Dataset Viewer
Auto-converted to Parquet
python_code
stringlengths
0
83.2k
from charformer_pytorch.charformer_pytorch import GBST
import math from math import gcd import functools import torch import torch.nn.functional as F from torch import nn, einsum from einops import rearrange, reduce, repeat from einops.layers.torch import Rearrange # helpers def exists(val): return val is not None def lcm(*numbers): return int(functools.reduce(lambda x, y: int((x * y) / gcd(x, y)), numbers, 1)) def masked_mean(tensor, mask, dim = -1): diff_len = len(tensor.shape) - len(mask.shape) mask = mask[(..., *((None,) * diff_len))] tensor.masked_fill_(~mask, 0.) total_el = mask.sum(dim = dim) mean = tensor.sum(dim = dim) / total_el.clamp(min = 1.) mean.masked_fill_(total_el == 0, 0.) return mean def next_divisible_length(seqlen, multiple): return math.ceil(seqlen / multiple) * multiple def pad_to_multiple(tensor, multiple, *, seq_dim, dim = -1, value = 0.): seqlen = tensor.shape[seq_dim] length = next_divisible_length(seqlen, multiple) if length == seqlen: return tensor remainder = length - seqlen pad_offset = (0,) * (-1 - dim) * 2 return F.pad(tensor, (*pad_offset, 0, remainder), value = value) # helper classes class Pad(nn.Module): def __init__(self, padding, value = 0.): super().__init__() self.padding = padding self.value = value def forward(self, x): return F.pad(x, self.padding, value = self.value) class DepthwiseConv1d(nn.Module): def __init__(self, dim_in, dim_out, kernel_size): super().__init__() self.conv = nn.Conv1d(dim_in, dim_out, kernel_size, groups = dim_in) self.proj_out = nn.Conv1d(dim_out, dim_out, 1) def forward(self, x): x = self.conv(x) return self.proj_out(x) # main class class GBST(nn.Module): def __init__( self, *, num_tokens, dim, max_block_size = None, blocks = None, downsample_factor = 4, score_consensus_attn = True ): super().__init__() assert exists(max_block_size) ^ exists(blocks), 'either max_block_size or blocks are given on initialization' self.token_emb = nn.Embedding(num_tokens, dim) if exists(blocks): assert isinstance(blocks, tuple), 'blocks must be a tuple of block sizes' self.blocks = tuple(map(lambda el: el if isinstance(el, tuple) else (el, 0), blocks)) assert all([(offset < block_size) for block_size, offset in self.blocks]), 'offset must be always smaller than the block size' max_block_size = max(list(map(lambda t: t[0], self.blocks))) else: self.blocks = tuple(map(lambda el: (el, 0), range(1, max_block_size + 1))) self.pos_conv = nn.Sequential( Pad((0, 0, 0, max_block_size - 1)), Rearrange('b n d -> b d n'), DepthwiseConv1d(dim, dim, kernel_size = max_block_size), Rearrange('b d n -> b n d') ) self.score_fn = nn.Sequential( nn.Linear(dim, 1), Rearrange('... () -> ...') ) self.score_consensus_attn = score_consensus_attn assert downsample_factor <= max_block_size, 'final downsample factor should be less than the maximum block size' self.block_pad_multiple = lcm(*[block_size for block_size, _ in self.blocks]) self.downsample_factor = downsample_factor def forward(self, x, mask = None): b, n, block_mult, ds_factor, device = *x.shape, self.block_pad_multiple, self.downsample_factor, x.device m = next_divisible_length(n, ds_factor) # get character token embeddings x = self.token_emb(x) # do a conv to generate the positions for the tokens x = self.pos_conv(x) # pad both sequence and mask to length visibile by all block sizes from 0 to max block size x = pad_to_multiple(x, block_mult, seq_dim = 1, dim = -2) if exists(mask): mask = pad_to_multiple(mask, block_mult, seq_dim = 1, dim = -1, value = False) # compute representations for all blocks by mean pooling block_masks = [] block_reprs = [] for block_size, offset in self.blocks: # clone the input sequence as well as the mask, in order to pad for offsets block_x = x.clone() if exists(mask): block_mask = mask.clone() # pad for offsets, if needed need_padding = offset > 0 if need_padding: left_offset, right_offset = (block_size - offset), offset block_x = F.pad(block_x, (0, 0, left_offset, right_offset), value = 0.) if exists(mask): block_mask = F.pad(block_mask, (left_offset, right_offset), value = False) # group input sequence into blocks blocks = rearrange(block_x, 'b (n m) d -> b n m d', m = block_size) # either mean pool the blocks, or do a masked mean if exists(mask): mask_blocks = rearrange(block_mask, 'b (n m) -> b n m', m = block_size) block_repr = masked_mean(blocks, mask_blocks, dim = -2) else: block_repr = blocks.mean(dim = -2) # append the block representations, as well as the pooled block masks block_repr = repeat(block_repr, 'b n d -> b (n m) d', m = block_size) if need_padding: block_repr = block_repr[:, left_offset:-right_offset] block_reprs.append(block_repr) if exists(mask): mask_blocks = torch.any(mask_blocks, dim = -1) mask_blocks = repeat(mask_blocks, 'b n -> b (n m)', m = block_size) if need_padding: mask_blocks = mask_blocks[:, left_offset:-right_offset] block_masks.append(mask_blocks) # stack all the block representations block_reprs = torch.stack(block_reprs, dim = 2) # calculate scores and softmax across the block size dimension scores = self.score_fn(block_reprs) if exists(mask): block_masks = torch.stack(block_masks, dim = 2) max_neg_value = -torch.finfo(scores.dtype).max scores = scores.masked_fill(~block_masks, max_neg_value) scores = scores.softmax(dim = 2) # do the cheap consensus attention, eq (5) in paper if self.score_consensus_attn: score_sim = einsum('b i d, b j d -> b i j', scores, scores) if exists(mask): cross_mask = rearrange(mask, 'b i -> b i ()') * rearrange(mask, 'b j -> b () j') max_neg_value = -torch.finfo(score_sim.dtype).max score_sim = score_sim.masked_fill(~cross_mask, max_neg_value) score_attn = score_sim.softmax(dim = -1) scores = einsum('b i j, b j m -> b i m', score_attn, scores) # multiply the block representations by the position-wise scores scores = rearrange(scores, 'b n m -> b n m ()') x = (block_reprs * scores).sum(dim = 2) # truncate to length divisible by downsample factor x = x[:, :m] if exists(mask): mask = mask[:, :m] # final mean pooling downsample x = rearrange(x, 'b (n m) d -> b n m d', m = ds_factor) if exists(mask): mask = rearrange(mask, 'b (n m) -> b n m', m = ds_factor) x = masked_mean(x, mask, dim = 2) mask = torch.any(mask, dim = -1) else: x = x.mean(dim = -2) return x, mask
""" Bonito Aligner """ from threading import Thread from functools import partial from mappy import Aligner, ThreadBuffer from bonito.multiprocessing import ThreadMap, ProcessMap def align_map(aligner, sequences, n_thread=4): """ Align `sequences` with minimap using `n_thread` threads. """ return ThreadMap(partial(MappyWorker, aligner), sequences, n_thread) class MappyWorker(Thread): """ Process that reads items from an input_queue, applies a func to them and puts them on an output_queue """ def __init__(self, aligner, input_queue=None, output_queue=None): super().__init__() self.aligner = aligner self.input_queue = input_queue self.output_queue = output_queue def run(self): thrbuf = ThreadBuffer() while True: item = self.input_queue.get() if item is StopIteration: self.output_queue.put(item) break k, v = item mapping = next(self.aligner.map(v['sequence'], buf=thrbuf, MD=True), None) self.output_queue.put((k, {**v, 'mapping': mapping}))
""" Bonito Fast5 Utils """ import sys from glob import glob from pathlib import Path from functools import partial from multiprocessing import Pool from itertools import chain, starmap import torch import numpy as np from scipy.signal import find_peaks from ont_fast5_api.fast5_interface import get_fast5_file class Read: def __init__(self, read, filename): self.read_id = read.read_id self.filename = filename.name self.run_id = read.get_run_id() if type(self.run_id) in (bytes, np.bytes_): self.run_id = self.run_id.decode() read_attrs = read.handle[read.raw_dataset_group_name].attrs channel_info = read.handle[read.global_key + 'channel_id'].attrs self.offset = int(channel_info['offset']) self.sampling_rate = channel_info['sampling_rate'] self.scaling = channel_info['range'] / channel_info['digitisation'] self.mux = read_attrs['start_mux'] self.channel = channel_info['channel_number'] if type(self.channel) in (bytes, np.bytes_): self.channel = self.channel.decode() self.start = read_attrs['start_time'] / self.sampling_rate self.duration = read_attrs['duration'] / self.sampling_rate raw = read.handle[read.raw_dataset_name][:] scaled = np.array(self.scaling * (raw + self.offset), dtype=np.float32) trim_start, _ = trim(scaled[:8000]) scaled = scaled[trim_start:] self.template_start = self.start + (1 / self.sampling_rate) * trim_start self.template_duration = self.duration - (1 / self.sampling_rate) * trim_start if len(scaled) > 8000: med, mad = med_mad(scaled) self.signal = (scaled - med) / mad else: self.signal = norm_by_noisiest_section(scaled) def __repr__(self): return "Read('%s')" % self.read_id class ReadChunk: def __init__(self, read, chunk, i, n): self.read_id = "%s:%i:%i" % (read.read_id, i, n) self.run_id = read.run_id self.filename = read.filename self.mux = read.mux self.channel = read.channel self.start = read.start self.duration = read.duration self.template_start = self.start self.template_duration = self.duration self.signal = chunk def __repr__(self): return "ReadChunk('%s')" % self.read_id def trim(signal, window_size=40, threshold_factor=2.4, min_elements=3): min_trim = 10 signal = signal[min_trim:] med, mad = med_mad(signal[-(window_size*100):]) threshold = med + mad * threshold_factor num_windows = len(signal) // window_size seen_peak = False for pos in range(num_windows): start = pos * window_size end = start + window_size window = signal[start:end] if len(window[window > threshold]) > min_elements or seen_peak: seen_peak = True if window[-1] > threshold: continue return min(end + min_trim, len(signal)), len(signal) return min_trim, len(signal) def med_mad(x, factor=1.4826): """ Calculate signal median and median absolute deviation """ med = np.median(x) mad = np.median(np.absolute(x - med)) * factor return med, mad def norm_by_noisiest_section(signal, samples=100, threshold=6.0): """ Normalise using the medmad from the longest continuous region where the noise is above some threshold relative to the std of the full signal. """ threshold = signal.std() / threshold noise = np.ones(signal.shape) for idx in np.arange(signal.shape[0] // samples): window = slice(idx * samples, (idx + 1) * samples) noise[window] = np.where(signal[window].std() > threshold, 1, 0) # start and end low for peak finding noise[0] = 0; noise[-1] = 0 peaks, info = find_peaks(noise, width=(None, None)) if len(peaks): widest = np.argmax(info['widths']) med, mad = med_mad(signal[info['left_bases'][widest]: info['right_bases'][widest]]) else: med, mad = med_mad(signal) return (signal - med) / mad def read_chunks(read, chunksize=4000, overlap=400): """ Split a Read in fixed sized ReadChunks """ if len(read.signal) < chunksize: return _, offset = divmod(len(read.signal) - chunksize, chunksize - overlap) signal = torch.from_numpy(read.signal[offset:]) blocks = signal.unfold(0, chunksize, chunksize - overlap) for i, block in enumerate(blocks): yield ReadChunk(read, block.numpy(), i+1, blocks.shape[0]) def get_raw_data(filename, read_ids=None, skip=False): """ Get the raw signal and read id from the fast5 files """ with get_fast5_file(filename, 'r') as f5_fh: for read_id in f5_fh.get_read_ids(): if read_ids is None or (read_id in read_ids) ^ skip: yield Read(f5_fh.get_read(read_id), filename) def get_read_ids(filename, read_ids=None, skip=False): """ Get all the read_ids from the file `filename`. """ with get_fast5_file(filename, 'r') as f5_fh: ids = [(filename, rid) for rid in f5_fh.get_read_ids()] if read_ids is None: return ids return [rid for rid in ids if (rid[1] in read_ids) ^ skip] def get_raw_data_for_read(info): """ Get the raw signal from the fast5 file for a given filename, read_id pair """ filename, read_id = info with get_fast5_file(filename, 'r') as f5_fh: return Read(f5_fh.get_read(read_id), filename) def get_reads(directory, read_ids=None, skip=False, max_read_size=0, n_proc=1, recursive=False, cancel=None): """ Get all reads in a given `directory`. """ pattern = "**/*.fast5" if recursive else "*.fast5" get_filtered_reads = partial(get_read_ids, read_ids=read_ids, skip=skip) with Pool(n_proc) as pool: for job in chain(pool.imap(get_filtered_reads, (Path(x) for x in glob(directory + "/" + pattern, recursive=True)))): for read in pool.imap(get_raw_data_for_read, job): if max_read_size > 0 and len(read.signal) > max_read_size: sys.stderr.write( "> skipping long read %s (%s samples)\n" % (read.read_id, len(read.signal)) ) continue yield read if cancel is not None and cancel.is_set(): return
""" Bonito utils """ import os import re import sys import random from glob import glob from itertools import groupby from operator import itemgetter from importlib import import_module from collections import deque, defaultdict, OrderedDict import toml import torch import parasail import numpy as np from torch.cuda import get_device_capability try: from claragenomics.bindings import cuda from claragenomics.bindings.cudapoa import CudaPoaBatch except ImportError: pass __dir__ = os.path.dirname(os.path.realpath(__file__)) __data__ = os.path.join(__dir__, "data") __models__ = os.path.join(__dir__, "models") __configs__ = os.path.join(__dir__, "models/configs") split_cigar = re.compile(r"(?P<len>\d+)(?P<op>\D+)") default_data = os.path.join(__data__, "dna_r9.4.1") default_config = os.path.join(__configs__, "[email protected]") def init(seed, device): """ Initialise random libs and setup cudnn https://pytorch.org/docs/stable/notes/randomness.html """ random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) if device == "cpu": return torch.backends.cudnn.enabled = True torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False assert(torch.cuda.is_available()) def permute(x, input_layout, output_layout): """ Permute `x` from `input_layout` to `output_layout` >>> permute(x, 'TNC', 'NTC') """ if input_layout == output_layout: return x return x.permute(*[input_layout.index(x) for x in output_layout]) def concat(xs, dim=0): """ Type agnostic concat. """ if isinstance(xs[0], torch.Tensor): return torch.cat(xs, dim=dim) elif isinstance(xs[0], np.ndarray): return np.concatenate(xs, axis=dim) elif isinstance(xs[0], list): return [x for l in xs for x in l] elif isinstance(xs[0], str): return ''.join(xs) elif isinstance(xs[0], dict): return {k: concat([x[k] for x in xs], dim) for k in xs[0].keys()} else: raise TypeError def select_range(x, start, end, dim=0): """ Type agnostic range select. """ if isinstance(x, dict): return {k: select_range(v, start, end, dim) for (k, v) in x.items()} if dim == 0 or isinstance(x, list): return x[start:end] return x[(*(slice(None),)*dim, slice(start, end))] def size(x, dim=0): """ Type agnostic size. """ if hasattr(x, 'shape'): return x.shape[dim] elif dim == 0: return len(x) raise TypeError def half_supported(): """ Returns whether FP16 is support on the GPU """ try: return get_device_capability()[0] >= 7 except: return False def phred(prob, scale=1.0, bias=0.0): """ Converts `prob` into a ascii encoded phred quality score between 0 and 40. """ p = max(1 - prob, 1e-4) q = -10 * np.log10(p) * scale + bias return chr(int(np.round(q) + 33)) def mean_qscore_from_qstring(qstring): """ Convert qstring into a mean qscore """ if len(qstring) == 0: return 0.0 err_probs = [10**((ord(c) - 33) / -10) for c in qstring] mean_err = np.mean(err_probs) return -10 * np.log10(max(mean_err, 1e-4)) def decode_ref(encoded, labels): """ Convert a integer encoded reference into a string and remove blanks """ return ''.join(labels[e] for e in encoded if e) def column_to_set(filename, idx=0, skip_header=False): """ Pull a column from a file and return a set of the values. """ if filename and os.path.isfile(filename): with open(filename, 'r') as tsv: if skip_header: next(tsv) return {line.strip().split()[idx] for line in tsv.readlines()} def chunk(signal, chunksize, overlap): """ Convert a read into overlapping chunks before calling """ T = signal.shape[0] if chunksize == 0: chunks = signal[None, :] elif T < chunksize: chunks = torch.nn.functional.pad(signal, (chunksize - T, 0))[None, :] else: stub = (T - overlap) % (chunksize - overlap) chunks = signal[stub:].unfold(0, chunksize, chunksize - overlap) if stub > 0: chunks = torch.cat([signal[None, :chunksize], chunks], dim=0) return chunks.unsqueeze(1) def stitch(chunks, chunksize, overlap, length, stride, reverse=False): """ Stitch chunks together with a given overlap """ if chunks.shape[0] == 1: return chunks.squeeze(0) semi_overlap = overlap // 2 start, end = semi_overlap // stride, (chunksize - semi_overlap) // stride stub = (length - overlap) % (chunksize - overlap) first_chunk_end = (stub + semi_overlap) // stride if (stub > 0) else end if reverse: chunks = list(chunks) return concat([ chunks[-1][:-start], *(x[-end:-start] for x in reversed(chunks[1:-1])), chunks[0][-first_chunk_end:] ]) else: return concat([ chunks[0, :first_chunk_end], *chunks[1:-1, start:end], chunks[-1, start:] ]) def batchify(items, batchsize, dim=0): """ Batch up items up to `batch_size`. """ stack, pos = [], 0 for k, v in items: breaks = range(batchsize - pos, size(v, dim), batchsize) for start, end in zip([0, *breaks], [*breaks, size(v, dim)]): sub_batch = select_range(v, start, end, dim) stack.append(((k, (pos, pos + end - start)), sub_batch)) if pos + end - start == batchsize: ks, vs = zip(*stack) yield ks, concat(vs, dim) stack, pos = [], 0 else: pos += end - start if len(stack): ks, vs = zip(*stack) yield ks, concat(vs, dim) def unbatchify(batches, dim=0): """ Reconstruct batches. """ batches = ( (k, select_range(v, start, end, dim)) for sub_batches, v in batches for k, (start, end) in sub_batches ) return ( (k, concat([v for (k, v) in group], dim)) for k, group in groupby(batches, itemgetter(0)) ) def load_data(limit=None, directory=None): """ Load the training data """ if directory is None: directory = default_data chunks = np.load(os.path.join(directory, "chunks.npy"), mmap_mode='r') targets = np.load(os.path.join(directory, "references.npy"), mmap_mode='r') lengths = np.load(os.path.join(directory, "reference_lengths.npy"), mmap_mode='r') indices = os.path.join(directory, "indices.npy") if os.path.exists(indices): idx = np.load(indices, mmap_mode='r') idx = idx[idx < lengths.shape[0]] if limit: idx = idx[:limit] return chunks[idx, :], targets[idx, :], lengths[idx] if limit: chunks = chunks[:limit] targets = targets[:limit] lengths = lengths[:limit] return np.array(chunks), np.array(targets), np.array(lengths) def load_symbol(config, symbol): """ Dynamic load a symbol from module specified in model config. """ if not isinstance(config, dict): if not os.path.isdir(config) and os.path.isdir(os.path.join(__models__, config)): dirname = os.path.join(__models__, config) else: dirname = config config = toml.load(os.path.join(dirname, 'config.toml')) imported = import_module(config['model']['package']) return getattr(imported, symbol) def match_names(state_dict, model): keys_and_shapes = lambda state_dict: zip(*[ (k, s) for s, i, k in sorted([(v.shape, i, k) for i, (k, v) in enumerate(state_dict.items())]) ]) k1, s1 = keys_and_shapes(state_dict) k2, s2 = keys_and_shapes(model.state_dict()) assert s1 == s2 remap = dict(zip(k1, k2)) return OrderedDict([(k, remap[k]) for k in state_dict.keys()]) def load_model(dirname, device, weights=None, half=None, chunksize=0): """ Load a model from disk """ if not os.path.isdir(dirname) and os.path.isdir(os.path.join(__models__, dirname)): dirname = os.path.join(__models__, dirname) if not weights: # take the latest checkpoint weight_files = glob(os.path.join(dirname, "weights_*.tar")) if not weight_files: raise FileNotFoundError("no model weights found in '%s'" % dirname) weights = max([int(re.sub(".*_([0-9]+).tar", "\\1", w)) for w in weight_files]) device = torch.device(device) config = toml.load(os.path.join(dirname, 'config.toml')) weights = os.path.join(dirname, 'weights_%s.tar' % weights) Model = load_symbol(config, "Model") model = Model(config) state_dict = torch.load(weights, map_location=device) state_dict = {k2: state_dict[k1] for k1, k2 in match_names(state_dict, model).items()} new_state_dict = OrderedDict() for k, v in state_dict.items(): name = k.replace('module.', '') new_state_dict[name] = v model.load_state_dict(new_state_dict) if half is None: half = half_supported() if half: model = model.half() model.eval() model.to(device) return model def parasail_to_sam(result, seq): """ Extract reference start and sam compatible cigar string. :param result: parasail alignment result. :param seq: query sequence. :returns: reference start coordinate, cigar string. """ cigstr = result.cigar.decode.decode() first = re.search(split_cigar, cigstr) first_count, first_op = first.groups() prefix = first.group() rstart = result.cigar.beg_ref cliplen = result.cigar.beg_query clip = '' if cliplen == 0 else '{}S'.format(cliplen) if first_op == 'I': pre = '{}S'.format(int(first_count) + cliplen) elif first_op == 'D': pre = clip rstart = int(first_count) else: pre = '{}{}'.format(clip, prefix) mid = cigstr[len(prefix):] end_clip = len(seq) - result.end_query - 1 suf = '{}S'.format(end_clip) if end_clip > 0 else '' new_cigstr = ''.join((pre, mid, suf)) return rstart, new_cigstr def accuracy(ref, seq, balanced=False, min_coverage=0.0): """ Calculate the accuracy between `ref` and `seq` """ alignment = parasail.sw_trace_striped_32(seq, ref, 8, 4, parasail.dnafull) counts = defaultdict(int) q_coverage = len(alignment.traceback.query) / len(seq) r_coverage = len(alignment.traceback.ref) / len(ref) if r_coverage < min_coverage: return 0.0 _, cigar = parasail_to_sam(alignment, seq) for count, op in re.findall(split_cigar, cigar): counts[op] += int(count) if balanced: accuracy = (counts['='] - counts['I']) / (counts['='] + counts['X'] + counts['D']) else: accuracy = counts['='] / (counts['='] + counts['I'] + counts['X'] + counts['D']) return accuracy * 100 def print_alignment(ref, seq): """ Print the alignment between `ref` and `seq` """ alignment = parasail.sw_trace_striped_32(seq, ref, 8, 4, parasail.dnafull) print(alignment.traceback.ref) print(alignment.traceback.comp) print(alignment.traceback.query) print(" Score=%s" % alignment.score) return alignment.score def poa(groups, max_poa_sequences=100, gpu_mem_per_batch=0.9): """ Generate consensus for POA groups. Args: groups : A list of lists of sequences for which consensus is to be generated. """ free, total = cuda.cuda_get_mem_info(cuda.cuda_get_device()) gpu_mem_per_batch *= free batch = CudaPoaBatch(max_poa_sequences, gpu_mem_per_batch, stream=None, output_type="consensus") results = [] for i, group in enumerate(groups, start=1): group_status, seq_status = batch.add_poa_group(group) # Once batch is full, run POA processing if group_status == 1 or i == len(groups): batch.generate_poa() consensus, coverage, status = batch.get_consensus() results.extend(consensus) batch.reset() group_status, seq_status = batch.add_poa_group(group) return results
""" Bonito nn modules. """ import torch from torch import nn from torch.nn import Module from torch.nn.init import orthogonal_ layers = {} def register(layer): layer.name = layer.__name__.lower() layers[layer.name] = layer return layer register(torch.nn.ReLU) register(torch.nn.Tanh) @register class Swish(torch.nn.SiLU): pass @register class Serial(torch.nn.Sequential): def __init__(self, sublayers): super().__init__(*sublayers) def to_dict(self, include_weights=False): return { 'sublayers': [to_dict(layer, include_weights) for layer in self._modules.values()] } @register class Reverse(Module): def __init__(self, sublayers): super().__init__() self.layer = Serial(sublayers) if isinstance(sublayers, list) else sublayers def forward(self, x): return self.layer(x.flip(0)).flip(0) def to_dict(self, include_weights=False): if isinstance(self.layer, Serial): return self.layer.to_dict(include_weights) else: return {'sublayers': to_dict(self.layer, include_weights)} @register class Convolution(Module): def __init__(self, insize, size, winlen, stride=1, padding=0, bias=True, activation=None): super().__init__() self.conv = torch.nn.Conv1d(insize, size, winlen, stride=stride, padding=padding, bias=bias) self.activation = layers.get(activation, lambda: activation)() def forward(self, x): if self.activation is not None: return self.activation(self.conv(x)) return self.conv(x) def to_dict(self, include_weights=False): res = { "insize": self.conv.in_channels, "size": self.conv.out_channels, "bias": self.conv.bias is not None, "winlen": self.conv.kernel_size[0], "stride": self.conv.stride[0], "padding": self.conv.padding[0], "activation": self.activation.name if self.activation else None, } if include_weights: res['params'] = { 'W': self.conv.weight, 'b': self.conv.bias if self.conv.bias is not None else [] } return res @register class LinearCRFEncoder(Module): def __init__(self, insize, n_base, state_len, bias=True, scale=None, activation=None, blank_score=None): super().__init__() self.n_base = n_base self.state_len = state_len self.blank_score = blank_score size = (n_base + 1) * n_base**state_len if blank_score is None else n_base**(state_len + 1) self.linear = torch.nn.Linear(insize, size, bias=bias) self.activation = layers.get(activation, lambda: activation)() self.scale = scale def forward(self, x): scores = self.linear(x) if self.activation is not None: scores = self.activation(scores) if self.scale is not None: scores = scores * self.scale if self.blank_score is not None: T, N, C = scores.shape s = torch.tensor(self.blank_score, device=scores.device, dtype=scores.dtype) scores = torch.cat([s.expand(T, N, C//self.n_base, 1), scores.reshape(T, N, C//self.n_base, self.n_base)], axis=-1).reshape(T, N, -1) return scores def to_dict(self, include_weights=False): res = { 'insize': self.linear.in_features, 'n_base': self.n_base, 'state_len': self.state_len, 'bias': self.linear.bias is not None, 'scale': self.scale, 'activation': self.activation.name if self.activation else None, 'blank_score': self.blank_score, } if include_weights: res['params'] = { 'W': self.linear.weight, 'b': self.linear.bias if self.linear.bias is not None else [] } return res @register class SHA(Module): def __init__(self, dim): super().__init__() self.scale = dim ** -0.5 self.to_q = nn.Sequential(nn.Linear(dim, dim), nn.LayerNorm(dim)) def forward(self, x, kv): x = x.transpose(0, 1) kv = kv.transpose(0, 1) q = self.to_q(x) sim = torch.matmul(q, kv.transpose(-1, -2)) * self.scale attn = sim.softmax(dim=-1) out = torch.matmul(attn, kv) return out.transpose(0, 1) @register class SHABlock(Module): """ https://arxiv.org/abs/1911.11423 """ def __init__(self, dim, ff_mult=4): super().__init__() self.attn_query_norm = nn.LayerNorm(dim) self.attn_kv_norm = nn.LayerNorm(dim) self.attn = SHA(dim=dim) self.ff_residual_norm = nn.LayerNorm(dim) self.ff = Serial([ nn.LayerNorm(dim), nn.Linear(dim, dim * ff_mult), nn.GELU(), nn.Linear(dim * ff_mult, dim), ]) def forward(self, x): kv = self.attn_kv_norm(x) x = self.attn_query_norm(x) x = self.attn(x, kv) + x x = self.ff(x) + self.ff_residual_norm(x) return x @register class Permute(Module): def __init__(self, dims): super().__init__() self.dims = dims def forward(self, x): return x.permute(*self.dims) def to_dict(self, include_weights=False): return {'dims': self.dims} def truncated_normal(size, dtype=torch.float32, device=None, num_resample=5): x = torch.empty(size + (num_resample,), dtype=torch.float32, device=device).normal_() i = ((x < 2) & (x > -2)).max(-1, keepdim=True)[1] return torch.clamp_(x.gather(-1, i).squeeze(-1), -2, 2) class RNNWrapper(Module): def __init__( self, rnn_type, *args, reverse=False, orthogonal_weight_init=True, disable_state_bias=True, bidirectional=False, **kwargs ): super().__init__() if reverse and bidirectional: raise Exception("'reverse' and 'bidirectional' should not both be set to True") self.reverse = reverse self.rnn = rnn_type(*args, bidirectional=bidirectional, **kwargs) self.init_orthogonal(orthogonal_weight_init) self.init_biases() if disable_state_bias: self.disable_state_bias() def forward(self, x): if self.reverse: x = x.flip(0) y, h = self.rnn(x) if self.reverse: y = y.flip(0) return y def init_biases(self, types=('bias_ih',)): for name, param in self.rnn.named_parameters(): if any(k in name for k in types): with torch.no_grad(): param.set_(0.5*truncated_normal(param.shape, dtype=param.dtype, device=param.device)) def init_orthogonal(self, types=True): if not types: return if types == True: types = ('weight_ih', 'weight_hh') for name, x in self.rnn.named_parameters(): if any(k in name for k in types): for i in range(0, x.size(0), self.rnn.hidden_size): orthogonal_(x[i:i+self.rnn.hidden_size]) def disable_state_bias(self): for name, x in self.rnn.named_parameters(): if 'bias_hh' in name: x.requires_grad = False x.zero_() @register class LSTM(RNNWrapper): def __init__(self, size, insize, bias=True, reverse=False): super().__init__(torch.nn.LSTM, size, insize, bias=bias, reverse=reverse) def to_dict(self, include_weights=False): res = { 'size': self.rnn.hidden_size, 'insize': self.rnn.input_size, 'bias': self.rnn.bias, 'reverse': self.reverse, } if include_weights: res['params'] = { 'iW': self.rnn.weight_ih_l0.reshape(4, self.rnn.hidden_size, self.rnn.input_size), 'sW': self.rnn.weight_hh_l0.reshape(4, self.rnn.hidden_size, self.rnn.hidden_size), 'b': self.rnn.bias_ih_l0.reshape(4, self.rnn.hidden_size) } return res def to_dict(layer, include_weights=False): if hasattr(layer, 'to_dict'): return {'type': layer.name, **layer.to_dict(include_weights)} return {'type': layer.name} def from_dict(model_dict, layer_types=None): model_dict = model_dict.copy() if layer_types is None: layer_types = layers type_name = model_dict.pop('type') typ = layer_types[type_name] if 'sublayers' in model_dict: sublayers = model_dict['sublayers'] model_dict['sublayers'] = [ from_dict(x, layer_types) for x in sublayers ] if isinstance(sublayers, list) else from_dict(sublayers, layer_types) try: layer = typ(**model_dict) except Exception as e: raise Exception(f'Failed to build layer of type {typ} with args {model_dict}') from e return layer
""" Bonito Input/Output """ import os import sys import csv import pandas as pd from warnings import warn from threading import Thread from logging import getLogger from contextlib import contextmanager from os.path import realpath, splitext, dirname import numpy as np from mappy import revcomp import bonito from bonito.cli.convert import typical_indices logger = getLogger('bonito') class CSVLogger: def __init__(self, filename, sep=','): self.filename = str(filename) if os.path.exists(self.filename): with open(self.filename) as f: self.columns = csv.DictReader(f).fieldnames else: self.columns = None self.fh = open(self.filename, 'a', newline='') self.csvwriter = csv.writer(self.fh, delimiter=sep) self.count = 0 def set_columns(self, columns): if self.columns: raise Exception('Columns already set') self.columns = list(columns) self.csvwriter.writerow(self.columns) def append(self, row): if self.columns is None: self.set_columns(row.keys()) self.csvwriter.writerow([row.get(k, '-') for k in self.columns]) self.count += 1 if self.count > 100: self.count = 0 self.fh.flush() def close(self): self.fh.close() def __enter__(self): return self def __exit__(self, *args): self.close() @contextmanager def devnull(*args, **kwds): """ A context manager that sends all out stdout & stderr to devnull. """ save_fds = [os.dup(1), os.dup(2)] null_fds = [os.open(os.devnull, os.O_RDWR) for _ in range(2)] os.dup2(null_fds[0], 1) os.dup2(null_fds[1], 2) try: yield finally: os.dup2(save_fds[0], 1) os.dup2(save_fds[1], 2) for fd in null_fds + save_fds: os.close(fd) def write_fasta(header, sequence, fd=sys.stdout): """ Write a fasta record to a file descriptor. """ fd.write(">%s\n" % header) fd.write("%s\n" % sequence) fd.flush() def write_fastq(header, sequence, qstring, fd=sys.stdout): """ Write a fastq record to a file descriptor. """ fd.write("@%s\n" % header) fd.write("%s\n" % sequence) fd.write("+\n") fd.write("%s\n" % qstring) fd.flush() def write_sam_header(aligner, fd=sys.stdout, sep='\t'): """ Write the SQ & PG sam headers to a file descriptor. """ fd.write('%s\n' % os.linesep.join([ sep.join([ '@SQ', 'SN:%s' % name, 'LN:%s' % len(aligner.seq(name)) ]) for name in aligner.seq_names ])) fd.write('%s\n' % sep.join([ '@PG', 'ID:bonito', 'PN:bonito', 'VN:%s' % bonito.__version__, 'CL:%s' % ' '.join(sys.argv), ])) fd.flush() def write_sam(read_id, sequence, qstring, mapping, fd=sys.stdout, unaligned=False, sep='\t'): """ Write a sam record to a file descriptor. """ if unaligned: fd.write("%s\n" % sep.join(map(str, [ read_id, 4, '*', 0, 0, '*', '*', 0, 0, sequence, qstring, 'NM:i:0' ]))) else: softclip = [ '%sS' % mapping.q_st if mapping.q_st else '', mapping.cigar_str, '%sS' % (len(sequence) - mapping.q_en) if len(sequence) - mapping.q_en else '' ] fd.write("%s\n" % sep.join(map(str, [ read_id, 0 if mapping.strand == +1 else 16, mapping.ctg, mapping.r_st + 1, mapping.mapq, ''.join(softclip if mapping.strand == +1 else softclip[::-1]), '*', 0, 0, sequence if mapping.strand == +1 else revcomp(sequence), qstring, 'NM:i:%s' % mapping.NM, 'MD:Z:%s' % mapping.MD, ]))) fd.flush() def summary_file(): """ Return the filename to use for the summary tsv. """ stdout = realpath('/dev/fd/1') if sys.stdout.isatty() or stdout.startswith('/proc'): return 'summary.tsv' return '%s_summary.tsv' % splitext(stdout)[0] summary_field_names = [ 'filename', 'read_id', 'run_id', 'channel', 'mux', 'start_time', 'duration', 'template_start', 'template_duration', 'sequence_length_template', 'mean_qscore_template', #if alignment 'alignment_genome', 'alignment_genome_start', 'alignment_genome_end', 'alignment_strand_start', 'alignment_strand_end', 'alignment_direction', 'alignment_length', 'alignment_num_aligned', 'alignment_num_correct', 'alignment_num_insertions', 'alignment_num_deletions', 'alignment_num_substitutions', 'alignment_mapq', 'alignment_strand_coverage', 'alignment_identity', 'alignment_accuracy', ] def summary_row(read, seqlen, qscore, alignment=False): """ Summary tsv row. """ fields = [ read.filename, read.read_id, read.run_id, read.channel, read.mux, read.start, read.duration, read.template_start, read.template_duration, seqlen, qscore, ] if alignment: ins = sum(count for count, op in alignment.cigar if op == 1) dels = sum(count for count, op in alignment.cigar if op == 2) subs = alignment.NM - ins - dels length = alignment.blen matches = length - ins - dels correct = alignment.mlen fields.extend([ alignment.ctg, alignment.r_st, alignment.r_en, alignment.q_st if alignment.strand == +1 else seqlen - alignment.q_en, alignment.q_en if alignment.strand == +1 else seqlen - alignment.q_st, '+' if alignment.strand == +1 else '-', length, matches, correct, ins, dels, subs, alignment.mapq, (alignment.q_en - alignment.q_st) / seqlen, correct / matches, correct / length, ]) elif alignment is None: fields.extend( ['*', -1, -1, -1, -1, '*', 0, 0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0] ) return dict(zip(summary_field_names, fields)) duplex_summary_field_names = [ 'filename_template', 'read_id_template', 'filename_complement', 'read_id_complement', 'run_id', 'channel_template', 'mux_template', 'channel_complement', 'mux_complement', 'sequence_length_duplex', 'mean_qscore_duplex', #if alignment 'alignment_genome', 'alignment_genome_start', 'alignment_genome_end', 'alignment_strand_start', 'alignment_strand_end', 'alignment_direction', 'alignment_length', 'alignment_num_aligned', 'alignment_num_correct', 'alignment_num_insertions', 'alignment_num_deletions', 'alignment_num_substitutions', 'alignment_mapq', 'alignment_strand_coverage', 'alignment_identity', 'alignment_accuracy', ] def duplex_summary_row(read_temp, comp_read, seqlen, qscore, alignment=False): """ Duplex summary tsv row. """ fields = [ read_temp.filename, read_temp.read_id, comp_read.filename, comp_read.read_id, read_temp.run_id, read_temp.channel, read_temp.mux, comp_read.channel, comp_read.mux, seqlen, qscore, ] if alignment: ins = sum(count for count, op in alignment.cigar if op == 1) dels = sum(count for count, op in alignment.cigar if op == 2) subs = alignment.NM - ins - dels length = alignment.blen matches = length - ins - dels correct = alignment.mlen fields.extend([ alignment.ctg, alignment.r_st, alignment.r_en, alignment.q_st if alignment.strand == +1 else seqlen - alignment.q_en, alignment.q_en if alignment.strand == +1 else seqlen - alignment.q_st, '+' if alignment.strand == +1 else '-', length, matches, correct, ins, dels, subs, alignment.mapq, (alignment.q_en - alignment.q_st) / seqlen, correct / matches, correct / length, ]) elif alignment is None: fields.extend( ['*', -1, -1, -1, -1, '*', 0, 0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0] ) return dict(zip(duplex_summary_field_names, fields)) class Writer(Thread): def __init__(self, iterator, aligner, fd=sys.stdout, fastq=False, duplex=False): super().__init__() self.fd = fd self.log = [] self.fastq = fastq self.duplex = duplex self.aligner = aligner self.iterator = iterator self.write_headers() def write_headers(self): if self.aligner: write_sam_header(self.aligner, fd=self.fd) def run(self): with CSVLogger(summary_file(), sep='\t') as summary: for read, res in self.iterator: seq = res['sequence'] qstring = res.get('qstring', '*') mean_qscore = res.get('mean_qscore', 0.0) mapping = res.get('mapping', False) if self.duplex: samples = len(read[0].signal) + len(read[1].signal) read_id = '%s;%s' % (read[0].read_id, read[1].read_id) else: samples = len(read.signal) read_id = read.read_id if len(seq): if self.aligner: write_sam(read_id, seq, qstring, mapping, fd=self.fd, unaligned=mapping is None) else: if self.fastq: write_fastq(read_id, seq, qstring, fd=self.fd) else: write_fasta(read_id, seq, fd=self.fd) if self.duplex: summary.append(duplex_summary_row(read[0], read[1], len(seq), mean_qscore, alignment=mapping)) else: summary.append(summary_row(read, len(seq), mean_qscore, alignment=mapping)) self.log.append((read_id, samples)) else: logger.warn("> skipping empty sequence %s", read_id) class CTCWriter(Thread): """ CTC writer process that writes output numpy training data. """ def __init__(self, iterator, aligner, min_coverage, min_accuracy, fd=sys.stdout): super().__init__() self.fd = fd self.log = [] self.aligner = aligner self.iterator = iterator self.min_coverage = min_coverage self.min_accuracy = min_accuracy self.write_headers() def write_headers(self): if self.aligner: write_sam_header(self.aligner, fd=self.fd) def run(self): chunks = [] targets = [] lengths = [] with CSVLogger(summary_file(), sep='\t') as summary: for read, ctc_data in self.iterator: seq = ctc_data['sequence'] qstring = ctc_data['qstring'] mean_qscore = ctc_data['mean_qscore'] mapping = ctc_data.get('mapping', False) self.log.append((read.read_id, len(read.signal))) if len(seq) == 0 or mapping is None: continue cov = (mapping.q_en - mapping.q_st) / len(seq) acc = mapping.mlen / mapping.blen refseq = self.aligner.seq(mapping.ctg, mapping.r_st, mapping.r_en) if acc < self.min_accuracy or cov < self.min_coverage or 'N' in refseq: continue write_sam(read.read_id, seq, qstring, mapping, fd=self.fd, unaligned=mapping is None) summary.append(summary_row(read, len(seq), mean_qscore, alignment=mapping)) if mapping.strand == -1: refseq = revcomp(refseq) target = [int(x) for x in refseq.translate({65: '1', 67: '2', 71: '3', 84: '4'})] targets.append(target) chunks.append(read.signal) lengths.append(len(target)) if len(chunks) == 0: sys.stderr.write("> no suitable ctc data to write\n") return chunks = np.array(chunks, dtype=np.float16) targets_ = np.zeros((chunks.shape[0], max(lengths)), dtype=np.uint8) for idx, target in enumerate(targets): targets_[idx, :len(target)] = target lengths = np.array(lengths, dtype=np.uint16) indices = np.random.permutation(typical_indices(lengths)) chunks = chunks[indices] targets_ = targets_[indices] lengths = lengths[indices] summary = pd.read_csv(summary_file(), sep='\t') summary.iloc[indices].to_csv(summary_file(), sep='\t', index=False) output_directory = '.' if sys.stdout.isatty() else dirname(realpath('/dev/fd/1')) np.save(os.path.join(output_directory, "chunks.npy"), chunks) np.save(os.path.join(output_directory, "references.npy"), targets_) np.save(os.path.join(output_directory, "reference_lengths.npy"), lengths) sys.stderr.write("> written ctc training data\n") sys.stderr.write(" - chunks.npy with shape (%s)\n" % ','.join(map(str, chunks.shape))) sys.stderr.write(" - references.npy with shape (%s)\n" % ','.join(map(str, targets_.shape))) sys.stderr.write(" - reference_lengths.npy shape (%s)\n" % ','.join(map(str, lengths.shape))) def stop(self): self.join()
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser from bonito.cli import basecaller, train, evaluate, view, convert, download, export, duplex modules = [ 'basecaller', 'train', 'evaluate', 'view', 'convert', 'download', 'export', 'duplex', ] __version__ = '0.4.0' def main(): parser = ArgumentParser( 'bonito', formatter_class=ArgumentDefaultsHelpFormatter ) parser.add_argument( '-v', '--version', action='version', version='%(prog)s {}'.format(__version__) ) subparsers = parser.add_subparsers( title='subcommands', description='valid commands', help='additional help', dest='command' ) subparsers.required = True for module in modules: mod = globals()[module] p = subparsers.add_parser(module, parents=[mod.argparser()]) p.set_defaults(func=mod.main) args = parser.parse_args() args.func(args)
""" Bonito Multiprocesing """ import queue from itertools import count from threading import Thread from functools import partial from collections import deque from signal import signal, SIGINT from multiprocessing import Process, Queue, Event, Lock, cpu_count def process_iter(iterator, maxsize=1): """ Take an iterator and run it on another process. """ return iter(ProcessIterator(iterator, maxsize=maxsize)) def thread_iter(iterator, maxsize=1): """ Take an iterator and run it on another thread. """ return iter(ThreadIterator(iterator, maxsize=maxsize)) def process_cancel(): """ Register an cancel event on sigint """ event = Event() signal(SIGINT, lambda *a: event.set()) return event def process_map(func, iterator, n_proc=4, maxsize=0): """ Take an `iterator` of key, value pairs and apply `func` to all values using `n_proc` processes. """ if n_proc == 0: return ((k, func(v)) for k, v in iterator) return iter(ProcessMap(func, iterator, n_proc, output_queue=Queue(maxsize))) def thread_map(func, iterator, n_thread=4, maxsize=2): """ Take an `iterator` of key, value pairs and apply `func` to all values using `n_thread` threads. """ if n_thread == 0: return ((k, func(v)) for k, v in iterator) return iter(ThreadMap(partial(MapWorkerThread, func), iterator, n_thread, maxsize=maxsize)) class BackgroundIterator: """ Runs an iterator in the background. """ def __init__(self, iterator, maxsize=10): super().__init__() self.iterator = iterator self.queue = self.QueueClass(maxsize) def __iter__(self): self.start() while True: item = self.queue.get() if item is StopIteration: break yield item def run(self): for item in self.iterator: self.queue.put(item) self.queue.put(StopIteration) def stop(self): self.join() class ThreadIterator(BackgroundIterator, Thread): """ Runs an iterator in a separate process. """ QueueClass = queue.Queue class ProcessIterator(BackgroundIterator, Process): """ Runs an iterator in a separate process. """ QueueClass = Queue class MapWorker(Process): """ Process that reads items from an input_queue, applies a func to them and puts them on an output_queue """ def __init__(self, func, input_queue, output_queue): super().__init__() self.func = func self.input_queue = input_queue self.output_queue = output_queue def run(self): while True: item = self.input_queue.get() if item is StopIteration: break k, v = item self.output_queue.put((k, self.func(v))) class ProcessMap(Thread): def __init__(self, func, iterator, n_proc, output_queue=None): super().__init__() self.key_map = {} self.iterator = iterator self.work_queue = Queue(n_proc * 2) self.output_queue = output_queue or Queue() self.processes = [MapWorker(func, self.work_queue, self.output_queue) for _ in range(n_proc)] def start(self): for process in self.processes: process.start() super().start() def run(self): for (k, v) in self.iterator: self.work_queue.put((id(k), v)) self.key_map[id(k)] = k for _ in self.processes: self.work_queue.put(StopIteration) for process in self.processes: process.join() self.output_queue.put(StopIteration) def __iter__(self): self.start() while True: item = self.output_queue.get() if item is StopIteration: break k, v = item yield self.key_map.pop(k), v class MapWorkerThread(Thread): """ Process that reads items from an input_queue, applies a func to them and puts them on an output_queue """ def __init__(self, func, input_queue=None, output_queue=None): super().__init__() self.func = func self.input_queue = input_queue self.output_queue = output_queue def run(self): while True: item = self.input_queue.get() if item is StopIteration: self.output_queue.put(item) break k, v = item self.output_queue.put((k, self.func(v))) class ThreadMap(Thread): def __init__(self, worker_type, iterator, n_thread, maxsize=2): super().__init__() self.iterator = iterator self.n_thread = n_thread self.work_queues = [queue.Queue(maxsize) for _ in range(n_thread)] self.output_queues = [queue.Queue(maxsize) for _ in range(n_thread)] self.workers = [worker_type(input_queue=in_q, output_queue=out_q) for (in_q, out_q) in zip(self.work_queues, self.output_queues)] def start(self): for worker in self.workers: worker.start() super().start() def __iter__(self): self.start() for i in count(): item = self.output_queues[i % self.n_thread].get() if item is StopIteration: #do we need to empty output_queues in order to join worker threads? for j in range(i + 1, i + self.n_thread): self.output_queues[j % self.n_thread].get() break yield item def run(self): for i, (k, v) in enumerate(self.iterator): self.work_queues[i % self.n_thread].put((k, v)) for q in self.work_queues: q.put(StopIteration) for worker in self.workers: worker.join()
""" Bonito train """ import os import re from glob import glob from functools import partial from time import perf_counter from collections import OrderedDict from datetime import datetime from bonito.util import accuracy, decode_ref, permute, concat, match_names import bonito import torch import numpy as np import torch.nn as nn from tqdm import tqdm from torch.optim.lr_scheduler import LambdaLR import torch.cuda.amp as amp class ChunkDataSet: def __init__(self, chunks, targets, lengths): self.chunks = np.expand_dims(chunks, axis=1) self.targets = targets self.lengths = lengths def __getitem__(self, i): return ( self.chunks[i].astype(np.float32), self.targets[i].astype(np.int64), self.lengths[i].astype(np.int64), ) def __len__(self): return len(self.lengths) def const_schedule(y): """ Constant Scheduler """ return lambda t: y def linear_schedule(y0, y1): """ Linear Scheduler """ return lambda t: y0 + (y1 - y0) * t def cosine_decay_schedule(y0, y1): """ Cosine Decay Scheduler """ return lambda t: y1 + 0.5 * (y0 - y1) * (np.cos(t * np.pi) + 1.0) def piecewise_schedule(knots, funcs): """ Piecewise Scheduler """ def f(t): i = np.searchsorted(knots, t) t0 = 0.0 if i == 0 else knots[i - 1] t1 = 1.0 if i == len(knots) else knots[i] return funcs[i]((t - t0) / (t1 - t0)) return f def func_scheduler(optimizer, func, total_steps, warmup_steps=None, warmup_ratio=0.1, start_step=0): """ Learning Rate Scheduler """ if warmup_steps: y0 = func(0.0) func = piecewise_schedule( [warmup_steps / total_steps], [linear_schedule(warmup_ratio * y0, y0), func] ) return LambdaLR(optimizer, (lambda step: func((step + start_step) / total_steps))) def load_state(dirname, device, model): """ Load a model state dict from disk """ model.to(device) weight_no = None weight_files = glob(os.path.join(dirname, "weights_*.tar")) if weight_files: weight_no = max([int(re.sub(".*_([0-9]+).tar", "\\1", w)) for w in weight_files]) if weight_no: print("[picking up from epoch %s]" % weight_no) state_dict = torch.load( os.path.join(dirname, 'weights_%s.tar' % weight_no), map_location=device ) state_dict = {k2: state_dict[k1] for k1, k2 in match_names(state_dict, model).items()} new_state_dict = OrderedDict() for k, v in state_dict.items(): name = k.replace('module.', '') new_state_dict[name] = v model.load_state_dict(new_state_dict) epoch = weight_no else: epoch = 0 return epoch class Trainer: def __init__(self, model, device, train_loader, valid_loader, criterion=None, use_amp=True): self.model = model.to(device) self.device = device self.train_loader = train_loader self.valid_loader = valid_loader self.criterion = criterion or (model.seqdist.ctc_loss if hasattr(model, 'seqdist') else model.ctc_label_smoothing_loss) self.use_amp = use_amp self.scaler = torch.cuda.amp.GradScaler(enabled=use_amp) self.optimizer = None def train_one_step(self, batch): data, targets, lengths = batch self.optimizer.zero_grad() with amp.autocast(enabled=self.use_amp): scores = self.model(data.to(self.device)) losses = self.criterion(scores, targets.to(self.device), lengths.to(self.device)) if not isinstance(losses, dict): losses = {'loss': losses} self.scaler.scale(losses['loss']).backward() self.scaler.unscale_(self.optimizer) grad_norm = torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=2.0).item() self.scaler.step(self.optimizer) self.scaler.update() return losses, grad_norm def train_one_epoch(self, loss_log, lr_scheduler): t0 = perf_counter() chunks = 0 self.model.train() progress_bar = tqdm( total=len(self.train_loader), desc='[0/{}]'.format(len(self.train_loader.dataset)), ascii=True, leave=True, ncols=100, bar_format='{l_bar}{bar}| [{elapsed}{postfix}]' ) smoothed_loss = None with progress_bar: for batch in self.train_loader: chunks += batch[0].shape[0] losses, grad_norm = self.train_one_step(batch) losses = {k: v.item() for k,v in losses.items()} if lr_scheduler is not None: lr_scheduler.step() smoothed_loss = losses['loss'] if smoothed_loss is None else (0.01 * losses['loss'] + 0.99 * smoothed_loss) progress_bar.set_postfix(loss='%.4f' % smoothed_loss) progress_bar.set_description("[{}/{}]".format(chunks, len(self.train_loader.dataset))) progress_bar.update() if loss_log is not None: loss_log.append({'chunks': chunks, 'time': perf_counter() - t0, 'grad_norm': grad_norm, **losses}) return smoothed_loss, perf_counter() - t0 def validate_one_step(self, batch): data, targets, lengths = batch scores = self.model(data.to(self.device)) losses = self.criterion(scores, targets.to(self.device), lengths.to(self.device)) losses = {k: v.item() for k, v in losses.items()} if isinstance(losses, dict) else losses.item() if hasattr(self.model, 'decode_batch'): seqs = self.model.decode_batch(scores) else: seqs = [self.model.decode(x) for x in permute(scores, 'TNC', 'NTC')] refs = [decode_ref(target, self.model.alphabet) for target in targets] accs = [ accuracy(ref, seq, min_coverage=0.5) if len(seq) else 0. for ref, seq in zip(refs, seqs) ] return seqs, refs, accs, losses def validate_one_epoch(self): self.model.eval() with torch.no_grad(): seqs, refs, accs, losses = zip(*(self.validate_one_step(batch) for batch in self.valid_loader)) seqs, refs, accs = (sum(x, []) for x in (seqs, refs, accs)) loss = np.mean([(x['ctc_loss'] if isinstance(x, dict) else x) for x in losses]) return loss, np.mean(accs), np.median(accs) def init_optimizer(self, lr, **kwargs): self.optimizer = torch.optim.AdamW(self.model.parameters(), lr=lr, **kwargs) def get_lr_scheduler(self, epochs, last_epoch=0): return func_scheduler( self.optimizer, cosine_decay_schedule(1.0, 0.1), epochs * len(self.train_loader), warmup_steps=500, start_step=last_epoch*len(self.train_loader) ) def fit(self, workdir, epochs=1, lr=2e-3, last_epoch=0): if self.optimizer is None: self.init_optimizer(lr) lr_scheduler = self.get_lr_scheduler(epochs, last_epoch=last_epoch) for epoch in range(1 + last_epoch, epochs + 1 + last_epoch): try: with bonito.io.CSVLogger(os.path.join(workdir, 'losses_{}.csv'.format(epoch))) as loss_log: train_loss, duration = self.train_one_epoch(loss_log, lr_scheduler) model_state = self.model.module.state_dict() if hasattr(self.model, 'module') else self.model.state_dict() torch.save(model_state, os.path.join(workdir, "weights_%s.tar" % epoch)) val_loss, val_mean, val_median = self.validate_one_epoch() except KeyboardInterrupt: break print("[epoch {}] directory={} loss={:.4f} mean_acc={:.3f}% median_acc={:.3f}%".format( epoch, workdir, val_loss, val_mean, val_median )) with bonito.io.CSVLogger(os.path.join(workdir, 'training.csv')) as training_log: training_log.append({ 'time': datetime.today(), 'duration': int(duration), 'epoch': epoch, 'train_loss': train_loss, 'validation_loss': val_loss, 'validation_mean': val_mean, 'validation_median': val_median })
""" Bonito Download """ import os import re from shutil import rmtree from zipfile import ZipFile from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter from bonito.util import __data__, __models__ from bonito.cli.convert import main as convert from bonito.cli.convert import argparser as cargparser import requests from tqdm import tqdm class File: """ Small class for downloading models and training assets. """ __url__ = "https://nanoporetech.box.com/shared/static/" def __init__(self, path, url_frag, force): self.path = path self.force = force self.url = os.path.join(self.__url__, url_frag) def location(self, filename): return os.path.join(self.path, filename) def exists(self, filename): return os.path.exists(self.location(filename)) def download(self): """ Download the remote file """ # create the requests for the file req = requests.get(self.url, stream=True) total = int(req.headers.get('content-length', 0)) fname = re.findall('filename="([^"]+)', req.headers['content-disposition'])[0] # skip download if local file is found if self.exists(fname.strip('.zip')) and not self.force: print("[skipping %s]" % fname) return if self.exists(fname.strip('.zip')) and self.force: rmtree(self.location(fname.strip('.zip'))) # download the file with tqdm(total=total, unit='iB', ascii=True, ncols=100, unit_scale=True, leave=False) as t: with open(self.location(fname), 'wb') as f: for data in req.iter_content(1024): f.write(data) t.update(len(data)) print("[downloaded %s]" % fname) # unzip .zip files if fname.endswith('.zip'): with ZipFile(self.location(fname), 'r') as zfile: zfile.extractall(self.path) os.remove(self.location(fname)) # convert chunkify training files to bonito if fname.endswith('.hdf5'): print("[converting %s]" % fname) args = cargparser().parse_args([ self.location(fname), self.location(fname).strip('.hdf5') ]) convert(args) r9_models = [ "n8c07gc9ro09zt0ivgcoeuz6krnwsnf6.zip", # dna_r9.4.1@v1 "nas0uhf46fd1lh2jndhx2a54a9vvhxp4.zip", # dna_r9.4.1@v2 "1wodp3ur4jhvqvu5leowfg6lrw54jxp2.zip", # dna_r9.4.1@v3 "uetgwsnb8yfqvuyoka8p09mxilgskqc7.zip", # [email protected] "47t2y48zw4waly25lmzx6sagf4bbbqqz.zip", # [email protected] "hrv649cvx8lvomu1u0tsd47e5u2bbabt.zip", # [email protected] "arqi4qwcj9btsd6bbjsnlbai0s6dg8yd.zip", ] r10_models = [ "e70s615lh3i24rkhz006i0e4u4m8y2xa.zip", # dna_r10.3_q20ea "hnr5mwlm8vmdsfpvn5fsxn3mvhbucy5f.zip", # dna_r10.3@v3 "yesf11tisfrncmod5hj2xtx9kbdveuqt.zip", # [email protected] "ci6xdu7d4wczmhorhw1sweyg4gczx97t.zip", # [email protected] "4cunv5z7nwjag7v2bun0g7vk2lf8rqnc.zip", ] training = [ "cmh91cxupa0are1kc3z9aok425m75vrb.hdf5", ] def main(args): """ Download models and training sets """ if args.models or args.all: print("[downloading models]") for model in r9_models[-1 if args.latest else 0:]: File(__models__, model, args.force).download() for model in r10_models[-1 if args.latest else 0:]: File(__models__, model, args.force).download() if args.training or args.all: print("[downloading training data]") for train in training: File(__data__, train, args.force).download() def argparser(): parser = ArgumentParser( formatter_class=ArgumentDefaultsHelpFormatter, add_help=False ) group = parser.add_mutually_exclusive_group() group.add_argument('--all', action='store_true') group.add_argument('--models', action='store_true') group.add_argument('--training', action='store_true') parser.add_argument('-f', '--force', action='store_true') parser.add_argument('--latest', action='store_true') return parser
#!/usr/bin/env python """ Convert a Taiyaki chunkify training file to set of Bonito CTC .npy files """ import os import h5py import random import numpy as np from argparse import ArgumentParser from collections import OrderedDict from itertools import islice as take from argparse import ArgumentDefaultsHelpFormatter from tqdm import tqdm from bonito.training import ChunkDataSet def align(samples, pointers, reference): """ align to the start of the mapping """ squiggle_duration = len(samples) mapped_off_the_start = len(pointers[pointers < 0]) mapped_off_the_end = len(pointers[pointers >= squiggle_duration]) pointers = pointers[mapped_off_the_start:len(pointers) - mapped_off_the_end] reference = reference[mapped_off_the_start:len(reference) - mapped_off_the_end] return samples[pointers[0]:pointers[-1]], pointers - pointers[0], reference def scale(read, normalise=True): """ scale and normalise a read """ samples = read['Dacs'][:] scaling = read.attrs['range'] / read.attrs['digitisation'] scaled = (scaling * (samples + read.attrs['offset'])).astype(np.float32) if normalise: return (scaled - read.attrs['shift_frompA']) / read.attrs['scale_frompA'] return scaled def pad_lengths(ragged_array, max_len=None): lengths = np.array([len(x) for x in ragged_array], dtype=np.uint16) padded = np.zeros((len(ragged_array), max_len or np.max(lengths)), dtype=ragged_array[0].dtype) for x, y in zip(ragged_array, padded): y[:len(x)] = x return padded, lengths def regular_break_points(n, chunk_len, overlap=0, align='mid'): num_chunks, remainder = divmod(n - overlap, chunk_len - overlap) start = {'left': 0, 'mid': remainder // 2, 'right': remainder}[align] starts = np.arange(start, start + num_chunks*(chunk_len - overlap), (chunk_len - overlap)) return np.vstack([starts, starts + chunk_len]).T def get_chunks(read, break_points): sample = scale(read) pointers = read['Ref_to_signal'][:] target = read['Reference'][:] + 1 # CTC convention return ( (sample[i:j], target[ti:tj]) for (i, j), (ti, tj) in zip(break_points, np.searchsorted(pointers, break_points)) ) def chunk_dataset(reads, chunk_len, num_chunks=None): all_chunks = ( (chunk, target) for read in reads for chunk, target in get_chunks(reads[read], regular_break_points(len(reads[read]['Dacs']), chunk_len)) ) chunks, targets = zip(*tqdm(take(all_chunks, num_chunks), total=num_chunks)) targets, target_lens = pad_lengths(targets) # convert refs from ragged arrray return ChunkDataSet(chunks, targets, target_lens) def validation_split(reads, num_valid=1000): reads = np.random.permutation(sorted(reads.items())) return OrderedDict(reads[:-num_valid]), OrderedDict(reads[-num_valid:]) def typical_indices(x, n=2.5): mu, sd = np.mean(x), np.std(x) idx, = np.where((mu - n*sd < x) & (x < mu + n*sd)) return idx def filter_chunks(ds, idx): filtered = ChunkDataSet(ds.chunks.squeeze(1)[idx], ds.targets[idx], ds.lengths[idx]) filtered.targets = filtered.targets[:, :filtered.lengths.max()] return filtered def save_chunks(chunks, output_directory): os.makedirs(output_directory, exist_ok=True) np.save(os.path.join(output_directory, "chunks.npy"), chunks.chunks.squeeze(1)) np.save(os.path.join(output_directory, "references.npy"), chunks.targets) np.save(os.path.join(output_directory, "reference_lengths.npy"), chunks.lengths) print() print("> data written to %s:" % output_directory) print(" - chunks.npy with shape", chunks.chunks.squeeze(1).shape) print(" - references.npy with shape", chunks.targets.shape) print(" - reference_lengths.npy shape", chunks.lengths.shape) def main(args): random.seed(args.seed) np.random.seed(args.seed) reads = h5py.File(args.chunkify_file, 'r')['Reads'] training, validation = validation_split(reads, args.validation_reads) print("> preparing training chunks\n") training_chunks = chunk_dataset(training, args.chunksize) training_indices = typical_indices(training_chunks.lengths) training_chunks = filter_chunks(training_chunks, np.random.permutation(training_indices)) save_chunks(training_chunks, args.output_directory) print("\n> preparing validation chunks\n") validation_chunks = chunk_dataset(validation, args.chunksize) validation_indices = typical_indices(validation_chunks.lengths) validation_chunks = filter_chunks(validation_chunks, validation_indices) save_chunks(validation_chunks, os.path.join(args.output_directory, "validation")) def argparser(): parser = ArgumentParser( formatter_class=ArgumentDefaultsHelpFormatter, add_help=False ) parser.add_argument("chunkify_file") parser.add_argument("output_directory") parser.add_argument("--seed", default=25, type=int) parser.add_argument("--chunksize", default=3600, type=int) parser.add_argument("--validation-reads", default=1000, type=int) return parser
""" Bonito Export """ import os import re import sys import json import torch import bonito import hashlib import numpy as np from glob import glob from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter class JsonEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, np.integer): return int(obj) elif isinstance(obj, np.floating): return float(obj) elif isinstance(obj, np.ndarray): return obj.tolist() elif isinstance(obj, torch.nn.Parameter): return obj.data elif isinstance(obj, torch.Tensor): return obj.detach().numpy() else: return super(JsonEncoder, self).default(obj) def file_md5(filename, nblock=1024): """ Get md5 string from file. """ hasher = hashlib.md5() block_size = nblock * hasher.block_size with open(filename, "rb") as fh: for blk in iter((lambda: fh.read(block_size)), b""): hasher.update(blk) return hasher.hexdigest() def reformat_output_layer(layer_dict): n_base, state_len, blank_score = [layer_dict.pop(k) for k in ['n_base', 'state_len', 'blank_score']] layer_dict['size'] = (n_base + 1) * n_base**state_len layer_dict['type'] = 'GlobalNormTransducer' if blank_score is not None: assert layer_dict['activation'] == 'tanh' params = layer_dict['params'] params['W'] = torch.nn.functional.pad( params['W'].reshape([n_base**state_len, n_base, -1]), (0, 0, 1, 0), value=0. ).reshape((n_base + 1) * n_base**state_len, -1) params['b'] = torch.nn.functional.pad( params['b'].reshape(n_base**state_len, n_base), (1, 0), value=np.arctanh(blank_score / layer_dict['scale']) ).reshape(-1) return layer_dict def to_guppy_dict(model, include_weights=True): guppy_dict = bonito.nn.to_dict(model.encoder, include_weights=include_weights) guppy_dict['sublayers'] = [x for x in guppy_dict['sublayers'] if x['type'] != 'permute'] guppy_dict['sublayers'] = [dict(x, type='LSTM', activation='tanh', gate='sigmoid') if x['type'] == 'lstm' else x for x in guppy_dict['sublayers']] guppy_dict['sublayers'] = [dict(x, padding=(x['padding'], x['padding'])) if x['type'] == 'convolution' else x for x in guppy_dict['sublayers']] guppy_dict['sublayers'] = [{'type': 'reverse', 'sublayers': x} if x.pop('reverse', False) else x for x in guppy_dict['sublayers']] guppy_dict['sublayers'][-1] = reformat_output_layer(guppy_dict['sublayers'][-1]) return guppy_dict def main(args): if not os.path.isdir(args.model): print("[error] file given - please provide a model directory to export.", file=sys.stderr) return 1 model = bonito.util.load_model(args.model, device='cpu') jsn = to_guppy_dict(model) weight_files = glob(os.path.join(args.model, "weights_*.tar")) weights = max([int(re.sub(".*_([0-9]+).tar", "\\1", w)) for w in weight_files]) jsn["md5sum"] = file_md5(os.path.join(args.model, 'weights_%s.tar' % weights)) json.dump(jsn, sys.stdout, cls=JsonEncoder) def argparser(): parser = ArgumentParser( formatter_class=ArgumentDefaultsHelpFormatter, add_help=False ) parser.add_argument('model') return parser
""" Bonito model viewer - display a model architecture for a given config. """ import toml import argparse from bonito.util import load_symbol def main(args): config = toml.load(args.config) Model = load_symbol(config, "Model") model = Model(config) print(model) print("Total parameters in model", sum(p.numel() for p in model.parameters())) def argparser(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter, add_help=False ) parser.add_argument("config") return parser
""" Bonito Basecaller """ import sys import torch import numpy as np from tqdm import tqdm from time import perf_counter from datetime import timedelta from itertools import islice as take from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter from bonito.aligner import Aligner from bonito.io import CTCWriter, Writer from bonito.fast5 import get_reads, read_chunks from bonito.multiprocessing import process_cancel from bonito.util import column_to_set, load_symbol, load_model def main(args): if args.save_ctc and not args.reference: sys.stderr.write("> a reference is needed to output ctc training data\n") exit(1) sys.stderr.write("> loading model\n") model = load_model(args.model_directory, args.device, weights=int(args.weights)) if args.reference: sys.stderr.write("> loading reference\n") aligner = Aligner(args.reference, preset='ont-map', best_n=1) if not aligner: sys.stderr.write("> failed to load/build index\n") exit(1) else: aligner = None reads = get_reads( args.reads_directory, n_proc=8, recursive=args.recursive, read_ids=column_to_set(args.read_ids), skip=args.skip, cancel=process_cancel() ) if args.max_reads: reads = take(reads, args.max_reads) basecall = load_symbol(args.model_directory, "basecall") if args.save_ctc: reads = ( chunk for read in reads for chunk in read_chunks(read, chunksize=args.chunksize) ) basecalls = basecall( model, reads, batchsize=64, chunksize=args.chunksize, aligner=aligner, qscores=args.fastq, reverse=args.revcomp, ) writer = CTCWriter( tqdm(basecalls, desc="> calling", unit=" reads", leave=False), aligner, args.ctc_min_coverage, args.ctc_min_accuracy ) else: basecalls = basecall( model, reads, aligner=aligner, reverse=args.revcomp, qscores=args.fastq, batchsize=args.batchsize, chunksize=args.chunksize, ) writer = Writer( tqdm(basecalls, desc="> calling", unit=" reads", leave=False), aligner, fastq=args.fastq ) t0 = perf_counter() writer.start() writer.join() duration = perf_counter() - t0 num_samples = sum(num_samples for read_id, num_samples in writer.log) sys.stderr.write("> completed reads: %s\n" % len(writer.log)) sys.stderr.write("> duration: %s\n" % timedelta(seconds=np.round(duration))) sys.stderr.write("> samples per second %.1E\n" % (num_samples / duration)) sys.stderr.write("> done\n") def argparser(): parser = ArgumentParser( formatter_class=ArgumentDefaultsHelpFormatter, add_help=False ) parser.add_argument("model_directory") parser.add_argument("reads_directory") parser.add_argument("--reference") parser.add_argument("--read-ids") parser.add_argument("--device", default="cuda") parser.add_argument("--weights", default="0", type=str) parser.add_argument("--skip", action="store_true", default=False) parser.add_argument("--fastq", action="store_true", default=False) parser.add_argument("--save-ctc", action="store_true", default=False) parser.add_argument("--revcomp", action="store_true", default=False) parser.add_argument("--recursive", action="store_true", default=False) parser.add_argument("--ctc-min-coverage", default=0.9, type=float) parser.add_argument("--ctc-min-accuracy", default=0.9, type=float) parser.add_argument("--batchsize", default=32, type=int) parser.add_argument("--chunksize", default=4000, type=int) parser.add_argument("--max-reads", default=0, type=int) return parser
""" Bonito Duplex consensus decoding. https://www.biorxiv.org/content/10.1101/2020.02.25.956771v1 """ import os import sys import json from glob import glob from pathlib import Path from os.path import basename from functools import partial from time import perf_counter from datetime import timedelta from multiprocessing import Pool from itertools import islice, groupby from concurrent.futures import ProcessPoolExecutor from multiprocessing import Process, Queue, Lock, cpu_count from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter import spoa import torch import parasail import numpy as np import pandas as pd from tqdm import tqdm from fast_ctc_decode import crf_beam_search, crf_beam_search_duplex from genomeworks import cuda from genomeworks.cudapoa import CudaPoaBatch, status_to_str import bonito from bonito.io import Writer, devnull from bonito.aligner import Aligner, align_map from bonito.util import load_model, half_supported from bonito.crf.basecall import transfer, split_read, stitch from bonito.fast5 import get_raw_data_for_read, get_fast5_file from bonito.util import unbatchify, batchify, chunk, concat, accuracy from bonito.multiprocessing import thread_map, process_map, process_cancel def poagen(groups, gpu_percent=0.8): free, total = cuda.cuda_get_mem_info(cuda.cuda_get_device()) gpu_mem_per_batch = gpu_percent * free max_seq_sz = 0 max_sequences_per_poa = 0 for group in groups: longest_seq = len(max(group, key=len)) max_seq_sz = longest_seq if longest_seq > max_seq_sz else max_seq_sz seq_in_poa = len(group) max_sequences_per_poa = seq_in_poa if seq_in_poa > max_sequences_per_poa else max_sequences_per_poa batch = CudaPoaBatch( max_sequences_per_poa, max_seq_sz, gpu_mem_per_batch, output_type="consensus", cuda_banded_alignment=True, alignment_band_width=256, ) poa_index = 0 initial_count = 0 while poa_index < len(groups): group = groups[poa_index] group_status, seq_status = batch.add_poa_group(group) # If group was added and more space is left in batch, continue onto next group. if group_status == 0: for seq_index, status in enumerate(seq_status): if status != 0: print("Could not add sequence {} to POA {} - error {}".format(seq_index, poa_index, status_to_str(status)), file=sys.stderr) poa_index += 1 # Once batch is full or no groups are left, run POA processing. if ((group_status == 1) or ((group_status == 0) and (poa_index == len(groups)))): batch.generate_poa() consensus, coverage, con_status = batch.get_consensus() for p, status in enumerate(con_status): if status != 0: print("Could not get consensus for POA group {} - {}".format(initial_count + p, status_to_str(status)), file=sys.stderr) yield from consensus initial_count = poa_index batch.reset() # In the case where POA group wasn't processed correctly. elif group_status != 0: print("Could not add POA group {} to batch - {}".format(poa_index, status_to_str(group_status)), file=sys.stderr) poa_index += 1 def get_read(readdir, summary, idx): """ Get a single read from row `idx` in the `summary` dataframe. """ return get_raw_data_for_read( (readdir / summary.iloc[idx].filename_fast5, summary.iloc[idx].read_id) ) def read_gen(directory, summary, n_proc=1, cancel=None): """ Generate reads from the given `directory` listed in the `summary` dataframe. """ with Pool(n_proc) as pool: for read in pool.imap(partial(get_read, Path(directory), summary), range(len(summary))): yield read if cancel is not None and cancel.is_set(): return def get_read_ids(filename): """ Return a dictionary of read_id -> filename mappings. """ with get_fast5_file(filename, 'r') as f5: return { read.read_id: basename(filename) for read in f5.get_reads() } def build_index(files, n_proc=1): """ Build an index of read ids to filename mappings """ index = {} with ProcessPoolExecutor(max_workers=n_proc) as pool: for res in tqdm(pool.map(get_read_ids, files), leave=False): index.update(res) return index def build_envelope(len1, seq1, path1, len2, seq2, path2, padding=15): # needleman-wunsch alignment with constant gap penalty. aln = parasail.nw_trace_striped_32(seq2, seq1, 2, 2, parasail.dnafull) # pair up positions alignment = np.column_stack([ np.cumsum([x != '-' for x in aln.traceback.ref]) - 1, np.cumsum([x != '-' for x in aln.traceback.query]) - 1 ]) path_range1 = np.column_stack([path1, path1[1:] + [len1]]) path_range2 = np.column_stack([path2, path2[1:] + [len2]]) envelope = np.full((len1, 2), -1, dtype=int) for idx1, idx2 in alignment.clip(0): st_1, en_1 = path_range1[idx1] st_2, en_2 = path_range2[idx2] for idx in range(st_1, en_1): if st_2 < envelope[idx, 0] or envelope[idx, 0] < 0: envelope[idx, 0] = st_2 if en_2 > envelope[idx, 1] or envelope[idx, 1] < 0: envelope[idx, 1] = en_2 # add a little padding to ensure some overlap envelope[:, 0] = envelope[:, 0] - padding envelope[:, 1] = envelope[:, 1] + padding envelope = np.clip(envelope, 0, len2) prev_end = 0 for i in range(envelope.shape[0]): if envelope[i, 0] > envelope[i, 1]: envelope[i, 0] = 0 if envelope[i, 0] > prev_end: envelope[i, 0] = prev_end prev_end = envelope[i, 1] return envelope.astype(np.uint64) def find_follow_on(df, gap=5, distance=51, cov=0.85, min_len=100): """ Find follow on reads from a sequencing summary file. """ df = df[ df.alignment_coverage.astype('float32').gt(cov) & df.sequence_length_template.astype('int32').gt(min_len) ] df = df.sort_values(['run_id', 'channel', 'mux', 'start_time']) genome_start = np.array(df.alignment_genome_start, dtype=np.int32) genome_end = np.array(df.alignment_genome_end, dtype=np.int32) direction = np.array(df.alignment_direction) start_time = np.array(df.start_time, dtype=np.float32) end_time = np.array(df.start_time + df.duration, dtype=np.float32) channel = np.array(df.channel, dtype=np.int32) mux = np.array(df.mux, dtype=np.int32) filt = ( (channel[1:] == channel[:-1]) & (mux[1:] == mux[:-1]) & (np.abs(genome_start[1:] - genome_start[:-1]) < distance) & (np.abs(genome_end[1:] - genome_end[:-1]) < distance) & (direction[1:] != direction[:-1]) & (start_time[1:] - end_time[:-1] < gap) ) mask = np.full(len(filt) + 1, False) mask[:-1] = mask[:-1] | filt mask[1:] = mask[1:] | filt return df[mask] def compute_scores(model, batch, reverse=False): with torch.no_grad(): device = next(model.parameters()).device dtype = torch.float16 if half_supported() else torch.float32 scores = model.encoder(batch.to(dtype).to(device)) if reverse: scores = model.seqdist.reverse_complement(scores) betas = model.seqdist.backward_scores(scores.to(torch.float32)) trans, init = model.seqdist.compute_transition_probs(scores, betas) return { 'trans': trans.to(dtype).transpose(0, 1), 'init': init.to(dtype).unsqueeze(1), } def basecall(model, reads, chunksize=4000, overlap=500, batchsize=32, reverse=False): reads = ( read_chunk for read in reads for read_chunk in split_read(read, chunksize * batchsize)[::-1 if reverse else 1] ) chunks = ( ((read, start, end), chunk(torch.from_numpy(read.signal[start:end]), chunksize, overlap)) for (read, start, end) in reads ) batches = ( (k, compute_scores(model, batch, reverse=reverse)) for k, batch in batchify(chunks, batchsize=batchsize) ) stitched = ( (read, stitch(x, chunksize, overlap, end - start, model.stride, reverse=reverse)) for ((read, start, end), x) in unbatchify(batches) ) transferred = thread_map(transfer, stitched, n_thread=1) return ( (read, concat([part for k, part in parts])) for read, parts in groupby(transferred, lambda x: x[0]) ) def beam_search_duplex(seq1, path1, t1, b1, seq2, path2, t2, b2, alphabet='NACGT', beamsize=5, pad=40, T=0.01): env = build_envelope(t1.shape[0], seq1, path1, t2.shape[0], seq2, path2, padding=pad) return crf_beam_search_duplex( t1, b1, t2, b2, alphabet=alphabet, beam_size=beamsize, beam_cut_threshold=T, envelope=env, ) def decode(res, beamsize_1=5, pad_1=40, cut_1=0.01, beamsize_2=5, pad_2=40, cut_2=0.01, match=80, alphabet="NACGT"): temp_probs, init1 = res[0]['trans'].astype(np.float32), res[0]['init'][0].astype(np.float32) comp_probs, init2 = res[1]['trans'].astype(np.float32), res[1]['init'][0].astype(np.float32) simplex1, path1 = crf_beam_search(temp_probs, init1, alphabet, beam_size=5, beam_cut_threshold=0.01) simplex2, path2 = crf_beam_search(comp_probs, init2, alphabet, beam_size=5, beam_cut_threshold=0.01) if len(simplex1) < 10 or len(simplex2) < 10: return [simplex1, simplex2] if accuracy(simplex1, simplex2) < match: return [simplex1, simplex2] duplex1 = beam_search_duplex( simplex1, path1, temp_probs, init1, simplex2, path2, comp_probs, init2, pad=pad_1, beamsize=5, T=cut_1 ) duplex2 = beam_search_duplex( simplex2, path2, comp_probs, init2, simplex1, path1, temp_probs, init1, pad=pad_2, beamsize=5, T=cut_2 ) return [duplex1, duplex2, simplex1, simplex2] def poa(seqs, allseq=False): con, msa = spoa.poa(seqs, genmsa=False) if allseq: return (con, *seqs) return (con, ) def call(model, reads_directory, templates, complements, aligner=None, cudapoa=True): temp_reads = read_gen(reads_directory, templates, n_proc=8, cancel=process_cancel()) comp_reads = read_gen(reads_directory, complements, n_proc=8, cancel=process_cancel()) temp_scores = basecall(model, temp_reads, reverse=False) comp_scores = basecall(model, comp_reads, reverse=True) scores = (((r1, r2), (s1, s2)) for (r1, s1), (r2, s2) in zip(temp_scores, comp_scores)) calls = thread_map(decode, scores, n_thread=12) if cudapoa: sequences = ((reads, [seqs, ]) for reads, seqs in calls if len(seqs) > 2) consensus = (zip(reads, poagen(calls)) for reads, calls in batchify(sequences, 100)) res = ((reads[0], {'sequence': seq}) for seqs in consensus for reads, seq in seqs) else: sequences = ((reads, seqs) for reads, seqs in calls if len(seqs) > 2) consensus = process_map(poa, sequences, n_proc=4) res = ((reads, {'sequence': seq}) for reads, seqs in consensus for seq in seqs) if aligner is None: return res return align_map(aligner, res) def main(args): sys.stderr.write("> loading model\n") model = load_model(args.model, args.device) if args.reference: sys.stderr.write("> loading reference\n") aligner = Aligner(args.reference, preset='ont-map') if not aligner: sys.stderr.write("> failed to load/build index\n") exit(1) else: aligner = None if args.summary: sys.stderr.write("> finding follow on strands\n") pairs = pd.read_csv(args.summary, '\t', low_memory=False) pairs = pairs[pairs.sequence_length_template.gt(0)] if 'filename' in pairs.columns: pairs = pairs.rename(columns={'filename': 'filename_fast5'}) if 'alignment_strand_coverage' in pairs.columns: pairs = pairs.rename(columns={'alignment_strand_coverage': 'alignment_coverage'}) valid_fast5s = [ f for f in pairs.filename_fast5.unique() if ((args.reads_directory / Path(f)).exists()) ] pairs = pairs[pairs.filename_fast5.isin(valid_fast5s)] pairs = find_follow_on(pairs) sys.stderr.write("> found %s follow strands in summary\n" % (len(pairs) // 2)) if args.max_reads > 0: pairs = pairs.head(args.max_reads) temp_reads = pairs.iloc[0::2] comp_reads = pairs.iloc[1::2] else: if args.index is not None: sys.stderr.write("> loading read index\n") index = json.load(open(args.index, 'r')) else: sys.stderr.write("> building read index\n") files = list(glob(os.path.join(args.reads_directory, '*.fast5'))) index = build_index(files, n_proc=8) if args.save_index: with open('bonito-read-id.idx', 'w') as f: json.dump(index, f) pairs = pd.read_csv(args.pairs, sep=args.sep, names=['read_1', 'read_2']) if args.max_reads > 0: pairs = pairs.head(args.max_reads) pairs['file_1'] = pairs['read_1'].apply(index.get) pairs['file_2'] = pairs['read_2'].apply(index.get) pairs = pairs.dropna().reset_index() temp_reads = pairs[['read_1', 'file_1']].rename( columns={'read_1': 'read_id', 'file_1': 'filename_fast5'} ) comp_reads = pairs[['read_2', 'file_2']].rename( columns={'read_2': 'read_id', 'file_2': 'filename_fast5'} ) if len(pairs) == 0: print("> no matched pairs found in given directory", file=sys.stderr) exit(1) # https://github.com/clara-parabricks/GenomeWorks/issues/648 with devnull(): CudaPoaBatch(1000, 1000, 3724032) basecalls = call(model, args.reads_directory, temp_reads, comp_reads, aligner=aligner) writer = Writer(tqdm(basecalls, desc="> calling", unit=" reads", leave=False), aligner, duplex=True) t0 = perf_counter() writer.start() writer.join() duration = perf_counter() - t0 num_samples = sum(num_samples for read_id, num_samples in writer.log) print("> duration: %s" % timedelta(seconds=np.round(duration)), file=sys.stderr) print("> samples per second %.1E" % (num_samples / duration), file=sys.stderr) def argparser(): parser = ArgumentParser( formatter_class=ArgumentDefaultsHelpFormatter, add_help=False ) parser.add_argument("model") parser.add_argument("reads_directory") group = parser.add_mutually_exclusive_group() group.add_argument("--summary", default=None) group.add_argument("--pairs", default=None) parser.add_argument("--sep", default=' ') parser.add_argument("--index", default=None) parser.add_argument("--save-index", action="store_true", default=False) parser.add_argument("--reference") parser.add_argument("--device", default="cuda") parser.add_argument("--max-reads", default=0, type=int) return parser
#!/usr/bin/env python3 """ Bonito training. """ import os from argparse import ArgumentParser from argparse import ArgumentDefaultsHelpFormatter from bonito.util import __models__, default_config, default_data from bonito.util import load_data, load_model, load_symbol, init, half_supported from bonito.training import ChunkDataSet, load_state, Trainer import toml import torch import numpy as np from torch.optim import AdamW from torch.utils.data import DataLoader def main(args): workdir = os.path.expanduser(args.training_directory) if os.path.exists(workdir) and not args.force: print("[error] %s exists, use -f to force continue training." % workdir) exit(1) init(args.seed, args.device) device = torch.device(args.device) print("[loading data]") train_data = load_data(limit=args.chunks, directory=args.directory) if os.path.exists(os.path.join(args.directory, 'validation')): valid_data = load_data(directory=os.path.join(args.directory, 'validation')) else: print("[validation set not found: splitting training set]") split = np.floor(len(train_data[0]) * 0.97).astype(np.int32) valid_data = [x[split:] for x in train_data] train_data = [x[:split] for x in train_data] train_loader = DataLoader(ChunkDataSet(*train_data), batch_size=args.batch, shuffle=True, num_workers=4, pin_memory=True) valid_loader = DataLoader(ChunkDataSet(*valid_data), batch_size=args.batch, num_workers=4, pin_memory=True) if args.pretrained: dirname = args.pretrained if not os.path.isdir(dirname) and os.path.isdir(os.path.join(__models__, dirname)): dirname = os.path.join(__models__, dirname) config_file = os.path.join(dirname, 'config.toml') else: config_file = args.config config = toml.load(config_file) argsdict = dict(training=vars(args)) os.makedirs(workdir, exist_ok=True) toml.dump({**config, **argsdict}, open(os.path.join(workdir, 'config.toml'), 'w')) print("[loading model]") if args.pretrained: print("[using pretrained model {}]".format(args.pretrained)) model = load_model(args.pretrained, device, half=False) else: model = load_symbol(config, 'Model')(config) last_epoch = load_state(workdir, args.device, model) if args.multi_gpu: from torch.nn import DataParallel model = DataParallel(model) model.decode = model.module.decode model.alphabet = model.module.alphabet trainer = Trainer(model, device, train_loader, valid_loader, use_amp=half_supported() and not args.no_amp) trainer.fit(workdir, args.epochs, args.lr, last_epoch=last_epoch) def argparser(): parser = ArgumentParser( formatter_class=ArgumentDefaultsHelpFormatter, add_help=False ) parser.add_argument("training_directory") group = parser.add_mutually_exclusive_group() group.add_argument('--config', default=default_config) group.add_argument('--pretrained', default="") parser.add_argument("--directory", default=default_data) parser.add_argument("--device", default="cuda") parser.add_argument("--lr", default=2e-3, type=float) parser.add_argument("--seed", default=25, type=int) parser.add_argument("--epochs", default=5, type=int) parser.add_argument("--batch", default=64, type=int) parser.add_argument("--chunks", default=0, type=int) parser.add_argument("--no-amp", action="store_true", default=False) parser.add_argument("--multi-gpu", action="store_true", default=False) parser.add_argument("-f", "--force", action="store_true", default=False) return parser
""" Bonito model evaluator """ import os import time import torch import numpy as np from itertools import starmap from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter from bonito.training import ChunkDataSet from bonito.util import accuracy, poa, decode_ref, half_supported from bonito.util import init, load_data, load_model, concat, permute from torch.utils.data import DataLoader def main(args): poas = [] init(args.seed, args.device) print("* loading data") directory = args.directory if os.path.exists(os.path.join(directory, 'validation')): directory = os.path.join(directory, 'validation') testdata = ChunkDataSet( *load_data( limit=args.chunks, directory=directory ) ) dataloader = DataLoader(testdata, batch_size=args.batchsize) accuracy_with_cov = lambda ref, seq: accuracy(ref, seq, min_coverage=args.min_coverage) for w in [int(i) for i in args.weights.split(',')]: seqs = [] print("* loading model", w) model = load_model(args.model_directory, args.device, weights=w) print("* calling") t0 = time.perf_counter() with torch.no_grad(): for data, *_ in dataloader: if half_supported(): data = data.type(torch.float16).to(args.device) else: data = data.to(args.device) log_probs = model(data) if hasattr(model, 'decode_batch'): seqs.extend(model.decode_batch(log_probs)) else: seqs.extend([model.decode(p) for p in permute(log_probs, 'TNC', 'NTC')]) duration = time.perf_counter() - t0 refs = [decode_ref(target, model.alphabet) for target in dataloader.dataset.targets] accuracies = [accuracy_with_cov(ref, seq) if len(seq) else 0. for ref, seq in zip(refs, seqs)] if args.poa: poas.append(sequences) print("* mean %.2f%%" % np.mean(accuracies)) print("* median %.2f%%" % np.median(accuracies)) print("* time %.2f" % duration) print("* samples/s %.2E" % (args.chunks * data.shape[2] / duration)) if args.poa: print("* doing poa") t0 = time.perf_counter() # group each sequence prediction per model together poas = [list(seq) for seq in zip(*poas)] consensuses = poa(poas) duration = time.perf_counter() - t0 accuracies = list(starmap(accuracy_with_coverage_filter, zip(references, consensuses))) print("* mean %.2f%%" % np.mean(accuracies)) print("* median %.2f%%" % np.median(accuracies)) print("* time %.2f" % duration) def argparser(): parser = ArgumentParser( formatter_class=ArgumentDefaultsHelpFormatter, add_help=False ) parser.add_argument("model_directory") parser.add_argument("--directory", default=None) parser.add_argument("--device", default="cuda") parser.add_argument("--seed", default=9, type=int) parser.add_argument("--weights", default="0", type=str) parser.add_argument("--chunks", default=1000, type=int) parser.add_argument("--batchsize", default=96, type=int) parser.add_argument("--beamsize", default=5, type=int) parser.add_argument("--poa", action="store_true", default=False) parser.add_argument("--min-coverage", default=0.5, type=float) return parser
from .model import Model from .basecall import basecall
""" Bonito CTC-CRF Model. """ import torch import numpy as np from bonito.nn import Module, Convolution, SHABlock, LinearCRFEncoder, Serial, Permute, layers, from_dict import seqdist.sparse from seqdist.ctc_simple import logZ_cupy, viterbi_alignments from seqdist.core import SequenceDist, Max, Log, semiring def get_stride(m): if hasattr(m, 'stride'): return m.stride if isinstance(m.stride, int) else m.stride[0] if isinstance(m, Convolution): return get_stride(m.conv) if isinstance(m, Serial): return int(np.prod([get_stride(x) for x in m])) return 1 class CTC_CRF(SequenceDist): def __init__(self, state_len, alphabet): super().__init__() self.alphabet = alphabet self.state_len = state_len self.n_base = len(alphabet[1:]) self.idx = torch.cat([ torch.arange(self.n_base**(self.state_len))[:, None], torch.arange( self.n_base**(self.state_len) ).repeat_interleave(self.n_base).reshape(self.n_base, -1).T ], dim=1).to(torch.int32) def n_score(self): return len(self.alphabet) * self.n_base**(self.state_len) def logZ(self, scores, S:semiring=Log): T, N, _ = scores.shape Ms = scores.reshape(T, N, -1, len(self.alphabet)) alpha_0 = Ms.new_full((N, self.n_base**(self.state_len)), S.one) beta_T = Ms.new_full((N, self.n_base**(self.state_len)), S.one) return seqdist.sparse.logZ(Ms, self.idx, alpha_0, beta_T, S) def normalise(self, scores): return (scores - self.logZ(scores)[:, None] / len(scores)) def forward_scores(self, scores, S: semiring=Log): T, N, _ = scores.shape Ms = scores.reshape(T, N, -1, self.n_base + 1) alpha_0 = Ms.new_full((N, self.n_base**(self.state_len)), S.one) return seqdist.sparse.fwd_scores_cupy(Ms, self.idx, alpha_0, S, K=1) def backward_scores(self, scores, S: semiring=Log): T, N, _ = scores.shape Ms = scores.reshape(T, N, -1, self.n_base + 1) beta_T = Ms.new_full((N, self.n_base**(self.state_len)), S.one) return seqdist.sparse.bwd_scores_cupy(Ms, self.idx, beta_T, S, K=1) def compute_transition_probs(self, scores, betas): T, N, C = scores.shape # add bwd scores to edge scores log_trans_probs = (scores.reshape(T, N, -1, self.n_base + 1) + betas[1:, :, :, None]) # transpose from (new_state, dropped_base) to (old_state, emitted_base) layout log_trans_probs = torch.cat([ log_trans_probs[:, :, :, [0]], log_trans_probs[:, :, :, 1:].transpose(3, 2).reshape(T, N, -1, self.n_base) ], dim=-1) # convert from log probs to probs by exponentiating and normalising trans_probs = torch.softmax(log_trans_probs, dim=-1) #convert first bwd score to initial state probabilities init_state_probs = torch.softmax(betas[0], dim=-1) return trans_probs, init_state_probs def reverse_complement(self, scores): T, N, C = scores.shape expand_dims = T, N, *(self.n_base for _ in range(self.state_len)), self.n_base + 1 scores = scores.reshape(*expand_dims) blanks = torch.flip(scores[..., 0].permute( 0, 1, *range(self.state_len + 1, 1, -1)).reshape(T, N, -1, 1), [0, 2] ) emissions = torch.flip(scores[..., 1:].permute( 0, 1, *range(self.state_len, 1, -1), self.state_len +2, self.state_len + 1).reshape(T, N, -1, self.n_base), [0, 2, 3] ) return torch.cat([blanks, emissions], dim=-1).reshape(T, N, -1) def viterbi(self, scores): traceback = self.posteriors(scores, Max) paths = traceback.argmax(2) % len(self.alphabet) return paths def path_to_str(self, path): alphabet = np.frombuffer(''.join(self.alphabet).encode(), dtype='u1') seq = alphabet[path[path != 0]] return seq.tobytes().decode() def prepare_ctc_scores(self, scores, targets): # convert from CTC targets (with blank=0) to zero indexed targets = torch.clamp(targets - 1, 0) T, N, C = scores.shape scores = scores.to(torch.float32) n = targets.size(1) - (self.state_len - 1) stay_indices = sum( targets[:, i:n + i] * self.n_base ** (self.state_len - i - 1) for i in range(self.state_len) ) * len(self.alphabet) move_indices = stay_indices[:, 1:] + targets[:, :n - 1] + 1 stay_scores = scores.gather(2, stay_indices.expand(T, -1, -1)) move_scores = scores.gather(2, move_indices.expand(T, -1, -1)) return stay_scores, move_scores def ctc_loss(self, scores, targets, target_lengths, loss_clip=None, reduction='mean', normalise_scores=True): if normalise_scores: scores = self.normalise(scores) stay_scores, move_scores = self.prepare_ctc_scores(scores, targets) logz = logZ_cupy(stay_scores, move_scores, target_lengths + 1 - self.state_len) loss = - (logz / target_lengths) if loss_clip: loss = torch.clamp(loss, 0.0, loss_clip) if reduction == 'mean': return loss.mean() elif reduction in ('none', None): return loss else: raise ValueError('Unknown reduction type {}'.format(reduction)) def ctc_viterbi_alignments(self, scores, targets, target_lengths): stay_scores, move_scores = self.prepare_ctc_scores(scores, targets) return viterbi_alignments(stay_scores, move_scores, target_lengths + 1 - self.state_len) def conv(c_in, c_out, ks, stride=1, bias=False, activation=None): return Convolution(c_in, c_out, ks, stride=stride, padding=ks//2, bias=bias, activation=activation) def rnn_encoder(n_base, state_len, insize=1, stride=5, winlen=19, activation='swish', rnn_type='lstm', features=768, scale=5.0, blank_score=None, single_head_attn=False): rnn = layers[rnn_type] return Serial([ conv(insize, 4, ks=5, bias=True, activation=activation), conv(4, 16, ks=5, bias=True, activation=activation), conv(16, features, ks=winlen, stride=stride, bias=True, activation=activation), Permute([2, 0, 1]), rnn(features, features, reverse=True), rnn(features, features), rnn(features, features, reverse=True), rnn(features, features), *([SHABlock(features)] if single_head_attn else []), rnn(features, features, reverse=True), LinearCRFEncoder(features, n_base, state_len, bias=True, activation='tanh', scale=scale, blank_score=blank_score) ]) class SeqdistModel(Module): def __init__(self, encoder, seqdist): super().__init__() self.seqdist = seqdist self.encoder = encoder self.stride = get_stride(encoder) self.alphabet = seqdist.alphabet def forward(self, x): return self.encoder(x).to(torch.float32) def decode_batch(self, x): scores = self.seqdist.posteriors(x.to(torch.float32)) + 1e-8 tracebacks = self.seqdist.viterbi(scores.log()).to(torch.int16).T return [self.seqdist.path_to_str(x) for x in tracebacks.cpu().numpy()] def decode(self, x): return self.decode_batch(x.unsqueeze(1))[0] class Model(SeqdistModel): def __init__(self, config): seqdist = CTC_CRF( state_len=config['global_norm']['state_len'], alphabet=config['labels']['labels'] ) if 'type' in config['encoder']: #new-style config encoder = from_dict(config['encoder']) else: #old-style encoder = rnn_encoder(seqdist.n_base, seqdist.state_len, insize=config['input']['features'], **config['encoder']) super().__init__(encoder, seqdist) self.config = config
""" Bonito CRF basecall """ import torch import numpy as np from kbeam import beamsearch from itertools import groupby from functools import partial from operator import itemgetter import bonito from bonito.io import Writer from bonito.fast5 import get_reads from bonito.aligner import align_map from bonito.multiprocessing import thread_map, thread_iter from bonito.util import concat, chunk, batchify, unbatchify, half_supported def stitch(chunks, chunksize, overlap, length, stride, reverse=False): """ Stitch chunks together with a given overlap """ if isinstance(chunks, dict): return { k: stitch(v, chunksize, overlap, length, stride, reverse=reverse) for k, v in chunks.items() } return bonito.util.stitch(chunks, chunksize, overlap, length, stride, reverse=reverse) def compute_scores(model, batch, reverse=False): """ Compute scores for model. """ with torch.no_grad(): device = next(model.parameters()).device dtype = torch.float16 if half_supported() else torch.float32 scores = model(batch.to(dtype).to(device)) if reverse: scores = model.seqdist.reverse_complement(scores) betas = model.seqdist.backward_scores(scores.to(torch.float32)) betas -= (betas.max(2, keepdim=True)[0] - 5.0) return { 'scores': scores.transpose(0, 1), 'betas': betas.transpose(0, 1), } def quantise_int8(x, scale=127/5): """ Quantise scores to int8. """ scores = x['scores'] scores *= scale scores = torch.round(scores).to(torch.int8).detach() betas = x['betas'] betas *= scale betas = torch.round(torch.clamp(betas, -127., 128.)).to(torch.int8).detach() return {'scores': scores, 'betas': betas} def transfer(x): """ Device to host transfer using pinned memory. """ torch.cuda.synchronize() with torch.cuda.stream(torch.cuda.Stream()): return { k: torch.empty(v.shape, pin_memory=True, dtype=v.dtype).copy_(v).numpy() for k, v in x.items() } def decode_int8(scores, seqdist, scale=127/5, beamsize=40, beamcut=100.0): """ Beamsearch decode. """ path, _ = beamsearch( scores['scores'], scale, seqdist.n_base, beamsize, guide=scores['betas'], beam_cut=beamcut ) try: return seqdist.path_to_str(path % 4 + 1) except IndexError: return "" def split_read(read, split_read_length=400000): """ Split large reads into manageable pieces. """ if len(read.signal) <= split_read_length: return [(read, 0, len(read.signal))] breaks = np.arange(0, len(read.signal) + split_read_length, split_read_length) return [(read, start, min(end, len(read.signal))) for (start, end) in zip(breaks[:-1], breaks[1:])] def basecall(model, reads, aligner=None, beamsize=40, chunksize=4000, overlap=500, batchsize=32, qscores=False, reverse=False): """ Basecalls a set of reads. """ _decode = partial(decode_int8, seqdist=model.seqdist, beamsize=beamsize) reads = (read_chunk for read in reads for read_chunk in split_read(read)[::-1 if reverse else 1]) chunks = ( ((read, start, end), chunk(torch.from_numpy(read.signal[start:end]), chunksize, overlap)) for (read, start, end) in reads ) batches = ( (k, quantise_int8(compute_scores(model, batch, reverse=reverse))) for k, batch in thread_iter(batchify(chunks, batchsize=batchsize)) ) stitched = ( (read, stitch(x, chunksize, overlap, end - start, model.stride, reverse=reverse)) for ((read, start, end), x) in unbatchify(batches) ) transferred = thread_map(transfer, stitched, n_thread=1) basecalls = thread_map(_decode, transferred, n_thread=8) basecalls = ( (read, ''.join(seq for k, seq in parts)) for read, parts in groupby(basecalls, lambda x: (x[0].parent if hasattr(x[0], 'parent') else x[0])) ) basecalls = ( (read, {'sequence': seq, 'qstring': '?' * len(seq) if qscores else '*', 'mean_qscore': 0.0}) for read, seq in basecalls ) if aligner: return align_map(aligner, basecalls) return basecalls
from .model import Model from .basecall import basecall
""" Bonito Model template """ import numpy as np from bonito.nn import Permute, layers import torch from torch.nn.functional import log_softmax, ctc_loss from torch.nn import Module, ModuleList, Sequential, Conv1d, BatchNorm1d, Dropout from fast_ctc_decode import beam_search, viterbi_search class Model(Module): """ Model template for QuartzNet style architectures https://arxiv.org/pdf/1910.10261.pdf """ def __init__(self, config): super(Model, self).__init__() if 'qscore' not in config: self.qbias = 0.0 self.qscale = 1.0 else: self.qbias = config['qscore']['bias'] self.qscale = config['qscore']['scale'] self.config = config self.stride = config['block'][0]['stride'][0] self.alphabet = config['labels']['labels'] self.features = config['block'][-1]['filters'] self.encoder = Encoder(config) self.decoder = Decoder(self.features, len(self.alphabet)) def forward(self, x): encoded = self.encoder(x) return self.decoder(encoded) def decode(self, x, beamsize=5, threshold=1e-3, qscores=False, return_path=False): x = x.exp().cpu().numpy().astype(np.float32) if beamsize == 1 or qscores: seq, path = viterbi_search(x, self.alphabet, qscores, self.qscale, self.qbias) else: seq, path = beam_search(x, self.alphabet, beamsize, threshold) if return_path: return seq, path return seq def ctc_label_smoothing_loss(self, log_probs, targets, lengths, weights=None): T, N, C = log_probs.shape weights = weights or torch.cat([torch.tensor([0.4]), (0.1 / (C - 1)) * torch.ones(C - 1)]) log_probs_lengths = torch.full(size=(N, ), fill_value=T, dtype=torch.int64) loss = ctc_loss(log_probs.to(torch.float32), targets, log_probs_lengths, lengths, reduction='mean') label_smoothing_loss = -((log_probs * weights.to(log_probs.device)).mean()) return {'loss': loss + label_smoothing_loss, 'ctc_loss': loss, 'label_smooth_loss': label_smoothing_loss} class Encoder(Module): """ Builds the model encoder """ def __init__(self, config): super(Encoder, self).__init__() self.config = config features = self.config['input']['features'] activation = layers[self.config['encoder']['activation']]() encoder_layers = [] for layer in self.config['block']: encoder_layers.append( Block( features, layer['filters'], activation, repeat=layer['repeat'], kernel_size=layer['kernel'], stride=layer['stride'], dilation=layer['dilation'], dropout=layer['dropout'], residual=layer['residual'], separable=layer['separable'], ) ) features = layer['filters'] self.encoder = Sequential(*encoder_layers) def forward(self, x): return self.encoder(x) class TCSConv1d(Module): """ Time-Channel Separable 1D Convolution """ def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=False, separable=False): super(TCSConv1d, self).__init__() self.separable = separable if separable: self.depthwise = Conv1d( in_channels, in_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias, groups=in_channels ) self.pointwise = Conv1d( in_channels, out_channels, kernel_size=1, stride=1, dilation=dilation, bias=bias, padding=0 ) else: self.conv = Conv1d( in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias ) def forward(self, x): if self.separable: x = self.depthwise(x) x = self.pointwise(x) else: x = self.conv(x) return x class Block(Module): """ TCSConv, Batch Normalisation, Activation, Dropout """ def __init__(self, in_channels, out_channels, activation, repeat=5, kernel_size=1, stride=1, dilation=1, dropout=0.0, residual=False, separable=False): super(Block, self).__init__() self.use_res = residual self.conv = ModuleList() _in_channels = in_channels padding = self.get_padding(kernel_size[0], stride[0], dilation[0]) # add the first n - 1 convolutions + activation for _ in range(repeat - 1): self.conv.extend( self.get_tcs( _in_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=padding, separable=separable ) ) self.conv.extend(self.get_activation(activation, dropout)) _in_channels = out_channels # add the last conv and batch norm self.conv.extend( self.get_tcs( _in_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=padding, separable=separable ) ) # add the residual connection if self.use_res: self.residual = Sequential(*self.get_tcs(in_channels, out_channels)) # add the activation and dropout self.activation = Sequential(*self.get_activation(activation, dropout)) def get_activation(self, activation, dropout): return activation, Dropout(p=dropout) def get_padding(self, kernel_size, stride, dilation): if stride > 1 and dilation > 1: raise ValueError("Dilation and stride can not both be greater than 1") return (kernel_size // 2) * dilation def get_tcs(self, in_channels, out_channels, kernel_size=1, stride=1, dilation=1, padding=0, bias=False, separable=False): return [ TCSConv1d( in_channels, out_channels, kernel_size, stride=stride, dilation=dilation, padding=padding, bias=bias, separable=separable ), BatchNorm1d(out_channels, eps=1e-3, momentum=0.1) ] def forward(self, x): _x = x for layer in self.conv: _x = layer(_x) if self.use_res: _x = _x + self.residual(x) return self.activation(_x) class Decoder(Module): """ Decoder """ def __init__(self, features, classes): super(Decoder, self).__init__() self.layers = Sequential( Conv1d(features, classes, kernel_size=1, bias=True), Permute([2, 0, 1]) ) def forward(self, x): return log_softmax(self.layers(x), dim=-1)
""" Bonito basecall """ import torch import numpy as np from functools import partial from bonito.fast5 import ReadChunk from bonito.aligner import align_map from bonito.multiprocessing import process_map, thread_map from bonito.util import mean_qscore_from_qstring, half_supported from bonito.util import chunk, stitch, batchify, unbatchify, permute, concat def basecall(model, reads, aligner=None, beamsize=5, chunksize=0, overlap=0, batchsize=1, qscores=False, reverse=None): """ Basecalls a set of reads. """ chunks = ( (read, chunk(torch.tensor(read.signal), chunksize, overlap)) for read in reads ) scores = unbatchify( (k, compute_scores(model, v)) for k, v in batchify(chunks, batchsize) ) scores = ( (read, {'scores': stitch(v, chunksize, overlap, len(read.signal), model.stride)}) for read, v in scores ) decoder = partial(decode, decode=model.decode, beamsize=beamsize, qscores=qscores) basecalls = process_map(decoder, scores, n_proc=4) if aligner: return align_map(aligner, basecalls) return basecalls def compute_scores(model, batch): """ Compute scores for model. """ with torch.no_grad(): device = next(model.parameters()).device chunks = batch.to(torch.half).to(device) probs = permute(model(chunks), 'TNC', 'NTC') return probs.cpu().to(torch.float32) def decode(scores, decode, beamsize=5, qscores=False): """ Convert the network scores into a sequence. """ # do a greedy decode to get a sensible qstring to compute the mean qscore from seq, path = decode(scores['scores'], beamsize=1, qscores=True, return_path=True) seq, qstring = seq[:len(path)], seq[len(path):] mean_qscore = mean_qscore_from_qstring(qstring) # beam search will produce a better sequence but doesn't produce a sensible qstring/path if not (qscores or beamsize == 1): try: seq = decode(scores['scores'], beamsize=beamsize) path = None qstring = '*' except: pass return {'sequence': seq, 'qstring': qstring, 'mean_qscore': mean_qscore, 'path': path}
from bs_roformer.bs_roformer import BSRoformer
from functools import wraps from packaging import version from collections import namedtuple import torch from torch import nn, einsum import torch.nn.functional as F from einops import rearrange, reduce # constants FlashAttentionConfig = namedtuple('FlashAttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient']) # helpers def exists(val): return val is not None def once(fn): called = False @wraps(fn) def inner(x): nonlocal called if called: return called = True return fn(x) return inner print_once = once(print) # main class class Attend(nn.Module): def __init__( self, dropout = 0., flash = False ): super().__init__() self.dropout = dropout self.attn_dropout = nn.Dropout(dropout) self.flash = flash assert not (flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above' # determine efficient attention configs for cuda and cpu self.cpu_config = FlashAttentionConfig(True, True, True) self.cuda_config = None if not torch.cuda.is_available() or not flash: return device_properties = torch.cuda.get_device_properties(torch.device('cuda')) if device_properties.major == 8 and device_properties.minor == 0: print_once('A100 GPU detected, using flash attention if input tensor is on cuda') self.cuda_config = FlashAttentionConfig(True, False, False) else: print_once('Non-A100 GPU detected, using math or mem efficient attention if input tensor is on cuda') self.cuda_config = FlashAttentionConfig(False, True, True) def flash_attn(self, q, k, v): _, heads, q_len, _, k_len, is_cuda, device = *q.shape, k.shape[-2], q.is_cuda, q.device # Check if there is a compatible device for flash attention config = self.cuda_config if is_cuda else self.cpu_config # pytorch 2.0 flash attn: q, k, v, mask, dropout, softmax_scale with torch.backends.cuda.sdp_kernel(**config._asdict()): out = F.scaled_dot_product_attention( q, k, v, dropout_p = self.dropout if self.training else 0. ) return out def forward(self, q, k, v): """ einstein notation b - batch h - heads n, i, j - sequence length (base sequence length, source, target) d - feature dimension """ q_len, k_len, device = q.shape[-2], k.shape[-2], q.device scale = q.shape[-1] ** -0.5 if self.flash: return self.flash_attn(q, k, v) # similarity sim = einsum(f"b h i d, b h j d -> b h i j", q, k) * scale # attention attn = sim.softmax(dim=-1) attn = self.attn_dropout(attn) # aggregate values out = einsum(f"b h i j, b h j d -> b h i d", attn, v) return out
import torch from torch import nn, einsum, Tensor from torch.nn import Module, ModuleList import torch.nn.functional as F from bs_roformer.attend import Attend from beartype.typing import Tuple, Optional, List from beartype import beartype from rotary_embedding_torch import RotaryEmbedding from einops import rearrange, pack, unpack # helper functions def exists(val): return val is not None # norm class RMSNorm(Module): def __init__(self, dim): super().__init__() self.scale = dim ** 0.5 self.gamma = nn.Parameter(torch.ones(dim)) def forward(self, x): return F.normalize(x, dim = -1) * self.scale * self.gamma # attention class FeedForward(Module): def __init__( self, dim, mult = 4, dropout = 0. ): super().__init__() dim_inner = int(dim * mult) self.net = nn.Sequential( RMSNorm(dim), nn.Linear(dim, dim_inner), nn.GELU(), nn.Dropout(dropout), nn.Linear(dim_inner, dim), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) class Attention(Module): def __init__( self, dim, heads = 8, dim_head = 64, dropout = 0., rotary_embed = None, flash = True ): super().__init__() self.heads = heads self.scale = dim_head **-0.5 dim_inner = heads * dim_head self.rotary_embed = rotary_embed self.attend = Attend(flash = flash, dropout = dropout) self.norm = RMSNorm(dim) self.to_qkv = nn.Linear(dim, dim_inner * 3, bias = False) self.to_out = nn.Sequential( nn.Linear(dim_inner, dim, bias = False), nn.Dropout(dropout) ) def forward(self, x): x = self.norm(x) q, k, v = rearrange(self.to_qkv(x), 'b n (qkv h d) -> qkv b h n d', qkv = 3, h = self.heads) if exists(self.rotary_embed): q = self.rotary_embed.rotate_queries_or_keys(q) k = self.rotary_embed.rotate_queries_or_keys(k) out = self.attend(q, k, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) class Transformer(Module): def __init__( self, *, dim, depth, dim_head = 64, heads = 8, attn_dropout = 0., ff_dropout = 0., ff_mult = 4, norm_output = True, rotary_embed = None, flash_attn = True ): super().__init__() self.layers = ModuleList([]) for _ in range(depth): self.layers.append(ModuleList([ Attention(dim = dim, dim_head = dim_head, heads = heads, dropout = attn_dropout, rotary_embed = rotary_embed, flash = flash_attn), FeedForward(dim = dim, mult = ff_mult, dropout = ff_dropout) ])) self.norm = RMSNorm(dim) if norm_output else nn.Identity() def forward(self, x): for attn, ff in self.layers: x = attn(x) + x x = ff(x) + x return self.norm(x) # bandsplit module class BandSplit(Module): @beartype def __init__( self, dim, dim_inputs: Tuple[int, ...] ): super().__init__() self.dim_inputs = dim_inputs self.to_features = ModuleList([]) for dim_in in dim_inputs: net = nn.Sequential( RMSNorm(dim_in), nn.Linear(dim_in, dim) ) self.to_features.append(net) def forward(self, x): x = x.split(self.dim_inputs, dim = -1) outs = [] for split_input, to_feature in zip(x, self.to_features): split_output = to_feature(split_input) outs.append(split_output) return torch.stack(outs, dim = -2) class LinearGLUWithTanH(Module): def __init__(self, dim_in, dim_out): super().__init__() self.proj = nn.Linear(dim_in, dim_out * 2) def forward(self, x): x, gate = self.proj(x).chunk(2, dim = -1) return x.tanh() * gate.sigmoid() class MaskEstimator(Module): @beartype def __init__( self, dim, dim_inputs: Tuple[int, ...], depth ): super().__init__() self.dim_inputs = dim_inputs self.to_freqs = ModuleList([]) for dim_in in dim_inputs: net = [] for ind in range(depth): is_last = ind == (depth - 1) dim_out = dim if not is_last else dim_in net.append(LinearGLUWithTanH(dim, dim_out)) self.to_freqs.append(nn.Sequential(*net)) def forward(self, x): x = x.unbind(dim = -2) outs = [] for band_features, to_freq in zip(x, self.to_freqs): freq_out = to_freq(band_features) outs.append(freq_out) return torch.cat(outs, dim = -1) # main class class BSRoformer(Module): @beartype def __init__( self, dim, *, depth, time_transformer_depth = 2, freq_transformer_depth = 2, freqs_per_bands: Tuple[int, ...] = (256, 257), # in the paper, they divide into ~60 bands, test with 1 for starters dim_head = 64, heads = 8, attn_dropout = 0., ff_dropout = 0., flash_attn = True, dim_freqs_in = 513, stft_n_fft = 1024, stft_hop_length = 256, stft_win_length = 1024, stft_normalized = False, mask_estimator_depth = 1, multi_stft_resolution_loss_weight = 1., multi_stft_resolutions_window_sizes: Tuple[int, ...] = (4096, 2048, 1024, 512, 256), multi_stft_hop_size = 147, multi_stft_normalized = False ): super().__init__() self.layers = ModuleList([]) transformer_kwargs = dict( dim = dim, heads = heads, dim_head = dim_head, attn_dropout = attn_dropout, ff_dropout = ff_dropout, flash_attn = flash_attn ) time_rotary_embed = RotaryEmbedding(dim = dim_head) freq_rotary_embed = RotaryEmbedding(dim = dim_head) for _ in range(depth): self.layers.append(nn.ModuleList([ Transformer(depth = time_transformer_depth, rotary_embed = time_rotary_embed, **transformer_kwargs), Transformer(depth = freq_transformer_depth, rotary_embed = freq_rotary_embed, **transformer_kwargs) ])) self.stft_kwargs = dict( n_fft = stft_n_fft, hop_length = stft_hop_length, win_length = stft_win_length, normalized = stft_normalized ) freqs = torch.stft(torch.randn(1, 1024), **self.stft_kwargs, return_complex = True).shape[1] assert len(freqs_per_bands) > 1 assert sum(freqs_per_bands) == freqs, f'the number of freqs in the bands must equal {freqs} based on the STFT settings' freqs_per_bands_with_complex = tuple(2 * f for f in freqs_per_bands) self.band_split = BandSplit( dim = dim, dim_inputs = freqs_per_bands_with_complex ) self.mask_estimator = MaskEstimator( dim = dim, dim_inputs = freqs_per_bands_with_complex, depth = mask_estimator_depth ) # for the multi-resolution stft loss self.multi_stft_resolution_loss_weight = multi_stft_resolution_loss_weight self.multi_stft_resolutions_window_sizes = multi_stft_resolutions_window_sizes self.multi_stft_n_fft = stft_n_fft self.multi_stft_kwargs = dict( hop_length = multi_stft_hop_size, normalized = multi_stft_normalized ) def forward( self, raw_audio, target = None, return_loss_breakdown = False ): """ einops b - batch f - freq t - time c - complex (2) d - feature dimension """ # to stft stft_repr = torch.stft(raw_audio, **self.stft_kwargs, return_complex = True) stft_repr = torch.view_as_real(stft_repr) x = rearrange(stft_repr, 'b f t c -> b t (f c)') x = self.band_split(x) # axial / hierarchical attention for time_transformer, freq_transformer in self.layers: x = rearrange(x, 'b t f d -> b f t d') x, ps = pack([x], 'b * d') x = time_transformer(x) x, = unpack(x, ps, 'b * d') x = rearrange(x, 'b f t d -> b t f d') x, ps = pack([x], 'b * d') x = freq_transformer(x) x, = unpack(x, ps, 'b * d') mask = self.mask_estimator(x) mask = rearrange(mask, 'b t (f c) -> b f t c', c = 2) # modulate frequency representation stft_repr = stft_repr * mask # istft stft_repr = torch.view_as_complex(stft_repr) recon_audio = torch.istft(stft_repr, **self.stft_kwargs, return_complex = False) # if a target is passed in, calculate loss for learning if not exists(target): return recon_audio target = target[..., :recon_audio.shape[-1]] # protect against lost length on istft loss = F.l1_loss(recon_audio, target) multi_stft_resolution_loss = 0. for window_size in self.multi_stft_resolutions_window_sizes: res_stft_kwargs = dict( n_fft = max(window_size, self.multi_stft_n_fft), # not sure what n_fft is across multi resolution stft win_length = window_size, return_complex = True, **self.multi_stft_kwargs, ) recon_Y = torch.stft(recon_audio, **res_stft_kwargs) target_Y = torch.stft(target, **res_stft_kwargs) multi_stft_resolution_loss = multi_stft_resolution_loss + F.l1_loss(recon_Y, target_Y) weighted_multi_resolution_loss = multi_stft_resolution_loss * self.multi_stft_resolution_loss_weight total_loss = loss + weighted_multi_resolution_loss if not return_loss_breakdown: return total_loss return total_loss, (loss, multi_stft_resolution_loss)
import random import torch import torch.linalg import numpy as np class BlackHole(object): def __setattr__(self, name, value): pass def __call__(self, *args, **kwargs): return self def __getattr__(self, name): return self def seed_all(seed): torch.backends.cudnn.deterministic = True torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) random.seed(seed) def recursive_to(obj, device): if isinstance(obj, torch.Tensor): try: return obj.cuda(device=device, non_blocking=True) except RuntimeError: return obj.to(device) elif isinstance(obj, list): return [recursive_to(o, device=device) for o in obj] elif isinstance(obj, tuple): return (recursive_to(o, device=device) for o in obj) elif isinstance(obj, dict): return {k: recursive_to(v, device=device) for k, v in obj.items()} else: return obj
import warnings import torch from Bio import BiopythonWarning from Bio.PDB import Selection from Bio.PDB.PDBParser import PDBParser from Bio.PDB.Polypeptide import three_to_one, three_to_index, is_aa NON_STANDARD_SUBSTITUTIONS = { '2AS':'ASP', '3AH':'HIS', '5HP':'GLU', 'ACL':'ARG', 'AGM':'ARG', 'AIB':'ALA', 'ALM':'ALA', 'ALO':'THR', 'ALY':'LYS', 'ARM':'ARG', 'ASA':'ASP', 'ASB':'ASP', 'ASK':'ASP', 'ASL':'ASP', 'ASQ':'ASP', 'AYA':'ALA', 'BCS':'CYS', 'BHD':'ASP', 'BMT':'THR', 'BNN':'ALA', 'BUC':'CYS', 'BUG':'LEU', 'C5C':'CYS', 'C6C':'CYS', 'CAS':'CYS', 'CCS':'CYS', 'CEA':'CYS', 'CGU':'GLU', 'CHG':'ALA', 'CLE':'LEU', 'CME':'CYS', 'CSD':'ALA', 'CSO':'CYS', 'CSP':'CYS', 'CSS':'CYS', 'CSW':'CYS', 'CSX':'CYS', 'CXM':'MET', 'CY1':'CYS', 'CY3':'CYS', 'CYG':'CYS', 'CYM':'CYS', 'CYQ':'CYS', 'DAH':'PHE', 'DAL':'ALA', 'DAR':'ARG', 'DAS':'ASP', 'DCY':'CYS', 'DGL':'GLU', 'DGN':'GLN', 'DHA':'ALA', 'DHI':'HIS', 'DIL':'ILE', 'DIV':'VAL', 'DLE':'LEU', 'DLY':'LYS', 'DNP':'ALA', 'DPN':'PHE', 'DPR':'PRO', 'DSN':'SER', 'DSP':'ASP', 'DTH':'THR', 'DTR':'TRP', 'DTY':'TYR', 'DVA':'VAL', 'EFC':'CYS', 'FLA':'ALA', 'FME':'MET', 'GGL':'GLU', 'GL3':'GLY', 'GLZ':'GLY', 'GMA':'GLU', 'GSC':'GLY', 'HAC':'ALA', 'HAR':'ARG', 'HIC':'HIS', 'HIP':'HIS', 'HMR':'ARG', 'HPQ':'PHE', 'HTR':'TRP', 'HYP':'PRO', 'IAS':'ASP', 'IIL':'ILE', 'IYR':'TYR', 'KCX':'LYS', 'LLP':'LYS', 'LLY':'LYS', 'LTR':'TRP', 'LYM':'LYS', 'LYZ':'LYS', 'MAA':'ALA', 'MEN':'ASN', 'MHS':'HIS', 'MIS':'SER', 'MLE':'LEU', 'MPQ':'GLY', 'MSA':'GLY', 'MSE':'MET', 'MVA':'VAL', 'NEM':'HIS', 'NEP':'HIS', 'NLE':'LEU', 'NLN':'LEU', 'NLP':'LEU', 'NMC':'GLY', 'OAS':'SER', 'OCS':'CYS', 'OMT':'MET', 'PAQ':'TYR', 'PCA':'GLU', 'PEC':'CYS', 'PHI':'PHE', 'PHL':'PHE', 'PR3':'CYS', 'PRR':'ALA', 'PTR':'TYR', 'PYX':'CYS', 'SAC':'SER', 'SAR':'GLY', 'SCH':'CYS', 'SCS':'CYS', 'SCY':'CYS', 'SEL':'SER', 'SEP':'SER', 'SET':'SER', 'SHC':'CYS', 'SHR':'LYS', 'SMC':'CYS', 'SOC':'CYS', 'STY':'TYR', 'SVA':'SER', 'TIH':'ALA', 'TPL':'TRP', 'TPO':'THR', 'TPQ':'ALA', 'TRG':'LYS', 'TRO':'TRP', 'TYB':'TYR', 'TYI':'TYR', 'TYQ':'TYR', 'TYS':'TYR', 'TYY':'TYR' } RESIDUE_SIDECHAIN_POSTFIXES = { 'A': ['B'], 'R': ['B', 'G', 'D', 'E', 'Z', 'H1', 'H2'], 'N': ['B', 'G', 'D1', 'D2'], 'D': ['B', 'G', 'D1', 'D2'], 'C': ['B', 'G'], 'E': ['B', 'G', 'D', 'E1', 'E2'], 'Q': ['B', 'G', 'D', 'E1', 'E2'], 'G': [], 'H': ['B', 'G', 'D1', 'D2', 'E1', 'E2'], 'I': ['B', 'G1', 'G2', 'D1'], 'L': ['B', 'G', 'D1', 'D2'], 'K': ['B', 'G', 'D', 'E', 'Z'], 'M': ['B', 'G', 'D', 'E'], 'F': ['B', 'G', 'D1', 'D2', 'E1', 'E2', 'Z'], 'P': ['B', 'G', 'D'], 'S': ['B', 'G'], 'T': ['B', 'G1', 'G2'], 'W': ['B', 'G', 'D1', 'D2', 'E1', 'E2', 'E3', 'Z2', 'Z3', 'H2'], 'Y': ['B', 'G', 'D1', 'D2', 'E1', 'E2', 'Z', 'H'], 'V': ['B', 'G1', 'G2'], } GLY_INDEX = 5 ATOM_N, ATOM_CA, ATOM_C, ATOM_O, ATOM_CB = 0, 1, 2, 3, 4 def augmented_three_to_one(three): if three in NON_STANDARD_SUBSTITUTIONS: three = NON_STANDARD_SUBSTITUTIONS[three] return three_to_one(three) def augmented_three_to_index(three): if three in NON_STANDARD_SUBSTITUTIONS: three = NON_STANDARD_SUBSTITUTIONS[three] return three_to_index(three) def augmented_is_aa(three): if three in NON_STANDARD_SUBSTITUTIONS: three = NON_STANDARD_SUBSTITUTIONS[three] return is_aa(three, standard=True) def is_hetero_residue(res): return len(res.id[0].strip()) > 0 def get_atom_name_postfix(atom): name = atom.get_name() if name in ('N', 'CA', 'C', 'O'): return name if name[-1].isnumeric(): return name[-2:] else: return name[-1:] def get_residue_pos14(res): pos14 = torch.full([14, 3], float('inf')) suffix_to_atom = {get_atom_name_postfix(a):a for a in res.get_atoms()} atom_order = ['N', 'CA', 'C', 'O'] + RESIDUE_SIDECHAIN_POSTFIXES[augmented_three_to_one(res.get_resname())] for i, atom_suffix in enumerate(atom_order): if atom_suffix not in suffix_to_atom: continue pos14[i,0], pos14[i,1], pos14[i,2] = suffix_to_atom[atom_suffix].get_coord().tolist() return pos14 def parse_pdb(path, model_id=0): warnings.simplefilter('ignore', BiopythonWarning) parser = PDBParser() structure = parser.get_structure(None, path) return parse_complex(structure, model_id) def parse_complex(structure, model_id=None): if model_id is not None: structure = structure[model_id] chains = Selection.unfold_entities(structure, 'C') aa, resseq, icode, seq = [], [], [], [] pos14, pos14_mask = [], [] chain_id, chain_seq = [], [] for i, chain in enumerate(chains): seq_this = 0 for res in chain: resname = res.get_resname() if not augmented_is_aa(resname): continue if not (res.has_id('CA') and res.has_id('C') and res.has_id('N')): continue # Chain chain_id.append(chain.get_id()) chain_seq.append(i+1) # Residue types restype = augmented_three_to_index(resname) aa.append(restype) # Atom coordinates pos14_this = get_residue_pos14(res) pos14_mask_this = pos14_this.isfinite() pos14.append(pos14_this.nan_to_num(posinf=99999)) pos14_mask.append(pos14_mask_this) # Sequential number resseq_this = int(res.get_id()[1]) icode_this = res.get_id()[2] if seq_this == 0: seq_this = 1 else: d_resseq = resseq_this - resseq[-1] if d_resseq == 0: seq_this += 1 else: seq_this += d_resseq resseq.append(resseq_this) icode.append(icode_this) seq.append(seq_this) if len(aa) == 0: return None return { 'name': structure.get_id(), # Chain 'chain_id': ''.join(chain_id), 'chain_seq': torch.LongTensor(chain_seq), # Sequence 'aa': torch.LongTensor(aa), 'resseq': torch.LongTensor(resseq), 'icode': ''.join(icode), 'seq': torch.LongTensor(seq), # Atom positions 'pos14': torch.stack(pos14), 'pos14_mask': torch.stack(pos14_mask), }
import math import torch from torch.utils.data._utils.collate import default_collate from .protein import ATOM_CA, parse_pdb class PaddingCollate(object): def __init__(self, length_ref_key='mutation_mask', pad_values={'aa': 20, 'pos14': float('999'), 'icode': ' ', 'chain_id': '-'}, donot_pad={'foldx'}, eight=False): super().__init__() self.length_ref_key = length_ref_key self.pad_values = pad_values self.donot_pad = donot_pad self.eight = eight def _pad_last(self, x, n, value=0): if isinstance(x, torch.Tensor): assert x.size(0) <= n if x.size(0) == n: return x pad_size = [n - x.size(0)] + list(x.shape[1:]) pad = torch.full(pad_size, fill_value=value).to(x) return torch.cat([x, pad], dim=0) elif isinstance(x, list): pad = [value] * (n - len(x)) return x + pad elif isinstance(x, str): if value == 0: # Won't pad strings if not specified return x pad = value * (n - len(x)) return x + pad elif isinstance(x, dict): padded = {} for k, v in x.items(): if k in self.donot_pad: padded[k] = v else: padded[k] = self._pad_last(v, n, value=self._get_pad_value(k)) return padded else: return x @staticmethod def _get_pad_mask(l, n): return torch.cat([ torch.ones([l], dtype=torch.bool), torch.zeros([n-l], dtype=torch.bool) ], dim=0) def _get_pad_value(self, key): if key not in self.pad_values: return 0 return self.pad_values[key] def __call__(self, data_list): max_length = max([data[self.length_ref_key].size(0) for data in data_list]) if self.eight: max_length = math.ceil(max_length / 8) * 8 data_list_padded = [] for data in data_list: data_padded = { k: self._pad_last(v, max_length, value=self._get_pad_value(k)) for k, v in data.items() if k in ('wt', 'mut', 'ddG', 'mutation_mask', 'index', 'mutation') } data_padded['mask'] = self._get_pad_mask(data[self.length_ref_key].size(0), max_length) data_list_padded.append(data_padded) return default_collate(data_list_padded) def _mask_list(l, mask): return [l[i] for i in range(len(l)) if mask[i]] def _mask_string(s, mask): return ''.join([s[i] for i in range(len(s)) if mask[i]]) def _mask_dict_recursively(d, mask): out = {} for k, v in d.items(): if isinstance(v, torch.Tensor) and v.size(0) == mask.size(0): out[k] = v[mask] elif isinstance(v, list) and len(v) == mask.size(0): out[k] = _mask_list(v, mask) elif isinstance(v, str) and len(v) == mask.size(0): out[k] = _mask_string(v, mask) elif isinstance(v, dict): out[k] = _mask_dict_recursively(v, mask) else: out[k] = v return out class KnnResidue(object): def __init__(self, num_neighbors=128): super().__init__() self.num_neighbors = num_neighbors def __call__(self, data): pos_CA = data['wt']['pos14'][:, ATOM_CA] pos_CA_mut = pos_CA[data['mutation_mask']] diff = pos_CA_mut.view(1, -1, 3) - pos_CA.view(-1, 1, 3) dist = torch.linalg.norm(diff, dim=-1) try: mask = torch.zeros([dist.size(0)], dtype=torch.bool) mask[ dist.min(dim=1)[0].argsort()[:self.num_neighbors] ] = True except IndexError as e: print(data) raise e return _mask_dict_recursively(data, mask) def load_wt_mut_pdb_pair(wt_path, mut_path): data_wt = parse_pdb(wt_path) data_mut = parse_pdb(mut_path) transform = KnnResidue() collate_fn = PaddingCollate() mutation_mask = (data_wt['aa'] != data_mut['aa']) batch = collate_fn([transform({'wt': data_wt, 'mut': data_mut, 'mutation_mask': mutation_mask})]) return batch
import torch import torch.nn as nn import torch.nn.functional as F from models.residue import PerResidueEncoder from models.attention import GAEncoder from models.common import get_pos_CB, construct_3d_basis from utils.protein import ATOM_N, ATOM_CA, ATOM_C class ComplexEncoder(nn.Module): def __init__(self, cfg): super().__init__() self.cfg = cfg self.relpos_embedding = nn.Embedding(cfg.max_relpos*2+2, cfg.pair_feat_dim) self.residue_encoder = PerResidueEncoder(cfg.node_feat_dim) if cfg.geomattn is not None: self.ga_encoder = GAEncoder( node_feat_dim = cfg.node_feat_dim, pair_feat_dim = cfg.pair_feat_dim, num_layers = cfg.geomattn.num_layers, spatial_attn_mode = cfg.geomattn.spatial_attn_mode, ) else: self.out_mlp = nn.Sequential( nn.Linear(cfg.node_feat_dim, cfg.node_feat_dim), nn.ReLU(), nn.Linear(cfg.node_feat_dim, cfg.node_feat_dim), nn.ReLU(), nn.Linear(cfg.node_feat_dim, cfg.node_feat_dim), ) def forward(self, pos14, aa, seq, chain, mask_atom): """ Args: pos14: (N, L, 14, 3). aa: (N, L). seq: (N, L). chain: (N, L). mask_atom: (N, L, 14) Returns: (N, L, node_ch) """ same_chain = (chain[:, None, :] == chain[:, :, None]) # (N, L, L) relpos = (seq[:, None, :] - seq[:, :, None]).clamp(min=-self.cfg.max_relpos, max=self.cfg.max_relpos) + self.cfg.max_relpos # (N, L, L) relpos = torch.where(same_chain, relpos, torch.full_like(relpos, fill_value=self.cfg.max_relpos*2+1)) pair_feat = self.relpos_embedding(relpos) # (N, L, L, pair_ch) R = construct_3d_basis(pos14[:, :, ATOM_CA], pos14[:, :, ATOM_C], pos14[:, :, ATOM_N]) # Residue encoder res_feat = self.residue_encoder(aa, pos14, mask_atom) # Geom encoder t = pos14[:, :, ATOM_CA] mask_residue = mask_atom[:, :, ATOM_CA] res_feat = self.ga_encoder(R, t, get_pos_CB(pos14, mask_atom), res_feat, pair_feat, mask_residue) return res_feat class DDGReadout(nn.Module): def __init__(self, feat_dim): super().__init__() self.mlp = nn.Sequential( nn.Linear(feat_dim*2, feat_dim), nn.ReLU(), nn.Linear(feat_dim, feat_dim), nn.ReLU(), nn.Linear(feat_dim, feat_dim), nn.ReLU(), nn.Linear(feat_dim, feat_dim) ) self.project = nn.Linear(feat_dim, 1, bias=False) def forward(self, node_feat_wt, node_feat_mut, mask=None): """ Args: node_feat_wt: (N, L, F). node_feat_mut: (N, L, F). mask: (N, L). """ feat_wm = torch.cat([node_feat_wt, node_feat_mut], dim=-1) feat_mw = torch.cat([node_feat_mut, node_feat_wt], dim=-1) feat_diff = self.mlp(feat_wm) - self.mlp(feat_mw) # (N, L, F) # feat_diff = self.mlp(node_feat_wt) - self.mlp(node_feat_mut) per_residue_ddg = self.project(feat_diff).squeeze(-1) # (N, L) if mask is not None: per_residue_ddg = per_residue_ddg * mask ddg = per_residue_ddg.sum(dim=1) # (N,) return ddg class DDGPredictor(nn.Module): def __init__(self, cfg): super().__init__() self.encoder = ComplexEncoder(cfg) self.ddG_readout = DDGReadout(cfg.node_feat_dim) def forward(self, complex_wt, complex_mut, ddG_true=None): mask_atom_wt = complex_wt['pos14_mask'].all(dim=-1) # (N, L, 14) mask_atom_mut = complex_mut['pos14_mask'].all(dim=-1) feat_wt = self.encoder(complex_wt['pos14'], complex_wt['aa'], complex_wt['seq'], complex_wt['chain_seq'], mask_atom_wt) feat_mut = self.encoder(complex_mut['pos14'], complex_mut['aa'], complex_mut['seq'], complex_mut['chain_seq'], mask_atom_mut) mask_res = mask_atom_wt[:, :, ATOM_CA] ddG_pred = self.ddG_readout(feat_wt, feat_mut, mask_res) # One mask is enough if ddG_true is None: return ddG_pred else: losses = { 'ddG': F.mse_loss(ddG_pred, ddG_true), } return losses, ddG_pred
import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from .common import mask_zero, global_to_local, local_to_global, normalize_vector def _alpha_from_logits(logits, mask, inf=1e5): """ Args: logits: Logit matrices, (N, L_i, L_j, num_heads). mask: Masks, (N, L). Returns: alpha: Attention weights. """ N, L, _, _ = logits.size() mask_row = mask.view(N, L, 1, 1).expand_as(logits) # (N, L, *, *) mask_pair = mask_row * mask_row.permute(0, 2, 1, 3) # (N, L, L, *) logits = torch.where(mask_pair, logits, logits-inf) alpha = torch.softmax(logits, dim=2) # (N, L, L, num_heads) alpha = torch.where(mask_row, alpha, torch.zeros_like(alpha)) return alpha def _heads(x, n_heads, n_ch): """ Args: x: (..., num_heads * num_channels) Returns: (..., num_heads, num_channels) """ s = list(x.size())[:-1] + [n_heads, n_ch] return x.view(*s) class GeometricAttention(nn.Module): def __init__(self, node_feat_dim, pair_feat_dim, spatial_attn_mode='CB', value_dim=16, query_key_dim=16, num_query_points=8, num_value_points=8, num_heads=12): super().__init__() self.node_feat_dim = node_feat_dim self.pair_feat_dim = pair_feat_dim self.value_dim = value_dim self.query_key_dim = query_key_dim self.num_query_points = num_query_points self.num_value_points = num_value_points self.num_heads = num_heads assert spatial_attn_mode in ('CB', 'vpoint') self.spatial_attn_mode = spatial_attn_mode # Node self.proj_query = nn.Linear(node_feat_dim, query_key_dim*num_heads, bias=False) self.proj_key = nn.Linear(node_feat_dim, query_key_dim*num_heads, bias=False) self.proj_value = nn.Linear(node_feat_dim, value_dim*num_heads, bias=False) # Pair self.proj_pair_bias = nn.Linear(pair_feat_dim, num_heads, bias=False) # Spatial self.spatial_coef = nn.Parameter(torch.full([1, 1, 1, self.num_heads], fill_value=np.log(np.exp(1.) - 1.)), requires_grad=True) if spatial_attn_mode == 'vpoint': self.proj_query_point = nn.Linear(node_feat_dim, num_query_points*num_heads*3, bias=False) self.proj_key_point = nn.Linear(node_feat_dim, num_query_points*num_heads*3, bias=False) self.proj_value_point = nn.Linear(node_feat_dim, num_value_points*num_heads*3, bias=False) # Output if spatial_attn_mode == 'CB': self.out_transform = nn.Linear( in_features = (num_heads*pair_feat_dim) + (num_heads*value_dim) + (num_heads*(3+3+1)), out_features = node_feat_dim, ) elif spatial_attn_mode == 'vpoint': self.out_transform = nn.Linear( in_features = (num_heads*pair_feat_dim) + (num_heads*value_dim) + (num_heads*num_value_points*(3+3+1)), out_features = node_feat_dim, ) self.layer_norm = nn.LayerNorm(node_feat_dim) def _node_logits(self, x): query_l = _heads(self.proj_query(x), self.num_heads, self.query_key_dim) # (N, L, n_heads, qk_ch) key_l = _heads(self.proj_key(x), self.num_heads, self.query_key_dim) # (N, L, n_heads, qk_ch) query_l = query_l.permute(0, 2, 1, 3) # (N,L1,H,C) -> (N,H,L1,C) key_l = key_l.permute(0, 2, 3, 1) # (N,L2,H,C) -> (N,H,C,L2) logits = torch.matmul(query_l, key_l) # (N,H,L1,L2) logits = logits.permute(0, 2, 3, 1) # (N,L1,L2,H) # logits = (query_l.unsqueeze(2) * key_l.unsqueeze(1) * (1 / np.sqrt(self.query_key_dim))).sum(-1) # (N, L, L, num_heads) return logits def _pair_logits(self, z): logits_pair = self.proj_pair_bias(z) return logits_pair def _beta_logits(self, R, t, p_CB): N, L, _ = t.size() qk = p_CB[:, :, None, :].expand(N, L, self.num_heads, 3) sum_sq_dist = ((qk.unsqueeze(2) - qk.unsqueeze(1)) ** 2).sum(-1) # (N, L, L, n_heads) gamma = F.softplus(self.spatial_coef) logtis_beta = sum_sq_dist * ((-1 * gamma * np.sqrt(2 / 9)) / 2) return logtis_beta def _spatial_logits(self, R, t, x): N, L, _ = t.size() # Query query_points = _heads(self.proj_query_point(x), self.num_heads*self.num_query_points, 3) # (N, L, n_heads * n_pnts, 3) query_points = local_to_global(R, t, query_points) # Global query coordinates, (N, L, n_heads * n_pnts, 3) query_s = query_points.reshape(N, L, self.num_heads, -1) # (N, L, n_heads, n_pnts*3) # Key key_points = _heads(self.proj_key_point(x), self.num_heads*self.num_query_points, 3) # (N, L, 3, n_heads * n_pnts) key_points = local_to_global(R, t, key_points) # Global key coordinates, (N, L, n_heads * n_pnts, 3) key_s = key_points.reshape(N, L, self.num_heads, -1) # (N, L, n_heads, n_pnts*3) # Q-K Product sum_sq_dist = ((query_s.unsqueeze(2) - key_s.unsqueeze(1)) ** 2).sum(-1) # (N, L, L, n_heads) gamma = F.softplus(self.spatial_coef) logits_spatial = sum_sq_dist * ((-1 * gamma * np.sqrt(2 / (9 * self.num_query_points))) / 2) # (N, L, L, n_heads) return logits_spatial def _pair_aggregation(self, alpha, z): N, L = z.shape[:2] feat_p2n = alpha.unsqueeze(-1) * z.unsqueeze(-2) # (N, L, L, n_heads, C) feat_p2n = feat_p2n.sum(dim=2) # (N, L, n_heads, C) return feat_p2n.reshape(N, L, -1) def _node_aggregation(self, alpha, x): N, L = x.shape[:2] value_l = _heads(self.proj_value(x), self.num_heads, self.query_key_dim) # (N, L, n_heads, v_ch) feat_node = alpha.unsqueeze(-1) * value_l.unsqueeze(1) # (N, L, L, n_heads, *) @ (N, *, L, n_heads, v_ch) feat_node = feat_node.sum(dim=2) # (N, L, n_heads, v_ch) return feat_node.reshape(N, L, -1) def _beta_aggregation(self, alpha, R, t, p_CB, x): N, L, _ = t.size() v = p_CB[:, :, None, :].expand(N, L, self.num_heads, 3) # (N, L, n_heads, 3) aggr = alpha.reshape(N, L, L, self.num_heads, 1) * v.unsqueeze(1) # (N, *, L, n_heads, 3) aggr = aggr.sum(dim=2) feat_points = global_to_local(R, t, aggr) # (N, L, n_heads, 3) feat_distance = feat_points.norm(dim=-1) feat_direction = normalize_vector(feat_points, dim=-1, eps=1e-4) feat_spatial = torch.cat([ feat_points.reshape(N, L, -1), feat_distance.reshape(N, L, -1), feat_direction.reshape(N, L, -1), ], dim=-1) return feat_spatial def _spatial_aggregation(self, alpha, R, t, x): N, L, _ = t.size() value_points = _heads(self.proj_value_point(x), self.num_heads*self.num_value_points, 3) # (N, L, n_heads * n_v_pnts, 3) value_points = local_to_global(R, t, value_points.reshape(N, L, self.num_heads, self.num_value_points, 3)) # (N, L, n_heads, n_v_pnts, 3) aggr_points = alpha.reshape(N, L, L, self.num_heads, 1, 1) * value_points.unsqueeze(1) # (N, *, L, n_heads, n_pnts, 3) aggr_points = aggr_points.sum(dim=2) # (N, L, n_heads, n_pnts, 3) feat_points = global_to_local(R, t, aggr_points) # (N, L, n_heads, n_pnts, 3) feat_distance = feat_points.norm(dim=-1) # (N, L, n_heads, n_pnts) feat_direction = normalize_vector(feat_points, dim=-1, eps=1e-4) # (N, L, n_heads, n_pnts, 3) feat_spatial = torch.cat([ feat_points.reshape(N, L, -1), feat_distance.reshape(N, L, -1), feat_direction.reshape(N, L, -1), ], dim=-1) return feat_spatial def forward_beta(self, R, t, p_CB, x, z, mask): """ Args: R: Frame basis matrices, (N, L, 3, 3_index). t: Frame external (absolute) coordinates, (N, L, 3). x: Node-wise features, (N, L, F). z: Pair-wise features, (N, L, L, C). mask: Masks, (N, L). Returns: x': Updated node-wise features, (N, L, F). """ # Attention logits logits_node = self._node_logits(x) logits_pair = self._pair_logits(z) logits_spatial = self._beta_logits(R, t, p_CB) # Summing logits up and apply `softmax`. logits_sum = logits_node + logits_pair + logits_spatial alpha = _alpha_from_logits(logits_sum * np.sqrt(1 / 3), mask) # (N, L, L, n_heads) # Aggregate features feat_p2n = self._pair_aggregation(alpha, z) feat_node = self._node_aggregation(alpha, x) feat_spatial = self._beta_aggregation(alpha, R, t, p_CB, x) # Finally feat_all = self.out_transform(torch.cat([feat_p2n, feat_node, feat_spatial], dim=-1)) # (N, L, F) feat_all = mask_zero(mask.unsqueeze(-1), feat_all) x_updated = self.layer_norm(x + feat_all) return x_updated def forward_vpoint(self, R, t, p_CB, x, z, mask): """ Args: R: Frame basis matrices, (N, L, 3, 3_index). t: Frame external (absolute) coordinates, (N, L, 3). x: Node-wise features, (N, L, F). z: Pair-wise features, (N, L, L, C). mask: Masks, (N, L). Returns: x': Updated node-wise features, (N, L, F). """ # Attention logits logits_node = self._node_logits(x) logits_pair = self._pair_logits(z) logits_spatial = self._spatial_logits(R, t, x) # Summing logits up and apply `softmax`. logits_sum = logits_node + logits_pair + logits_spatial alpha = _alpha_from_logits(logits_sum * np.sqrt(1 / 3), mask) # (N, L, L, n_heads) # Aggregate features feat_p2n = self._pair_aggregation(alpha, z) feat_node = self._node_aggregation(alpha, x) feat_spatial = self._spatial_aggregation(alpha, R, t, x) # Finally feat_all = self.out_transform(torch.cat([feat_p2n, feat_node, feat_spatial], dim=-1)) # (N, L, F) feat_all = mask_zero(mask.unsqueeze(-1), feat_all) x_updated = self.layer_norm(x + feat_all) return x_updated def forward(self, R, t, p_CB, x, z, mask): if self.spatial_attn_mode == 'CB': return self.forward_beta(R, t, p_CB, x, z, mask) else: return self.forward_vpoint(R, t, p_CB, x, z, mask) class GAEncoder(nn.Module): def __init__(self, node_feat_dim, pair_feat_dim, num_layers, spatial_attn_mode='CB'): super().__init__() self.blocks = nn.ModuleList([ GeometricAttention(node_feat_dim, pair_feat_dim, spatial_attn_mode=spatial_attn_mode) for _ in range(num_layers) ]) def forward(self, R, t, p_CB, x, z, mask): for block in self.blocks: x = block(R, t, p_CB, x, z, mask) # Residual connection within the block return x
import torch import torch.nn as nn from models.common import PositionalEncoding, construct_3d_basis, global_to_local class PerResidueEncoder(nn.Module): def __init__(self, feat_dim): super().__init__() self.aatype_embed = nn.Embedding(21, feat_dim) self.torsion_embed = PositionalEncoding() self.mlp = nn.Sequential( nn.Linear(21*14*3 + feat_dim, feat_dim * 2), nn.ReLU(), nn.Linear(feat_dim * 2, feat_dim), nn.ReLU(), nn.Linear(feat_dim, feat_dim), nn.ReLU(), nn.Linear(feat_dim, feat_dim) ) def forward(self, aa, pos14, atom_mask): """ Args: aa: (N, L). pos14: (N, L, 14, 3). atom_mask: (N, L, 14). """ N, L = aa.size() R = construct_3d_basis(pos14[:, :, 1], pos14[:, :, 2], pos14[:, :, 0]) # (N, L, 3, 3) t = pos14[:, :, 1] # (N, L, 3) crd14 = global_to_local(R, t, pos14) # (N, L, 14, 3) crd14_mask = atom_mask[:, :, :, None].expand_as(crd14) crd14 = torch.where(crd14_mask, crd14, torch.zeros_like(crd14)) aa_expand = aa[:, :, None, None, None].expand(N, L, 21, 14, 3) rng_expand = torch.arange(0, 21)[None, None, :, None, None].expand(N, L, 21, 14, 3).to(aa_expand) place_mask = (aa_expand == rng_expand) crd_expand = crd14[:, :, None, :, :].expand(N, L, 21, 14, 3) crd_expand = torch.where(place_mask, crd_expand, torch.zeros_like(crd_expand)) crd_feat = crd_expand.reshape(N, L, 21 * 14 * 3) aa_feat = self.aatype_embed(aa) # (N, L, feat) out_feat = self.mlp(torch.cat([crd_feat, aa_feat], dim=-1)) return out_feat
import torch import torch.nn as nn from utils.protein import ATOM_CA, ATOM_CB def get_pos_CB(pos14, atom_mask): """ Args: pos14: (N, L, 14, 3) atom_mask: (N, L, 14) """ N, L = pos14.shape[:2] mask_CB = atom_mask[:, :, ATOM_CB] # (N, L) mask_CB = mask_CB[:, :, None].expand(N, L, 3) pos_CA = pos14[:, :, ATOM_CA] # (N, L, 3) pos_CB = pos14[:, :, ATOM_CB] return torch.where(mask_CB, pos_CB, pos_CA) def mask_zero(mask, value): return torch.where(mask, value, torch.zeros_like(value)) class PositionalEncoding(nn.Module): def __init__(self, num_funcs=6): super().__init__() self.num_funcs = num_funcs self.register_buffer('freq_bands', 2.0 ** torch.linspace(0.0, num_funcs-1, num_funcs)) def get_out_dim(self, in_dim): return in_dim * (2 * self.num_funcs + 1) def forward(self, x): """ Args: x: (..., d). """ shape = list(x.shape[:-1]) + [-1] x = x.unsqueeze(-1) # (..., d, 1) code = torch.cat([x, torch.sin(x * self.freq_bands), torch.cos(x * self.freq_bands)], dim=-1) # (..., d, 2f+1) code = code.reshape(shape) return code def safe_norm(x, dim=-1, keepdim=False, eps=1e-8, sqrt=True): out = torch.clamp(torch.sum(torch.square(x), dim=dim, keepdim=keepdim), min=eps) return torch.sqrt(out) if sqrt else out def normalize_vector(v, dim, eps=1e-6): return v / (torch.linalg.norm(v, ord=2, dim=dim, keepdim=True) + eps) def project_v2v(v, e, dim): """ Description: Project vector `v` onto vector `e`. Args: v: (N, L, 3). e: (N, L, 3). """ return (e * v).sum(dim=dim, keepdim=True) * e def construct_3d_basis(center, p1, p2): """ Args: center: (N, L, 3), usually the position of C_alpha. p1: (N, L, 3), usually the position of C. p2: (N, L, 3), usually the position of N. Returns A batch of orthogonal basis matrix, (N, L, 3, 3cols_index). The matrix is composed of 3 column vectors: [e1, e2, e3]. """ v1 = p1 - center # (N, L, 3) e1 = normalize_vector(v1, dim=-1) v2 = p2 - center # (N, L, 3) u2 = v2 - project_v2v(v2, e1, dim=-1) e2 = normalize_vector(u2, dim=-1) e3 = torch.cross(e1, e2, dim=-1) # (N, L, 3) mat = torch.cat([ e1.unsqueeze(-1), e2.unsqueeze(-1), e3.unsqueeze(-1) ], dim=-1) # (N, L, 3, 3_index) return mat def local_to_global(R, t, p): """ Description: Convert local (internal) coordinates to global (external) coordinates q. q <- Rp + t Args: R: (N, L, 3, 3). t: (N, L, 3). p: Local coordinates, (N, L, ..., 3). Returns: q: Global coordinates, (N, L, ..., 3). """ assert p.size(-1) == 3 p_size = p.size() N, L = p_size[0], p_size[1] p = p.view(N, L, -1, 3).transpose(-1, -2) # (N, L, *, 3) -> (N, L, 3, *) q = torch.matmul(R, p) + t.unsqueeze(-1) # (N, L, 3, *) q = q.transpose(-1, -2).reshape(p_size) # (N, L, 3, *) -> (N, L, *, 3) -> (N, L, ..., 3) return q def global_to_local(R, t, q): """ Description: Convert global (external) coordinates q to local (internal) coordinates p. p <- R^{T}(q - t) Args: R: (N, L, 3, 3). t: (N, L, 3). q: Global coordinates, (N, L, ..., 3). Returns: p: Local coordinates, (N, L, ..., 3). """ assert q.size(-1) == 3 q_size = q.size() N, L = q_size[0], q_size[1] q = q.reshape(N, L, -1, 3).transpose(-1, -2) # (N, L, *, 3) -> (N, L, 3, *) if t is None: p = torch.matmul(R.transpose(-1, -2), q) # (N, L, 3, *) else: p = torch.matmul(R.transpose(-1, -2), (q - t.unsqueeze(-1))) # (N, L, 3, *) p = p.transpose(-1, -2).reshape(q_size) # (N, L, 3, *) -> (N, L, *, 3) -> (N, L, ..., 3) return p
import os import sys sys.path.append(os.path.dirname(os.path.dirname(__file__))) import argparse import torch from models.predictor import DDGPredictor from utils.misc import * from utils.data import * from utils.protein import * if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('wt_pdb', type=str) parser.add_argument('mut_pdb', type=str) parser.add_argument('--model', type=str, default='./data/model.pt') parser.add_argument('--device', type=str, default='cuda') args = parser.parse_args() batch = load_wt_mut_pdb_pair(args.wt_pdb, args.mut_pdb) batch = recursive_to(batch, args.device) ckpt = torch.load(args.model) config = ckpt['config'] weight = ckpt['model'] model = DDGPredictor(config.model).to(args.device) model.load_state_dict(weight) with torch.no_grad(): model.eval() pred = model(batch['wt'], batch['mut']) print('Predicted ddG: %.2f' % pred.item())
from aoa_pytorch.aoa_pytorch import AttentionOnAttention AoA = AttentionOnAttention
import torch from torch import nn, einsum import torch.nn.functional as F from einops import rearrange def exists(val): return val is not None def default(val, d): return val if exists(val) else d class AttentionOnAttention(nn.Module): def __init__( self, *, dim, dim_head = 64, heads = 8, dropout = 0., aoa_dropout = 0. ): super().__init__() inner_dim = dim_head * heads self.heads = heads self.scale = dim_head ** -0.5 self.to_q = nn.Linear(dim, inner_dim, bias = False) self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False) self.dropout = nn.Dropout(dropout) self.aoa = nn.Sequential( nn.Linear(2 * inner_dim, 2 * dim), nn.GLU(), nn.Dropout(aoa_dropout) ) def forward(self, x, context = None): h = self.heads q_ = self.to_q(x) context = default(context, x) kv = self.to_kv(context).chunk(2, dim = -1) # split heads q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q_, *kv)) dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale # attention attn = dots.softmax(dim = -1) attn = self.dropout(attn) # weighted average of values attn_out = einsum('b h i j, b h j d -> b h i d', attn, v) # concat heads out = rearrange(attn_out, 'b h n d -> b n (h d)', h = h) # attention on attention out = self.aoa(torch.cat((out, q_), dim = -1)) return out
from adjacent_attention_network.adjacent_attention_network import AdjacentAttentionNetwork
import torch import torch.nn.functional as F from torch import nn, einsum from einops import rearrange, repeat from isab_pytorch import ISAB # helpers def exists(val): return val is not None def batched_index_select(values, indices): last_dim = values.shape[-1] return values.gather(1, indices[:, :, None].expand(-1, -1, last_dim)) # helper classes class Residual(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn def forward(self, x, **kwargs): return self.fn(x, **kwargs) + x class PreNorm(nn.Module): def __init__(self, dim, fn): super().__init__() self.fn = fn self.norm = nn.LayerNorm(dim) def forward(self, x, **kwargs): return self.fn(self.norm(x), **kwargs) class FeedForward(nn.Module): def __init__(self, dim, mult = 4, dropout = 0.): super().__init__() self.net = nn.Sequential( nn.Linear(dim, dim * mult), nn.GELU(), nn.Dropout(dropout), nn.Linear(dim * mult, dim) ) def forward(self, x, **kwargs): return self.net(x) # adjacent attention class class AdjacentAttention(nn.Module): def __init__( self, *, dim, dim_head = 64, heads = 4, dropout = 0. ): super().__init__() inner_dim = dim_head * heads self.scale = dim_head ** -0.5 self.heads = heads self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) self.to_out = nn.Linear(inner_dim, dim) self.null_k = nn.Parameter(torch.randn(heads, dim_head)) self.null_v = nn.Parameter(torch.randn(heads, dim_head)) self.dropout = nn.Dropout(dropout) def forward( self, x, adj_kv_indices, mask ): b, n, d, h = *x.shape, self.heads flat_indices = repeat(adj_kv_indices, 'b n a -> (b h) (n a)', h = h) # derive query, key, value q, k, v = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v)) # gather keys and values according to adjacency matrix k, v = map(lambda t: rearrange(t, 'b h n d -> (b h) n d'), (k, v)) k = batched_index_select(k, flat_indices) v = batched_index_select(v, flat_indices) k, v = map(lambda t: rearrange(t, '(b h) (n a) d -> b h n a d', h = h, n = n), (k, v)) # add null key / value, so a node can attend to nothing # have come across this in GNN literature as some other name nk, nv = map(lambda t: rearrange(t, 'h d -> () h () () d').expand(b, -1, n, 1, -1), (self.null_k, self.null_v)) k = torch.cat((nk, k), dim = -2) v = torch.cat((nv, v), dim = -2) mask = F.pad(mask, (1, 0), value = 1) # similarity of each node to its neighbors sim = einsum('b h n d, b h n a d -> b h n a', q, k) * self.scale # mask out neighbors that are just padding mask_value = -torch.finfo(sim.dtype).max mask = rearrange(mask.bool(), 'b n a -> b () n a') sim.masked_fill_(~mask.bool(), mask_value) # attention attn = sim.softmax(dim = -1) # dropout attn = self.dropout(attn) # get weighted average of the values of all neighbors out = einsum('b h n a, b h n a d -> b h n d', attn, v) out = rearrange(out, 'b h n d -> b n (h d)') # combine output return self.to_out(out) # adjacent network (layers of adjacent attention) class AdjacentAttentionNetwork(nn.Module): def __init__( self, *, dim, depth, dim_head = 64, heads = 4, num_neighbors_cutoff = None, num_global_nodes = 0, attn_dropout = 0., ff_dropout = 0. ): super().__init__() self.num_neighbors_cutoff = num_neighbors_cutoff self.layers = nn.ModuleList([]) for _ in range(depth): global_attn = PreNorm(dim, ISAB( dim = dim, heads = heads, num_induced_points = num_global_nodes )) if num_global_nodes > 0 else None self.layers.append(nn.ModuleList([ Residual(PreNorm(dim, AdjacentAttention( dim = dim, dim_head = dim_head, heads = heads, dropout = attn_dropout ))), global_attn, Residual(PreNorm(dim, FeedForward( dim = dim, dropout = ff_dropout ))) ])) def forward(self, x, adjacency_mat, mask = None): device, n = x.device, x.shape[1] diag = torch.eye(adjacency_mat.shape[-1], device = device).bool() adjacency_mat |= diag # nodes should pay attention itself (self-interacting) # zero out points on adjacency matrix # where the nodes are just padding if exists(mask): adjacency_mat &= (mask[:, :, None] * mask[:, None, :]) adj_mat = adjacency_mat.float() # if we don't set a hard limit to the number of neighbors: # - get the maximum number of neighbors and pad the rest of the nodes with less than that number of neighbors # else: # - randomly sample the cutoff number of neighbors for any node that exceeds the max # - this would be similar to random sparse attention (bigbird) # get the maximum number of neighbors max_neighbors = int(adj_mat.sum(dim = -1).max()) if exists(self.num_neighbors_cutoff) and max_neighbors > self.num_neighbors_cutoff: # to randomly sample the neighbors, add a small uniform noise to the mask and topk noise = torch.empty((n, n), device = device).uniform_(-0.01, 0.01) adj_mat = adj_mat + noise adj_mask, adj_kv_indices = adj_mat.topk(dim = -1, k = self.num_neighbors_cutoff) # cast the mask back to 0s and 1s adj_mask = (adj_mask > 0.5).float() else: # todo - get distribution of number of neighbors, and strategically break up attention (message passing) to multiple steps # - start with a bimodal num neighbors test case, then generalize # use topk to get all the neighbors # also pass the mask into the attention, as some neighbors will be just padding and not actually neighbors adj_mask, adj_kv_indices = adj_mat.topk(dim = -1, k = max_neighbors) for attn, global_attn, ff in self.layers: x = attn( x, adj_kv_indices = adj_kv_indices, mask = adj_mask ) if exists(global_attn): out, _ = global_attn(x, mask = mask) x = x + out x = ff(x) return x
import torch import os import logging from transformers import AutoTokenizer, AutoModelForMaskedLM, logging from tf_bind_transformer.cache_utils import cache_fn, run_once logging.set_verbosity_error() def exists(val): return val is not None def map_values(fn, dictionary): return {k: fn(v) for k, v in dictionary.items()} CONTEXT_EMBED_USE_CPU = os.getenv('CONTEXT_EMBED_USE_CPU', None) is not None if CONTEXT_EMBED_USE_CPU: print('calculating context embed only on cpu') MODELS = dict( pubmed = dict( dim = 768, path = 'microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract', ) ) GLOBAL_VARIABLES = dict(model = None, tokenizer = None) def get_contextual_dim(model_name): assert model_name in MODELS return MODELS[model_name]['dim'] @run_once('init_transformer') def init_transformer(model_name): path = MODELS[model_name]['path'] GLOBAL_VARIABLES['tokenizer'] = AutoTokenizer.from_pretrained(path) model = AutoModelForMaskedLM.from_pretrained(path) if not CONTEXT_EMBED_USE_CPU: model = model.cuda() GLOBAL_VARIABLES['model'] = model @torch.no_grad() def tokenize_text( text, max_length = 256, model_name = 'pubmed', hidden_state_index = -1, return_cls_token = True ): init_transformer(model_name) model = GLOBAL_VARIABLES['model'] tokenizer = GLOBAL_VARIABLES['tokenizer'] encoding = tokenizer.batch_encode_plus( [text], add_special_tokens = True, padding = True, truncation = True, max_length = max_length, return_attention_mask = True, return_tensors = 'pt' ) if not CONTEXT_EMBED_USE_CPU: encoding = map_values(lambda t: t.cuda(), encoding) model.eval() with torch.no_grad(): outputs = model(**encoding, output_hidden_states = True) hidden_state = outputs.hidden_states[hidden_state_index][0] if return_cls_token: return hidden_state[0] return hidden_state.mean(dim = 0) def get_text_repr( texts, *, device, max_length = 256, model_name = 'pubmed', hidden_state_index = -1, return_cls_token = True, ): assert model_name in MODELS, f'{model_name} not found in available text transformers to use' if isinstance(texts, str): texts = [texts] get_context_repr_fn = cache_fn(tokenize_text, path = f'contexts/{model_name}') representations = [get_context_repr_fn(text, max_length = max_length, model_name = model_name, hidden_state_index = hidden_state_index, return_cls_token = return_cls_token) for text in texts] return torch.stack(representations).to(device)
from chroma_pytorch.chroma_pytorch import Chroma
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
29