Dataset Viewer (First 5GB)
Auto-converted to Parquet
Search is not available for this dataset
image
imagewidth (px)
2.05k
2.05k
label
class label
2 classes
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
0labels
End of preview. Expand in Data Studio

πŸ€– ShIRE Dataset: 6D Pose Trajectories of Independently Moving Objects

VISAPP2021

The ShIRE Dataset is the official reference implementation of the method introduced in the paper:

ShIRE: Real-Time 6D Pose Tracking of Independently Moving Objects

Presented at VISAPP 2021


πŸ“ Overview

ShIRE (Short for Shape-aware Independent Real-time Estimation) is a method for real-time detection and 6D pose trajectory estimation of independently moving objects in dynamic environments.

This dataset accompanies the ShIRE method and is intended to support research and development in:

  • 6D object pose estimation
  • Multi-object tracking
  • Real-time scene understanding
  • Robotics and AR/VR applications

πŸ“‚ Dataset Structure

The dataset consists of RGB-D video sequences, ground-truth 6D pose annotations, and object segmentation masks for multiple independently moving objects.

shire/
β”œβ”€β”€ sequences/
β”‚   β”œβ”€β”€ seq01/
β”‚   β”‚   β”œβ”€β”€ rgb/
β”‚   β”‚   β”œβ”€β”€ depth/
β”‚   β”‚   β”œβ”€β”€ poses/
β”‚   β”‚   └── masks/
β”‚   └── ...
β”œβ”€β”€ calibration/
└── metadata.json

βš™οΈ Use with Hugging Face Datasets

You can load the ShIRE dataset directly via datasets.load_dataset:

from datasets import load_dataset

dataset = load_dataset("your-username/shire")

πŸ“– Citation

If you use the ShIRE dataset or method in your research, please cite:

@inproceedings{Reiss2021ShIRE,
  author    = {Simon Reiss and JΓΆrg StΓΌckler},
  title     = {ShIRE: Real-Time 6D Pose Tracking of Independently Moving Objects},
  booktitle = {Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP},
  year      = {2021},
  pages     = {189-196},
  publisher = {INSTICC},
  doi       = {10.5220/0010254001890196}
}

🧠 More Information

  • πŸ“„ VISAPP 2021 Paper
  • πŸ”§ Reference implementation coming soon to Hugging Face Spaces
  • πŸ“¬ For questions or collaborations, contact the original authors or open an issue in the repo

πŸ›  License

This dataset is provided for all use. Please review the license included in the dataset files.

Downloads last month
15