalues * nextnonterminal - mb_values[t] mb_advs[t] = lastgaelam = delta + self.gamma * self.lam * nextnonterminal * lastgaelam mb_returns = mb_advs + mb_values return (*map(sf01, (mb_obs, mb_returns, mb_dones, mb_actions, mb_values, mb_neglogpacs)), mb_states, epinfos) def sf01(arr): """ swap and then flatten axes 0 and 1 """ s = arr.shape return arr.swapaxes(0, 1).reshape(s[0] * s[1], *s[2:]) def constfn(val): def f(_): return val return f def learn(*, policy, env, nsteps, total_timesteps, ent_coef, lr, vf_coef=0.5, max_grad_norm=0.5, gamma=0.99, lam=0.95, log_interval=10, nminibatches=4, noptepochs=4, cliprange=0.2, save_interval=0, load_path=None): comm = MPI.COMM_WORLD rank = comm.Get_rank() mpi_size = comm.Get_size() sess = tf.get_default_session() tb_writer = TB_Writer(sess) if isinstance(lr, float): lr = constfn(lr) else: assert callable(lr) if isinstance(cliprange, float): cliprange = constfn(cliprange) else: assert callable(cliprange) total_timesteps = int(total_timesteps) nenvs = env.num_envs ob_space = env.observation_space ac_space = env.action_space nbatch = nenvs * nsteps nbatch_train = nbatch // nminibatches model = Model(policy=policy, ob_space=ob_space, ac_space=ac_space, nbatch_act=nenvs, nbatch_train=nbatch_train, nsteps=nsteps, ent_coef=ent_coef, vf_coef=vf_coef, max_grad_norm=max_grad_norm) utils.load_all_params(sess) runner = Runner(env=env, model=model, nsteps=nsteps, gamma=gamma, lam=lam) epinfobuf10 = deque(maxlen=10) epinfobuf100 = deque(maxlen=100) tfirststart = time.time() active_ep_buf = epinfobuf100 nupdates = total_timesteps//nbatch mean_rewards = [] datapoints = [] run_t_total = 0 train_t_total = 0 can_save = True checkpoints = [32, 64] saved_key_checkpoints = [False] * len(checkpoints) if Config.SYNC_FROM_ROOT and rank != 0: can_save = False def save_model(base_name=None): base_dict = {'datapoints': datapoints} utils.save_params_in_scopes(sess, ['model'], Config.get_save_file(base_name=base_name), base_dict) for update in range(1, nupdates+1): assert nbatch % nminibatches == 0 nbatch_train = nbatch // nminibatches tstart = time.time() frac = 1.0 - (update - 1.0) / nupdates lrnow = lr(frac) cliprangenow = cliprange(frac) mpi_print('collecting rollouts...') run_tstart = time.time() obs, returns, masks, actions, values, neglogpacs, states, epinfos = runner.run() epinfobuf10.extend(epinfos) epinfobuf100.extend(epinfos) run_elapsed = time.time() - run_tstart run_t_total += run_elapsed mpi_print('rollouts complete') mblossvals = [] mpi_print('updating parameters...') train_tstart = time.time() if states is None: # nonrecurrent version inds = np.arange(nbatch) for _ in range(noptepochs): np.random.shuffle(inds) for start in range(0, nbatch, nbatch_train): end = start + nbatch_train mbinds = inds[start:end] slices = (arr[mbinds] for arr in (obs, returns, masks, actions, values, neglogpacs)) mblossvals.append(model.train(lrnow, cliprangenow, *slices)) else: # recurrent version assert nenvs % nminibatches == 0 envinds = np.arange(nenvs) flatinds = np.arange(nenvs * nsteps).reshape(nenvs, nsteps) envsperbatch = nbatch_train // nsteps for _ in range(noptepochs): np.random.shuffle(envinds) for start in range(0, nenvs, envsperbatch): end = start + envsperbatch mbenvinds = envinds[start:end] mbflatinds = flatinds[mbenvinds].ravel() slices = (arr[mbflatinds] for arr in (obs, returns, masks, actions, values, neglogpacs)) mbstates = states[mbenvinds] mblossvals.append(model.train(lrnow, cliprangenow, *slices, mbstates)) # update the dropout mask sess.run([model.train_model.dropout_assign_ops]) train_elapsed = time.time() - train_tstart train_t_total += train_elapsed mpi_print('update complete') lossvals = np.mean(mblossvals, axis=0) tnow = time.time() fps = int(nbatch / (tnow - tstart)) if update % log_interval == 0 or update == 1: step = update*nbatch rew_mean_10 = utils.process_ep_buf(active_ep_buf, tb_writer=tb_writer, suffix='', step=step) ep_len_mean = np.nanmean([epinfo['l'] for epinfo in active_ep_buf]) mpi_print('\n----', update) mean_rewards.append(rew_mean_10) datapoints.append([step, rew_mean_10]) tb_writer.log_scalar(ep_len_mean, 'ep_len_mean') tb_writer.log_scalar(fps, 'fps') mpi_print('time_elapsed', tnow - tfirststart, run_t_total, train_t_total) mpi_print('timesteps', update*nsteps, total_timesteps) mpi_print('eplenmean', ep_len_mean) mpi_print('eprew', rew_mean_10) mpi_print('fps', fps) mpi_print('total_timesteps', update*nbatch) mpi_print([epinfo['r'] for epinfo in epinfobuf10]) if len(mblossvals): for (lossval, lossname) in zip(lossvals, model.loss_names): mpi_print(lossname, lossval) tb_writer.log_scalar(lossval, lossname) mpi_print('----\n') if can_save: if save_interval and (update % save_interval == 0): save_model() for j, checkpoint in enumerate(checkpoints): if (not saved_key_checkpoints[j]) and (step >= (checkpoint * 1e6)): saved_key_checkpoints[j] = True save_model(str(checkpoint) + 'M') save_model() env.close() return mean_rewards
import tensorflow as tf from mpi4py import MPI from coinrun.config import Config import numpy as np def clean_tb_dir(): comm = MPI.COMM_WORLD rank = comm.Get_rank() if rank == 0: if tf.gfile.Exists(Config.TB_DIR): tf.gfile.DeleteRecursively(Config.TB_DIR) tf.gfile.MakeDirs(Config.TB_DIR) comm.Barrier() class TB_Writer(object): def __init__(self, sess): comm = MPI.COMM_WORLD rank = comm.Get_rank() clean_tb_dir() tb_writer = tf.summary.FileWriter(Config.TB_DIR + '/' + Config.RUN_ID + '_' + str(rank), sess.graph) total_steps = [0] should_log = (rank == 0 or Config.LOG_ALL_MPI) if should_log: hyperparams = np.array(Config.get_arg_text()) hyperparams_tensor = tf.constant(hyperparams) summary_op = tf.summary.text("hyperparameters info", hyperparams_tensor) summary = sess.run(summary_op) tb_writer.add_summary(summary) def add_summary(_merged, interval=1): if should_log: total_steps[0] += 1 if total_steps[0] % interval == 0: tb_writer.add_summary(_merged, total_steps[0]) tb_writer.flush() tuples = [] def make_scalar_graph(name): scalar_ph = tf.placeholder(name='scalar_' + name, dtype=tf.float32) scalar_summary = tf.summary.scalar(name, scalar_ph) merged = tf.summary.merge([scalar_summary]) tuples.append((scalar_ph, merged)) name_dict = {} curr_name_idx = [0] def log_scalar(x, name, step=-1): if not name in name_dict: name_dict[name] = curr_name_idx[0] tf_name = (name + '_' + Config.RUN_ID) if curr_name_idx[0] == 0 else name make_scalar_graph(tf_name) curr_name_idx[0] += 1 idx = name_dict[name] scalar_ph, merged = tuples[idx] if should_log: if step == -1: step = total_steps[0] total_steps[0] += 1 _merged = sess.run(merged, {scalar_ph: x}) tb_writer.add_summary(_merged, step) tb_writer.flush() self.add_summary = add_summary self.log_scalar = log_scalar
from .coinrunenv import init_args_and_threads from .coinrunenv import make __all__ = [ 'init_args_and_threads', 'make' ]
import gym import numpy as np class EpsilonGreedyWrapper(gym.Wrapper): """ Wrapper to perform a random action each step instead of the requested action, with the provided probability. """ def __init__(self, env, prob=0.05): gym.Wrapper.__init__(self, env) self.prob = prob self.num_envs = env.num_envs def reset(self): return self.env.reset() def step(self, action): if np.random.uniform()<self.prob: action = np.random.randint(self.env.action_space.n, size=self.num_envs) return self.env.step(action) class EpisodeRewardWrapper(gym.Wrapper): def __init__(self, env): env.metadata = {'render.modes': []} env.reward_range = (-float('inf'), float('inf')) nenvs = env.num_envs self.num_envs = nenvs super(EpisodeRewardWrapper, self).__init__(env) self.aux_rewards = None self.num_aux_rews = None def reset(**kwargs): self.rewards = np.zeros(nenvs) self.lengths = np.zeros(nenvs) self.aux_rewards = None self.long_aux_rewards = None return self.env.reset(**kwargs) def step(action): obs, rew, done, infos = self.env.step(action) if self.aux_rewards is None: info = infos[0] if 'aux_rew' in info: self.num_aux_rews = len(infos[0]['aux_rew']) else: self.num_aux_rews = 0 self.aux_rewards = np.zeros((nenvs, self.num_aux_rews), dtype=np.float32) self.long_aux_rewards = np.zeros((nenvs, self.num_aux_rews), dtype=np.float32) self.rewards += rew self.lengths += 1 use_aux = self.num_aux_rews > 0 if use_aux: for i, info in enumerate(infos): self.aux_rewards[i,:] += info['aux_rew'] self.long_aux_rewards[i,:] += info['aux_rew'] for i, d in enumerate(done): if d: epinfo = {'r': round(self.rewards[i], 6), 'l': self.lengths[i], 't': 0} aux_dict = {} for nr in range(self.num_aux_rews): aux_dict['aux_' + str(nr)] = self.aux_rewards[i,nr] if 'ale.lives' in infos[i]: game_over_rew = np.nan is_game_over = infos[i]['ale.lives'] == 0 if is_game_over: game_over_rew = self.long_aux_rewards[i,0] self.long_aux_rewards[i,:] = 0 aux_dict['game_over_rew'] = game_over_rew epinfo['aux_dict'] = aux_dict infos[i]['episode'] = epinfo self.rewards[i] = 0 self.lengths[i] = 0 self.aux_rewards[i,:] = 0 return obs, rew, done, infos self.reset = reset self.step = step def add_final_wrappers(env): env = EpisodeRewardWrapper(env) return env
""" Run a CoinRun environment in a window where you can interact with it using the keyboard """ from coinrun.coinrunenv import lib from coinrun import setup_utils def main(): setup_utils.setup_and_load(paint_vel_info=0) print("""Control with arrow keys, F1, F2 -- switch resolution, F5, F6, F7, F8 -- zoom, F9 -- switch reconstruction target picture, F10 -- switch lasers """) lib.test_main_loop() if __name__ == '__main__': main()
import tensorflow as tf import os import joblib import numpy as np from mpi4py import MPI from baselines.common.vec_env.vec_frame_stack import VecFrameStack from coinrun.config import Config from coinrun import setup_utils, wrappers import platform def make_general_env(num_env, seed=0, use_sub_proc=True): from coinrun import coinrunenv env = coinrunenv.make(Config.GAME_TYPE, num_env) if Config.FRAME_STACK > 1: env = VecFrameStack(env, Config.FRAME_STACK) epsilon = Config.EPSILON_GREEDY if epsilon > 0: env = wrappers.EpsilonGreedyWrapper(env, epsilon) return env def file_to_path(filename): return setup_utils.file_to_path(filename) def load_all_params(sess): load_params_for_scope(sess, 'model') def load_params_for_scope(sess, scope, load_key='default'): load_data = Config.get_load_data(load_key) if load_data is None: return False params_dict = load_data['params'] if scope in params_dict: print('Loading saved file for scope', scope) loaded_params = params_dict[scope] loaded_params, params = get_savable_params(loaded_params, scope, keep_heads=True) restore_params(sess, loaded_params, params) return True def get_savable_params(loaded_params, scope, keep_heads=False): params = tf.trainable_variables(scope) filtered_params = [] filtered_loaded = [] if len(loaded_params) != len(params): print('param mismatch', len(loaded_params), len(params)) assert(False) for p, loaded_p in zip(params, loaded_params): keep = True if any((scope + '/' + x) in p.name for x in ['v','pi']): keep = keep_heads if keep: filtered_params.append(p) filtered_loaded.append(loaded_p) else: print('drop', p) return filtered_loaded, filtered_params def restore_params(sess, loaded_params, params): if len(loaded_params) != len(params): print('param mismatch', len(loaded_params), len(params)) assert(False) restores = [] for p, loaded_p in zip(params, loaded_params): print('restoring', p) restores.append(p.assign(loaded_p)) sess.run(restores) def save_params_in_scopes(sess, scopes, filename, base_dict=None): data_dict = {} if base_dict is not None: data_dict.update(base_dict) save_path = file_to_path(filename) data_dict['args'] = Config.get_args_dict() param_dict = {} for scope in scopes: params = tf.trainable_variables(scope) if len(params) > 0: print('saving scope', scope, filename) ps = sess.run(params) param_dict[scope] = ps data_dict['params'] = param_dict joblib.dump(data_dict, save_path) def setup_mpi_gpus(): if 'RCALL_NUM_GPU' not in os.environ: return num_gpus = int(os.environ['RCALL_NUM_GPU']) node_id = platform.node() nodes = MPI.COMM_WORLD.allgather(node_id) local_rank = len([n for n in nodes[:MPI.COMM_WORLD.Get_rank()] if n == node_id]) os.environ['CUDA_VISIBLE_DEVICES'] = str(local_rank % num_gpus) def is_mpi_root(): return MPI.COMM_WORLD.Get_rank() == 0 def tf_initialize(sess): sess.run(tf.initialize_all_variables()) sync_from_root(sess) def sync_from_root(sess, vars=None): if vars is None: vars = tf.trainable_variables() if Config.SYNC_FROM_ROOT: rank = MPI.COMM_WORLD.Get_rank() print('sync from root', rank) for var in vars: if rank == 0: MPI.COMM_WORLD.bcast(sess.run(var)) else: sess.run(tf.assign(var, MPI.COMM_WORLD.bcast(None))) def mpi_average(values): return mpi_average_comm(values, MPI.COMM_WORLD) def mpi_average_comm(values, comm): size = comm.size x = np.array(values) buf = np.zeros_like(x) comm.Allreduce(x, buf, op=MPI.SUM) buf = buf / size return buf def mpi_average_train_test(values): return mpi_average_comm(values, Config.TRAIN_TEST_COMM) def mpi_print(*args): rank = MPI.COMM_WORLD.Get_rank() if rank == 0: print(*args) def process_ep_buf(epinfobuf, tb_writer=None, suffix='', step=0): rewards = [epinfo['r'] for epinfo in epinfobuf] rew_mean = np.nanmean(rewards) if Config.SYNC_FROM_ROOT: rew_mean = mpi_average_train_test([rew_mean])[0] if tb_writer is not None: tb_writer.log_scalar(rew_mean, 'rew_mean' + suffix, step) aux_dicts = [] if len(epinfobuf) > 0 and 'aux_dict' in epinfobuf[0]: aux_dicts = [epinfo['aux_dict'] for epinfo in epinfobuf] if len(aux_dicts) > 0: keys = aux_dicts[0].keys() for key in keys: sub_rews = [aux_dict[key] for aux_dict in aux_dicts] sub_rew = np.nanmean(sub_rews) if tb_writer is not None: tb_writer.log_scalar(sub_rew, key, step) return rew_mean
from coinrun.config import Config import os import joblib def load_for_setup_if_necessary(): restore_file(Config.RESTORE_ID) def restore_file(restore_id, load_key='default'): if restore_id is not None: load_file = Config.get_load_filename(restore_id=restore_id) filepath = file_to_path(load_file) load_data = joblib.load(filepath) Config.set_load_data(load_data, load_key=load_key) restored_args = load_data['args'] sub_dict = {} res_keys = Config.RES_KEYS for key in res_keys: if key in restored_args: sub_dict[key] = restored_args[key] else: print('warning key %s not restored' % key) Config.parse_args_dict(sub_dict) from coinrun.coinrunenv import init_args_and_threads init_args_and_threads(4) def setup_and_load(use_cmd_line_args=True, **kwargs): """ Initialize the global config using command line options, defaulting to the values in `config.py`. `use_cmd_line_args`: set to False to ignore command line arguments passed to the program `**kwargs`: override the defaults from `config.py` with these values """ args = Config.initialize_args(use_cmd_line_args=use_cmd_line_args, **kwargs) load_for_setup_if_necessary() return args def file_to_path(filename): return os.path.join(Config.WORKDIR, filename)
from coinrun import random_agent def test_coinrun(): random_agent.random_agent(num_envs=16, max_steps=100) if __name__ == '__main__': test_coinrun()
import numpy as np import tensorflow as tf from baselines.a2c.utils import conv, fc, conv_to_fc, batch_to_seq, seq_to_batch, lstm from baselines.common.distributions import make_pdtype from baselines.common.input import observation_input from coinrun.config import Config def impala_cnn(images, depths=[16, 32, 32]): """ Model used in the paper "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" https://arxiv.org/abs/1802.01561 """ use_batch_norm = Config.USE_BATCH_NORM == 1 dropout_layer_num = [0] dropout_assign_ops = [] def dropout_layer(out): if Config.DROPOUT > 0: out_shape = out.get_shape().as_list() num_features = np.prod(out_shape[1:]) var_name = 'mask_' + str(dropout_layer_num[0]) batch_seed_shape = out_shape[1:] batch_seed = tf.get_variable(var_name, shape=batch_seed_shape, initializer=tf.random_uniform_initializer(minval=0, maxval=1), trainable=False) batch_seed_assign = tf.assign(batch_seed, tf.random_uniform(batch_seed_shape, minval=0, maxval=1)) dropout_assign_ops.append(batch_seed_assign) curr_mask = tf.sign(tf.nn.relu(batch_seed[None,...] - Config.DROPOUT)) curr_mask = curr_mask * (1.0 / (1.0 - Config.DROPOUT)) out = out * curr_mask dropout_layer_num[0] += 1 return out def conv_layer(out, depth): out = tf.layers.conv2d(out, depth, 3, padding='same') out = dropout_layer(out) if use_batch_norm: out = tf.contrib.layers.batch_norm(out, center=True, scale=True, is_training=True) return out def residual_block(inputs): depth = inputs.get_shape()[-1].value out = tf.nn.relu(inputs) out = conv_layer(out, depth) out = tf.nn.relu(out) out = conv_layer(out, depth) return out + inputs def conv_sequence(inputs, depth): out = conv_layer(inputs, depth) out = tf.layers.max_pooling2d(out, pool_size=3, strides=2, padding='same') out = residual_block(out) out = residual_block(out) return out out = images for depth in depths: out = conv_sequence(out, depth) out = tf.layers.flatten(out) out = tf.nn.relu(out) out = tf.layers.dense(out, 256, activation=tf.nn.relu) return out, dropout_assign_ops def nature_cnn(scaled_images, **conv_kwargs): """ Model used in the paper "Human-level control through deep reinforcement learning" https://www.nature.com/articles/nature14236 """ def activ(curr): return tf.nn.relu(curr) h = activ(conv(scaled_images, 'c1', nf=32, rf=8, stride=4, init_scale=np.sqrt(2), **conv_kwargs)) h2 = activ(conv(h, 'c2', nf=64, rf=4, stride=2, init_scale=np.sqrt(2), **conv_kwargs)) h3 = activ(conv(h2, 'c3', nf=64, rf=3, stride=1, init_scale=np.sqrt(2), **conv_kwargs)) h3 = conv_to_fc(h3) return activ(fc(h3, 'fc1', nh=512, init_scale=np.sqrt(2))) def choose_cnn(images): arch = Config.ARCHITECTURE scaled_images = tf.cast(images, tf.float32) / 255. dropout_assign_ops = [] if arch == 'nature': out = nature_cnn(scaled_images) elif arch == 'impala': out, dropout_assign_ops = impala_cnn(scaled_images) elif arch == 'impalalarge': out, dropout_assign_ops = impala_cnn(scaled_images, depths=[32, 64, 64, 64, 64]) else: assert(False) return out, dropout_assign_ops class LstmPolicy(object): def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, nlstm=256): nenv = nbatch // nsteps self.pdtype = make_pdtype(ac_space) X, processed_x = observation_input(ob_space, nbatch) M = tf.placeholder(tf.float32, [nbatch]) #mask (done t-1) S = tf.placeholder(tf.float32, [nenv, nlstm*2]) #states with tf.variable_scope("model", reuse=tf.AUTO_REUSE): h, self.dropout_assign_ops = choose_cnn(processed_x) xs = batch_to_seq(h, nenv, nsteps) ms = batch_to_seq(M, nenv, nsteps) h5, snew = lstm(xs, ms, S, 'lstm1', nh=nlstm) h5 = seq_to_batch(h5) vf = fc(h5, 'v', 1)[:,0] self.pd, self.pi = self.pdtype.pdfromlatent(h5) a0 = self.pd.sample() neglogp0 = self.pd.neglogp(a0) self.initial_state = np.zeros((nenv, nlstm*2), dtype=np.float32) def step(ob, state, mask): return sess.run([a0, vf, snew, neglogp0], {X:ob, S:state, M:mask}) def value(ob, state, mask): return sess.run(vf, {X:ob, S:state, M:mask}) self.X = X self.M = M self.S = S self.vf = vf self.step = step self.value = value class CnnPolicy(object): def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, **conv_kwargs): #pylint: disable=W0613 self.pdtype = make_pdtype(ac_space) X, processed_x = observation_input(ob_space, nbatch) with tf.variable_scope("model", reuse=tf.AUTO_REUSE): h, self.dropout_assign_ops = choose_cnn(processed_x) vf = fc(h, 'v', 1)[:,0] self.pd, self.pi = self.pdtype.pdfromlatent(h, init_scale=0.01) a0 = self.pd.sample() neglogp0 = self.pd.neglogp(a0) self.initial_state = None def step(ob, *_args, **_kwargs): a, v, neglogp = sess.run([a0, vf, neglogp0], {X:ob}) return a, v, self.initial_state, neglogp def value(ob, *_args, **_kwargs): return sess.run(vf, {X:ob}) self.X = X self.vf = vf self.step = step self.value = value def get_policy(): use_lstm = Config.USE_LSTM if use_lstm == 1: policy = LstmPolicy elif use_lstm == 0: policy = CnnPolicy else: assert(False) return policy
""" Python interface to the CoinRun shared library using ctypes. On import, this will attempt to build the shared library. """ import os import atexit import random import sys from ctypes import c_int, c_char_p, c_float, c_bool import gym import gym.spaces import numpy as np import numpy.ctypeslib as npct from baselines.common.vec_env import VecEnv from baselines import logger from coinrun.config import Config from mpi4py import MPI from baselines.common import mpi_util # if the environment is crashing, try using the debug build to get # a readable stack trace DEBUG = False SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) game_versions = { 'standard': 1000, 'platform': 1001, 'maze': 1002, } def build(): lrank, _lsize = mpi_util.get_local_rank_size(MPI.COMM_WORLD) if lrank == 0: dirname = os.path.dirname(__file__) if len(dirname): make_cmd = "QT_SELECT=5 make -C %s" % dirname else: make_cmd = "QT_SELECT=5 make" r = os.system(make_cmd) if r != 0: logger.error('coinrun: make failed') sys.exit(1) MPI.COMM_WORLD.barrier() build() if DEBUG: lib_path = '.build-debug/coinrun_cpp_d' else: lib_path = '.build-release/coinrun_cpp' lib = npct.load_library(lib_path, os.path.dirname(__file__)) lib.init.argtypes = [c_int] lib.get_NUM_ACTIONS.restype = c_int lib.get_RES_W.restype = c_int lib.get_RES_H.restype = c_int lib.get_VIDEORES.restype = c_int lib.vec_create.argtypes = [ c_int, # game_type c_int, # nenvs c_int, # lump_n c_bool, # want_hires_render c_float, # default_zoom ] lib.vec_create.restype = c_int lib.vec_close.argtypes = [c_int] lib.vec_step_async_discrete.argtypes = [c_int, npct.ndpointer(dtype=np.int32, ndim=1)] lib.initialize_args.argtypes = [npct.ndpointer(dtype=np.int32, ndim=1)] lib.initialize_set_monitor_dir.argtypes = [c_char_p, c_int] lib.vec_wait.argtypes = [ c_int, npct.ndpointer(dtype=np.uint8, ndim=4), # normal rgb npct.ndpointer(dtype=np.uint8, ndim=4), # larger rgb for render() npct.ndpointer(dtype=np.float32, ndim=1), # rew npct.ndpointer(dtype=np.bool, ndim=1), # done ] already_inited = False def init_args_and_threads(cpu_count=4, monitor_csv_policy='all', rand_seed=None): """ Perform one-time global init for the CoinRun library. This must be called before creating an instance of CoinRunVecEnv. You should not call this multiple times from the same process. """ os.environ['COINRUN_RESOURCES_PATH'] = os.path.join(SCRIPT_DIR, 'assets') is_high_difficulty = Config.HIGH_DIFFICULTY if rand_seed is None: rand_seed = random.SystemRandom().randint(0, 1000000000) # ensure different MPI processes get different seeds (just in case SystemRandom implementation is poor) mpi_rank, mpi_size = mpi_util.get_local_rank_size(MPI.COMM_WORLD) rand_seed = rand_seed - rand_seed % mpi_size + mpi_rank int_args = np.array([int(is_high_difficulty), Config.NUM_LEVELS, int(Config.PAINT_VEL_INFO), Config.USE_DATA_AUGMENTATION, game_versions[Config.GAME_TYPE], Config.SET_SEED, rand_seed]).astype(np.int32) lib.initialize_args(int_args) lib.initialize_set_monitor_dir(logger.get_dir().encode('utf-8'), {'off': 0, 'first_env': 1, 'all': 2}[monitor_csv_policy]) global already_inited if already_inited: return lib.init(cpu_count) already_inited = True @atexit.register def shutdown(): global already_inited if not already_inited: return lib.coinrun_shutdown() class CoinRunVecEnv(VecEnv): """ This is the CoinRun VecEnv, all CoinRun environments are just instances of this class with different values for `game_type` `game_type`: int game type corresponding to the game type to create, see `enum GameType` in `coinrun.cpp` `num_envs`: number of environments to create in this VecEnv `lump_n`: only used when the environment creates `monitor.csv` files `default_zoom`: controls how much of the level the agent can see """ def __init__(self, game_type, num_envs, lump_n=0, default_zoom=5.0): self.metadata = {'render.modes': []} self.reward_range = (-float('inf'), float('inf')) self.NUM_ACTIONS = lib.get_NUM_ACTIONS() self.RES_W = lib.get_RES_W() self.RES_H = lib.get_RES_H() self.VIDEORES = lib.get_VIDEORES() self.buf_rew = np.zeros([num_envs], dtype=np.float32) self.buf_done = np.zeros([num_envs], dtype=np.bool) self.buf_rgb = np.zeros([num_envs, self.RES_H, self.RES_W, 3], dtype=np.uint8) self.hires_render = Config.IS_HIGH_RES if self.hires_render: self.buf_render_rgb = np.zeros([num_envs, self.VIDEORES, self.VIDEORES, 3], dtype=np.uint8) else: self.buf_render_rgb = np.zeros([1, 1, 1, 1], dtype=np.uint8) num_channels = 1 if Config.USE_BLACK_WHITE else 3 obs_space = gym.spaces.Box(0, 255, shape=[self.RES_H, self.RES_W, num_channels], dtype=np.uint8) super().__init__( num_envs=num_envs, observation_space=obs_space, action_space=gym.spaces.Discrete(self.NUM_ACTIONS), ) self.handle = lib.vec_create( game_versions[game_type], self.num_envs, lump_n, self.hires_render, default_zoom) self.dummy_info = [{} for _ in range(num_envs)] def __del__(self): if hasattr(self, 'handle'): lib.vec_close(self.handle) self.handle = 0 def close(self): lib.vec_close(self.handle) self.handle = 0 def reset(self): print("CoinRun ignores resets") obs, _, _, _ = self.step_wait() return obs def get_images(self): if self.hires_render: return self.buf_render_rgb else: return self.buf_rgb def step_async(self, actions): assert actions.dtype in [np.int32, np.int64] actions = actions.astype(np.int32) lib.vec_step_async_discrete(self.handle, actions) def step_wait(self): self.buf_rew = np.zeros_like(self.buf_rew) self.buf_done = np.zeros_like(self.buf_done) lib.vec_wait( self.handle, self.buf_rgb, self.buf_render_rgb, self.buf_rew, self.buf_done) obs_frames = self.buf_rgb if Config.USE_BLACK_WHITE: obs_frames = np.mean(obs_frames, axis=-1).astype(np.uint8)[...,None] return obs_frames, self.buf_rew, self.buf_done, self.dummy_info def make(env_id, num_envs, **kwargs): assert env_id in game_versions, 'cannot find environment "%s", maybe you mean one of %s' % (env_id, list(game_versions.keys())) return CoinRunVecEnv(env_id, num_envs, **kwargs)
import json import pickle import math import sys import argparse import warnings from os import makedirs from os.path import basename, join, exists, dirname, splitext, realpath from wikidata_linker_utils.progressbar import get_progress_bar from dataset import TSVDataset, CombinedDataset, H5Dataset, ClassificationHandler from batchifier import (iter_batches_single_threaded, requires_vocab, requires_character_convolution, get_feature_vocabs) import tensorflow as tf import numpy as np try: RNNCell = tf.nn.rnn_cell.RNNCell TFLSTMCell = tf.nn.rnn_cell.LSTMCell MultiRNNCell = tf.nn.rnn_cell.MultiRNNCell LSTMStateTuple = tf.nn.rnn_cell.LSTMStateTuple from tensorflow.contrib.cudnn_rnn import CudnnLSTM except AttributeError: RNNCell = tf.contrib.rnn.RNNCell TFLSTMCell = tf.contrib.rnn.LSTMCell MultiRNNCell = tf.contrib.rnn.MultiRNNCell LSTMStateTuple = tf.contrib.rnn.LSTMStateTuple from tensorflow.contrib.cudnn_rnn.python.ops.cudnn_rnn_ops import CudnnLSTM from tensorflow.python.client import device_lib class LazyAdamOptimizer(tf.train.AdamOptimizer): """Variant of the Adam optimizer that handles sparse updates more efficiently. The original Adam algorithm maintains two moving-average accumulators for each trainable variable; the accumulators are updated at every step. This class provides lazier handling of gradient updates for sparse variables. It only updates moving-average accumulators for sparse variable indices that appear in the current batch, rather than updating the accumulators for all indices. Compared with the original Adam optimizer, it can provide large improvements in model training throughput for some applications. However, it provides slightly different semantics than the original Adam algorithm, and may lead to different empirical results. """ def _apply_sparse(self, grad, var): beta1_power = tf.cast(self._beta1_power, var.dtype.base_dtype) beta2_power = tf.cast(self._beta2_power, var.dtype.base_dtype) lr_t = tf.cast(self._lr_t, var.dtype.base_dtype) beta1_t = tf.cast(self._beta1_t, var.dtype.base_dtype) beta2_t = tf.cast(self._beta2_t, var.dtype.base_dtype) epsilon_t = tf.cast(self._epsilon_t, var.dtype.base_dtype) lr = (lr_t * tf.sqrt(1 - beta2_power) / (1 - beta1_power)) # m := beta1 * m + (1 - beta1) * g_t # We use a slightly different version of the moving-average update formula # that does a better job of handling concurrent lockless updates: # m -= (1 - beta1) * (m - g_t) m = self.get_slot(var, "m") m_t_delta = tf.gather(m, grad.indices) - grad.values m_t = tf.scatter_sub(m, grad.indices, (1 - beta1_t) * m_t_delta, use_locking=self._use_locking) # v := beta2 * v + (1 - beta2) * (g_t * g_t) # We reformulate the update as: # v -= (1 - beta2) * (v - g_t * g_t) v = self.get_slot(var, "v") v_t_delta = tf.gather(v, grad.indices) - tf.square(grad.values) v_t = tf.scatter_sub(v, grad.indices, (1 - beta2_t) * v_t_delta, use_locking=self._use_locking) # variable -= learning_rate * m_t / (epsilon_t + sqrt(v_t)) m_t_slice = tf.gather(m_t, grad.indices) v_t_slice = tf.gather(v_t, grad.indices) denominator_slice = tf.sqrt(v_t_slice) + epsilon_t var_update = tf.scatter_sub(var, grad.indices, lr * m_t_slice / denominator_slice, use_locking=self._use_locking) return tf.group(var_update, m_t, v_t) def get_available_gpus(): local_device_protos = device_lib.list_local_devices() return [x.name for x in local_device_protos if x.device_type == 'GPU'] def split(values, axis, num_splits, name=None): return tf.split(values, num_splits, axis=axis, name=name) def reverse(values, axis): return tf.reverse(values, [axis]) def sparse_softmax_cross_entropy_with_logits(logits, labels): return tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logits, labels=labels) def concat(values, axis, name=None): if len(values) == 1: return values[0] return tf.concat(values, axis, name=name) def concat_tensor_array(values, name=None): return values.stack(name=name) def batch_gather_3d(values, indices): return tf.gather(tf.reshape(values, [-1, tf.shape(values)[2]]), tf.range(0, tf.shape(values)[0]) * tf.shape(values)[1] + indices) def batch_gather_2d(values, indices): return tf.gather(tf.reshape(values, [-1]), tf.range(0, tf.shape(values)[0]) * tf.shape(values)[1] + indices) def viterbi_decode(score, transition_params, sequence_lengths, back_prop=False, parallel_iterations=1): """Decode the highest scoring sequence of tags inside of TensorFlow!!! This can be used anytime. Args: score: A [batch, seq_len, num_tags] matrix of unary potentials. transition_params: A [num_tags, num_tags] matrix of binary potentials. sequence_lengths: A [batch] int32 vector of the length of each score sequence. Returns: viterbi: A [batch, seq_len] list of integers containing the highest scoring tag indices. viterbi_score: A vector of float containing the score for the Viterbi sequence. """ sequence_lengths = tf.convert_to_tensor( sequence_lengths, name="sequence_lengths") score = tf.convert_to_tensor(score, name="score") transition_params = tf.convert_to_tensor( transition_params, name="transition_params") if sequence_lengths.dtype != tf.int32: sequence_lengths = tf.cast(sequence_lengths, tf.int32) def condition(t, *args): """Stop when full score sequence has been read in.""" return tf.less(t, tf.shape(score)[1]) def body(t, trellis, backpointers, trellis_val): """Perform forward viterbi pass.""" v = tf.expand_dims(trellis_val, 2) + tf.expand_dims(transition_params, 0) new_trellis_val = score[:, t, :] + tf.reduce_max(v, axis=1) new_trellis = trellis.write(t, new_trellis_val) new_backpointers = backpointers.write( t, tf.cast(tf.argmax(v, axis=1), tf.int32)) return t + 1, new_trellis, new_backpointers, new_trellis_val trellis_arr = tf.TensorArray(score.dtype, size=0, dynamic_size=True, clear_after_read=False, infer_shape=False) first_trellis_val = score[:, 0, :] trellis_arr = trellis_arr.write(0, first_trellis_val) backpointers_arr = tf.TensorArray(tf.int32, size=0, dynamic_size=True, clear_after_read=False, infer_shape=False) backpointers_arr = backpointers_arr.write(0, tf.zeros_like(score[:, 0, :], dtype=tf.int32)) _, trellis_out, backpointers_out, _ = tf.while_loop( condition, body, (tf.constant(1, name="t", dtype=tf.int32), trellis_arr, backpointers_arr, first_trellis_val), parallel_iterations=parallel_iterations, back_prop=back_prop) trellis_out = concat_tensor_array(trellis_out) backpointers_out = concat_tensor_array(backpointers_out) # make batch-major: trellis_out = tf.transpose(trellis_out, [1, 0, 2]) backpointers_out = tf.transpose(backpointers_out, [1, 0, 2]) def condition(t, *args): return tf.less(t, tf.shape(score)[1]) def body(t, viterbi, last_decision): backpointers_timestep = batch_gather_3d( backpointers_out, tf.maximum(sequence_lengths - t, 0)) new_last_decision = batch_gather_2d( backpointers_timestep, last_decision) new_viterbi = viterbi.write(t, new_last_decision) return t + 1, new_viterbi, new_last_decision last_timestep = batch_gather_3d(trellis_out, sequence_lengths - 1) # get scores for last timestep of each batch element inside # trellis: scores = tf.reduce_max(last_timestep, axis=1) # get choice index for last timestep: last_decision = tf.cast(tf.argmax(last_timestep, axis=1), tf.int32) # decode backwards using backpointers: viterbi = tf.TensorArray(tf.int32, size=0, dynamic_size=True, clear_after_read=False, infer_shape=False) viterbi = viterbi.write(0, last_decision) _, viterbi_out, _ = tf.while_loop( condition, body, (tf.constant(1, name="t", dtype=tf.int32), viterbi, last_decision), parallel_iterations=parallel_iterations, back_prop=back_prop) viterbi_out = concat_tensor_array(viterbi_out) # make batch-major: viterbi_out = tf.transpose(viterbi_out, [1, 0]) viterbi_out_fwd = tf.reverse_sequence( viterbi_out, sequence_lengths, seq_dim=1) return viterbi_out_fwd, scores def sum_list(elements): total = elements[0] for el in elements[1:]: total += el return total def explicitly_set_fields(): received = set() for argument in sys.argv: if argument.startswith("--"): received.add(argument[2:]) if argument[2:].startswith("no"): received.add(argument[4:]) return received def save_session(session, saver, path, verbose=False): """ Call save on tf.train.Saver on a specific path to store all the variables of the current tensorflow session to a file for later restoring. Arguments: session : tf.Session path : str, place to save session """ makedirs(path, exist_ok=True) if not path.endswith("/"): path = path + "/" path = join(path, "model.ckpt") if verbose: print("Saving session under %r" % (path,), flush=True) saver.save(session, path) print("Saved", flush=True) ### constants for saving & loading # model config: OBJECTIVE_NAMES = "OBJECTIVE_NAMES" OBJECTIVE_TYPES = "OBJECTIVE_TYPES" # inputs: INPUT_PLACEHOLDERS = "INPUT_PLACEHOLDERS" LABEL_PLACEHOLDERS = "LABEL_PLACEHOLDERS" LABEL_MASK_PLACEHOLDERS = "LABEL_MASK_PLACEHOLDERS" TRAIN_OP = "TRAIN_OP" SEQUENCE_LENGTHS = "SEQUENCE_LENGTHS" IS_TRAINING = "IS_TRAINING" # outputs: DECODED = "DECODED" DECODED_SCORES = "DECODED_SCORES" UNARY_SCORES = "UNARY_SCORES" # per objective metrics: TOKEN_CORRECT = "TOKEN_CORRECT" TOKEN_CORRECT_TOTAL = "TOKEN_CORRECT_TOTAL" SENTENCE_CORRECT = "SENTENCE_CORRECT" SENTENCE_CORRECT_TOTAL = "SENTENCE_CORRECT_TOTAL" # aggregate metrics over all objectives NLL = "NLL" NLL_TOTAL = "NLL_TOTAL" TOKEN_CORRECT_ALL = "TOKEN_CORRECT_ALL" TOKEN_CORRECT_ALL_TOTAL = "TOKEN_CORRECT_ALL_TOTAL" SENTENCE_CORRECT_ALL = "SENTENCE_CORRECT_ALL" SENTENCE_CORRECT_ALL_TOTAL = "SENTENCE_CORRECT_ALL_TOTAL" CONFUSION_MATRIX = "CONFUSION_MATRIX" GLOBAL_STEP = "global_step" SUMMARIES_ASSIGNS = "SUMMARIES_ASSIGNS" SUMMARIES_PLACEHOLDERS = "SUMMARIES_PLACEHOLDERS" SUMMARIES_NAMES = "SUMMARIES_NAMES" TRAIN_SUMMARIES = "TRAIN_SUMMARIES" TRUE_POSITIVES = "TRUE_POSITIVES" FALSE_POSITIVES = "FALSE_POSITIVES" FALSE_NEGATIVES = "FALSE_NEGATIVES" def maybe_dropout(inputs, keep_prob, is_training): return tf.cond(is_training, lambda : tf.nn.dropout(inputs, keep_prob), lambda : inputs ) if keep_prob < 1 else inputs def compute_sentence_correct(correct, sequence_mask): any_label = tf.reduce_max(tf.cast(sequence_mask, tf.int32), 1) sentence_correct_total = tf.reduce_sum(any_label) # is 1 when all is correct, 0 otherwise sentence_correct = tf.reduce_sum(tf.reduce_prod( tf.cast( tf.logical_or(correct, tf.logical_not(sequence_mask)), tf.int32 ), 1 ) * any_label) return sentence_correct, sentence_correct_total def lstm_activation(inputs, input_h, input_c, W, b, activation): # i = input_gate, j = new_input, f = forget_gate, o = output_gate cell_inputs = concat([inputs, input_h], axis=1) lstm_matrix = tf.nn.xw_plus_b(cell_inputs, W, b) preactiv = split(lstm_matrix, axis=1, num_splits=4) # from CUDNN docs: # Values 0 and 4 reference the input gate. # Values 1 and 5 reference the forget gate. # Values 2 and 6 reference the new memory gate. # Values 3 and 7 reference the output gate i, f, j, o = ( preactiv[CUDNN_MAPPING["i"]], preactiv[CUDNN_MAPPING["f"]], preactiv[CUDNN_MAPPING["j"]], preactiv[CUDNN_MAPPING["o"]] ) c = (tf.nn.sigmoid(f) * input_c + tf.nn.sigmoid(i) * activation(j)) m = tf.nn.sigmoid(o) * activation(c) return (c, m) class Logger(object): def __init__(self, session, writer): self.session = session self.writer = writer self._placeholders = {} summaries = tf.get_collection(SUMMARIES_ASSIGNS) summaries_pholders = tf.get_collection(SUMMARIES_PLACEHOLDERS) summaries_names = [name.decode("utf-8") for name in tf.get_collection(SUMMARIES_NAMES)] for summary, pholder, name in zip(summaries, summaries_pholders, summaries_names): self._placeholders[name] = (pholder, summary) def log(self, name, value, step): if name not in self._placeholders: pholder = tf.placeholder(tf.float32, [], name=name) summary = tf.summary.scalar(name, pholder) tf.add_to_collection(SUMMARIES_ASSIGNS, summary) tf.add_to_collection(SUMMARIES_NAMES, name) tf.add_to_collection(SUMMARIES_PLACEHOLDERS, pholder) self._placeholders[name] = (pholder, summary) pholder, summary = self._placeholders[name] res = self.session.run(summary, {pholder:value}) self.writer.add_summary(res, step) class ParametrizedLSTMCell(RNNCell): def __init__(self, weights, biases, hidden_size): self._weights = weights self._biases = biases self.hidden_size = hidden_size @property def state_size(self): return (self.hidden_size, self.hidden_size) @property def output_size(self): return self.hidden_size def __call__(self, inputs, state, scope=None): input_h, input_c = state c, m = lstm_activation(inputs, input_h=input_h, input_c=input_c, b=self._biases, W=self._weights, activation=tf.nn.tanh) return m, (m, c) class LSTMCell(TFLSTMCell): def __init__(self, num_units, keep_prob=1.0, is_training=False): self._is_training = is_training self._keep_prob = keep_prob TFLSTMCell.__init__( self, num_units=num_units, state_is_tuple=True ) def __call__(self, inputs, state, scope=None): (c_prev, m_prev) = state dtype = inputs.dtype input_size = inputs.get_shape().with_rank(2)[1] if input_size.value is None: raise ValueError("Could not infer input size from inputs.get_shape()[-1]") with tf.variable_scope(scope or type(self).__name__, initializer=self._initializer): # "LSTMCell" concat_w = _get_concat_variable( "W", [input_size.value + self._num_units, 4 * self._num_units], dtype, 1) b = tf.get_variable( "B", shape=[4 * self._num_units], initializer=tf.zeros_initializer(), dtype=dtype) c, m = lstm_activation(inputs, input_c=c_prev, input_h=m_prev, W=concat_w, b=b, activation=self._activation, keep_prob=self._keep_prob, is_training=self._is_training, forget_bias=self._forget_bias) return m, LSTMStateTuple(c, m) def cudnn_lstm_parameter_size(input_size, hidden_size): """Number of parameters in a single CuDNN LSTM cell.""" biases = 8 * hidden_size weights = 4 * (hidden_size * input_size) + 4 * (hidden_size * hidden_size) return biases + weights def direction_to_num_directions(direction): if direction == "unidirectional": return 1 elif direction == "bidirectional": return 2 else: raise ValueError("Unknown direction: %r." % (direction,)) def estimate_cudnn_parameter_size(num_layers, input_size, hidden_size, input_mode, direction): """ Compute the number of parameters needed to construct a stack of LSTMs. Assumes the hidden states of bidirectional LSTMs are concatenated before being sent to the next layer up. """ num_directions = direction_to_num_directions(direction) params = 0 isize = input_size for layer in range(num_layers): for direction in range(num_directions): params += cudnn_lstm_parameter_size( isize, hidden_size ) isize = hidden_size * num_directions return params # cudnn conversion to dynamic RNN: CUDNN_LAYER_WEIGHT_ORDER = [ "x", "x", "x", "x", "h", "h", "h", "h" ] CUDNN_LAYER_BIAS_ORDER = [ "bx", "bx", "bx", "bx", "bh", "bh", "bh", "bh" ] CUDNN_TRANSPOSED = True CUDNN_MAPPING = {"i": 0, "f": 1, "j": 2, "o": 3} def consume_biases_direction(params, old_offset, hidden_size, isize): offset = old_offset layer_biases_x = [] layer_biases_h = [] for piece in CUDNN_LAYER_BIAS_ORDER: if piece == "bx": layer_biases_x.append( params[offset:offset + hidden_size] ) offset += hidden_size elif piece == "bh": layer_biases_h.append( params[offset:offset + hidden_size] ) offset += hidden_size else: raise ValueError("Unknown cudnn piece %r." % (piece,)) b = concat(layer_biases_x, axis=0) + concat(layer_biases_h, axis=0) return b, offset def consume_weights_direction(params, old_offset, hidden_size, isize): offset = old_offset layer_weights_x = [] layer_weights_h = [] for piece in CUDNN_LAYER_WEIGHT_ORDER: if piece == "x": layer_weights_x.append( tf.reshape( params[offset:offset + hidden_size * isize], [hidden_size, isize] if CUDNN_TRANSPOSED else [isize, hidden_size] ) ) offset += hidden_size * isize elif piece == "h": layer_weights_h.append( tf.reshape( params[offset:offset + hidden_size * hidden_size], [hidden_size, hidden_size] ) ) offset += hidden_size * hidden_size else: raise ValueError("Unknown cudnn piece %r." % (piece,)) if CUDNN_TRANSPOSED: W_T = concat([concat(layer_weights_x, axis=0), concat(layer_weights_h, axis=0)], axis=1) W = tf.transpose(W_T) else: W = concat([concat(layer_weights_x, axis=1), concat(layer_weights_h, axis=1)], axis=0) return W, offset def decompose_layer_params(params, num_layers, hidden_size, cell_input_size, input_mode, direction, create_fn): """ This operation converts the opaque cudnn params into a set of usable weight matrices. Args: params : Tensor, opaque cudnn params tensor num_layers : int, number of stacked LSTMs. hidden_size : int, number of neurons in each LSTM. cell_input_size : int, input size for the LSTMs. input_mode: whether a pre-projection was used or not. Currently only 'linear_input' is supported (e.g. CuDNN does its own projection internally) direction : str, 'unidirectional' or 'bidirectional'. create_fn: callback for weight creation. Receives parameter slice (op), layer (int), direction (0 = fwd, 1 = bwd), parameter_index (0 = W, 1 = b). Returns: weights : list of lists of Tensors in the format: first list is indexed layers, inner list is indexed by direction (fwd, bwd), tensors in the inner list are (Weights, biases) """ if input_mode != "linear_input": raise ValueError("Only input_mode == linear_input supported for now.") num_directions = direction_to_num_directions(direction) offset = 0 all_weights = [[[] for j in range(num_directions)] for i in range(num_layers)] isize = cell_input_size with tf.variable_scope("DecomposeCudnnParams"): for layer in range(num_layers): with tf.variable_scope("Layer{}".format(layer)): for direction in range(num_directions): with tf.variable_scope("fwd" if direction == 0 else "bwd"): with tf.variable_scope("weights"): W, offset = consume_weights_direction( params, old_offset=offset, hidden_size=hidden_size, isize=isize) all_weights[layer][direction].append( create_fn(W, layer, direction, 0)) isize = hidden_size * num_directions isize = cell_input_size for layer in range(num_layers): with tf.variable_scope("Layer{}".format(layer)): for direction in range(num_directions): with tf.variable_scope("fwd" if direction == 0 else "bwd"): with tf.variable_scope("biases"): b, offset = consume_biases_direction( params, old_offset=offset, hidden_size=hidden_size, isize=isize) all_weights[layer][direction].append( create_fn(b, layer, direction, 1)) isize = hidden_size * num_directions return all_weights def create_decomposed_variable(param, lidx, didx, pidx): with tf.device("cpu"): return tf.get_variable("w" if pidx == 0 else "b", shape=param.get_shape().as_list(), dtype=param.dtype, trainable=False, collections=[tf.GraphKeys.GLOBAL_VARIABLES, "excluded_variables"]) def cpu_cudnn_params(params, num_layers, hidden_size, cell_input_size, input_mode, direction): """ This operation converts the opaque cudnn params into a set of usable weight matrices, and caches the conversion. Args: params : Tensor, opaque cudnn params tensor num_layers : int, number of stacked LSTMs. hidden_size : int, number of neurons in each LSTM. cell_input_size : int, input size for the LSTMs. input_mode: whether a pre-projection was used or not. Currently only 'linear_input' is supported (e.g. CuDNN does its own projection internally) direction : str, 'unidirectional' or 'bidirectional'. skip_creation : bool, whether to build variables. Returns: weights : list of lists of Tensors in the format: first list is indexed layers, inner list is indexed by direction (fwd, bwd), tensors in the inner list are (Weights, biases) """ # create a boolean status variable that checks whether the # weights have been converted to cpu format: with tf.device("cpu"): cpu_conversion_status = tf.get_variable( name="CudnnConversionStatus", dtype=tf.float32, initializer=tf.zeros_initializer(), shape=[], trainable=False, collections=[tf.GraphKeys.GLOBAL_VARIABLES]) # create a fresh copy of the weights (not trainable) reshaped = decompose_layer_params( params, num_layers=num_layers, hidden_size=hidden_size, cell_input_size=cell_input_size, input_mode=input_mode, direction=direction, create_fn=create_decomposed_variable) def cpu_convert(): all_assigns = decompose_layer_params( params, num_layers=num_layers, hidden_size=hidden_size, cell_input_size=cell_input_size, input_mode=input_mode, direction=direction, create_fn=lambda p, lidx, didx, pidx: tf.assign(reshaped[lidx][didx][pidx], p)) all_assigns = [assign for layer_assign in all_assigns for dir_assign in layer_assign for assign in dir_assign] all_assigns.append(tf.assign(cpu_conversion_status, tf.constant(1.0, dtype=tf.float32))) all_assigns.append(tf.Print(cpu_conversion_status, [0], message="Converted cudnn weights to CPU format. ")) with tf.control_dependencies(all_assigns): ret = tf.identity(cpu_conversion_status) return ret # cache the reshaping/concatenating ensure_conversion = tf.cond(tf.greater(cpu_conversion_status, 0), lambda: cpu_conversion_status, cpu_convert) # if weights are already reshaped, go ahead: with tf.control_dependencies([ensure_conversion]): # wrap with identity to ensure there is a dependency between assignment # and using the weights: all_params = [[[tf.identity(p) for p in dir_param] for dir_param in layer_param] for layer_param in reshaped] return all_params class CpuCudnnLSTM(object): def __init__(self, num_layers, hidden_size, cell_input_size, input_mode, direction): self.num_layers = num_layers self.hidden_size = hidden_size self.cell_input_size = cell_input_size self.input_mode = input_mode self.direction = direction def __call__(self, inputs, input_h, input_c, params, is_training=True): layer_params = cpu_cudnn_params(params, num_layers=self.num_layers, hidden_size=self.hidden_size, cell_input_size=self.cell_input_size, input_mode=self.input_mode, direction=self.direction) REVERSED = 1 layer_inputs = inputs cell_idx = 0 for layer_param in layer_params: hidden_fwd_bwd = [] final_output_c = [] final_output_h = [] for direction, (W, b) in enumerate(layer_param): if direction == REVERSED: layer_inputs = reverse(layer_inputs, axis=0) hiddens, (output_h, output_c) = tf.nn.dynamic_rnn( cell=ParametrizedLSTMCell(W, b, self.hidden_size), inputs=layer_inputs, dtype=inputs.dtype, time_major=True, initial_state=(input_h[cell_idx], input_c[cell_idx])) if direction == REVERSED: hiddens = reverse(hiddens, axis=0) hidden_fwd_bwd.append(hiddens) final_output_c.append(tf.expand_dims(output_c, 0)) final_output_h.append(tf.expand_dims(output_h, 0)) cell_idx += 1 if len(hidden_fwd_bwd) > 1: layer_inputs = concat(hidden_fwd_bwd, axis=2) final_output_c = concat(final_output_c, axis=0) final_output_h = concat(final_output_h, axis=0) else: layer_inputs = hidden_fwd_bwd[0] final_output_c = final_output_c[0] final_output_h = final_output_h[0] return layer_inputs, final_output_h, final_output_c def highway(x, activation_fn=tf.nn.relu, scope=None): size = x.get_shape()[-1].value with tf.variable_scope(scope or "HighwayLayer"): activ = tf.contrib.layers.fully_connected( x, size * 2, activation_fn=None, scope="FC" ) transform = tf.sigmoid(activ[..., :size], name="transform_gate") hidden = activation_fn(activ[..., size:]) carry = 1.0 - transform return tf.add(hidden * transform, x * carry, "y") def conv2d(inputs, output_dim, k_h, k_w, stddev=0.02, scope=None, weight_noise=0.0, is_training=True): with tf.variable_scope(scope or "Conv2D"): w = tf.get_variable('w', [k_h, k_w, inputs.get_shape()[-1], output_dim], initializer=tf.truncated_normal_initializer(stddev=stddev)) if weight_noise > 0 and not isinstance(is_training, bool): w = add_weight_noise(w, is_training=is_training, stddev=weight_noise) return tf.nn.conv2d(inputs, w, strides=[1, 1, 1, 1], padding="VALID") def character_convolution(inputs, feature): inputs_2d = tf.reshape(inputs, [tf.shape(inputs)[0] * tf.shape(inputs)[1], tf.shape(inputs)[2]] ) inputs_3d = embedding_lookup( inputs_2d, dim=feature["dimension"], # 255 different bytes (uint8) # & start and end symbol: size=257, dtype=tf.float32, mask_negative=True) inputs_4d = tf.expand_dims(inputs_3d, 1) feature_pools = [] for idx, conv_filter in enumerate(feature["filters"]): width, channels = conv_filter["width"], conv_filter["channels"] # [batch * time x 1 x word_length x embed_dim x feature_map_dim] conv = tf.squeeze(conv2d(inputs_4d, channels, 1, width, scope="CharacterConvolution%d" % (idx,)), [1]) # remove word dimension pool = tf.reduce_max(conv, 1) feature_pools.append(pool) activations = concat(feature_pools, axis=1) channels_out = sum(conv_filter["channels"] for conv_filter in feature["filters"]) activations = tf.reshape( tf.tanh(activations), [tf.shape(inputs)[0], tf.shape(inputs)[1], channels_out], name="CharacterConvolutionPooled") for idx in range(feature["highway_layers"]): activations = highway(activations, scope="HighwayLayer%d" % (idx,), activation_fn=tf.tanh) return activations def feature_dtype(feat): if requires_vocab(feat): return tf.int32 elif feat["type"] in {"digit", "punctuation_count", "uppercase"}: return tf.float32 elif requires_character_convolution(feat): return tf.int32 else: raise ValueError("unknown feature %r." % (feat,)) def feature_shape(feature): if requires_vocab(feature) or feature["type"] in {'digit', 'punctuation_count', 'uppercase'}: return [None, None] elif requires_character_convolution(feature): return [None, None, None] else: raise ValueError("unknown feature %r." % (feature,)) def build_inputs(features, objectives, fused, class_weights, class_weights_clipval): input_placeholders = [] labels = [] labels_mask = [] labels_class_weights = [] max_output_vocab = max(len(obj["vocab"]) for obj in objectives) with tf.variable_scope("Inputs"): is_training = tf.placeholder(tf.bool, [], name="is_training") tf.add_to_collection(IS_TRAINING, is_training) for idx, feat in enumerate(features): input_placeholder = tf.placeholder( feature_dtype(feat), feature_shape(feat), name="input_placeholders_%d" % (idx,) ) input_placeholders.append(input_placeholder) tf.add_to_collection(INPUT_PLACEHOLDERS, input_placeholder) if fused: label_placeholder = tf.placeholder( tf.int32, [None, None, len(objectives)] ) labels_mask_placeholder = tf.placeholder( tf.bool, [None, None, len(objectives)], name="labels_mask" ) labels.append(label_placeholder) labels_mask.append(labels_mask_placeholder) tf.add_to_collection(LABEL_PLACEHOLDERS, label_placeholder) tf.add_to_collection(LABEL_MASK_PLACEHOLDERS, labels_mask_placeholder) if class_weights: with tf.variable_scope("FusedClassWeights"): init_class_weights = tf.get_variable( name="class_weights", shape=[len(objectives) * max_output_vocab], initializer=tf.constant_initializer(1), dtype=tf.int64, trainable=False) init_class_count = tf.get_variable( name="class_weights_denominator", shape=[len(objectives)], initializer=tf.constant_initializer(1), dtype=tf.int64, trainable=False) def update_class_weights(): mask_as_ints = tf.cast(tf.reshape(labels_mask_placeholder, [-1, len(objectives)]), tf.int64) updated_cls_weights = tf.scatter_add( init_class_weights, tf.reshape(label_placeholder + tf.reshape(tf.range(len(objectives)) * max_output_vocab, [1, 1, len(objectives)]), [-1]), tf.reshape(mask_as_ints, [-1]) ) updated_class_count = tf.assign_add(init_class_count, tf.reduce_sum(mask_as_ints, 0)) # class weight: weight_i = total / class_i weights = tf.clip_by_value(tf.expand_dims(updated_class_count, 1) / tf.reshape(updated_cls_weights, [len(objectives), max_output_vocab]), 1e-6, class_weights_clipval) return tf.cast(weights, tf.float32) def return_class_weights(): # class weight: weight_i = total / class_i return tf.cast( tf.clip_by_value(tf.expand_dims(init_class_count, 1) / tf.reshape(init_class_weights, [len(objectives), max_output_vocab]), 1e-6, class_weights_clipval), tf.float32) labels_class_weights.append( tf.cond(is_training, update_class_weights, return_class_weights)) else: labels_class_weights.append(None) else: for objective in objectives: with tf.variable_scope(objective["name"]): label_placeholder = tf.placeholder( tf.int32, [None, None], name="labels" ) labels.append(label_placeholder) if objective["type"] == "crf": labels_mask_placeholder = tf.placeholder( tf.bool, [None], name="labels_mask" ) labels_class_weights.append(None) elif objective["type"] == "softmax": labels_mask_placeholder = tf.placeholder( tf.bool, [None, None], name="labels_mask" ) if class_weights: init_class_weights = tf.get_variable( name="class_weights", shape=len(objective["vocab"]), initializer=tf.constant_initializer(1), dtype=tf.int64, trainable=False) init_class_count = tf.get_variable( name="class_weights_denominator", shape=[], initializer=tf.constant_initializer(1), dtype=tf.int64, trainable=False) def update_class_weights(): mask_as_ints = tf.cast(tf.reshape(labels_mask_placeholder, [-1]), tf.int64) updated_cls_weights = tf.scatter_add( init_class_weights, tf.reshape(label_placeholder, [-1]), mask_as_ints ) updated_class_count = tf.assign_add(init_class_count, tf.reduce_sum(mask_as_ints)) # class weight: weight_i = total / class_i weights = tf.clip_by_value(updated_class_count / updated_cls_weights, 1e-6, class_weights_clipval) return tf.cast(weights, tf.float32) def return_class_weights(): # class weight: weight_i = total / class_i return tf.cast( tf.clip_by_value(init_class_count / init_class_weights, 1e-6, class_weights_clipval), tf.float32) labels_class_weights.append( tf.cond(is_training, update_class_weights, return_class_weights) ) else: labels_class_weights.append(None) else: raise ValueError( "unknown objective type %r." % ( objective["type"] ) ) labels_mask.append(labels_mask_placeholder) tf.add_to_collection(LABEL_PLACEHOLDERS, label_placeholder) tf.add_to_collection(LABEL_MASK_PLACEHOLDERS, labels_mask_placeholder) sequence_lengths = tf.placeholder(tf.int32, [None], name="sequence_lengths") tf.add_to_collection(SEQUENCE_LENGTHS, sequence_lengths) return (input_placeholders, labels, labels_mask, labels_class_weights, sequence_lengths, is_training) def add_weight_noise(x, is_training, stddev): return tf.cond(is_training, lambda: x + tf.random_normal( shape=tf.shape(x), stddev=stddev), lambda: x) def build_recurrent(inputs, cudnn, faux_cudnn, hidden_sizes, is_training, keep_prob, weight_noise): dtype = tf.float32 if cudnn: if len(hidden_sizes) == 0: raise ValueError("hidden_sizes must be a list of length > 1.") hidden_size = hidden_sizes[0] if any(hidden_size != hsize for hsize in hidden_sizes): raise ValueError("cudnn RNN requires all hidden units " "to be the same size (got %r)" % ( hidden_sizes, )) num_layers = len(hidden_sizes) cell_input_size = inputs.get_shape()[-1].value est_size = estimate_cudnn_parameter_size( num_layers=num_layers, hidden_size=hidden_size, input_size=cell_input_size, input_mode="linear_input", direction="bidirectional" ) # autoswitch to GPUs based on availability of alternatives: cudnn_params = tf.get_variable("RNNParams", shape=[est_size], dtype=tf.float32, initializer=tf.contrib.layers.variance_scaling_initializer()) if weight_noise > 0: cudnn_params = add_weight_noise(cudnn_params, stddev=weight_noise, is_training=is_training) if faux_cudnn: cudnn_cell = CpuCudnnLSTM(num_layers, hidden_size, cell_input_size, input_mode="linear_input", direction="bidirectional") else: cpu_cudnn_params(cudnn_params, num_layers=num_layers, hidden_size=hidden_size, cell_input_size=cell_input_size, input_mode="linear_input", direction="bidirectional") cudnn_cell = CudnnLSTM(num_layers, hidden_size, cell_input_size, input_mode="linear_input", direction="bidirectional") init_state = tf.fill( (2 * num_layers, tf.shape(inputs)[1], hidden_size), tf.constant(np.float32(0.0))) hiddens, output_h, output_c = cudnn_cell( inputs, input_h=init_state, input_c=init_state, params=cudnn_params, is_training=True) hiddens = maybe_dropout( hiddens, keep_prob, is_training) else: cell = MultiRNNCell( [LSTMCell(hsize, is_training=is_training, keep_prob=keep_prob) for hsize in hidden_sizes] ) hiddens, _ = bidirectional_dynamic_rnn( cell, inputs, time_major=True, dtype=dtype, swap_memory=True ) return hiddens def build_embed(inputs, features, index2words, keep_prob, is_training): embeddings = [] for idx, (values, feature, index2word) in enumerate(zip(inputs, features, index2words)): if requires_vocab(feature): with tf.variable_scope("embedding_%d" % (idx,)): embedding = embedding_lookup( values, dim=feature["dimension"], size=len(index2word), dtype=tf.float32, mask_negative=True ) embeddings.append(embedding) elif requires_character_convolution(feature): embeddings.append( character_convolution(values, feature) ) else: embeddings.append(tf.expand_dims(values, 2)) return maybe_dropout(concat(embeddings, axis=2), keep_prob, is_training) def crf_metrics(unary_scores, labels, transition_params, sequence_lengths, mask): """ Computes CRF output metrics. Receives: unary_scores : batch-major order labels : batch-major order transition_params : nclasses x nclasses matrix. sequence_lengths : length of each time-sequence mask : batch-major example mask Returns: token_correct, token_correct_total, sentence_correct, sentence_correct_total """ classes = unary_scores.get_shape()[-1].value decoded, scores = viterbi_decode(unary_scores, transition_params, sequence_lengths) tf.add_to_collection(UNARY_SCORES, unary_scores) tf.add_to_collection(DECODED, decoded) tf.add_to_collection(DECODED_SCORES, scores) equals_label = tf.equal(labels, decoded) token_correct = tf.reduce_sum( tf.cast( tf.logical_and(equals_label, mask), tf.int32 ) ) token_correct_total = tf.reduce_sum(tf.cast(mask, tf.int32)) tf.add_to_collection(TOKEN_CORRECT, token_correct) tf.add_to_collection(TOKEN_CORRECT_TOTAL, token_correct_total) sentence_correct, _ = compute_sentence_correct(equals_label, mask) sentence_correct_total = tf.reduce_sum(tf.cast(mask[:, 0], tf.int32)) tf.add_to_collection(SENTENCE_CORRECT, sentence_correct) tf.add_to_collection(SENTENCE_CORRECT_TOTAL, sentence_correct_total) build_true_false_positives(decoded, mask, labels, classes, equals_label) return (token_correct, token_correct_total, sentence_correct, sentence_correct_total) def build_true_false_positives(decoded, mask_batch_major, labels_batch_major, classes, equals_label): masked_equals_label = tf.logical_and(equals_label, mask_batch_major) # now for each class compute tp, fp, fn # [nclasses x batch x time] masked_per_class = tf.logical_and( tf.equal(labels_batch_major[None, :, :], tf.range(classes)[:, None, None]), mask_batch_major) # correct, and on label correct = tf.reduce_sum(tf.cast(tf.logical_and(masked_per_class, equals_label[None, :, :]), tf.int32), axis=[1, 2]) # predicted a particular class guessed = tf.reduce_sum(tf.cast(tf.logical_and(tf.equal(decoded[None, :, :], tf.range(classes)[:, None, None]), mask_batch_major), tf.int32), axis=[1, 2]) total = tf.reduce_sum(tf.cast(masked_per_class, tf.int32), axis=[1, 2]) tp, fp, fn = correct, guessed - correct, total - correct tf.add_to_collection(TRUE_POSITIVES, tp) tf.add_to_collection(FALSE_POSITIVES, fp) tf.add_to_collection(FALSE_NEGATIVES, fn) def softmax_metrics(unary_scores, labels, mask): """ Compute softmax output stats for correct/accuracy per-token/per-sentence. Receive unary_scores : time-major labels : time-major mask : time-major Returns: token_correct, token_correct_total, sentence_correct, sentence_correct_total """ classes = unary_scores.get_shape()[-1].value unary_scores_batch_major = tf.transpose(unary_scores, [1, 0, 2]) labels_batch_major = tf.transpose(labels, [1, 0]) mask_batch_major = tf.transpose(mask, [1, 0]) decoded = tf.cast(tf.argmax(unary_scores_batch_major, 2), labels.dtype) unary_probs_batch_major = tf.nn.softmax(unary_scores_batch_major) scores = tf.reduce_max(unary_probs_batch_major, 2) tf.add_to_collection(UNARY_SCORES, unary_probs_batch_major) tf.add_to_collection(DECODED, decoded) tf.add_to_collection(DECODED_SCORES, scores) equals_label = tf.equal(decoded, labels_batch_major) token_correct = tf.reduce_sum( tf.cast( tf.logical_and( equals_label, mask_batch_major ), tf.int32 ) ) token_correct_total = tf.reduce_sum(tf.cast(mask, tf.int32)) tf.add_to_collection(TOKEN_CORRECT, token_correct) tf.add_to_collection(TOKEN_CORRECT_TOTAL, token_correct_total) sentence_correct, sentence_correct_total = compute_sentence_correct( equals_label, mask_batch_major ) tf.add_to_collection(SENTENCE_CORRECT, sentence_correct) tf.add_to_collection(SENTENCE_CORRECT_TOTAL, sentence_correct_total) build_true_false_positives(decoded, mask_batch_major, labels_batch_major, classes, equals_label) return (token_correct, token_correct_total, sentence_correct, sentence_correct_total) def add_objective_names_types(objectives): for objective in objectives: with tf.variable_scope(objective["name"]): # store objective names in graph: tf.add_to_collection(OBJECTIVE_NAMES, tf.constant(objective["name"], name="objective_name") ) tf.add_to_collection(OBJECTIVE_TYPES, tf.constant(objective["type"], name="objective_type") ) def build_loss(inputs, objectives, labels, labels_mask, labels_class_weights, fused, sequence_lengths, class_weights_normalize): """ Compute loss function given the objectives. Assumes inputs are of the form [time, batch, features]. Arguments: ---------- inputs : tf.Tensor objectives : list<dict>, objective specs labels : list<tf.Tensor> labels_mask : list<tf.Tensor> labels_class_weights : list<tf.Tensor> sequence_lengths : tf.Tensor Returns: loss : tf.Tensor (scalar) """ losses = [] negative_log_likelihoods = [] sentence_corrects = [] sentence_corrects_total = [] token_corrects = [] token_corrects_total = [] max_output_vocab = max(len(obj["vocab"]) for obj in objectives) total_output_size = len(objectives) * max_output_vocab add_objective_names_types(objectives) if fused: with tf.variable_scope("FusedOutputs"): objective_labels = labels[0] mask = labels_mask[0] objective_class_weights = labels_class_weights[0] # perform all classifications at once: unary_scores = tf.contrib.layers.fully_connected( inputs, total_output_size, activation_fn=None ) unary_scores = tf.reshape(unary_scores, [tf.shape(unary_scores)[0], tf.shape(unary_scores)[1], len(objectives), max_output_vocab]) negative_log_likelihood = sparse_softmax_cross_entropy_with_logits( logits=unary_scores, labels=objective_labels ) labels_mask_casted = tf.cast(mask, negative_log_likelihood.dtype) masked_negative_log_likelihood = negative_log_likelihood * labels_mask_casted if objective_class_weights is not None: class_weights_mask = tf.gather( tf.reshape(objective_class_weights, [-1]), objective_labels + tf.reshape(tf.range(len(objectives)) * max_output_vocab, [1, 1, len(objectives)])) if class_weights_normalize: masked_weighed_negative_log_likelihood_sum = masked_negative_log_likelihood * class_weights_mask num_predictions = tf.maximum(tf.reduce_sum(labels_mask_casted * class_weights_mask), 1e-6) normed_loss = masked_weighed_negative_log_likelihood_sum / (num_predictions / len(objectives)) else: masked_weighed_negative_log_likelihood_sum = masked_negative_log_likelihood * class_weights_mask num_predictions = tf.maximum(tf.reduce_sum(labels_mask_casted), 1e-6) normed_loss = masked_weighed_negative_log_likelihood_sum / (num_predictions / len(objectives)) else: masked_weighed_negative_log_likelihood_sum = masked_negative_log_likelihood num_predictions = tf.maximum(tf.reduce_sum(labels_mask_casted), 1e-6) normed_loss = masked_weighed_negative_log_likelihood_sum / (num_predictions / len(objectives)) masked_negative_log_likelihood_sum = tf.reduce_sum(masked_negative_log_likelihood) losses.append(normed_loss) negative_log_likelihoods.append(masked_negative_log_likelihood_sum) for idx, objective in enumerate(objectives): with tf.variable_scope(objective["name"]): (token_correct, token_correct_total, sentence_correct, sentence_correct_total) = softmax_metrics(unary_scores[:, :, idx, :len(objective["vocab"])], labels=objective_labels[:, :, idx], mask=mask[:, :, idx]) token_corrects.append(token_correct) token_corrects_total.append(token_correct_total) sentence_corrects.append(sentence_correct) sentence_corrects_total.append(sentence_correct_total) else: for objective, objective_labels, mask, objective_class_weights in zip(objectives, labels, labels_mask, labels_class_weights): with tf.variable_scope(objective["name"]): if objective["type"] == "crf": unary_scores = tf.contrib.layers.fully_connected( inputs, len(objective["vocab"]), activation_fn=None ) unary_scores_batch_major = tf.transpose(unary_scores, [1, 0, 2]) labels_batch_major = tf.transpose(objective_labels, [1, 0]) padded_unary_scores_batch_major = tf.cond(tf.greater(tf.shape(unary_scores_batch_major)[1], 1), lambda: unary_scores_batch_major, lambda: tf.pad(unary_scores_batch_major, [[0, 0], [0, 1], [0, 0]])) padded_labels_batch_major = tf.cond(tf.greater(tf.shape(labels_batch_major)[1], 1), lambda: labels_batch_major, lambda: tf.pad(labels_batch_major, [[0, 0], [0, 1]])) log_likelihood, transition_params = tf.contrib.crf.crf_log_likelihood( padded_unary_scores_batch_major, padded_labels_batch_major, sequence_lengths ) labels_mask_casted = tf.cast(mask, log_likelihood.dtype) masked_log_likelihood = ( log_likelihood * labels_mask_casted ) masked_negative_log_likelihood_sum = -tf.reduce_sum(masked_log_likelihood) num_predictions = tf.maximum(tf.reduce_sum(labels_mask_casted), 1e-6) losses.append(masked_negative_log_likelihood_sum / num_predictions) negative_log_likelihoods.append(masked_negative_log_likelihood_sum) sequence_mask = tf.logical_and( tf.sequence_mask(sequence_lengths), # pad the time dimension: tf.expand_dims(mask, 1) ) (token_correct, token_correct_total, sentence_correct, sentence_correct_total) = crf_metrics(unary_scores_batch_major, labels=labels_batch_major, mask=sequence_mask, transition_params=transition_params, sequence_lengths=sequence_lengths) elif objective["type"] == 'softmax': unary_scores = tf.contrib.layers.fully_connected( inputs, len(objective["vocab"]), activation_fn=None ) negative_log_likelihood = sparse_softmax_cross_entropy_with_logits( logits=unary_scores, labels=objective_labels ) labels_mask_casted = tf.cast(mask, negative_log_likelihood.dtype) masked_negative_log_likelihood = ( negative_log_likelihood * labels_mask_casted ) if objective_class_weights is not None: class_weights_mask = tf.gather(objective_class_weights, objective_labels) masked_weighed_negative_log_likelihood_sum = masked_negative_log_likelihood * class_weights_mask masked_negative_log_likelihood_sum = tf.reduce_sum(masked_negative_log_likelihood) if class_weights_normalize: num_predictions = tf.maximum(tf.reduce_sum(labels_mask_casted * class_weights_mask), 1e-6) normed_loss = masked_weighed_negative_log_likelihood_sum / num_predictions else: num_predictions = tf.maximum(tf.reduce_sum(labels_mask_casted), 1e-6) normed_loss = masked_weighed_negative_log_likelihood_sum / num_predictions else: masked_weighed_negative_log_likelihood_sum = masked_negative_log_likelihood masked_negative_log_likelihood_sum = tf.reduce_sum(masked_negative_log_likelihood) num_predictions = tf.maximum(tf.reduce_sum(labels_mask_casted), 1e-6) normed_loss = masked_weighed_negative_log_likelihood_sum / num_predictions losses.append(normed_loss) negative_log_likelihoods.append(masked_negative_log_likelihood_sum) (token_correct, token_correct_total, sentence_correct, sentence_correct_total) = softmax_metrics(unary_scores, labels=objective_labels, mask=mask) else: raise ValueError( "unknown objective type %r" % (objective["type"],) ) token_corrects.append(token_correct) token_corrects_total.append(token_correct_total) sentence_corrects.append(sentence_correct) sentence_corrects_total.append(sentence_correct_total) # aggregate metrics for all objectives: total_loss = tf.reduce_sum(sum_list(losses)) tf.summary.scalar("BatchLoss", total_loss) neg_log_likelihood_total = sum_list(negative_log_likelihoods) tf.summary.scalar("BatchNLL", neg_log_likelihood_total) tf.add_to_collection(NLL, neg_log_likelihood_total) tf.add_to_collection(NLL_TOTAL, tf.shape(inputs)[1]) sentence_corrects_total = sum_list(sentence_corrects_total) sentence_corrects = sum_list(sentence_corrects) tf.add_to_collection(SENTENCE_CORRECT_ALL, sentence_corrects) tf.add_to_collection(SENTENCE_CORRECT_ALL_TOTAL, sentence_corrects_total) token_corrects_total = sum_list(token_corrects_total) token_corrects = sum_list(token_corrects) tf.add_to_collection(TOKEN_CORRECT_ALL, token_corrects) tf.add_to_collection(TOKEN_CORRECT_ALL_TOTAL, token_corrects_total) return total_loss def build_model(name, trainable, features, feature_index2words, objectives, keep_prob, input_keep_prob, hidden_sizes, freeze_rate, freeze_rate_anneal, solver, cudnn, fused, faux_cudnn, class_weights, class_weights_normalize, class_weights_clipval, lr, weight_noise, anneal_rate, clip_norm): # mixed output fusing is currently unsupported if fused and any(obj["type"] != "softmax" for obj in objectives): raise ValueError("cannot fuse outputs and use non-softmax output.") # clear all existing collections to ensure every new collection is # is created fresh graph = tf.get_default_graph() for collection_name in graph.get_all_collection_keys(): graph.clear_collection(collection_name) # build a model under the model's name to prevent collisions # when multiple models are restored simultaneously with tf.variable_scope(name): global_step = tf.Variable(0, trainable=False, name="global_step") tf.add_to_collection(GLOBAL_STEP, global_step) # model placeholders: (input_placeholders, labels, labels_mask, labels_class_weights, sequence_lengths, is_training) = build_inputs(features, objectives=objectives, fused=fused, class_weights=class_weights, class_weights_clipval=class_weights_clipval) embed = build_embed(input_placeholders, features=features, index2words=feature_index2words, is_training=is_training, keep_prob=input_keep_prob) hiddens = embed if len(hidden_sizes) > 0: hiddens = build_recurrent(hiddens, cudnn=cudnn, faux_cudnn=faux_cudnn, hidden_sizes=hidden_sizes, keep_prob=keep_prob, weight_noise=weight_noise, is_training=is_training) loss = build_loss(hiddens, objectives=objectives, fused=fused, labels=labels, labels_mask=labels_mask, labels_class_weights=labels_class_weights, class_weights_normalize=class_weights_normalize, sequence_lengths=sequence_lengths) if trainable: learning_rate = tf.train.exponential_decay(lr, global_step, 33000, anneal_rate, staircase=True) if solver == "adam": optimizer = LazyAdamOptimizer(learning_rate) elif solver == "sgd": optimizer = tf.train.GradientDescentOptimizer(learning_rate) else: raise ValueError("Unknown solver %r." % (solver)) grad_vars = optimizer.compute_gradients(loss) if clip_norm > 0: grad_vars = [(grad if isinstance(grad, tf.IndexedSlices) else tf.clip_by_norm(grad, clip_norm), var) for grad, var in grad_vars] train_op = optimizer.apply_gradients(grad_vars, global_step=global_step) else: train_op = tf.no_op() tf.add_to_collection(TRAIN_OP, train_op) tf.add_to_collection(TRAIN_SUMMARIES, tf.summary.merge_all()) def restore_session(session, path, replace_to=None, replace_from=None, verbose=False, use_metagraph=True, only_features=False): """ Call restore on tf.train.Saver on a specific path to store all the variables of the current tensorflow session to a file for later restoring. Arguments: session : tf.Session path : str, place containing the session data to restore verbose : bool, print status messages. use_metagraph : bool, restore by re-creating saved metagraph. Returns: bool : success or failure of the restoration """ makedirs(path, exist_ok=True) if not path.endswith("/"): path = path + "/" checkpoint = tf.train.get_checkpoint_state(path) if verbose: print("Looking for saved session under %r" % (path,), flush=True) if checkpoint is None or checkpoint.model_checkpoint_path is None: if verbose: print("No saved session found", flush=True) return False fname = basename(checkpoint.model_checkpoint_path) if verbose: print("Restoring saved session from %r" % (join(path, fname),), flush=True) if use_metagraph: param_saver = tf.train.import_meta_graph(join(path, fname + ".meta"), clear_devices=True) missing_vars = [] else: if only_features: to_restore = {} whitelist = ["embedding", "/RNN/", "/RNNParams", "CharacterConvolution", "HighwayLayer"] for var in tf.global_variables(): if any(keyword in var.name for keyword in whitelist): to_restore[var.name[:-2]] = var param_saver = tf.train.Saver(to_restore) else: if replace_to is not None and replace_from is not None: to_restore = {} for var in tf.global_variables(): var_name = var.name[:var.name.rfind(":")] old_name = var_name.replace(replace_to, replace_from) to_restore[old_name] = var param_saver = tf.train.Saver(to_restore) missing_vars = [] else: reader = tf.train.NewCheckpointReader(join(path, fname)) saved_shapes = reader.get_variable_to_shape_map() found_vars = [var for var in tf.global_variables() if var.name.split(':')[0] in saved_shapes] missing_vars = [var for var in tf.global_variables() if var.name.split(':')[0] not in saved_shapes] param_saver = tf.train.Saver(found_vars) param_saver.restore(session, join(path, fname)) session.run([var.initializer for var in missing_vars]) return True def bidirectional_dynamic_rnn(cell, inputs, dtype, time_major=True, swap_memory=False): with tf.variable_scope("forward"): out_fwd, final_fwd = tf.nn.dynamic_rnn( cell, inputs, time_major=time_major, dtype=dtype, swap_memory=swap_memory ) if time_major: reverse_axis = 0 else: reverse_axis = 1 with tf.variable_scope("backward"): out_bwd, final_bwd = tf.nn.dynamic_rnn( cell, reverse(inputs, axis=reverse_axis), time_major=time_major, dtype=dtype, swap_memory=swap_memory ) out_bwd = reverse(out_bwd, axis=reverse_axis) return concat([out_fwd, out_bwd], axis=2), (final_fwd, final_bwd) def get_embedding_lookup(size, dim, dtype, reuse=None, trainable=True): with tf.variable_scope(tf.get_variable_scope(), reuse=reuse): W = tf.get_variable( name="embedding", shape=[size, dim], dtype=dtype, initializer=tf.random_uniform_initializer( -1.0 / math.sqrt(dim), 1.0 / math.sqrt(dim) ), trainable=trainable ) return W def embedding_lookup(inputs, size, dim, dtype, reuse=None, mask_negative=False, trainable=True, place_on_cpu_if_big=True): """ Construct an Embedding layer that gathers elements from a matrix with `size` rows, and `dim` features using the indices stored in `x`. Arguments: ---------- inputs : tf.Tensor, of integer type size : int, how many symbols in the lookup table dim : int, how many columns per symbol. dtype : data type for the lookup table (e.g. tf.float32) reuse : bool, (default None) whether the lookup table was already used before (thus this is weight sharing). mask_negative : bool, (default False) should -1s in the lookup input indicate padding (e.g. no lookup), and thus should those values be masked out post-lookup. trainable : bool (default True), whether the parameters of this lookup table can be backpropagated into (e.g. for Glove word vectors that are fixed pre-trained, this can be set to False). place_on_cpu_if_big : bool, if matrix is big, store it on cpu. Returns: -------- tf.Tensor, result of tf.nn.embedding_lookup(LookupTable, inputs) """ W = get_embedding_lookup(size, dim, dtype, reuse, trainable=trainable) if mask_negative: embedded = tf.nn.embedding_lookup(W, tf.maximum(inputs, 0)) null_mask = tf.expand_dims( tf.cast( tf.not_equal(inputs, -1), dtype ), -1 ) return embedded * null_mask else: return tf.nn.embedding_lookup(W, inputs) def _get_sharded_variable(name, shape, dtype, num_shards): """Get a list of sharded variables with the given dtype.""" if num_shards > shape[0]: raise ValueError("Too many shards: shape=%s, num_shards=%d" % (shape, num_shards)) unit_shard_size = int(math.floor(shape[0] / num_shards)) remaining_rows = shape[0] - unit_shard_size * num_shards shards = [] for i in range(num_shards): current_size = unit_shard_size if i < remaining_rows: current_size += 1 shards.append( tf.get_variable( name + "_%d" % i, [current_size] + shape[1:], dtype=dtype ) ) return shards def _get_concat_variable(name, shape, dtype, num_shards): """Get a sharded variable concatenated into one tensor.""" sharded_variable = _get_sharded_variable(name, shape, dtype, num_shards) if len(sharded_variable) == 1: return sharded_variable[0] concat_name = name + "/concat" concat_full_name = tf.get_variable_scope().name + "/" + concat_name + ":0" for value in tf.get_collection(tf.GraphKeys.CONCATENATED_VARIABLES): if value.name == concat_full_name: return value concat_variable = tf.concat_v2(sharded_variable, 0, name=concat_name) tf.add_to_collection(tf.GraphKeys.CONCATENATED_VARIABLES, concat_variable) return concat_variable class SequenceModel(object): def __init__(self, objectives, features, feature_index2words, hidden_sizes, keep_prob, lr, solver, seed=1234, input_keep_prob=0.7, clip_norm=-1, name="SequenceTagger", cudnn=False, anneal_rate=0.99, trainable=True, weight_noise=0.0, class_weights_normalize=False, faux_cudnn=False, class_weights=False, class_weights_clipval=1000.0, freeze_rate=1.0, fused=False, freeze_rate_anneal=0.8, create_variables=True): if fused and objectives[0]["type"] == "crf": fused = False self.keep_prob = keep_prob self.input_keep_prob = input_keep_prob self.hidden_sizes = hidden_sizes self.name = name self.objectives = objectives self.features = features self.feature_index2words = feature_index2words self.seed = seed self.lr = lr self.fused = fused self.weight_noise = weight_noise self.anneal_rate = anneal_rate self.clip_norm = clip_norm self.solver = solver self.class_weights_normalize = class_weights_normalize self.class_weights = class_weights self.class_weights_clipval = class_weights_clipval self.rng = np.random.RandomState(seed) self.cudnn = cudnn self.feature_word2index = [ {w: k for k, w in enumerate(index2word)} if index2word is not None else None for index2word in self.feature_index2words ] self.label2index = [ {w: k for k, w in enumerate(objective["vocab"])} for objective in self.objectives ] if create_variables: # 1) build graph here (TF functional code pattern) build_model(name=self.name, trainable=trainable, objectives=self.objectives, features=self.features, feature_index2words=self.feature_index2words, hidden_sizes=self.hidden_sizes, keep_prob=self.keep_prob, solver=self.solver, freeze_rate=freeze_rate, class_weights_normalize=self.class_weights_normalize, class_weights=self.class_weights, class_weights_clipval=self.class_weights_clipval, freeze_rate_anneal=freeze_rate_anneal, cudnn=self.cudnn, lr=self.lr, fused=self.fused, weight_noise=self.weight_noise, anneal_rate=self.anneal_rate, input_keep_prob=self.input_keep_prob, faux_cudnn=faux_cudnn, clip_norm=self.clip_norm) # 2) and use meta graph to recover these fields: self.recover_graph_variables() def recover_graph_variables(self): """Use TF meta graph to obtain key metrics and outputs from model.""" self.labels = tf.get_collection(LABEL_PLACEHOLDERS) self.labels_mask = tf.get_collection(LABEL_MASK_PLACEHOLDERS) self.input_placeholders = tf.get_collection(INPUT_PLACEHOLDERS) self.sequence_lengths = tf.get_collection(SEQUENCE_LENGTHS)[0] self.decoded = tf.get_collection(DECODED) self.decoded_scores = tf.get_collection(DECODED_SCORES) self.unary_scores = tf.get_collection(UNARY_SCORES) self.token_correct = tf.get_collection(TOKEN_CORRECT) self.token_correct_total = tf.get_collection(TOKEN_CORRECT_TOTAL) self.sentence_correct = tf.get_collection(SENTENCE_CORRECT) self.sentence_correct_total = tf.get_collection(SENTENCE_CORRECT_TOTAL) self.token_correct_all = tf.get_collection(TOKEN_CORRECT_ALL)[0] self.token_correct_all_total = tf.get_collection(TOKEN_CORRECT_ALL_TOTAL)[0] self.sentence_correct_all = tf.get_collection(SENTENCE_CORRECT_ALL)[0] self.sentence_correct_all_total = tf.get_collection(SENTENCE_CORRECT_ALL_TOTAL)[0] self.true_positives = tf.get_collection(TRUE_POSITIVES) self.false_positives = tf.get_collection(FALSE_POSITIVES) self.false_negatives = tf.get_collection(FALSE_NEGATIVES) if len(self.true_positives) == 0 and len(self.token_correct) != 0: self.true_positives = [None for _ in self.token_correct] self.false_positives = [None for _ in self.token_correct] self.false_negatives = [None for _ in self.token_correct] if len(tf.get_collection(GLOBAL_STEP)) > 0: self.global_step = tf.get_collection(GLOBAL_STEP)[0] else: try: self.global_step = tf.get_default_graph().get_tensor_by_name( self.name + "/" + "global_step:0") except KeyError: self.global_step = tf.Variable(0, trainable=False, name="global_step") tf.add_to_collection(GLOBAL_STEP, self.global_step) self.is_training = tf.get_collection(IS_TRAINING)[0] self.noop = tf.no_op() self.train_op = tf.get_collection(TRAIN_OP)[0] train_summaries = tf.get_collection(TRAIN_SUMMARIES) self.train_summaries = train_summaries[0] if len(train_summaries) > 0 else None self.nll = tf.get_collection(NLL)[0] self.nll_total = tf.get_collection(NLL_TOTAL)[0] self.saver = tf.train.Saver() @classmethod def overrideable_fields(cls): return [ "keep_prob", "name", "lr", "clip_norm", "class_weights_normalize", "class_weights_clipval", "cudnn", "anneal_rate", "weight_noise", "input_keep_prob" ] @classmethod def fields_to_save(cls): return [ "hidden_sizes", "objectives", "name", "cudnn", "class_weights", "features", "fused", "class_weights_normalize", "weight_noise", "anneal_rate", "feature_index2words", "solver", "lr", "clip_norm", "keep_prob", "input_keep_prob", "class_weights_clipval" ] def predict(self, session, feed_dict): feed_dict[self.is_training] = False outputs, outputs_probs = session.run( (self.decoded, self.decoded_scores), feed_dict ) predictions_out = {} for value, val_prob, objective in zip(outputs, outputs_probs, self.objectives): predictions_out[objective["name"]] = (value, val_prob) return predictions_out def predict_proba(self, session, feed_dict): feed_dict[self.is_training] = False outputs = session.run( self.unary_scores, feed_dict ) predictions_out = {} for value, objective in zip(outputs, self.objectives): predictions_out[objective["name"]] = value return predictions_out def save(self, session, path): makedirs(path, exist_ok=True) with open(join(path, "model.json"), "wt") as fout: save_dict = {} for field in type(self).fields_to_save(): save_dict[field] = getattr(self, field) json.dump(save_dict, fout) with open(join(path, "rng.pkl"), "wb") as fout: pickle.dump(self.rng, fout) save_session(session, self.saver, path, verbose=True) @classmethod def load(cls, session, path, args=None, verbose=True, trainable=True, rebuild_graph=False, faux_cudnn=False, replace_to=None, replace_from=None): """Convenience method for using a tensorflow session to reload a previously saved + serialized model from disk.""" with open(join(path, "model.json"), "rt") as fin: model_props = json.load(fin) # update fields based on CLI: if args is not None: ex_fields = explicitly_set_fields() for field in cls.overrideable_fields(): if field in ex_fields: model_props[field] = getattr(args, field) # prune old fields based on changes to saveable fields: relevant_props = {} for field in cls.fields_to_save(): if field in model_props: relevant_props[field] = model_props[field] relevant_props["trainable"] = trainable relevant_props["faux_cudnn"] = faux_cudnn if rebuild_graph: print("Using rebuild_graph mode: creating a new graph.", flush=True) relevant_props["create_variables"] = True model = cls(**relevant_props) restore_session( session, path, replace_to=replace_to, replace_from=replace_from, verbose=verbose, use_metagraph=False ) else: if model_props.get("cudnn", False): import tensorflow.contrib.cudnn_rnn relevant_props["create_variables"] = False restore_session( session, path, verbose=verbose, use_metagraph=True ) model = cls(**relevant_props) rng_path = join(path, "rng.pkl") if exists(rng_path): # apply the saved random number generator to this # model: with open(rng_path, "rb") as fin: model.rng = pickle.load(fin) return model def make_path_absolute(obj, basepath): copied = obj.copy() for key in ["path", "vocab"]: if key in copied: copied[key] = join(basepath, copied[key]) return copied class Config(object): def __init__(self, datasets, features, objectives, wikidata_path, classification_path): assert(len(features) > 0) self.datasets = datasets self.features = features self.objectives = objectives self.classifications = None self.wikidata_path = wikidata_path self.classification_path = classification_path # build the objective names: self._named_objectives = [obj["name"] for obj in self.objectives] @classmethod def load(cls, path): with open(path, "rt") as fin: config = json.load(fin) config_dirname = dirname(path) return cls( datasets=[make_path_absolute(dataset, config_dirname) for dataset in config['datasets']], features=[make_path_absolute(feat, config_dirname) for feat in config['features']], objectives=[make_path_absolute(objective, config_dirname) for objective in config['objectives']], wikidata_path=config.get("wikidata_path", None), classification_path=( join(config_dirname, config.get("classification_path", None)) if "classification_path" in config else None) ) def load_dataset_separate(self, dataset_type): paths = [dataset for dataset in self.datasets if dataset["type"] == dataset_type] all_examples = {} for dataset in paths: _, extension = splitext(dataset["path"]) if extension == ".h5" or extension == ".hdf5": if self.classifications is None: if self.wikidata_path is None or self.classification_path is None: raise ValueError("missing wikidata_path and " "classification_path, cannot " "construct H5Dataset.") self.classifications = ClassificationHandler( self.wikidata_path, self.classification_path ) examples = H5Dataset( dataset["path"], dataset["x"], dataset["y"], self._named_objectives, ignore_value=dataset.get('ignore', None), classifications=self.classifications) else: examples = TSVDataset( dataset["path"], dataset["x"], dataset["y"], self._named_objectives, comment=dataset.get('comment', '#'), ignore_value=dataset.get('ignore', None), retokenize=dataset.get('retokenize', False)) title = dataset["path"].split('/')[-1].split(".")[0] name = title iteration = 1 while name in all_examples: name = title + "-%d" % (iteration,) iteration += 1 all_examples[name] = examples return all_examples def load_dataset(self, dataset_type, merge=True): datasets = self.load_dataset_separate(dataset_type) if merge: return CombinedDataset(list(datasets.values())) return datasets def boolean_argument(parser, name, default): parser.add_argument("--" + name, action="store_true", default=default) parser.add_argument("--no" + name, action="store_false", dest=name) def parse_args(args=None): parser = argparse.ArgumentParser() parser.add_argument('config', type=str) parser.add_argument('--lr', type=float, default=0.001) parser.add_argument('--anneal_rate', type=float, default=0.99) parser.add_argument('--clip_norm', type=float, default=-1) parser.add_argument('--weight_noise', type=float, default=0.0) parser.add_argument('--hidden_sizes', type=int, nargs="*", default=[200, 200]) parser.add_argument('--load_dir', type=str, default=None) parser.add_argument('--restore_input_features', type=str, default=None) parser.add_argument('--improvement_key', type=str, default="token_correct") parser.add_argument('--freeze_rate', type=float, default=1.0) parser.add_argument('--freeze_rate_anneal', type=float, default=0.8) parser.add_argument('--save_dir', type=str, default=None) parser.add_argument('--max_epochs', type=int, default=1000) parser.add_argument('--test_every', type=int, default=10000, help="Number of training iterations after which testing should occur.") parser.add_argument('--batch_size', type=int, default=128) parser.add_argument('--max_patience', type=int, default=10) parser.add_argument('--class_weights_clipval', type=float, default=1000.0) parser.add_argument('--device', type=str, default="gpu:0") parser.add_argument('--keep_prob', type=float, default=0.5) parser.add_argument('--input_keep_prob', type=float, default=0.7) parser.add_argument('--solver', type=str, default="adam", choices=["adam", "sgd"]) parser.add_argument("--name", type=str, default="SequenceTagger") parser.add_argument("--old_name", type=str, default=None) boolean_argument(parser, "cudnn", True) boolean_argument(parser, "faux_cudnn", False) boolean_argument(parser, "class_weights", False) boolean_argument(parser, "rebuild_graph", False) boolean_argument(parser, "class_weights_normalize", False) boolean_argument(parser, "fused", True) boolean_argument(parser, "report_metrics_per_axis", True) boolean_argument(parser, "report_class_f1", False) return parser.parse_args(args=args) def get_vocab(dataset, max_vocab=-1, extra_words=None): index2word = [] occurrence = {} for el in dataset: if el not in occurrence: index2word.append(el) occurrence[el] = 1 else: occurrence[el] += 1 index2word = sorted(index2word, key=lambda x: occurrence[x], reverse=True) if max_vocab > 0: index2word = index2word[:max_vocab] if extra_words is not None: index2word = extra_words + index2word return index2word def get_objectives(objectives, dataset): out = [] for obj_idx, objective in enumerate(objectives): if "vocab" in objective: with open(objective["vocab"], "rt") as fin: vocab = fin.read().splitlines() else: vocab = get_vocab((w[obj_idx] for _, y in dataset for w in y if w[obj_idx] is not None), -1) out.append( { "vocab": vocab, "type": objective["type"], "name": objective["name"] } ) return out def merge_all_metrics(metrics): out = {} for key, metric in metrics.items(): for subkey, submetric in metric.items(): if len(key) > 0: out[key + "_" + subkey] = submetric if subkey not in out: out[subkey] = submetric else: out[subkey] += submetric else: out[subkey] = submetric return out def log_outcome(logger, outcome, step, name): for k, v in sorted(outcome.items()): if "total" in k: continue else: total = outcome[k + "_total"] if total == 0: continue logger.log(k, v / total, step=step) logger.writer.flush() def compute_f1(metrics, objectives, report_class_f1): total_f1 = 0.0 total_precision = 0.0 total_recall = 0.0 total = 0 for objective in objectives: name = objective["name"] key = "%s_true_positives" % (name,) if key not in metrics: continue tp = metrics[key] fp = metrics["%s_false_positives" % (name,)] fn = metrics["%s_false_negatives" % (name,)] del metrics[key] del metrics["%s_false_positives" % (name,)] del metrics["%s_false_negatives" % (name,)] precision = 1.* tp / np.maximum((tp + fp), 1e-6) recall = 1. * tp / np.maximum((tp + fn), 1e-6) f1 = 2.0 * precision * recall / np.maximum((precision + recall), 1e-6) support = tp + fn full_f1 = np.average(f1, weights=support) * 100.0 full_recall = np.average(recall, weights=support) * 100.0 full_precision = np.average(precision, weights=support) * 100.0 total_f1 += full_f1 total_recall += full_recall total_precision += full_precision total += 1 if report_class_f1: print("F1 %s: %r" % (name, full_f1)) print("Name\tF1\tTP\tFP\tFN") rows = zip([label for label, has_support in zip(objective["vocab"], support > 0) if has_support], f1, tp, fp, fn) for val, f1_val, val_tp, val_fp, val_fn in rows: print("%s\t%r\t%d\t%d\t%d" % ( val, f1_val, val_tp, val_fp, val_fn)) print("") if total > 0: metrics["F1"] = total_f1 metrics["recall"] = total_recall metrics["precision"] = total_precision metrics["F1_total"] = total metrics["recall_total"] = total metrics["precision_total"] = total def accuracy(model, session, datasets, batch_size, train, report_metrics_per_axis, report_class_f1, callback=None, callback_period=None, writer=None): pbar = get_progress_bar("train" if train else "validation", item="batches") if not isinstance(datasets, dict): datasets = {'':datasets} all_metrics_agg = {} if callback is not None: if callback_period is None: raise ValueError("callback_period cannot be None if " "callback is used.") else: callback_period = None if train: train_op = model.train_op else: train_op = model.noop is_training = model.is_training metrics = {"nll": model.nll, "nll_total": model.nll_total} summaries = [] if not train: metric_iter = zip( model.objectives, model.token_correct, model.token_correct_total, model.sentence_correct, model.sentence_correct_total, model.true_positives, model.false_positives, model.false_negatives ) for metric_vars in metric_iter: ( objective, token_correct, token_correct_total, sentence_correct, sentence_correct_total, true_positives, false_positives, false_negatives ) = metric_vars name = objective["name"] if report_metrics_per_axis: metrics["%s_token_correct" % (name,)] = token_correct metrics["%s_token_correct_total" % (name,)] = token_correct_total metrics["%s_sentence_correct" % (name,)] = sentence_correct metrics["%s_sentence_correct_total" % (name,)] = sentence_correct_total if true_positives is not None: metrics["%s_true_positives" % (name,)] = true_positives metrics["%s_false_positives" % (name,)] = false_positives metrics["%s_false_negatives" % (name,)] = false_negatives metrics["token_correct"] = model.token_correct_all metrics["token_correct_total"] = model.token_correct_all_total metrics["sentence_correct"] = model.sentence_correct_all metrics["sentence_correct_total"] = model.sentence_correct_all_total summaries = [] else: if writer is not None and model.train_summaries is not None: summaries = model.train_summaries metrics_values = [v for _, v in sorted(metrics.items())] metrics_names = [name for name, _ in sorted(metrics.items())] outputs_val = [train_op, model.global_step, summaries, metrics_values] for title, dataset in datasets.items(): batches = iter_batches_single_threaded( model=model, dataset=dataset, batch_size=batch_size, train=train, pbar=pbar ) metrics_agg = {} iteration = 0 for feed_dict in batches: feed_dict[is_training] = train _, step, summary_out, outputs = session.run(outputs_val, feed_dict) if writer is not None: writer.add_summary(summary_out, step) for key, value in zip(metrics_names, outputs[:len(metrics_names)]): if key not in metrics_agg: metrics_agg[key] = value else: metrics_agg[key] += value iteration += 1 if callback_period is not None and iteration % callback_period == 0: callback(iteration) if np.isnan(metrics_agg['nll']): print("loss is NaN.", flush=True, file=sys.stderr) sys.exit(1) compute_f1(metrics_agg, model.objectives, report_class_f1) all_metrics_agg[title] = metrics_agg del batches return merge_all_metrics(all_metrics_agg) def present_outcome(outcome, epoch, name): string_rows = [] for k, v in sorted(outcome.items()): if "total" in k: continue else: total = outcome[k + "_total"] if total == 0: continue if "correct" in k: string_rows.append( [ k, "%.2f%%" % (100.0 * v / total), "(%d correct / %d)" % (v, total) ] ) else: string_rows.append( [ k, "%.3f" % (v / total), "" ] ) max_len_cols = [ max(len(row[colidx]) for row in string_rows) for colidx in range(len(string_rows[0])) ] if len(string_rows) > 0 else [] rows = [] for row in string_rows: rows.append( " ".join( [col + " " * (max_len_cols[colidx] - len(col)) for colidx, col in enumerate(row)] ) ) return "\n".join(["Epoch {epoch}: {name}".format(epoch=epoch, name=name)] + rows) def print_outcome(outcome, objectives, epoch, step, name, logger=None): outcome_report = present_outcome(outcome, epoch, name) if logger is not None: log_outcome(logger, outcome, step, name) print(outcome_report) class SequenceTagger(object): def __init__(self, path, device="gpu", faux_cudnn=False, rebuild_graph=False): tf.reset_default_graph() session_conf = tf.ConfigProto( allow_soft_placement=True ) self.session = tf.InteractiveSession(config=session_conf) with tf.device(device): with warnings.catch_warnings(): warnings.simplefilter("ignore", UserWarning) self._model = SequenceModel.load( self.session, path, args=None, verbose=False, trainable=False, rebuild_graph=rebuild_graph, faux_cudnn=faux_cudnn ) @property def objectives(self): return self._model.objectives def predict_proba(self, tokens): blank_labels = tuple(None for _ in self._model.objectives) batches = list(iter_batches_single_threaded( model=self._model, dataset=[ (tokens, [blank_labels for t in tokens]) ], batch_size=1, train=False, autoresize=False )) outputs = [] batches[0][self._model.is_training] = False probs_out = self._model.predict_proba( self.session, batches[0] ) return probs_out def predict_proba_sentences(self, sentences): blank_labels = tuple(None for _ in self._model.objectives) batches = iter_batches_single_threaded( model=self._model, dataset=[ (sentence, [blank_labels for t in sentence]) for sentence in sentences ], batch_size=min(256, len(sentences)), train=False, autoresize=False ) for batch in batches: batch[self._model.is_training] = False yield self._model.predict_proba( self.session, batch ) def predict_topk_sentences(self, sentences, k=5): blank_labels = tuple(None for _ in self._model.objectives) batches = iter_batches_single_threaded( model=self._model, dataset=[ (sentence, [blank_labels for t in sentence]) for sentence in sentences ], batch_size=min(256, len(sentences)), train=False, autoresize=False ) for batch in batches: outputs = self._model.predict_proba( self.session, batch ) named_outputs = {} for objective in self._model.objectives: obj_name = objective["name"] tags, scores = outputs[obj_name] if objective["type"] == "crf": named_outputs[obj_name] = [ [(token, [objective["vocab"][tag]], [score]) for token, tag in zip(tokens, tags)] for tokens, tags, score in zip(sentences, tags, scores) ] elif objective["type"] == 'softmax': all_sent_scores = [] for tokens, scores in zip(sentences, scores): sent_scores = [] for token, token_scores in zip(tokens, scores): topk = np.argsort(token_scores)[::-1][:k] sent_scores.append( ( token, [objective["vocab"][idx] for idx in topk], [token_scores[idx] for idx in topk] ) ) all_sent_scores.append(sent_scores) named_outputs[obj_name] = all_sent_scores else: raise ValueError("unknown objective type %r." % (objective["type"],)) yield named_outputs def tag_sentences(self, sentences): if len(sentences) == 0: return { objective["name"]: [] for objective in self._model.objectives } blank_labels = tuple(None for _ in self._model.objectives) batches = list(iter_batches_single_threaded( self._model, [ (sentence, [blank_labels for t in sentence]) for sentence in sentences ], batch_size=min(256, len(sentences)), train=False, autoresize=False )) named_outputs = {} sentence_idx = 0 for batch in batches: outputs = self._model.predict(self.session, batch) for objective in self._model.objectives: obj_name = objective["name"] if obj_name not in named_outputs: named_outputs[obj_name] = [] tags, scores = outputs[obj_name] nsentences = len(tags) if objective["type"] == "crf": named_outputs[obj_name].extend([ [(token, objective["vocab"][tag], score) for token, tag in zip(tokens, tags)] for tokens, tags, score in zip(sentences[sentence_idx:sentence_idx+nsentences], tags, scores) ]) elif objective["type"] == 'softmax': named_outputs[obj_name].extend([ [(token, objective["vocab"][tag], score) for token, tag, score in zip(tokens, tags, scores)] for tokens, tags, scores in zip(sentences[sentence_idx:sentence_idx+nsentences], tags, scores) ]) else: raise ValueError("unknown objective type %r." % (objective["type"],)) sentence_idx += nsentences return named_outputs def count_number_of_parameters(): return int(sum([np.prod(var.get_shape().as_list()) for var in tf.trainable_variables()])) class TestCallback(object): def __init__(self, model, session, dataset, epoch, args, logger): self.model = model self.session = session self.dataset = dataset self.epoch = epoch self.args = args self.logger = logger self.report_metrics_per_axis = args.report_metrics_per_axis self.report_class_f1 = args.report_class_f1 def test(self, iteration): dev_outcome = accuracy(self.model, self.session, self.dataset, self.args.batch_size, train=False, report_metrics_per_axis=self.report_metrics_per_axis, report_class_f1=self.report_class_f1) print_outcome(dev_outcome, self.model.objectives, epoch="{}-{}".format(self.epoch, iteration), step=self.session.run(self.model.global_step), name="validation", logger=self.logger ) if self.args.save_dir is not None: self.model.save(self.session, self.args.save_dir) def compute_epoch(session, model, train_set, validation_set, test_callback, epoch, train_writer, test_writer, args): test_callback.epoch = epoch train_outcome = accuracy(model, session, train_set, args.batch_size, train=True, callback_period=args.test_every, writer=train_writer.writer if train_writer is not None else None, report_metrics_per_axis=args.report_metrics_per_axis, report_class_f1=args.report_class_f1, callback=test_callback.test) global_step = session.run(model.global_step) print_outcome(train_outcome, model.objectives, epoch=epoch, name="train", step=global_step, logger=train_writer) dev_outcome = accuracy( model, session, validation_set, args.batch_size, train=False, report_metrics_per_axis=args.report_metrics_per_axis, report_class_f1=args.report_class_f1) print_outcome(dev_outcome, model.objectives, epoch=epoch, step=global_step, name="validation", logger=test_writer) if args.save_dir is not None: model.save(session, args.save_dir) return dev_outcome def main(): args = parse_args() config = Config.load(args.config) validation_set = config.load_dataset("dev", merge=False) session_conf = tf.ConfigProto(allow_soft_placement=True) with tf.Session(config=session_conf) as session, tf.device(args.device): if args.load_dir is not None: model = SequenceModel.load(session, args.load_dir, args=args, rebuild_graph=args.rebuild_graph, faux_cudnn=args.faux_cudnn, replace_to=args.name, replace_from=args.old_name) dev_outcome = accuracy( model, session, validation_set, args.batch_size, train=False, report_metrics_per_axis=args.report_metrics_per_axis, report_class_f1=args.report_class_f1) print_outcome(dev_outcome, model.objectives, 0, name="loaded validation", step=session.run(model.global_step), logger=None) # dev_outcome = None if args.rebuild_graph and args.save_dir is not None: model.save(session, args.save_dir) train_set = config.load_dataset("train") else: # load classes and index2word from a file. dev_outcome = None train_set = config.load_dataset("train") model = SequenceModel( objectives=get_objectives(config.objectives, train_set), features=config.features, feature_index2words=get_feature_vocabs(config.features, train_set, ["<UNK>"]), lr=args.lr, anneal_rate=args.anneal_rate, weight_noise=args.weight_noise, freeze_rate=args.freeze_rate, freeze_rate_anneal=args.freeze_rate_anneal, clip_norm=args.clip_norm, hidden_sizes=args.hidden_sizes, solver=args.solver, fused=args.fused, class_weights_normalize=args.class_weights_normalize, class_weights=args.class_weights, class_weights_clipval=args.class_weights_clipval, keep_prob=args.keep_prob, input_keep_prob=args.input_keep_prob, name=args.name, cudnn=args.cudnn, faux_cudnn=args.faux_cudnn, create_variables=True) session.run(tf.global_variables_initializer()) if args.restore_input_features is not None: restore_session( session, args.restore_input_features, verbose=True, use_metagraph=False, only_features=True) print("Model has {} trainable parameters.".format(count_number_of_parameters()), flush=True) best_dev_score = 0.0 patience = 0 best_epoch = 0 best_outcome = None improvement_key = args.improvement_key if dev_outcome is not None: best_dev_score = dev_outcome[improvement_key] best_epoch = -1 best_outcome = dev_outcome if args.save_dir is not None: train_writer = Logger(session, tf.summary.FileWriter(join(args.save_dir, "train"))) test_writer = Logger(session, tf.summary.FileWriter(join(args.save_dir, "test"))) else: train_writer, test_writer = None, None test_callback = TestCallback(model, session, validation_set, -1, args, logger=test_writer) if len(train_set) > 0: train_set.set_randomize(True) train_set.set_rng(model.rng) for epoch in range(args.max_epochs): dev_outcome = compute_epoch( session, model, train_set=train_set, validation_set=validation_set, epoch=epoch, test_callback=test_callback, train_writer=train_writer, test_writer=test_writer, args=args) if dev_outcome[improvement_key] > best_dev_score: best_dev_score = dev_outcome[improvement_key] best_epoch = epoch best_outcome = dev_outcome patience = 0 if args.save_dir is not None: model.save(session, join(args.save_dir, "best")) else: patience += 1 if patience >= args.max_patience: print("No improvements for {} epochs. Stopping.".format(args.max_patience)) break del dev_outcome print_outcome( best_outcome, model.objectives, epoch=best_epoch, name="validation-best", step=session.run(model.global_step), logger=None) if __name__ == "__main__": main()
import numpy as np import subprocess import h5py import ciseau from os.path import exists, splitext, join from wikidata_linker_utils.wikidata_ids import load_wikidata_ids def count_examples(lines, comment, ignore_value, column_indices): example_length = 0 has_labels = False found = 0 for line in lines: if len(line) == 0 or (comment is not None and line.startswith(comment)): if example_length > 0 and has_labels: found += 1 example_length = 0 has_labels = False else: example_length += 1 if not has_labels: cols = line.split("\t") if len(cols) > 1: if ignore_value is not None: for col_index in column_indices: if cols[col_index] != ignore_value: has_labels = True break else: has_labels = True if example_length > 0 and has_labels: found += 1 return found def retokenize_example(x, y): tokens = ciseau.tokenize(" ".join(w for w in x), normalize_ascii=False) out_y = [] regular_cursor = 0 tokens_length_total = 0 regular_length_total = len(x[regular_cursor]) + 1 if len(x) > 0 else 0 if regular_cursor + 1 == len(x): regular_length_total -= 1 for i in range(len(tokens)): tokens_length_total = tokens_length_total + len(tokens[i]) while regular_length_total < tokens_length_total: regular_cursor += 1 regular_length_total = regular_length_total + len(x[regular_cursor]) + 1 if regular_cursor + 1 == len(x): regular_length_total -= 1 out_y.append(y[regular_cursor]) assert(regular_cursor + 1 == len(x)), "error with %r" % (x,) return ([tok.rstrip() for tok in tokens], out_y) def convert_lines_to_examples(lines, comment, ignore_value, column_indices, x_column, empty_column, retokenize=False): examples = [] x = [] y = [] for line in lines: if len(line) == 0 or (comment is not None and line.startswith(comment)): if len(x) > 0: if not all(row == empty_column for row in y): examples.append((x, y)) x = [] y = [] else: cols = line.split("\t") x.append(cols[x_column]) if len(cols) == 1: y.append(empty_column) else: if ignore_value is not None: y.append( tuple( cols[col_index] if col_index is not None and cols[col_index] != ignore_value else None for col_index in column_indices ) ) else: y.append( tuple( cols[col_index] if col_index is not None else None for col_index in column_indices ) ) if len(x) > 0 and not all(row == empty_column for row in y): examples.append((x, y)) if retokenize: examples = [retokenize_example(x, y) for x, y in examples] return examples def load_tsv(path, x_column, y_columns, objective_names, comment, ignore_value, retokenize): """" Deprecated method for loading a tsv file as a training/test set for a model. Arguments: ---------- path: str, location of tsv file x_column: int y_columns: list<dict>, objectives in this file along with their column. (e.g. `y_columns=[{"objective": "POS", "column": 2}, ...])`) objective_names: name of all desired columns comment: line beginning indicating it's okay to skip ignore_value: label value that should be treated as missing retokenize: run tokenizer again. Returns ------- list<tuple> : examples loaded into memory Note: can use a lot of memory since entire file is loaded. """ objective2column = {col['objective']: col['column'] for col in y_columns} column_indices = [objective2column.get(name, None) for name in objective_names] empty_column = tuple(None for _ in objective_names) if all(col_index is None for col_index in column_indices): return [] with open(path, "rt") as fin: lines = fin.read().splitlines() return convert_lines_to_examples(lines, ignore_value=ignore_value, empty_column=empty_column, x_column=x_column, column_indices=column_indices, comment=comment, retokenize=retokenize) class RandomizableDataset(object): def set_rng(self, rng): self.rng = rng def set_randomize(self, randomize): self.randomize = randomize def set_ignore_y(self, ignore): self.ignore_y = ignore class TSVDataset(RandomizableDataset): _fhandle = None _fhandle_position = 0 _examples = None _example_indices = None _example_index = 0 _eof = False ignore_y = False def __init__(self, path, x_column, y_columns, objective_names, comment, ignore_value, retokenize=False, chunksize=50000000, randomize=False, rng=None): """" Arguments: ---------- path: str, location of tsv file x_column: int y_columns: list<dict>, objectives in this file along with their column. (e.g. `y_columns=[{"objective": "POS", "column": 2}, ...])`) objective_names: name of all desired columns comment: line beginning indicating it's okay to skip ignore_value: label value that should be treated as missing chunksize: how many bytes to read from the file at a time. rng: numpy RandomState retokenize: run tokenizer on x again. """ self.path = path self.randomize = randomize self.x_column = x_column self.y_columns = y_columns self.objective_names = objective_names self.comment = comment self.ignore_value = ignore_value self.retokenize = retokenize self.chunksize = chunksize if rng is None: rng = np.random.RandomState(0) self.rng = rng # column picking setup: objective2column = {col['objective']: col['column'] for col in y_columns} self.column_indices = [objective2column.get(name, None) for name in objective_names] self.empty_column = tuple(None for _ in objective_names) if all(col_index is None for col_index in self.column_indices): self.length = 0 else: self._compute_length() def _signature(self): try: file_sha1sum = subprocess.check_output( ["sha1sum", self.path], universal_newlines=True ).split(" ")[0] except FileNotFoundError: file_sha1sum = subprocess.check_output( ["shasum", self.path], universal_newlines=True ).split(" ")[0] sorted_cols = list( map( str, sorted( [col for col in self.column_indices if col is not None] ) ) ) return "-".join([file_sha1sum] + sorted_cols) def _compute_length(self): length_file = ( splitext(self.path)[0] + "-length-" + self._signature() + ".txt" ) if exists(length_file): with open(length_file, "rt") as fin: total = int(fin.read()) else: total = 0 while True: total += self._count_examples() if self._eof: break with open(length_file, "wt") as fout: fout.write(str(total) + "\n") self.length = total def __len__(self): return self.length def close(self): if self._fhandle is not None: self._fhandle.close() self._fhandle = None self._fhandle_position = 0 self._eof = False self._examples = None self._example_indices = None def __del__(self): self.close() def _read_file_until_newline(self): if self._fhandle is None: self._fhandle = open(self.path, "rb") if self._eof: self._fhandle_position = 0 self._fhandle.seek(0) self._eof = False read_chunk = None while True: new_read_chunk = self._fhandle.read(self.chunksize) if read_chunk is None: read_chunk = new_read_chunk else: read_chunk += new_read_chunk if len(new_read_chunk) < self.chunksize: del new_read_chunk self._fhandle_position += len(read_chunk) self._eof = True break else: del new_read_chunk newline_pos = read_chunk.rfind(b"\n\n") if newline_pos != -1: # move to last line end position (so that we don't get # half an example.) self._fhandle.seek(self._fhandle_position + newline_pos + 2) self._fhandle_position += newline_pos + 2 read_chunk = read_chunk[:newline_pos] break return read_chunk def _count_examples(self): read_chunk = self._read_file_until_newline() return count_examples( read_chunk.decode("utf-8").splitlines(), ignore_value=self.ignore_value, column_indices=self.column_indices, comment=self.comment ) def _load_examples(self): read_chunk = self._read_file_until_newline() if self._examples is not None: del self._examples self._examples = convert_lines_to_examples( read_chunk.decode("utf-8").splitlines(), ignore_value=self.ignore_value, empty_column=self.empty_column, x_column=self.x_column, column_indices=self.column_indices, comment=self.comment, retokenize=self.retokenize ) self._example_indices = np.arange(len(self._examples)) if self.randomize: # access loaded data randomly: self.rng.shuffle(self._example_indices) self._example_index = 0 def __getitem__(self, index): """Retrieve the next example (index is ignored)""" if index >= self.length: raise StopIteration() if self._example_indices is None or self._example_index == len(self._example_indices): self._load_examples() while len(self._examples) == 0: self._load_examples() if len(self._examples) > 0: break if self._eof: raise StopIteration() ex = self._examples[self._example_indices[self._example_index]] self._example_index += 1 return ex def set_randomize(self, randomize): if randomize != self.randomize: self.randomize = randomize def close(self): if self._fhandle is not None: self._fhandle.close() self._fhandle = None class OracleClassification(object): def __init__(self, classes, classification, path): self.classes = classes self.classification = classification self.path = path self.contains_other = self.classes[-1] == "other" def classify(self, index): return self.classification[index] def load_oracle_classification(path): with open(join(path, "classes.txt"), "rt", encoding="UTF-8") as fin: classes = fin.read().splitlines() classification = np.load(join(path, "classification.npy")) return OracleClassification(classes, classification, path) class ClassificationHandler(object): def __init__(self, wikidata_path, classification_path): self.classification_path = classification_path _, self.name2index = load_wikidata_ids(wikidata_path, verbose=False) self.classifiers = {} def get_classifier(self, name): if name not in self.classifiers: self.classifiers[name] = load_oracle_classification( join(self.classification_path, name) ) return self.classifiers[name] class H5Dataset(RandomizableDataset): handle_open = False ignore_y = False _max_generated_example = 0 _min_generated_example = 0 def __init__(self, path, x_column, y_columns, objective_names, classifications, ignore_value, randomize=False, rng=None): self.x_column = str(x_column) self.y_columns = y_columns self.ignore_value = ignore_value self.objective_names = objective_names self.randomize = randomize if rng is None: rng = np.random.RandomState(0) self.rng = rng self._classifications = classifications self.handle = h5py.File(path, "r") self.path = path self.handle_open = True self.length = len(self.handle[self.x_column]) self.chunksize = self.handle[self.x_column].chunks[0] self._example_indices = None objective2column = { col['objective']: ( str(col['column']), self._classifications.get_classifier(col['classification']) ) for col in y_columns } if self.ignore_value is not None: for _, classifier in objective2column.values(): if self.ignore_value in classifier.classes: classifier.classes[classifier.classes.index(self.ignore_value)] = None self.column2col_indices = {} for col_idx, name in enumerate(self.objective_names): if name not in objective2column: continue column, classifier = objective2column[name] if column not in self.column2col_indices: self.column2col_indices[column] = [(classifier, col_idx)] else: self.column2col_indices[column].append((classifier, col_idx)) def close(self): if self.handle_open: self.handle.close() self.handle_open = False def __del__(self): self.close() def __len__(self): return self.length def _build_examples(self, index): x = [x_chunk.split("\n") for x_chunk in self.handle[self.x_column][index:index + self.chunksize]] y = [[[None for k in range(len(self.objective_names))] for j in range(len(x[i]))] for i in range(len(x))] if not self.ignore_y: for handle_column, col_content in self.column2col_indices.items(): col_ids = [[self._classifications.name2index[name] if name != "" else None for name in y_chunk.split("\n")] for y_chunk in self.handle[handle_column][index:index + self.chunksize]] for i in range(len(col_ids)): for j, idx in enumerate(col_ids[i]): if idx is not None: for classifier, k in col_content: y[i][j][k] = classifier.classify(idx) return x, y def set_randomize(self, randomize): if self.randomize != randomize: self.randomize = randomize if self._max_generated_example != self._min_generated_example: self.xorder = np.arange(self._min_generated_example, self._max_generated_example) self.rng.shuffle(self.xorder) def __getitem__(self, index): if index >= len(self): raise StopIteration() if self.randomize: if self._example_indices is None or index == 0: self._example_indices = np.arange(0, len(self), self.chunksize) self.rng.shuffle(self._example_indices) # transformed index: index = (self._example_indices[index // self.chunksize] + (index % self.chunksize)) % len(self) if index < self._min_generated_example or index >= self._max_generated_example: self.x, self.y = self._build_examples(index) # store bounds of generated data: self._min_generated_example = index self._max_generated_example = index + len(self.x) if self.randomize: self.xorder = np.arange(self._min_generated_example, self._max_generated_example) self.rng.shuffle(self.xorder) if self.randomize: index = self.xorder[index - self._min_generated_example] return self.x[index - self._min_generated_example], self.y[index - self._min_generated_example] class CombinedDataset(object): _which_dataset = None _dataset_counters = None def set_rng(self, rng): self.rng = rng for dataset in self.datasets: dataset.rng = rng def set_randomize(self, randomize): self.randomize = randomize for dataset in self.datasets: dataset.set_randomize(randomize) def set_ignore_y(self, ignore): for dataset in self.datasets: dataset.set_ignore_y(ignore) def close(self): for dataset in self.datasets: dataset.close() def _build_which_dataset(self): self._which_dataset = np.empty(self.length, dtype=np.int16) self._dataset_counters = np.zeros(len(self.datasets), dtype=np.int64) offset = 0 for index, dataset in enumerate(self.datasets): # ensure each dataset is seen as much as its content # says: self._which_dataset[offset:offset + len(dataset)] = index offset += len(dataset) def __getitem__(self, index): if index == 0: if self.randomize: # visit datasets in random orders: self.rng.shuffle(self._which_dataset) self._dataset_counters[:] = 0 which = self._which_dataset[index] idx = self._dataset_counters[which] self._dataset_counters[which] += 1 return self.datasets[which][idx] def __init__(self, datasets, rng=None, randomize=False): self.datasets = datasets if rng is None: rng = np.random.RandomState(0) self.set_rng(rng) self.set_randomize(randomize) self.length = sum(len(dataset) for dataset in datasets) self._build_which_dataset() def __len__(self): return self.length
import queue import threading def prefetch_generator(generator, to_fetch=10): q = queue.Queue(maxsize=to_fetch) def thread_worker(queue, gen): for val in gen: queue.put(val) queue.put(None) t = threading.Thread(target=thread_worker, args=(q, generator)) some_exception = None try: t.start() while True: job = q.get() if job is None: break yield job del job # print("q.qsize() %d" % (q.qsize(),), flush=True) except Exception as e: some_exception = e finally: if some_exception is not None: raise some_exception t.join() del t
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
29

Models trained or fine-tuned on kye/all-openai-github-code