code
stringlengths
658
1.05M
#!/usr/bin/python # Display memory/swap/cpu usage and system uptime on Linux # Copyright (C) 2015 Davide Madrisan <davide.madrisan.gmail.com> from __future__ import division import glob, os, platform, socket, sys from datetime import timedelta __author__ = "Davide Madrisan" __copyright__ = "Copyright 2015 Davide Madrisan" __license__ = "GPLv3" __version__ = "3" __email__ = "davide.madrisan.gmail.com" __status__ = "stable" def _kernel_version(): release = platform.release() if not release: return None item = release.split('.') majVersion = int(item[0]) minVersion = int(item[1]) patchVersion = int(item[2].split('-')[0]) return (((majVersion) << 16) + ((minVersion) << 8) + (patchVersion)) def _readfile(filename, abort_on_error=True, header=False): if not os.path.isfile(filename): if abort_on_error: die(1, 'No such file: ' + filename) else: warning('No such file: ' + filename) return None fd = open(filename, 'r') try: if header: content = fd.readlines()[1:] else: content = fd.readlines() except: die(1, 'Error opening the file ' + filename) return content def _perc(value, ratio, complement=False): percentage = 100 * value / ratio if complement: return 100 - percentage else: return percentage def _sizeof_fmt(num, factor=1024.0, skip=1, suffix='B'): units = ['', 'k','m','g','t'] for unit in units[skip:]: if abs(num) < factor: return "%3.1f%s%s" % (num, unit, suffix) num /= factor return "%.1f%s%s" % (num, 'p', suffix) def _cpu_count_logical(): """Return the number of logical CPUs in the system.""" try: # get the number of online cores return os.sysconf("SC_NPROCESSORS_ONLN") except ValueError: # as a second fallback we try to parse /proc/cpuinfo num = 0 f = open('/proc/cpuinfo', 'rb') try: for line in f: if line.lower().startswith('processor'): num += 1 except: pass return num def _cpu_offline(): """Return the number of CPU offline""" PATH_SYS_SYSTEM = "/sys/devices/system" PATH_SYS_CPU = PATH_SYS_SYSTEM + "/cpu" # note that .../cpu0/online may not exist fonline = glob.glob(PATH_SYS_CPU + '/cpu*/online') num = 0 for f in fonline: fp = open(f) try: online = fp.readline().strip() if not online: num += 1 except: pass return num def check_cpu(): """Return Total CPU MHz, current utilization and number of logical CPU""" CPUMzTotal = CPUUtilization = 0 cpu_physical_id = {} cpuinfo = _readfile('/proc/cpuinfo') for line in cpuinfo: cols = line.split(':') if cols[0].strip() == 'cpu MHz': CPUMzTotal += int(cols[1].split('.')[0]) elif cols[0].strip() == 'physical id': cpu_physical_id[cols[1].strip()] = 'cpu id' CPUsockets = len(cpu_physical_id) cpustat = _readfile('/proc/stat') for line in cpustat: cols = line.split() if cols[0] == 'cpu': (User, Nice, Sys, Idle, IOWait, IRQ, SoftIRQ, Steal) = ( int(cols[i]) for i in range(1,9)) UserTot = User + Nice SystemTot = Sys + IRQ + SoftIRQ Ratio = UserTot + SystemTot + Idle + IOWait + Steal CPUUtilization = _perc(Idle, Ratio, complement=True) CPUs = _cpu_count_logical() CPUsOffline = _cpu_offline() return (CPUMzTotal, CPUUtilization, CPUsockets, CPUs, CPUsOffline) def check_memory(): """Return Total Memory, Memory Used and percent Utilization""" MemAvailable = None MemHugePagesTotal = MemAnonHugePages = 0 MemHugePageSize = 0 meminfo = _readfile('/proc/meminfo') for line in meminfo: cols = line.split() if cols[0] == 'Active(file):' : MemActiveFile = int(cols[1]) elif cols[0] == 'MemAvailable:' : MemAvailable = int(cols[1]) elif cols[0] == 'Cached:' : MemCached = int(cols[1]) elif cols[0] == 'MemFree:' : MemFree = int(cols[1]) elif cols[0] == 'Inactive(file):' : MemInactiveFile = int(cols[1]) elif cols[0] == 'MemTotal:' : MemTotal = int(cols[1]) elif cols[0] == 'SReclaimable:' : MemSlabReclaimable = int(cols[1]) elif cols[0] == 'Hugepagesize:' : MemHugePageSize = int(cols[1]) elif cols[0] == 'HugePages_Total:': MemHugePagesTotal = int(cols[1]) elif cols[0] == 'HugePages_Free:' : MemHugePagesFree = int(cols[1]) elif cols[0] == 'AnonHugePages:' : MemAnonHugePages = int(cols[1]) if not MemAvailable: kernelVersion = _kernel_version() if kernelVersion < 132635: # 2.6.27 MemAvailable = MemFree else: MemMinFree = int(_readfile('/proc/sys/vm/min_free_kbytes')[0]) MemWatermarkLow = MemMinFree * 5 / 4 MemAvailable = MemFree \ - MemWatermarkLow + MemInactiveFile + MemActiveFile \ - min((MemInactiveFile + MemActiveFile) / 2, MemWatermarkLow) \ + MemSlabReclaimable \ - min(MemSlabReclaimable / 2, MemWatermarkLow) if MemAvailable < 0: MemAvailable = 0 MemUsed = MemTotal - MemFree - MemCached MemUsedPerc = _perc(MemAvailable, MemTotal, complement=True) if not MemHugePagesTotal: MemHugePagesTotal = MemHugePagesUsage = MemHugePagesUsagePerc = 0 else: MemHugePagesUsage = MemHugePagesTotal - MemHugePagesFree MemHugePagesUsagePerc = ( _perc(MemHugePagesUsage, MemHugePagesTotal)) return (MemTotal, MemUsed, MemUsedPerc, MemAvailable, MemHugePagesTotal, MemHugePagesUsage, MemHugePagesUsagePerc, MemAnonHugePages, MemHugePageSize) def check_swap(): """Return Total and Used Swap in bytes and percent Utilization""" # example: # Filename Type Size Used Priority # /dev/dm-0 partition 8388604 11512 -1 swapinfo = _readfile('/proc/swaps', abort_on_error=False, header=True) SwapTotal = SwapUsed = SwapUsedPerc = 0 if swapinfo: for line in swapinfo: cols = line.rstrip().split() if not cols[0].startswith('/'): continue SwapTotal += int(cols[2]) SwapUsed += int(cols[3]) SwapUsedPerc = _perc(SwapUsed, SwapTotal) return (SwapTotal, SwapUsed, SwapUsedPerc) def check_uptime(): uptime = _readfile('/proc/uptime') uptime_secs = float(uptime[0].split()[0]) updays = int(uptime_secs / (60 * 60 * 24)) upminutes = int(uptime_secs / 60) uphours = int(upminutes / 60) % 24 upminutes = upminutes % 60 return (str(timedelta(seconds = uptime_secs)), updays, uphours, upminutes) def die(exitcode, message): "Print error and exit with errorcode" sys.stderr.write('pyoocs: Fatal error: %s\n' % message) sys.exit(exitcode) def warning(message): "Print a warning message" sys.stderr.write('Warning: %s\n' % message) def main(): # CSVOUTPUT=1 ./syscheck.py --> Output in CSV Format EnvCSVOutput = os.environ.get('CSVOUTPUT', '') # Hostname and FQDN Hostname = socket.gethostname() FQDN = socket.getfqdn() # CPU utilization CPUMzTotal, CPUUtilization, CPUsockets, CPUs, CPUsOffline = check_cpu() # Memory and Huge Memory utilization (MemTotal, MemUsed, MemoryUsedPerc, MemAvailable, MemHugePagesTotal, MemHugePagesUsage, MemHugePagesUsagePerc, MemAnonHugePages, MemHugePageSize) = check_memory() # Swap utilization SwapTotal, SwapUsed, SwapUsedPerc = check_swap() # System Uptime SystemUptime, UpDays, UpHours, UpMinutes = check_uptime() if EnvCSVOutput: print "Hostname,FQDN,\ CPU Total (MHz),CPU Utilization,CPU Sockets,CPUs,Offline CPUs,\ Memory Total (kB),Memory Used (%%),Mem Available (kB),\ Total Huge Pages,Huge Pages Usage (%%),Anonymous Huge Pages (kB),\ Total Swap (kB),Swap Usage (%%),Uptime (days)\n\ %s,%s,%d,%.2f,%d,%d,%d,%d,%.2f,%d,%d,%.2f,%d,%d,%.2f,%s" % ( Hostname, FQDN, CPUMzTotal, CPUUtilization, CPUsockets, CPUs, CPUsOffline, MemTotal, MemoryUsedPerc, MemAvailable, MemHugePagesTotal, MemHugePagesUsagePerc, MemAnonHugePages, SwapTotal, SwapUsedPerc, UpDays) else: print " Hostname : %s (%s)" % (Hostname, FQDN) print " CPU Tot/Used : %s / %.2f%%" %( _sizeof_fmt(CPUMzTotal, skip=2, suffix='Hz'), CPUUtilization) print " CPU Architecture : %d socket(s) / %d CPU(s) / "\ "%d offline" % (CPUsockets, CPUs, CPUsOffline) print "Memory Tot/Used/Available : %s / %.2f%% / %s" % ( _sizeof_fmt(MemTotal), MemoryUsedPerc, _sizeof_fmt(MemAvailable)) print " Huge Pages Tot/Used : %d / %.2f%% (HugePageSize: %s)" % ( MemHugePagesTotal, MemHugePagesUsagePerc, _sizeof_fmt(MemHugePageSize)) print " Anonymous Huge Pages : %s" % _sizeof_fmt(MemAnonHugePages) print " Swap Tot/Used : %s / %.2f%%" % ( _sizeof_fmt(SwapTotal), SwapUsedPerc) print " System uptime : %s" % SystemUptime if __name__ == '__main__': exitcode = 0 try: main() except KeyboardInterrupt: die(3, 'Exiting on user request') sys.exit(exitcode) # vim:ts=4:sw=4:et
#!/usr/bin/python # -*- coding: utf-8 -*- """ Script to delete files that are also present on Wikimedia Commons. Do not run this script on Wikimedia Commons itself. It works based on a given array of templates defined below. Files are downloaded and compared. If the files match, it can be deleted on the source wiki. If multiple versions of the file exist, the script will not delete. If the SHA1 comparison is not equal, the script will not delete. A sysop account on the local wiki is required if you want all features of this script to work properly. This script understands various command-line arguments: -always run automatically, do not ask any questions. All files that qualify for deletion are deleted. Reduced screen output. -replace replace links if the files are equal and the file names differ -replacealways replace links if the files are equal and the file names differ without asking for confirmation -replaceloose Do loose replacements. This will replace all occurrences of the name of the image (and not just explicit image syntax). This should work to catch all instances of the file, including where it is used as a template parameter or in galleries. However, it can also make more mistakes. -replaceonly Use this if you do not have a local sysop account, but do wish to replace links from the NowCommons template. -hash Use the hash to identify the images that are the same. It doesn't work always, so the bot opens two tabs to let to the user to check if the images are equal or not. -- Example -- python nowcommons.py -replaceonly -hash -replace -replaceloose -replacealways -- Known issues -- Please fix these if you are capable and motivated: - if a file marked nowcommons is not present on Wikimedia Commons, the bot will exit. """ # # (C) Wikipedian, 2006-2007 # (C) Siebrand Mazeland, 2007-2008 # (C) xqt, 2010-2014 # (C) Pywikibot team, 2006-2014 # # Distributed under the terms of the MIT license. # from __future__ import unicode_literals __version__ = '$Id$' # import sys import re import webbrowser import pywikibot from pywikibot import i18n, Bot from pywikibot import pagegenerators as pg import image from imagetransfer import nowCommonsMessage nowCommons = { '_default': [ u'NowCommons' ], 'ar': [ u'الآن كومنز', u'الآن كومونز', ], 'de': [ u'NowCommons', u'NC', u'NCT', u'Nowcommons', u'NowCommons/Mängel', u'NowCommons-Überprüft', ], 'en': [ u'NowCommons', u'Ncd', ], 'eo': [ u'Nun en komunejo', u'NowCommons', ], 'fa': [ u'موجود در انبار', u'NowCommons', ], 'fr': [ u'Image sur Commons', u'DoublonCommons', u'Déjà sur Commons', u'Maintenant sur commons', u'Désormais sur Commons', u'NC', u'NowCommons', u'Nowcommons', u'Sharedupload', u'Sur Commons', u'Sur Commons2', ], 'he': [ u'גם בוויקישיתוף' ], 'hu': [ u'Azonnali-commons', u'NowCommons', u'Nowcommons', u'NC' ], 'ia': [ u'OraInCommons' ], 'it': [ u'NowCommons', ], 'ja': [ u'NowCommons', ], 'ko': [ u'NowCommons', u'공용중복', u'공용 중복', u'Nowcommons', ], 'nds-nl': [ u'NoenCommons', u'NowCommons', ], 'nl': [ u'NuCommons', u'Nucommons', u'NowCommons', u'Nowcommons', u'NCT', u'Nct', ], 'ro': [ u'NowCommons' ], 'ru': [ u'NowCommons', u'NCT', u'Nowcommons', u'Now Commons', u'Db-commons', u'Перенесено на Викисклад', u'На Викискладе', ], 'zh': [ u'NowCommons', u'Nowcommons', u'NCT', ], } namespaceInTemplate = [ 'en', 'ia', 'it', 'ja', 'ko', 'lt', 'ro', 'zh', ] # Stemma and stub are images not to be deleted (and are a lot) on it.wikipedia # if your project has images like that, put the word often used here to skip them word_to_skip = { 'en': [], 'it': ['stemma', 'stub', 'hill40 '], } class NowCommonsDeleteBot(Bot): """Bot to delete migrated files.""" def __init__(self, **kwargs): self.availableOptions.update({ 'replace': False, 'replacealways': False, 'replaceloose': False, 'replaceonly': False, 'use_hash': False, }) super(NowCommonsDeleteBot, self).__init__(**kwargs) self.site = pywikibot.Site() if repr(self.site) == 'commons:commons': sys.exit('Do not run this bot on Commons!') def ncTemplates(self): if self.site.lang in nowCommons: return nowCommons[self.site.lang] else: return nowCommons['_default'] @property def nc_templates(self): """A set of now commons template Page instances.""" if not hasattr(self, '_nc_templates'): self._nc_templates = set(pywikibot.Page(self.site, title, ns=10) for title in self.ncTemplates()) return self._nc_templates def useHashGenerator(self): # https://toolserver.org/~multichill/nowcommons.php?language=it&page=2&filter= lang = self.site.lang num_page = 0 word_to_skip_translated = i18n.translate(self.site, word_to_skip) images_processed = list() while 1: url = ('https://toolserver.org/~multichill/nowcommons.php?' 'language=%s&page=%s&filter=') % (lang, num_page) HTML_text = self.site.getUrl(url, no_hostname=True) reg = r'<[Aa] href="(?P<urllocal>.*?)">(?P<imagelocal>.*?)</[Aa]> +?</td><td>\n\s*?' reg += r'<[Aa] href="(?P<urlcommons>http[s]?://commons.wikimedia.org/.*?)" \ >Image:(?P<imagecommons>.*?)</[Aa]> +?</td><td>' regex = re.compile(reg, re.UNICODE) found_something = False change_page = True for x in regex.finditer(HTML_text): found_something = True image_local = x.group('imagelocal') image_commons = x.group('imagecommons') if image_local in images_processed: continue change_page = False images_processed.append(image_local) # Skip images that have something in the title (useful for it.wiki) image_to_skip = False for word in word_to_skip_translated: if word.lower() in image_local.lower(): image_to_skip = True if image_to_skip: continue url_local = x.group('urllocal') url_commons = x.group('urlcommons') pywikibot.output(u"\n\n>>> \03{lightpurple}%s\03{default} <<<" % image_local) pywikibot.output(u'Local: %s\nCommons: %s\n' % (url_local, url_commons)) webbrowser.open(url_local, 0, 1) webbrowser.open(url_commons, 0, 1) if image_local.split('Image:')[1] == image_commons: choice = pywikibot.input_yn( u'The local and the commons images have the same name, ' 'continue?', default=False, automatic_quit=False) else: choice = pywikibot.input_yn( u'Are the two images equal?', default=False, automatic_quit=False) if choice: yield [image_local, image_commons] else: continue # The page is dinamically updated, so we may don't need to change it if change_page: num_page += 1 # If no image found means that there aren't anymore, break. if not found_something: break def getPageGenerator(self): if self.getOption('use_hash'): gen = self.useHashGenerator() else: gens = [t.getReferences(follow_redirects=True, namespaces=[6], onlyTemplateInclusion=True) for t in self.nc_templates] gen = pg.CombinedPageGenerator(gens) gen = pg.DuplicateFilterPageGenerator(gen) gen = pg.PreloadingGenerator(gen) return gen def findFilenameOnCommons(self, localImagePage): filenameOnCommons = None for templateName, params in localImagePage.templatesWithParams(): if templateName in self.nc_templates: if params == []: filenameOnCommons = localImagePage.title(withNamespace=False) elif self.site.lang in namespaceInTemplate: skip = False filenameOnCommons = None for par in params: val = par.split('=') if len(val) == 1 and not skip: filenameOnCommons = par[par.index(':') + 1:] break if val[0].strip() == '1': filenameOnCommons = val[1].strip()[val[1].strip().index(':') + 1:] break skip = True if not filenameOnCommons: filenameOnCommons = localImagePage.title(withNamespace=False) else: val = params[0].split('=') if len(val) == 1: filenameOnCommons = params[0].strip() else: filenameOnCommons = val[1].strip() return filenameOnCommons def run(self): commons = pywikibot.Site('commons', 'commons') comment = i18n.translate(self.site, nowCommonsMessage, fallback=True) for page in self.getPageGenerator(): if self.getOption('use_hash'): # Page -> Has the namespace | commons image -> Not images_list = page # 0 -> local image, 1 -> commons image page = pywikibot.Page(self.site, images_list[0]) else: # If use_hash is true, we have already print this before, no need self.current_page = page try: localImagePage = pywikibot.FilePage(self.site, page.title()) if localImagePage.fileIsShared(): pywikibot.output(u'File is already on Commons.') continue sha1 = localImagePage.latest_file_info.sha1 if self.getOption('use_hash'): filenameOnCommons = images_list[1] else: filenameOnCommons = self.findFilenameOnCommons( localImagePage) if not filenameOnCommons and not self.getOption('use_hash'): pywikibot.output(u'NowCommons template not found.') continue commonsImagePage = pywikibot.FilePage(commons, 'Image:%s' % filenameOnCommons) if localImagePage.title(withNamespace=False) == \ commonsImagePage.title(withNamespace=False) and self.getOption('use_hash'): pywikibot.output( u'The local and the commons images have the same name') if localImagePage.title(withNamespace=False) != \ commonsImagePage.title(withNamespace=False): usingPages = list(localImagePage.usingPages()) if usingPages and usingPages != [localImagePage]: pywikibot.output( u'\"\03{lightred}%s\03{default}\" is still used in %i pages.' % (localImagePage.title(withNamespace=False), len(usingPages))) if self.getOption('replace') is True: pywikibot.output( u'Replacing \"\03{lightred}%s\03{default}\" by \ \"\03{lightgreen}%s\03{default}\".' % (localImagePage.title(withNamespace=False), commonsImagePage.title(withNamespace=False))) oImageRobot = image.ImageRobot( pg.FileLinksGenerator(localImagePage), localImagePage.title(withNamespace=False), commonsImagePage.title(withNamespace=False), '', self.getOption('replacealways'), self.getOption('replaceloose')) oImageRobot.run() # If the image is used with the urlname the # previous function won't work if len(list(pywikibot.FilePage(self.site, page.title()).usingPages())) > 0 and \ self.getOption('replaceloose'): oImageRobot = image.ImageRobot( pg.FileLinksGenerator( localImagePage), localImagePage.title( withNamespace=False, asUrl=True), commonsImagePage.title( withNamespace=False), '', self.getOption('replacealways'), self.getOption('replaceloose')) oImageRobot.run() # refresh because we want the updated list usingPages = len(list(pywikibot.FilePage( self.site, page.title()).usingPages())) if usingPages > 0 and self.getOption('use_hash'): # just an enter pywikibot.input( u'There are still %s pages with this \ image, confirm the manual removal from them please.' % usingPages) else: pywikibot.output(u'Please change them manually.') continue else: pywikibot.output( u'No page is using \"\03{lightgreen}%s\03{default}\" anymore.' % localImagePage.title(withNamespace=False)) commonsText = commonsImagePage.get() if self.getOption('replaceonly') is False: if sha1 == commonsImagePage.latest_file_info.sha1: pywikibot.output( u'The image is identical to the one on Commons.') if len(localImagePage.getFileVersionHistory()) > 1 and not self.getOption('use_hash'): pywikibot.output( u"This image has a version history. Please \ delete it manually after making sure that the \ old versions are not worth keeping.""") continue if self.getOption('always') is False: pywikibot.output( u'\n\n>>>> Description on \03{lightpurple}%s\03{default} <<<<\n' % page.title()) pywikibot.output(localImagePage.get()) pywikibot.output( u'\n\n>>>> Description on \03{lightpurple}%s\03{default} <<<<\n' % commonsImagePage.title()) pywikibot.output(commonsText) if pywikibot.input_yn( u'Does the description on Commons contain ' 'all required source and license\n' 'information?', default=False, automatic_quit=False): localImagePage.delete( '%s [[:commons:Image:%s]]' % (comment, filenameOnCommons), prompt=False) else: localImagePage.delete( comment + ' [[:commons:Image:%s]]' % filenameOnCommons, prompt=False) else: pywikibot.output( u'The image is not identical to the one on Commons.') except (pywikibot.NoPage, pywikibot.IsRedirectPage) as e: pywikibot.output(u'%s' % e[0]) continue def main(*args): """ Process command line arguments and invoke bot. If args is an empty list, sys.argv is used. @param args: command line arguments @type args: list of unicode """ options = {} for arg in pywikibot.handle_args(args): if arg.startswith('-') and \ arg[1:] in ('always', 'replace', 'replaceloose', 'replaceonly'): options[arg[1:]] = True elif arg == '-replacealways': options['replace'] = True options['replacealways'] = True elif arg == '-hash': options['use_hash'] = True elif arg == '-autonomous': pywikibot.warning(u"The '-autonomous' argument is DEPRECATED," u" use '-always' instead.") options['always'] = True bot = NowCommonsDeleteBot(**options) bot.run() if __name__ == "__main__": main()
from __future__ import absolute_import from django.core.cache import cache from rest_framework.response import Response from sentry import http from sentry.api.bases.project import ProjectEndpoint from sentry.api.exceptions import ResourceDoesNotExist from sentry.models import ProjectKey, ProjectKeyStatus DOC_URL = 'https://docs.getsentry.com/hosted/_wizards/{platform}.json' PLATFORMS = set([ 'python', 'python-bottle', 'python-celery', 'python-django', 'python-flask', 'python-pylons', 'python-pyramid', 'python-tornado', ]) def replace_keys(html, project_key): if project_key is None: return html html = html.replace('___DSN___', project_key.dsn_private) html = html.replace('___PUBLIC_DSN___', project_key.dsn_public) html = html.replace('___PUBLIC_KEY___', project_key.public_key) html = html.replace('___SECRET_KEY___', project_key.secret_key) html = html.replace('___PROJECT_ID___', str(project_key.project_id)) return html class ProjectPlatformDocsEndpoint(ProjectEndpoint): def get(self, request, project, platform): if platform not in PLATFORMS: raise ResourceDoesNotExist cache_key = 'docs:{}'.format(platform) result = cache.get(cache_key) if result is None: session = http.build_session() result = session.get(DOC_URL.format(platform=platform)).json() cache.set(cache_key, result, 3600) try: project_key = ProjectKey.objects.filter( project=project, roles=ProjectKey.roles.store, status=ProjectKeyStatus.ACTIVE )[0] except IndexError: project_key = None return Response({ 'name': result['name'], 'html': replace_keys(result['body'], project_key), 'sdk': result['client_lib'], 'isFramework': result['is_framework'], 'link': result['doc_link'], })
#!/usr/bin/python # -*- coding: utf-8 -*- """ File: gcexport.py Original author: Kyle Krafka (https://github.com/kjkjava/) Date: April 28, 2015 Fork author: Michael P (https://github.com/moderation/) Date: February 21, 2016 Fork author: Peter Steiner (https://github.com/pe-st/) Date: June 2017 Date: March 2020 - Python3 support by Thomas Th. (https://github.com/telemaxx/) Description: Use this script to export your fitness data from Garmin Connect. See README.md for more information, CHANGELOG.md for a history of the changes Activity & event types: https://connect.garmin.com/modern/main/js/properties/event_types/event_types.properties https://connect.garmin.com/modern/main/js/properties/activity_types/activity_types.properties """ # this avoids different pylint behaviour for python 2 and 3 from __future__ import print_function from datetime import datetime, timedelta, tzinfo from getpass import getpass from math import floor from platform import python_version from subprocess import call from timeit import default_timer as timer import argparse import csv import io import json import logging import os import os.path import re import string import sys import unicodedata import zipfile python3 = sys.version_info.major == 3 if python3: import http.cookiejar import urllib.error import urllib.parse import urllib.request import urllib from urllib.parse import urlencode from urllib.request import Request, HTTPError, URLError COOKIE_JAR = http.cookiejar.CookieJar() OPENER = urllib.request.build_opener(urllib.request.HTTPCookieProcessor(COOKIE_JAR), urllib.request.HTTPSHandler(debuglevel=0)) else: import cookielib import urllib2 from urllib import urlencode from urllib2 import Request, HTTPError, URLError COOKIE_JAR = cookielib.CookieJar() OPENER = urllib2.build_opener(urllib2.HTTPCookieProcessor(COOKIE_JAR), urllib2.HTTPSHandler(debuglevel=0)) SCRIPT_VERSION = '3.0.2' # this is almost the datetime format Garmin used in the activity-search-service # JSON 'display' fields (Garmin didn't zero-pad the date and the hour, but %d and %H do) ALMOST_RFC_1123 = "%a, %d %b %Y %H:%M" # used by sanitize_filename() VALID_FILENAME_CHARS = "-_.() %s%s" % (string.ascii_letters, string.digits) # map the numeric parentTypeId to its name for the CSV output PARENT_TYPE_ID = { 1: 'running', 2: 'cycling', 3: 'hiking', 4: 'other', 9: 'walking', 17: 'any', 26: 'swimming', 29: 'fitness_equipment', 71: 'motorcycling', 83: 'transition', 144: 'diving', 149: 'yoga', 165: 'winter_sports' } # typeId values using pace instead of speed USES_PACE = {1, 3, 9} # running, hiking, walking # Maximum number of activities you can request at once. # Used to be 100 and enforced by Garmin for older endpoints; for the current endpoint 'URL_GC_LIST' # the limit is not known (I have less than 1000 activities and could get them all in one go) LIMIT_MAXIMUM = 1000 MAX_TRIES = 3 CSV_TEMPLATE = os.path.join(os.path.dirname(os.path.realpath(__file__)), "csv_header_default.properties") WEBHOST = "https://connect.garmin.com" REDIRECT = "https://connect.garmin.com/modern/" BASE_URL = "https://connect.garmin.com/en-US/signin" SSO = "https://sso.garmin.com/sso" CSS = "https://static.garmincdn.com/com.garmin.connect/ui/css/gauth-custom-v1.2-min.css" DATA = { 'service': REDIRECT, 'webhost': WEBHOST, 'source': BASE_URL, 'redirectAfterAccountLoginUrl': REDIRECT, 'redirectAfterAccountCreationUrl': REDIRECT, 'gauthHost': SSO, 'locale': 'en_US', 'id': 'gauth-widget', 'cssUrl': CSS, 'clientId': 'GarminConnect', 'rememberMeShown': 'true', 'rememberMeChecked': 'false', 'createAccountShown': 'true', 'openCreateAccount': 'false', 'displayNameShown': 'false', 'consumeServiceTicket': 'false', 'initialFocus': 'true', 'embedWidget': 'false', 'generateExtraServiceTicket': 'true', 'generateTwoExtraServiceTickets': 'false', 'generateNoServiceTicket': 'false', 'globalOptInShown': 'true', 'globalOptInChecked': 'false', 'mobile': 'false', 'connectLegalTerms': 'true', 'locationPromptShown': 'true', 'showPassword': 'true' } # URLs for various services. URL_GC_LOGIN = 'https://sso.garmin.com/sso/signin?' + urlencode(DATA) URL_GC_POST_AUTH = 'https://connect.garmin.com/modern/activities?' URL_GC_PROFILE = 'https://connect.garmin.com/modern/profile' URL_GC_USERSTATS = 'https://connect.garmin.com/modern/proxy/userstats-service/statistics/' URL_GC_LIST = 'https://connect.garmin.com/modern/proxy/activitylist-service/activities/search/activities?' URL_GC_ACTIVITY = 'https://connect.garmin.com/modern/proxy/activity-service/activity/' URL_GC_DEVICE = 'https://connect.garmin.com/modern/proxy/device-service/deviceservice/app-info/' URL_GC_GEAR = 'https://connect.garmin.com/modern/proxy/gear-service/gear/filterGear?activityId=' URL_GC_ACT_PROPS = 'https://connect.garmin.com/modern/main/js/properties/activity_types/activity_types.properties' URL_GC_EVT_PROPS = 'https://connect.garmin.com/modern/main/js/properties/event_types/event_types.properties' URL_GC_GPX_ACTIVITY = 'https://connect.garmin.com/modern/proxy/download-service/export/gpx/activity/' URL_GC_TCX_ACTIVITY = 'https://connect.garmin.com/modern/proxy/download-service/export/tcx/activity/' URL_GC_ORIGINAL_ACTIVITY = 'http://connect.garmin.com/proxy/download-service/files/activity/' def resolve_path(directory, subdir, time): """ Replace time variables and returns changed path. Supported place holders are {YYYY} and {MM} :param directory: export root directory :param subdir: subdirectory, can have place holders. :param time: date-time-string :return: Updated dictionary string """ ret = os.path.join(directory, subdir) if re.compile(".*{YYYY}.*").match(ret): ret = ret.replace("{YYYY}", time[0:4]) if re.compile(".*{MM}.*").match(ret): ret = ret.replace("{MM}", time[5:7]) return ret def hhmmss_from_seconds(sec): """Helper function that converts seconds to HH:MM:SS time format.""" if isinstance(sec, (float, int)): formatted_time = str(timedelta(seconds=int(sec))).zfill(8) else: formatted_time = "0.000" return formatted_time def kmh_from_mps(mps): """Helper function that converts meters per second (mps) to km/h.""" return str(mps * 3.6) def sanitize_filename(name, max_length=0): """ Remove or replace characters that are unsafe for filename """ # inspired by https://stackoverflow.com/a/698714/3686 cleaned_filename = unicodedata.normalize('NFKD', name) if name else '' stripped_filename = ''.join(c for c in cleaned_filename if c in VALID_FILENAME_CHARS).replace(' ', '_') return stripped_filename[:max_length] if max_length > 0 else stripped_filename def write_to_file(filename, content, mode='w', file_time=None): """ Helper function that persists content to a file. :param filename: name of the file to write :param content: content to write; with Python 2 always of type 'str', with Python 3 it can be 'bytes' or 'str'. If it's 'bytes' and the mode 'w', it will be converted/decoded :param mode: 'w' or 'wb' :param file_time: if given use as timestamp for the file written """ if mode == 'w': write_file = io.open(filename, mode, encoding="utf-8") if isinstance(content, bytes): content = content.decode("utf-8") elif mode == 'wb': write_file = io.open(filename, mode) else: raise Exception('Unsupported file mode: ', mode) write_file.write(content) write_file.close() if file_time: os.utime(filename, (file_time, file_time)) def http_req(url, post=None, headers=None): """ Helper function that makes the HTTP requests. :param url: URL for the request :param post: dictionary of POST parameters :param headers: dictionary of headers :return: response body (type 'str' with Python 2, type 'bytes' with Python 3 """ request = Request(url) # Tell Garmin we're some supported browser. request.add_header('User-Agent', 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, \ like Gecko) Chrome/54.0.2816.0 Safari/537.36') if headers: if python3: for header_key, header_value in headers.items(): request.add_header(header_key, header_value) else: for header_key, header_value in headers.iteritems(): request.add_header(header_key, header_value) if post: post = urlencode(post) # Convert dictionary to POST parameter string. if python3: post = post.encode("utf-8") start_time = timer() try: response = OPENER.open(request, data=post) except URLError as ex: if hasattr(ex, 'reason'): logging.error('Failed to reach url %s, error: %s', url, ex) raise else: raise logging.debug('Got %s in %s s from %s', response.getcode(), timer() - start_time, url) # N.B. urllib2 will follow any 302 redirects. # print(response.getcode()) if response.getcode() == 204: # 204 = no content, e.g. for activities without GPS coordinates there is no GPX download. # Write an empty file to prevent redownloading it. logging.info('Got 204 for %s, returning empty response', url) return b'' elif response.getcode() != 200: raise Exception('Bad return code (' + str(response.getcode()) + ') for: ' + url) return response.read() def http_req_as_string(url, post=None, headers=None): """Helper function that makes the HTTP requests, returning a string instead of bytes.""" if python3: return http_req(url, post, headers).decode() else: return http_req(url, post, headers) # idea stolen from https://stackoverflow.com/a/31852401/3686 def load_properties(multiline, separator='=', comment_char='#', keys=None): """ Read a multiline string of properties (key/value pair separated by *separator*) into a dict :param multiline: input string of properties :param separator: separator between key and value :param comment_char: lines starting with this char are considered comments, not key/value pairs :param keys: list to append the keys to :return: """ props = {} for line in multiline.splitlines(): stripped_line = line.strip() if stripped_line and not stripped_line.startswith(comment_char): key_value = stripped_line.split(separator) key = key_value[0].strip() value = separator.join(key_value[1:]).strip().strip('"') props[key] = value if keys != None: keys.append(key) return props def value_if_found_else_key(some_dict, key): """Lookup a value in some_dict and use the key itself as fallback""" return some_dict.get(key, key) def present(element, act): """Return True if act[element] is valid and not None""" if not act: return False elif element not in act: return False return act[element] def absent_or_null(element, act): """Return False only if act[element] is valid and not None""" if not act: return True elif element not in act: return True elif act[element]: return False return True def from_activities_or_detail(element, act, detail, detail_container): """Return detail[detail_container][element] if valid and act[element] (or None) otherwise""" if absent_or_null(detail_container, detail) or absent_or_null(element, detail[detail_container]): return None if absent_or_null(element, act) else act[element] return detail[detail_container][element] def trunc6(some_float): """Return the given float as string formatted with six digit precision""" return "{0:12.6f}".format(floor(some_float * 1000000) / 1000000).lstrip() # A class building tzinfo objects for fixed-offset time zones. # (copied from https://docs.python.org/2/library/datetime.html) class FixedOffset(tzinfo): """Fixed offset in minutes east from UTC.""" def __init__(self, offset, name): super(FixedOffset, self).__init__() self.__offset = timedelta(minutes=offset) self.__name = name def utcoffset(self, dt): del dt # unused return self.__offset def tzname(self, dt): del dt # unused return self.__name def dst(self, dt): del dt # unused return timedelta(0) def offset_date_time(time_local, time_gmt): """ Build an 'aware' datetime from two 'naive' datetime objects (that is timestamps as present in the activitylist-service.json), using the time difference as offset. """ local_dt = datetime.strptime(time_local, "%Y-%m-%d %H:%M:%S") gmt_dt = datetime.strptime(time_gmt, "%Y-%m-%d %H:%M:%S") offset = local_dt - gmt_dt offset_tz = FixedOffset(offset.seconds // 60, "LCL") return local_dt.replace(tzinfo=offset_tz) def pace_or_speed_raw(type_id, parent_type_id, mps): """Convert speed (m/s) to speed (km/h) or pace (min/km) depending on type and parent type""" kmh = 3.6 * mps if (type_id in USES_PACE) or (parent_type_id in USES_PACE): return 60 / kmh return kmh def pace_or_speed_formatted(type_id, parent_type_id, mps): """ Convert speed (m/s) to string: speed (km/h as x.x) or pace (min/km as MM:SS), depending on type and parent type """ kmh = 3.6 * mps if (type_id in USES_PACE) or (parent_type_id in USES_PACE): # format seconds per kilometer as MM:SS, see https://stackoverflow.com/a/27751293 return '{0:02d}:{1:02d}'.format(*divmod(int(round(3600 / kmh)), 60)) return "{0:.1f}".format(round(kmh, 1)) class CsvFilter(object): """Collects, filters and writes CSV.""" def __init__(self, csv_file, csv_header_properties): self.__csv_file = csv_file with open(csv_header_properties, 'r') as prop: csv_header_props = prop.read() self.__csv_columns = [] self.__csv_headers = load_properties(csv_header_props, keys=self.__csv_columns) self.__csv_field_names = [] for column in self.__csv_columns: self.__csv_field_names.append(self.__csv_headers[column]) self.__writer = csv.DictWriter(self.__csv_file, fieldnames=self.__csv_field_names, quoting=csv.QUOTE_ALL) self.__current_row = {} def write_header(self): """Write the active column names as CSV header""" self.__writer.writeheader() def write_row(self): """Write the prepared CSV record""" self.__writer.writerow(self.__current_row) self.__current_row = {} def set_column(self, name, value): """ Store a column value (if the column is active) into the record prepared for the next write_row call """ if value and name in self.__csv_columns: if python3: self.__current_row[self.__csv_headers[name]] = value else: # must encode in UTF-8 because the Python 2 'csv' module doesn't support unicode self.__current_row[self.__csv_headers[name]] = value.encode('utf8') def is_column_active(self, name): """Return True if the column is present in the header template""" return name in self.__csv_columns def parse_arguments(argv): """ Setup the argument parser and parse the command line arguments. """ current_date = datetime.now().strftime('%Y-%m-%d') activities_directory = './' + current_date + '_garmin_connect_export' parser = argparse.ArgumentParser(description='Garmin Connect Exporter') parser.add_argument('--version', action='version', version='%(prog)s ' + SCRIPT_VERSION, help='print version and exit') parser.add_argument('-v', '--verbosity', action='count', default=0, help='increase output verbosity') parser.add_argument('--username', help='your Garmin Connect username or email address (otherwise, you will be prompted)') parser.add_argument('--password', help='your Garmin Connect password (otherwise, you will be prompted)') parser.add_argument('-c', '--count', default='1', help='number of recent activities to download, or \'all\' (default: 1)') parser.add_argument('-e', '--external', help='path to external program to pass CSV file too') parser.add_argument('-a', '--args', help='additional arguments to pass to external program') parser.add_argument('-f', '--format', choices=['gpx', 'tcx', 'original', 'json'], default='gpx', help="export format; can be 'gpx', 'tcx', 'original' or 'json' (default: 'gpx')") parser.add_argument('-d', '--directory', default=activities_directory, help='the directory to export to (default: \'./YYYY-MM-DD_garmin_connect_export\')') parser.add_argument('-s', "--subdir", help="the subdirectory for activity files (tcx, gpx etc.), supported placeholders are {YYYY} and {MM}" " (default: export directory)" ) parser.add_argument('-u', '--unzip', action='store_true', help='if downloading ZIP files (format: \'original\'), unzip the file and remove the ZIP file') parser.add_argument('-ot', '--originaltime', action='store_true', help='will set downloaded (and possibly unzipped) file time to the activity start time') parser.add_argument('--desc', type=int, nargs='?', const=0, default=None, help='append the activity\'s description to the file name of the download; limit size if number is given') parser.add_argument('-t', '--template', default=CSV_TEMPLATE, help='template file with desired columns for CSV output') parser.add_argument('-fp', '--fileprefix', action='count', default=0, help="set the local time as activity file name prefix") parser.add_argument('-sa', '--start_activity_no', type=int, default=1, help="give index for first activity to import, i.e. skipping the newest activites") return parser.parse_args(argv[1:]) def login_to_garmin_connect(args): """ Perform all HTTP requests to login to Garmin Connect. """ if python3: username = args.username if args.username else input('Username: ') else: username = args.username if args.username else raw_input('Username: ') password = args.password if args.password else getpass() logging.debug("Login params: %s", urlencode(DATA)) # Initially, we need to get a valid session cookie, so we pull the login page. print('Connecting to Garmin Connect...', end='') logging.info('Connecting to %s', URL_GC_LOGIN) connect_response = http_req_as_string(URL_GC_LOGIN) # write_to_file('connect_response.html', connect_response, 'w') for cookie in COOKIE_JAR: logging.debug("Cookie %s : %s", cookie.name, cookie.value) print(' Done.') # Now we'll actually login. # Fields that are passed in a typical Garmin login. post_data = { 'username': username, 'password': password, 'embed': 'false', 'rememberme': 'on' } headers = { 'referer': URL_GC_LOGIN } print('Requesting Login ticket...', end='') login_response = http_req_as_string(URL_GC_LOGIN + '#', post_data, headers) for cookie in COOKIE_JAR: logging.debug("Cookie %s : %s", cookie.name, cookie.value) # write_to_file('login-response.html', login_response, 'w') # extract the ticket from the login response pattern = re.compile(r".*\?ticket=([-\w]+)\";.*", re.MULTILINE | re.DOTALL) match = pattern.match(login_response) if not match: raise Exception('Couldn\'t find ticket in the login response. Cannot log in. ' 'Did you enter the correct username and password?') login_ticket = match.group(1) print(' Done. Ticket=', login_ticket, sep='') print("Authenticating...", end='') logging.info('Authentication URL %s', URL_GC_POST_AUTH + 'ticket=' + login_ticket) http_req(URL_GC_POST_AUTH + 'ticket=' + login_ticket) print(' Done.') def csv_write_record(csv_filter, extract, actvty, details, activity_type_name, event_type_name): """ Write out the given data as a CSV record """ type_id = 4 if absent_or_null('activityType', actvty) else actvty['activityType']['typeId'] parent_type_id = 4 if absent_or_null('activityType', actvty) else actvty['activityType']['parentTypeId'] if present(parent_type_id, PARENT_TYPE_ID): parent_type_key = PARENT_TYPE_ID[parent_type_id] else: parent_type_key = None logging.warning("Unknown parentType %s, please tell script author", str(parent_type_id)) # get some values from detail if present, from a otherwise start_latitude = from_activities_or_detail('startLatitude', actvty, details, 'summaryDTO') start_longitude = from_activities_or_detail('startLongitude', actvty, details, 'summaryDTO') end_latitude = from_activities_or_detail('endLatitude', actvty, details, 'summaryDTO') end_longitude = from_activities_or_detail('endLongitude', actvty, details, 'summaryDTO') csv_filter.set_column('id', str(actvty['activityId'])) csv_filter.set_column('url', 'https://connect.garmin.com/modern/activity/' + str(actvty['activityId'])) csv_filter.set_column('activityName', actvty['activityName'] if present('activityName', actvty) else None) csv_filter.set_column('description', actvty['description'] if present('description', actvty) else None) csv_filter.set_column('startTimeIso', extract['start_time_with_offset'].isoformat()) csv_filter.set_column('startTime1123', extract['start_time_with_offset'].strftime(ALMOST_RFC_1123)) csv_filter.set_column('startTimeMillis', str(actvty['beginTimestamp']) if present('beginTimestamp', actvty) else None) csv_filter.set_column('startTimeRaw', details['summaryDTO']['startTimeLocal'] if present('startTimeLocal', details['summaryDTO']) else None) csv_filter.set_column('endTimeIso', extract['end_time_with_offset'].isoformat() if extract['end_time_with_offset'] else None) csv_filter.set_column('endTime1123', extract['end_time_with_offset'].strftime(ALMOST_RFC_1123) if extract['end_time_with_offset'] else None) csv_filter.set_column('endTimeMillis', str(actvty['beginTimestamp'] + extract['elapsed_seconds'] * 1000) if present('beginTimestamp', actvty) else None) csv_filter.set_column('durationRaw', str(round(actvty['duration'], 3)) if present('duration', actvty) else None) csv_filter.set_column('duration', hhmmss_from_seconds(round(actvty['duration'])) if present('duration', actvty) else None) csv_filter.set_column('elapsedDurationRaw', str(round(extract['elapsed_duration'], 3)) if extract['elapsed_duration'] else None) csv_filter.set_column('elapsedDuration', hhmmss_from_seconds(round(extract['elapsed_duration'])) if extract['elapsed_duration'] else None) csv_filter.set_column('movingDurationRaw', str(round(details['summaryDTO']['movingDuration'], 3)) if present('movingDuration', details['summaryDTO']) else None) csv_filter.set_column('movingDuration', hhmmss_from_seconds(round(details['summaryDTO']['movingDuration'])) if present('movingDuration', details['summaryDTO']) else None) csv_filter.set_column('distanceRaw', "{0:.5f}".format(actvty['distance'] / 1000) if present('distance', actvty) else None) csv_filter.set_column('averageSpeedRaw', kmh_from_mps(details['summaryDTO']['averageSpeed']) if present('averageSpeed', details['summaryDTO']) else None) csv_filter.set_column('averageSpeedPaceRaw', trunc6(pace_or_speed_raw(type_id, parent_type_id, actvty['averageSpeed'])) if present('averageSpeed', actvty) else None) csv_filter.set_column('averageSpeedPace', pace_or_speed_formatted(type_id, parent_type_id, actvty['averageSpeed']) if present('averageSpeed', actvty) else None) csv_filter.set_column('averageMovingSpeedRaw', kmh_from_mps(details['summaryDTO']['averageMovingSpeed']) if present('averageMovingSpeed', details['summaryDTO']) else None) csv_filter.set_column('averageMovingSpeedPaceRaw', trunc6(pace_or_speed_raw(type_id, parent_type_id, details['summaryDTO']['averageMovingSpeed'])) if present('averageMovingSpeed', details['summaryDTO']) else None) csv_filter.set_column('averageMovingSpeedPace', pace_or_speed_formatted(type_id, parent_type_id, details['summaryDTO']['averageMovingSpeed']) if present('averageMovingSpeed', details['summaryDTO']) else None) csv_filter.set_column('maxSpeedRaw', kmh_from_mps(details['summaryDTO']['maxSpeed']) if present('maxSpeed', details['summaryDTO']) else None) csv_filter.set_column('maxSpeedPaceRaw', trunc6(pace_or_speed_raw(type_id, parent_type_id, details['summaryDTO']['maxSpeed'])) if present('maxSpeed', details['summaryDTO']) else None) csv_filter.set_column('maxSpeedPace', pace_or_speed_formatted(type_id, parent_type_id, details['summaryDTO']['maxSpeed']) if present('maxSpeed', details['summaryDTO']) else None) csv_filter.set_column('elevationLoss', str(round(details['summaryDTO']['elevationLoss'], 2)) if present('elevationLoss', details['summaryDTO']) else None) csv_filter.set_column('elevationLossUncorr', str(round(details['summaryDTO']['elevationLoss'], 2)) if not actvty['elevationCorrected'] and present('elevationLoss', details['summaryDTO']) else None) csv_filter.set_column('elevationLossCorr', str(round(details['summaryDTO']['elevationLoss'], 2)) if actvty['elevationCorrected'] and present('elevationLoss', details['summaryDTO']) else None) csv_filter.set_column('elevationGain', str(round(details['summaryDTO']['elevationGain'], 2)) if present('elevationGain', details['summaryDTO']) else None) csv_filter.set_column('elevationGainUncorr', str(round(details['summaryDTO']['elevationGain'], 2)) if not actvty['elevationCorrected'] and present('elevationGain', details['summaryDTO']) else None) csv_filter.set_column('elevationGainCorr', str(round(details['summaryDTO']['elevationGain'], 2)) if actvty['elevationCorrected'] and present('elevationGain', details['summaryDTO']) else None) csv_filter.set_column('minElevation', str(round(details['summaryDTO']['minElevation'], 2)) if present('minElevation', details['summaryDTO']) else None) csv_filter.set_column('minElevationUncorr', str(round(details['summaryDTO']['minElevation'], 2)) if not actvty['elevationCorrected'] and present('minElevation', details['summaryDTO']) else None) csv_filter.set_column('minElevationCorr', str(round(details['summaryDTO']['minElevation'], 2)) if actvty['elevationCorrected'] and present('minElevation', details['summaryDTO']) else None) csv_filter.set_column('maxElevation', str(round(details['summaryDTO']['maxElevation'], 2)) if present('maxElevation', details['summaryDTO']) else None) csv_filter.set_column('maxElevationUncorr', str(round(details['summaryDTO']['maxElevation'], 2)) if not actvty['elevationCorrected'] and present('maxElevation', details['summaryDTO']) else None) csv_filter.set_column('maxElevationCorr', str(round(details['summaryDTO']['maxElevation'], 2)) if actvty['elevationCorrected'] and present('maxElevation', details['summaryDTO']) else None) csv_filter.set_column('elevationCorrected', 'true' if actvty['elevationCorrected'] else 'false') # csv_record += empty_record # no minimum heart rate in JSON csv_filter.set_column('maxHRRaw', str(details['summaryDTO']['maxHR']) if present('maxHR', details['summaryDTO']) else None) csv_filter.set_column('maxHR', "{0:.0f}".format(actvty['maxHR']) if present('maxHR', actvty) else None) csv_filter.set_column('averageHRRaw', str(details['summaryDTO']['averageHR']) if present('averageHR', details['summaryDTO']) else None) csv_filter.set_column('averageHR', "{0:.0f}".format(actvty['averageHR']) if present('averageHR', actvty) else None) csv_filter.set_column('caloriesRaw', str(details['summaryDTO']['calories']) if present('calories', details['summaryDTO']) else None) csv_filter.set_column('calories', "{0:.0f}".format(details['summaryDTO']['calories']) if present('calories', details['summaryDTO']) else None) csv_filter.set_column('vo2max', str(actvty['vO2MaxValue']) if present('vO2MaxValue', actvty) else None) csv_filter.set_column('aerobicEffect', str(round(details['summaryDTO']['trainingEffect'], 2)) if present('trainingEffect', details['summaryDTO']) else None) csv_filter.set_column('anaerobicEffect', str(round(details['summaryDTO']['anaerobicTrainingEffect'], 2)) if present('anaerobicTrainingEffect', details['summaryDTO']) else None) csv_filter.set_column('averageRunCadence', str(round(details['summaryDTO']['averageRunCadence'], 2)) if present('averageRunCadence', details['summaryDTO']) else None) csv_filter.set_column('maxRunCadence', str(details['summaryDTO']['maxRunCadence']) if present('maxRunCadence', details['summaryDTO']) else None) csv_filter.set_column('strideLength', str(round(details['summaryDTO']['strideLength'], 2)) if present('strideLength', details['summaryDTO']) else None) csv_filter.set_column('steps', str(actvty['steps']) if present('steps', actvty) else None) csv_filter.set_column('averageCadence', str(actvty['averageBikingCadenceInRevPerMinute']) if present('averageBikingCadenceInRevPerMinute', actvty) else None) csv_filter.set_column('maxCadence', str(actvty['maxBikingCadenceInRevPerMinute']) if present('maxBikingCadenceInRevPerMinute', actvty) else None) csv_filter.set_column('strokes', str(actvty['strokes']) if present('strokes', actvty) else None) csv_filter.set_column('averageTemperature', str(details['summaryDTO']['averageTemperature']) if present('averageTemperature', details['summaryDTO']) else None) csv_filter.set_column('minTemperature', str(details['summaryDTO']['minTemperature']) if present('minTemperature', details['summaryDTO']) else None) csv_filter.set_column('maxTemperature', str(details['summaryDTO']['maxTemperature']) if present('maxTemperature', details['summaryDTO']) else None) csv_filter.set_column('device', extract['device'] if extract['device'] else None) csv_filter.set_column('gear', extract['gear'] if extract['gear'] else None) csv_filter.set_column('activityTypeKey', actvty['activityType']['typeKey'].title() if present('typeKey', actvty['activityType']) else None) csv_filter.set_column('activityType', value_if_found_else_key(activity_type_name, 'activity_type_' + actvty['activityType']['typeKey']) if present('activityType', actvty) else None) csv_filter.set_column('activityParent', value_if_found_else_key(activity_type_name, 'activity_type_' + parent_type_key) if parent_type_key else None) csv_filter.set_column('eventTypeKey', actvty['eventType']['typeKey'].title() if present('typeKey', actvty['eventType']) else None) csv_filter.set_column('eventType', value_if_found_else_key(event_type_name, actvty['eventType']['typeKey']) if present('eventType', actvty) else None) csv_filter.set_column('privacy', details['accessControlRuleDTO']['typeKey'] if present('typeKey', details['accessControlRuleDTO']) else None) csv_filter.set_column('fileFormat', details['metadataDTO']['fileFormat']['formatKey'] if present('fileFormat', details['metadataDTO']) and present('formatKey', details['metadataDTO']['fileFormat']) else None) csv_filter.set_column('tz', details['timeZoneUnitDTO']['timeZone'] if present('timeZone', details['timeZoneUnitDTO']) else None) csv_filter.set_column('tzOffset', extract['start_time_with_offset'].isoformat()[-6:]) csv_filter.set_column('locationName', details['locationName'] if present('locationName', details) else None) csv_filter.set_column('startLatitudeRaw', str(start_latitude) if start_latitude else None) csv_filter.set_column('startLatitude', trunc6(start_latitude) if start_latitude else None) csv_filter.set_column('startLongitudeRaw', str(start_longitude) if start_longitude else None) csv_filter.set_column('startLongitude', trunc6(start_longitude) if start_longitude else None) csv_filter.set_column('endLatitudeRaw', str(end_latitude) if end_latitude else None) csv_filter.set_column('endLatitude', trunc6(end_latitude) if end_latitude else None) csv_filter.set_column('endLongitudeRaw', str(end_longitude) if end_longitude else None) csv_filter.set_column('endLongitude', trunc6(end_longitude) if end_longitude else None) csv_filter.set_column('sampleCount', str(extract['samples']['metricsCount']) if present('metricsCount', extract['samples']) else None) csv_filter.write_row() def extract_device(device_dict, details, start_time_seconds, args, http_caller, file_writer): """ Try to get the device details (and cache them, as they're used for multiple activities) :param device_dict: cache (dict) of already known devices :param details: dict with the details of an activity, should contain a device ID :param args: command-line arguments (for the file_writer callback) :param http_caller: callback to perform the HTTP call for downloading the device details :param file_writer: callback that saves the device details in a file :return: string with the device name """ if not present('metadataDTO', details): logging.warning("no metadataDTO") return None metadata = details['metadataDTO'] device_app_inst_id = metadata['deviceApplicationInstallationId'] if present('deviceApplicationInstallationId', metadata) else None if device_app_inst_id: if device_app_inst_id not in device_dict: # observed from my stock of activities: # details['metadataDTO']['deviceMetaDataDTO']['deviceId'] == null -> device unknown # details['metadataDTO']['deviceMetaDataDTO']['deviceId'] == '0' -> device unknown # details['metadataDTO']['deviceMetaDataDTO']['deviceId'] == 'someid' -> device known device_dict[device_app_inst_id] = None device_meta = metadata['deviceMetaDataDTO'] if present('deviceMetaDataDTO', metadata) else None device_id = device_meta['deviceId'] if present('deviceId', device_meta) else None if 'deviceId' not in device_meta or device_id and device_id != '0': device_json = http_caller(URL_GC_DEVICE + str(device_app_inst_id)) file_writer(os.path.join(args.directory, 'device_' + str(device_app_inst_id) + '.json'), device_json, 'w', start_time_seconds) if not device_json: logging.warning("Device Details %s are empty", device_app_inst_id) device_dict[device_app_inst_id] = "device-id:" + str(device_app_inst_id) else: device_details = json.loads(device_json) if present('productDisplayName', device_details): device_dict[device_app_inst_id] = device_details['productDisplayName'] + ' ' \ + device_details['versionString'] else: logging.warning("Device details %s incomplete", device_app_inst_id) return device_dict[device_app_inst_id] return None def load_gear(activity_id, args): """Retrieve the gear/equipment for an activity""" try: gear_json = http_req_as_string(URL_GC_GEAR + activity_id) gear = json.loads(gear_json) if gear: del args # keep 'args' argument in case you need to uncomment write_to_file # write_to_file(join(args.directory, 'activity_' + activity_id + '-gear.json'), # gear_json, 'w') gear_display_name = gear[0]['displayName'] if present('displayName', gear[0]) else None gear_model = gear[0]['customMakeModel'] if present('customMakeModel', gear[0]) else None logging.debug("Gear for %s = %s/%s", activity_id, gear_display_name, gear_model) return gear_display_name if gear_display_name else gear_model return None except HTTPError: pass # don't abort just for missing gear... # logging.info("Unable to get gear for %d", activity_id) # logging.exception(e) def export_data_file(activity_id, activity_details, args, file_time, append_desc, start_time_locale): """ Write the data of the activity to a file, depending on the chosen data format """ # Time dependent subdirectory for activity files, e.g. '{YYYY} if not args.subdir is None: directory = resolve_path(args.directory, args.subdir, start_time_locale) # export activities to root directory else: directory = args.directory if not os.path.isdir(directory): os.makedirs(directory) # timestamp as prefix for filename if args.fileprefix > 0: prefix = "{}-".format(start_time_locale.replace("-", "").replace(":", "").replace(" ", "-")) else: prefix = "" fit_filename = None if args.format == 'gpx': data_filename = os.path.join(directory, prefix + 'activity_' + activity_id + append_desc + '.gpx') download_url = URL_GC_GPX_ACTIVITY + activity_id + '?full=true' file_mode = 'w' elif args.format == 'tcx': data_filename = os.path.join(directory, prefix + 'activity_' + activity_id + append_desc + '.tcx') download_url = URL_GC_TCX_ACTIVITY + activity_id + '?full=true' file_mode = 'w' elif args.format == 'original': data_filename = os.path.join(directory, prefix + 'activity_' + activity_id + append_desc + '.zip') # TODO not all 'original' files are in FIT format, some are GPX or TCX... fit_filename = os.path.join(directory, prefix + 'activity_' + activity_id + append_desc + '.fit') download_url = URL_GC_ORIGINAL_ACTIVITY + activity_id file_mode = 'wb' elif args.format == 'json': data_filename = os.path.join(directory, prefix + 'activity_' + activity_id + append_desc + '.json') file_mode = 'w' else: raise Exception('Unrecognized format.') if os.path.isfile(data_filename): logging.debug('Data file for %s already exists', activity_id) print('\tData file already exists; skipping...') return # Regardless of unzip setting, don't redownload if the ZIP or FIT file exists. if args.format == 'original' and os.path.isfile(fit_filename): logging.debug('Original data file for %s already exists', activity_id) print('\tFIT data file already exists; skipping...') return if args.format != 'json': # Download the data file from Garmin Connect. If the download fails (e.g., due to timeout), # this script will die, but nothing will have been written to disk about this activity, so # just running it again should pick up where it left off. try: data = http_req(download_url) except HTTPError as ex: # Handle expected (though unfortunate) error codes; die on unexpected ones. if ex.code == 500 and args.format == 'tcx': # Garmin will give an internal server error (HTTP 500) when downloading TCX files # if the original was a manual GPX upload. Writing an empty file prevents this file # from being redownloaded, similar to the way GPX files are saved even when there # are no tracks. One could be generated here, but that's a bit much. Use the GPX # format if you want actual data in every file, as I believe Garmin provides a GPX # file for every activity. logging.info('Writing empty file since Garmin did not generate a TCX file for this \ activity...') data = '' elif ex.code == 404 and args.format == 'original': # For manual activities (i.e., entered in online without a file upload), there is # no original file. # Write an empty file to prevent redownloading it. logging.info('Writing empty file since there was no original activity data...') data = '' else: logging.info('Got %s for %s', ex.code, download_url) raise Exception('Failed. Got an HTTP error ' + str(ex.code) + ' for ' + download_url) else: data = activity_details # Persist file write_to_file(data_filename, data, file_mode, file_time) if args.format == 'original': # Even manual upload of a GPX file is zipped, but we'll validate the extension. if args.unzip and data_filename[-3:].lower() == 'zip': logging.debug('Unzipping and removing original file, size is %s', os.stat(data_filename).st_size) if os.stat(data_filename).st_size > 0: zip_file = open(data_filename, 'rb') zip_obj = zipfile.ZipFile(zip_file) for name in zip_obj.namelist(): unzipped_name = zip_obj.extract(name, directory) # prepend 'activity_' and append the description to the base name name_base, name_ext = os.path.splitext(name) # sometimes in 2020 Garmin added '_ACTIVITY' to the name in the ZIP. Remove it... # note that 'new_name' should match 'fit_filename' elsewhere in this script to # avoid downloading the same files again name_base = name_base.replace('_ACTIVITY', '') new_name = os.path.join(directory, prefix + 'activity_' + name_base + append_desc + name_ext) logging.debug('renaming %s to %s', unzipped_name, new_name) os.rename(unzipped_name, new_name) if file_time: os.utime(new_name, (file_time, file_time)) zip_file.close() else: print('\tSkipping 0Kb zip file.') os.remove(data_filename) def setup_logging(): """Setup logging""" logging.basicConfig( filename='gcexport.log', level=logging.DEBUG, format='%(asctime)s [%(levelname)-7.7s] %(message)s' ) # set up logging to console console = logging.StreamHandler() console.setLevel(logging.WARN) formatter = logging.Formatter('[%(levelname)s] %(message)s') console.setFormatter(formatter) logging.getLogger('').addHandler(console) def logging_verbosity(verbosity): """Adapt logging verbosity, separately for logfile and console output""" logger = logging.getLogger() for handler in logger.handlers: if isinstance(handler, logging.FileHandler): # this is the logfile handler level = logging.DEBUG if verbosity > 0 else logging.INFO handler.setLevel(level) logging.info('New logfile level: %s', logging.getLevelName(level)) elif isinstance(handler, logging.StreamHandler): # this is the console handler level = logging.DEBUG if verbosity > 1 else (logging.INFO if verbosity > 0 else logging.WARN) handler.setLevel(level) logging.debug('New console log level: %s', logging.getLevelName(level)) def main(argv): """ Main entry point for gcexport.py """ setup_logging() logging.info("Starting %s version %s, using Python version %s", argv[0], SCRIPT_VERSION, python_version()) args = parse_arguments(argv) logging_verbosity(args.verbosity) print('Welcome to Garmin Connect Exporter!') # Create directory for data files. if os.path.isdir(args.directory): logging.warning("Output directory %s already exists. " "Will skip already-downloaded files and append to the CSV file.", args.directory) login_to_garmin_connect(args) # We should be logged in now. if not os.path.isdir(args.directory): os.mkdir(args.directory) csv_filename = args.directory + '/activities.csv' csv_existed = os.path.isfile(csv_filename) if python3: csv_file = open(csv_filename, mode='a', encoding='utf-8') else: csv_file = open(csv_filename, 'a') csv_filter = CsvFilter(csv_file, args.template) # Write header to CSV file if not csv_existed: csv_filter.write_header() if args.count == 'all': # If the user wants to download all activities, query the userstats # on the profile page to know how many are available print('Getting display name...', end='') logging.info('Profile page %s', URL_GC_PROFILE) profile_page = http_req_as_string(URL_GC_PROFILE) # write_to_file(args.directory + '/profile.html', profile_page, 'w') # extract the display name from the profile page, it should be in there as # \"displayName\":\"John.Doe\" pattern = re.compile(r".*\\\"displayName\\\":\\\"([-.\w]+)\\\".*", re.MULTILINE | re.DOTALL) match = pattern.match(profile_page) if not match: raise Exception('Did not find the display name in the profile page.') display_name = match.group(1) print(' Done. displayName=', display_name, sep='') print('Fetching user stats...', end='') logging.info('Userstats page %s', URL_GC_USERSTATS + display_name) result = http_req_as_string(URL_GC_USERSTATS + display_name) print(' Done.') # Persist JSON write_to_file(args.directory + '/userstats.json', result, 'w') # Modify total_to_download based on how many activities the server reports. json_results = json.loads(result) total_to_download = int(json_results['userMetrics'][0]['totalActivities']) else: total_to_download = int(args.count) total_downloaded = 0 device_dict = dict() # load some dictionaries with lookup data from REST services activity_type_props = http_req_as_string(URL_GC_ACT_PROPS) # write_to_file(args.directory + '/activity_types.properties', activity_type_props, 'w') activity_type_name = load_properties(activity_type_props) event_type_props = http_req_as_string(URL_GC_EVT_PROPS) # write_to_file(args.directory + '/event_types.properties', event_type_props, 'w') event_type_name = load_properties(event_type_props) # This while loop will download data from the server in multiple chunks, if necessary. while total_downloaded < total_to_download: # Maximum chunk size 'LIMIT_MAXIMUM' ... 400 return status if over maximum. So download # maximum or whatever remains if less than maximum. # As of 2018-03-06 I get return status 500 if over maximum if total_to_download - total_downloaded > LIMIT_MAXIMUM: num_to_download = LIMIT_MAXIMUM else: num_to_download = total_to_download - total_downloaded search_params = {'start': total_downloaded, 'limit': num_to_download} # Query Garmin Connect print('Querying list of activities ', total_downloaded + 1, '..', total_downloaded + num_to_download, '...', sep='', end='') logging.info('Activity list URL %s', URL_GC_LIST + urlencode(search_params)) result = http_req_as_string(URL_GC_LIST + urlencode(search_params)) print(' Done.') # Persist JSON activities list current_index = total_downloaded + 1 activities_list_filename = '/activities-' \ + str(current_index) + '-' \ + str(total_downloaded + num_to_download) + '.json' write_to_file(args.directory + activities_list_filename, result, 'w') activities = json.loads(result) if len(activities) != num_to_download: logging.warning('Expected %s activities, got %s.', num_to_download, len(activities)) # Process each activity. for actvty in activities: if args.start_activity_no and current_index < args.start_activity_no: pass # Display which entry we're skipping. print('Skipping Garmin Connect activity ', end='') print('(', current_index, '/', total_to_download, ') ', sep='', end='') print('[', actvty['activityId'], ']', sep='') else: # Display which entry we're working on. print('Garmin Connect activity ', end='') print('(', current_index, '/', total_to_download, ') ', sep='', end='') print('[', actvty['activityId'], '] ', sep='', end='') print(actvty['activityName']) # Retrieve also the detail data from the activity (the one displayed on # the https://connect.garmin.com/modern/activity/xxx page), because some # data are missing from 'a' (or are even different, e.g. for my activities # 86497297 or 86516281) activity_details = None details = None tries = MAX_TRIES while tries > 0: activity_details = http_req_as_string(URL_GC_ACTIVITY + str(actvty['activityId'])) details = json.loads(activity_details) # I observed a failure to get a complete JSON detail in about 5-10 calls out of 1000 # retrying then statistically gets a better JSON ;-) if details['summaryDTO']: tries = 0 else: logging.info("Retrying activity details download %s", URL_GC_ACTIVITY + str(actvty['activityId'])) tries -= 1 if tries == 0: raise Exception('Didn\'t get "summaryDTO" after ' + str(MAX_TRIES) + ' tries for ' + str(actvty['activityId'])) extract = {} extract['start_time_with_offset'] = offset_date_time(actvty['startTimeLocal'], actvty['startTimeGMT']) elapsed_duration = details['summaryDTO']['elapsedDuration'] if 'summaryDTO' in details and 'elapsedDuration' in details['summaryDTO'] else None extract['elapsed_duration'] = elapsed_duration if elapsed_duration else actvty['duration'] extract['elapsed_seconds'] = int(round(extract['elapsed_duration'])) extract['end_time_with_offset'] = extract['start_time_with_offset'] + timedelta(seconds=extract['elapsed_seconds']) print('\t', extract['start_time_with_offset'].isoformat(), ', ', sep='', end='') print(hhmmss_from_seconds(extract['elapsed_seconds']), ', ', sep='', end='') if 'distance' in actvty and isinstance(actvty['distance'], (float)): print("{0:.3f}".format(actvty['distance'] / 1000), 'km', sep='') else: print('0.000 km') if args.desc != None: append_desc = '_' + sanitize_filename(actvty['activityName'], args.desc) else: append_desc = '' if args.originaltime: start_time_seconds = actvty['beginTimestamp'] // 1000 if present('beginTimestamp', actvty) else None else: start_time_seconds = None extract['device'] = extract_device(device_dict, details, start_time_seconds, args, http_req_as_string, write_to_file) # try to get the JSON with all the samples (not all activities have it...), # but only if it's really needed for the CSV output extract['samples'] = None if csv_filter.is_column_active('sampleCount'): try: # TODO implement retries here, I have observed temporary failures activity_measurements = http_req_as_string(URL_GC_ACTIVITY + str(actvty['activityId']) + "/details") write_to_file(args.directory + '/activity_' + str(actvty['activityId']) + '_samples.json', activity_measurements, 'w', start_time_seconds) samples = json.loads(activity_measurements) extract['samples'] = samples except HTTPError: pass # don't abort just for missing samples... # logging.info("Unable to get samples for %d", actvty['activityId']) # logging.exception(e) extract['gear'] = None if csv_filter.is_column_active('gear'): extract['gear'] = load_gear(str(actvty['activityId']), args) # Write stats to CSV. csv_write_record(csv_filter, extract, actvty, details, activity_type_name, event_type_name) export_data_file(str(actvty['activityId']), activity_details, args, start_time_seconds, append_desc, actvty['startTimeLocal']) current_index += 1 # End for loop for activities of chunk total_downloaded += num_to_download # End while loop for multiple chunks. csv_file.close() if args.external: print('Open CSV output.') print(csv_filename) call([args.external, "--" + args.args, csv_filename]) print('Done!') if __name__ == "__main__": try: main(sys.argv) except KeyboardInterrupt: print('Interrupted') sys.exit(0)
#!/usr/bin/env python """blinky.py: Starting point of blinky """ __author__ = "Dilawar Singh" __copyright__ = "Copyright 2015, Dilawar Singh and NCBS Bangalore" __credits__ = ["NCBS Bangalore"] __license__ = "GNU GPL" __version__ = "1.0.0" __maintainer__ = "Dilawar Singh" __email__ = "[email protected]" __status__ = "Development" import extract import webcam import pylab import numpy as np def main(args): # Extract video first data = webcam.video2csv(args) if len(data) == 0: print('[WARN] Could not load data. Quitting.') return None edgyBlinks = extract.find_blinks_using_edge(data) outfile = "%s_blinks_using_edges.csv" % args['video_device'] print("[INFO] Writing to outfile %s" % outfile) np.savetxt(outfile, np.array(edgyBlinks).T, delimiter="," , header = "time,blinks") pixalBlinks = extract.find_blinks_using_pixals(data) outfile = "%s_blinks_using_pixals.csv" % args['video_device'] print("[INFO] Writing to outfile %s" % outfile) np.savetxt(outfile, np.array(pixalBlinks).T, delimiter="," , header = "time,blinks") if __name__ == '__main__': import argparse # Argument parser. description = '''Detect eye-blinks in recording (optimized for mouse eye)''' parser = argparse.ArgumentParser(description=description) class Args: pass args = Args() parser.add_argument('--video-device', '-f' , required = False , default = 0 , help = 'Path of the video file or camera index. default camera 0' ) parser.add_argument('--bbox', '-b' , required = False , nargs = '+' , type = int , help = 'Bounding box : topx topy width height' ) parser.parse_args(namespace=args) main(vars(args))
# -*- coding: utf-8 -*- """ A Kodi plugin for ESPN Player """ import sys import os import urllib import urlparse import re from datetime import datetime from resources.lib.espnlib import espnlib import xbmc import xbmcaddon import xbmcvfs import xbmcgui import xbmcplugin addon = xbmcaddon.Addon() addon_path = xbmc.translatePath(addon.getAddonInfo('path')) addon_profile = xbmc.translatePath(addon.getAddonInfo('profile')) language = addon.getLocalizedString logging_prefix = '[%s-%s]' % (addon.getAddonInfo('id'), addon.getAddonInfo('version')) if not xbmcvfs.exists(addon_profile): xbmcvfs.mkdir(addon_profile) _url = sys.argv[0] # get the plugin url in plugin:// notation _handle = int(sys.argv[1]) # get the plugin handle as an integer number username = addon.getSetting('email') password = addon.getSetting('password') cookie_file = os.path.join(addon_profile, 'cookie_file') if addon.getSetting('debug') == 'false': debug = False else: debug = True if addon.getSetting('verify_ssl') == 'false': verify_ssl = False else: verify_ssl = True espn = espnlib(cookie_file, debug, verify_ssl) def addon_log(string): if debug: xbmc.log('%s: %s' % (logging_prefix, string)) def services_menu(): services = espn.get_services() if len(services) == 1: # list main menu directly if one service is found main_menu(services.values()[0]) else: for name, service in services.items(): parameters = {'action': 'main_menu', 'service': service} add_item(name, parameters) xbmcplugin.endOfDirectory(_handle) def main_menu(service): listing = [] items = [language(30018), language(30016), language(30017), language(30019)] for item in items: if item == language(30018): parameters = {'action': 'list_today', 'service': service} elif item == language(30019): parameters = {'action': 'list_channels', 'service': service} else: if item == language(30016): day = 'upcoming' else: day = 'archive' parameters = {'action': 'list_dates', 'service': service, 'day': day} add_item(item, parameters) xbmcplugin.endOfDirectory(_handle) def list_today(service): now = datetime.now() date_today = now.date() items = [language(30015), language(30016), language(30017)] for item in items: if item == language(30015): parameters = {'action': 'list_games', 'filter_games': 'inplay', 'service': service, 'filter_date': 'false'} else: if item == language(30016): game_type = 'upcoming' else: game_type = 'archive' parameters = {'action': 'list_games', 'service': service, 'filter_date': date_today, 'filter_games': game_type} add_item(item, parameters) xbmcplugin.endOfDirectory(_handle) def list_dates(service, day): dates = espn.get_gamedates(service, day) for date in dates: title = date.strftime('%Y-%m-%d') parameters = {'action': 'list_games', 'service': service, 'filter_date': date, 'filter_games': 'false'} add_item(title, parameters) xbmcplugin.endOfDirectory(_handle) def list_games(service, filter_date, filter_games): items = [] if filter_date == 'false': filter_date = False if filter_games == 'false': filter_games = False games = espn.get_games(service, filter_date=filter_date, filter_games=filter_games) for game in games: team_names = True game_datetime = espn.parse_datetime(game['dateTimeGMT'], localize=True) time = game_datetime.strftime('%H:%M') time_and_date = game_datetime.strftime('%Y-%m-%d %H:%M') category = game['sportId'] try: home_team = '%s' % (game['homeTeam']['name']) away_team = '%s' % (game['awayTeam']['name']) except KeyError: # try to extract team names from full title teampattern = re.search(r'(.+)( vs. )(.+)( \()', game['name']) if teampattern: home_team = teampattern.group(3) away_team = teampattern.group(1) else: team_names = False if 'availablePrograms' not in game: playable = False parameters = {'action': 'null'} else: playable = True parameters = {'action': 'play_video', 'airingId': game['statsId']} if team_names: title = '[B]%s[/B] vs. [B]%s[/B]' % (away_team, home_team) list_title = '[B]%s[/B] %s: [B]%s[/B] vs. [B]%s[/B]' % (coloring(time, 'time'), coloring(category, 'cat'), away_team, home_team) else: title = '[B]%s[/B]' % game['name'] list_title = '[B]%s[/B] %s: [B]%s[/B]' % (coloring(time, 'time'), coloring(category, 'cat'), game['name']) game_image = game['image'].split('.jpg')[0] + '.jpg' art = { 'thumb': game_image, 'fanart': game_image, 'cover': game_image, } info = { 'title': title, 'genre': category, 'plot': game['name'] } items = add_item(list_title, parameters, items=items, playable=playable, folder=False, set_art=art, set_info=info) xbmcplugin.addDirectoryItems(_handle, items, len(items)) xbmcplugin.endOfDirectory(_handle) def coloring(text, meaning): """Return the text wrapped in appropriate color markup.""" if meaning == 'cat': color = 'FF0DF214' elif meaning == 'time': color = 'FFF16C00' colored_text = '[COLOR=%s]%s[/COLOR]' % (color, text) return colored_text def list_channels(service): """List all channels from the returned dict.""" channels = espn.get_channels(service) for name, channel_id in channels.items(): listitem = xbmcgui.ListItem(label=name) listitem.setProperty('IsPlayable', 'true') art = {'thumb': 'http://a.espncdn.com/prod/assets/watchespn/appletv/images/channels-carousel/%s.png' % channel_id} # airingId is seoName for live channels parameters = {'action': 'play_channel', 'airingId': channel_id, 'channel': channel_id} add_item(name, parameters, playable=True, set_art=art) xbmcplugin.endOfDirectory(_handle) def play_video(airingId, channel=None): try: espn.login(username, password) except espn.LoginFailure: addon_log('login failed') dialog = xbmcgui.Dialog() dialog.ok(language(30005), language(30006)) if channel: stream_url = espn.get_stream_url(airingId, channel) else: stream_url = espn.get_stream_url(airingId) if stream_url['bitrates']: bitrate = select_bitrate(stream_url['bitrates'].keys()) if bitrate: play_url = stream_url['bitrates'][bitrate] playitem = xbmcgui.ListItem(path=play_url) playitem.setProperty('IsPlayable', 'true') xbmcplugin.setResolvedUrl(_handle, True, listitem=playitem) else: dialog = xbmcgui.Dialog() dialog.ok(language(30005), language(30013)) def ask_bitrate(bitrates): """Presents a dialog for user to select from a list of bitrates. Returns the value of the selected bitrate.""" options = [] for bitrate in bitrates: options.append(bitrate + ' Kbps') dialog = xbmcgui.Dialog() ret = dialog.select(language(30010), options) if ret > -1: return bitrates[ret] def select_bitrate(manifest_bitrates=None): """Returns a bitrate while honoring the user's preference.""" bitrate_setting = int(addon.getSetting('preferred_bitrate')) if bitrate_setting == 0: preferred_bitrate = 'highest' elif bitrate_setting == 1: preferred_bitrate = 'limit' else: preferred_bitrate = 'ask' manifest_bitrates.sort(key=int, reverse=True) if preferred_bitrate == 'highest': return manifest_bitrates[0] elif preferred_bitrate == 'limit': allowed_bitrates = [] max_bitrate_allowed = int(addon.getSetting('max_bitrate_allowed')) for bitrate in manifest_bitrates: if max_bitrate_allowed >= int(bitrate): allowed_bitrates.append(str(bitrate)) if allowed_bitrates: return allowed_bitrates[0] else: return ask_bitrate(manifest_bitrates) def add_item(title, parameters, items=False, folder=True, playable=False, set_info=False, set_art=False, watched=False, set_content=False): listitem = xbmcgui.ListItem(label=title) if playable: listitem.setProperty('IsPlayable', 'true') folder = False if set_art: listitem.setArt(set_art) else: listitem.setArt({'icon': os.path.join(addon_path, 'icon.png')}) listitem.setArt({'fanart': os.path.join(addon_path, 'fanart.jpg')}) if set_info: listitem.setInfo('video', set_info) if not watched: listitem.addStreamInfo('video', {'duration': 0}) if set_content: xbmcplugin.setContent(_handle, set_content) listitem.setContentLookup(False) # allows sending custom headers/cookies to ffmpeg recursive_url = _url + '?' + urllib.urlencode(parameters) if items is False: xbmcplugin.addDirectoryItem(_handle, recursive_url, listitem, folder) else: items.append((recursive_url, listitem, folder)) return items def router(paramstring): """Router function that calls other functions depending on the provided paramstring.""" params = dict(urlparse.parse_qsl(paramstring)) if params: if params['action'] == 'main_menu': main_menu(params['service']) elif params['action'] == 'list_channels': list_channels(params['service']) elif params['action'] == 'list_games': list_games(params['service'], params['filter_date'], params['filter_games']) addon_log(params) elif params['action'] == 'play_video': play_video(params['airingId']) elif params['action'] == 'play_channel': play_video(params['airingId'], params['channel']) elif params['action'] == 'list_dates': list_dates(params['service'], params['day']) elif params['action'] == 'list_today': list_today(params['service']) else: try: espn.login(username, password) services_menu() except espn.LoginFailure: addon_log('login failed') dialog = xbmcgui.Dialog() dialog.ok(language(30005), language(30006)) sys.exit(0) if __name__ == '__main__': router(sys.argv[2][1:]) # trim the leading '?' from the plugin call paramstring
# This file is part of Indico. # Copyright (C) 2002 - 2021 CERN # # Indico is free software; you can redistribute it and/or # modify it under the terms of the MIT License; see the # LICENSE file for more details. import os import posixpath import re import tarfile from collections import defaultdict from datetime import date, datetime from io import BytesIO from operator import itemgetter from uuid import uuid4 import click import dateutil.parser import yaml from flask import current_app from sqlalchemy import inspect from terminaltables import AsciiTable import indico from indico.core.config import config from indico.core.db import db from indico.core.db.sqlalchemy.principals import PrincipalType from indico.core.db.sqlalchemy.util.models import get_all_models from indico.core.storage.backend import get_storage from indico.modules.events import Event, EventLogKind, EventLogRealm from indico.modules.events.contributions import Contribution from indico.modules.events.contributions.models.principals import ContributionPrincipal from indico.modules.events.models.persons import EventPerson from indico.modules.events.models.principals import EventPrincipal from indico.modules.events.registration.models.registrations import Registration from indico.modules.events.sessions import Session from indico.modules.events.sessions.models.principals import SessionPrincipal from indico.modules.users import User from indico.modules.users.util import get_user_by_email from indico.util.console import cformat from indico.util.date_time import now_utc from indico.util.string import strict_str _notset = object() def export_event(event, target_file): """Export the specified event with all its data to a file. :param event: the `Event` to export :param target_file: a file object to write the data to """ exporter = EventExporter(event, target_file) exporter.serialize() def import_event(source_file, category_id=0, create_users=None, verbose=False, force=False): """Import a previously-exported event. It is up to the caller of this function to commit the transaction. :param source_file: An open file object containing the exported event. :param category_id: ID of the category in which to create the event. :param create_users: Whether to create missing users or skip them. If set to None, an interactive prompt is shown when such users are encountered. :param verbose: Whether to enable verbose output. :param force: Whether to ignore version conflicts. :return: The imported event. """ importer = EventImporter(source_file, category_id, create_users, verbose, force) return importer.deserialize() def _model_to_table(name): """Resolve a model name to a full table name (unless it's already one).""" return getattr(db.m, name).__table__.fullname if name[0].isupper() else name def _make_globals(**extra): """ Build a globals dict for the exec/eval environment that contains all the models and whatever extra data is needed. """ globals_ = {cls.__name__: cls for cls in get_all_models() if hasattr(cls, '__table__')} globals_.update(extra) return globals_ def _exec_custom(code, **extra): """Execute a custom code snippet and return all non-underscored values.""" globals_ = _make_globals(**extra) locals_ = {} exec(code, globals_, locals_) return {str(k): v for k, v in locals_.items() if k[0] != '_'} def _resolve_col(col): """Resolve a string or object to a column. :param col: A string containing a Python expression, a model attribute or a Column instance. """ attr = eval(col, _make_globals()) if isinstance(col, str) else col if isinstance(attr, db.Column): return attr assert len(attr.prop.columns) == 1 return attr.prop.columns[0] def _get_single_fk(col): """Get the single-column FK constraint of the specified column.""" # find the column-specific FK, not some compound fk containing this column fks = [x for x in col.foreign_keys if len(x.constraint.columns) == 1] assert len(fks) == 1 return fks[0] def _get_pk(table): """Get the single column that is the table's PK.""" pks = list(inspect(table).primary_key.columns.values()) assert len(pks) == 1 return pks[0] def _has_single_pk(table): """Check if the table has a single PK.""" return len(list(inspect(table).primary_key.columns.values())) == 1 def _get_inserted_pk(result): """Get the single PK value inserted by a query.""" assert len(result.inserted_primary_key) == 1 return result.inserted_primary_key[0] class EventExporter: def __init__(self, event, target_file): self.event = event self.target_file = target_file self.archive = tarfile.open(mode='w|', fileobj=self.target_file) self.id_map = defaultdict(dict) self.used_uuids = set() self.seen_rows = set() self.fk_map = self._get_reverse_fk_map() self.spec = self._load_spec() self.users = {} def _add_file(self, name, size, data): if isinstance(data, bytes): data = BytesIO(data) elif isinstance(data, str): data = BytesIO(data.encode()) info = tarfile.TarInfo(name) info.size = size self.archive.addfile(info, data) def serialize(self): metadata = { 'timestamp': now_utc(), 'indico_version': indico.__version__, 'objects': list(self._serialize_objects(Event.__table__, Event.id == self.event.id)), 'users': self.users } yaml_data = yaml.dump(metadata, indent=2) self._add_file('data.yaml', len(yaml_data), yaml_data) def _load_spec(self): def _process_tablespec(tablename, tablespec): tablespec.setdefault('cols', {}) tablespec.setdefault('fks', {}) tablespec.setdefault('fks_out', {}) tablespec.setdefault('skipif', None) tablespec.setdefault('order', None) tablespec.setdefault('allow_duplicates', False) fks = {} for fk_name in tablespec['fks']: col = _resolve_col(fk_name) fk = _get_single_fk(col) fks.setdefault(fk.column.name, []).append(col) tablespec['fks'] = fks tablespec['fks_out'] = {fk: _get_single_fk(db.metadata.tables[tablename].c[fk]).column for fk in tablespec['fks_out']} return tablespec with open(os.path.join(current_app.root_path, 'modules', 'events', 'export.yaml')) as f: spec = yaml.safe_load(f) return {_model_to_table(k): _process_tablespec(_model_to_table(k), v) for k, v in spec['export'].items()} def _get_reverse_fk_map(self): """Build a mapping between columns and incoming FKs.""" legacy_tables = {'events.legacy_contribution_id_map', 'events.legacy_subcontribution_id_map', 'attachments.legacy_attachment_id_map', 'event_registration.legacy_registration_map', 'events.legacy_session_block_id_map', 'events.legacy_image_id_map', 'events.legacy_session_id_map', 'events.legacy_page_id_map', 'categories.legacy_id_map', 'events.legacy_id_map', 'attachments.legacy_folder_id_map'} fk_targets = defaultdict(set) for name, table in db.metadata.tables.items(): if name in legacy_tables: continue for column in table.columns: for fk in column.foreign_keys: fk_targets[fk.target_fullname].add(fk.parent) return dict(fk_targets) def _get_uuid(self): uuid = str(uuid4()) if uuid in self.used_uuids: # VERY unlikely but just in case... return self._get_uuid() self.used_uuids.add(uuid) return uuid def _make_idref(self, column, value, incoming=False, target_column=None): """Generate a ID reference. When generating an incoming ID reference, `column` must be a PK and point to the column that is referenced by FKs. In this case the `value` is ignored since it will be auto-generated by the db when the new row is isnerted. Otherwise, exactly one of `column` or `target_column` must be set. `column` is the column in the current table that has a FK referencing some other column. `target_column` is already the column that is referenced by a FK in the current table. """ assert (column is None) != (target_column is None) if value is None: return None if incoming: assert column.primary_key assert target_column is None fullname = f'{column.table.fullname}.{column.name}' type_ = 'idref_set' else: if target_column is not None: fullname = f'{target_column.table.fullname}.{target_column.name}' else: fk = _get_single_fk(column) fullname = fk.target_fullname target_column = fk.column if target_column is User.__table__.c.id and value is not None: type_ = 'userref' else: type_ = 'idref' uuid = self.id_map[fullname].setdefault(value, self._get_uuid()) if type_ == 'userref' and uuid not in self.users: user = User.get(value) self.users[uuid] = None if user.is_system else { 'first_name': user.first_name, 'last_name': user.last_name, 'title': user._title, 'affiliation': user.affiliation, 'phone': user.phone, 'address': user.address, 'email': user.email, 'all_emails': list(user.all_emails) } return type_, uuid def _make_value(self, value): """Convert values that need extra handling.""" if isinstance(value, (date, datetime)): # YAML loses timezone information for datatime objects so # we serialize/deserialize it manually return type(value).__name__, value.isoformat() elif isinstance(value, bytes) and len(value) > 1000: # bytestrings (usually binary data, e.g. an event logo) go into # separate files - YAML handles them well (base64) but it just # makes the YAML file larger, which is kind of ugly uuid = self._get_uuid() self._add_file(uuid, len(value), value) return 'binary', uuid elif isinstance(value, tuple): # XXX: We don't expect any columns to have tuple data, but # if we do we need to convert them to `('tuple', value)` # since we expect any tuple to indicate `(type, value)` # instead of a plain value that can be used directly raise ValueError('tuples not handled') else: return value def _process_file(self, data): """Copy a file from storage into the export archive.""" if data.get('storage_file_id') is None: return assert '__file__' not in data # only one file per row allowed storage_backend = data.pop('storage_backend') storage_file_id = data.pop('storage_file_id') filename = data.pop('filename') content_type = data.pop('content_type') size = data.pop('size') md5 = data.pop('md5') uuid = self._get_uuid() with get_storage(storage_backend).open(storage_file_id) as f: self._add_file(uuid, size, f) data['__file__'] = ('file', {'uuid': uuid, 'filename': filename, 'content_type': content_type, 'size': size, 'md5': md5}) def _serialize_objects(self, table, filter_): spec = self.spec[table.fullname] query = db.session.query(table).filter(filter_) if spec['order']: # Use a custom order instead of whatever the DB uses by default. # This is mainly needed for self-referential FKs and CHECK # constraints that require certain objects to be exported before # the ones referencing them order = eval(spec['order'], _make_globals()) if not isinstance(order, tuple): order = (order,) query = query.order_by(*order) query = query.order_by(*table.primary_key.columns) cascaded = [] for row in query: if spec['skipif'] and eval(spec['skipif'], _make_globals(ROW=row)): continue rowdict = row._asdict() pk = tuple(v for k, v in rowdict.items() if table.c[k].primary_key) if (table.fullname, pk) in self.seen_rows: if spec['allow_duplicates']: continue else: raise Exception('Trying to serialize already-serialized row') self.seen_rows.add((table.fullname, pk)) data = {} for col, value in rowdict.items(): col = str(col) # col names are `quoted_name` objects col_fullname = f'{table.fullname}.{col}' col_custom = spec['cols'].get(col, _notset) colspec = table.c[col] if col_custom is None: # column is explicitly excluded continue elif col_custom is not _notset: # column has custom code to process its value (and possibly name) if value is not None: def _get_event_idref(): key = f'{Event.__table__.fullname}.{Event.id.name}' assert key in self.id_map return 'idref', self.id_map[key][self.event.id] def _make_id_ref(target, id_): return self._make_idref(None, id_, target_column=_resolve_col(target)) data.update(_exec_custom(col_custom, VALUE=value, MAKE_EVENT_REF=_get_event_idref, MAKE_ID_REF=_make_id_ref)) elif col_fullname in self.fk_map: # an FK references this column -> generate a uuid data[col] = self._make_idref(colspec, value, incoming=colspec.primary_key) elif colspec.foreign_keys: # column is an FK data[col] = self._make_idref(colspec, value) elif colspec.primary_key: # column is a PK with no incoming FKs -> no need to track the ID pass else: # not an fk data.setdefault(col, self._make_value(value)) self._process_file(data) # export objects referenced in outgoing FKs before the row # itself as the FK column might not be nullable for col, fk in spec['fks_out'].items(): value = rowdict[col] yield from self._serialize_objects(fk.table, value == fk) yield table.fullname, data # serialize objects referencing the current row, but don't export them yet for col, fks in spec['fks'].items(): value = rowdict[col] cascaded += [x for fk in fks for x in self._serialize_objects(fk.table, value == fk)] # we only add incoming fks after being done with all objects in case one # of the referenced objects references another object from the current table # that has not been serialized yet (e.g. abstract reviews proposing as duplicate) yield from cascaded class EventImporter: def __init__(self, source_file, category_id=0, create_users=None, verbose=False, force=False): self.source_file = source_file self.category_id = category_id self.create_users = create_users self.verbose = verbose self.force = force self.archive = tarfile.open(fileobj=source_file) self.data = yaml.unsafe_load(self.archive.extractfile('data.yaml')) self.id_map = {} self.user_map = {} self.event_id = None self.system_user_id = User.get_system_user().id self.spec = self._load_spec() self.deferred_idrefs = defaultdict(set) def _load_spec(self): def _resolve_col_name(col): colspec = _resolve_col(col) return f'{colspec.table.fullname}.{colspec.name}' def _process_format(fmt, _re=re.compile(r'<([^>]+)>')): fmt = _re.sub(r'%{reset}%{cyan}\1%{reset}%{blue!}', fmt) return cformat('- %{blue!}' + fmt) with open(os.path.join(current_app.root_path, 'modules', 'events', 'export.yaml')) as f: spec = yaml.safe_load(f) spec = spec['import'] spec['defaults'] = {_model_to_table(k): v for k, v in spec.get('defaults', {}).items()} spec['custom'] = {_model_to_table(k): v for k, v in spec.get('custom', {}).items()} spec['missing_users'] = {_resolve_col_name(k): v for k, v in spec.get('missing_users', {}).items()} spec['verbose'] = {_model_to_table(k): _process_format(v) for k, v in spec.get('verbose', {}).items()} return spec def _load_users(self, data): if not data['users']: return missing = {} for uuid, userdata in data['users'].items(): if userdata is None: self.user_map[uuid] = self.system_user_id continue user = (User.query .filter(User.all_emails.in_(userdata['all_emails']), ~User.is_deleted) .first()) if user is None: missing[uuid] = userdata else: self.user_map[uuid] = user.id if missing: click.secho('The following users from the import data could not be mapped to existing users:', fg='yellow') table_data = [['First Name', 'Last Name', 'Email', 'Affiliation']] for userdata in sorted(missing.values(), key=itemgetter('first_name', 'last_name', 'email')): table_data.append([userdata['first_name'], userdata['last_name'], userdata['email'], userdata['affiliation']]) table = AsciiTable(table_data) click.echo(table.table) if self.create_users is None: click.echo('Do you want to create these users now?') click.echo('If you choose to not create them, the behavior depends on where the user would be used:') click.echo('- If the user is not required, it will be omitted.') click.echo('- If a user is required but using the system user will not cause any problems or look ' 'weird, the system user will be used.') click.echo('- In case neither is possible, e.g. in abstract reviews or ACLs, these objects will ' 'be skipped altogether!') create_users = click.confirm('Create the missing users?', default=True) else: create_users = self.create_users if create_users: click.secho('Creating missing users', fg='magenta') for uuid, userdata in missing.items(): user = User(first_name=userdata['first_name'], last_name=userdata['last_name'], email=userdata['email'], secondary_emails=set(userdata['all_emails']) - {userdata['email']}, address=userdata['address'], phone=userdata['phone'], affiliation=userdata['affiliation'], title=userdata['title'], is_pending=True) db.session.add(user) db.session.flush() self.user_map[uuid] = user.id if self.verbose: click.echo(cformat("- %{cyan}User%{blue!} '{}' ({})").format(user.full_name, user.email)) else: click.secho('Skipping missing users', fg='magenta') def deserialize(self): if not self.force and self.data['indico_version'] != indico.__version__: click.secho('Version mismatch: trying to import event exported with {} to version {}' .format(self.data['indico_version'], indico.__version__), fg='red') return None self._load_users(self.data) # we need the event first since it generates the event id, which may be needed # in case of outgoing FKs on the event model objects = sorted(self.data['objects'], key=lambda x: x[0] != 'events.events') for tablename, tabledata in objects: self._deserialize_object(db.metadata.tables[tablename], tabledata) if self.deferred_idrefs: # Any reference to an ID that was exported need to be replaced # with an actual ID at some point - either immediately (if the # referenced row was already imported) or later (usually in case # of circular dependencies where one of the IDs is not available # when the row is inserted). click.secho('BUG: Not all deferred idrefs have been consumed', fg='red') for uuid, values in self.deferred_idrefs.items(): click.secho(f'{uuid}:', fg='yellow', bold=True) for table, col, pk_value in values: click.secho(f' - {table.fullname}.{col} ({pk_value})', fg='yellow') raise Exception('Not all deferred idrefs have been consumed') event = Event.get(self.event_id) event.log(EventLogRealm.event, EventLogKind.other, 'Event', 'Event imported from another Indico instance') self._associate_users_by_email(event) db.session.flush() return event def _associate_users_by_email(self, event): # link objects to users by email where possible # event principals emails = [p.email for p in EventPrincipal.query.with_parent(event).filter_by(type=PrincipalType.email)] for user in User.query.filter(~User.is_deleted, User.all_emails.in_(emails)): EventPrincipal.replace_email_with_user(user, 'event') # session principals query = (SessionPrincipal.query .filter(SessionPrincipal.session.has(Session.event == event), SessionPrincipal.type == PrincipalType.email)) emails = [p.email for p in query] for user in User.query.filter(~User.is_deleted, User.all_emails.in_(emails)): SessionPrincipal.replace_email_with_user(user, 'session') # contribution principals query = (ContributionPrincipal.query .filter(ContributionPrincipal.contribution.has(Contribution.event == event), ContributionPrincipal.type == PrincipalType.email)) emails = [p.email for p in query] for user in User.query.filter(~User.is_deleted, User.all_emails.in_(emails)): ContributionPrincipal.replace_email_with_user(user, 'contribution') # event persons query = EventPerson.query.with_parent(event).filter(EventPerson.user_id.is_(None), EventPerson.email != '') for person in query: person.user = get_user_by_email(person.email) # registrations for registration in Registration.query.with_parent(event).filter(Registration.user_id.is_(None)): registration.user = get_user_by_email(registration.email) def _convert_value(self, colspec, value): if not isinstance(value, tuple): return value type_, value = value if type_ == 'datetime': return dateutil.parser.parse(value) elif type_ == 'date': return dateutil.parser.parse(value).date() elif type_ == 'binary': return self.archive.extractfile(value).read() elif type_ == 'idref': try: rv = self.id_map[value] except KeyError: raise IdRefDeferred(value) if rv is None: raise MissingUserCascaded return rv elif type_ == 'userref': try: return self.user_map[value] except KeyError: mode = self.spec['missing_users'][f'{colspec.table.fullname}.{colspec.name}'] if mode == 'system': return self.system_user_id elif mode == 'none': return None elif mode == 'skip': raise MissingUser(self.data['users'][value], skip=True) else: raise MissingUser(self.data['users'][value], run=mode) else: raise ValueError('unknown type: ' + type_) def _get_file_storage_path(self, id_, filename): # we use a generic path to store all imported files since we # are on the table level here and thus cannot use relationships # and the orignal models' logic to construct paths path_segments = ['event', strict_str(self.event_id), 'imported'] filename = f'{id_}-{filename}' path = posixpath.join(*(path_segments + [filename])) return path def _process_file(self, id_, data): storage_backend = config.ATTACHMENT_STORAGE storage = get_storage(storage_backend) extracted = self.archive.extractfile(data['uuid']) path = self._get_file_storage_path(id_, data['filename']) storage_file_id, md5 = storage.save(path, data['content_type'], data['filename'], extracted) assert data['size'] == storage.getsize(storage_file_id) if data['md5']: assert data['md5'] == md5 return { 'storage_backend': storage_backend, 'storage_file_id': storage_file_id, 'content_type': data['content_type'], 'filename': data['filename'], 'size': data['size'], 'md5': md5 } def _deserialize_object(self, table, data): is_event = (table == Event.__table__) import_defaults = self.spec['defaults'].get(table.fullname, {}) import_custom = self.spec['custom'].get(table.fullname, {}) set_idref = None file_data = None insert_values = dict(import_defaults) deferred_idrefs = {} missing_user_skip = False missing_user_exec = set() if is_event: # the exported data may contain only one event assert self.event_id is None insert_values['category_id'] = self.category_id for col, value in data.items(): if isinstance(value, tuple): if value[0] == 'idref_set': assert set_idref is None set_idref = value[1] continue elif value[0] == 'file': # import files later in case we end up skipping the column due to a missing user assert file_data is None file_data = value[1] continue colspec = table.c[col] if col in import_custom: # custom python code to process the imported value def _resolve_id_ref(value): return self._convert_value(colspec, value) rv = _exec_custom(import_custom[col], VALUE=value, RESOLVE_ID_REF=_resolve_id_ref) assert list(rv.keys()) == [col] insert_values[col] = rv[col] continue try: insert_values[col] = self._convert_value(colspec, value) except IdRefDeferred as exc: deferred_idrefs[col] = exc.uuid except MissingUser as exc: if exc.skip: click.secho(f'! Skipping row in {table.fullname} due to missing user ({exc.username})', fg='yellow') missing_user_skip = True else: missing_user_exec.add(exc.run) except MissingUserCascaded: click.secho('! Skipping row in {} as parent row was skipped due to a missing user' .format(table.fullname), fg='yellow') missing_user_skip = True if missing_user_skip: # skipped row due to a missing user? mark it as skipped so # anything referencing it will also be skipped if set_idref is not None: self.id_map[set_idref] = None return elif missing_user_exec: # run custom code to deal with missing users for code in missing_user_exec: insert_values.update(_exec_custom(code)) if file_data is not None: if _has_single_pk(table): # restore a file from the import archive and save it in storage pk_name = _get_pk(table).name assert pk_name not in insert_values # get an ID early since we use it in the filename stmt = db.func.nextval(db.func.pg_get_serial_sequence(table.fullname, pk_name)) insert_values[pk_name] = pk_value = db.session.query(stmt).scalar() insert_values.update(self._process_file(pk_value, file_data)) else: insert_values.update(self._process_file(str(uuid4()), file_data)) if self.verbose and table.fullname in self.spec['verbose']: fmt = self.spec['verbose'][table.fullname] click.echo(fmt.format(**insert_values)) res = db.session.execute(table.insert(), insert_values) if set_idref is not None: # if a column was marked as having incoming FKs, store # the ID so the reference can be resolved to the ID self._set_idref(set_idref, _get_inserted_pk(res)) if is_event: self.event_id = _get_inserted_pk(res) for col, uuid in deferred_idrefs.items(): # store all the data needed to resolve a deferred ID reference # later once the ID is available self.deferred_idrefs[uuid].add((table, col, _get_inserted_pk(res))) def _set_idref(self, uuid, id_): self.id_map[uuid] = id_ # update all the previously-deferred ID references for table, col, pk_value in self.deferred_idrefs.pop(uuid, ()): pk = _get_pk(table) db.session.execute(table.update().where(pk == pk_value).values({col: id_})) class IdRefDeferred(Exception): def __init__(self, uuid): self.uuid = uuid class MissingUser(Exception): def __init__(self, userdata, skip=False, run=None): self.skip = skip self.run = run assert self.skip != bool(self.run) self.userdata = userdata @property def username(self): return '{} {} <{}>'.format(self.userdata['first_name'], self.userdata['last_name'], self.userdata['email']) class MissingUserCascaded(Exception): pass
# -*- coding:utf-8 -*- """ 交易数据接口 Created on 2014/07/31 @author: Jimmy Liu @group : waditu @contact: [email protected] """ from __future__ import division import time import json import lxml.html from lxml import etree import pandas as pd import numpy as np from tushare.stock import cons as ct import re from pandas.compat import StringIO from tushare.util import dateu as du try: from urllib.request import urlopen, Request except ImportError: from urllib2 import urlopen, Request def get_hist_data(code=None, start=None, end=None, ktype='D', retry_count=3, pause=0.001): """ 获取个股历史交易记录 Parameters ------ code:string 股票代码 e.g. 600848 start:string 开始日期 format:YYYY-MM-DD 为空时取到API所提供的最早日期数据 end:string 结束日期 format:YYYY-MM-DD 为空时取到最近一个交易日数据 ktype:string 数据类型,D=日k线 W=周 M=月 5=5分钟 15=15分钟 30=30分钟 60=60分钟,默认为D retry_count : int, 默认 3 如遇网络等问题重复执行的次数 pause : int, 默认 0 重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题 return ------- DataFrame 属性:日期 ,开盘价, 最高价, 收盘价, 最低价, 成交量, 价格变动 ,涨跌幅,5日均价,10日均价,20日均价,5日均量,10日均量,20日均量,换手率 """ symbol = _code_to_symbol(code) url = '' if ktype.upper() in ct.K_LABELS: url = ct.DAY_PRICE_URL%(ct.P_TYPE['http'], ct.DOMAINS['ifeng'], ct.K_TYPE[ktype.upper()], symbol) elif ktype in ct.K_MIN_LABELS: url = ct.DAY_PRICE_MIN_URL%(ct.P_TYPE['http'], ct.DOMAINS['ifeng'], symbol, ktype) else: raise TypeError('ktype input error.') for _ in range(retry_count): time.sleep(pause) try: request = Request(url) lines = urlopen(request, timeout = 10).read() if len(lines) < 15: #no data return None except Exception as e: print(e) else: js = json.loads(lines.decode('utf-8') if ct.PY3 else lines) cols = [] if (code in ct.INDEX_LABELS) & (ktype.upper() in ct.K_LABELS): cols = ct.INX_DAY_PRICE_COLUMNS else: cols = ct.DAY_PRICE_COLUMNS if len(js['record'][0]) == 14: cols = ct.INX_DAY_PRICE_COLUMNS df = pd.DataFrame(js['record'], columns=cols) if ktype.upper() in ['D', 'W', 'M']: df = df.applymap(lambda x: x.replace(u',', u'')) for col in cols[1:]: df[col] = df[col].astype(float) if start is not None: df = df[df.date >= start] if end is not None: df = df[df.date <= end] if (code in ct.INDEX_LABELS) & (ktype in ct.K_MIN_LABELS): df = df.drop('turnover', axis=1) df = df.set_index('date') return df raise IOError(ct.NETWORK_URL_ERROR_MSG) def _parsing_dayprice_json(pageNum=1): """ 处理当日行情分页数据,格式为json Parameters ------ pageNum:页码 return ------- DataFrame 当日所有股票交易数据(DataFrame) """ ct._write_console() request = Request(ct.SINA_DAY_PRICE_URL%(ct.P_TYPE['http'], ct.DOMAINS['vsf'], ct.PAGES['jv'], pageNum)) text = urlopen(request, timeout=10).read() if text == 'null': return None reg = re.compile(r'\,(.*?)\:') text = reg.sub(r',"\1":', text.decode('gbk') if ct.PY3 else text) text = text.replace('"{symbol', '{"symbol') text = text.replace('{symbol', '{"symbol"') if ct.PY3: jstr = json.dumps(text) else: jstr = json.dumps(text, encoding='GBK') js = json.loads(jstr) df = pd.DataFrame(pd.read_json(js, dtype={'code':object}), columns=ct.DAY_TRADING_COLUMNS) df = df.drop('symbol', axis=1) df = df.ix[df.volume > 0] return df def get_tick_data(code=None, date=None, retry_count=3, pause=0.001): """ 获取分笔数据 Parameters ------ code:string 股票代码 e.g. 600848 date:string 日期 format:YYYY-MM-DD retry_count : int, 默认 3 如遇网络等问题重复执行的次数 pause : int, 默认 0 重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题 return ------- DataFrame 当日所有股票交易数据(DataFrame) 属性:成交时间、成交价格、价格变动,成交手、成交金额(元),买卖类型 """ if code is None or len(code)!=6 or date is None: return None symbol = _code_to_symbol(code) for _ in range(retry_count): time.sleep(pause) try: re = Request(ct.TICK_PRICE_URL % (ct.P_TYPE['http'], ct.DOMAINS['sf'], ct.PAGES['dl'], date, symbol)) lines = urlopen(re, timeout=10).read() lines = lines.decode('GBK') if len(lines) < 100: return None df = pd.read_table(StringIO(lines), names=ct.TICK_COLUMNS, skiprows=[0]) except Exception as e: print(e) else: return df raise IOError(ct.NETWORK_URL_ERROR_MSG) def get_today_ticks(code=None, retry_count=3, pause=0.001): """ 获取当日分笔明细数据 Parameters ------ code:string 股票代码 e.g. 600848 retry_count : int, 默认 3 如遇网络等问题重复执行的次数 pause : int, 默认 0 重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题 return ------- DataFrame 当日所有股票交易数据(DataFrame) 属性:成交时间、成交价格、价格变动,成交手、成交金额(元),买卖类型 """ if code is None or len(code)!=6 : return None symbol = _code_to_symbol(code) date = du.today() try: request = Request(ct.TODAY_TICKS_PAGE_URL % (ct.P_TYPE['http'], ct.DOMAINS['vsf'], ct.PAGES['jv'], date, symbol)) data_str = urlopen(request, timeout=10).read() data_str = data_str.decode('GBK') data_str = data_str[1:-1] data_str = eval(data_str, type('Dummy', (dict,), dict(__getitem__ = lambda s, n:n))()) data_str = json.dumps(data_str) data_str = json.loads(data_str) pages = len(data_str['detailPages']) data = pd.DataFrame() ct._write_head() for pNo in range(1, pages): data = data.append(_today_ticks(symbol, date, pNo, retry_count, pause), ignore_index=True) except Exception as er: print(str(er)) return data def _today_ticks(symbol, tdate, pageNo, retry_count, pause): ct._write_console() for _ in range(retry_count): time.sleep(pause) try: html = lxml.html.parse(ct.TODAY_TICKS_URL % (ct.P_TYPE['http'], ct.DOMAINS['vsf'], ct.PAGES['t_ticks'], symbol, tdate, pageNo )) res = html.xpath('//table[@id=\"datatbl\"]/tbody/tr') if ct.PY3: sarr = [etree.tostring(node).decode('utf-8') for node in res] else: sarr = [etree.tostring(node) for node in res] sarr = ''.join(sarr) sarr = '<table>%s</table>'%sarr sarr = sarr.replace('--', '0') df = pd.read_html(StringIO(sarr), parse_dates=False)[0] df.columns = ct.TODAY_TICK_COLUMNS df['pchange'] = df['pchange'].map(lambda x : x.replace('%', '')) except Exception as e: print(e) else: return df raise IOError(ct.NETWORK_URL_ERROR_MSG) def get_today_all(): """ 一次性获取最近一个日交易日所有股票的交易数据 return ------- DataFrame 属性:代码,名称,涨跌幅,现价,开盘价,最高价,最低价,最日收盘价,成交量,换手率 """ ct._write_head() df = _parsing_dayprice_json(1) if df is not None: for i in range(2, ct.PAGE_NUM[0]): newdf = _parsing_dayprice_json(i) df = df.append(newdf, ignore_index=True) return df def get_realtime_quotes(symbols=None): """ 获取实时交易数据 getting real time quotes data 用于跟踪交易情况(本次执行的结果-上一次执行的数据) Parameters ------ symbols : string, array-like object (list, tuple, Series). return ------- DataFrame 实时交易数据 属性:0:name,股票名字 1:open,今日开盘价 2:pre_close,昨日收盘价 3:price,当前价格 4:high,今日最高价 5:low,今日最低价 6:bid,竞买价,即“买一”报价 7:ask,竞卖价,即“卖一”报价 8:volumn,成交量 maybe you need do volumn/100 9:amount,成交金额(元 CNY) 10:b1_v,委买一(笔数 bid volume) 11:b1_p,委买一(价格 bid price) 12:b2_v,“买二” 13:b2_p,“买二” 14:b3_v,“买三” 15:b3_p,“买三” 16:b4_v,“买四” 17:b4_p,“买四” 18:b5_v,“买五” 19:b5_p,“买五” 20:a1_v,委卖一(笔数 ask volume) 21:a1_p,委卖一(价格 ask price) ... 30:date,日期; 31:time,时间; """ symbols_list = '' if isinstance(symbols, list) or isinstance(symbols, set) or isinstance(symbols, tuple) or isinstance(symbols, pd.Series): for code in symbols: symbols_list += _code_to_symbol(code) + ',' else: symbols_list = _code_to_symbol(symbols) symbols_list = symbols_list[:-1] if len(symbols_list) > 8 else symbols_list request = Request(ct.LIVE_DATA_URL%(ct.P_TYPE['http'], ct.DOMAINS['sinahq'], _random(), symbols_list)) text = urlopen(request,timeout=10).read() text = text.decode('GBK') reg = re.compile(r'\="(.*?)\";') data = reg.findall(text) regSym = re.compile(r'(?:sh|sz)(.*?)\=') syms = regSym.findall(text) data_list = [] syms_list = [] for index, row in enumerate(data): if len(row)>1: data_list.append([astr for astr in row.split(',')]) syms_list.append(syms[index]) if len(syms_list) == 0: return None df = pd.DataFrame(data_list, columns=ct.LIVE_DATA_COLS) df = df.drop('s', axis=1) df['code'] = syms_list ls = [cls for cls in df.columns if '_v' in cls] for txt in ls: df[txt] = df[txt].map(lambda x : x[:-2]) return df def get_h_data(code, start=None, end=None, autype='qfq', index=False, retry_count=3, pause=0.001): ''' 获取历史复权数据 Parameters ------ code:string 股票代码 e.g. 600848 start:string 开始日期 format:YYYY-MM-DD 为空时取当前日期 end:string 结束日期 format:YYYY-MM-DD 为空时取去年今日 autype:string 复权类型,qfq-前复权 hfq-后复权 None-不复权,默认为qfq retry_count : int, 默认 3 如遇网络等问题重复执行的次数 pause : int, 默认 0 重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题 return ------- DataFrame date 交易日期 (index) open 开盘价 high 最高价 close 收盘价 low 最低价 volume 成交量 amount 成交金额 ''' start = du.today_last_year() if start is None else start end = du.today() if end is None else end qs = du.get_quarts(start, end) qt = qs[0] ct._write_head() data = _parse_fq_data(_get_index_url(index, code, qt), index, retry_count, pause) if len(qs)>1: for d in range(1, len(qs)): qt = qs[d] ct._write_console() df = _parse_fq_data(_get_index_url(index, code, qt), index, retry_count, pause) data = data.append(df, ignore_index=True) if len(data) == 0 or len(data[(data.date>=start)&(data.date<=end)]) == 0: return None data = data.drop_duplicates('date') if index: data = data[(data.date>=start) & (data.date<=end)] data = data.set_index('date') data = data.sort_index(ascending=False) return data if autype == 'hfq': data = data.drop('factor', axis=1) data = data[(data.date>=start) & (data.date<=end)] for label in ['open', 'high', 'close', 'low']: data[label] = data[label].map(ct.FORMAT) data[label] = data[label].astype(float) data = data.set_index('date') data = data.sort_index(ascending = False) return data else: if autype == 'qfq': data = data.drop('factor', axis=1) df = _parase_fq_factor(code, start, end) df = df.drop_duplicates('date') df = df.sort('date', ascending=False) frow = df.head(1) rt = get_realtime_quotes(code) if rt is None: return None if ((float(rt['high']) == 0) & (float(rt['low']) == 0)): preClose = float(rt['pre_close']) else: if du.is_holiday(du.today()): preClose = float(rt['price']) else: print(du.get_hour()) print((du.get_hour() > 9) & (du.get_hour() < 18) ) if (du.get_hour() > 9) & (du.get_hour() < 18): preClose = float(rt['pre_close']) else: preClose = float(rt['price']) rate = float(frow['factor']) / preClose data = data[(data.date >= start) & (data.date <= end)] for label in ['open', 'high', 'low', 'close']: data[label] = data[label] / rate data[label] = data[label].map(ct.FORMAT) data[label] = data[label].astype(float) data = data.set_index('date') data = data.sort_index(ascending = False) return data else: for label in ['open', 'high', 'close', 'low']: data[label] = data[label] / data['factor'] data = data.drop('factor', axis=1) data = data[(data.date>=start) & (data.date<=end)] for label in ['open', 'high', 'close', 'low']: data[label] = data[label].map(ct.FORMAT) data = data.set_index('date') data = data.sort_index(ascending=False) data = data.astype(float) return data def _parase_fq_factor(code, start, end): symbol = _code_to_symbol(code) request = Request(ct.HIST_FQ_FACTOR_URL%(ct.P_TYPE['http'], ct.DOMAINS['vsf'], symbol)) text = urlopen(request, timeout=10).read() text = text[1:len(text)-1] text = text.decode('utf-8') if ct.PY3 else text text = text.replace('{_', '{"') text = text.replace('total', '"total"') text = text.replace('data', '"data"') text = text.replace(':"', '":"') text = text.replace('",_', '","') text = text.replace('_', '-') text = json.loads(text) df = pd.DataFrame({'date':list(text['data'].keys()), 'factor':list(text['data'].values())}) df['date'] = df['date'].map(_fun_except) # for null case if df['date'].dtypes == np.object: df['date'] = df['date'].astype(np.datetime64) df = df.drop_duplicates('date') df['factor'] = df['factor'].astype(float) return df def _fun_except(x): if len(x) > 10: return x[-10:] else: return x def _parse_fq_data(url, index, retry_count, pause): for _ in range(retry_count): time.sleep(pause) try: request = Request(url) text = urlopen(request, timeout=10).read() text = text.decode('GBK') html = lxml.html.parse(StringIO(text)) res = html.xpath('//table[@id=\"FundHoldSharesTable\"]') if ct.PY3: sarr = [etree.tostring(node).decode('utf-8') for node in res] else: sarr = [etree.tostring(node) for node in res] sarr = ''.join(sarr) df = pd.read_html(sarr, skiprows = [0, 1])[0] if len(df) == 0: return pd.DataFrame() if index: df.columns = ct.HIST_FQ_COLS[0:7] else: df.columns = ct.HIST_FQ_COLS if df['date'].dtypes == np.object: df['date'] = df['date'].astype(np.datetime64) df = df.drop_duplicates('date') except Exception as e: print(e) else: return df raise IOError(ct.NETWORK_URL_ERROR_MSG) def get_index(): """ 获取大盘指数行情 return ------- DataFrame code:指数代码 name:指数名称 change:涨跌幅 open:开盘价 preclose:昨日收盘价 close:收盘价 high:最高价 low:最低价 volume:成交量(手) amount:成交金额(亿元) """ request = Request(ct.INDEX_HQ_URL%(ct.P_TYPE['http'], ct.DOMAINS['sinahq'])) text = urlopen(request, timeout=10).read() text = text.decode('GBK') text = text.replace('var hq_str_sh', '').replace('var hq_str_sz', '') text = text.replace('";', '').replace('"', '').replace('=', ',') text = '%s%s'%(ct.INDEX_HEADER, text) df = pd.read_csv(StringIO(text), sep=',', thousands=',') df['change'] = (df['close'] / df['preclose'] - 1 ) * 100 df['amount'] = df['amount'] / 100000000 df['change'] = df['change'].map(ct.FORMAT) df['amount'] = df['amount'].map(ct.FORMAT) df = df[ct.INDEX_COLS] df['code'] = df['code'].map(lambda x:str(x).zfill(6)) df['change'] = df['change'].astype(float) df['amount'] = df['amount'].astype(float) return df def _get_index_url(index, code, qt): if index: url = ct.HIST_INDEX_URL%(ct.P_TYPE['http'], ct.DOMAINS['vsf'], code, qt[0], qt[1]) else: url = ct.HIST_FQ_URL%(ct.P_TYPE['http'], ct.DOMAINS['vsf'], code, qt[0], qt[1]) return url def get_hists(symbols, start=None, end=None, ktype='D', retry_count=3, pause=0.001): """ 批量获取历史行情数据,具体参数和返回数据类型请参考get_hist_data接口 """ df = pd.DataFrame() if isinstance(symbols, list) or isinstance(symbols, set) or isinstance(symbols, tuple) or isinstance(symbols, pd.Series): for symbol in symbols: data = get_hist_data(symbol, start=start, end=end, ktype=ktype, retry_count=retry_count, pause=pause) data['code'] = symbol df = df.append(data, ignore_index=True) return df else: return None def _random(n=13): from random import randint start = 10**(n-1) end = (10**n)-1 return str(randint(start, end)) def _code_to_symbol(code): """ 生成symbol代码标志 """ if code in ct.INDEX_LABELS: return ct.INDEX_LIST[code] else: if len(code) != 6 : return '' else: return 'sh%s'%code if code[:1] in ['5', '6'] else 'sz%s'%code
# Copyright 2013 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import os import sys import oslo_utils.strutils as strutils from glance import i18n try: import dns # NOQA except ImportError: dnspython_installed = False else: dnspython_installed = True def fix_greendns_ipv6(): if dnspython_installed: # All of this is because if dnspython is present in your environment # then eventlet monkeypatches socket.getaddrinfo() with an # implementation which doesn't work for IPv6. What we're checking here # is that the magic environment variable was set when the import # happened. nogreendns = 'EVENTLET_NO_GREENDNS' flag = os.environ.get(nogreendns, '') if 'eventlet' in sys.modules and not strutils.bool_from_string(flag): msg = i18n._("It appears that the eventlet module has been " "imported prior to setting %s='yes'. It is currently " "necessary to disable eventlet.greendns " "if using ipv6 since eventlet.greendns currently " "breaks with ipv6 addresses. Please ensure that " "eventlet is not imported prior to this being set.") raise ImportError(msg % nogreendns) os.environ[nogreendns] = 'yes' i18n.enable_lazy() fix_greendns_ipv6()
import csv import numpy as np from sklearn.svm import SVR import matplotlib.pyplot as plot def get_data(filename): dates = [] prices = [] with open(filename, 'r') as csvFile: csv_file_reader = csv.reader(csvFile) next(csv_file_reader) for row in csv_file_reader: dates.append(int(row[0].split('-')[0])) prices.append(float(row[1])) return np.array(dates), np.array(prices) def predict_prices(dates, prices, x): dates.dot(dates.transpose()) dates.shape = (len(dates), 1) svr_lin = SVR(kernel='linear', C=1e3) svr_poly = SVR(kernel='poly', C=1e3, degree=2) svr_rbf = SVR(kernel='rbf', C=1e3, gamma=0.1) svr_lin.fit(dates, prices) svr_poly.fit(dates, prices) svr_rbf.fit(dates, prices) plot.scatter(dates, prices, edgecolors='black', data='Data') plot.plot(dates, svr_rbf.predict(dates)) plot.plot(dates, svr_rbf.predict(dates)) plot.plot(dates, svr_rbf.predict(dates)) plot.xlabel('Date') plot.ylabel('Price') plot.title('Support Vector Regression') plot.legend() plot.show() return svr_rbf.predict(x)[0], svr_lin.predict(x)[0], svr_poly.predict(x)[0] dates, prices = get_data('./data_files/aapl.csv') print("\n", "Dates: ", dates.size, "\n", "Prices: ", prices.size) predicted_price = predict_prices(dates, prices, 29) print(predicted_price)
import string import warnings import numpy as np import pandas.util.testing as tm from pandas import (DataFrame, Series, MultiIndex, date_range, period_range, isnull, NaT) from .pandas_vb_common import setup # noqa class GetNumericData(object): goal_time = 0.2 def setup(self): self.df = DataFrame(np.random.randn(10000, 25)) self.df['foo'] = 'bar' self.df['bar'] = 'baz' with warnings.catch_warnings(record=True): self.df = self.df.consolidate() def time_frame_get_numeric_data(self): self.df._get_numeric_data() class Lookup(object): goal_time = 0.2 def setup(self): self.df = DataFrame(np.random.randn(10000, 8), columns=list('abcdefgh')) self.df['foo'] = 'bar' self.row_labels = list(self.df.index[::10])[:900] self.col_labels = list(self.df.columns) * 100 self.row_labels_all = np.array( list(self.df.index) * len(self.df.columns), dtype='object') self.col_labels_all = np.array( list(self.df.columns) * len(self.df.index), dtype='object') def time_frame_fancy_lookup(self): self.df.lookup(self.row_labels, self.col_labels) def time_frame_fancy_lookup_all(self): self.df.lookup(self.row_labels_all, self.col_labels_all) class Reindex(object): goal_time = 0.2 def setup(self): N = 10**3 self.df = DataFrame(np.random.randn(N * 10, N)) self.idx = np.arange(4 * N, 7 * N) self.df2 = DataFrame( {c: {0: np.random.randint(0, 2, N).astype(np.bool_), 1: np.random.randint(0, N, N).astype(np.int16), 2: np.random.randint(0, N, N).astype(np.int32), 3: np.random.randint(0, N, N).astype(np.int64)} [np.random.randint(0, 4)] for c in range(N)}) def time_reindex_axis0(self): self.df.reindex(self.idx) def time_reindex_axis1(self): self.df.reindex(columns=self.idx) def time_reindex_both_axes(self): self.df.reindex(index=self.idx, columns=self.idx) def time_reindex_both_axes_ix(self): self.df.ix[self.idx, self.idx] def time_reindex_upcast(self): self.df2.reindex(np.random.permutation(range(1200))) class Iteration(object): goal_time = 0.2 def setup(self): N = 1000 self.df = DataFrame(np.random.randn(N * 10, N)) self.df2 = DataFrame(np.random.randn(N * 50, 10)) self.df3 = DataFrame(np.random.randn(N, 5 * N), columns=['C' + str(c) for c in range(N * 5)]) def time_iteritems(self): # (monitor no-copying behaviour) if hasattr(self.df, '_item_cache'): self.df._item_cache.clear() for name, col in self.df.iteritems(): pass def time_iteritems_cached(self): for name, col in self.df.iteritems(): pass def time_iteritems_indexing(self): for col in self.df3: self.df3[col] def time_itertuples(self): for row in self.df2.itertuples(): pass def time_iterrows(self): for row in self.df.iterrows(): pass class ToString(object): goal_time = 0.2 def setup(self): self.df = DataFrame(np.random.randn(100, 10)) def time_to_string_floats(self): self.df.to_string() class ToHTML(object): goal_time = 0.2 def setup(self): nrows = 500 self.df2 = DataFrame(np.random.randn(nrows, 10)) self.df2[0] = period_range('2000', periods=nrows) self.df2[1] = range(nrows) def time_to_html_mixed(self): self.df2.to_html() class Repr(object): goal_time = 0.2 def setup(self): nrows = 10000 data = np.random.randn(nrows, 10) arrays = np.tile(np.random.randn(3, int(nrows / 100)), 100) idx = MultiIndex.from_arrays(arrays) self.df3 = DataFrame(data, index=idx) self.df4 = DataFrame(data, index=np.random.randn(nrows)) self.df_tall = DataFrame(np.random.randn(nrows, 10)) self.df_wide = DataFrame(np.random.randn(10, nrows)) def time_html_repr_trunc_mi(self): self.df3._repr_html_() def time_html_repr_trunc_si(self): self.df4._repr_html_() def time_repr_tall(self): repr(self.df_tall) def time_frame_repr_wide(self): repr(self.df_wide) class MaskBool(object): goal_time = 0.2 def setup(self): data = np.random.randn(1000, 500) df = DataFrame(data) df = df.where(df > 0) self.bools = df > 0 self.mask = isnull(df) def time_frame_mask_bools(self): self.bools.mask(self.mask) def time_frame_mask_floats(self): self.bools.astype(float).mask(self.mask) class Isnull(object): goal_time = 0.2 def setup(self): N = 10**3 self.df_no_null = DataFrame(np.random.randn(N, N)) sample = np.array([np.nan, 1.0]) data = np.random.choice(sample, (N, N)) self.df = DataFrame(data) sample = np.array(list(string.ascii_letters + string.whitespace)) data = np.random.choice(sample, (N, N)) self.df_strings = DataFrame(data) sample = np.array([NaT, np.nan, None, np.datetime64('NaT'), np.timedelta64('NaT'), 0, 1, 2.0, '', 'abcd']) data = np.random.choice(sample, (N, N)) self.df_obj = DataFrame(data) def time_isnull_floats_no_null(self): isnull(self.df_no_null) def time_isnull(self): isnull(self.df) def time_isnull_strngs(self): isnull(self.df_strings) def time_isnull_obj(self): isnull(self.df_obj) class Fillna(object): goal_time = 0.2 params = ([True, False], ['pad', 'bfill']) param_names = ['inplace', 'method'] def setup(self, inplace, method): values = np.random.randn(10000, 100) values[::2] = np.nan self.df = DataFrame(values) def time_frame_fillna(self, inplace, method): self.df.fillna(inplace=inplace, method=method) class Dropna(object): goal_time = 0.2 params = (['all', 'any'], [0, 1]) param_names = ['how', 'axis'] def setup(self, how, axis): self.df = DataFrame(np.random.randn(10000, 1000)) self.df.ix[50:1000, 20:50] = np.nan self.df.ix[2000:3000] = np.nan self.df.ix[:, 60:70] = np.nan self.df_mixed = self.df.copy() self.df_mixed['foo'] = 'bar' def time_dropna(self, how, axis): self.df.dropna(how=how, axis=axis) def time_dropna_axis_mixed_dtypes(self, how, axis): self.df_mixed.dropna(how=how, axis=axis) class Count(object): goal_time = 0.2 params = [0, 1] param_names = ['axis'] def setup(self, axis): self.df = DataFrame(np.random.randn(10000, 1000)) self.df.ix[50:1000, 20:50] = np.nan self.df.ix[2000:3000] = np.nan self.df.ix[:, 60:70] = np.nan self.df_mixed = self.df.copy() self.df_mixed['foo'] = 'bar' self.df.index = MultiIndex.from_arrays([self.df.index, self.df.index]) self.df.columns = MultiIndex.from_arrays([self.df.columns, self.df.columns]) self.df_mixed.index = MultiIndex.from_arrays([self.df_mixed.index, self.df_mixed.index]) self.df_mixed.columns = MultiIndex.from_arrays([self.df_mixed.columns, self.df_mixed.columns]) def time_count_level_multi(self, axis): self.df.count(axis=axis, level=1) def time_count_level_mixed_dtypes_multi(self, axis): self.df_mixed.count(axis=axis, level=1) class Apply(object): goal_time = 0.2 def setup(self): self.df = DataFrame(np.random.randn(1000, 100)) self.s = Series(np.arange(1028.0)) self.df2 = DataFrame({i: self.s for i in range(1028)}) self.df3 = DataFrame(np.random.randn(1000, 3), columns=list('ABC')) def time_apply_user_func(self): self.df2.apply(lambda x: np.corrcoef(x, self.s)[(0, 1)]) def time_apply_axis_1(self): self.df.apply(lambda x: x + 1, axis=1) def time_apply_lambda_mean(self): self.df.apply(lambda x: x.mean()) def time_apply_np_mean(self): self.df.apply(np.mean) def time_apply_pass_thru(self): self.df.apply(lambda x: x) def time_apply_ref_by_name(self): self.df3.apply(lambda x: x['A'] + x['B'], axis=1) class Dtypes(object): goal_time = 0.2 def setup(self): self.df = DataFrame(np.random.randn(1000, 1000)) def time_frame_dtypes(self): self.df.dtypes class Equals(object): goal_time = 0.2 def setup(self): N = 10**3 self.float_df = DataFrame(np.random.randn(N, N)) self.float_df_nan = self.float_df.copy() self.float_df_nan.iloc[-1, -1] = np.nan self.object_df = DataFrame('foo', index=range(N), columns=range(N)) self.object_df_nan = self.object_df.copy() self.object_df_nan.iloc[-1, -1] = np.nan self.nonunique_cols = self.object_df.copy() self.nonunique_cols.columns = ['A'] * len(self.nonunique_cols.columns) self.nonunique_cols_nan = self.nonunique_cols.copy() self.nonunique_cols_nan.iloc[-1, -1] = np.nan def time_frame_float_equal(self): self.float_df.equals(self.float_df) def time_frame_float_unequal(self): self.float_df.equals(self.float_df_nan) def time_frame_nonunique_equal(self): self.nonunique_cols.equals(self.nonunique_cols) def time_frame_nonunique_unequal(self): self.nonunique_cols.equals(self.nonunique_cols_nan) def time_frame_object_equal(self): self.object_df.equals(self.object_df) def time_frame_object_unequal(self): self.object_df.equals(self.object_df_nan) class Interpolate(object): goal_time = 0.2 params = [None, 'infer'] param_names = ['downcast'] def setup(self, downcast): N = 10000 # this is the worst case, where every column has NaNs. self.df = DataFrame(np.random.randn(N, 100)) self.df.values[::2] = np.nan self.df2 = DataFrame({'A': np.arange(0, N), 'B': np.random.randint(0, 100, N), 'C': np.random.randn(N), 'D': np.random.randn(N)}) self.df2.loc[1::5, 'A'] = np.nan self.df2.loc[1::5, 'C'] = np.nan def time_interpolate(self, downcast): self.df.interpolate(downcast=downcast) def time_interpolate_some_good(self, downcast): self.df2.interpolate(downcast=downcast) class Shift(object): # frame shift speedup issue-5609 goal_time = 0.2 params = [0, 1] param_names = ['axis'] def setup(self, axis): self.df = DataFrame(np.random.rand(10000, 500)) def time_shift(self, axis): self.df.shift(1, axis=axis) class Nunique(object): def setup(self): self.df = DataFrame(np.random.randn(10000, 1000)) def time_frame_nunique(self): self.df.nunique() class Duplicated(object): goal_time = 0.2 def setup(self): n = (1 << 20) t = date_range('2015-01-01', freq='S', periods=(n // 64)) xs = np.random.randn(n // 64).round(2) self.df = DataFrame({'a': np.random.randint(-1 << 8, 1 << 8, n), 'b': np.random.choice(t, n), 'c': np.random.choice(xs, n)}) self.df2 = DataFrame(np.random.randn(1000, 100).astype(str)).T def time_frame_duplicated(self): self.df.duplicated() def time_frame_duplicated_wide(self): self.df2.duplicated() class XS(object): goal_time = 0.2 params = [0, 1] param_names = ['axis'] def setup(self, axis): self.N = 10**4 self.df = DataFrame(np.random.randn(self.N, self.N)) def time_frame_xs(self, axis): self.df.xs(self.N / 2, axis=axis) class SortValues(object): goal_time = 0.2 params = [True, False] param_names = ['ascending'] def setup(self, ascending): self.df = DataFrame(np.random.randn(1000000, 2), columns=list('AB')) def time_frame_sort_values(self, ascending): self.df.sort_values(by='A', ascending=ascending) class SortIndexByColumns(object): goal_time = 0.2 def setup(self): N = 10000 K = 10 self.df = DataFrame({'key1': tm.makeStringIndex(N).values.repeat(K), 'key2': tm.makeStringIndex(N).values.repeat(K), 'value': np.random.randn(N * K)}) def time_frame_sort_values_by_columns(self): self.df.sort_values(by=['key1', 'key2']) class Quantile(object): goal_time = 0.2 params = [0, 1] param_names = ['axis'] def setup(self, axis): self.df = DataFrame(np.random.randn(1000, 3), columns=list('ABC')) def time_frame_quantile(self, axis): self.df.quantile([0.1, 0.5], axis=axis) class GetDtypeCounts(object): # 2807 goal_time = 0.2 def setup(self): self.df = DataFrame(np.random.randn(10, 10000)) def time_frame_get_dtype_counts(self): self.df.get_dtype_counts() def time_info(self): self.df.info() class NSort(object): goal_time = 0.2 params = ['first', 'last', 'all'] param_names = ['keep'] def setup(self, keep): self.df = DataFrame(np.random.randn(1000, 3), columns=list('ABC')) def time_nlargest(self, keep): self.df.nlargest(100, 'A', keep=keep) def time_nsmallest(self, keep): self.df.nsmallest(100, 'A', keep=keep) class Describe(object): goal_time = 0.2 def setup(self): self.df = DataFrame({ 'a': np.random.randint(0, 100, int(1e6)), 'b': np.random.randint(0, 100, int(1e6)), 'c': np.random.randint(0, 100, int(1e6)) }) def time_series_describe(self): self.df['a'].describe() def time_dataframe_describe(self): self.df.describe()
# -*- coding: utf-8 -*- # ########################## Copyrights and license ############################ # # # Copyright 2012 Vincent Jacques <[email protected]> # # Copyright 2012 Zearin <[email protected]> # # Copyright 2013 AKFish <[email protected]> # # Copyright 2013 Vincent Jacques <[email protected]> # # # # This file is part of PyGithub. # # http://pygithub.github.io/PyGithub/v1/index.html # # # # PyGithub is free software: you can redistribute it and/or modify it under # # the terms of the GNU Lesser General Public License as published by the Free # # Software Foundation, either version 3 of the License, or (at your option) # # any later version. # # # # PyGithub is distributed in the hope that it will be useful, but WITHOUT ANY # # WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # # FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more # # details. # # # # You should have received a copy of the GNU Lesser General Public License # # along with PyGithub. If not, see <http://www.gnu.org/licenses/>. # # # # ############################################################################## import sys import datetime from operator import itemgetter import GithubException import Consts atLeastPython3 = sys.hexversion >= 0x03000000 class _NotSetType: def __repr__(self): return "NotSet" value = None NotSet = _NotSetType() class _ValuedAttribute: def __init__(self, value): self.value = value class _BadAttribute: def __init__(self, value, expectedType, exception=None): self.__value = value self.__expectedType = expectedType self.__exception = exception @property def value(self): raise GithubException.BadAttributeException(self.__value, self.__expectedType, self.__exception) class GithubObject(object): """ Base class for all classes representing objects returned by the API. """ ''' A global debug flag to enable header validation by requester for all objects ''' CHECK_AFTER_INIT_FLAG = False @classmethod def setCheckAfterInitFlag(cls, flag): cls.CHECK_AFTER_INIT_FLAG = flag def __init__(self, requester, headers, attributes, completed): self._requester = requester self._initAttributes() self._storeAndUseAttributes(headers, attributes) # Ask requester to do some checking, for debug and test purpose # Since it's most handy to access and kinda all-knowing if self.CHECK_AFTER_INIT_FLAG: # pragma no branch (Flag always set in tests) requester.check_me(self) def _storeAndUseAttributes(self, headers, attributes): # Make sure headers are assigned before calling _useAttributes # (Some derived classes will use headers in _useAttributes) self._headers = headers self._rawData = attributes self._useAttributes(attributes) @property def raw_data(self): """ :type: dict """ self._completeIfNeeded() return self._rawData @property def raw_headers(self): """ :type: dict """ self._completeIfNeeded() return self._headers @staticmethod def _parentUrl(url): return "/".join(url.split("/")[: -1]) @staticmethod def __makeSimpleAttribute(value, type): if value is None or isinstance(value, type): return _ValuedAttribute(value) else: return _BadAttribute(value, type) @staticmethod def __makeSimpleListAttribute(value, type): if isinstance(value, list) and all(isinstance(element, type) for element in value): return _ValuedAttribute(value) else: return _BadAttribute(value, [type]) @staticmethod def __makeTransformedAttribute(value, type, transform): if value is None: return _ValuedAttribute(None) elif isinstance(value, type): try: return _ValuedAttribute(transform(value)) except Exception, e: return _BadAttribute(value, type, e) else: return _BadAttribute(value, type) @staticmethod def _makeStringAttribute(value): return GithubObject.__makeSimpleAttribute(value, (str, unicode)) @staticmethod def _makeIntAttribute(value): return GithubObject.__makeSimpleAttribute(value, (int, long)) @staticmethod def _makeBoolAttribute(value): return GithubObject.__makeSimpleAttribute(value, bool) @staticmethod def _makeDictAttribute(value): return GithubObject.__makeSimpleAttribute(value, dict) @staticmethod def _makeTimestampAttribute(value): return GithubObject.__makeTransformedAttribute(value, (int, long), datetime.datetime.utcfromtimestamp) @staticmethod def _makeDatetimeAttribute(value): def parseDatetime(s): if len(s) == 24: # pragma no branch (This branch was used only when creating a download) # The Downloads API has been removed. I'm keeping this branch because I have no mean # to check if it's really useless now. return datetime.datetime.strptime(s, "%Y-%m-%dT%H:%M:%S.000Z") # pragma no cover (This branch was used only when creating a download) elif len(s) == 25: return datetime.datetime.strptime(s[:19], "%Y-%m-%dT%H:%M:%S") + (1 if s[19] == '-' else -1) * datetime.timedelta(hours=int(s[20:22]), minutes=int(s[23:25])) else: return datetime.datetime.strptime(s, "%Y-%m-%dT%H:%M:%SZ") return GithubObject.__makeTransformedAttribute(value, (str, unicode), parseDatetime) def _makeClassAttribute(self, klass, value): return GithubObject.__makeTransformedAttribute(value, dict, lambda value: klass(self._requester, self._headers, value, completed=False)) @staticmethod def _makeListOfStringsAttribute(value): return GithubObject.__makeSimpleListAttribute(value, (str, unicode)) @staticmethod def _makeListOfIntsAttribute(value): return GithubObject.__makeSimpleListAttribute(value, int) @staticmethod def _makeListOfListOfStringsAttribute(value): return GithubObject.__makeSimpleListAttribute(value, list) def _makeListOfClassesAttribute(self, klass, value): if isinstance(value, list) and all(isinstance(element, dict) for element in value): return _ValuedAttribute([klass(self._requester, self._headers, element, completed=False) for element in value]) else: return _BadAttribute(value, [dict]) def _makeDictOfStringsToClassesAttribute(self, klass, value): if isinstance(value, dict) and all(isinstance(key, (str, unicode)) and isinstance(element, dict) for key, element in value.iteritems()): return _ValuedAttribute(dict((key, klass(self._requester, self._headers, element, completed=False)) for key, element in value.iteritems())) else: return _BadAttribute(value, {(str, unicode): dict}) @property def etag(self): ''' :type: str ''' return self._headers.get(Consts.RES_ETAG) @property def last_modified(self): ''' :type: str ''' return self._headers.get(Consts.RES_LAST_MODIFED) def get__repr__(self, params): """ Converts the object to a nicely printable string. """ def format_params(params): if atLeastPython3: items = params.items() else: items = list(params.items()) for k, v in sorted(items, key=itemgetter(0), reverse=True): yield '{k}="{v}"'.format(k=k, v=v) if isinstance(v, (str, unicode)) else '{k}={v}'.format(k=k, v=v) return '{class_name}({params})'.format( class_name=self.__class__.__name__, params=", ".join(list(format_params(params))) ) class NonCompletableGithubObject(GithubObject): def _completeIfNeeded(self): pass class CompletableGithubObject(GithubObject): def __init__(self, requester, headers, attributes, completed): GithubObject.__init__(self, requester, headers, attributes, completed) self.__completed = completed def __eq__(self, other): return other.__class__ is self.__class__ and other._url.value == self._url.value def __ne__(self, other): return not self == other def _completeIfNotSet(self, value): if value is NotSet: self._completeIfNeeded() def _completeIfNeeded(self): if not self.__completed: self.__complete() def __complete(self): headers, data = self._requester.requestJsonAndCheck( "GET", self._url.value ) self._storeAndUseAttributes(headers, data) self.__completed = True def update(self): ''' Check and update the object with conditional request :rtype: Boolean value indicating whether the object is changed ''' conditionalRequestHeader = dict() if self.etag is not None: conditionalRequestHeader[Consts.REQ_IF_NONE_MATCH] = self.etag if self.last_modified is not None: conditionalRequestHeader[Consts.REQ_IF_MODIFIED_SINCE] = self.last_modified status, responseHeaders, output = self._requester.requestJson( "GET", self._url.value, headers=conditionalRequestHeader ) if status == 304: return False else: headers, data = self._requester._Requester__check(status, responseHeaders, output) self._storeAndUseAttributes(headers, data) self.__completed = True return True
import itertools import falcon import hug import json from planszownik.spiders import DEFAULT_REDIS_EXCEPTIONS_KEY from rest import * from planszownik import SpiderMode api = hug.API(__name__) @hug.get('/') def base(request, response): """Home page listing endpoints :param response: :param request: """ handler = api.http.documentation_404() handler(request, response) response.status = falcon.HTTP_200 ret = json.loads(response.data.decode()) del ret['404'] return ret['documentation']['handlers'] @hug.get('/queues') def input_queues(): """ :return: Dictionary of modes with domains and corresponding queues for crawling and dupefiltering in a form: { mode: { domain: { crawl: 'crawl:queue', dupefilter: 'dupefilter:queue' requests: 'requests:queue' } } } """ body = iterate_spiders_with_call_to(map_domains_with_queues) return body @hug.get('/items') def items_queues(): """ :return: Dictionary of queues that produces crawled items """ queues_set = set(for_each_spider(spiders, items_queue)) body = {'queues': list(queues_set)} return body @hug.get('/modes') def crawl_modes(): """ :return: List of modes that spiders may run in """ body = list(SpiderMode.get_modes()) return body @hug.get('/domains') def domains_supported(): """ :return: List of supported domains """ body = for_each_spider(spiders, get_domains) body = set(itertools.chain.from_iterable(body)) return list(body) @hug.get('/exceptions') def exceptions(): """ :return: List of exceptions queues """ queue = settings.get('REDIS_EXCEPTIONS_KEY', DEFAULT_REDIS_EXCEPTIONS_KEY) return {'queues': [queue]} @hug.not_found() def not_found_handler(): return '' def iterate_spiders_with_call_to(function): def callz(mode): filtered_spiders = filter_spiders_by_mode(spiders, mode) domain_queue_list = for_each_spider(filtered_spiders, function) return dict(itertools.chain.from_iterable(domain_queue_list)) return for_each_spider_mode(callz)
from copy import copy import warnings from django.utils.deprecation import RemovedInDjango20Warning # Hard-coded processor for easier use of CSRF protection. _builtin_context_processors = ('django.template.context_processors.csrf',) _current_app_undefined = object() class ContextPopException(Exception): "pop() has been called more times than push()" pass class ContextDict(dict): def __init__(self, context, *args, **kwargs): super(ContextDict, self).__init__(*args, **kwargs) context.dicts.append(self) self.context = context def __enter__(self): return self def __exit__(self, *args, **kwargs): self.context.pop() class BaseContext(object): def __init__(self, dict_=None): self._reset_dicts(dict_) def _reset_dicts(self, value=None): builtins = {'True': True, 'False': False, 'None': None} self.dicts = [builtins] if value is not None: self.dicts.append(value) def __copy__(self): duplicate = copy(super(BaseContext, self)) duplicate.dicts = self.dicts[:] return duplicate def __repr__(self): return repr(self.dicts) def __iter__(self): for d in reversed(self.dicts): yield d def push(self, *args, **kwargs): return ContextDict(self, *args, **kwargs) def pop(self): if len(self.dicts) == 1: raise ContextPopException return self.dicts.pop() def __setitem__(self, key, value): "Set a variable in the current context" self.dicts[-1][key] = value def __getitem__(self, key): "Get a variable's value, starting at the current context and going upward" for d in reversed(self.dicts): if key in d: return d[key] raise KeyError(key) def __delitem__(self, key): "Delete a variable from the current context" del self.dicts[-1][key] def has_key(self, key): for d in self.dicts: if key in d: return True return False def __contains__(self, key): return self.has_key(key) def get(self, key, otherwise=None): for d in reversed(self.dicts): if key in d: return d[key] return otherwise def new(self, values=None): """ Returns a new context with the same properties, but with only the values given in 'values' stored. """ new_context = copy(self) new_context._reset_dicts(values) return new_context def flatten(self): """ Returns self.dicts as one dictionary """ flat = {} for d in self.dicts: flat.update(d) return flat def __eq__(self, other): """ Compares two contexts by comparing theirs 'dicts' attributes. """ if isinstance(other, BaseContext): # because dictionaries can be put in different order # we have to flatten them like in templates return self.flatten() == other.flatten() # if it's not comparable return false return False class Context(BaseContext): "A stack container for variable context" def __init__(self, dict_=None, autoescape=True, current_app=_current_app_undefined, use_l10n=None, use_tz=None, engine=None): if current_app is not _current_app_undefined: warnings.warn( "The current_app argument of Context is deprecated. Use " "RequestContext and set the current_app attribute of its " "request instead.", RemovedInDjango20Warning, stacklevel=2) self.autoescape = autoescape self._current_app = current_app self.use_l10n = use_l10n self.use_tz = use_tz self.engine = engine self.render_context = RenderContext() super(Context, self).__init__(dict_) @property def current_app(self): return None if self._current_app is _current_app_undefined else self._current_app def __copy__(self): duplicate = super(Context, self).__copy__() duplicate.render_context = copy(self.render_context) return duplicate def update(self, other_dict): "Pushes other_dict to the stack of dictionaries in the Context" if not hasattr(other_dict, '__getitem__'): raise TypeError('other_dict must be a mapping (dictionary-like) object.') self.dicts.append(other_dict) return other_dict class RenderContext(BaseContext): """ A stack container for storing Template state. RenderContext simplifies the implementation of template Nodes by providing a safe place to store state between invocations of a node's `render` method. The RenderContext also provides scoping rules that are more sensible for 'template local' variables. The render context stack is pushed before each template is rendered, creating a fresh scope with nothing in it. Name resolution fails if a variable is not found at the top of the RequestContext stack. Thus, variables are local to a specific template and don't affect the rendering of other templates as they would if they were stored in the normal template context. """ def __iter__(self): for d in self.dicts[-1]: yield d def has_key(self, key): return key in self.dicts[-1] def get(self, key, otherwise=None): return self.dicts[-1].get(key, otherwise) def __getitem__(self, key): return self.dicts[-1][key] class RequestContext(Context): """ This subclass of template.Context automatically populates itself using the processors defined in the engine's configuration. Additional processors can be specified as a list of callables using the "processors" keyword argument. """ def __init__(self, request, dict_=None, processors=None, current_app=_current_app_undefined, use_l10n=None, use_tz=None, engine=None): # current_app isn't passed here to avoid triggering the deprecation # warning in Context.__init__. super(RequestContext, self).__init__( dict_, use_l10n=use_l10n, use_tz=use_tz, engine=engine) if current_app is not _current_app_undefined: warnings.warn( "The current_app argument of RequestContext is deprecated. " "Set the current_app attribute of its request instead.", RemovedInDjango20Warning, stacklevel=2) self._current_app = current_app self.request = request self._processors = () if processors is None else tuple(processors) self._processors_index = len(self.dicts) self.update({}) # placeholder for context processors output self.engine = engine # re-run the setter in case engine is not None @property def engine(self): return self._engine @engine.setter def engine(self, engine): self._engine = engine if hasattr(self, '_processors_index'): if engine is None: # Unset context processors. self.dicts[self._processors_index] = {} else: # Set context processors for this engine. updates = {} for processor in engine.template_context_processors + self._processors: updates.update(processor(self.request)) self.dicts[self._processors_index] = updates def new(self, values=None): new_context = super(RequestContext, self).new(values) # This is for backwards-compatibility: RequestContexts created via # Context.new don't include values from context processors. del new_context._processors_index return new_context
#! /usr/bin/env python import sys import math import pango import cairo import pangocairo RADIUS = 150 def draw_text(cr): N_WORDS = 10 FONT = "Sans Bold 27" # Center coordinates on the middle of the region we are drawing cr.translate(RADIUS, RADIUS); # Create a PangoLayout, set the font and text */ layout = cr.create_layout() layout.set_text("Text") layout.set_font_description(pango.FontDescription(FONT)) # Draw the layout N_WORDS times in a circle for i in range(N_WORDS): angle = (360 * i) / N_WORDS; cr.save() # Gradient from red at angle == 60 to blue at angle == 300 red = (1 + math.cos((angle - 60)*math.pi/180))/2 cr.set_source_rgb(red, 0, 1 - red) cr.rotate(angle*math.pi/180) # Inform Pango to re-layout the text with the new transformation */ cr.update_layout(layout) width, height = layout.get_size() cr.move_to(-width/pango.SCALE/2, -RADIUS) cr.show_layout(layout) cr.restore() def main(argv): if len(argv) != 2: print >> sys.stderr, "Usage: cairosimple OUTPUT_BASENAME\n" return 1 filename = argv[1] surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, 2*RADIUS, 2*RADIUS) cr = pangocairo.CairoContext(cairo.Context(surface)) cr.set_source_rgb(1.0, 1.0, 1.0) cr.rectangle(0, 0, 2*RADIUS, 2*RADIUS) cr.fill() draw_text(cr) surface.write_to_png(filename + ".png") ## output also a PDF file surface = cairo.PDFSurface(filename + ".pdf", 2*RADIUS, 2*RADIUS) cr = pangocairo.CairoContext(cairo.Context(surface)) draw_text(cr) cr.show_page() surface.finish() if __name__ == '__main__': sys.exit(main(sys.argv))
''' Created on 2012.08.02. @author: pcsaba ''' from django.core.management.base import BaseCommand, CommandError import argparse import traceback import sys from django.utils.encoding import smart_str from xadrpy.management.libs import is_application_installed from xadrpy import conf class MyHelpFormatter(argparse.HelpFormatter): def __init__(self, prog, indent_increment=2, max_help_position=40, width=120): super(MyHelpFormatter, self).__init__(prog, indent_increment=2, max_help_position=40, width=120) def test_func(**kwargs): print kwargs class Command(BaseCommand): description = "xadrpy console tools" prog = "manage.py xcmd" need_subcommands = True subcommands_title = "Subcommands" subcommands_description = None subcommands_metavar = "subcommand" shift = 2 language_code = "en-us" def __init__(self): BaseCommand.__init__(self) self.parser = argparse.ArgumentParser(description='xadrpy\n console tools', prog="manage.py xcmd", #usage="manage.py xcmd [options] subcommand", formatter_class=MyHelpFormatter) self.init_default_arguments() self.subcommands = None if self.need_subcommands: self.subcommands = self.parser.add_subparsers(title=self.subcommands_title, description=self.subcommands_description, metavar=self.subcommands_metavar) self.init_subcommands() def init_default_arguments(self): self.parser.add_argument("-v","--verbosity", action="store", metavar="VERBOSITY", choices=[0,1,2,3], type=int, help="Verbosity level; 0=minimal output, 1=normal output, 2=verbose output, 3=very verbose output") self.parser.add_argument("--settings", help='The Python path to a settings module, e.g. "myproject.settings.main". If this isn\'t provided, the DJANGO_SETTINGS_MODULE environment variable will be used.') self.parser.add_argument("--pythonpath", help='A directory to add to the Python path, e.g. "/home/djangoprojects/myproject".') self.parser.add_argument("--traceback", action="store_true", help='Print traceback on exception') def init_subcommands(self): #self.add_subcommand(test_func, "themes.collect", help="collect themes", description="collecting themes") from xadrpy.management.libs import GeneralCommands general = GeneralCommands(self) general.register() if is_application_installed("xadrpy.core.preferences"): from xadrpy.core.preferences.libs import PrefsCommands commands = PrefsCommands(self) commands.register() general.add_commands(commands, "preferences") if is_application_installed("xadrpy.core.router"): from xadrpy.core.router.libs import RouterCommands commands = RouterCommands(self) commands.register() general.add_commands(commands, "router") if is_application_installed("xadrpy.contrib.plugins"): from xadrpy.contrib.plugins.libs import PluginsCommands commands = PluginsCommands(self) commands.register() general.add_commands(commands, "plugins") if is_application_installed("xadrpy.contrib.themes"): from xadrpy.contrib.themes.libs import ThemesCommands commands = ThemesCommands(self) commands.register() general.add_commands(commands, "themes") if is_application_installed("xadrpy.contrib.entries"): from xadrpy.contrib.entries import EntriesCommands commands = EntriesCommands(self) commands.register() general.add_commands(commands, "entries") def print_header(self): self.stdout.write("xadrpy %s - django toolkit\n" % conf.VERSION) self.stdout.write("Author Csaba Palankai <[email protected]>\n") def add_subcommand(self, subcommand, name, help=None, description=None, epilog=None, prog=None, usage=None): parser = self.subcommands.add_parser(name, help=help, description=description, epilog=epilog, prog=prog, usage=usage) parser.set_defaults(subcommand=subcommand) return parser def run_from_argv(self, argv): namespace = self.parser.parse_args(argv[self.shift:]) kwargs = namespace.__dict__.copy() kwargs.pop(self.subcommands_metavar) kwargs.pop("settings") kwargs.pop("pythonpath") kwargs.pop("traceback") if 'verbosity' in kwargs and kwargs['verbosity']==None: kwargs.pop("verbosity") show_traceback = kwargs.get('traceback', False) saved_lang = None if self.can_import_settings: try: from django.utils import translation saved_lang = translation.get_language() translation.activate(self.language_code) except ImportError, e: # If settings should be available, but aren't, # raise the error and quit. if show_traceback: traceback.print_exc() else: sys.stderr.write(smart_str(self.style.ERROR('Error: %s\n' % e))) sys.exit(1) try: self.stdout = kwargs.get('stdout', sys.stdout) self.stderr = kwargs.get('stderr', sys.stderr) if self.requires_model_validation: self.validate() output = namespace.subcommand(**kwargs) if output: if self.output_transaction: # This needs to be imported here, because it relies on # settings. from django.db import connections, DEFAULT_DB_ALIAS connection = connections[kwargs.get('database', DEFAULT_DB_ALIAS)] if connection.ops.start_transaction_sql(): self.stdout.write(self.style.SQL_KEYWORD(connection.ops.start_transaction_sql()) + '\n') self.stdout.write(output) if self.output_transaction: self.stdout.write('\n' + self.style.SQL_KEYWORD("COMMIT;") + '\n') except CommandError, e: if show_traceback: traceback.print_exc() else: self.stderr.write(smart_str(self.style.ERROR('Error: %s\n' % e))) sys.exit(1) if saved_lang is not None: translation.activate(saved_lang)
# -*- coding: utf-8 -*- # Copyright 2007-2020 The HyperSpy developers # # This file is part of HyperSpy. # # HyperSpy is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # HyperSpy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with HyperSpy. If not, see <http://www.gnu.org/licenses/>. import copy import itertools from distutils.version import LooseVersion import textwrap import traits.api as t import matplotlib.pyplot as plt import matplotlib as mpl from mpl_toolkits.axes_grid1 import make_axes_locatable from matplotlib.backend_bases import key_press_handler import warnings import numpy as np import logging from functools import partial import hyperspy as hs from hyperspy.defaults_parser import preferences _logger = logging.getLogger(__name__) def contrast_stretching(data, vmin=None, vmax=None): """Estimate bounds of the data to display. Parameters ---------- data: numpy array vmin, vmax: scalar, str, None If str, formatted as 'xth', use this value to calculate the percentage of pixels that are left out of the lower and upper bounds. For example, for a vmin of '1th', 1% of the lowest will be ignored to estimate the minimum value. Similarly, for a vmax value of '1th', 1% of the highest value will be ignored in the estimation of the maximum value. See :py:func:`numpy.percentile` for more explanation. If None, use the percentiles value set in the preferences. If float of integer, keep this value as bounds. Returns ------- vmin, vmax: scalar The low and high bounds. Raises ------ ValueError if the value of `vmin` `vmax` is out of the valid range for percentile calculation (in case of string values). """ def _parse_value(value, value_name): if value is None: if value_name == "vmin": value = f'{preferences.Plot.saturated_pixels / 2}th' elif value_name == "vmax": value = f'{100 - preferences.Plot.saturated_pixels / 2}th' if isinstance(value, str): value = float(value.split("th")[0]) if not 0 <= value <= 100: raise ValueError(f"{value_name} must be in the range[0, 100].") return value if np.ma.is_masked(data): # If there is a mask, compressed the data to remove the masked data data = np.ma.masked_less_equal(data, 0).compressed() # If vmin, vmax are float or int, we keep the value, if not we calculate # the precentile value if not isinstance(vmin, (float, int)): vmin = np.nanpercentile(data, _parse_value(vmin, 'vmin')) if not isinstance(vmax, (float, int)): vmax = np.nanpercentile(data, _parse_value(vmax, 'vmax')) return vmin, vmax MPL_DIVERGING_COLORMAPS = [ "BrBG", "bwr", "coolwarm", "PiYG", "PRGn", "PuOr", "RdBu", "RdGy", "RdYIBu", "RdYIGn", "seismic", "Spectral", ] # Add reversed colormaps MPL_DIVERGING_COLORMAPS += [cmap + "_r" for cmap in MPL_DIVERGING_COLORMAPS] def centre_colormap_values(vmin, vmax): """Calculate vmin and vmax to set the colormap midpoint to zero. Parameters ---------- vmin, vmax : scalar The range of data to display. Returns ------- cvmin, cvmax : scalar The values to obtain a centre colormap. """ absmax = max(abs(vmin), abs(vmax)) return -absmax, absmax def create_figure(window_title=None, _on_figure_window_close=None, disable_xyscale_keys=False, **kwargs): """Create a matplotlib figure. This function adds the possibility to execute another function when the figure is closed and to easily set the window title. Any keyword argument is passed to the plt.figure function. Parameters ---------- window_title : {None, string}, optional _on_figure_window_close : {None, function}, optional disable_xyscale_keys : bool, optional Disable the `k`, `l` and `L` shortcuts which toggle the x or y axis between linear and log scale. Default False. Returns ------- fig : plt.figure """ fig = plt.figure(**kwargs) if window_title is not None: # remove non-alphanumeric characters to prevent file saving problems # This is a workaround for: # https://github.com/matplotlib/matplotlib/issues/9056 reserved_characters = r'<>"/\|?*' for c in reserved_characters: window_title = window_title.replace(c, '') window_title = window_title.replace('\n', ' ') window_title = window_title.replace(':', ' -') fig.canvas.set_window_title(window_title) if disable_xyscale_keys and hasattr(fig.canvas, 'toolbar'): # hack the `key_press_handler` to disable the `k`, `l`, `L` shortcuts manager = fig.canvas.manager fig.canvas.mpl_disconnect(manager.key_press_handler_id) manager.key_press_handler_id = manager.canvas.mpl_connect( 'key_press_event', lambda event: key_press_handler_custom(event, manager.canvas)) if _on_figure_window_close is not None: on_figure_window_close(fig, _on_figure_window_close) return fig def key_press_handler_custom(event, canvas): if event.key not in ['k', 'l', 'L']: key_press_handler(event, canvas, canvas.manager.toolbar) def on_figure_window_close(figure, function): """Connects a close figure signal to a given function. Parameters ---------- figure : mpl figure instance function : function """ def function_wrapper(evt): function() figure.canvas.mpl_connect('close_event', function_wrapper) def plot_RGB_map(im_list, normalization='single', dont_plot=False): """Plot 2 or 3 maps in RGB. Parameters ---------- im_list : list of Signal2D instances normalization : {'single', 'global'}, optional dont_plot : bool, optional Default False. Returns ------- array: RGB matrix """ # from widgets import cursors height, width = im_list[0].data.shape[:2] rgb = np.zeros((height, width, 3)) rgb[:, :, 0] = im_list[0].data.squeeze() rgb[:, :, 1] = im_list[1].data.squeeze() if len(im_list) == 3: rgb[:, :, 2] = im_list[2].data.squeeze() if normalization == 'single': for i in range(len(im_list)): rgb[:, :, i] /= rgb[:, :, i].max() elif normalization == 'global': rgb /= rgb.max() rgb = rgb.clip(0, rgb.max()) if not dont_plot: figure = plt.figure() ax = figure.add_subplot(111) ax.frameon = False ax.set_axis_off() ax.imshow(rgb, interpolation='nearest') # cursors.set_mpl_ax(ax) figure.canvas.draw_idle() else: return rgb def subplot_parameters(fig): """Returns a list of the subplot parameters of a mpl figure. Parameters ---------- fig : mpl figure Returns ------- tuple : (left, bottom, right, top, wspace, hspace) """ wspace = fig.subplotpars.wspace hspace = fig.subplotpars.hspace left = fig.subplotpars.left right = fig.subplotpars.right top = fig.subplotpars.top bottom = fig.subplotpars.bottom return left, bottom, right, top, wspace, hspace class ColorCycle: _color_cycle = [mpl.colors.colorConverter.to_rgba(color) for color in ('b', 'g', 'r', 'c', 'm', 'y', 'k')] def __init__(self): self.color_cycle = copy.copy(self._color_cycle) def __call__(self): if not self.color_cycle: self.color_cycle = copy.copy(self._color_cycle) return self.color_cycle.pop(0) def plot_signals(signal_list, sync=True, navigator="auto", navigator_list=None, **kwargs): """Plot several signals at the same time. Parameters ---------- signal_list : list of BaseSignal instances If sync is set to True, the signals must have the same navigation shape, but not necessarily the same signal shape. sync : {True, False}, default "True", optional If True: the signals will share navigation, all the signals must have the same navigation shape for this to work, but not necessarily the same signal shape. navigator : {"auto", None, "spectrum", "slider", BaseSignal}, optional, default "auto" See signal.plot docstring for full description. navigator_list : {None, list of navigator arguments}, optional, default None Set different navigator options for the signals. Must use valid navigator arguments: "auto", None, "spectrum", "slider", or a HyperSpy Signal. The list must have the same size as signal_list. If None, the argument specified in navigator will be used. **kwargs Any extra keyword arguments are passed to each signal `plot` method. Example ------- >>> s_cl = hs.load("coreloss.dm3") >>> s_ll = hs.load("lowloss.dm3") >>> hs.plot.plot_signals([s_cl, s_ll]) Specifying the navigator: >>> s_cl = hs.load("coreloss.dm3") >>> s_ll = hs.load("lowloss.dm3") >>> hs.plot.plot_signals([s_cl, s_ll], navigator="slider") Specifying the navigator for each signal: >>> s_cl = hs.load("coreloss.dm3") >>> s_ll = hs.load("lowloss.dm3") >>> s_edx = hs.load("edx.dm3") >>> s_adf = hs.load("adf.dm3") >>> hs.plot.plot_signals( [s_cl, s_ll, s_edx], navigator_list=["slider",None,s_adf]) """ import hyperspy.signal if navigator_list: if not (len(signal_list) == len(navigator_list)): raise ValueError( "signal_list and navigator_list must" " have the same size") if sync: axes_manager_list = [] for signal in signal_list: axes_manager_list.append(signal.axes_manager) if not navigator_list: navigator_list = [] if navigator is None: navigator_list.extend([None] * len(signal_list)) elif isinstance(navigator, hyperspy.signal.BaseSignal): navigator_list.append(navigator) navigator_list.extend([None] * (len(signal_list) - 1)) elif navigator == "slider": navigator_list.append("slider") navigator_list.extend([None] * (len(signal_list) - 1)) elif navigator == "spectrum": navigator_list.extend(["spectrum"] * len(signal_list)) elif navigator == "auto": navigator_list.extend(["auto"] * len(signal_list)) else: raise ValueError( "navigator must be one of \"spectrum\",\"auto\"," " \"slider\", None, a Signal instance") # Check to see if the spectra have the same navigational shapes temp_shape_first = axes_manager_list[0].navigation_shape for i, axes_manager in enumerate(axes_manager_list): temp_shape = axes_manager.navigation_shape if not (temp_shape_first == temp_shape): raise ValueError( "The spectra do not have the same navigation shape") axes_manager_list[i] = axes_manager.deepcopy() if i > 0: for axis0, axisn in zip(axes_manager_list[0].navigation_axes, axes_manager_list[i].navigation_axes): axes_manager_list[i]._axes[axisn.index_in_array] = axis0 del axes_manager for signal, navigator, axes_manager in zip(signal_list, navigator_list, axes_manager_list): signal.plot(axes_manager=axes_manager, navigator=navigator, **kwargs) # If sync is False else: if not navigator_list: navigator_list = [] navigator_list.extend([navigator] * len(signal_list)) for signal, navigator in zip(signal_list, navigator_list): signal.plot(navigator=navigator, **kwargs) def _make_heatmap_subplot(spectra, **plot_kwargs): from hyperspy._signals.signal2d import Signal2D im = Signal2D(spectra.data, axes=spectra.axes_manager._get_axes_dicts()) im.metadata.General.title = spectra.metadata.General.title im.plot(**plot_kwargs) return im._plot.signal_plot.ax def set_xaxis_lims(mpl_ax, hs_axis): """ Set the matplotlib axis limits to match that of a HyperSpy axis. Parameters ---------- mpl_ax : :class:`matplotlib.axis.Axis` The ``matplotlib`` axis to change. hs_axis : :class:`~hyperspy.axes.DataAxis` The data axis that contains the values which control the scaling. """ x_axis_lower_lim = hs_axis.axis[0] x_axis_upper_lim = hs_axis.axis[-1] mpl_ax.set_xlim(x_axis_lower_lim, x_axis_upper_lim) def _make_overlap_plot(spectra, ax, color="blue", line_style='-'): if isinstance(color, str): color = [color] * len(spectra) if isinstance(line_style, str): line_style = [line_style] * len(spectra) for spectrum_index, (spectrum, color, line_style) in enumerate( zip(spectra, color, line_style)): x_axis = spectrum.axes_manager.signal_axes[0] spectrum = _transpose_if_required(spectrum, 1) ax.plot(x_axis.axis, spectrum.data, color=color, ls=line_style) set_xaxis_lims(ax, x_axis) _set_spectrum_xlabel(spectra if isinstance(spectra, hs.signals.BaseSignal) else spectra[-1], ax) ax.set_ylabel('Intensity') ax.autoscale(tight=True) def _make_cascade_subplot( spectra, ax, color="blue", line_style='-', padding=1): max_value = 0 for spectrum in spectra: spectrum_yrange = (np.nanmax(spectrum.data) - np.nanmin(spectrum.data)) if spectrum_yrange > max_value: max_value = spectrum_yrange if isinstance(color, str): color = [color] * len(spectra) if isinstance(line_style, str): line_style = [line_style] * len(spectra) for spectrum_index, (spectrum, color, line_style) in enumerate( zip(spectra, color, line_style)): x_axis = spectrum.axes_manager.signal_axes[0] spectrum = _transpose_if_required(spectrum, 1) data_to_plot = ((spectrum.data - spectrum.data.min()) / float(max_value) + spectrum_index * padding) ax.plot(x_axis.axis, data_to_plot, color=color, ls=line_style) set_xaxis_lims(ax, x_axis) _set_spectrum_xlabel(spectra if isinstance(spectra, hs.signals.BaseSignal) else spectra[-1], ax) ax.set_yticks([]) ax.autoscale(tight=True) def _plot_spectrum(spectrum, ax, color="blue", line_style='-'): x_axis = spectrum.axes_manager.signal_axes[0] ax.plot(x_axis.axis, spectrum.data, color=color, ls=line_style) set_xaxis_lims(ax, x_axis) def _set_spectrum_xlabel(spectrum, ax): x_axis = spectrum.axes_manager.signal_axes[0] ax.set_xlabel("%s (%s)" % (x_axis.name, x_axis.units)) def _transpose_if_required(signal, expected_dimension): # EDS profiles or maps have signal dimension = 0 and navigation dimension # 1 or 2. For convenience, transpose the signal if possible if (signal.axes_manager.signal_dimension == 0 and signal.axes_manager.navigation_dimension == expected_dimension): return signal.T else: return signal def plot_images(images, cmap=None, no_nans=False, per_row=3, label='auto', labelwrap=30, suptitle=None, suptitle_fontsize=18, colorbar='multi', centre_colormap="auto", scalebar=None, scalebar_color='white', axes_decor='all', padding=None, tight_layout=False, aspect='auto', min_asp=0.1, namefrac_thresh=0.4, fig=None, vmin=None, vmax=None, **kwargs): """Plot multiple images as sub-images in one figure. Parameters ---------- images : list of Signal2D or BaseSignal `images` should be a list of Signals to plot. For `BaseSignal` with navigation dimensions 2 and signal dimension 0, the signal will be tranposed to form a `Signal2D`. Multi-dimensional images will have each plane plotted as a separate image. If any of the signal shapes is not suitable, a ValueError will be raised. cmap : {matplotlib colormap, list, ``'mpl_colors'``}, optional The colormap used for the images, by default uses the setting ``color map signal`` from the plot preferences. A list of colormaps can also be provided, and the images will cycle through them. Optionally, the value ``'mpl_colors'`` will cause the cmap to loop through the default ``matplotlib`` colors (to match with the default output of the :py:func:`~.drawing.utils.plot_spectra` method). Note: if using more than one colormap, using the ``'single'`` option for ``colorbar`` is disallowed. no_nans : bool, optional If True, set nans to zero for plotting. per_row : int, optional The number of plots in each row. label : {None, str, list of str}, optional Control the title labeling of the plotted images. If None, no titles will be shown. If 'auto' (default), function will try to determine suitable titles using Signal2D titles, falling back to the 'titles' option if no good short titles are detected. Works best if all images to be plotted have the same beginning to their titles. If 'titles', the title from each image's `metadata.General.title` will be used. If any other single str, images will be labeled in sequence using that str as a prefix. If a list of str, the list elements will be used to determine the labels (repeated, if necessary). labelwrap : int, optional Integer specifying the number of characters that will be used on one line. If the function returns an unexpected blank figure, lower this value to reduce overlap of the labels between figures. suptitle : str, optional Title to use at the top of the figure. If called with label='auto', this parameter will override the automatically determined title. suptitle_fontsize : int, optional Font size to use for super title at top of figure. colorbar : {'multi', None, 'single'} Controls the type of colorbars that are plotted. If None, no colorbar is plotted. If 'multi' (default), individual colorbars are plotted for each (non-RGB) image If 'single', all (non-RGB) images are plotted on the same scale, and one colorbar is shown for all centre_colormap : {"auto", True, False} If True, the centre of the color scheme is set to zero. This is particularly useful when using diverging color schemes. If "auto" (default), diverging color schemes are automatically centred. scalebar : {None, 'all', list of ints}, optional If None (or False), no scalebars will be added to the images. If 'all', scalebars will be added to all images. If list of ints, scalebars will be added to each image specified. scalebar_color : str, optional A valid MPL color string; will be used as the scalebar color. axes_decor : {'all', 'ticks', 'off', None}, optional Controls how the axes are displayed on each image; default is 'all'. If 'all', both ticks and axis labels will be shown. If 'ticks', no axis labels will be shown, but ticks/labels will. If 'off', all decorations and frame will be disabled. If None, no axis decorations will be shown, but ticks/frame will. padding : {None, dict}, optional This parameter controls the spacing between images. If None, default options will be used. Otherwise, supply a dictionary with the spacing options as keywords and desired values as values. Values should be supplied as used in :py:func:`matplotlib.pyplot.subplots_adjust`, and can be 'left', 'bottom', 'right', 'top', 'wspace' (width) and 'hspace' (height). tight_layout : bool, optional If true, hyperspy will attempt to improve image placement in figure using matplotlib's tight_layout. If false, repositioning images inside the figure will be left as an exercise for the user. aspect : {str, numeric}, optional If 'auto', aspect ratio is auto determined, subject to min_asp. If 'square', image will be forced onto square display. If 'equal', aspect ratio of 1 will be enforced. If float (or int/long), given value will be used. min_asp : float, optional Minimum aspect ratio to be used when plotting images. namefrac_thresh : float, optional Threshold to use for auto-labeling. This parameter controls how much of the titles must be the same for the auto-shortening of labels to activate. Can vary from 0 to 1. Smaller values encourage shortening of titles by auto-labeling, while larger values will require more overlap in titles before activing the auto-label code. fig : mpl figure, optional If set, the images will be plotted to an existing MPL figure vmin, vmax: scalar, str, None If str, formatted as 'xth', use this value to calculate the percentage of pixels that are left out of the lower and upper bounds. For example, for a vmin of '1th', 1% of the lowest will be ignored to estimate the minimum value. Similarly, for a vmax value of '1th', 1% of the highest value will be ignored in the estimation of the maximum value. It must be in the range [0, 100] See :py:func:`numpy.percentile` for more explanation. If None, use the percentiles value set in the preferences. If float of integer, keep this value as bounds. **kwargs, optional Additional keyword arguments passed to matplotlib.imshow() Returns ------- axes_list : list A list of subplot axes that hold the images. See Also -------- plot_spectra : Plotting of multiple spectra plot_signals : Plotting of multiple signals plot_histograms : Compare signal histograms Notes ----- `interpolation` is a useful parameter to provide as a keyword argument to control how the space between pixels is interpolated. A value of ``'nearest'`` will cause no interpolation between pixels. `tight_layout` is known to be quite brittle, so an option is provided to disable it. Turn this option off if output is not as expected, or try adjusting `label`, `labelwrap`, or `per_row`. """ def __check_single_colorbar(cbar): if cbar == 'single': raise ValueError('Cannot use a single colorbar with multiple ' 'colormaps. Please check for compatible ' 'arguments.') from hyperspy.drawing.widgets import ScaleBar from hyperspy.misc import rgb_tools from hyperspy.signal import BaseSignal # Check that we have a hyperspy signal im = [images] if not isinstance(images, (list, tuple)) else images for image in im: if not isinstance(image, BaseSignal): raise ValueError("`images` must be a list of image signals or a " "multi-dimensional signal." " " + repr(type(images)) + " was given.") # For list of EDS maps, transpose the BaseSignal if isinstance(images, (list, tuple)): images = [_transpose_if_required(image, 2) for image in images] # If input is >= 1D signal (e.g. for multi-dimensional plotting), # copy it and put it in a list so labeling works out as (x,y) when plotting if isinstance(images, BaseSignal) and images.axes_manager.navigation_dimension > 0: images = [images._deepcopy_with_new_data(images.data)] n = 0 for i, sig in enumerate(images): if sig.axes_manager.signal_dimension != 2: raise ValueError("This method only plots signals that are images. " "The signal dimension must be equal to 2. " "The signal at position " + repr(i) + " was " + repr(sig) + ".") # increment n by the navigation size, or by 1 if the navigation size is # <= 0 n += (sig.axes_manager.navigation_size if sig.axes_manager.navigation_size > 0 else 1) # If no cmap given, get default colormap from pyplot: if cmap is None: cmap = [preferences.Plot.cmap_signal] elif cmap == 'mpl_colors': for n_color, c in enumerate(mpl.rcParams['axes.prop_cycle']): make_cmap(colors=['#000000', c['color']], name='mpl{}'.format(n_color)) cmap = ['mpl{}'.format(i) for i in range(len(mpl.rcParams['axes.prop_cycle']))] __check_single_colorbar(colorbar) # cmap is list, tuple, or something else iterable (but not string): elif hasattr(cmap, '__iter__') and not isinstance(cmap, str): try: cmap = [c.name for c in cmap] # convert colormap to string except AttributeError: cmap = [c for c in cmap] # c should be string if not colormap __check_single_colorbar(colorbar) elif isinstance(cmap, mpl.colors.Colormap): cmap = [cmap.name] # convert single colormap to list with string elif isinstance(cmap, str): cmap = [cmap] # cmap is single string, so make it a list else: # Didn't understand cmap input, so raise error raise ValueError('The provided cmap value was not understood. Please ' 'check input values.') # If any of the cmaps given are diverging, and auto-centering, set the # appropriate flag: if centre_colormap == "auto": centre_colormaps = [] for c in cmap: if c in MPL_DIVERGING_COLORMAPS: centre_colormaps.append(True) else: centre_colormaps.append(False) # if it was True, just convert to list elif centre_colormap: centre_colormaps = [True] # likewise for false elif not centre_colormap: centre_colormaps = [False] # finally, convert lists to cycle generators for adaptive length: centre_colormaps = itertools.cycle(centre_colormaps) cmap = itertools.cycle(cmap) # Sort out the labeling: div_num = 0 all_match = False shared_titles = False user_labels = False if label is None: pass elif label == 'auto': # Use some heuristics to try to get base string of similar titles label_list = [x.metadata.General.title for x in images] # Find the shortest common string between the image titles # and pull that out as the base title for the sequence of images # array in which to store arrays res = np.zeros((len(label_list), len(label_list[0]) + 1)) res[:, 0] = 1 # j iterates the strings for j in range(len(label_list)): # i iterates length of substring test for i in range(1, len(label_list[0]) + 1): # stores whether or not characters in title match res[j, i] = label_list[0][:i] in label_list[j] # sum up the results (1 is True, 0 is False) and create # a substring based on the minimum value (this will be # the "smallest common string" between all the titles if res.all(): basename = label_list[0] div_num = len(label_list[0]) all_match = True else: div_num = int(min(np.sum(res, 1))) basename = label_list[0][:div_num - 1] all_match = False # trim off any '(' or ' ' characters at end of basename if div_num > 1: while True: if basename[len(basename) - 1] == '(': basename = basename[:-1] elif basename[len(basename) - 1] == ' ': basename = basename[:-1] else: break # namefrac is ratio of length of basename to the image name # if it is high (e.g. over 0.5), we can assume that all images # share the same base if len(label_list[0]) > 0: namefrac = float(len(basename)) / len(label_list[0]) else: # If label_list[0] is empty, it means there was probably no # title set originally, so nothing to share namefrac = 0 if namefrac > namefrac_thresh: # there was a significant overlap of label beginnings shared_titles = True # only use new suptitle if one isn't specified already if suptitle is None: suptitle = basename else: # there was not much overlap, so default back to 'titles' mode shared_titles = False label = 'titles' div_num = 0 elif label == 'titles': # Set label_list to each image's pre-defined title label_list = [x.metadata.General.title for x in images] elif isinstance(label, str): # Set label_list to an indexed list, based off of label label_list = [label + " " + repr(num) for num in range(n)] elif isinstance(label, list) and all( isinstance(x, str) for x in label): label_list = label user_labels = True # If list of labels is longer than the number of images, just use the # first n elements if len(label_list) > n: del label_list[n:] if len(label_list) < n: label_list *= (n // len(label_list)) + 1 del label_list[n:] else: raise ValueError("Did not understand input of labels.") # Determine appropriate number of images per row rows = int(np.ceil(n / float(per_row))) if n < per_row: per_row = n # Set overall figure size and define figure (if not pre-existing) if fig is None: k = max(plt.rcParams['figure.figsize']) / max(per_row, rows) f = plt.figure(figsize=(tuple(k * i for i in (per_row, rows)))) else: f = fig # Initialize list to hold subplot axes axes_list = [] # Initialize list of rgb tags isrgb = [False] * len(images) # Check to see if there are any rgb images in list # and tag them using the isrgb list for i, img in enumerate(images): if rgb_tools.is_rgbx(img.data): isrgb[i] = True # Determine how many non-rgb images there are non_rgb = list(itertools.compress(images, [not j for j in isrgb])) if len(non_rgb) == 0 and colorbar is not None: colorbar = None warnings.warn("Sorry, colorbar is not implemented for RGB images.") # Check if we need to add a scalebar for some of the images if isinstance(scalebar, list) and all(isinstance(x, int) for x in scalebar): scalelist = True else: scalelist = False def check_list_length(arg, arg_name): if isinstance(arg, (list, tuple)): if len(arg) != n: _logger.warning(f'The provided {arg_name} values are ignored ' 'because the length of the list does not ' 'match the number of images') arg = [None] * n return arg # Find global min and max values of all the non-rgb images for use with # 'single' scalebar, otherwise define this value later. if colorbar == 'single': # check that vmin and vmax are not list if any([isinstance(v, (tuple, list)) for v in [vmin, vmax]]): _logger.warning('The provided vmin or vmax value are ignored ' 'because it needs to be a scalar or a str ' 'to be compatible with a single colorbar. ' 'The default values are used instead.') vmin, vmax = None, None vmin_max = np.array( [contrast_stretching(i.data, vmin, vmax) for i in non_rgb]) _vmin, _vmax = vmin_max[:, 0].min(), vmin_max[:, 1].max() if next(centre_colormaps): _vmin, _vmax = centre_colormap_values(_vmin, _vmax) else: vmin = check_list_length(vmin, "vmin") vmax = check_list_length(vmax, "vmax") idx = 0 ax_im_list = [0] * len(isrgb) # Replot: create a list to store references to the images replot_ims = [] # Loop through each image, adding subplot for each one for i, ims in enumerate(images): # Get handles for the signal axes and axes_manager axes_manager = ims.axes_manager if axes_manager.navigation_dimension > 0: ims = ims._deepcopy_with_new_data(ims.data) for j, im in enumerate(ims): ax = f.add_subplot(rows, per_row, idx + 1) axes_list.append(ax) data = im.data centre = next(centre_colormaps) # get next value for centreing # Enable RGB plotting if rgb_tools.is_rgbx(data): data = rgb_tools.rgbx2regular_array(data, plot_friendly=True) _vmin, _vmax = None, None elif colorbar != 'single': _vmin = vmin[idx] if isinstance(vmin, (tuple, list)) else vmin _vmax = vmax[idx] if isinstance(vmax, (tuple, list)) else vmax _vmin, _vmax = contrast_stretching(data, _vmin, _vmax) if centre: _vmin, _vmax = centre_colormap_values(_vmin, _vmax) # Remove NaNs (if requested) if no_nans: data = np.nan_to_num(data) # Get handles for the signal axes and axes_manager axes_manager = im.axes_manager axes = axes_manager.signal_axes # Set dimensions of images xaxis = axes[0] yaxis = axes[1] extent = ( xaxis.low_value, xaxis.high_value, yaxis.high_value, yaxis.low_value, ) if not isinstance(aspect, (int, float)) and aspect not in [ 'auto', 'square', 'equal']: _logger.warning("Did not understand aspect ratio input. " "Using 'auto' as default.") aspect = 'auto' if aspect == 'auto': if float(yaxis.size) / xaxis.size < min_asp: factor = min_asp * float(xaxis.size) / yaxis.size elif float(yaxis.size) / xaxis.size > min_asp ** -1: factor = min_asp ** -1 * float(xaxis.size) / yaxis.size else: factor = 1 asp = np.abs(factor * float(xaxis.scale) / yaxis.scale) elif aspect == 'square': asp = abs(extent[1] - extent[0]) / abs(extent[3] - extent[2]) elif aspect == 'equal': asp = 1 elif isinstance(aspect, (int, float)): asp = aspect if 'interpolation' not in kwargs.keys(): kwargs['interpolation'] = 'nearest' # Plot image data, using _vmin and _vmax to set bounds, # or allowing them to be set automatically if using individual # colorbars kwargs.update({'cmap':next(cmap), 'extent':extent, 'aspect':asp}) axes_im = ax.imshow(data, vmin=_vmin, vmax=_vmax, **kwargs) ax_im_list[i] = axes_im # If an axis trait is undefined, shut off : if (xaxis.units == t.Undefined or yaxis.units == t.Undefined or xaxis.name == t.Undefined or yaxis.name == t.Undefined): if axes_decor == 'all': _logger.warning( 'Axes labels were requested, but one ' 'or both of the ' 'axes units and/or name are undefined. ' 'Axes decorations have been set to ' '\'ticks\' instead.') axes_decor = 'ticks' # If all traits are defined, set labels as appropriate: else: ax.set_xlabel(axes[0].name + " axis (" + axes[0].units + ")") ax.set_ylabel(axes[1].name + " axis (" + axes[1].units + ")") if label: if all_match: title = '' elif shared_titles: title = label_list[i][div_num - 1:] else: if len(ims) == n: # This is true if we are plotting just 1 # multi-dimensional Signal2D title = label_list[idx] elif user_labels: title = label_list[idx] else: title = label_list[i] if ims.axes_manager.navigation_size > 1 and not user_labels: title += " %s" % str(ims.axes_manager.indices) ax.set_title(textwrap.fill(title, labelwrap)) # Set axes decorations based on user input set_axes_decor(ax, axes_decor) # If using independent colorbars, add them if colorbar == 'multi' and not isrgb[i]: div = make_axes_locatable(ax) cax = div.append_axes("right", size="5%", pad=0.05) plt.colorbar(axes_im, cax=cax) # Add scalebars as necessary if (scalelist and idx in scalebar) or scalebar == 'all': ax.scalebar = ScaleBar( ax=ax, units=axes[0].units, color=scalebar_color, ) # Replot: store references to the images replot_ims.append(im) idx += 1 # If using a single colorbar, add it, and do tight_layout, ensuring that # a colorbar is only added based off of non-rgb Images: if colorbar == 'single': foundim = None for i in range(len(isrgb)): if (not isrgb[i]) and foundim is None: foundim = i if foundim is not None: f.subplots_adjust(right=0.8) cbar_ax = f.add_axes([0.9, 0.1, 0.03, 0.8]) f.colorbar(ax_im_list[foundim], cax=cbar_ax) if tight_layout: # tight_layout, leaving room for the colorbar plt.tight_layout(rect=[0, 0, 0.9, 1]) elif tight_layout: plt.tight_layout() elif tight_layout: plt.tight_layout() # Set top bounds for shared titles and add suptitle if suptitle: f.subplots_adjust(top=0.85) f.suptitle(suptitle, fontsize=suptitle_fontsize) # If we want to plot scalebars, loop through the list of axes and add them if scalebar is None or scalebar is False: # Do nothing if no scalebars are called for pass elif scalebar == 'all': # scalebars were taken care of in the plotting loop pass elif scalelist: # scalebars were taken care of in the plotting loop pass else: raise ValueError("Did not understand scalebar input. Must be None, " "'all', or list of ints.") # Adjust subplot spacing according to user's specification if padding is not None: plt.subplots_adjust(**padding) # Replot: connect function def on_dblclick(event): # On the event of a double click, replot the selected subplot if not event.inaxes: return if not event.dblclick: return subplots = [axi for axi in f.axes if isinstance(axi, mpl.axes.Subplot)] inx = list(subplots).index(event.inaxes) im = replot_ims[inx] # Use some of the info in the subplot cm = subplots[inx].images[0].get_cmap() clim = subplots[inx].images[0].get_clim() sbar = False if (scalelist and inx in scalebar) or scalebar == 'all': sbar = True im.plot(colorbar=bool(colorbar), vmin=clim[0], vmax=clim[1], no_nans=no_nans, aspect=asp, scalebar=sbar, scalebar_color=scalebar_color, cmap=cm) f.canvas.mpl_connect('button_press_event', on_dblclick) return axes_list def set_axes_decor(ax, axes_decor): if axes_decor == 'off': ax.axis('off') elif axes_decor == 'ticks': ax.set_xlabel('') ax.set_ylabel('') elif axes_decor == 'all': pass elif axes_decor is None: ax.set_xlabel('') ax.set_ylabel('') ax.set_xticklabels([]) ax.set_yticklabels([]) def make_cmap(colors, name='my_colormap', position=None, bit=False, register=True): """ Create a matplotlib colormap with customized colors, optionally registering it with matplotlib for simplified use. Adapted from Chris Slocum's code at: https://github.com/CSlocumWX/custom_colormap/blob/master/custom_colormaps.py and used under the terms of that code's BSD-3 license Parameters ---------- colors : iterable list of either tuples containing rgb values, or html strings Colors should be arranged so that the first color is the lowest value for the colorbar and the last is the highest. name : str name of colormap to use when registering with matplotlib position : {None, iterable}, optional list containing the values (from [0,1]) that dictate the position of each color within the colormap. If None (default), the colors will be equally-spaced within the colorbar. bit : bool, optional True if RGB colors are given in 8-bit [0 to 255] or False if given in arithmetic basis [0 to 1] (default). register : bool, optional Wwitch to control whether or not to register the custom colormap with matplotlib in order to enable use by just the name string. """ bit_rgb = np.linspace(0, 1, 256) if position is None: position = np.linspace(0, 1, len(colors)) else: if len(position) != len(colors): raise ValueError("Position length must be the same as colors") elif position[0] != 0 or position[-1] != 1: raise ValueError("Position must start with 0 and end with 1") cdict = {'red': [], 'green': [], 'blue': []} for pos, color in zip(position, colors): if isinstance(color, str): color = mpl.colors.to_rgb(color) elif bit: color = (bit_rgb[color[0]], bit_rgb[color[1]], bit_rgb[color[2]]) cdict['red'].append((pos, color[0], color[0])) cdict['green'].append((pos, color[1], color[1])) cdict['blue'].append((pos, color[2], color[2])) cmap = mpl.colors.LinearSegmentedColormap(name, cdict, 256) if register: mpl.cm.register_cmap(name, cmap) return cmap def plot_spectra( spectra, style='overlap', color=None, line_style=None, padding=1., legend=None, legend_picking=True, legend_loc='upper right', fig=None, ax=None, auto_update=None, **kwargs): """Plot several spectra in the same figure. Parameters ---------- spectra : list of Signal1D or BaseSignal Ordered spectra list of signal to plot. If `style` is "cascade" or "mosaic", the spectra can have different size and axes. For `BaseSignal` with navigation dimensions 1 and signal dimension 0, the signal will be tranposed to form a `Signal1D`. style : {'overlap', 'cascade', 'mosaic', 'heatmap'} The style of the plot. color : {None, matplotlib color, list of colors}, optional Sets the color of the lines of the plots (no action on 'heatmap'). For a list, if its length is less than the number of spectra to plot, the colors will be cycled. If `None`, use default matplotlib color cycle. line_style: {None, matplotlib line style, list of line_styles}, optional Sets the line style of the plots (no action on 'heatmap'). The main line style are '-','--','steps','-.',':'. For a list, if its length is less than the number of spectra to plot, line_style will be cycled. If If `None`, use continuous lines, eg: ('-','--','steps','-.',':'). padding : float, optional, default 1.0 Option for "cascade". 1 guarantees that there is no overlapping. However, in many cases, a value between 0 and 1 can produce a tighter plot without overlapping. Negative values have the same effect but reverse the order of the spectra without reversing the order of the colors. legend: {None, list of str, 'auto'}, optional If list of string, legend for "cascade" or title for "mosaic" is displayed. If 'auto', the title of each spectra (metadata.General.title) is used. legend_picking: bool, optional If True (default), a spectrum can be toggled on and off by clicking on the legended line. legend_loc : {str, int}, optional This parameter controls where the legend is placed on the figure; see the pyplot.legend docstring for valid values fig : {None, matplotlib figure}, optional If None, a default figure will be created. Specifying fig will not work for the 'heatmap' style. ax : {none, matplotlib ax (subplot)}, optional If None, a default ax will be created. Will not work for 'mosaic' or 'heatmap' style. auto_update : bool or None If True, the plot will update when the data are changed. Only supported with style='overlap' and a list of signal with navigation dimension 0. If None (default), update the plot only for style='overlap'. **kwargs, optional Keywords arguments passed to :py:func:`matplotlib.pyplot.figure` or :py:func:`matplotlib.pyplot.subplots` if style='mosaic'. Has no effect on 'heatmap' style. Example ------- >>> s = hs.load("some_spectra") >>> hs.plot.plot_spectra(s, style='cascade', color='red', padding=0.5) To save the plot as a png-file >>> hs.plot.plot_spectra(s).figure.savefig("test.png") Returns ------- ax: matplotlib axes or list of matplotlib axes An array is returned when `style` is "mosaic". """ import hyperspy.signal def _reverse_legend(ax_, legend_loc_): """ Reverse the ordering of a matplotlib legend (to be more consistent with the default ordering of plots in the 'cascade' and 'overlap' styles. Parameters ---------- ax_: matplotlib axes legend_loc_: {str, int} This parameter controls where the legend is placed on the figure; see the pyplot.legend docstring for valid values. """ l = ax_.get_legend() labels = [lb.get_text() for lb in list(l.get_texts())] handles = l.legendHandles ax_.legend(handles[::-1], labels[::-1], loc=legend_loc_) # Before v1.3 default would read the value from prefereces. if style == "default": style = "overlap" if color is not None: if isinstance(color, str): color = itertools.cycle([color]) elif hasattr(color, "__iter__"): color = itertools.cycle(color) else: raise ValueError("Color must be None, a valid matplotlib color " "string, or a list of valid matplotlib colors.") else: color = itertools.cycle( plt.rcParams['axes.prop_cycle'].by_key()["color"]) if line_style is not None: if isinstance(line_style, str): line_style = itertools.cycle([line_style]) elif hasattr(line_style, "__iter__"): line_style = itertools.cycle(line_style) else: raise ValueError("line_style must be None, a valid matplotlib " "line_style string or a list of valid matplotlib " "line_style.") else: line_style = ['-'] * len(spectra) if legend is not None: if isinstance(legend, str): if legend == 'auto': legend = [spec.metadata.General.title for spec in spectra] else: raise ValueError("legend must be None, 'auto' or a list of " "strings.") if style == 'overlap': if fig is None: fig = plt.figure(**kwargs) if ax is None: ax = fig.add_subplot(111) _make_overlap_plot(spectra, ax, color=color, line_style=line_style,) if legend is not None: ax.legend(legend, loc=legend_loc) _reverse_legend(ax, legend_loc) if legend_picking is True: animate_legend(fig=fig, ax=ax) elif style == 'cascade': if fig is None: fig = plt.figure(**kwargs) if ax is None: ax = fig.add_subplot(111) _make_cascade_subplot(spectra, ax, color=color, line_style=line_style, padding=padding) if legend is not None: plt.legend(legend, loc=legend_loc) _reverse_legend(ax, legend_loc) elif style == 'mosaic': default_fsize = plt.rcParams["figure.figsize"] figsize = (default_fsize[0], default_fsize[1] * len(spectra)) fig, subplots = plt.subplots( len(spectra), 1, figsize=figsize, **kwargs) if legend is None: legend = [legend] * len(spectra) for spectrum, ax, color, line_style, legend in zip( spectra, subplots, color, line_style, legend): spectrum = _transpose_if_required(spectrum, 1) _plot_spectrum(spectrum, ax, color=color, line_style=line_style) ax.set_ylabel('Intensity') if legend is not None: ax.set_title(legend) if not isinstance(spectra, hyperspy.signal.BaseSignal): _set_spectrum_xlabel(spectrum, ax) if isinstance(spectra, hyperspy.signal.BaseSignal): _set_spectrum_xlabel(spectrum, ax) fig.tight_layout() elif style == 'heatmap': if not isinstance(spectra, hyperspy.signal.BaseSignal): import hyperspy.utils spectra = [_transpose_if_required(spectrum, 1) for spectrum in spectra] spectra = hyperspy.utils.stack(spectra) with spectra.unfolded(): ax = _make_heatmap_subplot(spectra) ax.set_ylabel('Spectra') ax = ax if style != "mosaic" else subplots def update_line(spectrum, line): x_axis = spectrum.axes_manager[-1].axis line.set_data(x_axis, spectrum.data) fig = line.get_figure() ax = fig.get_axes()[0] # `relim` needs to be called before `autoscale_view` ax.relim() ax.autoscale_view() fig.canvas.draw() if auto_update is None and style == 'overlap': auto_update = True if auto_update: if style != 'overlap': raise ValueError("auto_update=True is only supported with " "style='overlap'.") for spectrum, line in zip(spectra, ax.get_lines()): f = partial(update_line, spectrum, line) spectrum.events.data_changed.connect(f, []) # disconnect event when closing figure disconnect = partial(spectrum.events.data_changed.disconnect, f) on_figure_window_close(fig, disconnect) return ax def animate_legend(fig=None, ax=None): """Animate the legend of a figure. A spectrum can be toggled on and off by clicking on the line in the legend. Parameters ---------- fig: {None, matplotlib.figure}, optional If None pick the current figure using "plt.gcf". ax: {None, matplotlib.axes}, optional If None pick the current axes using "plt.gca". Note ---- Code inspired from legend_picking.py in the matplotlib gallery. """ if fig is None: fig = plt.gcf() if ax is None: ax = plt.gca() lines = ax.lines[::-1] lined = dict() leg = ax.get_legend() for legline, origline in zip(leg.get_lines(), lines): legline.set_pickradius(5) # 5 pts tolerance legline.set_picker(True) lined[legline] = origline def onpick(event): # on the pick event, find the orig line corresponding to the # legend proxy line, and toggle the visibility legline = event.artist if legline.axes == ax: origline = lined[legline] vis = not origline.get_visible() origline.set_visible(vis) # Change the alpha on the line in the legend so we can see what lines # have been toggled if vis: legline.set_alpha(1.0) else: legline.set_alpha(0.2) fig.canvas.draw_idle() fig.canvas.mpl_connect('pick_event', onpick) def plot_histograms(signal_list, bins='fd', range_bins=None, color=None, line_style=None, legend='auto', fig=None, **kwargs): """Plot the histogram of every signal in the list in one figure. This function creates a histogram for each signal and plots the list with the `utils.plot.plot_spectra` function. Parameters ---------- signal_list : iterable Ordered list of spectra to plot. If `style` is "cascade" or "mosaic", the spectra can have different size and axes. bins : {int, list, str}, optional If bins is a string, then it must be one of: 'knuth' : use Knuth's rule to determine bins, 'scott' : use Scott's rule to determine bins, 'fd' : use the Freedman-diaconis rule to determine bins, 'blocks' : use bayesian blocks for dynamic bin widths. range_bins : {None, tuple}, optional The minimum and maximum range for the histogram. If not specified, it will be (x.min(), x.max()). color : {None, valid matplotlib color, list of colors}, optional Sets the color of the lines of the plots. For a list, if its length is less than the number of spectra to plot, the colors will be cycled. If `None`, use default matplotlib color cycle. line_style: {None, valid matplotlib line style, list of line styles}, optional The main line styles are '-','--','steps','-.',':'. For a list, if its length is less than the number of spectra to plot, line_style will be cycled. If `None`, use continuous lines, eg: ('-','--','steps','-.',':') legend: {None, list of str, 'auto'}, optional Display a legend. If 'auto', the title of each spectra (metadata.General.title) is used. legend_picking: bool, optional If true, a spectrum can be toggled on and off by clicking on the line in the legend. fig : {None, matplotlib figure}, optional If None, a default figure will be created. **kwargs other keyword arguments (weight and density) are described in :py:func:`numpy.histogram`. Example ------- Histograms of two random chi-square distributions. >>> img = hs.signals.Signal2D(np.random.chisquare(1,[10,10,100])) >>> img2 = hs.signals.Signal2D(np.random.chisquare(2,[10,10,100])) >>> hs.plot.plot_histograms([img,img2],legend=['hist1','hist2']) Returns ------- ax: matplotlib axes or list of matplotlib axes An array is returned when `style` is "mosaic". """ hists = [] for obj in signal_list: hists.append(obj.get_histogram(bins=bins, range_bins=range_bins, **kwargs)) if line_style is None: line_style = 'steps' return plot_spectra(hists, style='overlap', color=color, line_style=line_style, legend=legend, fig=fig) def picker_kwargs(value, kwargs={}): # picker is deprecated in favor of pickradius if LooseVersion(mpl.__version__) >= LooseVersion("3.3.0"): kwargs.update({'pickradius': value, 'picker':True}) else: kwargs['picker'] = value return kwargs
""" Search for PEAR/PECL packages to include in the blueprint. """ import logging import re import subprocess from blueprint import util def php(b, r): logging.info('searching for PEAR/PECL packages') # Precompile a pattern for parsing the output of `{pear,pecl} list`. pattern = re.compile(r'^([0-9a-zA-Z_]+)\s+([0-9][0-9a-zA-Z\.-]*)\s') # PEAR packages are managed by `php-pear` (obviously). PECL packages # are managed by `php5-dev` because they require development headers # (less obvious but still makes sense). if util.lsb_release_codename() is None: pecl_manager = 'php-devel' else: pecl_manager = 'php5-dev' for manager, progname in (('php-pear', 'pear'), (pecl_manager, 'pecl')): try: p = subprocess.Popen([progname, 'list'], close_fds=True, stdout=subprocess.PIPE) except OSError: continue for line in p.stdout: match = pattern.match(line) if match is None: continue package, version = match.group(1), match.group(2) if not r.ignore_package(manager, package): b.add_package(manager, package, version)
# -*- coding: utf-8 -*- """ *************************************************************************** VectorSplit.py --------------------- Date : September 2014 Copyright : (C) 2014 by Alexander Bruy Email : alexander dot bruy at gmail dot com *************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * *************************************************************************** """ from builtins import str __author__ = 'Alexander Bruy' __date__ = 'September 2014' __copyright__ = '(C) 2014, Alexander Bruy' # This will get replaced with a git SHA1 when you do a git archive __revision__ = '$Format:%H$' import os from qgis.PyQt.QtGui import QIcon from processing.core.GeoAlgorithm import GeoAlgorithm from processing.core.parameters import ParameterVector from processing.core.parameters import ParameterTableField from processing.core.outputs import OutputDirectory from processing.tools import dataobjects, vector from processing.tools.system import mkdir pluginPath = os.path.split(os.path.split(os.path.dirname(__file__))[0])[0] class VectorSplit(GeoAlgorithm): INPUT = 'INPUT' FIELD = 'FIELD' OUTPUT = 'OUTPUT' def getIcon(self): return QIcon(os.path.join(pluginPath, 'images', 'ftools', 'split_layer.png')) def defineCharacteristics(self): self.name, self.i18n_name = self.trAlgorithm('Split vector layer') self.group, self.i18n_group = self.trAlgorithm('Vector general tools') self.addParameter(ParameterVector(self.INPUT, self.tr('Input layer'))) self.addParameter(ParameterTableField(self.FIELD, self.tr('Unique ID field'), self.INPUT)) self.addOutput(OutputDirectory(self.OUTPUT, self.tr('Output directory'))) def processAlgorithm(self, progress): layer = dataobjects.getObjectFromUri( self.getParameterValue(self.INPUT)) fieldName = self.getParameterValue(self.FIELD) directory = self.getOutputValue(self.OUTPUT) mkdir(directory) fieldIndex = layer.fields().lookupField(fieldName) uniqueValues = vector.uniqueValues(layer, fieldIndex) baseName = os.path.join(directory, '{0}_{1}'.format(layer.name(), fieldName)) fields = layer.fields() crs = layer.crs() geomType = layer.wkbType() total = 100.0 / len(uniqueValues) for current, i in enumerate(uniqueValues): fName = u'{0}_{1}.shp'.format(baseName, str(i).strip()) writer = vector.VectorWriter(fName, None, fields, geomType, crs) for f in vector.features(layer): if f[fieldName] == i: writer.addFeature(f) del writer progress.setPercentage(int(current * total))
# Copyright 2018 SUSE Linux GmbH # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from django.utils.translation import ugettext_lazy as _ import horizon from openstack_dashboard.api import keystone class ApplicationCredentialsPanel(horizon.Panel): name = _("Application Credentials") slug = 'application_credentials' policy_rules = (('identity', 'identity:list_application_credentials'),) @staticmethod def can_register(): return keystone.VERSIONS.active >= 3 def can_access(self, context): request = context['request'] keystone_version = keystone.get_identity_api_version(request) return keystone_version >= (3, 10)
import requests import datetime import dateutil import dateutil.parser import logging from plugins.packagetracker.provider import Package __author__ = "reeen" # Bring API https://developer.bring.com/api/tracking/ class BringPackage(Package): API_URL = "https://tracking.bring.com/api/v2/tracking.json" @classmethod def get_type(cls): return "Bring" @staticmethod def strip_tags(text): clean = re.compile("<.*?>") return re.sub(clean, "", text) @staticmethod def create_event(event): e = BringPackage.Event() e.datetime = dateutil.parser.isoparse(event["dateIso"]) e.description = f"{event['city']}: {strip_tags(event['description'])}" return e @classmethod def is_package(cls, package_id): data = cls._get_data(package_id) if not "error" in data["consignmentSet"][0]: return True return False @classmethod def _get_url(cls, package_id): return BringPackage.API_URL + "?q=" + package_id @classmethod def _get_data(cls, package_id): try: return requests.get( BringPackage._get_url(package_id), # More headers are listed as required, but that is only for the registered API end-point headers={ "X-Bring-Client-URL": "https://github.com/Tigge/platinumshrimp", }, ).json() except ValueError as e: logging.exception("Exception while getting package") return {} def __init__(self, package_id): super().__init__(package_id) self.last_updated = datetime.datetime(1970, 1, 1, tzinfo=datetime.timezone.utc) def update(self): data = self._get_data(self.id) # Note: will only look at first consignment and package in data try: self.consignor = data["consignmentSet"][0]["senderName"] self.consignee = data["consignmentSet"][0]["recipientAddress"]["postalCode"] self.consignee += ( " " + data["consignmentSet"][0]["recipientAddress"]["city"] ) last_updated = self.last_updated for bring_event in data["consignmentSet"][0]["packageSet"][0]["eventSet"]: event = self.create_event(bring_event) if event.datetime > last_updated: last_updated = event.datetime if event.datetime > self.last_updated: self.on_event(event) self.last_updated = last_updated except Exception as e: logging.exception("Exception while updating package") logging.debug("Data: %r", data)
#!/usr/bin/env python ### THIS MAY OCCUPY ~10-50GB OF /tmp SPACE PER JOB import glob,os import sys,getopt import gzip import numpy as np from collections import defaultdict from fastq_reader import Fastq_Reader def max_log_lik_ratio(s,bkg,h1_prob=0.8,thresh1=3.84,thresh2=np.inf): LLR = [(None,None)] read_match_sum = s[-1] del s[-1] v1 = read_match_sum*h1_prob*(1-h1_prob) m1 = read_match_sum*h1_prob for k,sect_sum in s.items(): if sect_sum > read_match_sum*bkg[k]: v2 = read_match_sum*bkg[k]*(1-bkg[k]) m2 = read_match_sum*bkg[k] llr = np.log(v2**.5/v1**.5) + .5*((sect_sum-m2)**2/v2 - (sect_sum-m1)**2/v1) LLR.append((llr,k)) LLR.sort(reverse=True) K = [] if LLR[0][0] > thresh1: K.append(LLR[0][1]) for llr,k in LLR[1:]: if llr > thresh2: K.append(k) else: break return K help_message = 'usage example: python write_partition_parts.py -r 1 -i /project/home/hashed_reads/ -o /project/home/cluster_vectors/ -t /tmp/dir/' if __name__ == "__main__": try: opts, args = getopt.getopt(sys.argv[1:],'hr:i:o:t:',["--filerank=","inputdir=","outputdir=","tmpdir="]) except: print help_message sys.exit(2) for opt, arg in opts: if opt in ('-h','--help'): print help_message sys.exit() elif opt in ('-r',"--filerank"): fr = int(arg)-1 elif opt in ('-i','--inputdir'): inputdir = arg if inputdir[-1] != '/': inputdir += '/' elif opt in ('-o','--outputdir'): outputdir = arg if outputdir[-1] != '/': outputdir += '/' elif opt in ('-t','--tmpdir'): tmpdir = arg if tmpdir[-1] != '/': tmpdir += '/' hashobject = Fastq_Reader(inputdir,outputdir) cp = np.load(hashobject.output_path+'cluster_probs.npy') cluster_probs = dict(enumerate(cp)) Hashq_Files = glob.glob(os.path.join(hashobject.input_path,'*.hashq.*')) Hashq_Files = [fp for fp in Hashq_Files if '.tmp' not in fp] Hashq_Files.sort() infile = Hashq_Files[fr] outpart = infile[-6:-3] sample_id = infile[infile.rfind('/')+1:infile.index('.hashq')] tmpdir += str(fr) + '/' os.system('mkdir '+tmpdir) G = [open('%s%s.%s.cols.%d' % (tmpdir,sample_id,outpart,i),'w') for i in range(0,2**hashobject.hash_size,2**hashobject.hash_size/50)] f = gzip.open(infile) r_id = 0 for a in hashobject.hash_read_generator(f): for x in a[2]: G[int(x*50/2**hashobject.hash_size)].write('%d\t%d\n' % (x,r_id)) r_id += 1 R = r_id f.close() for g in G: g.close() if R < 50: print 'Fewer than 50 reads...doing nothing' else: ClusterFile = open(hashobject.output_path+'cluster_cols.npy') ValueFile = open(hashobject.output_path+'cluster_vals.npy') G = [open('%s%s.%s.ids.%d' % (tmpdir,sample_id,outpart,i),'w') for i in range(0,R,R/50)] # If sharing ClusterFile among many jobs is not practical, we may aggregate jobs below by 1/50 ClusterFile fractions across samples (so each job reads 1 fraction) for i in range(0,2**hashobject.hash_size,2**hashobject.hash_size/50): os.system('sort -nk 1 %s%s.%s.cols.%d -o %s%s.%s.cols.%d' % (tmpdir,sample_id,outpart,i,tmpdir,sample_id,outpart,i)) f = open('%s%s.%s.cols.%d' % (tmpdir,sample_id,outpart,i)) ColId = np.fromfile(f,dtype=np.int64,sep='\t') f.close() os.system('rm %s%s.%s.cols.%d' % (tmpdir,sample_id,outpart,i)) C = np.fromfile(ClusterFile,dtype=np.int16,count=5*min(2**hashobject.hash_size/50,2**hashobject.hash_size-i)) V = np.fromfile(ValueFile,dtype=np.float32,count=min(2**hashobject.hash_size/50,2**hashobject.hash_size-i)) c0 = None outlines = [[] for _ in G] for j in range(0,len(ColId),2): col,id = ColId[j:j+2] if col != c0: ci = col % (2**hashobject.hash_size/50) c = C[ci*5:(ci+1)*5] c = c[np.nonzero(c)[0]] - 1 c0 = col if len(c) > 0: v = V[ci] newline = '%d\t%f' % (id,v) for x in c: newline += '\t%d' % (x) outlines[id*50/R].append(newline+'\n') for g,l in zip(G,outlines): g.writelines(l) del C del V ClusterFile.close() ValueFile.close() for g in G: g.close() for i in range(0,R,R/50): os.system('sort -nk 1 %s%s.%s.ids.%d -o %s%s.%s.ids.%d' % (tmpdir,sample_id,outpart,i,tmpdir,sample_id,outpart,i)) f = gzip.open(infile) r_id = 0 G = iter(open('%s%s.%s.ids.%d' % (tmpdir,sample_id,outpart,i)) for i in range(0,R,R/50)) g = G.next() id_vals = np.fromstring(g.readline(),sep='\t') EOF = False CF = {} reads_written = 0 unique_reads_written = 0 for a in hashobject.hash_read_generator(f): while id_vals[0] < r_id: id_vals = np.fromstring(g.readline(),sep='\t') if id_vals[0] == -1: try: g = G.next() id_vals = np.fromstring(g.readline(),sep='\t') except: EOF = True if EOF: break D = defaultdict(float) while id_vals[0] == r_id: D[-1] += id_vals[1] for clust in id_vals[2:]: D[clust] += id_vals[1] try: id_vals = np.fromstring(g.readline(),sep='\t') except: break #best_clust = max_log_lik_ratio(D,cluster_probs) #if best_clust != None: best_clusts = max_log_lik_ratio(D,cluster_probs) for best_clust in best_clusts: if best_clust not in CF: try: CF[best_clust] = open('%s%d/%s.fastq.%s' % (hashobject.output_path,best_clust,sample_id,outpart),'a') except: os.system('mkdir %s%d/' % (hashobject.output_path,best_clust)) CF[best_clust] = open('%s%d/%s.fastq.%s' % (hashobject.output_path,best_clust,sample_id,outpart),'a') CF[best_clust].write(a[0]+'\n') reads_written += 1 if len(best_clusts) > 0: unique_reads_written += 1 if len(CF) > 200: for cfv in CF.values(): cfv.close() CF = {} r_id += 1 for f in CF.values(): f.close() os.system('rm -rf '+tmpdir) print 'total reads written:',reads_written print 'unique reads written:',unique_reads_written
""" Qualityscore class """ import data import logging from galaxy.datatypes.sniff import * from galaxy import util log = logging.getLogger(__name__) class QualityScoreSOLiD ( data.Text ): """ until we know more about quality score formats """ file_ext = "qualsolid" def set_peek( self, dataset, line_count=None ): if not dataset.dataset.purged: dataset.peek = data.get_file_peek( dataset.file_name ) if line_count is None: dataset.blurb = data.nice_size( dataset.get_size() ) else: dataset.blurb = "%s lines, SOLiD Quality score file" % util.commaify( str( line_count ) ) else: dataset.peek = 'file does not exist' dataset.blurb = 'file purged from disk' def display_peek(self, dataset): try: return dataset.peek except: return "SOLiD Quality score file (%s)" % ( data.nice_size( dataset.get_size() ) ) def sniff( self, filename ): """ >>> fname = get_test_fname( 'sequence.fasta' ) >>> QualityScoreSOLiD().sniff( fname ) False >>> fname = get_test_fname( 'sequence.qualsolid' ) >>> QualityScoreSOLiD().sniff( fname ) True """ try: fh = open( filename ) readlen = None goodblock = 0 while True: line = fh.readline() if not line: if goodblock > 0: return True else: break #EOF line = line.strip() if line and not line.startswith( '#' ): #first non-empty non-comment line if line.startswith( '>' ): line = fh.readline().strip() if line == '' or line.startswith( '>' ): break try: [ int( x ) for x in line.split() ] if not(readlen): readlen = len(line.split()) assert len(line.split()) == readlen #SOLiD reads should be of the same length except: break goodblock += 1 if goodblock > 10: return True else: break #we found a non-empty line, but it's not a header except: pass return False class QualityScore454 ( data.Text ): """ until we know more about quality score formats """ file_ext = "qual454" def set_peek( self, dataset, line_count=None ): if not dataset.dataset.purged: dataset.peek = data.get_file_peek( dataset.file_name ) if line_count is None: dataset.blurb = data.nice_size( dataset.get_size() ) else: dataset.blurb = "%s lines, 454 Quality score file" % util.commaify( str( line_count ) ) else: dataset.peek = 'file does not exist' dataset.blurb = 'file purged from disk' def display_peek(self, dataset): try: return dataset.peek except: return "454 Quality score file (%s)" % ( data.nice_size( dataset.get_size() ) ) def sniff( self, filename ): """ >>> fname = get_test_fname( 'sequence.fasta' ) >>> QualityScore454().sniff( fname ) False >>> fname = get_test_fname( 'sequence.qual454' ) >>> QualityScore454().sniff( fname ) True """ try: fh = open( filename ) while True: line = fh.readline() if not line: break #EOF line = line.strip() if line and not line.startswith( '#' ): #first non-empty non-comment line if line.startswith( '>' ): line = fh.readline().strip() if line == '' or line.startswith( '>' ): break try: [ int( x ) for x in line.split() ] except: break return True else: break #we found a non-empty line, but it's not a header except: pass return False class QualityScoreSolexa ( data.Text ): """ until we know more about quality score formats """ file_ext = "qualsolexa" def set_peek( self, dataset, line_count=None ): if not dataset.dataset.purged: dataset.peek = data.get_file_peek( dataset.file_name ) if line_count is None: dataset.blurb = data.nice_size( dataset.get_size() ) else: dataset.blurb = "%s lines, Solexa Quality score file" % util.commaify( str( line_count ) ) else: dataset.peek = 'file does not exist' dataset.blurb = 'file purged from disk' def display_peek(self, dataset): try: return dataset.peek except: return "Solexa Quality score file (%s)" % ( data.nice_size( dataset.get_size() ) )
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=unidiomatic-typecheck """Prototype decorator for defining legacy-graph-mode functions.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import weakref from tensorflow.python.eager import def_function from tensorflow.python.eager import function from tensorflow.python.eager import lift_to_graph from tensorflow.python.framework import func_graph from tensorflow.python.framework import importer from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import variable_scope from tensorflow.python.util import nest from tensorflow.python.util.tf_export import tf_export class VariableHolder(object): """Holds variables for a python function.""" def __init__(self, fn): self._fn = fn self._variables = [] def variable_creator_scope(self, next_creator, **kwargs): """Creates variables & adds them to collections to match legacy code.""" v = next_creator(**kwargs) self._variables.append(v) collections = kwargs.get("collections") trainable = v.trainable if collections is None: collections = [ops.GraphKeys.GLOBAL_VARIABLES] if trainable and ops.GraphKeys.TRAINABLE_VARIABLES not in collections: collections = list(collections) + [ops.GraphKeys.TRAINABLE_VARIABLES] ops.add_to_collections(collections, v) return v def __call__(self, *args, **kwargs): with variable_scope.variable_creator_scope(self.variable_creator_scope): return self._fn(*args, **kwargs) # TODO(allenl): make this trackable class WrappedFunction(function.ConcreteFunction): """Wraps a tf V1 piece of code in a function.""" def __init__(self, fn_graph, variable_holder, attrs=None, signature=None): super(WrappedFunction, self).__init__( fn_graph, attrs=attrs, signature=signature) self._variable_holder = variable_holder if ops.executing_eagerly_outside_functions(): # TODO(allenl): Make this work in 1.x? self._lift_unlifted_variables() def _lift_unlifted_variables(self): """Finds resource variables and lifts them into the outer context. When we import a GraphDef inside a wrap_function, no Python graph building code runs. This means we get VarHandleOps which create variable resources, but no corresponding Python objects. Leaving them like this works but gives the user no way to interact with or modify the variables outside the graph. This method searches for variables and lifts them out as regular variable objects when possible, indicating to the FuncGraph that they are captures. """ with self.graph.as_default(): collection_variables = ( ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES) + ops.get_collection(ops.GraphKeys.LOCAL_VARIABLES)) existing_captures = set(self.graph.internal_captures) lifted_variables = {} for old_variable in collection_variables: if (old_variable._in_graph_mode # pylint: disable=protected-access and isinstance(old_variable, resource_variable_ops.ResourceVariable)): if old_variable.handle in existing_captures: continue new_variable = def_function.UnliftedInitializerVariable( array_ops.placeholder( name="unused_{}_initializer".format(old_variable.op.name), shape=old_variable.shape, dtype=old_variable.dtype), name=old_variable.op.name, trainable=old_variable.trainable) self.graph.captures[new_variable.handle] = old_variable.handle existing_captures.add(old_variable.handle) lifted_variables[old_variable] = new_variable # pylint: disable=protected-access self._variable_holder._variables.append(new_variable) self.graph._weak_variables.append(weakref.ref(new_variable)) # pylint: enable=protected-access # Update the graph's collections, partly for the user and partly so this # function is idempotent when it runs again in prune() calls. for collection_name in [ops.GraphKeys.GLOBAL_VARIABLES, ops.GraphKeys.LOCAL_VARIABLES]: mutable_collection = ops.get_collection_ref(collection_name) for index, current in enumerate(mutable_collection): mutable_collection[index] = lifted_variables.get(current, current) def prune(self, feeds, fetches): flat_feeds, flat_fetches = nest.flatten(feeds), nest.flatten(fetches) for f in flat_feeds: if not isinstance(f, ops.Tensor): raise ValueError("Feeds must be tensors.") # Ignoring all feeds that are captures allows prune to be called # using wrapped_func.inputs even when it uses variables internal_captures = self.graph.internal_captures flat_feeds = [f for f in flat_feeds if f not in internal_captures] tensor_fetches = [] operation_fetches = [] for f in flat_fetches: if isinstance(f, ops.Tensor): tensor_fetches.append(f) elif isinstance(f, ops.Operation): operation_fetches.append(f) else: raise ValueError("Fetches must be tensors or operations.") for f in flat_feeds + flat_fetches: if f.graph is not self._func_graph: raise ValueError( "Can only prune function whose feeds and fetches " "are from this graph (%s). Tensor %s from graph %s" % ( self._func_graph, f, f.graph)) with self._func_graph.as_default(): pruned_graph = func_graph.FuncGraph("pruned") with ops.control_dependencies(operation_fetches): if tensor_fetches: identity_fetches = array_ops.identity_n(tensor_fetches) sink_tensor = identity_fetches[0] else: identity_fetches = [] sink_tensor = array_ops.zeros([]) lift_map = lift_to_graph.lift_to_graph( [sink_tensor], pruned_graph, sources=flat_feeds + internal_captures) for original_fetch, identity_fetch in zip( tensor_fetches, identity_fetches): lift_map[original_fetch] = lift_map[identity_fetch] pruned_graph.outputs.extend( lift_map[x] for x in flat_fetches if isinstance(x, ops.Tensor)) if not tensor_fetches: pruned_graph.outputs.append(lift_map[sink_tensor]) for external_capture, internal_capture in self.graph.captures.items(): pruned_graph.captures[external_capture] = lift_map[internal_capture] pruned_graph.inputs.extend(lift_map[x] for x in flat_feeds) pruned_graph.inputs.extend(pruned_graph.captures.values()) pruned_graph.variables = self.graph.variables def _structured_output_mapping(fetched): lifted = lift_map[fetched] if isinstance(lifted, ops.Operation): return None return lifted pruned_graph.structured_outputs = nest.map_structure( _structured_output_mapping, fetches) pruned_fn = WrappedFunction( pruned_graph, variable_holder=self._variable_holder) pruned_fn._num_positional_args = len(flat_feeds) # pylint: disable=protected-access pruned_fn._arg_keywords = [] # pylint: disable=protected-access return pruned_fn @tf_export(v1=["wrap_function"]) def wrap_function(fn, signature, name=None): """Wraps the TF 1.x function fn into a graph function. The python function `fn` will be called once with symbolic arguments specified in the `signature`, traced, and turned into a graph function. Any variables created by `fn` will be owned by the object returned by `wrap_function`. The resulting graph function can be called with tensors which match the signature. ```python def f(x, do_add): v = tf.Variable(5.0) if do_add: op = v.assign_add(x) else: op = v.assign_sub(x) with tf.control_dependencies([op]): return v.read_value() f_add = tf.compat.v1.wrap_function(f, [tf.TensorSpec((), tf.float32), True]) assert float(f_add(1.0)) == 6.0 assert float(f_add(1.0)) == 7.0 # Can call tf.compat.v1.wrap_function again to get a new trace, a new set # of variables, and possibly different non-template arguments. f_sub= tf.compat.v1.wrap_function(f, [tf.TensorSpec((), tf.float32), False]) assert float(f_sub(1.0)) == 4.0 assert float(f_sub(1.0)) == 3.0 ``` Both `tf.compat.v1.wrap_function` and `tf.function` create a callable TensorFlow graph. But while `tf.function` runs all stateful operations (e.g. `tf.print`) and sequences operations to provide the same semantics as eager execution, `wrap_function` is closer to the behavior of `session.run` in TensorFlow 1.x. It will not run any operations unless they are required to compute the function's outputs, either through a data dependency or a control dependency. Nor will it sequence operations. Unlike `tf.function`, `wrap_function` will only trace the Python function once. As with placeholders in TF 1.x, shapes and dtypes must be provided to `wrap_function`'s `signature` argument. Since it is only traced once, variables and state may be created inside the function and owned by the function wrapper object. Args: fn: python function to be wrapped signature: the placeholder and python arguments to be passed to the wrapped function name: Optional. The name of the function. Returns: the wrapped graph function. """ holder = VariableHolder(fn) func_graph_name = "wrapped_function" if name is not None: func_graph_name = "wrapped_function_" + name return WrappedFunction( func_graph.func_graph_from_py_func( func_graph_name, holder, args=None, kwargs=None, signature=signature, add_control_dependencies=False, collections={}), variable_holder=holder, signature=signature) def function_from_graph_def(graph_def, inputs, outputs): """Creates a ConcreteFunction from a GraphDef. Args: graph_def: A GraphDef to make a function out of. inputs: A Tensor name or nested structure of names in `graph_def` which should be inputs to the function. outputs: A Tensor name or nested structure of names in `graph_def` which should be outputs of the function. Returns: A ConcreteFunction. """ def _imports_graph_def(): importer.import_graph_def(graph_def, name="") wrapped_import = wrap_function(_imports_graph_def, []) import_graph = wrapped_import.graph return wrapped_import.prune( nest.map_structure(import_graph.as_graph_element, inputs), nest.map_structure(import_graph.as_graph_element, outputs))
from django.db import models import datetime from librehatti.voucher.models import VoucherId from librehatti.voucher.models import FinancialSession from librehatti.bills.models import QuotedOrder from librehatti.catalog.models import PurchaseOrder, Category import simplejson class SuspenseOrder(models.Model): voucher = models.IntegerField() purchase_order = models.ForeignKey(PurchaseOrder) session_id = models.ForeignKey(FinancialSession) distance_estimated = models.IntegerField(default=0) is_cleared = models.BooleanField(default=False) def __unicode__(self): return '%s' % (self.id) class SuspenseClearance(models.Model): session = models.ForeignKey(FinancialSession) voucher_no = models.IntegerField() work_charge =models.IntegerField(blank=True, null=True) labour_charge = models.IntegerField(blank=True, null=True) car_taxi_charge = models.IntegerField(blank=True, null=True) boring_charge_external = models.IntegerField(blank=True, null=True) boring_charge_internal = models.IntegerField(blank=True, null=True) lab_testing_staff = models.CharField(max_length=200) field_testing_staff = models.CharField(max_length=200) test_date = models.CharField(max_length=600) clear_date = models.DateField(default=datetime.date.today) class Department(models.Model): title = models.CharField(max_length=50) address = models.CharField(max_length=150) phone = models.CharField(max_length=20, blank=True) dean = models.CharField(max_length=50, blank=True) def __unicode__(self): return self.title class StaffPosition(models.Model): position = models.CharField(max_length=50) rank = models.IntegerField() def __unicode__(self): return self.position class Staff(models.Model): department = models.ForeignKey(Department) code = models.CharField(max_length=5) name = models.CharField(max_length=50) daily_ta_da = models.IntegerField(blank=True) position = models.ForeignKey(StaffPosition) lab = models.ForeignKey(Category) email =models.EmailField(blank=True) class Meta: verbose_name_plural = "Staff" def __unicode__(self): return self.name class TaDa(models.Model): date_of_generation = models.DateField(default=datetime.date.today) voucher_no = models.IntegerField() session = models.IntegerField() departure_time_from_tcc= models.TimeField() arrival_time_at_site = models.TimeField() departure_time_from_site = models.TimeField() arrival_time_at_tcc = models.TimeField() tada_amount = models.IntegerField() start_test_date = models.DateField() end_test_date = models.DateField() source_site = models.CharField(max_length=100, default = 'GNDEC, Ludhiana') testing_site= models.CharField(max_length=100) testing_staff = models.CharField(max_length=100) def __unicode__(self): return self.suspense class QuotedSuspenseOrder(models.Model): quoted_order = models.ForeignKey('bills.QuotedOrder') distance_estimated = models.IntegerField(default=0) is_cleared = models.BooleanField(default=False) def __unicode__(self): return '%s' % (self.id) class Vehicle(models.Model): vehicle_id = models.CharField(max_length=20) vehicle_no = models.CharField(max_length=20) vehicle_name = models.CharField(max_length=20) def __unicode__(self): return '%s' % (self.vehicle_no) class Transport(models.Model): vehicle = models.ForeignKey(Vehicle) kilometer = models.CharField(max_length=500) rate = models.FloatField(default=10.0) date_of_generation = models.DateField() date = models.CharField(blank=True, max_length=600) total = models.IntegerField() voucher_no = models.IntegerField() session = models.ForeignKey(FinancialSession) '''def save(self, *args, **kwargs): # Now decode the kilometers jsonkilometer = simplejson.loads(self.kilometer) total_km = 0; #calculate the total kms for km in jsonkilometer: total_km += float(km) # Now calculate the total and save it in model self.total = total_km * self.rate super(Transport, self).save(*args, **kwargs) ''' class Meta: verbose_name_plural = "Transport" def __unicode__(self): return '%s' % (self.vehicle)
import user import requests import re import course import os import pickle from bs4 import BeautifulSoup class mycourses: def __init__(self): self.__mycourses_domain = "https://mycourses2.mcgill.ca" self.__mycourses_index_page = "https://mycourses2.mcgill.ca/" self.__shibboleth_domain = "https://shibboleth.mcgill.ca" self.__shibboleth_login_page = "https://mycourses2.mcgill.ca/Shibboleth.sso/Login?entityID=https://shibboleth.mcgill.ca/idp/shibboleth&target=https%3A%2F%2Fmycourses2.mcgill.ca%2Fd2l%2FshibbolethSSO%2Flogin.d2l" self.__useragent = "Mozilla/5.0 (iPhone; U; CPU iPhone OS 4_0 like Mac OS X; en-us) AppleWebKit/532.9 (KHTML, like Gecko) Version/4.0.5 Mobile/8A293 Safari/6531.22.7" self.__request_header = {'user-agent':self.__useragent } self.session = requests.Session() self.session.headers.update(self.__request_header) self.__course_match_pattern = re.compile("(\w{4,6}) (\d{4}) - (\w{3,4})-(\d{3})-(\d{3}) - (.+)") self.__course_id_match_pattern = re.compile("""\\\/home\\\/(\d+)""") self.__datadir = os.environ['HOME']+"/.libmycourses" if not os.path.exists(self.__datadir): os.mkdir(self.__datadir) def login(self, user): self.user = user self.__do_login() if self.loginsuccess: with open(self.__datadir+"/"+self.user.username, 'w') as f: pickle.dump(self.session, f) def __parse(self,source): res = BeautifulSoup(source) courses_containing_nodes = res.find_all("li", class_="d2l-itemlist-simple d2l-itemlist-arrow d2l-itemlist-short") ids = self.__course_id_match_pattern.finditer(source) for course_containing_node in courses_containing_nodes: strings = course_containing_node.stripped_strings m = self.__course_match_pattern.match(strings.next()) if m != None: c = course.course(m.group(1),m.group(2),m.group(3),m.group(4),m.group(5),m.group(6),ids.next().group(1), self.session) self.user.courses.append(c) def __do_login(self): # try loading previous session try: with open(self.__datadir+"/"+self.user.username, 'r') as f: self.session = pickle.load(f) except: pass r = self.session.get("https://mycourses2.mcgill.ca/d2l/m/home") if "Home - myCourses" in r.text: self.loginsuccess = True self.__parse(r.text) return # first get the index page of mycourses r = self.session.get(self.__mycourses_index_page) # then go to shibboleth login page r = self.session.get(self.__shibboleth_login_page) # make login payload data payload = {'j_username': self.user.username, 'j_password': self.user.password} r = self.session.post(self.__shibboleth_domain + '/idp/Authn/UserPassword', data=payload) res = BeautifulSoup(r.text) # continue button must be pressed manually continue_form_url = "https://mycourses2.mcgill.ca/Shibboleth.sso/SAML2/POST" # use beautiful soup to find RelayState and SAMLResponse try: RelayState = res.find(attrs={"name": "RelayState"})['value'] SAMLResponse = res.find(attrs={"name": "SAMLResponse"})['value'] except: self.loginsuccess = False raise LoginError("Cannot retrieve SAMLResponse, username and password are probably wrong") # build new payload payload = {'RelayState': RelayState, 'SAMLResponse': SAMLResponse} r = self.session.post(continue_form_url, data=payload) r = self.session.get("https://mycourses2.mcgill.ca/d2l/lp/auth/login/ProcessLoginActions.d2l") result = r.text if not "Home - myCourses" in result: self.loginsuccess = False raise LoginError("Cannot complete final login step") self.loginsuccess = True self.__parse(result) class LoginError(Exception): def __init__(self,value): self.value = value def __str__(self): return repr(self.value)
# -*- coding: utf-8 -*- from __future__ import absolute_import, print_function, unicode_literals import os.path from collections import OrderedDict from contextlib import contextmanager from copy import deepcopy from tempfile import mkdtemp from django.conf import settings from django.core.handlers.base import BaseHandler from django.http import SimpleCookie from django.test import RequestFactory, TestCase, TransactionTestCase from django.utils.functional import SimpleLazyObject from django.utils.six import StringIO from .utils import UserLoginContext, create_user, get_user_model, reload_urls, temp_dir try: from unittest.mock import patch except ImportError: from mock import patch class BaseTestCaseMixin(object): """ Utils mixin that provides some helper methods to setup and interact with Django testing framework. """ request_factory = None user = None user_staff = None user_normal = None site_1 = None languages = None _login_context = None image_name = 'test_image.jpg' #: Username for auto-generated superuser _admin_user_username = 'admin' #: Password for auto-generated superuser _admin_user_password = 'admin' #: Email for auto-generated superuser _admin_user_email = '[email protected]' #: Username for auto-generated staff user _staff_user_username = 'staff' #: Password for auto-generated staff user _staff_user_password = 'staff' #: Email for auto-generated staff user _staff_user_email = '[email protected]' #: Username for auto-generated non-staff user _user_user_username = 'normal' #: Password for auto-generated non-staff user _user_user_password = 'normal' #: Email for auto-generated non-staff user _user_user_email = '[email protected]' _pages_data = () """ List of pages data for the different languages. Each item of the list is a dictionary containing the attributes (as accepted by ``cms.api.create_page``) of the page to be created. The first language will be created with ``cms.api.create_page`` the following languages using ``cms.api.create_title`` Example: Single page created in en, fr, it languages:: _pages_data = ( { 'en': {'title': 'Page title', 'template': 'page.html', 'publish': True}, 'fr': {'title': 'Titre', 'publish': True}, 'it': {'title': 'Titolo pagina', 'publish': False} }, ) """ @classmethod def setUpClass(cls): from django.contrib.sites.models import Site cls.request_factory = RequestFactory() cls.user = create_user( cls._admin_user_username, cls._admin_user_email, cls._admin_user_password, is_staff=True, is_superuser=True ) cls.user_staff = create_user( cls._staff_user_username, cls._staff_user_email, cls._staff_user_password, is_staff=True, is_superuser=False ) cls.user_normal = create_user( cls._user_user_username, cls._user_user_email, cls._user_user_password, is_staff=False, is_superuser=False ) cls.site_1 = Site.objects.all().first() try: from cms.utils import get_language_list cls.languages = get_language_list() except ImportError: cls.languages = [x[0] for x in settings.LANGUAGES] super(BaseTestCaseMixin, cls).setUpClass() @classmethod def tearDownClass(cls): super(BaseTestCaseMixin, cls).tearDownClass() User = get_user_model() User.objects.all().delete() @contextmanager def temp_dir(self): """ Context manager to operate on a temporary directory """ yield temp_dir() def reload_model(self, obj): """ Reload a models instance from database :param obj: model instance to reload :return: the reloaded model instance """ return obj.__class__.objects.get(pk=obj.pk) @staticmethod def reload_urlconf(urlconf=None): reload_urls(settings, urlconf) def login_user_context(self, user, password=None): """ Context manager to make logged in requests :param user: user username :param password: user password (if omitted, username is used) """ return UserLoginContext(self, user, password) def create_user(self, username, email, password, is_staff=False, is_superuser=False, base_cms_permissions=False, permissions=None): """ Creates a user with the given properties :param username: Username :param email: Email :param password: password :param is_staff: Staff status :param is_superuser: Superuser status :param base_cms_permissions: Base django CMS permissions :param permissions: Other permissions :return: User instance """ return create_user(username, email, password, is_staff, is_superuser, base_cms_permissions, permissions) def get_pages_data(self): """ Construct a list of pages in the different languages available for the project. Default implementation is to return the :py:attr:`_pages_data` attribute :return: list of pages data """ return self._pages_data def get_pages(self): """ Create pages using self._pages_data and self.languages :return: list of created pages """ return self.create_pages(self._pages_data, self.languages) @staticmethod def create_pages(source, languages): """ Build pages according to the pages data provided by :py:meth:`get_pages_data` and returns the list of the draft version of each """ from cms.api import create_page, create_title pages = OrderedDict() has_apphook = False home_set = False for page_data in source: main_data = deepcopy(page_data[languages[0]]) if 'publish' in main_data: main_data['published'] = main_data.pop('publish') main_data['language'] = languages[0] if main_data.get('parent', None): main_data['parent'] = pages[main_data['parent']] page = create_page(**main_data) has_apphook = has_apphook or 'apphook' in main_data for lang in languages[1:]: if lang in page_data: publish = False title_data = deepcopy(page_data[lang]) if 'publish' in title_data: publish = title_data.pop('publish') if 'published' in title_data: publish = title_data.pop('published') title_data['language'] = lang title_data['page'] = page create_title(**title_data) if publish: page.publish(lang) if ( not home_set and hasattr(page, 'set_as_homepage') and main_data.get('published', False) ): page.set_as_homepage() home_set = True page = page.get_draft_object() pages[page.get_slug(languages[0])] = page if has_apphook: reload_urls(settings, cms_apps=True) return list(pages.values()) def get_content_renderer(self, request): """ Returns a the plugin renderer. Only for django CMS 3.4+ :param request: request instance :return: ContentRenderer instance """ from cms.plugin_rendering import ContentRenderer return ContentRenderer(request) def get_plugin_context(self, page, lang, plugin, edit=False): """ Returns a context suitable for CMSPlugin.render_plugin / render_placeholder :param page: Page object :param lang: Current language :param plugin: Plugin instance :param edit: Enable edit mode for rendering :return: PluginContext instance """ from cms.plugin_rendering import PluginContext from sekizai.context_processors import sekizai request = self.get_page_request(page, self.user, lang=lang, edit=edit) context = { 'request': request } renderer = self.get_content_renderer(request) if renderer: context['cms_content_renderer'] = renderer context.update(sekizai(request)) return PluginContext(context, plugin, plugin.placeholder) def render_plugin(self, page, lang, plugin, edit=False): """ Renders a single plugin using CMSPlugin.render_plugin :param page: Page object :param lang: Current language :param plugin: Plugin instance :param edit: Enable edit mode for rendering :return: Rendered plugin """ context = self.get_plugin_context(page, lang, plugin, edit) content_renderer = context['cms_content_renderer'] rendered = content_renderer.render_plugin( instance=plugin, context=context, placeholder=plugin.placeholder, ) return rendered def _prepare_request(self, request, page, user, lang, use_middlewares, use_toolbar=False, secure=False): from django.contrib.auth.models import AnonymousUser from importlib import import_module engine = import_module(settings.SESSION_ENGINE) request.current_page = SimpleLazyObject(lambda: page) if not user: if self._login_context: user = self._login_context.user else: user = AnonymousUser() if user.is_authenticated: session_key = user._meta.pk.value_to_string(user) else: session_key = 'session_key' request.user = user request._cached_user = user request.session = engine.SessionStore(session_key) if secure: request.environ['SERVER_PORT'] = str('443') request.environ['wsgi.url_scheme'] = str('https') request.cookies = SimpleCookie() request.errors = StringIO() request.LANGUAGE_CODE = lang if request.method == 'POST': request._dont_enforce_csrf_checks = True # Let's use middleware in case requested, otherwise just use CMS toolbar if needed if use_middlewares: self._apply_middlewares(request) elif use_toolbar: from cms.middleware.toolbar import ToolbarMiddleware mid = ToolbarMiddleware() mid.process_request(request) return request def _apply_middlewares(self, request): handler = BaseHandler() from django.utils.module_loading import import_string for middleware_path in reversed(settings.MIDDLEWARE): middleware = import_string(middleware_path) mw_instance = middleware(handler) if hasattr(mw_instance, 'process_request'): mw_instance.process_request(request) def request( self, path, method='get', data=None, page=None, lang='', user=None, use_middlewares=False, secure=False, use_toolbar=False ): """ Create a request for the given parameters. Request will be enriched with: * session * cookies * user (Anonymous if :param:user is `None`) * django CMS toolbar (is set) * current_page (if provided) :param path: request path :type path: str :param method: HTTP verb to use :type method: str :param data: payload to pass to the underlying :py:class:`RequestFactory` method :type data: dict :param page: current page object :type page: cms.models.Page :param lang: request language :type lang: str :param user: current user :type user: :py:class:`django.contrib.auth.AbstractUser` :param use_middlewares: pass the request through configured middlewares :type use_middlewares: bool :param secure: create HTTPS request :type secure: bool :param use_toolbar: add django CMS toolbar :type secure: bool :return: request """ request = getattr(RequestFactory(), method)(path, data=data, secure=secure) return self._prepare_request( request, page, user, lang, use_middlewares, secure=secure, use_toolbar=use_toolbar ) def get_request( self, page, lang, user=None, path=None, use_middlewares=False, secure=False, use_toolbar=False ): """ Create a GET request for the given page and language :param page: current page object :param lang: request language :param user: current user :param path: path (if different from the current page path) :param use_middlewares: pass the request through configured middlewares. :param secure: create HTTPS request :param use_toolbar: add django CMS toolbar :return: request """ path = path or page and page.get_absolute_url(lang) return self.request( path, method='get', data={}, page=page, lang=lang, user=user, use_middlewares=use_middlewares, secure=secure, use_toolbar=use_toolbar ) def post_request(self, page, lang, data, user=None, path=None, use_middlewares=False, secure=False, use_toolbar=False): """ Create a POST request for the given page and language with CSRF disabled :param page: current page object :param lang: request language :param data: POST payload :param user: current user :param path: path (if different from the current page path) :param use_middlewares: pass the request through configured middlewares. :param secure: create HTTPS request :param use_toolbar: add django CMS toolbar :return: request """ path = path or page and page.get_absolute_url(lang) return self.request( path, method='post', data=data, page=page, lang=lang, user=user, use_middlewares=use_middlewares, secure=secure, use_toolbar=use_toolbar ) def get_page_request(self, page, user, path=None, edit=False, lang='en', use_middlewares=False, secure=False): """ Create a GET request for the given page suitable for use the django CMS toolbar This method requires django CMS installed to work. It will raise an ImportError otherwise; not a big deal as this method makes sense only in a django CMS environment :param page: current page object :param user: current user :param path: path (if different from the current page path) :param edit: whether enabling editing mode :param lang: request language :param use_middlewares: pass the request through configured middlewares. :param secure: create HTTPS request :return: request """ from cms.utils.conf import get_cms_setting edit_on = get_cms_setting('CMS_TOOLBAR_URL__EDIT_ON') path = path or page and page.get_absolute_url(lang) if edit: path = '{0}?{1}'.format(path, edit_on) request = self.request_factory.get(path, secure=secure) return self._prepare_request(request, page, user, lang, use_middlewares, use_toolbar=True, secure=secure) @staticmethod def create_image(mode='RGB', size=(800, 600)): """ Create a random image suitable for saving as DjangoFile :param mode: color mode :param size: tuple of width, height :return: image object It requires Pillow installed in the environment to work """ from PIL import Image as PilImage, ImageDraw image = PilImage.new(mode, size) draw = ImageDraw.Draw(image) x_bit, y_bit = size[0] // 10, size[1] // 10 draw.rectangle((x_bit, y_bit * 2, x_bit * 7, y_bit * 3), 'red') draw.rectangle((x_bit * 2, y_bit, x_bit * 3, y_bit * 8), 'red') return image def create_django_image_obj(self): # pragma: no cover return self.create_django_image_object() def create_django_image_object(self): """ Create a django image file object suitable for FileField It also sets the following attributes: * ``self.image_name``: the image base name * ``self.filename``: the complete image path :return: django file object It requires Pillow installed in the environment to work """ img_obj, self.filename = self.create_django_image() self.image_name = img_obj.name return img_obj @staticmethod def create_django_image(): """ Create a django image file object suitable for FileField It also sets the following attributes: * ``self.image_name``: the image base name * ``self.filename``: the complete image path :return: (django file object, path to file image) It requires Pillow installed in the environment to work """ from django.core.files import File as DjangoFile img = BaseTestCase.create_image() image_name = 'test_file.jpg' if settings.FILE_UPLOAD_TEMP_DIR: tmp_dir = settings.FILE_UPLOAD_TEMP_DIR else: tmp_dir = mkdtemp() filename = os.path.join(tmp_dir, image_name) img.save(filename, 'JPEG') return DjangoFile(open(filename, 'rb'), name=image_name), filename def create_filer_image_object(self): """ Create a filer image object suitable for FilerImageField It also sets the following attributes: * ``self.image_name``: the image base name * ``self.filename``: the complete image path * ``self.filer_image``: the filer image object :return: filer image object It requires Pillow and django-filer installed in the environment to work """ self.filer_image = self.create_filer_image(self.user, self.image_name) return self.filer_image @staticmethod def create_filer_image(user, image_name): """ Create a filer image object suitable for FilerImageField It also sets the following attributes: * ``self.image_name``: the image base name * ``self.filename``: the complete image path * ``self.filer_image``: the filer image object :param user: image owner :param image_name: image name :return: filer image object It requires Pillow and django-filer installed in the environment to work """ from filer.models import Image file_obj, filename = BaseTestCase.create_django_image() filer_image = Image.objects.create( owner=user, file=file_obj, original_filename=image_name ) return filer_image @contextmanager def captured_output(self): """ Context manager that patches stdout / stderr with StringIO and return the instances. Use it to test output :return: stdout, stderr wrappers """ with patch('sys.stdout', new_callable=StringIO) as out: with patch('sys.stderr', new_callable=StringIO) as err: yield out, err class BaseTestCase(BaseTestCaseMixin, TestCase): """ Base class that implements :py:class:`BaseTestCaseMixin` and :py:class:`django.tests.TestCase` """ class BaseTransactionTestCase(BaseTestCaseMixin, TransactionTestCase): """ Base class that implements :py:class:`BaseTestCaseMixin` and :py:class:`django.tests.TransactionTestCase` """
#!/usr/bin/env python3 import os import sys import time import random import requests import webbrowser import signal import sys def signal_handler(signal, frame): print('👇 You pressed Ctrl+C! Skipping getting Feedly article.') sys.exit(0) signal.signal(signal.SIGINT, signal_handler) try: FEEDLY_TOKEN = os.environ["FEEDLY_TOKEN"] except KeyError: print("🙅‍♂️ No 'FEEDLY_TOKEN' environment found! Cannot continue.") sys.exit(1) FEEDLY_URL = "https://cloud.feedly.com/v3" request = requests.Session() request.headers.update( {"Content-Type": "application/json", "Authorization": f"OAuth {FEEDLY_TOKEN}"} ) try: response = request.get(FEEDLY_URL + "/profile") if not response.ok: print( f'🙅‍♂️ {response.json()["errorMessage"].title()}.\n' 'To refresh "FEEDLY_TOKEN" go to https://feedly.com/v3/auth/dev.\n' "Don't forget to run `$ update_feedly_token \"FEEDLY_TOKEN\"` after 👍" ) sys.exit(1) except Exception as e: print(f'🙅‍♂️ Something wrong happend: {str(e)}') sys.exit(1) stream_id = f'user/{response.json()["id"]}/tag/global.saved' continuation = "" articles = [] while True: # Query feedly API to get all Saved articles, and parse all Article ids, storing them in `articles` variable. try: response = request.get( FEEDLY_URL + f"/streams/contents?streamId={stream_id}&continuation={continuation}" ) items = response.json()["items"] articles.extend([item.get("id") for item in items]) except: # Might have hit the threshold of requests. Stop fetching and just use the ones we already have break # Then check if is there any more pages left, if not, then break out of the while loop. try: continuation = response.json()["continuation"] print(f'\r{random.choice(["🤔", "👍", "⚡️", "🥴", "👏"])}', end='', flush=True) except KeyError: break # Print message and sleep for a second so we can read it. Finally open page on a web browser. print(f'\n✅ Found {len(articles)} articles in "Saved for later"!') time.sleep(1) # Get article count if given, get only 1 otherwise count = int(sys.argv[1] if len(sys.argv) > 1 else 1) for _ in range(count): if articles: article = random.choice(articles) webbrowser.open(f"https://feedly.com/i/entry/{article}") articles.remove(article)
# coding: utf-8 # # Copyright 2014 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, softwar # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from extensions.rich_text_components import base class Image(base.BaseRichTextComponent): """A rich-text component representing an inline image.""" name = 'Image' category = 'Basic Input' description = 'An image.' frontend_name = 'image' tooltip = 'Insert image' _customization_arg_specs = [{ 'name': 'filepath', 'description': ( 'The name of the image file. (Allowed extensions: gif, jpeg, jpg, ' 'png.)'), 'schema': { 'type': 'custom', 'obj_type': 'Filepath', }, 'default_value': '', }, { 'name': 'alt', 'description': 'Alternative text (for screen readers)', 'schema': { 'type': 'unicode', }, 'default_value': '', }] icon_data_url = ( '' 'ABGdBTUEAAK/INwWK6QAAABl0RVh0%0AU29mdHdhcmUAQWRvYmUgSW1hZ2VSZWFkeXHJZ' 'TwAAAHwSURBVDjLpZM9a1RBFIafM/fevfcmC7uQ%0AjWEjUZKAYBHEVEb/gIWFjVVSWEj' '6gI0/wt8gprPQykIsTP5BQLAIhBVBzRf52Gw22bk7c8YiZslu%0AgggZppuZ55z3nfdIC' 'IHrrBhg%2BePaa1WZPyk0s%2B6KWwM1khiyhDcvns4uxQAaZOHJo4nRLMtEJPpn%0AxY6' 'Cd10%2BfNl4DpwBTqymaZrJ8uoBHfZoyTqTYzvkSRMXlP2jnG8bFYbCXWJGePlsEq8iPQ' 'mFA2Mi%0AjEBhtpis7ZCWftC0LZx3xGnK1ESd741hqqUaqgMeAChgjGDDLqXkgMPTJtZ3' 'KJzDhTZpmtK2OSO5%0AIRB6xvQDRAhOsb5Lx1lOu5ZCHV4B6RLUExvh4s%2BZntHhDJAx' 'Sqs9TCDBqsc6j0iJdqtMuTROFBkI%0AcllCCGcSytFNfm1tU8k2GRo2pOI43h9ie6tOvT' 'JFbORyDsJFQHKD8fw%2BP9dWqJZ/I96TdEa5Nb1A%0AOavjVfti0dfB%2Bt4iXhWvyh27' 'y9zEbRRobG7z6fgVeqSoKvB5oIMQEODx7FLvIJo55KS9R7b5ldrD%0AReajpC%2BZ5z7G' 'AHJFXn1exedVbG36ijwOmJgl0kS7lXtjD0DkLyqc70uPnSuIIwk9QCmWd%2B9XGnOF%0A' 'DzP/M5xxBInhLYBcd5z/AAZv2pOvFcS/AAAAAElFTkSuQmCC%0A' )
# # Copyright (c) 2010-2014, MIT Probabilistic Computing Project # # Lead Developers: Dan Lovell and Jay Baxter # Authors: Dan Lovell, Baxter Eaves, Jay Baxter, Vikash Mansinghka # Research Leads: Vikash Mansinghka, Patrick Shafto # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import copy import itertools import collections import numpy import crosscat.cython_code.State as State import crosscat.EngineTemplate as EngineTemplate import crosscat.utils.sample_utils as su import crosscat.utils.general_utils as gu import crosscat.utils.inference_utils as iu # for default_diagnostic_func_dict below import crosscat.utils.diagnostic_utils class LocalEngine(EngineTemplate.EngineTemplate): """A simple interface to the Cython-wrapped C++ engine LocalEngine holds no state other than a seed generator. Methods use resources on the local machine. """ def __init__(self, seed=None): """Initialize a LocalEngine This is really just setting the initial seed to be used for initializing CrossCat states. Seeds are generated sequentially """ super(LocalEngine, self).__init__(seed=seed) self.mapper = map self.do_initialize = _do_initialize_tuple self.do_analyze = _do_analyze_tuple self.do_insert = _do_insert_tuple return def get_initialize_arg_tuples(self, M_c, M_r, T, initialization, row_initialization, n_chains, ROW_CRP_ALPHA_GRID, COLUMN_CRP_ALPHA_GRID, S_GRID, MU_GRID, N_GRID, ): seeds = [self.get_next_seed() for seed_idx in range(n_chains)] arg_tuples = itertools.izip( seeds, itertools.cycle([M_c]), itertools.cycle([M_r]), itertools.cycle([T]), itertools.cycle([initialization]), itertools.cycle([row_initialization]), itertools.cycle([ROW_CRP_ALPHA_GRID]), itertools.cycle([COLUMN_CRP_ALPHA_GRID]), itertools.cycle([S_GRID]), itertools.cycle([MU_GRID]), itertools.cycle([N_GRID]), ) return arg_tuples def initialize(self, M_c, M_r, T, initialization='from_the_prior', row_initialization=-1, n_chains=1, ROW_CRP_ALPHA_GRID=(), COLUMN_CRP_ALPHA_GRID=(), S_GRID=(), MU_GRID=(), N_GRID=31, # subsample=False, # subsample_proportion=None, # subsample_rows_list=None, ): """Sample a latent state from prior :param M_c: The column metadata :type M_c: dict :param M_r: The row metadata :type M_r: dict :param T: The data table in mapped representation (all floats, generated by data_utils.read_data_objects) :type T: list of lists :returns: X_L, X_D -- the latent state """ # FIXME: why is M_r passed? arg_tuples = self.get_initialize_arg_tuples( M_c, M_r, T, initialization, row_initialization, n_chains, ROW_CRP_ALPHA_GRID, COLUMN_CRP_ALPHA_GRID, S_GRID, MU_GRID, N_GRID, ) chain_tuples = self.mapper(self.do_initialize, arg_tuples) X_L_list, X_D_list = zip(*chain_tuples) if n_chains == 1: X_L_list, X_D_list = X_L_list[0], X_D_list[0] return X_L_list, X_D_list def get_insert_arg_tuples(self, M_c, T, X_L_list, X_D_list, new_rows, N_GRID, CT_KERNEL): arg_tuples = itertools.izip( itertools.cycle([M_c]), itertools.cycle([T]), X_L_list, X_D_list, itertools.cycle([new_rows]), itertools.cycle([N_GRID]), itertools.cycle([CT_KERNEL]), ) return arg_tuples def insert(self, M_c, T, X_L_list, X_D_list, new_rows=None, N_GRID=31, CT_KERNEL=0): """ Insert mutates the data T. """ if new_rows is None: raise ValueError("new_row must exist") if not isinstance(new_rows, list): raise TypeError('new_rows must be list of lists') if not isinstance(new_rows[0], list): raise TypeError('new_rows must be list of lists') X_L_list, X_D_list, was_multistate = su.ensure_multistate(X_L_list, X_D_list) # get insert arg tuples arg_tuples = self.get_insert_arg_tuples(M_c, T, X_L_list, X_D_list, new_rows, N_GRID, CT_KERNEL) chain_tuples = self.mapper(self.do_insert, arg_tuples) X_L_list, X_D_list = zip(*chain_tuples) if not was_multistate: X_L_list, X_D_list = X_L_list[0], X_D_list[0] T.extend(new_rows) ret_tuple = X_L_list, X_D_list, T return ret_tuple def get_analyze_arg_tuples(self, M_c, T, X_L_list, X_D_list, kernel_list, n_steps, c, r, max_iterations, max_time, diagnostic_func_dict, every_N, ROW_CRP_ALPHA_GRID, COLUMN_CRP_ALPHA_GRID, S_GRID, MU_GRID, N_GRID, do_timing, CT_KERNEL): n_chains = len(X_L_list) seeds = [self.get_next_seed() for seed_idx in range(n_chains)] arg_tuples = itertools.izip( seeds, X_L_list, X_D_list, itertools.cycle([M_c]), itertools.cycle([T]), itertools.cycle([kernel_list]), itertools.cycle([n_steps]), itertools.cycle([c]), itertools.cycle([r]), itertools.cycle([max_iterations]), itertools.cycle([max_time]), itertools.cycle([diagnostic_func_dict]), itertools.cycle([every_N]), itertools.cycle([ROW_CRP_ALPHA_GRID]), itertools.cycle([COLUMN_CRP_ALPHA_GRID]), itertools.cycle([S_GRID]), itertools.cycle([MU_GRID]), itertools.cycle([N_GRID]), itertools.cycle([do_timing]), itertools.cycle([CT_KERNEL]), ) return arg_tuples def analyze(self, M_c, T, X_L, X_D, kernel_list=(), n_steps=1, c=(), r=(), max_iterations=-1, max_time=-1, do_diagnostics=False, diagnostics_every_N=1, ROW_CRP_ALPHA_GRID=(), COLUMN_CRP_ALPHA_GRID=(), S_GRID=(), MU_GRID=(), N_GRID=31, do_timing=False, CT_KERNEL=0, ): """Evolve the latent state by running MCMC transition kernels :param M_c: The column metadata :type M_c: dict :param T: The data table in mapped representation (all floats, generated by data_utils.read_data_objects) :param X_L: the latent variables associated with the latent state :type X_L: dict :param X_D: the particular cluster assignments of each row in each view :type X_D: list of lists :param kernel_list: names of the MCMC transition kernels to run :type kernel_list: list of strings :param n_steps: the number of times to run each MCMC transition kernel :type n_steps: int :param c: the (global) column indices to run MCMC transition kernels on :type c: list of ints :param r: the (global) row indices to run MCMC transition kernels on :type r: list of ints :param max_iterations: the maximum number of times ot run each MCMC transition kernel. Applicable only if max_time != -1. :type max_iterations: int :param max_time: the maximum amount of time (seconds) to run MCMC transition kernels for before stopping to return progress :type max_time: float :returns: X_L, X_D -- the evolved latent state """ if n_steps <= 0: raise ValueError("You must do at least one analyze step.") if CT_KERNEL not in [0, 1]: raise ValueError("CT_KERNEL must be 0 (Gibbs) or 1 (MH)") if do_timing: # diagnostics and timing are exclusive do_diagnostics = False diagnostic_func_dict, reprocess_diagnostics_func = do_diagnostics_to_func_dict( do_diagnostics) X_L_list, X_D_list, was_multistate = su.ensure_multistate(X_L, X_D) arg_tuples = self.get_analyze_arg_tuples(M_c, T, X_L_list, X_D_list, kernel_list, n_steps, c, r, max_iterations, max_time, diagnostic_func_dict, diagnostics_every_N, ROW_CRP_ALPHA_GRID, COLUMN_CRP_ALPHA_GRID, S_GRID, MU_GRID, N_GRID, do_timing, CT_KERNEL, ) chain_tuples = self.mapper(self.do_analyze, arg_tuples) X_L_list, X_D_list, diagnostics_dict_list = zip(*chain_tuples) if do_timing: timing_list = diagnostics_dict_list if not was_multistate: X_L_list, X_D_list = X_L_list[0], X_D_list[0] ret_tuple = X_L_list, X_D_list # if diagnostic_func_dict is not None: diagnostics_dict = munge_diagnostics(diagnostics_dict_list) if reprocess_diagnostics_func is not None: diagnostics_dict = reprocess_diagnostics_func(diagnostics_dict) ret_tuple = ret_tuple + (diagnostics_dict, ) if do_timing: ret_tuple = ret_tuple + (timing_list, ) return ret_tuple def _sample_and_insert(self, M_c, T, X_L, X_D, matching_row_indices): p_State = State.p_State(M_c, T, X_L, X_D) draws = [] for matching_row_idx in matching_row_indices: random_seed = self.get_next_seed() draw = p_State.get_draw(matching_row_idx, random_seed) p_State.insert_row(draw, matching_row_idx) draws.append(draw) T.append(draw) X_L, X_D = p_State.get_X_L(), p_State.get_X_D() return draws, T, X_L, X_D def sample_and_insert(self, M_c, T, X_L, X_D, matching_row_idx): matching_row_indices = gu.ensure_listlike(matching_row_idx) if len(matching_row_indices) == 0: matching_row_indices = range(len(T)) pass was_single_row = len(matching_row_indices) == 1 draws, T, X_L, X_D = self._sample_and_insert(M_c, T, X_L, X_D, matching_row_indices) if was_single_row: draws = draws[0] pass return draws, T, X_L, X_D def simple_predictive_sample(self, M_c, X_L, X_D, Y, Q, n=1): """Sample values from the predictive distribution of the given latent state :param M_c: The column metadata :type M_c: dict :param X_L: the latent variables associated with the latent state :type X_L: dict :param X_D: the particular cluster assignments of each row in each view :type X_D: list of lists :param Y: A list of constraints to apply when sampling. Each constraint is a triplet of (r, d, v): r is the row index, d is the column index and v is the value of the constraint :type Y: list of lists :param Q: A list of values to sample. Each value is doublet of (r, d): r is the row index, d is the column index :type Q: list of lists :param n: the number of samples to draw :type n: int :returns: list of floats -- samples in the same order specified by Q """ get_next_seed = self.get_next_seed samples = _do_simple_predictive_sample( M_c, X_L, X_D, Y, Q, n, get_next_seed) return samples def simple_predictive_probability(self, M_c, X_L, X_D, Y, Q): """Calculate the probability of a cell taking a value given a latent state :param M_c: The column metadata :type M_c: dict :param X_L: the latent variables associated with the latent state :type X_L: dict :param X_D: the particular cluster assignments of each row in each view :type X_D: list of lists :param Y: A list of constraints to apply when sampling. Each constraint is a triplet of (r, d, v): r is the row index, d is the column index and v is the value of the constraint :type Y: list of lists :param Q: A list of values to sample. Each value is triplet of (r, d, v): r is the row index, d is the column index, and v is the value at which the density is evaluated. :type Q: list of lists :returns: list of floats -- probabilities of the values specified by Q """ return su.simple_predictive_probability(M_c, X_L, X_D, Y, Q) def simple_predictive_probability_multistate(self, M_c, X_L_list, X_D_list, Y, Q): """Calculate the probability of a cell taking a value given a latent state :param M_c: The column metadata :type M_c: dict :param X_L_list: list of the latent variables associated with the latent state :type X_L_list: list of dict :param X_D_list: list of the particular cluster assignments of each row in each view :type X_D_list: list of list of lists :param Y: A list of constraints to apply when sampling. Each constraint is a triplet of (r,d,v): r is the row index, d is the column index and v is the value of the constraint :type Y: list of lists :param Q: A list of values to sample. Each value is triplet of (r,d,v): r is the row index, d is the column index, and v is the value at which the density is evaluated. :type Q: list of lists :returns: list of floats -- probabilities of the values specified by Q """ return su.simple_predictive_probability_multistate(M_c, X_L_list, X_D_list, Y, Q) def mutual_information(self, M_c, X_L_list, X_D_list, Q, n_samples=1000): """ Return the estimated mutual information for each pair of columns on Q given the set of samples. :param M_c: The column metadata :type M_c: dict :param X_L_list: list of the latent variables associated with the latent state :type X_L_list: list of dict :param X_D_list: list of the particular cluster assignments of each row in each view :type X_D_list: list of list of lists :param Q: List of tuples where each tuple contains the two column indexes to compare :type Q: list of two-tuples of ints :param n_samples: the number of simple predictive samples to use :type n_samples: int :returns: list of list, where each sublist is a set of MIs and Linfoots from each crosscat sample. """ return iu.mutual_information(M_c, X_L_list, X_D_list, Q, n_samples) def row_structural_typicality(self, X_L_list, X_D_list, row_id): """ Returns the typicality (opposite of anomalousness) of the given row. :param X_L_list: list of the latent variables associated with the latent state :type X_L_list: list of dict :param X_D_list: list of the particular cluster assignments of each row in each view :type X_D_list: list of list of lists :param row_id: id of the target row :type row_id: int :returns: float, the typicality, from 0 to 1 """ return su.row_structural_typicality(X_L_list, X_D_list, row_id) def column_structural_typicality(self, X_L_list, col_id): """ Returns the typicality (opposite of anomalousness) of the given column. :param X_L_list: list of the latent variables associated with the latent state :type X_L_list: list of dict :param col_id: id of the target col :type col_id: int :returns: float, the typicality, from 0 to 1 """ return su.column_structural_typicality(X_L_list, col_id) def similarity(self, M_c, X_L_list, X_D_list, given_row_id, target_row_id, target_columns=None): """Computes the similarity of the given row to the target row, averaged over all the column indexes given by target_columns. :param M_c: The column metadata :type M_c: dict :param X_L: list of the latent variables associated with the latent state :type X_L: list of dicts :param X_D: list of the particular cluster assignments of each row in each view :type X_D: list of list of lists :param given_row_id: the id of one of the rows to measure similarity between :type given_row_id: int :param target_row_id: the id of the other row to measure similarity between :type target_row_id: int :param target_columns: the columns to average the similarity over. defaults to all columns. :type target_columns: int, string, or list of ints :returns: float """ return su.similarity(M_c, X_L_list, X_D_list, given_row_id, target_row_id, target_columns) def impute(self, M_c, X_L, X_D, Y, Q, n): """Impute values from the predictive distribution of the given latent state :param M_c: The column metadata :type M_c: dict :param X_L: the latent variables associated with the latent state :type X_L: dict :param X_D: the particular cluster assignments of each row in each view :type X_D: list of lists :param Y: A list of constraints to apply when sampling. Each constraint is a triplet of (r,d,v): r is the row index, d is the column index and v is the value of the constraint :type Y: list of lists :param Q: A list of values to sample. Each value is doublet of (r, d): r is the row index, d is the column index :type Q: list of lists :param n: the number of samples to use in the imputation :type n: int :returns: list of floats -- imputed values in the same order as specified by Q """ e = su.impute(M_c, X_L, X_D, Y, Q, n, self.get_next_seed) return e def impute_and_confidence(self, M_c, X_L, X_D, Y, Q, n): """Impute values and confidence of the value from the predictive distribution of the given latent state :param M_c: The column metadata :type M_c: dict :param X_L: the latent variables associated with the latent state :type X_L: dict :param X_D: the particular cluster assignments of each row in each view :type X_D: list of lists :param Y: A list of constraints to apply when sampling. Each constraint is a triplet of (r, d, v): r is the row index, d is the column index and v is the value of the constraint :type Y: list of lists :param Q: A list of values to sample. Each value is doublet of (r, d): r is the row index, d is the column index :type Q: list of lists :param n: the number of samples to use in the imputation :type n: int :returns: list of lists -- list of (value, confidence) tuples in the same order as specified by Q """ if isinstance(X_L, (list, tuple)): assert isinstance(X_D, (list, tuple)) # TODO: multistate impute doesn't exist yet # e,confidence = su.impute_and_confidence_multistate(M_c, X_L, X_D, Y, Q, n, # self.get_next_seed) e, confidence = su.impute_and_confidence( M_c, X_L, X_D, Y, Q, n, self.get_next_seed) else: e, confidence = su.impute_and_confidence( M_c, X_L, X_D, Y, Q, n, self.get_next_seed) return (e, confidence) def ensure_col_dep_constraints(self, M_c, M_r, T, X_L, X_D, dep_constraints, max_rejections=100): """Ensures dependencey or indepdendency between columns. dep_constraints is a list of where each entry is an (int, int, bool) tuple where the first two entries are column indices and the third entry describes whether the columns are to be dependent (True) or independent (False). Behavior Notes: ensure_col_dep_constraints will add col_esnure enforcement to the metadata (top level of X_L); unensure_col will remove it. Calling ensure_col_dep_constraints twice will replace the first ensure. This operation destroys the existing X_L and X_D metadata; the user should be aware that it will clobber any existing analyses. Implementation Notes: Initialization is implemented via rejection (by repeatedly initalizing states and throwing ones out that do not adhear to dep_constraints). This means that in the event the contraints in dep_constraints are complex, or impossible, that the rejection alogrithm may fail. The returned metadata looks like this: >>> dep_constraints [(1, 2, True), (2, 5, True), (1, 5, True), (1, 3, False)] >>> X_L['col_ensure'] { "dependent" : { 1 : [2, 5], 2 : [1, 5], 5 : [1, 2] }, "independent" : { 1 : [3], 3 : [1] } """ X_L_list, X_D_list, was_multistate = su.ensure_multistate(X_L, X_D) if was_multistate: num_states = len(X_L_list) else: num_states = 1 col_ensure_md = dict() col_ensure_md[True] = dict() col_ensure_md[False] = dict() for col1, col2, dependent in dep_constraints: if col1 == col2: raise ValueError("Cannot specify same columns in dependence"\ " constraints.") if str(col1) in col_ensure_md[dependent]: col_ensure_md[dependent][str(col1)].append(col2) else: col_ensure_md[dependent][str(col1)] = [col2] if col2 in col_ensure_md[dependent]: col_ensure_md[dependent][str(col2)].append(col1) else: col_ensure_md[dependent][str(col2)] = [col1] def assert_dep_constraints(X_L, X_D, dep_constraints): for col1, col2, dep in dep_constraints: if not self.assert_col_dep_constraints(X_L, X_D, col1, col2, dep, True): return False return True X_L_out = [] X_D_out = [] for _ in range(num_states): counter = 0 X_L_i, X_D_i = self.initialize(M_c, M_r, T) while not assert_dep_constraints(X_L_i, X_D_i, dep_constraints): if counter > max_rejections: raise RuntimeError("Could not ranomly generate a partition"\ " that satisfies the constraints in dep_constraints.") counter += 1 X_L_i, X_D_i = self.initialize(M_c, M_r, T) X_L_i['col_ensure'] = dict() X_L_i['col_ensure']['dependent'] = col_ensure_md[True] X_L_i['col_ensure']['independent'] = col_ensure_md[False] X_D_out.append(X_D_i) X_L_out.append(X_L_i) if was_multistate: return X_L_out, X_D_out else: return X_L_out[0], X_D_out[0] def ensure_row_dep_constraint(self, M_c, T, X_L, X_D, row1, row2, dependent=True, wrt=None, max_iter=100, force=False): """Ensures dependencey or indepdendency between rows with respect to (wrt) columns.""" X_L_list, X_D_list, was_multistate = su.ensure_multistate(X_L, X_D) if force: raise NotImplementedError else: kernel_list = ('row_partition_assignements',) for i, (X_L_i, X_D_i) in enumerate(zip(X_L_list, X_D_list)): iters = 0 X_L_tmp = copy.deepcopy(X_L_i) X_D_tmp = copy.deepcopy(X_D_i) while not self.assert_row(X_L_tmp, X_D_tmp, row1, row2, dependent=dependent, wrt=wrt): if iters >= max_iter: raise RuntimeError('Maximum ensure iterations reached.') res = self.analyze(M_c, T, X_L_i, X_D_i, kernel_list=kernel_list, n_steps=1, r=(row1,)) X_L_tmp = res[0] X_D_tmp = res[1] iters += 1 X_L_list[i] = X_L_tmp X_D_list[i] = X_D_tmp if was_multistate: return X_L_list, X_D_list else: return X_L_list[0], X_D_list[0] def assert_col_dep_constraints(self, X_L, X_D, col1, col2, dependent=True, single_bool=False): # TODO: X_D is not used for anything other than ensure_multistate. # I should probably edit ensure_multistate to take X_L or X_D using # keyword arguments. X_L_list, _, was_multistate = su.ensure_multistate(X_L, X_D) model_assertions = [] assertion = True for X_L_i in X_L_list: assg = X_L_i['column_partition']['assignments'] assertion = (assg[col1] == assg[col2]) == dependent if single_bool and not assertion: return False model_assertions.append(assertion) if single_bool: return True if was_multistate: return model_assertions else: return model_assertions[0] def assert_row(self, X_L, X_D, row1, row2, dependent=True, wrt=None): X_L_list, X_D_list, was_multistate = su.ensure_multistate(X_L, X_D) if wrt is None: num_cols = len(X_L_list[0]['column_partition']['assignments']) wrt = range(num_cols) else: if not isinstance(wrt, list): raise TypeError('wrt must be a list') model_assertions = [] for X_L_i, X_D_i in zip(X_L_list, X_D_list): view_assg = X_L_i['column_partition']['assignments'] views_wrt = list(set([view_assg[col] for col in wrt])) model_assertion = True for view in views_wrt: if (X_D_i[view][row1] == X_D_i[view][row2]) != dependent: model_assertion = False break model_assertions.append(model_assertion) if was_multistate: return model_assertions else: return model_assertions[0] pass def do_diagnostics_to_func_dict(do_diagnostics): diagnostic_func_dict = None reprocess_diagnostics_func = None if do_diagnostics: if isinstance(do_diagnostics, (dict,)): diagnostic_func_dict = do_diagnostics else: diagnostic_func_dict = dict(default_diagnostic_func_dict) if 'reprocess_diagnostics_func' in diagnostic_func_dict: reprocess_diagnostics_func = diagnostic_func_dict.pop( 'reprocess_diagnostics_func') return diagnostic_func_dict, reprocess_diagnostics_func def get_value_in_each_dict(key, dict_list): return numpy.array([dict_i[key] for dict_i in dict_list]).T def munge_diagnostics(diagnostics_dict_list): # all dicts should have the same keys diagnostic_names = diagnostics_dict_list[0].keys() diagnostics_dict = { diagnostic_name: get_value_in_each_dict(diagnostic_name, diagnostics_dict_list) for diagnostic_name in diagnostic_names } return diagnostics_dict # switched ordering so args that change come first # FIXME: change LocalEngine.initialze to match ordering here def _do_initialize(SEED, M_c, M_r, T, initialization, row_initialization, ROW_CRP_ALPHA_GRID, COLUMN_CRP_ALPHA_GRID, S_GRID, MU_GRID, N_GRID, ): p_State = State.p_State(M_c, T, initialization=initialization, row_initialization=row_initialization, SEED=SEED, ROW_CRP_ALPHA_GRID=ROW_CRP_ALPHA_GRID, COLUMN_CRP_ALPHA_GRID=COLUMN_CRP_ALPHA_GRID, S_GRID=S_GRID, MU_GRID=MU_GRID, N_GRID=N_GRID, ) X_L = p_State.get_X_L() X_D = p_State.get_X_D() return X_L, X_D def _do_initialize_tuple(arg_tuple): return _do_initialize(*arg_tuple) def _do_insert_tuple(arg_tuple): return _do_insert(*arg_tuple) def _do_insert(M_c, T, X_L, X_D, new_rows, N_GRID, CT_KERNEL): p_State = State.p_State(M_c, T, X_L=X_L, X_D=X_D, N_GRID=N_GRID, CT_KERNEL=CT_KERNEL) row_idx = len(T) for row_data in new_rows: p_State.insert_row(row_data, row_idx) p_State.transition(which_transitions=['row_partition_assignments'], r=[row_idx]) row_idx += 1 X_L_prime = p_State.get_X_L() X_D_prime = p_State.get_X_D() return X_L_prime, X_D_prime # switched ordering so args that change come first # FIXME: change LocalEngine.analyze to match ordering here def _do_analyze(SEED, X_L, X_D, M_c, T, kernel_list, n_steps, c, r, max_iterations, max_time, ROW_CRP_ALPHA_GRID, COLUMN_CRP_ALPHA_GRID, S_GRID, MU_GRID, N_GRID, CT_KERNEL, ): p_State = State.p_State(M_c, T, X_L, X_D, SEED=SEED, ROW_CRP_ALPHA_GRID=ROW_CRP_ALPHA_GRID, COLUMN_CRP_ALPHA_GRID=COLUMN_CRP_ALPHA_GRID, S_GRID=S_GRID, MU_GRID=MU_GRID, N_GRID=N_GRID, CT_KERNEL=CT_KERNEL ) p_State.transition(kernel_list, n_steps, c, r, max_iterations, max_time) X_L_prime = p_State.get_X_L() X_D_prime = p_State.get_X_D() return X_L_prime, X_D_prime def _do_analyze_tuple(arg_tuple): return _do_analyze_with_diagnostic(*arg_tuple) def get_child_n_steps_list(n_steps, every_N): if every_N is None: # results in one block of size n_steps every_N = n_steps missing_endpoint = numpy.arange(0, n_steps, every_N) with_endpoint = numpy.append(missing_endpoint, n_steps) child_n_steps_list = numpy.diff(with_endpoint) return child_n_steps_list.tolist() none_summary = lambda p_State: None # switched ordering so args that change come first # FIXME: change LocalEngine.analyze to match ordering here def _do_analyze_with_diagnostic(SEED, X_L, X_D, M_c, T, kernel_list, n_steps, c, r, max_iterations, max_time, diagnostic_func_dict, every_N, ROW_CRP_ALPHA_GRID, COLUMN_CRP_ALPHA_GRID, S_GRID, MU_GRID, N_GRID, do_timing, CT_KERNEL, ): diagnostics_dict = collections.defaultdict(list) if diagnostic_func_dict is None: diagnostic_func_dict = dict() every_N = None child_n_steps_list = get_child_n_steps_list(n_steps, every_N) # import ipdb; ipdb.set_trace() p_State = State.p_State(M_c, T, X_L, X_D, SEED=SEED, ROW_CRP_ALPHA_GRID=ROW_CRP_ALPHA_GRID, COLUMN_CRP_ALPHA_GRID=COLUMN_CRP_ALPHA_GRID, S_GRID=S_GRID, MU_GRID=MU_GRID, N_GRID=N_GRID, CT_KERNEL=CT_KERNEL, ) with gu.Timer('all transitions', verbose=False) as timer: for child_n_steps in child_n_steps_list: p_State.transition(kernel_list, child_n_steps, c, r, max_iterations, max_time) for diagnostic_name, diagnostic_func in diagnostic_func_dict.iteritems(): diagnostic_value = diagnostic_func(p_State) diagnostics_dict[diagnostic_name].append(diagnostic_value) pass pass pass X_L_prime = p_State.get_X_L() X_D_prime = p_State.get_X_D() # if do_timing: # diagnostics and timing are exclusive diagnostics_dict = timer.elapsed_secs pass return X_L_prime, X_D_prime, diagnostics_dict def _do_simple_predictive_sample(M_c, X_L, X_D, Y, Q, n, get_next_seed): is_multistate = su.get_is_multistate(X_L, X_D) if is_multistate: samples = su.simple_predictive_sample_multistate(M_c, X_L, X_D, Y, Q, get_next_seed, n) else: samples = su.simple_predictive_sample(M_c, X_L, X_D, Y, Q, get_next_seed, n) return samples default_diagnostic_func_dict = dict( # fully qualify path b/c dview.sync_imports can't deal with 'as' # imports logscore=crosscat.utils.diagnostic_utils.get_logscore, num_views=crosscat.utils.diagnostic_utils.get_num_views, column_crp_alpha=crosscat.utils.diagnostic_utils.get_column_crp_alpha, # any outputs required by reproess_diagnostics_func must be generated # as well column_partition_assignments=crosscat.utils.diagnostic_utils.get_column_partition_assignments, reprocess_diagnostics_func=crosscat.utils.diagnostic_utils.default_reprocess_diagnostics_func, ) if __name__ == '__main__': import crosscat.tests.timing_test_utils as ttu import crosscat.utils.data_utils as du import crosscat.utils.convergence_test_utils as ctu # settings gen_seed = 0 inf_seed = 0 num_clusters = 4 num_cols = 32 num_rows = 400 num_views = 2 n_steps = 1 n_times = 5 n_chains = 3 n_test = 100 CT_KERNEL = 1 # generate some data T, M_r, M_c, data_inverse_permutation_indices = du.gen_factorial_data_objects( gen_seed, num_clusters, num_cols, num_rows, num_views, max_mean=100, max_std=1, send_data_inverse_permutation_indices=True) view_assignment_truth, X_D_truth = ctu.truth_from_permute_indices( data_inverse_permutation_indices, num_rows, num_cols, num_views, num_clusters) # run some tests engine = LocalEngine(seed=inf_seed) multi_state_ARIs = [] multi_state_mean_test_lls = [] X_L_list, X_D_list = engine.initialize(M_c, M_r, T, n_chains=n_chains) multi_state_ARIs.append( ctu.get_column_ARIs(X_L_list, view_assignment_truth)) for time_i in range(n_times): X_L_list, X_D_list = engine.analyze( M_c, T, X_L_list, X_D_list, n_steps=n_steps, CT_KERNEL=CT_KERNEL) multi_state_ARIs.append( ctu.get_column_ARIs(X_L_list, view_assignment_truth)) # multi_state_mean_test_lls.append( # ctu.calc_mean_test_log_likelihoods(M_c, T, # X_L_list, X_D_list, T_test)) X_L_list, X_D_list, diagnostics_dict = engine.analyze( M_c, T, X_L_list, X_D_list, n_steps=n_steps, do_diagnostics=True) # print results ct_kernel_name = 'UNKNOWN' if CT_KERNEL == 0: ct_kernel_name = 'GIBBS' elif CT_KERNEL == 1: ct_kernel_name = 'METROPOLIS' print 'Running with %s CT_KERNEL' % (ct_kernel_name) print 'generative_mean_test_log_likelihood' # print generative_mean_test_log_likelihood # print 'multi_state_mean_test_lls:' print multi_state_mean_test_lls # print 'multi_state_ARIs:' print multi_state_ARIs
size(535, 140) # BitBop -- a fun demonstration of path.contains. # # The textpath command returns a BezierPath of the text that can # be manipulated or, as demonstrated here, queried using path.contains. # A grid is generated and everywhere a point in the path is encountered, # a random square is drawn. background(0.8, 0.7, 0) fill(0.1, 0.1, 0.2) # Set the font and create the text path. font("Verdana", 100) align(CENTER) tp = textpath("NodeBox", 0, 100, width=WIDTH) #tp.draw() # Draws the underlying path # Here are the variables that influence the composition: resx = 100 # The horizontal resolution resy = 100 # The vertical resolution rx = 5.0 # The horizontal randomness each point has ry = 5.0 # The vertical randomness each point has dotsize = 6.0 # The maximum size of one dot. dx = WIDTH / float(resx) # The width each dot covers dy = HEIGHT / float(resy) # The height each dot covers # We create a grid of the specified resolution. # Each x,y coordinate is a measuring point where # we check if it falls within the path. for x, y in grid(resx, resy): sz = random(dotsize) # Create the point that will be checked px = x*dx-sz py = y*dy-sz # Only do something if the point falls within the path bounds. # You could add an "else" statement, that draws something in the # empty positions. if tp.contains(px, py): # Change the color for each point -- try it out! # fill(0, 0, random(), random()) oval(px+random(-rx, rx), py+random(-ry, ry), sz, sz)
# -*- coding: utf-8 -*- """ This file contains the Qudi hardware dummy for fast counting devices. Qudi is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Qudi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Qudi. If not, see <http://www.gnu.org/licenses/>. Copyright (c) the Qudi Developers. See the COPYRIGHT.txt file at the top-level directory of this distribution and at <https://github.com/Ulm-IQO/qudi/> """ import time import os import numpy as np from core.base import Base from interface.fast_counter_interface import FastCounterInterface class InterfaceImplementationError(Exception): def __init__(self, value): self.value = value def __str__(self): return repr(self.value) class FastCounterDummy(Base, FastCounterInterface): """This is the Interface class to define the controls for the simple microwave hardware. """ _modclass = 'fastcounterinterface' _modtype = 'hardware' def __init__(self, config, **kwargs): super().__init__(config=config, **kwargs) self.log.info('The following configuration was found.') # checking for the right configuration for key in config.keys(): self.log.info('{0}: {1}'.format(key,config[key])) if 'gated' in config.keys(): self._gated = config['gated'] else: self._gated = False self.log.warning('No parameter "gated" was specified in the ' 'config. The default configuration gated={0} will be ' 'taken instead.'.format(self._gated)) if 'load_trace' in config.keys(): self.trace_path = config['load_trace'] else: self.trace_path = os.path.join( self.get_main_dir(), 'tools', 'FastComTec_demo_timetrace.asc') def on_activate(self): """ Initialisation performed during activation of the module. """ self.statusvar = 0 self._binwidth = 1 self._gate_length_bins = 8192 return def on_deactivate(self): """ Deinitialisation performed during deactivation of the module. """ self.statusvar = -1 return def get_constraints(self): """ Retrieve the hardware constrains from the Fast counting device. @return dict: dict with keys being the constraint names as string and items are the definition for the constaints. The keys of the returned dictionary are the str name for the constraints (which are set in this method). NO OTHER KEYS SHOULD BE INVENTED! If you are not sure about the meaning, look in other hardware files to get an impression. If still additional constraints are needed, then they have to be added to all files containing this interface. The items of the keys are again dictionaries which have the generic dictionary form: {'min': <value>, 'max': <value>, 'step': <value>, 'unit': '<value>'} Only the key 'hardware_binwidth_list' differs, since they contain the list of possible binwidths. If the constraints cannot be set in the fast counting hardware then write just zero to each key of the generic dicts. Note that there is a difference between float input (0.0) and integer input (0), because some logic modules might rely on that distinction. ALL THE PRESENT KEYS OF THE CONSTRAINTS DICT MUST BE ASSIGNED! """ constraints = dict() # the unit of those entries are seconds per bin. In order to get the # current binwidth in seonds use the get_binwidth method. constraints['hardware_binwidth_list'] = [1/950e6, 2/950e6, 4/950e6, 8/950e6] return constraints def configure(self, bin_width_s, record_length_s, number_of_gates = 0): """ Configuration of the fast counter. @param float bin_width_s: Length of a single time bin in the time trace histogram in seconds. @param float record_length_s: Total length of the timetrace/each single gate in seconds. @param int number_of_gates: optional, number of gates in the pulse sequence. Ignore for not gated counter. @return tuple(binwidth_s, gate_length_s, number_of_gates): binwidth_s: float the actual set binwidth in seconds gate_length_s: the actual set gate length in seconds number_of_gates: the number of gated, which are accepted """ self._binwidth = int(np.rint(bin_width_s * 1e9 * 950 / 1000)) self._gate_length_bins = int(np.rint(record_length_s / bin_width_s)) actual_binwidth = self._binwidth * 1000 / 950e9 actual_length = self._gate_length_bins * actual_binwidth self.statusvar = 1 return actual_binwidth, actual_length, number_of_gates def get_status(self): """ Receives the current status of the Fast Counter and outputs it as return value. 0 = unconfigured 1 = idle 2 = running 3 = paused -1 = error state """ return self.statusvar def start_measure(self): time.sleep(1) self.statusvar = 2 try: self._count_data = np.loadtxt(self.trace_path) except: return -1 return 0 def pause_measure(self): """ Pauses the current measurement. Fast counter must be initially in the run state to make it pause. """ time.sleep(1) self.statusvar = 3 return 0 def stop_measure(self): """ Stop the fast counter. """ time.sleep(1) self.statusvar = 1 return 0 def continue_measure(self): """ Continues the current measurement. If fast counter is in pause state, then fast counter will be continued. """ self.statusvar = 2 return 0 def is_gated(self): """ Check the gated counting possibility. @return bool: Boolean value indicates if the fast counter is a gated counter (TRUE) or not (FALSE). """ return self._gated def get_binwidth(self): """ Returns the width of a single timebin in the timetrace in seconds. @return float: current length of a single bin in seconds (seconds/bin) """ width_in_seconds = self._binwidth * 1/950e6 return width_in_seconds def get_data_trace(self): """ Polls the current timetrace data from the fast counter. Return value is a numpy array (dtype = int64). The binning, specified by calling configure() in forehand, must be taken care of in this hardware class. A possible overflow of the histogram bins must be caught here and taken care of. If the counter is NOT GATED it will return a 1D-numpy-array with returnarray[timebin_index] If the counter is GATED it will return a 2D-numpy-array with returnarray[gate_index, timebin_index] """ # include an artificial waiting time time.sleep(0.5) return self._count_data def get_frequency(self): freq = 950. time.sleep(0.5) return freq
# encoding: utf-8 # TODO: make abstract class for all models/managers # to prevent code coping of common methods (for example _predict method) from PyQt4.QtCore import * import copy import numpy as np from processing.molusce.algorithms.dataprovider import Raster, ProviderError from processing.molusce.algorithms.models.mlp.model import MLP, sigmoid from processing.molusce.algorithms.models.sampler.sampler import Sampler from processing.molusce.algorithms.models.correlation.model import DependenceCoef class MlpManagerError(Exception): '''Base class for exceptions in this module.''' def __init__(self, msg): self.msg = msg class MlpManager(QObject): '''This class gets the data extracted from the UI and pass it to multi-layer perceptron, then gets and stores the result. ''' updateGraph = pyqtSignal(float, float) # Train error, val. error updateMinValErr = pyqtSignal(float) # Min validation error updateDeltaRMS = pyqtSignal(float) # Delta of RMS: min(valError) - currentValError updateKappa = pyqtSignal(float) # Kappa value processFinished = pyqtSignal() processInterrupted = pyqtSignal() logMessage = pyqtSignal(str) errorReport = pyqtSignal(str) rangeChanged = pyqtSignal(str, int) updateProgress = pyqtSignal() def __init__(self, ns=0, MLP=None): QObject.__init__(self) self.MLP = MLP self.interrupted = False self.layers = None if self.MLP: self.layers = self.getMlpTopology() self.ns = ns # Neighbourhood size of training rasters. self.data = None # Training data self.catlist = None # List of unique output values of the output raster self.train_error = None # Error on training set self.val_error = None # Error on validation set self.minValError = None # The minimum error that is achieved on the validation set self.valKappa = 0 # Kappa on on the validation set self.sampler = None # Sampler # Results of the MLP prediction self.prediction = None # Raster of the MLP prediction results self.confidence = None # Raster of the MLP results confidence (1 = the maximum confidence, 0 = the least confidence) self.transitionPotentials = None # Dictionary of transition potencial maps: {category1: map1, category2: map2, ...} # Outputs of the activation function for small and big numbers self.sigmax, self.sigmin = sigmoid(100), sigmoid(-100) # Max and Min of the sigmoid function self.sigrange = self.sigmax - self.sigmin # Range of the sigmoid def computeMlpError(self, sample): '''Get MLP error on the sample''' input = np.hstack( (sample['state'], sample['factors']) ) out = self.getOutput( input ) err = ((sample['output'] - out)**2).sum()/len(out) return err def computePerformance(self, train_indexes, val_ind): '''Check errors of training and validation sets @param train_indexes Tuple that contains indexes of the first and last elements of the training set. @param val_ind Tuple that contains indexes of the first and last elements of the validation set. ''' train_error = 0 train_sampl = train_indexes[1] - train_indexes[0] # Count of training samples for i in range(train_indexes[0], train_indexes[1]): train_error = train_error + self.computeMlpError(sample = self.data[i]) self.setTrainError(train_error/train_sampl) if val_ind: val_error = 0 val_sampl = val_ind[1] - val_ind[0] answers = np.ma.zeros(val_sampl) out = np.ma.zeros(val_sampl) for i in xrange(val_ind[0], val_ind[1]): sample = self.data[i] val_error = val_error + self.computeMlpError(sample = self.data[i]) input = np.hstack( (sample['state'],sample['factors']) ) output = self.getOutput(input) out[i-val_ind[0]] = self.outCategory(output) answers[i-val_ind[0]] = self.outCategory(sample['output']) self.setValError(val_error/val_sampl) depCoef = DependenceCoef(out, answers, expand=True) self.valKappa = depCoef.kappa(mode=None) def copyWeights(self): '''Deep copy of the MLP weights''' return copy.deepcopy(self.MLP.weights) def createMlp(self, state, factors, output, hidden_layers): ''' @param state Raster of the current state (categories) values. @param factors List of the factor rasters (predicting variables). @param hidden_layers List of neuron counts in hidden layers. @param ns Neighbourhood size. ''' if output.getBandsCount() != 1: raise MlpManagerError('Output layer must have one band!') input_neurons = 0 for raster in factors: input_neurons = input_neurons+ raster.getNeighbourhoodSize(self.ns) # state raster contains categories. We need use n-1 dummy variables (where n = number of categories) input_neurons = input_neurons + (len(state.getBandGradation(1))-1) * state.getNeighbourhoodSize(self.ns) # Output category's (neuron) list and count self.catlist = output.getBandGradation(1) categories = len(self.catlist) # set neuron counts in the MLP layers self.layers = hidden_layers self.layers.insert(0, input_neurons) self.layers.append(categories) self.MLP = MLP(*self.layers) def getConfidence(self): return self.confidence def getInputVectLen(self): '''Length of input data vector of the MLP''' shape = self.getMlpTopology() return shape[0] def getOutput(self, input_vector): out = self.MLP.propagate_forward( input_vector ) return out def getOutputVectLen(self): '''Length of input data vector of the MLP''' shape = self.getMlpTopology() return shape[-1] def getOutputVector(self, val): '''Convert a number val into vector, for example, let self.catlist = [1, 3, 4] then if val = 1, result = [ 1, -1, -1] if val = 3, result = [-1, 1, -1] if val = 4, result = [-1, -1, 1] where -1 is minimum of the sigmoid, 1 is max of the sigmoid ''' size = self.getOutputVectLen() res = np.ones(size) * (self.sigmin) ind = np.where(self.catlist==val) res[ind] = self.sigmax return res def getMinValError(self): return self.minValError def getMlpTopology(self): return self.MLP.shape def getKappa(self): return self.valKappa def getPrediction(self, state, factors, calcTransitions=False): self._predict(state, factors, calcTransitions) return self.prediction def getTrainError(self): return self.train_error def getTransitionPotentials(self): return self.transitionPotentials def getValError(self): return self.val_error def outCategory(self, out_vector): # Get index of the biggest output value as the result biggest = max(out_vector) res = list(out_vector).index(biggest) res = self.catlist[res] return res def outputConfidence(self, output, scale=True): ''' Return confidence (difference between 2 biggest values) of the MLP output. @param output: The confidence @param scale: If True, then scale the confidence to int [0, 1, ..., 100] percent ''' out_scl = self.scaleOutput(output, percent=scale) out_scl.sort() return out_scl[-1] - out_scl[-2] def outputTransitions(self, output, scale=True): ''' Return transition potencial of the outputs scaled to [0,1] or 1-100 @param output: The output of MLP @param scale: If True, then scale the transitions to int ([0, 1, ..., 100]) percent ''' out_scl = self.scaleOutput(output, percent=scale) result = {} for r, v in enumerate(out_scl): cat = self.catlist[r] result[cat] = v return result def scaleOutput(self, output, percent=True): ''' Scale the output to range [0,1] or 1-100 @param output: Output of a MLP @param percent: If True, then scale the output to int [0, 1, ..., 100] percent ''' res = 1.0 * (output - self.sigmin) / self.sigrange if percent: res = [ int(100 * x) for x in res] return res def _predict(self, state, factors, calcTransitions=False): ''' Calculate output and confidence rasters using MLP model and input rasters @param state Raster of the current state (categories) values. @param factors List of the factor rasters (predicting variables). ''' try: self.rangeChanged.emit(self.tr("Initialize model %p%"), 1) geodata = state.getGeodata() rows, cols = geodata['ySize'], geodata['xSize'] for r in factors: if not state.geoDataMatch(r): raise MlpManagerError('Geometries of the input rasters are different!') self.transitionPotentials = None # Reset tr.potentials if they exist # Normalize factors before prediction: for f in factors: f.normalize(mode = 'mean') predicted_band = np.zeros([rows, cols], dtype=np.uint8) confidence_band = np.zeros([rows, cols], dtype=np.uint8) if calcTransitions: self.transitionPotentials = {} for cat in self.catlist: self.transitionPotentials[cat] = np.zeros([rows, cols], dtype=np.uint8) self.sampler = Sampler(state, factors, ns=self.ns) mask = state.getBand(1).mask.copy() if mask.shape == (): mask = np.zeros([rows, cols], dtype=np.bool) self.updateProgress.emit() self.rangeChanged.emit(self.tr("Prediction %p%"), rows) for i in xrange(rows): for j in xrange(cols): if not mask[i,j]: input = self.sampler.get_inputs(state, i,j) if input != None: out = self.getOutput(input) res = self.outCategory(out) predicted_band[i, j] = res confidence = self.outputConfidence(out) confidence_band[i, j] = confidence if calcTransitions: potentials = self.outputTransitions(out) for cat in self.catlist: map = self.transitionPotentials[cat] map[i, j] = potentials[cat] else: # Input sample is incomplete => mask this pixel mask[i, j] = True self.updateProgress.emit() predicted_bands = [np.ma.array(data = predicted_band, mask = mask, dtype=np.uint8)] confidence_bands = [np.ma.array(data = confidence_band, mask = mask, dtype=np.uint8)] self.prediction = Raster() self.prediction.create(predicted_bands, geodata) self.confidence = Raster() self.confidence.create(confidence_bands, geodata) if calcTransitions: for cat in self.catlist: band = [np.ma.array(data=self.transitionPotentials[cat], mask=mask, dtype=np.uint8)] self.transitionPotentials[cat] = Raster() self.transitionPotentials[cat].create(band, geodata) except MemoryError: self.errorReport.emit(self.tr("The system out of memory during ANN prediction")) raise except: self.errorReport.emit(self.tr("An unknown error occurs during ANN prediction")) raise def readMlp(self): pass def resetErrors(self): self.val_error = np.finfo(np.float).max self.train_error = np.finfo(np.float).max def resetMlp(self): self.MLP.reset() self.resetErrors() def saveMlp(self): pass def saveSamples(self, fileName): self.sampler.saveSamples(fileName) def setMlpWeights(self, w): '''Set weights of the MLP''' self.MLP.weights = w def setTrainingData(self, state, factors, output, shuffle=True, mode='All', samples=None): ''' @param state Raster of the current state (categories) values. @param factors List of the factor rasters (predicting variables). @param output Raster that contains categories to predict. @param shuffle Perform random shuffle. @param mode Type of sampling method: All Get all pixels Random Get samples. Count of samples in the data=samples. Stratified Undersampling of major categories and/or oversampling of minor categories. @samples Sample count of the training data (doesn't used in 'All' mode). ''' if not self.MLP: raise MlpManagerError('You must create a MLP before!') # Normalize factors before sampling: for f in factors: f.normalize(mode = 'mean') self.sampler = Sampler(state, factors, output, self.ns) self.sampler.setTrainingData(state=state, output=output, shuffle=shuffle, mode=mode, samples=samples) outputVecLen = self.getOutputVectLen() stateVecLen = self.sampler.stateVecLen factorVectLen = self.sampler.factorVectLen size = len(self.sampler.data) self.data = np.zeros(size, dtype=[('coords', float, 2), ('state', float, stateVecLen), ('factors', float, factorVectLen), ('output', float, outputVecLen)]) self.data['coords'] = self.sampler.data['coords'] self.data['state'] = self.sampler.data['state'] self.data['factors'] = self.sampler.data['factors'] self.data['output'] = [self.getOutputVector(sample['output']) for sample in self.sampler.data] def setTrainError(self, error): self.train_error = error def setValError(self, error): self.val_error = error def setEpochs(self, epochs): self.epochs = epochs def setValPercent(self, value=20): self.valPercent = value def setLRate(self, value=0.1): self.lrate = value def setMomentum(self, value=0.01): self.momentum = value def setContinueTrain(self, value=False): self.continueTrain = value def startTrain(self): self.train(self.epochs, self.valPercent, self.lrate, self.momentum, self.continueTrain) def stopTrain(self): self.interrupted = True def train(self, epochs, valPercent=20, lrate=0.1, momentum=0.01, continue_train=False): '''Perform the training procedure on the MLP and save the best neural net @param epoch Max iteration count. @param valPercent Percent of the validation set. @param lrate Learning rate. @param momentum Learning momentum. @param continue_train If False then it is new training cycle, reset weights training and validation error. If True, then continue training. ''' try: samples_count = len(self.data) val_sampl_count = samples_count*valPercent/100 apply_validation = True if val_sampl_count>0 else False # Use or not use validation set train_sampl_count = samples_count - val_sampl_count # Set first train_sampl_count as training set, the other as validation set train_indexes = (0, train_sampl_count) val_indexes = (train_sampl_count, samples_count) if apply_validation else None if not continue_train: self.resetMlp() self.minValError = self.getValError() # The minimum error that is achieved on the validation set last_train_err = self.getTrainError() best_weights = self.copyWeights() # The MLP weights when minimum error that is achieved on the validation set self.rangeChanged.emit(self.tr("Train model %p%"), epochs) for epoch in range(epochs): self.trainEpoch(train_indexes, lrate, momentum) self.computePerformance(train_indexes, val_indexes) self.updateGraph.emit(self.getTrainError(), self.getValError()) self.updateDeltaRMS.emit(self.getMinValError() - self.getValError()) self.updateKappa.emit(self.getKappa()) QCoreApplication.processEvents() if self.interrupted: self.processInterrupted.emit() break last_train_err = self.getTrainError() self.setTrainError(last_train_err) if apply_validation and (self.getValError() < self.getMinValError()): self.minValError = self.getValError() best_weights = self.copyWeights() self.updateMinValErr.emit(self.getMinValError()) self.updateProgress.emit() self.setMlpWeights(best_weights) except MemoryError: self.errorReport.emit(self.tr("The system out of memory during ANN training")) raise except: self.errorReport.emit(self.tr("An unknown error occurs during ANN trainig")) raise finally: self.processFinished.emit() def trainEpoch(self, train_indexes, lrate=0.1, momentum=0.01): '''Perform a training epoch on the MLP @param train_ind Tuple of the min&max indexes of training samples in the samples data. @param val_ind Tuple of the min&max indexes of validation samples in the samples data. @param lrate Learning rate. @param momentum Learning momentum. ''' train_sampl = train_indexes[1] - train_indexes[0] for i in range(train_sampl): n = np.random.randint( *train_indexes ) sample = self.data[n] input = np.hstack( (sample['state'],sample['factors']) ) self.getOutput( input ) # Forward propagation self.MLP.propagate_backward( sample['output'], lrate, momentum )
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. from __future__ import division, unicode_literals """ Created on Apr 25, 2012 """ __author__ = "Shyue Ping Ong" __copyright__ = "Copyright 2012, The Materials Project" __version__ = "0.1" __maintainer__ = "Shyue Ping Ong" __email__ = "[email protected]" __date__ = "Apr 25, 2012" import random from pymatgen.core.lattice import Lattice from pymatgen.util.coord import * from pymatgen.util.testing import PymatgenTest class CoordUtilsTest(PymatgenTest): def test_get_linear_interpolated_value(self): xvals = [0, 1, 2, 3, 4, 5] yvals = [3, 6, 7, 8, 10, 12] self.assertEqual(get_linear_interpolated_value(xvals, yvals, 3.6), 9.2) self.assertRaises(ValueError, get_linear_interpolated_value, xvals, yvals, 6) def test_in_coord_list(self): coords = [[0, 0, 0], [0.5, 0.5, 0.5]] test_coord = [0.1, 0.1, 0.1] self.assertFalse(in_coord_list(coords, test_coord)) self.assertTrue(in_coord_list(coords, test_coord, atol=0.15)) self.assertFalse(in_coord_list([0.99, 0.99, 0.99], test_coord, atol=0.15)) def test_is_coord_subset(self): c1 = [0,0,0] c2 = [0,1.2,-1] c3 = [3,2,1] c4 = [3-9e-9, 2-9e-9, 1-9e-9] self.assertTrue(is_coord_subset([c1, c2, c3], [c1, c4, c2])) self.assertTrue(is_coord_subset([c1], [c2, c1])) self.assertTrue(is_coord_subset([c1, c2], [c2, c1])) self.assertFalse(is_coord_subset([c1, c2], [c2, c3])) self.assertFalse(is_coord_subset([c1, c2], [c2])) def test_coord_list_mapping(self): c1 = [0,.124,0] c2 = [0,1.2,-1] c3 = [3,2,1] a = np.array([c1, c2]) b = np.array([c3, c2, c1]) inds = coord_list_mapping(a, b) self.assertTrue(np.allclose(a, b[inds])) self.assertRaises(Exception, coord_list_mapping, [c1,c2], [c2,c3]) self.assertRaises(Exception, coord_list_mapping, [c2], [c2,c2]) def test_coord_list_mapping_pbc(self): c1 = [0.1, 0.2, 0.3] c2 = [0.2, 0.3, 0.3] c3 = [0.5, 0.3, 0.6] c4 = [1.5, -0.7, -1.4] a = np.array([c1, c3, c2]) b = np.array([c4, c2, c1]) inds = coord_list_mapping_pbc(a, b) diff = a - b[inds] diff -= np.round(diff) self.assertTrue(np.allclose(diff, 0)) self.assertRaises(Exception, coord_list_mapping_pbc, [c1,c2], [c2,c3]) self.assertRaises(Exception, coord_list_mapping_pbc, [c2], [c2,c2]) def test_find_in_coord_list(self): coords = [[0, 0, 0], [0.5, 0.5, 0.5]] test_coord = [0.1, 0.1, 0.1] self.assertFalse(find_in_coord_list(coords, test_coord)) self.assertEqual(find_in_coord_list(coords, test_coord, atol=0.15)[0], 0) self.assertFalse(find_in_coord_list([0.99, 0.99, 0.99], test_coord, atol=0.15)) coords = [[0, 0, 0], [0.5, 0.5, 0.5], [0.1, 0.1, 0.1]] self.assertArrayEqual(find_in_coord_list(coords, test_coord, atol=0.15), [0, 2]) def test_all_distances(self): coords1 = [[0, 0, 0], [0.5, 0.5, 0.5]] coords2 = [[1, 2, -1], [1, 0, 0], [1, 0, 0]] result = [[2.44948974, 1, 1], [2.17944947, 0.8660254, 0.8660254]] self.assertArrayAlmostEqual(all_distances(coords1, coords2), result, 4) def test_pbc_diff(self): self.assertArrayAlmostEqual(pbc_diff([0.1, 0.1, 0.1], [0.3, 0.5, 0.9]), [-0.2, -0.4, 0.2]) self.assertArrayAlmostEqual(pbc_diff([0.9, 0.1, 1.01], [0.3, 0.5, 0.9]), [-0.4, -0.4, 0.11]) self.assertArrayAlmostEqual(pbc_diff([0.1, 0.6, 1.01], [0.6, 0.1, 0.9]), [-0.5, 0.5, 0.11]) self.assertArrayAlmostEqual(pbc_diff([100.1, 0.2, 0.3], [0123123.4, 0.5, 502312.6]), [-0.3, -0.3, -0.3]) def test_in_coord_list_pbc(self): coords = [[0, 0, 0], [0.5, 0.5, 0.5]] test_coord = [0.1, 0.1, 0.1] self.assertFalse(in_coord_list_pbc(coords, test_coord)) self.assertTrue(in_coord_list_pbc(coords, test_coord, atol=0.15)) test_coord = [0.99, 0.99, 0.99] self.assertFalse(in_coord_list_pbc(coords, test_coord, atol=0.01)) def test_find_in_coord_list_pbc(self): coords = [[0, 0, 0], [0.5, 0.5, 0.5]] test_coord = [0.1, 0.1, 0.1] self.assertFalse(find_in_coord_list_pbc(coords, test_coord)) self.assertEqual(find_in_coord_list_pbc(coords, test_coord, atol=0.15)[0], 0) test_coord = [0.99, 0.99, 0.99] self.assertEqual( find_in_coord_list_pbc(coords, test_coord, atol=0.02)[0], 0) test_coord = [-0.499, -0.499, -0.499] self.assertEqual( find_in_coord_list_pbc(coords, test_coord, atol=0.01)[0], 1) def test_is_coord_subset_pbc(self): c1 = [0, 0, 0] c2 = [0, 1.2, -1] c3 = [2.3, 0, 1] c4 = [1.3-9e-9, -1-9e-9, 1-9e-9] self.assertTrue(is_coord_subset_pbc([c1, c2, c3], [c1, c4, c2])) self.assertTrue(is_coord_subset_pbc([c1], [c2, c1])) self.assertTrue(is_coord_subset_pbc([c1, c2], [c2, c1])) self.assertFalse(is_coord_subset_pbc([c1, c2], [c2, c3])) self.assertFalse(is_coord_subset_pbc([c1, c2], [c2])) # test tolerances c5 = [0.1, 0.1, 0.2] atol1 = [0.25, 0.15, 0.15] atol2 = [0.15, 0.15, 0.25] self.assertFalse(is_coord_subset_pbc([c1], [c5], atol1)) self.assertTrue(is_coord_subset_pbc([c1], [c5], atol2)) # test mask mask1 = [[True]] self.assertFalse(is_coord_subset_pbc([c1], [c5], atol2, mask1)) mask2 = [[True, False]] self.assertTrue(is_coord_subset_pbc([c1], [c2, c1], mask=mask2)) self.assertFalse(is_coord_subset_pbc([c1], [c1, c2], mask=mask2)) mask3 = [[False, True]] self.assertFalse(is_coord_subset_pbc([c1], [c2, c1], mask=mask3)) self.assertTrue(is_coord_subset_pbc([c1], [c1, c2], mask=mask3)) def test_lattice_points_in_supercell(self): supercell = np.array([[1, 3, 5], [-3, 2, 3], [-5, 3, 1]]) points = lattice_points_in_supercell(supercell) self.assertAlmostEqual(len(points), abs(np.linalg.det(supercell))) self.assertGreaterEqual(np.min(points), -1e-10) self.assertLessEqual(np.max(points), 1-1e-10) supercell = np.array([[-5, -5, -3], [0, -4, -2], [0, -5, -2]]) points = lattice_points_in_supercell(supercell) self.assertAlmostEqual(len(points), abs(np.linalg.det(supercell))) self.assertGreaterEqual(np.min(points), -1e-10) self.assertLessEqual(np.max(points), 1-1e-10) def test_barycentric(self): #2d test simplex1 = np.array([[0.3, 0.1], [0.2, -1.2], [1.3, 2.3]]) pts1 = np.array([[0.6, 0.1], [1.3, 2.3], [0.5, 0.5], [.7, 1]]) output1 = barycentric_coords(pts1, simplex1) #do back conversion to cartesian o_dot_s = np.sum(output1[:, :, None] * simplex1[None, :, :], axis=1) self.assertTrue(np.allclose(pts1, o_dot_s)) #do 3d tests simplex2 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0], [0, 0, 0]]) pts2 = np.array([[0, 0, 1], [0, 0.5, 0.5], [1./3, 1./3, 1./3]]) output2 = barycentric_coords(pts2, simplex2) self.assertTrue(np.allclose(output2[1], [0.5, 0.5, 0, 0])) #do back conversion to cartesian o_dot_s = np.sum(output2[:, :, None] * simplex2[None, :, :], axis=1) self.assertTrue(np.allclose(pts2, o_dot_s)) #test single point self.assertTrue(np.allclose(output2[2], barycentric_coords(pts2[2], simplex2))) def test_pbc_shortest_vectors(self): fcoords = np.array([[0.3, 0.3, 0.5], [0.1, 0.1, 0.3], [0.9, 0.9, 0.8], [0.1, 0.0, 0.5], [0.9, 0.7, 0.0]]) lattice = Lattice.from_lengths_and_angles([8, 8, 4], [90, 76, 58]) expected = np.array([[0.000, 3.015, 4.072, 3.519, 3.245], [3.015, 0.000, 3.207, 1.131, 4.453], [4.072, 3.207, 0.000, 2.251, 1.788], [3.519, 1.131, 2.251, 0.000, 3.852]]) vectors = pbc_shortest_vectors(lattice, fcoords[:-1], fcoords) dists = np.sum(vectors**2, axis = -1)**0.5 self.assertArrayAlmostEqual(dists, expected, 3) #now try with small loop threshold from pymatgen.util import coord prev_threshold = coord.LOOP_THRESHOLD coord.LOOP_THRESHOLD = 0 vectors = pbc_shortest_vectors(lattice, fcoords[:-1], fcoords) dists = np.sum(vectors**2, axis = -1)**0.5 self.assertArrayAlmostEqual(dists, expected, 3) coord.LOOP_THRESHOLD = prev_threshold def test_get_angle(self): v1 = (1, 0, 0) v2 = (1, 1, 1) self.assertAlmostEqual(get_angle(v1, v2), 54.7356103172) self.assertAlmostEqual(get_angle(v1, v2, units="radians"), 0.9553166181245092) class SimplexTest(PymatgenTest): def setUp(self): coords = [] coords.append([0, 0, 0]) coords.append([0, 1, 0]) coords.append([0, 0, 1]) coords.append([1, 0, 0]) self.simplex = Simplex(coords) def test_equal(self): c2 = list(self.simplex.coords) random.shuffle(c2) self.assertEqual(Simplex(c2), self.simplex) def test_in_simplex(self): self.assertTrue(self.simplex.in_simplex([0.1, 0.1, 0.1])) self.assertFalse(self.simplex.in_simplex([0.6, 0.6, 0.6])) for i in range(10): coord = np.random.random_sample(size=3) / 3 self.assertTrue(self.simplex.in_simplex(coord)) def test_2dtriangle(self): s = Simplex([[0, 1], [1, 1], [1, 0]]) self.assertArrayAlmostEqual(s.bary_coords([0.5, 0.5]), [0.5, 0, 0.5]) self.assertArrayAlmostEqual(s.bary_coords([0.5, 1]), [0.5, 0.5, 0]) self.assertArrayAlmostEqual(s.bary_coords([0.5, 0.75]), [0.5, 0.25, 0.25]) self.assertArrayAlmostEqual(s.bary_coords([0.75, 0.75]), [0.25, 0.5, 0.25]) s = Simplex([[1, 1], [1, 0]]) self.assertRaises(ValueError, s.bary_coords, [0.5, 0.5]) def test_volume(self): # Should be value of a right tetrahedron. self.assertAlmostEqual(self.simplex.volume, 1/6) def test_str(self): self.assertTrue(str(self.simplex).startswith("3-simplex in 4D space")) self.assertTrue(repr(self.simplex).startswith("3-simplex in 4D space")) def test_bary_coords(self): s = Simplex([[0, 2], [3, 1], [1, 0]]) point = [0.7, 0.5] bc = s.bary_coords(point) self.assertArrayAlmostEqual(bc, [0.26, -0.02, 0.76]) new_point = s.point_from_bary_coords(bc) self.assertArrayAlmostEqual(point, new_point) def test_intersection(self): # simple test, with 2 intersections at faces s = Simplex([[0, 2], [3, 1], [1, 0]]) point1 = [0.7, 0.5] point2 = [0.5, 0.7] intersections = s.line_intersection(point1, point2) expected = np.array([[1.13333333, 0.06666667], [ 0.8, 0.4]]) self.assertArrayAlmostEqual(intersections, expected) # intersection through point and face point1 = [0, 2] # simplex point point2 = [1, 1] # inside simplex expected = np.array([[1.66666667, 0.33333333], [0, 2]]) intersections = s.line_intersection(point1, point2) self.assertArrayAlmostEqual(intersections, expected) # intersection through point only point1 = [0, 2] # simplex point point2 = [0.5, 0.7] expected = np.array([[0, 2]]) intersections = s.line_intersection(point1, point2) self.assertArrayAlmostEqual(intersections, expected) # 3d intersection through edge and face point1 = [0.5, 0, 0] # edge point point2 = [0.5, 0.5, 0.5] # in simplex expected = np.array([[ 0.5, 0.25, 0.25], [ 0.5, 0. , 0. ]]) intersections = self.simplex.line_intersection(point1, point2) self.assertArrayAlmostEqual(intersections, expected) # 3d intersection through edge only point1 = [0.5, 0, 0] # edge point point2 = [0.5, 0.5, -0.5] # outside simplex expected = np.array([[0.5, 0., 0.]]) intersections = self.simplex.line_intersection(point1, point2) self.assertArrayAlmostEqual(intersections, expected) # coplanar to face (no intersection) point1 = [-1, 2] point2 = [0, 0] expected = np.array([]) intersections = s.line_intersection(point1, point2) self.assertArrayAlmostEqual(intersections, expected) # coplanar to face (with intersection line) point1 = [0, 2] # simplex point point2 = [1, 0] expected = np.array([[1, 0], [0, 2]]) intersections = s.line_intersection(point1, point2) self.assertArrayAlmostEqual(intersections, expected) # coplanar to face (with intersection points) point1 = [0.1, 2] point2 = [1.1, 0] expected = np.array([[1.08, 0.04], [0.12, 1.96]]) intersections = s.line_intersection(point1, point2) self.assertArrayAlmostEqual(intersections, expected) if __name__ == "__main__": import unittest unittest.main()
#!/usr/bin/env python # coding=utf-8 from __future__ import print_function # In case we're running with python2 import argparse import os import requests import re import sys import pystache import random import shutil FORMATIONS = [ ([u'ailier droit', u'ailier gauche', u'arrière droit', u'arrière gauche', u'attaquant', u'attaquant', u'défenseur central', u'défenseur central', u'gardien', u'milieu de terrain', u'milieu de terrain'], 442), ([u'arrière droit', u'arrière gauche', u'attaquant', u'attaquant', u'attaquant', u'défenseur central', u'défenseur central', u'gardien', u'milieu de terrain', u'milieu de terrain', u'milieu de terrain'], 433), ([u'ailier droit', u'ailier gauche', u'arrière droit', u'arrière gauche', u'attaquant', u'défenseur central', u'défenseur central', u'gardien', u'milieu de terrain', u'milieu de terrain', u'milieu de terrain'], 451), ([u'arrière droit', u'arrière gauche', u'attaquant', u'défenseur central', u'défenseur central', u'défenseur central', u'gardien', u'milieu de terrain', u'milieu de terrain', u'milieu droit', u'milieu gauche'], 541) ] class Sheet(): def __init__(self, key): self.__endpoint = 'https://spreadsheets.google.com' self.__key = key self.__data = list() try: path = '/feeds/worksheets/{key}/public/basic?alt=json'.format( key=key) for entry in self.__requestData(path)['feed']['entry']: if entry['title']['$t'] != 'Feuille 1': continue path = '/feeds/list/{key}/{sheetId}/public/values?alt=json'\ .format(key=key, sheetId=entry['link'][len(entry['link']) - 1] ['href'].split('/').pop()) self.__setData(self.__formatData([ {key[4:]: value['$t'] for key, value in entry.items() if key[:4] == 'gsx$'} for entry in self.__requestData(path)['feed']['entry']])) except requests.exceptions.RequestException as e: print(e, file=sys.stderr) sys.exit(1) def __requestData(self, path): r = requests.get(self.__endpoint + path) if r.status_code == 200: return r.json() raise requests.exceptions.RequestException( "Seems we can't find {0}".format(self.__key)) def __setData(self, data): self.__data = data def __formatData(self, data): def getOrFalse(d, k): return len(d[k]) > 0 and dict(value=d[k].encode('utf-8')) or False def addNBSPs(s): for char in ['?', ':', '!']: s = s.replace(' {0}'.format(char), '&nbsp;{0}'.format(char)) return s return [dict( id=int(d['id']), firstname=d['prenom'].encode('utf-8'), lastname=d['nom'].encode('utf-8'), place=d['poste'].encode('utf-8'), team=d['equipe'].encode('utf-8'), description=addNBSPs(d['description']).encode('utf-8'), picture=d['photo'].encode('utf-8') ) for d in data] def getData(self): return self.__data if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('key', metavar='key', type=str) parser.add_argument('--dest', type=str) parser.add_argument('--src', type=str) args = parser.parse_args() srcDir = os.path.dirname(os.path.realpath(__file__)) destDir = os.path.join(srcDir, 'dist') srcDir = os.path.join(srcDir, 'src') if args.src is not None: srcDir = os.path.realpath(args.src) if args.dest is not None: destDir = os.path.realpath(args.dest) if not os.path.isdir(destDir): os.mkdir(destDir) print('Writing {0}...'.format(os.path.join(destDir, 'index.html'))) with open(os.path.join(destDir, 'index.html'), 'w') as f: with open(os.path.join(srcDir, 'template.html'), 'r') as template: data = Sheet(args.key).getData() formation = 442 places = sorted([d['place'].decode('utf-8').lower() for d in data]) for FORMATION in FORMATIONS: intersect = [x for x, y in zip(FORMATION[0], places) if x == y] if len(intersect) == len(places): formation = FORMATION[1] break style = '' with open(os.path.join(srcDir, 'style.css')) as styleF: style = styleF.read() script = '' with open(os.path.join(srcDir, 'script.js')) as scriptF: script = scriptF.read() data = dict(joueurs=data, formation='f{0}'.format(str(formation)), style=style, script=script) f.write(pystache.render(template.read(), data)) print('\t[OK]')
from __future__ import print_function from datetime import datetime from django.utils import timezone from gc_apps.gis_shapefiles.models import ShapefileInfo, WorldMapShapefileLayerInfo from gc_apps.gis_tabular.models import TabularFileInfo from gc_apps.gis_tabular.models import WorldMapLatLngInfo, WorldMapJoinLayerInfo from django.core.mail import send_mail #from django.template.loader import render_to_string from django.conf import settings from msg_util import msg, msgt DEFAULT_STALE_THREE_HOURS = 3 * 60 * 60 # 3 hours, in seconds STALE_AGE_TWO_DAYS = 2 * 24 * 60 * 60 # 48 hours, in seconds DEFAULT_STALE_AGE = DEFAULT_STALE_THREE_HOURS class StaleDataRemover(object): """Convenience class for removing old objects""" def __init__(self): self.num_objects_checked = 0 self.num_objects_removed = 0 self.message_lines = [] def add_message_line(self, mline, prepend=False): if mline: msg(mline) if prepend: self.message_lines.insert(0, mline) else: self.message_lines.append(mline) def check_for_stale_objects(self, MODEL_CLASS, stale_age_in_seconds): """ Retrieve a class of objects (e.g. WorldMapLatLngInfo) and count what's happening """ current_time = timezone.now() self.num_objects_checked = 0 self.num_objects_removed = 0 for obj_info in MODEL_CLASS.objects.all(): self.num_objects_checked += 1 if self.remove_if_stale(obj_info, stale_age_in_seconds, current_time): self.num_objects_removed += 1 def remove_stale_worldmap_data(self, stale_age_in_seconds=DEFAULT_STALE_AGE): """ Remove old map data...There are the objects storing WorldMap links """ msgt("Remove stale WorldMap data") for CLASS_TYPE in (WorldMapLatLngInfo, WorldMapJoinLayerInfo, WorldMapShapefileLayerInfo): self.add_message_line('checking: %s' % CLASS_TYPE.__name__) self.check_for_stale_objects(CLASS_TYPE, stale_age_in_seconds) self.add_message_line("# of WorldMap objects Checked: %s" % self.num_objects_checked) self.add_message_line("# of WorldMap objects Removed: %s" % self.num_objects_removed) def remove_stale_dataverse_data(self, stale_age_in_seconds=STALE_AGE_TWO_DAYS): """ Here we're removing the metadata and files from dataverse """ msgt("Remove stale Dataverse data") for CLASS_TYPE in (TabularFileInfo, ShapefileInfo): self.add_message_line('checking: %s' % CLASS_TYPE.__name__) self.check_for_stale_objects(CLASS_TYPE, stale_age_in_seconds) self.add_message_line("# of Dataverse objects Checked: %s" % self.num_objects_checked) self.add_message_line("# of Dataverse objects Removed: %s" % self.num_objects_removed) def remove_if_stale(self, info_object, stale_age_in_seconds, current_time=None): """ If the object has a "modified" timestamp older than "stale_age_in_seconds", then delete it """ assert hasattr(info_object, 'modified'),\ 'The info_object must have "modified" date' # Get the current time, if not already given # if not current_time: current_time = timezone.now() # Pull the modification time, setting timezone info to None # mod_time = info_object.modified if hasattr(mod_time, 'tzinfo'): mod_time = mod_time.replace(tzinfo=None) # Is this object beyond its time limit? # time_diff = (current_time - mod_time).total_seconds() if time_diff > stale_age_in_seconds: # Yes! delete it msg(' > Removing: %s' % info_object) info_object.delete() return True else: return False def send_email_notice(self): msgt('Send email notice!') subject = 'GeoConnect: Clear stale data (%s)' % timezone.now() self.add_message_line('This is an email notice from Geoconnect',\ prepend=True) self.add_message_line('-' *30, prepend=True) self.add_message_line('-' *30) self.add_message_line('(end of message)') if len(settings.ADMINS)==0: msg('No one to email! (no one in settings.ADMINS)') return to_addresses = map(lambda x: x[1], settings.ADMINS) if len(settings.ADMINS)==0: msg('No one to email! (no one in settings.ADMINS)') return #email_msg = render_to_string('task_scripts/prune_scratch_directories_email.txt', d) #msg(subject) #msg(email_msg) from_email = to_addresses[0] email_msg = '\n'.join(self.message_lines) send_mail(subject, email_msg, from_email, to_addresses, fail_silently=False) msg('email sent to: %s' % to_addresses) """ from gc_apps.geo_utils.stale_data_remover import StaleDataRemover sdr = StaleDataRemover() sdr.remove_stale_worldmap_data() sdr.send_email_notice() #sdr.remove_stale_dataverse_data() test_email = '[email protected]' send_mail('test geoconnect', 'did it work', test_email, [test_email]) """
import datetime def _format_from_ms(t): if t >= 1 * 60 * 60 * 1000: return str(datetime.timedelta(seconds=(t / 1000))) else: mins = (t / 1000) / 60 secs = (t / 1000) % 60 return '{:02d}:{:02d}'.format(mins, secs) class Album(object): class Track(object): @staticmethod def init_from_spotify(sp): self = Album.Track() self.name = sp['name'] self.track_number = sp['track_number'] self.duration_ms = sp['duration_ms'] self.spotify_id = sp['id'] self.play_link = "/play/{}/{}".format(sp['type'], sp['id']) self.duration_str = _format_from_ms(self.duration_ms) return self @staticmethod def init_from_spotify(sp): self = Album() self.name = sp['name'] self.spotify_id = sp['id'] self.release_date = sp['release_date'] self.play_link = "/play/{}/{}".format(sp['type'], sp['id']) if len(sp['images']) == 0: self.image_uri = None else: self.image_uri = sp['images'][len(sp['images']) / 2]['url'] self.tracks = [] if sp.has_key('tracks'): for track in sp['tracks']['items']: self.tracks.append(Album.Track.init_from_spotify(track)) self.duration_ms = reduce(lambda x,y: x+y, [x.duration_ms for x in self.tracks]) self.duration_str = _format_from_ms(self.duration_ms) return self
"""Forest of trees-based ensemble methods Those methods include random forests and extremely randomized trees. The module structure is the following: - The ``BaseForest`` base class implements a common ``fit`` method for all the estimators in the module. The ``fit`` method of the base ``Forest`` class calls the ``fit`` method of each sub-estimator on random samples (with replacement, a.k.a. bootstrap) of the training set. The init of the sub-estimator is further delegated to the ``BaseEnsemble`` constructor. - The ``ForestClassifier`` and ``ForestRegressor`` base classes further implement the prediction logic by computing an average of the predicted outcomes of the sub-estimators. - The ``RandomForestClassifier`` and ``RandomForestRegressor`` derived classes provide the user with concrete implementations of the forest ensemble method using classical, deterministic ``DecisionTreeClassifier`` and ``DecisionTreeRegressor`` as sub-estimator implementations. - The ``ExtraTreesClassifier`` and ``ExtraTreesRegressor`` derived classes provide the user with concrete implementations of the forest ensemble method using the extremely randomized trees ``ExtraTreeClassifier`` and ``ExtraTreeRegressor`` as sub-estimator implementations. Single and multi-output problems are both handled. """ # Authors: Gilles Louppe <[email protected]> # Brian Holt <[email protected]> # Joly Arnaud <[email protected]> # Fares Hedayati <[email protected]> # # License: BSD 3 clause from __future__ import division import warnings from warnings import warn from abc import ABCMeta, abstractmethod import numpy as np from scipy.sparse import issparse from scipy.sparse import hstack as sparse_hstack from ..base import ClassifierMixin, RegressorMixin from ..externals.joblib import Parallel, delayed from ..externals import six from ..feature_selection.from_model import _LearntSelectorMixin from ..metrics import r2_score from ..preprocessing import OneHotEncoder from ..tree import (DecisionTreeClassifier, DecisionTreeRegressor, ExtraTreeClassifier, ExtraTreeRegressor) from ..tree._tree import DTYPE, DOUBLE from ..utils import check_random_state, check_array, compute_sample_weight from ..exceptions import DataConversionWarning, NotFittedError from .base import BaseEnsemble, _partition_estimators from ..utils.fixes import bincount, parallel_helper from ..utils.multiclass import check_classification_targets __all__ = ["RandomForestClassifier", "RandomForestRegressor", "ExtraTreesClassifier", "ExtraTreesRegressor", "RandomTreesEmbedding"] MAX_INT = np.iinfo(np.int32).max def _generate_sample_indices(random_state, n_samples): """Private function used to _parallel_build_trees function.""" random_instance = check_random_state(random_state) sample_indices = random_instance.randint(0, n_samples, n_samples) return sample_indices def _generate_unsampled_indices(random_state, n_samples): """Private function used to forest._set_oob_score function.""" sample_indices = _generate_sample_indices(random_state, n_samples) sample_counts = bincount(sample_indices, minlength=n_samples) unsampled_mask = sample_counts == 0 indices_range = np.arange(n_samples) unsampled_indices = indices_range[unsampled_mask] return unsampled_indices def _parallel_build_trees(tree, forest, X, y, sample_weight, tree_idx, n_trees, verbose=0, class_weight=None): """Private function used to fit a single tree in parallel.""" if verbose > 1: print("building tree %d of %d" % (tree_idx + 1, n_trees)) if forest.bootstrap: n_samples = X.shape[0] if sample_weight is None: curr_sample_weight = np.ones((n_samples,), dtype=np.float64) else: curr_sample_weight = sample_weight.copy() indices = _generate_sample_indices(tree.random_state, n_samples) sample_counts = bincount(indices, minlength=n_samples) curr_sample_weight *= sample_counts if class_weight == 'subsample': with warnings.catch_warnings(): warnings.simplefilter('ignore', DeprecationWarning) curr_sample_weight *= compute_sample_weight('auto', y, indices) elif class_weight == 'balanced_subsample': curr_sample_weight *= compute_sample_weight('balanced', y, indices) tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False) else: tree.fit(X, y, sample_weight=sample_weight, check_input=False) return tree class BaseForest(six.with_metaclass(ABCMeta, BaseEnsemble, _LearntSelectorMixin)): """Base class for forests of trees. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, base_estimator, n_estimators=10, estimator_params=tuple(), bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None): super(BaseForest, self).__init__( base_estimator=base_estimator, n_estimators=n_estimators, estimator_params=estimator_params) self.bootstrap = bootstrap self.oob_score = oob_score self.n_jobs = n_jobs self.random_state = random_state self.verbose = verbose self.warm_start = warm_start self.class_weight = class_weight def apply(self, X): """Apply trees in the forest to X, return leaf indices. Parameters ---------- X : array-like or sparse matrix, shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. Returns ------- X_leaves : array_like, shape = [n_samples, n_estimators] For each datapoint x in X and for each tree in the forest, return the index of the leaf x ends up in. """ X = self._validate_X_predict(X) results = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend="threading")( delayed(parallel_helper)(tree, 'apply', X, check_input=False) for tree in self.estimators_) return np.array(results).T def decision_path(self, X): """Return the decision path in the forest Parameters ---------- X : array-like or sparse matrix, shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. Returns ------- indicator : sparse csr array, shape = [n_samples, n_nodes] Return a node indicator matrix where non zero elements indicates that the samples goes through the nodes. n_nodes_ptr : array of size (n_estimators + 1, ) The columns from indicator[n_nodes_ptr[i]:n_nodes_ptr[i+1]] gives the indicator value for the i-th estimator. """ X = self._validate_X_predict(X) indicators = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend="threading")( delayed(parallel_helper)(tree, 'decision_path', X, check_input=False) for tree in self.estimators_) n_nodes = [0] n_nodes.extend([i.shape[1] for i in indicators]) n_nodes_ptr = np.array(n_nodes).cumsum() return sparse_hstack(indicators).tocsr(), n_nodes_ptr def fit(self, X, y, sample_weight=None): """Build a forest of trees from the training set (X, y). Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The training input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csc_matrix``. y : array-like, shape = [n_samples] or [n_samples, n_outputs] The target values (class labels in classification, real numbers in regression). sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. In the case of classification, splits are also ignored if they would result in any single class carrying a negative weight in either child node. Returns ------- self : object Returns self. """ # Validate or convert input data X = check_array(X, accept_sparse="csc", dtype=DTYPE) y = check_array(y, accept_sparse='csc', ensure_2d=False, dtype=None) if issparse(X): # Pre-sort indices to avoid that each individual tree of the # ensemble sorts the indices. X.sort_indices() # Remap output n_samples, self.n_features_ = X.shape y = np.atleast_1d(y) if y.ndim == 2 and y.shape[1] == 1: warn("A column-vector y was passed when a 1d array was" " expected. Please change the shape of y to " "(n_samples,), for example using ravel().", DataConversionWarning, stacklevel=2) if y.ndim == 1: # reshape is necessary to preserve the data contiguity against vs # [:, np.newaxis] that does not. y = np.reshape(y, (-1, 1)) self.n_outputs_ = y.shape[1] y, expanded_class_weight = self._validate_y_class_weight(y) if getattr(y, "dtype", None) != DOUBLE or not y.flags.contiguous: y = np.ascontiguousarray(y, dtype=DOUBLE) if expanded_class_weight is not None: if sample_weight is not None: sample_weight = sample_weight * expanded_class_weight else: sample_weight = expanded_class_weight # Check parameters self._validate_estimator() if not self.bootstrap and self.oob_score: raise ValueError("Out of bag estimation only available" " if bootstrap=True") random_state = check_random_state(self.random_state) if not self.warm_start: # Free allocated memory, if any self.estimators_ = [] n_more_estimators = self.n_estimators - len(self.estimators_) if n_more_estimators < 0: raise ValueError('n_estimators=%d must be larger or equal to ' 'len(estimators_)=%d when warm_start==True' % (self.n_estimators, len(self.estimators_))) elif n_more_estimators == 0: warn("Warm-start fitting without increasing n_estimators does not " "fit new trees.") else: if self.warm_start and len(self.estimators_) > 0: # We draw from the random state to get the random state we # would have got if we hadn't used a warm_start. random_state.randint(MAX_INT, size=len(self.estimators_)) trees = [] for i in range(n_more_estimators): tree = self._make_estimator(append=False) tree.set_params(random_state=random_state.randint(MAX_INT)) trees.append(tree) # Parallel loop: we use the threading backend as the Cython code # for fitting the trees is internally releasing the Python GIL # making threading always more efficient than multiprocessing in # that case. trees = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend="threading")( delayed(_parallel_build_trees)( t, self, X, y, sample_weight, i, len(trees), verbose=self.verbose, class_weight=self.class_weight) for i, t in enumerate(trees)) # Collect newly grown trees self.estimators_.extend(trees) if self.oob_score: self._set_oob_score(X, y) # Decapsulate classes_ attributes if hasattr(self, "classes_") and self.n_outputs_ == 1: self.n_classes_ = self.n_classes_[0] self.classes_ = self.classes_[0] return self @abstractmethod def _set_oob_score(self, X, y): """Calculate out of bag predictions and score.""" def _validate_y_class_weight(self, y): # Default implementation return y, None def _validate_X_predict(self, X): """Validate X whenever one tries to predict, apply, predict_proba""" if self.estimators_ is None or len(self.estimators_) == 0: raise NotFittedError("Estimator not fitted, " "call `fit` before exploiting the model.") return self.estimators_[0]._validate_X_predict(X, check_input=True) @property def feature_importances_(self): """Return the feature importances (the higher, the more important the feature). Returns ------- feature_importances_ : array, shape = [n_features] """ if self.estimators_ is None or len(self.estimators_) == 0: raise NotFittedError("Estimator not fitted, " "call `fit` before `feature_importances_`.") all_importances = Parallel(n_jobs=self.n_jobs, backend="threading")( delayed(getattr)(tree, 'feature_importances_') for tree in self.estimators_) return sum(all_importances) / len(self.estimators_) class ForestClassifier(six.with_metaclass(ABCMeta, BaseForest, ClassifierMixin)): """Base class for forest of trees-based classifiers. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, base_estimator, n_estimators=10, estimator_params=tuple(), bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None): super(ForestClassifier, self).__init__( base_estimator, n_estimators=n_estimators, estimator_params=estimator_params, bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start, class_weight=class_weight) def _set_oob_score(self, X, y): """Compute out-of-bag score""" X = check_array(X, dtype=DTYPE, accept_sparse='csr') n_classes_ = self.n_classes_ n_samples = y.shape[0] oob_decision_function = [] oob_score = 0.0 predictions = [] for k in range(self.n_outputs_): predictions.append(np.zeros((n_samples, n_classes_[k]))) for estimator in self.estimators_: unsampled_indices = _generate_unsampled_indices( estimator.random_state, n_samples) p_estimator = estimator.predict_proba(X[unsampled_indices, :], check_input=False) if self.n_outputs_ == 1: p_estimator = [p_estimator] for k in range(self.n_outputs_): predictions[k][unsampled_indices, :] += p_estimator[k] for k in range(self.n_outputs_): if (predictions[k].sum(axis=1) == 0).any(): warn("Some inputs do not have OOB scores. " "This probably means too few trees were used " "to compute any reliable oob estimates.") decision = (predictions[k] / predictions[k].sum(axis=1)[:, np.newaxis]) oob_decision_function.append(decision) oob_score += np.mean(y[:, k] == np.argmax(predictions[k], axis=1), axis=0) if self.n_outputs_ == 1: self.oob_decision_function_ = oob_decision_function[0] else: self.oob_decision_function_ = oob_decision_function self.oob_score_ = oob_score / self.n_outputs_ def _validate_y_class_weight(self, y): check_classification_targets(y) y = np.copy(y) expanded_class_weight = None if self.class_weight is not None: y_original = np.copy(y) self.classes_ = [] self.n_classes_ = [] y_store_unique_indices = np.zeros(y.shape, dtype=np.int) for k in range(self.n_outputs_): classes_k, y_store_unique_indices[:, k] = np.unique(y[:, k], return_inverse=True) self.classes_.append(classes_k) self.n_classes_.append(classes_k.shape[0]) y = y_store_unique_indices if self.class_weight is not None: valid_presets = ('auto', 'balanced', 'subsample', 'balanced_subsample') if isinstance(self.class_weight, six.string_types): if self.class_weight not in valid_presets: raise ValueError('Valid presets for class_weight include ' '"balanced" and "balanced_subsample". Given "%s".' % self.class_weight) if self.class_weight == "subsample": warn("class_weight='subsample' is deprecated in 0.17 and" "will be removed in 0.19. It was replaced by " "class_weight='balanced_subsample' using the balanced" "strategy.", DeprecationWarning) if self.warm_start: warn('class_weight presets "balanced" or "balanced_subsample" are ' 'not recommended for warm_start if the fitted data ' 'differs from the full dataset. In order to use ' '"balanced" weights, use compute_class_weight("balanced", ' 'classes, y). In place of y you can use a large ' 'enough sample of the full training set target to ' 'properly estimate the class frequency ' 'distributions. Pass the resulting weights as the ' 'class_weight parameter.') if (self.class_weight not in ['subsample', 'balanced_subsample'] or not self.bootstrap): if self.class_weight == 'subsample': class_weight = 'auto' elif self.class_weight == "balanced_subsample": class_weight = "balanced" else: class_weight = self.class_weight with warnings.catch_warnings(): if class_weight == "auto": warnings.simplefilter('ignore', DeprecationWarning) expanded_class_weight = compute_sample_weight(class_weight, y_original) return y, expanded_class_weight def predict(self, X): """Predict class for X. The predicted class of an input sample is a vote by the trees in the forest, weighted by their probability estimates. That is, the predicted class is the one with highest mean probability estimate across the trees. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. Returns ------- y : array of shape = [n_samples] or [n_samples, n_outputs] The predicted classes. """ proba = self.predict_proba(X) if self.n_outputs_ == 1: return self.classes_.take(np.argmax(proba, axis=1), axis=0) else: n_samples = proba[0].shape[0] predictions = np.zeros((n_samples, self.n_outputs_)) for k in range(self.n_outputs_): predictions[:, k] = self.classes_[k].take(np.argmax(proba[k], axis=1), axis=0) return predictions def predict_proba(self, X): """Predict class probabilities for X. The predicted class probabilities of an input sample are computed as the mean predicted class probabilities of the trees in the forest. The class probability of a single tree is the fraction of samples of the same class in a leaf. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if n_outputs > 1. The class probabilities of the input samples. The order of the classes corresponds to that in the attribute `classes_`. """ # Check data X = self._validate_X_predict(X) # Assign chunk of trees to jobs n_jobs, _, _ = _partition_estimators(self.n_estimators, self.n_jobs) # Parallel loop all_proba = Parallel(n_jobs=n_jobs, verbose=self.verbose, backend="threading")( delayed(parallel_helper)(e, 'predict_proba', X, check_input=False) for e in self.estimators_) # Reduce proba = all_proba[0] if self.n_outputs_ == 1: for j in range(1, len(all_proba)): proba += all_proba[j] proba /= len(self.estimators_) else: for j in range(1, len(all_proba)): for k in range(self.n_outputs_): proba[k] += all_proba[j][k] for k in range(self.n_outputs_): proba[k] /= self.n_estimators return proba def predict_log_proba(self, X): """Predict class log-probabilities for X. The predicted class log-probabilities of an input sample is computed as the log of the mean predicted class probabilities of the trees in the forest. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if n_outputs > 1. The class probabilities of the input samples. The order of the classes corresponds to that in the attribute `classes_`. """ proba = self.predict_proba(X) if self.n_outputs_ == 1: return np.log(proba) else: for k in range(self.n_outputs_): proba[k] = np.log(proba[k]) return proba class ForestRegressor(six.with_metaclass(ABCMeta, BaseForest, RegressorMixin)): """Base class for forest of trees-based regressors. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, base_estimator, n_estimators=10, estimator_params=tuple(), bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(ForestRegressor, self).__init__( base_estimator, n_estimators=n_estimators, estimator_params=estimator_params, bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) def predict(self, X): """Predict regression target for X. The predicted regression target of an input sample is computed as the mean predicted regression targets of the trees in the forest. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. Returns ------- y : array of shape = [n_samples] or [n_samples, n_outputs] The predicted values. """ # Check data X = self._validate_X_predict(X) # Assign chunk of trees to jobs n_jobs, _, _ = _partition_estimators(self.n_estimators, self.n_jobs) # Parallel loop all_y_hat = Parallel(n_jobs=n_jobs, verbose=self.verbose, backend="threading")( delayed(parallel_helper)(e, 'predict', X, check_input=False) for e in self.estimators_) # Reduce y_hat = sum(all_y_hat) / len(self.estimators_) return y_hat def _set_oob_score(self, X, y): """Compute out-of-bag scores""" X = check_array(X, dtype=DTYPE, accept_sparse='csr') n_samples = y.shape[0] predictions = np.zeros((n_samples, self.n_outputs_)) n_predictions = np.zeros((n_samples, self.n_outputs_)) for estimator in self.estimators_: unsampled_indices = _generate_unsampled_indices( estimator.random_state, n_samples) p_estimator = estimator.predict( X[unsampled_indices, :], check_input=False) if self.n_outputs_ == 1: p_estimator = p_estimator[:, np.newaxis] predictions[unsampled_indices, :] += p_estimator n_predictions[unsampled_indices, :] += 1 if (n_predictions == 0).any(): warn("Some inputs do not have OOB scores. " "This probably means too few trees were used " "to compute any reliable oob estimates.") n_predictions[n_predictions == 0] = 1 predictions /= n_predictions self.oob_prediction_ = predictions if self.n_outputs_ == 1: self.oob_prediction_ = \ self.oob_prediction_.reshape((n_samples, )) self.oob_score_ = 0.0 for k in range(self.n_outputs_): self.oob_score_ += r2_score(y[:, k], predictions[:, k]) self.oob_score_ /= self.n_outputs_ class RandomForestClassifier(ForestClassifier): """A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is always the same as the original input sample size but the samples are drawn with replacement if `bootstrap=True` (default). Read more in the :ref:`User Guide <forest>`. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="gini") The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "entropy" for the information gain. Note: this parameter is tree-specific. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=sqrt(n_features)`. - If "sqrt", then `max_features=sqrt(n_features)` (same as "auto"). - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. Ignored if ``max_leaf_nodes`` is not None. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the input samples required to be at a leaf node. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. If not None then ``max_depth`` will be ignored. min_impurity_split : float, optional (default=1e-7) Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. .. versionadded:: 0.18 bootstrap : boolean, optional (default=True) Whether bootstrap samples are used when building trees. oob_score : bool (default=False) Whether to use out-of-bag samples to estimate the generalization accuracy. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. class_weight : dict, list of dicts, "balanced", "balanced_subsample" or None, optional (default=None) Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. For multi-output problems, a list of dicts can be provided in the same order as the columns of y. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` The "balanced_subsample" mode is the same as "balanced" except that weights are computed based on the bootstrap sample for every tree grown. For multi-output, the weights of each column of y will be multiplied. Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. Attributes ---------- estimators_ : list of DecisionTreeClassifier The collection of fitted sub-estimators. classes_ : array of shape = [n_classes] or a list of such arrays The classes labels (single output problem), or a list of arrays of class labels (multi-output problem). n_classes_ : int or list The number of classes (single output problem), or a list containing the number of classes for each output (multi-output problem). n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_decision_function_ : array of shape = [n_samples, n_classes] Decision function computed with out-of-bag estimate on the training set. If n_estimators is small it might be possible that a data point was never left out during the bootstrap. In this case, `oob_decision_function_` might contain NaN. References ---------- .. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001. See also -------- DecisionTreeClassifier, ExtraTreesClassifier """ def __init__(self, n_estimators=10, criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, min_impurity_split=1e-7, bootstrap=True, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None): super(RandomForestClassifier, self).__init__( base_estimator=DecisionTreeClassifier(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "min_impurity_split", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start, class_weight=class_weight) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes self.min_impurity_split = min_impurity_split class RandomForestRegressor(ForestRegressor): """A random forest regressor. A random forest is a meta estimator that fits a number of classifying decision trees on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is always the same as the original input sample size but the samples are drawn with replacement if `bootstrap=True` (default). Read more in the :ref:`User Guide <forest>`. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="mse") The function to measure the quality of a split. Supported criteria are "mse" for the mean squared error, which is equal to variance reduction as feature selection criterion, and "mae" for the mean absolute error. .. versionadded:: 0.18 Mean Absolute Error (MAE) criterion. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=n_features`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. Ignored if ``max_leaf_nodes`` is not None. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the input samples required to be at a leaf node. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. If not None then ``max_depth`` will be ignored. min_impurity_split : float, optional (default=1e-7) Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. .. versionadded:: 0.18 bootstrap : boolean, optional (default=True) Whether bootstrap samples are used when building trees. oob_score : bool, optional (default=False) whether to use out-of-bag samples to estimate the R^2 on unseen data. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. Attributes ---------- estimators_ : list of DecisionTreeRegressor The collection of fitted sub-estimators. feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_prediction_ : array of shape = [n_samples] Prediction computed with out-of-bag estimate on the training set. References ---------- .. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001. See also -------- DecisionTreeRegressor, ExtraTreesRegressor """ def __init__(self, n_estimators=10, criterion="mse", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, min_impurity_split=1e-7, bootstrap=True, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(RandomForestRegressor, self).__init__( base_estimator=DecisionTreeRegressor(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "min_impurity_split", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes self.min_impurity_split = min_impurity_split class ExtraTreesClassifier(ForestClassifier): """An extra-trees classifier. This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. Read more in the :ref:`User Guide <forest>`. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="gini") The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "entropy" for the information gain. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=sqrt(n_features)`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. Ignored if ``max_leaf_nodes`` is not None. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the input samples required to be at a leaf node. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. If not None then ``max_depth`` will be ignored. min_impurity_split : float, optional (default=1e-7) Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. .. versionadded:: 0.18 bootstrap : boolean, optional (default=False) Whether bootstrap samples are used when building trees. oob_score : bool, optional (default=False) Whether to use out-of-bag samples to estimate the generalization accuracy. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. class_weight : dict, list of dicts, "balanced", "balanced_subsample" or None, optional (default=None) Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. For multi-output problems, a list of dicts can be provided in the same order as the columns of y. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` The "balanced_subsample" mode is the same as "balanced" except that weights are computed based on the bootstrap sample for every tree grown. For multi-output, the weights of each column of y will be multiplied. Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. Attributes ---------- estimators_ : list of DecisionTreeClassifier The collection of fitted sub-estimators. classes_ : array of shape = [n_classes] or a list of such arrays The classes labels (single output problem), or a list of arrays of class labels (multi-output problem). n_classes_ : int or list The number of classes (single output problem), or a list containing the number of classes for each output (multi-output problem). feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_decision_function_ : array of shape = [n_samples, n_classes] Decision function computed with out-of-bag estimate on the training set. If n_estimators is small it might be possible that a data point was never left out during the bootstrap. In this case, `oob_decision_function_` might contain NaN. References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. See also -------- sklearn.tree.ExtraTreeClassifier : Base classifier for this ensemble. RandomForestClassifier : Ensemble Classifier based on trees with optimal splits. """ def __init__(self, n_estimators=10, criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, min_impurity_split=1e-7, bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None): super(ExtraTreesClassifier, self).__init__( base_estimator=ExtraTreeClassifier(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "min_impurity_split", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start, class_weight=class_weight) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes self.min_impurity_split = min_impurity_split class ExtraTreesRegressor(ForestRegressor): """An extra-trees regressor. This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. Read more in the :ref:`User Guide <forest>`. Parameters ---------- n_estimators : integer, optional (default=10) The number of trees in the forest. criterion : string, optional (default="mse") The function to measure the quality of a split. Supported criteria are "mse" for the mean squared error, which is equal to variance reduction as feature selection criterion, and "mae" for the mean absolute error. .. versionadded:: 0.18 Mean Absolute Error (MAE) criterion. max_features : int, float, string or None, optional (default="auto") The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=n_features`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_depth : integer or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. Ignored if ``max_leaf_nodes`` is not None. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the input samples required to be at a leaf node. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. If not None then ``max_depth`` will be ignored. min_impurity_split : float, optional (default=1e-7) Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. .. versionadded:: 0.18 bootstrap : boolean, optional (default=False) Whether bootstrap samples are used when building trees. oob_score : bool, optional (default=False) Whether to use out-of-bag samples to estimate the R^2 on unseen data. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. Attributes ---------- estimators_ : list of DecisionTreeRegressor The collection of fitted sub-estimators. feature_importances_ : array of shape = [n_features] The feature importances (the higher, the more important the feature). n_features_ : int The number of features. n_outputs_ : int The number of outputs. oob_score_ : float Score of the training dataset obtained using an out-of-bag estimate. oob_prediction_ : array of shape = [n_samples] Prediction computed with out-of-bag estimate on the training set. References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. See also -------- sklearn.tree.ExtraTreeRegressor: Base estimator for this ensemble. RandomForestRegressor: Ensemble regressor using trees with optimal splits. """ def __init__(self, n_estimators=10, criterion="mse", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", max_leaf_nodes=None, min_impurity_split=1e-7, bootstrap=False, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(ExtraTreesRegressor, self).__init__( base_estimator=ExtraTreeRegressor(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "min_impurity_split", "random_state"), bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.max_leaf_nodes = max_leaf_nodes self.min_impurity_split = min_impurity_split class RandomTreesEmbedding(BaseForest): """An ensemble of totally random trees. An unsupervised transformation of a dataset to a high-dimensional sparse representation. A datapoint is coded according to which leaf of each tree it is sorted into. Using a one-hot encoding of the leaves, this leads to a binary coding with as many ones as there are trees in the forest. The dimensionality of the resulting representation is ``n_out <= n_estimators * max_leaf_nodes``. If ``max_leaf_nodes == None``, the number of leaf nodes is at most ``n_estimators * 2 ** max_depth``. Read more in the :ref:`User Guide <random_trees_embedding>`. Parameters ---------- n_estimators : integer, optional (default=10) Number of trees in the forest. max_depth : integer, optional (default=5) The maximum depth of each tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. Ignored if ``max_leaf_nodes`` is not None. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` is the minimum number of samples for each split. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` is the minimum number of samples for each node. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the input samples required to be at a leaf node. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. If not None then ``max_depth`` will be ignored. min_impurity_split : float, optional (default=1e-7) Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. .. versionadded:: 0.18 sparse_output : bool, optional (default=True) Whether or not to return a sparse CSR matrix, as default behavior, or to return a dense array compatible with dense pipeline operators. n_jobs : integer, optional (default=1) The number of jobs to run in parallel for both `fit` and `predict`. If -1, then the number of jobs is set to the number of cores. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. verbose : int, optional (default=0) Controls the verbosity of the tree building process. warm_start : bool, optional (default=False) When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. Attributes ---------- estimators_ : list of DecisionTreeClassifier The collection of fitted sub-estimators. References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. .. [2] Moosmann, F. and Triggs, B. and Jurie, F. "Fast discriminative visual codebooks using randomized clustering forests" NIPS 2007 """ def __init__(self, n_estimators=10, max_depth=5, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_leaf_nodes=None, min_impurity_split=1e-7, sparse_output=True, n_jobs=1, random_state=None, verbose=0, warm_start=False): super(RandomTreesEmbedding, self).__init__( base_estimator=ExtraTreeRegressor(), n_estimators=n_estimators, estimator_params=("criterion", "max_depth", "min_samples_split", "min_samples_leaf", "min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "min_impurity_split", "random_state"), bootstrap=False, oob_score=False, n_jobs=n_jobs, random_state=random_state, verbose=verbose, warm_start=warm_start) self.criterion = 'mse' self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = 1 self.max_leaf_nodes = max_leaf_nodes self.min_impurity_split = min_impurity_split self.sparse_output = sparse_output def _set_oob_score(self, X, y): raise NotImplementedError("OOB score not supported by tree embedding") def fit(self, X, y=None, sample_weight=None): """Fit estimator. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) The input samples. Use ``dtype=np.float32`` for maximum efficiency. Sparse matrices are also supported, use sparse ``csc_matrix`` for maximum efficiency. Returns ------- self : object Returns self. """ self.fit_transform(X, y, sample_weight=sample_weight) return self def fit_transform(self, X, y=None, sample_weight=None): """Fit estimator and transform dataset. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Input data used to build forests. Use ``dtype=np.float32`` for maximum efficiency. Returns ------- X_transformed : sparse matrix, shape=(n_samples, n_out) Transformed dataset. """ # ensure_2d=False because there are actually unit test checking we fail # for 1d. X = check_array(X, accept_sparse=['csc'], ensure_2d=False) if issparse(X): # Pre-sort indices to avoid that each individual tree of the # ensemble sorts the indices. X.sort_indices() rnd = check_random_state(self.random_state) y = rnd.uniform(size=X.shape[0]) super(RandomTreesEmbedding, self).fit(X, y, sample_weight=sample_weight) self.one_hot_encoder_ = OneHotEncoder(sparse=self.sparse_output) return self.one_hot_encoder_.fit_transform(self.apply(X)) def transform(self, X): """Transform dataset. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Input data to be transformed. Use ``dtype=np.float32`` for maximum efficiency. Sparse matrices are also supported, use sparse ``csr_matrix`` for maximum efficiency. Returns ------- X_transformed : sparse matrix, shape=(n_samples, n_out) Transformed dataset. """ return self.one_hot_encoder_.transform(self.apply(X))
from numbers import Number import torch from torch.distributions import constraints from torch.distributions.dirichlet import Dirichlet from torch.distributions.exp_family import ExponentialFamily from torch.distributions.utils import broadcast_all class Beta(ExponentialFamily): r""" Beta distribution parameterized by :attr:`concentration1` and :attr:`concentration0`. Example:: >>> m = Beta(torch.tensor([0.5]), torch.tensor([0.5])) >>> m.sample() # Beta distributed with concentration concentration1 and concentration0 tensor([ 0.1046]) Args: concentration1 (float or Tensor): 1st concentration parameter of the distribution (often referred to as alpha) concentration0 (float or Tensor): 2nd concentration parameter of the distribution (often referred to as beta) """ arg_constraints = {'concentration1': constraints.positive, 'concentration0': constraints.positive} support = constraints.unit_interval has_rsample = True def __init__(self, concentration1, concentration0, validate_args=None): if isinstance(concentration1, Number) and isinstance(concentration0, Number): concentration1_concentration0 = torch.tensor([float(concentration1), float(concentration0)]) else: concentration1, concentration0 = broadcast_all(concentration1, concentration0) concentration1_concentration0 = torch.stack([concentration1, concentration0], -1) self._dirichlet = Dirichlet(concentration1_concentration0) super(Beta, self).__init__(self._dirichlet._batch_shape, validate_args=validate_args) def expand(self, batch_shape, _instance=None): new = self._get_checked_instance(Beta, _instance) batch_shape = torch.Size(batch_shape) new._dirichlet = self._dirichlet.expand(batch_shape) super(Beta, new).__init__(batch_shape, validate_args=False) new._validate_args = self._validate_args return new @property def mean(self): return self.concentration1 / (self.concentration1 + self.concentration0) @property def variance(self): total = self.concentration1 + self.concentration0 return (self.concentration1 * self.concentration0 / (total.pow(2) * (total + 1))) def rsample(self, sample_shape=()): value = self._dirichlet.rsample(sample_shape).select(-1, 0) if isinstance(value, Number): value = self._dirichlet.concentration.new_tensor(value) return value def log_prob(self, value): if self._validate_args: self._validate_sample(value) heads_tails = torch.stack([value, 1.0 - value], -1) return self._dirichlet.log_prob(heads_tails) def entropy(self): return self._dirichlet.entropy() @property def concentration1(self): result = self._dirichlet.concentration[..., 0] if isinstance(result, Number): return torch.tensor([result]) else: return result @property def concentration0(self): result = self._dirichlet.concentration[..., 1] if isinstance(result, Number): return torch.tensor([result]) else: return result @property def _natural_params(self): return (self.concentration1, self.concentration0) def _log_normalizer(self, x, y): return torch.lgamma(x) + torch.lgamma(y) - torch.lgamma(x + y)
__author__ = 'Wayne' from django import forms from django.contrib.auth import authenticate from messenger.models import Officer from django.utils.safestring import mark_safe class LoginForm(forms.Form): username = forms.CharField(max_length=100, label='User ID') password = forms.CharField(widget=forms.PasswordInput()) def clean(self): user = self.login() if not user or not user.is_active: raise forms.ValidationError('Sorry, that login was invalid. Please try again.') return self.cleaned_data def login(self): username = self.cleaned_data.get('username') password = self.cleaned_data.get('password') user = authenticate(username=username, password=password) return user class MessageForm(forms.Form): recipients = forms.ModelMultipleChoiceField(Officer.objects.all(), help_text='You can select more than one person.', widget=forms.CheckboxSelectMultiple) content = forms.CharField(widget=forms.Textarea, help_text='Be as detailed or brief as you want. ' 'Messages are always anonymous.', label='Message') password = forms.CharField(widget=forms.PasswordInput, help_text=mark_safe('This is optional, but will allow you to' ' continue an anonymous conversation. ' '<a href="/about">More information</a>.'), required=False) password_again = forms.CharField(widget=forms.PasswordInput, required=False, help_text='Type your password again to make sure you have it right.') def clean(self): cleaned_data = super(MessageForm, self).clean() password = cleaned_data.get('password') password_again = cleaned_data.get('password_again') if password: if password_again: if password != password_again: # Only do something if both passwords do not match. msg = "Passwords must match." self._errors["password"] = self.error_class([msg]) self._errors["password_again"] = self.error_class([msg]) # These fields are no longer valid. Remove them from the # cleaned data. del cleaned_data["password"] del cleaned_data["password_again"] else: # Only do something if both passwords do not match. msg = "Please type your password twice to ensure correctness" self._errors["password"] = self.error_class([msg]) self._errors["password_again"] = self.error_class([msg]) # These fields are no longer valid. Remove them from the # cleaned data. del cleaned_data["password"] del cleaned_data["password_again"] return cleaned_data class ReplyForm(forms.Form): content = forms.CharField(widget=forms.Textarea, help_text='Reply to this conversation. People who can view this ' 'conversation will be able to see your message.', label='Message')
# Copyright 2015 Tianchuan Du University of Delaware # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED # WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, # MERCHANTABLITY OR NON-INFRINGEMENT. # See the Apache 2 License for the specific language governing permissions and # limitations under the License. import cPickle import gzip import numpy import os import sys import theano from theano.tensor.shared_randomstreams import RandomStreams import time import theano.tensor as T class HiddenLayer(object): def __init__(self, rng, input, n_in, n_out, W=None, b=None, activation=T.tanh, do_maxout = False, pool_size = 1): """ Class for hidden layer """ self.input = input self.n_in = n_in self.n_out = n_out self.activation = activation self.type = 'fc' if W is None: W_values = numpy.asarray(rng.uniform( low=-numpy.sqrt(6. / (n_in + n_out)), high=numpy.sqrt(6. / (n_in + n_out)), size=(n_in, n_out)), dtype=theano.config.floatX) if self.activation == theano.tensor.nnet.sigmoid: W_values *= 4 W = theano.shared(value=W_values, name='W', borrow=True) if b is None: b_values = numpy.zeros((n_out,), dtype=theano.config.floatX) b = theano.shared(value=b_values, name='b', borrow=True) self.W = W self.b = b self.delta_W = theano.shared(value = numpy.zeros((n_in,n_out), dtype=theano.config.floatX), name='delta_W') self.delta_b = theano.shared(value = numpy.zeros_like(self.b.get_value(borrow=True), dtype=theano.config.floatX), name='delta_b') lin_output = T.dot(input, self.W) + self.b if do_maxout == True: self.last_start = n_out - pool_size self.tmp_output = lin_output[:,0:self.last_start+1:pool_size] for i in range(1, pool_size): cur = lin_output[:,i:self.last_start+i+1:pool_size] self.tmp_output = T.maximum(cur, self.tmp_output) self.output = self.activation(self.tmp_output) else: self.output = (lin_output if self.activation is None else self.activation(lin_output)) # parameters of the model self.params = [self.W, self.b] self.delta_params = [self.delta_W, self.delta_b] def _dropout_from_layer(theano_rng, hid_out, p): """ p is the factor for dropping a unit """ # p=1-p because 1's indicate keep and p is prob of dropping return theano_rng.binomial(n=1, p=1-p, size=hid_out.shape, dtype=theano.config.floatX) * hid_out class DropoutHiddenLayer(HiddenLayer): def __init__(self, rng, input, n_in, n_out, W=None, b=None, activation=T.tanh, do_maxout = False, pool_size = 1, dropout_factor=0.5): super(DropoutHiddenLayer, self).__init__( rng=rng, input=input, n_in=n_in, n_out=n_out, W=W, b=b, activation=activation, do_maxout = do_maxout, pool_size = pool_size) self.theano_rng = RandomStreams(rng.randint(2 ** 30)) self.dropout_output = _dropout_from_layer(theano_rng = self.theano_rng, hid_out = self.output, p=dropout_factor)
''' Generate a pbs script for job submission, submit the job, be happy ''' import glob import sys import os import shutil import time def return_template(output_direc, ms_name, model_name, mask_name, script_name="HI_single_channel_clean.py"): # Emailing #PBS -m bea #PBS -M [email protected] template = \ ''' #!/bin/bash #PBS -S /bin/bash #PBS -l pmem=1000m #PBS -l nodes=1:ppn=12 #PBS -l walltime=7:00:00 #PBS -l epilogue=/home/ekoch/code_repos/simscript/epilogue.sh source /home/ekoch/.bashrc cd X1 echo "Starting at: `date`" casa-4.4 --nologger --logfile X5 -c SCRIPT X2 X3 X4 echo "Exited with code $? at: `date`" ''' template = template.strip() template = template.replace("X1", output_direc) template = template.replace("X2", ms_name) template = template.replace("X3", model_name) template = template.replace("X4", mask_name) template = template.replace("SCRIPT", script_name) # Create log file name logfile = ms_name.rstrip(".ms") + ".log" template = template.replace("X5", logfile) return template def drop_last(ms_list): ''' CASA is generally writing to the final MS in the folder, so skip it. ''' max_num = 0 for ms in ms_list: if int(ms.split("_")[-1][:-3]) > max_num: max_num_ms = ms max_num = int(ms.split("_")[-1][:-3]) ms_list.remove(max_num_ms) return ms_list # Set the directory to look in. ms_channel = "/home/ekoch/m33/14B-088/14B-088_channel_ms/" model_channel_name = "/home/ekoch/m33/14B-088/model_channels/M33_14B-088_HI_" \ "model_channel_{}.image" mask_channel_name = "/home/ekoch/m33/14B-088/mask_channels/M33_14B-088_HI_" \ "mask_channel_{}.image" output_direc = "/home/ekoch/m33/14B-088/single_channels/" # Name of script to run. Default is to use the natural weighting script script_name = "/home/ekoch/code_repos/VLA_Lband/14B-088/HI/imaging/" \ "HI_single_channel_clean.py" # script_name = "/home/ekoch/code_repos/VLA_Lband/14B-088/HI/imaging/" \ # "HI_single_channel_clean_robust.py" # Use mask and model? Disable when continuing to clean. use_mask_model = True # Set the mode to use. Continuously checking for new splits, or a set number. sub_mode = sys.argv[1] if sub_mode == "continuous": pass elif sub_mode == "range": try: start = int(sys.argv[2]) stop = int(sys.argv[3]) except IndexError: raise IndexError("Must provide a start and stop when using " "'range' mode.") else: raise TypeError("sub_mode must be 'continuous' or 'range'.") while True: # Run channels in given range if sub_mode == "range": channel_ms = [] for chan in xrange(start, stop + 1): channel_path = \ os.path.join(ms_channel, "14B-088_HI_LSRK.ms.contsub_channel_{}.ms".format(chan)) channel_ms.append(channel_path) elif sub_mode == "continuous": channel_ms = glob.glob(os.path.join(ms_channel, "*channel*.ms")) channel_ms = drop_last(channel_ms) # If there aren't any more split ms in the path, break and exit if len(channel_ms) == 0: print("No more MSs found in the directory. Exiting.") break # Now loop through the existing channel ms for chan in channel_ms: chan_num = int(chan.split("_")[-1][:-3]) # adjust for numbering offset mod_mask_num = chan_num - 670 channel_direc = os.path.join(output_direc, "channel_{}".format(chan_num)) # Check if that channel has been imaged already # if os.path.isdir(channel_direc): # print("Already imaged "+str(chan_num)+". Skipping") # continue if not os.path.exists(channel_direc): os.mkdir(channel_direc) # Names of the clean inputs in the channel_ms folder. Defined here to # check if they exist before moving. base_ms_name = os.path.basename(chan.rstrip("/")) chan_ms = os.path.join(channel_direc, base_ms_name) base_model_name = \ os.path.basename(model_channel_name.format(mod_mask_num)) model_name = os.path.join(channel_direc, base_model_name) base_mask_name = \ os.path.basename(mask_channel_name.format(mod_mask_num)) mask_name = os.path.join(channel_direc, base_mask_name) # Now move the mask, model, and channel ms into the folder, if they # aren't there already if not os.path.exists(chan_ms): shutil.move(chan, channel_direc) if not os.path.exists(model_name): shutil.move(model_channel_name.format(mod_mask_num), channel_direc) if not os.path.exists(mask_name): shutil.move(mask_channel_name.format(mod_mask_num), channel_direc) chan_template = return_template(channel_direc, chan_ms, model_name, mask_name, script_name=script_name) # Write to file sub_file = os.path.join(channel_direc, "channel_{}.sub".format(chan_num)) if not os.path.exists(sub_file): with open(sub_file, 'w') as f: f.write(chan_template) # Now submit! old_direc = os.getcwd() os.chdir(channel_direc) # Switch to directory so log files are there os.system("qsub " + sub_file) os.chdir(old_direc) # Temporary stopper break # Wait an hour, then check again for new channel ms time.sleep(3600)
# ***** BEGIN LICENSE BLOCK ***** # Version: MPL 1.1/GPL 2.0/LGPL 2.1 # # The contents of this file are subject to the Mozilla Public License # Version 1.1 (the "License"); you may not use this file except in # compliance with the License. You may obtain a copy of the License at # http://www.mozilla.org/MPL/ # # Software distributed under the License is distributed on an "AS IS" # basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the # License for the specific language governing rights and limitations # under the License. # # The Original Code is Komodo code. # # The Initial Developer of the Original Code is ActiveState Software Inc. # Portions created by ActiveState Software Inc are Copyright (C) 2000-2007 # ActiveState Software Inc. All Rights Reserved. # # Contributor(s): # ActiveState Software Inc # # Alternatively, the contents of this file may be used under the terms of # either the GNU General Public License Version 2 or later (the "GPL"), or # the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), # in which case the provisions of the GPL or the LGPL are applicable instead # of those above. If you wish to allow use of your version of this file only # under the terms of either the GPL or the LGPL, and not to allow others to # use your version of this file under the terms of the MPL, indicate your # decision by deleting the provisions above and replace them with the notice # and other provisions required by the GPL or the LGPL. If you do not delete # the provisions above, a recipient may use your version of this file under # the terms of any one of the MPL, the GPL or the LGPL. # # ***** END LICENSE BLOCK ***** import os import sys import time import types if sys.platform != "win32" or sys.version_info[:2] >= (3, 0): import signal # used by kill() method on Linux/Mac import logging import threading import warnings #-------- Globals -----------# log = logging.getLogger("process") # log.setLevel(logging.DEBUG) try: from subprocess32 import Popen, PIPE except ImportError: # Not available on Windows - fallback to using regular subprocess module. from subprocess import Popen, PIPE if sys.platform != "win32" or sys.version_info[:2] >= (3, 0): log.warn( "Could not import subprocess32 module, falling back to subprocess module") CREATE_NEW_CONSOLE = 0x10 # same as win32process.CREATE_NEW_CONSOLE CREATE_NEW_PROCESS_GROUP = 0x200 # same as win32process.CREATE_NEW_PROCESS_GROUP CREATE_NO_WINDOW = 0x8000000 # same as win32process.CREATE_NO_WINDOW CTRL_BREAK_EVENT = 1 # same as win32con.CTRL_BREAK_EVENT WAIT_TIMEOUT = 258 # same as win32event.WAIT_TIMEOUT #-------- Classes -----------# # XXX - TODO: Work out what exceptions raised by SubProcess and turn into # ProcessError? class ProcessError(Exception): def __init__(self, msg, errno=-1): Exception.__init__(self, msg) self.errno = errno # Check if this is Windows NT and above. if sys.platform == "win32" and sys.getwindowsversion()[3] == 2 and sys.version_info[:2] < (3, 0): import winprocess from subprocess import pywintypes, list2cmdline, STARTUPINFO try: # These subprocess variables have moved around between Python versions. from subprocess import (SW_HIDE, STARTF_USESTDHANDLES, STARTF_USESHOWWINDOW, GetVersion, CreateProcess, TerminateProcess) except ImportError: import subprocess SW_HIDE = subprocess._subprocess.SW_HIDE STARTF_USESTDHANDLES = subprocess._subprocess.STARTF_USESTDHANDLES STARTF_USESHOWWINDOW = subprocess._subprocess.STARTF_USESHOWWINDOW GetVersion = subprocess._subprocess.GetVersion CreateProcess = subprocess._subprocess.CreateProcess TerminateProcess = subprocess._subprocess.TerminateProcess # This fix is for killing child processes on windows, based on: # http://www.microsoft.com/msj/0698/win320698.aspx # It works by creating a uniquely named job object that will contain our # process(es), starts the process in a suspended state, maps the process # to a specific job object, resumes the process, from now on every child # it will create will be assigned to the same job object. We can then # later terminate this job object (and all of it's child processes). # # This code is based upon Benjamin Smedberg's killableprocess, see: # http://benjamin.smedbergs.us/blog/2006-12-11/killableprocesspy/ class WindowsKillablePopen(Popen): _job = None def _execute_child(self, args, executable, preexec_fn, close_fds, cwd, env, universal_newlines, startupinfo, creationflags, shell, p2cread, p2cwrite, c2pread, c2pwrite, errread, errwrite): """Execute program (MS Windows version)""" if not isinstance(args, str): args = list2cmdline(args) # Process startup details if startupinfo is None: startupinfo = STARTUPINFO() if None not in (p2cread, c2pwrite, errwrite): startupinfo.dwFlags |= STARTF_USESTDHANDLES startupinfo.hStdInput = p2cread startupinfo.hStdOutput = c2pwrite startupinfo.hStdError = errwrite if shell: startupinfo.dwFlags |= STARTF_USESHOWWINDOW startupinfo.wShowWindow = SW_HIDE comspec = os.environ.get("COMSPEC", "cmd.exe") args = comspec + " /c " + args if (GetVersion() >= 0x80000000 or os.path.basename(comspec).lower() == "command.com"): # Win9x, or using command.com on NT. We need to # use the w9xpopen intermediate program. For more # information, see KB Q150956 # (http://web.archive.org/web/20011105084002/http://support.microsoft.com/support/kb/articles/Q150/9/56.asp) w9xpopen = self._find_w9xpopen() args = '"%s" %s' % (w9xpopen, args) # Not passing CREATE_NEW_CONSOLE has been known to # cause random failures on win9x. Specifically a # dialog: "Your program accessed mem currently in # use at xxx" and a hopeful warning about the # stability of your system. Cost is Ctrl+C wont # kill children. creationflags |= CREATE_NEW_CONSOLE # We create a new job for this process, so that we can kill # the process and any sub-processes self._job = winprocess.CreateJobObject() creationflags |= winprocess.CREATE_SUSPENDED # Vista will launch Komodo in a job object itself, so we need # to specify that the created process is not part of the Komodo # job object, but instead specify that it will be using a # separate breakaway job object, bug 83001. creationflags |= winprocess.CREATE_BREAKAWAY_FROM_JOB # Start the process try: hp, ht, pid, tid = CreateProcess(executable, args, # no special security None, None, int(not close_fds), creationflags, env, cwd, startupinfo) except pywintypes.error as e: # Translate pywintypes.error to WindowsError, which is # a subclass of OSError. FIXME: We should really # translate errno using _sys_errlist (or simliar), but # how can this be done from Python? raise WindowsError(*e.args) except WindowsError: log.error( "process.py: can't execute %r (%s)", executable, args) raise # Retain the process handle, but close the thread handle self._child_created = True self._handle = hp self.pid = pid if self._job: # Resume the thread. winprocess.AssignProcessToJobObject(self._job, int(hp)) winprocess.ResumeThread(int(ht)) ht.Close() # Child is launched. Close the parent's copy of those pipe # handles that only the child should have open. You need # to make sure that no handles to the write end of the # output pipe are maintained in this process or else the # pipe will not close when the child process exits and the # ReadFile will hang. if p2cread is not None: p2cread.Close() if c2pwrite is not None: c2pwrite.Close() if errwrite is not None: errwrite.Close() def terminate(self): """Terminates the process""" if self._job: winprocess.TerminateJobObject(self._job, 127) self.returncode = 127 else: # Cannot call the parent class, as there is no terminate method # defined at the class level (it's added upon instantiation), # so this is a copy of subprocess.Popen.terminate() code. TerminateProcess(self._handle, 1) kill = terminate # Use our own killable process instead of the regular Popen. Popen = WindowsKillablePopen class ProcessOpen(Popen): def __init__(self, cmd, cwd=None, env=None, flags=None, stdin=PIPE, stdout=PIPE, stderr=PIPE, universal_newlines=True): """Create a child process. "cmd" is the command to run, either a list of arguments or a string. "cwd" is a working directory in which to start the child process. "env" is an environment dictionary for the child. "flags" are system-specific process creation flags. On Windows this can be a bitwise-OR of any of the win32process.CREATE_* constants (Note: win32process.CREATE_NEW_PROCESS_GROUP is always OR'd in). On Unix, this is currently ignored. "stdin", "stdout", "stderr" can be used to specify file objects to handle read (stdout/stderr) and write (stdin) events from/to the child. By default a file handle will be created for each io channel automatically, unless set explicitly to None. When set to None, the parent io handles will be used, which can mean the output is redirected to Komodo's log files. "universal_newlines": On by default (the opposite of subprocess). """ self._child_created = False self.__use_killpg = False auto_piped_stdin = False preexec_fn = None shell = False if not isinstance(cmd, (list, tuple)): # The cmd is the already formatted, ready for the shell. Otherwise # subprocess.Popen will treat this as simply one command with # no arguments, resulting in an unknown command. shell = True if sys.platform.startswith("win"): # On Windows, cmd requires some special handling of multiple quoted # arguments, as this is what cmd will do: # See if the first character is a quote character and if so, # strip the leading character and remove the last quote character # on the command line, preserving any text after the last quote # character. if cmd and shell and cmd.count('"') > 2: if not cmd.startswith('""') or not cmd.endswith('""'): # Needs to be a re-quoted with additional double quotes. # http://bugs.activestate.com/show_bug.cgi?id=75467 cmd = '"%s"' % (cmd, ) if sys.version_info[:2] < (3, 0): # XXX - subprocess needs to be updated to use the wide string API. # subprocess uses a Windows API that does not accept unicode, so # we need to convert all the environment variables to strings # before we make the call. Temporary fix to bug: # http://bugs.activestate.com/show_bug.cgi?id=72311 if env: encoding = sys.getfilesystemencoding() _enc_env = {} for key, value in env.items(): try: _enc_env[key.encode(encoding)] = value.encode(encoding) except (UnicodeEncodeError, UnicodeDecodeError): # Could not encode it, warn we are dropping it. log.warn("Could not encode environment variable %r " "so removing it", key) env = _enc_env if flags is None: flags = CREATE_NO_WINDOW # If we don't have standard handles to pass to the child process # (e.g. we don't have a console app), then # `subprocess.GetStdHandle(...)` will return None. `subprocess.py` # handles that (http://bugs.python.org/issue1124861) # # However, if Komodo is started from the command line, then # the shell's stdin handle is inherited, i.e. in subprocess.py: # p2cread = GetStdHandle(STD_INPUT_HANDLE) # p2cread == 3 # A few lines later this leads to: # Traceback (most recent call last): # ... # File "...\lib\mozilla\python\komodo\process.py", line 130, in __init__ # creationflags=flags) # File "...\lib\python\lib\subprocess.py", line 588, in __init__ # errread, errwrite) = self._get_handles(stdin, stdout, stderr) # File "...\lib\python\lib\subprocess.py", line 709, in _get_handles # p2cread = self._make_inheritable(p2cread) # File "...\lib\python\lib\subprocess.py", line 773, in _make_inheritable # DUPLICATE_SAME_ACCESS) # WindowsError: [Error 6] The handle is invalid # # I suspect this indicates that the stdin handle inherited by # the subsystem:windows komodo.exe process is invalid -- perhaps # because of mis-used of the Windows API for passing that handle # through. The same error can be demonstrated in PythonWin: # from _subprocess import * # from subprocess import * # h = GetStdHandle(STD_INPUT_HANDLE) # p = Popen("python -c '1'") # p._make_interitable(h) # # I don't understand why the inherited stdin is invalid for # `DuplicateHandle`, but here is how we are working around this: # If we detect the condition where this can fail, then work around # it by setting the handle to `subprocess.PIPE`, resulting in # a different and workable code path. if self._needToHackAroundStdHandles() \ and not (flags & CREATE_NEW_CONSOLE): if self._checkFileObjInheritable(sys.stdin, "STD_INPUT_HANDLE"): stdin = PIPE auto_piped_stdin = True if self._checkFileObjInheritable(sys.stdout, "STD_OUTPUT_HANDLE"): stdout = PIPE if self._checkFileObjInheritable(sys.stderr, "STD_ERROR_HANDLE"): stderr = PIPE else: # Set flags to 0, subprocess raises an exception otherwise. flags = 0 # Set a preexec function, this will make the sub-process create it's # own session and process group - bug 80651, bug 85693. preexec_fn = os.setsid # Mark as requiring progressgroup killing. This will allow us to # later kill both the spawned shell and the sub-process in one go # (see the kill method) - bug 85693. self.__use_killpg = True # Internal attributes. self.__cmd = cmd self.__retval = None self.__hasTerminated = threading.Condition() # Launch the process. # print "Process: %r in %r" % (cmd, cwd) Popen.__init__(self, cmd, cwd=cwd, env=env, shell=shell, stdin=stdin, stdout=stdout, stderr=stderr, preexec_fn=preexec_fn, universal_newlines=universal_newlines, creationflags=flags) if auto_piped_stdin: self.stdin.close() __needToHackAroundStdHandles = None @classmethod def _needToHackAroundStdHandles(cls): if cls.__needToHackAroundStdHandles is None: if sys.platform != "win32" or sys.version_info[:2] >= (3, 0): cls.__needToHackAroundStdHandles = False else: from _subprocess import GetStdHandle, STD_INPUT_HANDLE stdin_handle = GetStdHandle(STD_INPUT_HANDLE) if stdin_handle is not None: cls.__needToHackAroundStdHandles = True if stdin_handle != 3: log.warn("`GetStdHandle(STD_INPUT_HANDLE)` != 3: " "something has changed w.r.t. std handle " "inheritance in Komodo that may affect " "subprocess launching") else: cls.__needToHackAroundStdHandles = False return cls.__needToHackAroundStdHandles @classmethod def _checkFileObjInheritable(cls, fileobj, handle_name): """Check if a given file-like object (or whatever else subprocess.Popen takes as a handle/stream) can be correctly inherited by a child process. This just duplicates the code in subprocess.Popen._get_handles to make sure we go down the correct code path; this to catch some non-standard corner cases.""" import _subprocess import ctypes import msvcrt new_handle = None try: if fileobj is None: handle = _subprocess.GetStdHandle(getattr(_subprocess, handle_name)) if handle is None: return True # No need to check things we create elif fileobj == subprocess.PIPE: return True # No need to check things we create elif isinstance(fileobj, int): handle = msvcrt.get_osfhandle(fileobj) else: # Assuming file-like object handle = msvcrt.get_osfhandle(fileobj.fileno()) new_handle = self._make_inheritable(handle) return True except: return False finally: CloseHandle = ctypes.windll.kernel32.CloseHandle if new_handle is not None: CloseHandle(new_handle) # Override the returncode handler (used by subprocess.py), this is so # we can notify any listeners when the process has finished. def _getReturncode(self): return self.__returncode def _setReturncode(self, value): self.__returncode = value if value is not None: # Notify that the process is done. self.__hasTerminated.acquire() self.__hasTerminated.notifyAll() self.__hasTerminated.release() returncode = property(fget=_getReturncode, fset=_setReturncode) # Setup the retval handler. This is a readonly wrapper around returncode. def _getRetval(self): # Ensure the returncode is set by subprocess if the process is # finished. self.poll() return self.returncode retval = property(fget=_getRetval) def wait(self, timeout=None): """Wait for the started process to complete. "timeout" is a floating point number of seconds after which to timeout. Default is None, which is to never timeout. If the wait time's out it will raise a ProcessError. Otherwise it will return the child's exit value. Note that in the case of a timeout, the process is still running. Use kill() to forcibly stop the process. """ if timeout is None or timeout < 0: # Use the parent call. try: return Popen.wait(self) except OSError as ex: # If the process has already ended, that is fine. This is # possible when wait is called from a different thread. if ex.errno != 10: # No child process raise return self.returncode # We poll for the retval, as we cannot rely on self.__hasTerminated # to be called, as there are some code paths that do not trigger it. # The accuracy of this wait call is between 0.1 and 1 second. time_now = time.time() time_end = time_now + timeout # These values will be used to incrementally increase the wait period # of the polling check, starting from the end of the list and working # towards the front. This is to avoid waiting for a long period on # processes that finish quickly, see bug 80794. time_wait_values = [1.0, 0.5, 0.2, 0.1] while time_now < time_end: result = self.poll() if result is not None: return result # We use hasTerminated here to get a faster notification. self.__hasTerminated.acquire() if time_wait_values: wait_period = time_wait_values.pop() self.__hasTerminated.wait(wait_period) self.__hasTerminated.release() time_now = time.time() # last chance result = self.poll() if result is not None: return result raise ProcessError("Process timeout: waited %d seconds, " "process not yet finished." % (timeout,), WAIT_TIMEOUT) # For backward compatibility with older process.py def close(self): pass # For backward compatibility with older process.py def kill(self, exitCode=-1, gracePeriod=None, sig=None): """Kill process. "exitCode" this sets what the process return value will be. "gracePeriod" [deprecated, not supported] "sig" (Unix only) is the signal to use to kill the process. Defaults to signal.SIGKILL. See os.kill() for more information. """ if gracePeriod is not None: import warnings warnings.warn("process.kill() gracePeriod is no longer used", DeprecationWarning) # Need to ensure stdin is closed, makes it easier to end the process. if self.stdin is not None: self.stdin.close() if sys.platform.startswith("win"): # TODO: 1) It would be nice if we could give the process(es) a # chance to exit gracefully first, rather than having to # resort to a hard kill. # 2) May need to send a WM_CLOSE event in the case of a GUI # application, like the older process.py was doing. Popen.kill(self) else: if sig is None: sig = signal.SIGKILL try: if self.__use_killpg: os.killpg(self.pid, sig) else: os.kill(self.pid, sig) except OSError as ex: if ex.errno != 3: # Ignore: OSError: [Errno 3] No such process raise self.returncode = exitCode class AbortableProcessHelper(object): """A helper class that is able to run a process and have the process be killed/aborted (possibly by another thread) if it is still running. """ STATUS_INITIALIZED = 0 # Ready to run. STATUS_RUNNING = 1 # A process is running. STATUS_FINISHED_NORMALLY = 2 # The command/process finished normally. STATUS_ABORTED = 3 # The command/process was aborted. def __init__(self): self._process = None self._process_status = self.STATUS_INITIALIZED self._process_status_lock = threading.Lock() def ProcessOpen(self, *args, **kwargs): """Create a new process and return it.""" self._process_status_lock.acquire() try: self._process_status = self.STATUS_RUNNING self._process = ProcessOpen(*args, **kwargs) return self._process finally: self._process_status_lock.release() def ProcessDone(self): """Mark the process as being completed, does not need to be aborted.""" self._process_status_lock.acquire() try: self._process = None self._process_status = self.STATUS_FINISHED_NORMALLY finally: self._process_status_lock.release() def ProcessAbort(self): """Kill the process if it is still running.""" self._process_status_lock.acquire() try: self._process_status = self.STATUS_ABORTED if self._process: self._process.kill() self._process = None finally: self._process_status_lock.release() ## Deprecated process classes ## class Process(ProcessOpen): def __init__(self, *args, **kwargs): warnings.warn("'process.%s' is now deprecated. Please use 'process.ProcessOpen'." % (self.__class__.__name__)) ProcessOpen.__init__(self, *args, **kwargs) class ProcessProxy(Process): pass
from django.conf import settings from django.shortcuts import HttpResponse, Http404 from django.template.response import TemplateResponse from django.core.files.storage import default_storage from visual_translations.models import VisualTranslationsEUCommunity def visual_translation_map(request, term): dirs, files = default_storage.listdir('visual_translations/{}/'.format(term)) time = request.GET.dict().get("t", None) if time is not None and time not in dirs: raise Http404("Visual translation with t={} not found or not ready".format(time)) elif time is None: time = str(max((int(dir) for dir in dirs))) locales_info = [ { "locale": "{}_{}".format(language, country), "small_image_file": "visual_translations/{}/{}/S_{}_{}.jpg".format(term, time, language, country), "large_image_file": "visual_translations/{}/{}/L_{}_{}.jpg".format(term, time, language, country), "xlarge_image_file": "visual_translations/{}/{}/XL_{}_{}.jpg".format(term, time, language, country), "grid": { "width": grid["cell_width"] * grid["columns"], "height": grid["cell_height"] * grid["rows"], "width_xl": grid["cell_width"] * grid["columns"] * factor, "height_xl": grid["cell_height"] * grid["rows"] * factor, "width_2": int(grid["cell_width"] * grid["columns"] / 2), "height_2": int(grid["cell_height"] * grid["rows"] / 2), "width_20": int(grid["cell_width"] * grid["columns"] / 20), "height_20": int(grid["cell_height"] * grid["rows"] / 20) } } for language, country, grid, factor in VisualTranslationsEUCommunity.LOCALES ] context = { "region_topo_json": "visual_translations/geo/europe.topo.json", "locales": locales_info, } return TemplateResponse(request, "visual_translations/map.html", context=context) def visual_translations_controller(request): context = { "words": ["pension", "peace", "women", "immigrants", "cowshed", "leave"] } return TemplateResponse(request, "visual_translations/controller.html", context=context) def web_sockets_broadcast(request, message): if not settings.USE_WEBSOCKETS: return HttpResponse('Websockets not enabled in bootstrap.py') try: from ws4redis.publisher import RedisPublisher from ws4redis.redis_store import RedisMessage except ImportError: return HttpResponse('Websockets package ws4redis not installed') redis_publisher = RedisPublisher(facility='visual-translations-map', broadcast=True) message = RedisMessage(message) redis_publisher.publish_message(message) return HttpResponse("Broadcast: {}".format(message))
import numpy as np import os import subprocess # from time import sleep # Rotates input xyz file and generates 100 output xyz files at random orientations along with input.scan for each of them to give as input to mechAFM def makeIt(output_folder = "randomRotateOutput/"): fileNumber = 0 for i in range(24): # COM of xyz file will be at 0, 0, 0. The position of one atom will be defined at some point determined by the values of i and j. i specifies distance from origin, which is between 0.6 and 3.0 at steps of 0.1. Implies 24 points for j in range(72): # There will be 72 different rotations. Each rotation is separated from the adjacent orientation by 5 degrees distanceFromOrigin = 0.6 + i*0.1 angularOrientation = 5*j*np.pi/180.0 #In radians x = distanceFromOrigin * np.cos(angularOrientation) y = distanceFromOrigin * np.sin(angularOrientation) xyzOut = '''2 C %s %s 0.0 H %s %s 0.0''' % (x, y, -x, -y) scanOut = '''xyzfile %s paramfile parameters.dat tipatom T dummyatom X units kcal/mol minterm f etol 0.001 ftol 0.001 dt 0.001 maxsteps 50000 minimiser FIRE integrator midpoint coulomb off rigidgrid off flexible off area 8.0 8.0 center 4.0 4.0 zhigh 10.0 zlow 6.0 dx 0.2 dy 0.2 dz 0.1 bufsize 10000 gzip off statistics on''' % (str(fileNumber) + ".xyz") parametersContent = '''# Parameters for a system from a paper # name | epsilon (kcal/mol) | sigma (A) | mass (amu) | charge (e) atom C 0.07000 3.55000 12.01100 0.00000 atom H 0.03350 2.42000 1.00800 0.00000 atom O 0.11080 2.98504 15.99940 0.00000 atom N 0.19200 3.31988 14.00670 0.00000 atom S 0.43560 3.63599 32.06500 0.00000 atom F 0.11080 2.90789 18.99840 0.00000 atom B 0.10500 3.63000 10.81000 0.00000 atom X 0.07000 3.55000 12.01100 0.02100 atom T 0.19200 3.15000 15.99900 -0.02100 # Boron parameters guessed from Baowan & Hill, IET Micro & Nano Letters 2:46 (2007) # Carbon, oxygen and hydrogen parameters from original CHARMM force field # Pair style to overwrite and default LJ-mixing # atom1 | atom2 | pair_style | parameters (eps,sig for LJ; De,a,re for Morse) # pair_ovwrt C T morse 1 2 3 pair_ovwrt X T lj 20.0000 3.5500 # Tip harmonic constraint # force constant (kcal/mol) | distance (A) harm 0.72000 0.00 # Additional parameters for making the molecules flexible # We need to know the topology, so list the possible bonds and their expected length # atom1 | atom2 | exp. length (A) # topobond C C 1.430 # topobond C H 1.095 # topobond C B 1.534 # bonds are assumed harmonic and in their equilibrium position (in the xyz file) # force constant (kcal/mol) bond 25.000 # angles are assumed harmonic and in their equilibrium position (in the xyz file) # force constant (kcal/mol) angle 0.2500 # dihedrals are assumed harmonic and in their equilibrium position (in the xyz file) # force constant (kcal/mol) dihedral 0.2500 # substrate support using a 10-4 wall potential # epsilon (kcal/mol) | sigma (A) | lambda (A) | r_cut (A) | lateral constant (kcal/mol) substrate 0.100 3.0 3.0 7.5 0.01''' os.makedirs(output_folder + str(fileNumber)) xyzFile = open(output_folder + str(fileNumber) + "/" + str(fileNumber) + ".xyz", "w+") xyzFile.write(xyzOut) scanFile = open(output_folder + str(fileNumber) + "/" + str(fileNumber) + ".scan", "w+") scanFile.write(scanOut) paraFile = open(output_folder + str(fileNumber) + "/" + "parameters.dat", "w+") paraFile.write(parametersContent) xyzFile.close() scanFile.close() paraFile.close() print("done with file number " + str(fileNumber)) fileNumber += 1
from __future__ import print_function from builtins import map from past.builtins import basestring from builtins import enumerate, int, list, range, zip import operator import re import numpy as np import pandas as pd import sportsref PLAYER_RE = r'\w{0,7}\d{2}' HM_LINEUP_COLS = ['hm_player{}'.format(i) for i in range(1, 6)] AW_LINEUP_COLS = ['aw_player{}'.format(i) for i in range(1, 6)] ALL_LINEUP_COLS = AW_LINEUP_COLS + HM_LINEUP_COLS def sparse_lineup_cols(df): regex = '{}_in'.format(PLAYER_RE) return [c for c in df.columns if re.match(regex, c)] def parse_play(boxscore_id, details, is_hm): """Parse play details from a play-by-play string describing a play. Assuming valid input, this function returns structured data in a dictionary describing the play. If the play detail string was invalid, this function returns None. :param boxscore_id: the boxscore ID of the play :param details: detail string for the play :param is_hm: bool indicating whether the offense is at home :param returns: dictionary of play attributes or None if invalid :rtype: dictionary or None """ # if input isn't a string, return None if not details or not isinstance(details, basestring): return None bs = sportsref.nba.BoxScore(boxscore_id) aw, hm = bs.away(), bs.home() season = sportsref.nba.Season(bs.season()) hm_roster = set(bs.basic_stats().query('is_home == True').player_id.values) p = {} p['detail'] = details p['home'] = hm p['away'] = aw p['is_home_play'] = is_hm # parsing field goal attempts shotRE = (r'(?P<shooter>{0}) (?P<is_fgm>makes|misses) ' '(?P<is_three>2|3)\-pt shot').format(PLAYER_RE) distRE = r' (?:from (?P<shot_dist>\d+) ft|at rim)' assistRE = r' \(assist by (?P<assister>{0})\)'.format(PLAYER_RE) blockRE = r' \(block by (?P<blocker>{0})\)'.format(PLAYER_RE) shotRE = r'{0}{1}(?:{2}|{3})?'.format(shotRE, distRE, assistRE, blockRE) m = re.match(shotRE, details, re.IGNORECASE) if m: p['is_fga'] = True p.update(m.groupdict()) p['shot_dist'] = p['shot_dist'] if p['shot_dist'] is not None else 0 p['shot_dist'] = int(p['shot_dist']) p['is_fgm'] = p['is_fgm'] == 'makes' p['is_three'] = p['is_three'] == '3' p['is_assist'] = pd.notnull(p.get('assister')) p['is_block'] = pd.notnull(p.get('blocker')) shooter_home = p['shooter'] in hm_roster p['off_team'] = hm if shooter_home else aw p['def_team'] = aw if shooter_home else hm return p # parsing jump balls jumpRE = ((r'Jump ball: (?P<away_jumper>{0}) vs\. (?P<home_jumper>{0})' r'(?: \((?P<gains_poss>{0}) gains possession\))?') .format(PLAYER_RE)) m = re.match(jumpRE, details, re.IGNORECASE) if m: p['is_jump_ball'] = True p.update(m.groupdict()) return p # parsing rebounds rebRE = (r'(?P<is_oreb>Offensive|Defensive) rebound' r' by (?P<rebounder>{0}|Team)').format(PLAYER_RE) m = re.match(rebRE, details, re.I) if m: p['is_reb'] = True p.update(m.groupdict()) p['is_oreb'] = p['is_oreb'].lower() == 'offensive' p['is_dreb'] = not p['is_oreb'] if p['rebounder'] == 'Team': p['reb_team'], other = (hm, aw) if is_hm else (aw, hm) else: reb_home = p['rebounder'] in hm_roster p['reb_team'], other = (hm, aw) if reb_home else (aw, hm) p['off_team'] = p['reb_team'] if p['is_oreb'] else other p['def_team'] = p['reb_team'] if p['is_dreb'] else other return p # parsing free throws ftRE = (r'(?P<ft_shooter>{}) (?P<is_ftm>makes|misses) ' r'(?P<is_tech_fta>technical )?(?P<is_flag_fta>flagrant )?' r'(?P<is_clearpath_fta>clear path )?free throw' r'(?: (?P<fta_num>\d+) of (?P<tot_fta>\d+))?').format(PLAYER_RE) m = re.match(ftRE, details, re.I) if m: p['is_fta'] = True p.update(m.groupdict()) p['is_ftm'] = p['is_ftm'] == 'makes' p['is_tech_fta'] = bool(p['is_tech_fta']) p['is_flag_fta'] = bool(p['is_flag_fta']) p['is_clearpath_fta'] = bool(p['is_clearpath_fta']) p['is_pf_fta'] = not p['is_tech_fta'] if p['tot_fta']: p['tot_fta'] = int(p['tot_fta']) if p['fta_num']: p['fta_num'] = int(p['fta_num']) ft_home = p['ft_shooter'] in hm_roster p['fta_team'] = hm if ft_home else aw if not p['is_tech_fta']: p['off_team'] = hm if ft_home else aw p['def_team'] = aw if ft_home else hm return p # parsing substitutions subRE = (r'(?P<sub_in>{0}) enters the game for ' r'(?P<sub_out>{0})').format(PLAYER_RE) m = re.match(subRE, details, re.I) if m: p['is_sub'] = True p.update(m.groupdict()) sub_home = p['sub_in'] in hm_roster or p['sub_out'] in hm_roster p['sub_team'] = hm if sub_home else aw return p # parsing turnovers toReasons = (r'(?P<to_type>[^;]+)(?:; steal by ' r'(?P<stealer>{0}))?').format(PLAYER_RE) toRE = (r'Turnover by (?P<to_by>{}|Team) ' r'\((?:{})\)').format(PLAYER_RE, toReasons) m = re.match(toRE, details, re.I) if m: p['is_to'] = True p.update(m.groupdict()) p['to_type'] = p['to_type'].lower() if p['to_type'] == 'offensive foul': return None p['is_steal'] = pd.notnull(p['stealer']) p['is_travel'] = p['to_type'] == 'traveling' p['is_shot_clock_viol'] = p['to_type'] == 'shot clock' p['is_oob'] = p['to_type'] == 'step out of bounds' p['is_three_sec_viol'] = p['to_type'] == '3 sec' p['is_backcourt_viol'] = p['to_type'] == 'back court' p['is_off_goaltend'] = p['to_type'] == 'offensive goaltending' p['is_double_dribble'] = p['to_type'] == 'dbl dribble' p['is_discont_dribble'] = p['to_type'] == 'discontinued dribble' p['is_carry'] = p['to_type'] == 'palming' if p['to_by'] == 'Team': p['off_team'] = hm if is_hm else aw p['def_team'] = aw if is_hm else hm else: to_home = p['to_by'] in hm_roster p['off_team'] = hm if to_home else aw p['def_team'] = aw if to_home else hm return p # parsing shooting fouls shotFoulRE = (r'Shooting(?P<is_block_foul> block)? foul by (?P<fouler>{0})' r'(?: \(drawn by (?P<drew_foul>{0})\))?').format(PLAYER_RE) m = re.match(shotFoulRE, details, re.I) if m: p['is_pf'] = True p['is_shot_foul'] = True p.update(m.groupdict()) p['is_block_foul'] = bool(p['is_block_foul']) foul_on_home = p['fouler'] in hm_roster p['off_team'] = aw if foul_on_home else hm p['def_team'] = hm if foul_on_home else aw p['foul_team'] = p['def_team'] return p # parsing offensive fouls offFoulRE = (r'Offensive(?P<is_charge> charge)? foul ' r'by (?P<to_by>{0})' r'(?: \(drawn by (?P<drew_foul>{0})\))?').format(PLAYER_RE) m = re.match(offFoulRE, details, re.I) if m: p['is_pf'] = True p['is_off_foul'] = True p['is_to'] = True p['to_type'] = 'offensive foul' p.update(m.groupdict()) p['is_charge'] = bool(p['is_charge']) p['fouler'] = p['to_by'] foul_on_home = p['fouler'] in hm_roster p['off_team'] = hm if foul_on_home else aw p['def_team'] = aw if foul_on_home else hm p['foul_team'] = p['off_team'] return p # parsing personal fouls foulRE = (r'Personal (?P<is_take_foul>take )?(?P<is_block_foul>block )?' r'foul by (?P<fouler>{0})(?: \(drawn by ' r'(?P<drew_foul>{0})\))?').format(PLAYER_RE) m = re.match(foulRE, details, re.I) if m: p['is_pf'] = True p.update(m.groupdict()) p['is_take_foul'] = bool(p['is_take_foul']) p['is_block_foul'] = bool(p['is_block_foul']) foul_on_home = p['fouler'] in hm_roster p['off_team'] = aw if foul_on_home else hm p['def_team'] = hm if foul_on_home else aw p['foul_team'] = p['def_team'] return p # TODO: parsing double personal fouls # double_foul_re = (r'Double personal foul by (?P<fouler1>{0}) and ' # r'(?P<fouler2>{0})').format(PLAYER_RE) # m = re.match(double_Foul_re, details, re.I) # if m: # p['is_pf'] = True # p.update(m.groupdict()) # p['off_team'] = # parsing loose ball fouls looseBallRE = (r'Loose ball foul by (?P<fouler>{0})' r'(?: \(drawn by (?P<drew_foul>{0})\))?').format(PLAYER_RE) m = re.match(looseBallRE, details, re.I) if m: p['is_pf'] = True p['is_loose_ball_foul'] = True p.update(m.groupdict()) foul_home = p['fouler'] in hm_roster p['foul_team'] = hm if foul_home else aw return p # parsing punching fouls # TODO # parsing away from play fouls awayFromBallRE = ((r'Away from play foul by (?P<fouler>{0})' r'(?: \(drawn by (?P<drew_foul>{0})\))?') .format(PLAYER_RE)) m = re.match(awayFromBallRE, details, re.I) if m: p['is_pf'] = True p['is_away_from_play_foul'] = True p.update(m.groupdict()) foul_on_home = p['fouler'] in hm_roster # TODO: figure out who had the ball based on previous play p['foul_team'] = hm if foul_on_home else aw return p # parsing inbound fouls inboundRE = (r'Inbound foul by (?P<fouler>{0})' r'(?: \(drawn by (?P<drew_foul>{0})\))?').format(PLAYER_RE) m = re.match(inboundRE, details, re.I) if m: p['is_pf'] = True p['is_inbound_foul'] = True p.update(m.groupdict()) foul_on_home = p['fouler'] in hm_roster p['off_team'] = aw if foul_on_home else hm p['def_team'] = hm if foul_on_home else aw p['foul_team'] = p['def_team'] return p # parsing flagrant fouls flagrantRE = (r'Flagrant foul type (?P<flag_type>1|2) by (?P<fouler>{0})' r'(?: \(drawn by (?P<drew_foul>{0})\))?').format(PLAYER_RE) m = re.match(flagrantRE, details, re.I) if m: p['is_pf'] = True p['is_flagrant'] = True p.update(m.groupdict()) foul_on_home = p['fouler'] in hm_roster p['foul_team'] = hm if foul_on_home else aw return p # parsing clear path fouls clearPathRE = (r'Clear path foul by (?P<fouler>{0})' r'(?: \(drawn by (?P<drew_foul>{0})\))?').format(PLAYER_RE) m = re.match(clearPathRE, details, re.I) if m: p['is_pf'] = True p['is_clear_path_foul'] = True p.update(m.groupdict()) foul_on_home = p['fouler'] in hm_roster p['off_team'] = aw if foul_on_home else hm p['def_team'] = hm if foul_on_home else aw p['foul_team'] = p['def_team'] return p # parsing timeouts timeoutRE = r'(?P<timeout_team>.*?) (?:full )?timeout' m = re.match(timeoutRE, details, re.I) if m: p['is_timeout'] = True p.update(m.groupdict()) isOfficialTO = p['timeout_team'].lower() == 'official' name_to_id = season.team_names_to_ids() p['timeout_team'] = ( 'Official' if isOfficialTO else name_to_id.get(hm, name_to_id.get(aw, p['timeout_team'])) ) return p # parsing technical fouls techRE = (r'(?P<is_hanging>Hanging )?' r'(?P<is_taunting>Taunting )?' r'(?P<is_ill_def>Ill def )?' r'(?P<is_delay>Delay )?' r'(?P<is_unsport>Non unsport )?' r'tech(?:nical)? foul by ' r'(?P<tech_fouler>{0}|Team)').format(PLAYER_RE) m = re.match(techRE, details, re.I) if m: p['is_tech_foul'] = True p.update(m.groupdict()) p['is_hanging'] = bool(p['is_hanging']) p['is_taunting'] = bool(p['is_taunting']) p['is_ill_def'] = bool(p['is_ill_def']) p['is_delay'] = bool(p['is_delay']) p['is_unsport'] = bool(p['is_unsport']) foul_on_home = p['tech_fouler'] in hm_roster p['foul_team'] = hm if foul_on_home else aw return p # parsing ejections ejectRE = r'(?P<ejectee>{0}|Team) ejected from game'.format(PLAYER_RE) m = re.match(ejectRE, details, re.I) if m: p['is_ejection'] = True p.update(m.groupdict()) if p['ejectee'] == 'Team': p['ejectee_team'] = hm if is_hm else aw else: eject_home = p['ejectee'] in hm_roster p['ejectee_team'] = hm if eject_home else aw return p # parsing defensive 3 seconds techs def3TechRE = (r'(?:Def 3 sec tech foul|Defensive three seconds)' r' by (?P<tech_fouler>{})').format(PLAYER_RE) m = re.match(def3TechRE, details, re.I) if m: p['is_tech_foul'] = True p['is_def_three_secs'] = True p.update(m.groupdict()) foul_on_home = p['tech_fouler'] in hm_roster p['off_team'] = aw if foul_on_home else hm p['def_team'] = hm if foul_on_home else aw p['foul_team'] = p['def_team'] return p # parsing violations violRE = (r'Violation by (?P<violator>{0}|Team) ' r'\((?P<viol_type>.*)\)').format(PLAYER_RE) m = re.match(violRE, details, re.I) if m: p['is_viol'] = True p.update(m.groupdict()) if p['viol_type'] == 'kicked_ball': p['is_to'] = True p['to_by'] = p['violator'] if p['violator'] == 'Team': p['viol_team'] = hm if is_hm else aw else: viol_home = p['violator'] in hm_roster p['viol_team'] = hm if viol_home else aw return p p['is_error'] = True return p def clean_features(df): """Fixes up columns of the passed DataFrame, such as casting T/F columns to boolean and filling in NaNs for team and opp. :param df: DataFrame of play-by-play data. :returns: Dataframe with cleaned columns. """ df = pd.DataFrame(df) bool_vals = set([True, False, None, np.nan]) sparse_cols = sparse_lineup_cols(df) for col in df: # make indicator columns boolean type (and fill in NaNs) if set(df[col].unique()[:5]) <= bool_vals: df[col] = (df[col] == True) # fill NaN's in sparse lineup columns to 0 elif col in sparse_cols: df[col] = df[col].fillna(0) # fix free throw columns on technicals df.loc[df.is_tech_fta, ['fta_num', 'tot_fta']] = 1 # fill in NaN's/fix off_team and def_team columns df.off_team.fillna(method='bfill', inplace=True) df.def_team.fillna(method='bfill', inplace=True) df.off_team.fillna(method='ffill', inplace=True) df.def_team.fillna(method='ffill', inplace=True) return df def clean_multigame_features(df): """TODO: Docstring for clean_multigame_features. :df: TODO :returns: TODO """ df = pd.DataFrame(df) if df.index.value_counts().max() > 1: df.reset_index(drop=True, inplace=True) df = clean_features(df) # if it's many games in one DataFrame, make poss_id and play_id unique for col in ('play_id', 'poss_id'): diffs = df[col].diff().fillna(0) if (diffs < 0).any(): new_col = np.cumsum(diffs.astype(bool)) df.eval('{} = @new_col'.format(col), inplace=True) return df def get_period_starters(df): """TODO """ def players_from_play(play): """Figures out what players are in the game based on the players mentioned in a play. Returns away and home players as two sets. :param play: A dictionary representing a parsed play. :returns: (aw_players, hm_players) :rtype: tuple of lists """ # if it's a tech FT from between periods, don't count this play if ( play['clock_time'] == '12:00.0' and (play.get('is_tech_foul') or play.get('is_tech_fta')) ): return [], [] stats = sportsref.nba.BoxScore(play['boxscore_id']).basic_stats() home_grouped = stats.groupby('is_home') hm_roster = set(home_grouped.player_id.get_group(True).values) aw_roster = set(home_grouped.player_id.get_group(False).values) player_keys = [ 'assister', 'away_jumper', 'blocker', 'drew_foul', 'fouler', 'ft_shooter', 'gains_poss', 'home_jumper', 'rebounder', 'shooter', 'stealer', 'sub_in', 'sub_out', 'to_by' ] players = [p for p in play[player_keys] if pd.notnull(p)] aw_players = [p for p in players if p in aw_roster] hm_players = [p for p in players if p in hm_roster] return aw_players, hm_players # create a mapping { quarter => (away_starters, home_starters) } n_periods = df.quarter.nunique() period_starters = [(set(), set()) for _ in range(n_periods)] # fill out this mapping quarter by quarter for qtr, qtr_grp in df.groupby(df.quarter): aw_starters, hm_starters = period_starters[qtr-1] exclude = set() # loop through sets of plays that happen at the "same time" for label, time_grp in qtr_grp.groupby(qtr_grp.secs_elapsed): # first, if they sub in and weren't already starters, exclude them sub_ins = set(time_grp.sub_in.dropna().values) exclude.update(sub_ins - aw_starters - hm_starters) # second, figure out new starters from each play at this time for i, row in time_grp.iterrows(): aw_players, hm_players = players_from_play(row) # update overall sets for the quarter aw_starters.update(aw_players) hm_starters.update(hm_players) # remove excluded (subbed-in) players hm_starters -= exclude aw_starters -= exclude # check whether we have found all starters if len(hm_starters) > 5 or len(aw_starters) > 5: import ipdb ipdb.set_trace() if len(hm_starters) >= 5 and len(aw_starters) >= 5: break if len(hm_starters) != 5 or len(aw_starters) != 5: print('WARNING: wrong number of starters for a team in Q{} of {}' .format(qtr, df.boxscore_id.iloc[0])) return period_starters def get_sparse_lineups(df): """TODO: Docstring for get_sparse_lineups. :param df: TODO :returns: TODO """ # get the lineup data using get_dense_lineups if necessary if (set(ALL_LINEUP_COLS) - set(df.columns)): lineup_df = get_dense_lineups(df) else: lineup_df = df[ALL_LINEUP_COLS] # create the sparse representation hm_lineups = lineup_df[HM_LINEUP_COLS].values aw_lineups = lineup_df[AW_LINEUP_COLS].values # +1 for home, -1 for away hm_df = pd.DataFrame([ {'{}_in'.format(player_id): 1 for player_id in lineup} for lineup in hm_lineups ], dtype=int) aw_df = pd.DataFrame([ {'{}_in'.format(player_id): -1 for player_id in lineup} for lineup in aw_lineups ], dtype=int) sparse_df = pd.concat((hm_df, aw_df), axis=1).fillna(0) return sparse_df def get_dense_lineups(df): """Returns a new DataFrame based on the one it is passed. Specifically, it adds five columns for each team (ten total), where each column has the ID of a player on the court during the play. This information is figured out sequentially from the game's substitution data in the passed DataFrame, so the DataFrame passed as an argument must be from a specific BoxScore (rather than a DataFrame of non-consecutive plays). That is, the DataFrame must be of the form returned by :func:`nba.BoxScore.pbp <nba.BoxScore.pbp>`. .. note:: Note that the lineups reflect the teams in the game when the play happened, not after the play. For example, if a play is a substitution, the lineups for that play will be the lineups before the substituion occurs. :param df: A DataFrame of a game's play-by-play data. :returns: A DataFrame with additional lineup columns. """ # TODO: add this precondition to documentation assert df['boxscore_id'].nunique() == 1 def lineup_dict(aw_lineup, hm_lineup): """Returns a dictionary of lineups to be converted to columns. Specifically, the columns are 'aw_player1' through 'aw_player5' and 'hm_player1' through 'hm_player5'. :param aw_lineup: The away team's current lineup. :param hm_lineup: The home team's current lineup. :returns: A dictionary of lineups. """ return { '{}_player{}'.format(tm, i+1): player for tm, lineup in zip(['aw', 'hm'], [aw_lineup, hm_lineup]) for i, player in enumerate(lineup) } def handle_sub(row, aw_lineup, hm_lineup): """Modifies the aw_lineup and hm_lineup lists based on the substitution that takes place in the given row.""" assert row['is_sub'] sub_lineup = hm_lineup if row['sub_team'] == row['home'] else aw_lineup try: # make the sub idx = sub_lineup.index(row['sub_out']) sub_lineup[idx] = row['sub_in'] except ValueError: # if the sub was double-entered and it's already been executed... if ( row['sub_in'] in sub_lineup and row['sub_out'] not in sub_lineup ): return aw_lineup, hm_lineup # otherwise, let's print and pretend this never happened print('ERROR IN SUB IN {}, Q{}, {}: {}' .format(row['boxscore_id'], row['quarter'], row['clock_time'], row['detail'])) raise return aw_lineup, hm_lineup per_starters = get_period_starters(df) cur_qtr = 0 aw_lineup, hm_lineup = [], [] df = df.reset_index(drop=True) lineups = [{} for _ in range(df.shape[0])] # loop through select plays to determine lineups sub_or_per_start = df.is_sub | df.quarter.diff().astype(bool) for i, row in df.loc[sub_or_per_start].iterrows(): if row['quarter'] > cur_qtr: # first row in a quarter assert row['quarter'] == cur_qtr + 1 # first, finish up the last quarter's lineups if cur_qtr > 0 and not df.loc[i-1, 'is_sub']: lineups[i-1] = lineup_dict(aw_lineup, hm_lineup) # then, move on to the quarter, and enter the starting lineups cur_qtr += 1 aw_lineup, hm_lineup = map(list, per_starters[cur_qtr-1]) lineups[i] = lineup_dict(aw_lineup, hm_lineup) # if the first play in the quarter is a sub, handle that if row['is_sub']: aw_lineup, hm_lineup = handle_sub(row, aw_lineup, hm_lineup) else: # during the quarter # update lineups first then change lineups based on subs lineups[i] = lineup_dict(aw_lineup, hm_lineup) if row['is_sub']: aw_lineup, hm_lineup = handle_sub(row, aw_lineup, hm_lineup) # create and clean DataFrame lineup_df = pd.DataFrame(lineups) if lineup_df.iloc[-1].isnull().all(): lineup_df.iloc[-1] = lineup_dict(aw_lineup, hm_lineup) lineup_df = lineup_df.groupby(df.quarter).fillna(method='bfill') # fill in NaN's based on minutes played bool_mat = lineup_df.isnull() mask = bool_mat.any(axis=1) if mask.any(): bs = sportsref.nba.BoxScore(df.boxscore_id[0]) # first, get the true minutes played from the box score stats = sportsref.nba.BoxScore(df.boxscore_id.iloc[0]).basic_stats() true_mp = pd.Series( stats.query('mp > 0')[['player_id', 'mp']] .set_index('player_id').to_dict()['mp'] ) * 60 # next, calculate minutes played based on the lineup data calc_mp = pd.Series( {p: (df.secs_elapsed.diff() * [p in row for row in lineup_df.values]).sum() for p in stats.query('mp > 0').player_id.values}) # finally, figure which players are missing minutes diff = true_mp - calc_mp players_missing = diff.loc[diff.abs() >= 150] hm_roster = bs.basic_stats().query('is_home == True').player_id.values missing_df = pd.DataFrame( {'secs': players_missing.values, 'is_home': players_missing.index.isin(hm_roster)}, index=players_missing.index ) if missing_df.empty: # TODO: log this as a warning (or error?) print('There are NaNs in the lineup data, but no players were ' 'found to be missing significant minutes') else: # import ipdb # ipdb.set_trace() for is_home, group in missing_df.groupby('is_home'): player_id = group.index.item() tm_cols = (sportsref.nba.pbp.HM_LINEUP_COLS if is_home else sportsref.nba.pbp.AW_LINEUP_COLS) row_mask = lineup_df[tm_cols].isnull().any(axis=1) lineup_df.loc[row_mask, tm_cols] = ( lineup_df.loc[row_mask, tm_cols].fillna(player_id).values ) return lineup_df
# Copyright 2012-2014 Brian May # # This file is part of python-tldap. # # python-tldap is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # python-tldap is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with python-tldap If not, see <http://www.gnu.org/licenses/>. """ This module contains a ``modifyModlist`` function adopted from :py:mod:`ldap:ldap.modlist`. """ import ldap3 import ldap3.utils.conv import tldap.helpers from distutils.version import LooseVersion def list_dict(l, case_insensitive=0): """ return a dictionary with all items of l being the keys of the dictionary If argument case_insensitive is non-zero ldap.cidict.cidict will be used for case-insensitive string keys """ if case_insensitive: d = tldap.helpers.CaseInsensitiveDict() else: d = {} for i in l: d[i] = None return d if LooseVersion(getattr(ldap3, '__version__', "0")) < LooseVersion("0.9.6"): def escape_list(bytes_list): assert isinstance(bytes_list, list) return [ ldap3.utils.conv.escape_bytes(bytes_value) for bytes_value in bytes_list ] else: def escape_list(bytes_list): assert isinstance(bytes_list, list) return bytes_list def addModlist(entry, ignore_attr_types=None): """Build modify list for call of method LDAPObject.add()""" ignore_attr_types = list_dict(map(str.lower, (ignore_attr_types or []))) modlist = {} for attrtype in entry.keys(): if attrtype.lower() in ignore_attr_types: # This attribute type is ignored continue for value in entry[attrtype]: assert value is not None if len(entry[attrtype]) > 0: modlist[attrtype] = escape_list(entry[attrtype]) return modlist # addModlist() def modifyModlist( old_entry, new_entry, ignore_attr_types=None, ignore_oldexistent=0): """ Build differential modify list for calling LDAPObject.modify()/modify_s() :param old_entry: Dictionary holding the old entry :param new_entry: Dictionary holding what the new entry should be :param ignore_attr_types: List of attribute type names to be ignored completely :param ignore_oldexistent: If non-zero attribute type names which are in old_entry but are not found in new_entry at all are not deleted. This is handy for situations where your application sets attribute value to '' for deleting an attribute. In most cases leave zero. :return: List of tuples suitable for :py:meth:`ldap:ldap.LDAPObject.modify`. This function is the same as :py:func:`ldap:ldap.modlist.modifyModlist` except for the following changes: * MOD_DELETE/MOD_DELETE used in preference to MOD_REPLACE when updating an existing value. """ ignore_attr_types = list_dict(map(str.lower, (ignore_attr_types or []))) modlist = {} attrtype_lower_map = {} for a in old_entry.keys(): attrtype_lower_map[a.lower()] = a for attrtype in new_entry.keys(): attrtype_lower = attrtype.lower() if attrtype_lower in ignore_attr_types: # This attribute type is ignored continue # Filter away null-strings new_value = list(filter(lambda x: x is not None, new_entry[attrtype])) if attrtype_lower in attrtype_lower_map: old_value = old_entry.get(attrtype_lower_map[attrtype_lower], []) old_value = list(filter(lambda x: x is not None, old_value)) del attrtype_lower_map[attrtype_lower] else: old_value = [] if not old_value and new_value: # Add a new attribute to entry modlist[attrtype] = (ldap3.MODIFY_ADD, escape_list(new_value)) elif old_value and new_value: # Replace existing attribute old_value_dict = list_dict(old_value) new_value_dict = list_dict(new_value) delete_values = [] for v in old_value: if v not in new_value_dict: delete_values.append(v) add_values = [] for v in new_value: if v not in old_value_dict: add_values.append(v) if len(delete_values) > 0 or len(add_values) > 0: modlist[attrtype] = ( ldap3.MODIFY_REPLACE, escape_list(new_value)) elif old_value and not new_value: # Completely delete an existing attribute modlist[attrtype] = (ldap3.MODIFY_DELETE, []) if not ignore_oldexistent: # Remove all attributes of old_entry which are not present # in new_entry at all for a in attrtype_lower_map.keys(): if a in ignore_attr_types: # This attribute type is ignored continue attrtype = attrtype_lower_map[a] modlist[attrtype] = (ldap3.MODIFY_DELETE, []) return modlist # modifyModlist()
from pymongo import MongoClient class Connection(object): def __init__(self): super().__init__() class MongoConnection(Connection): """Connection object for connecting to the mongodb database and retrieving data.""" def __init__(self, db, mongo_options={}): super().__init__() self.client = MongoClient(**mongo_options) self.db = self.client[db] def query(self, d): coll_name = d.pop('collection', None) if coll_name is None: raise Exception('Collection param not found in query.') coll = self.db[coll_name] if 'id' in d: return coll.find_one(d) if 'ids' in d.keys(): return list(coll.find({'id':{'$in':d['ids']}})) if 'all' in d and d['all']: return coll.find() def __enter__(self): """For use with the "with" statement. Will create an open db connection. :return: Client connection. """ return self def __exit__(self, exc_type, exc_val, exc_tb): """For use with the "with" statement. Will disconnect from db connection. :param exc_type: :param exc_val: :param exc_tb: :return: """ self.client.close() if __name__ == '__main__': with MongoConnection() as conn: print(conn)
#!/usr/bin/env python """Script for testing the performance of pickling/unpickling. This will pickle/unpickle several real world-representative objects a few thousand times. The methodology below was chosen for was chosen to be similar to real-world scenarios which operate on single objects at a time. Note that if we did something like pickle.dumps([dict(some_dict) for _ in xrange(10000)]) this isn't equivalent to dumping the dict 10000 times: pickle uses a highly-efficient encoding for the n-1 following copies. """ __author__ = "[email protected] (Collin Winter)" # Python imports import datetime import gc import optparse import random import sys import time # Local imports import util gc.disable() # Minimize jitter. DICT = { 'ads_flags': 0L, 'age': 18, 'birthday': datetime.date(1980, 5, 7), 'bulletin_count': 0L, 'comment_count': 0L, 'country': 'BR', 'encrypted_id': 'G9urXXAJwjE', 'favorite_count': 9L, 'first_name': '', 'flags': 412317970704L, 'friend_count': 0L, 'gender': 'm', 'gender_for_display': 'Male', 'id': 302935349L, 'is_custom_profile_icon': 0L, 'last_name': '', 'locale_preference': 'pt_BR', 'member': 0L, 'tags': ['a', 'b', 'c', 'd', 'e', 'f', 'g'], 'profile_foo_id': 827119638L, 'secure_encrypted_id': 'Z_xxx2dYx3t4YAdnmfgyKw', 'session_number': 2L, 'signup_id': '201-19225-223', 'status': 'A', 'theme': 1, 'time_created': 1225237014L, 'time_updated': 1233134493L, 'unread_message_count': 0L, 'user_group': '0', 'username': 'collinwinter', 'play_count': 9L, 'view_count': 7L, 'zip': ''} TUPLE = ([265867233L, 265868503L, 265252341L, 265243910L, 265879514L, 266219766L, 266021701L, 265843726L, 265592821L, 265246784L, 265853180L, 45526486L, 265463699L, 265848143L, 265863062L, 265392591L, 265877490L, 265823665L, 265828884L, 265753032L], 60) def mutate_dict(orig_dict, random_source): new_dict = dict(orig_dict) for key, value in new_dict.items(): rand_val = random_source.random() * sys.maxint if isinstance(key, (int, long)): new_dict[key] = long(rand_val) elif isinstance(value, str): new_dict[key] = str(rand_val) elif isinstance(key, unicode): new_dict[key] = unicode(rand_val) return new_dict random_source = random.Random(5) # Fixed seed. DICT_GROUP = [mutate_dict(DICT, random_source) for _ in range(3)] def test_pickle(num_obj_copies, pickle, options): # Warm-up runs. pickle.dumps(DICT, options.protocol) pickle.dumps(TUPLE, options.protocol) pickle.dumps(DICT_GROUP, options.protocol) loops = num_obj_copies / 20 # We do 20 runs per loop. times = [] for _ in xrange(options.num_runs): t0 = time.time() for _ in xrange(loops): pickle.dumps(DICT, options.protocol) pickle.dumps(DICT, options.protocol) pickle.dumps(DICT, options.protocol) pickle.dumps(DICT, options.protocol) pickle.dumps(DICT, options.protocol) pickle.dumps(DICT, options.protocol) pickle.dumps(DICT, options.protocol) pickle.dumps(DICT, options.protocol) pickle.dumps(DICT, options.protocol) pickle.dumps(DICT, options.protocol) pickle.dumps(DICT, options.protocol) pickle.dumps(DICT, options.protocol) pickle.dumps(DICT, options.protocol) pickle.dumps(DICT, options.protocol) pickle.dumps(DICT, options.protocol) pickle.dumps(DICT, options.protocol) pickle.dumps(DICT, options.protocol) pickle.dumps(DICT, options.protocol) pickle.dumps(DICT, options.protocol) pickle.dumps(DICT, options.protocol) pickle.dumps(TUPLE, options.protocol) pickle.dumps(TUPLE, options.protocol) pickle.dumps(TUPLE, options.protocol) pickle.dumps(TUPLE, options.protocol) pickle.dumps(TUPLE, options.protocol) pickle.dumps(TUPLE, options.protocol) pickle.dumps(TUPLE, options.protocol) pickle.dumps(TUPLE, options.protocol) pickle.dumps(TUPLE, options.protocol) pickle.dumps(TUPLE, options.protocol) pickle.dumps(TUPLE, options.protocol) pickle.dumps(TUPLE, options.protocol) pickle.dumps(TUPLE, options.protocol) pickle.dumps(TUPLE, options.protocol) pickle.dumps(TUPLE, options.protocol) pickle.dumps(TUPLE, options.protocol) pickle.dumps(TUPLE, options.protocol) pickle.dumps(TUPLE, options.protocol) pickle.dumps(TUPLE, options.protocol) pickle.dumps(TUPLE, options.protocol) pickle.dumps(DICT_GROUP, options.protocol) pickle.dumps(DICT_GROUP, options.protocol) pickle.dumps(DICT_GROUP, options.protocol) pickle.dumps(DICT_GROUP, options.protocol) pickle.dumps(DICT_GROUP, options.protocol) pickle.dumps(DICT_GROUP, options.protocol) pickle.dumps(DICT_GROUP, options.protocol) pickle.dumps(DICT_GROUP, options.protocol) pickle.dumps(DICT_GROUP, options.protocol) pickle.dumps(DICT_GROUP, options.protocol) pickle.dumps(DICT_GROUP, options.protocol) pickle.dumps(DICT_GROUP, options.protocol) pickle.dumps(DICT_GROUP, options.protocol) pickle.dumps(DICT_GROUP, options.protocol) pickle.dumps(DICT_GROUP, options.protocol) pickle.dumps(DICT_GROUP, options.protocol) pickle.dumps(DICT_GROUP, options.protocol) pickle.dumps(DICT_GROUP, options.protocol) pickle.dumps(DICT_GROUP, options.protocol) pickle.dumps(DICT_GROUP, options.protocol) t1 = time.time() times.append(t1 - t0) return times def test_unpickle(num_obj_copies, pickle, options): pickled_dict = pickle.dumps(DICT, options.protocol) pickled_tuple = pickle.dumps(TUPLE, options.protocol) pickled_dict_group = pickle.dumps(DICT_GROUP, options.protocol) # Warm-up runs. pickle.loads(pickled_dict) pickle.loads(pickled_tuple) pickle.loads(pickled_dict_group) loops = num_obj_copies / 20 # We do 20 runs per loop. times = [] for _ in xrange(options.num_runs): t0 = time.time() for _ in xrange(loops): pickle.loads(pickled_dict) pickle.loads(pickled_dict) pickle.loads(pickled_dict) pickle.loads(pickled_dict) pickle.loads(pickled_dict) pickle.loads(pickled_dict) pickle.loads(pickled_dict) pickle.loads(pickled_dict) pickle.loads(pickled_dict) pickle.loads(pickled_dict) pickle.loads(pickled_dict) pickle.loads(pickled_dict) pickle.loads(pickled_dict) pickle.loads(pickled_dict) pickle.loads(pickled_dict) pickle.loads(pickled_dict) pickle.loads(pickled_dict) pickle.loads(pickled_dict) pickle.loads(pickled_dict) pickle.loads(pickled_dict) pickle.loads(pickled_tuple) pickle.loads(pickled_tuple) pickle.loads(pickled_tuple) pickle.loads(pickled_tuple) pickle.loads(pickled_tuple) pickle.loads(pickled_tuple) pickle.loads(pickled_tuple) pickle.loads(pickled_tuple) pickle.loads(pickled_tuple) pickle.loads(pickled_tuple) pickle.loads(pickled_tuple) pickle.loads(pickled_tuple) pickle.loads(pickled_tuple) pickle.loads(pickled_tuple) pickle.loads(pickled_tuple) pickle.loads(pickled_tuple) pickle.loads(pickled_tuple) pickle.loads(pickled_tuple) pickle.loads(pickled_tuple) pickle.loads(pickled_tuple) pickle.loads(pickled_dict_group) pickle.loads(pickled_dict_group) pickle.loads(pickled_dict_group) pickle.loads(pickled_dict_group) pickle.loads(pickled_dict_group) pickle.loads(pickled_dict_group) pickle.loads(pickled_dict_group) pickle.loads(pickled_dict_group) pickle.loads(pickled_dict_group) pickle.loads(pickled_dict_group) pickle.loads(pickled_dict_group) pickle.loads(pickled_dict_group) pickle.loads(pickled_dict_group) pickle.loads(pickled_dict_group) pickle.loads(pickled_dict_group) pickle.loads(pickled_dict_group) pickle.loads(pickled_dict_group) pickle.loads(pickled_dict_group) pickle.loads(pickled_dict_group) pickle.loads(pickled_dict_group) t1 = time.time() times.append(t1 - t0) return times LIST = [[range(10), range(10)] for _ in xrange(10)] def test_pickle_list(loops, pickle, options): # Warm-up runs. pickle.dumps(LIST, options.protocol) pickle.dumps(LIST, options.protocol) loops = loops / 5 # Scale to compensate for the workload. times = [] for _ in xrange(options.num_runs): t0 = time.time() for _ in xrange(loops): pickle.dumps(LIST, options.protocol) pickle.dumps(LIST, options.protocol) pickle.dumps(LIST, options.protocol) pickle.dumps(LIST, options.protocol) pickle.dumps(LIST, options.protocol) pickle.dumps(LIST, options.protocol) pickle.dumps(LIST, options.protocol) pickle.dumps(LIST, options.protocol) pickle.dumps(LIST, options.protocol) pickle.dumps(LIST, options.protocol) t1 = time.time() times.append(t1 - t0) return times def test_unpickle_list(loops, pickle, options): pickled_list = pickle.dumps(LIST, options.protocol) # Warm-up runs. pickle.loads(pickled_list) pickle.loads(pickled_list) loops = loops / 5 # Scale to compensate for the workload. times = [] for _ in xrange(options.num_runs): t0 = time.time() for _ in xrange(loops): pickle.loads(pickled_list) pickle.loads(pickled_list) pickle.loads(pickled_list) pickle.loads(pickled_list) pickle.loads(pickled_list) pickle.loads(pickled_list) pickle.loads(pickled_list) pickle.loads(pickled_list) pickle.loads(pickled_list) pickle.loads(pickled_list) t1 = time.time() times.append(t1 - t0) return times MICRO_DICT = dict((key, dict.fromkeys(range(10))) for key in xrange(100)) def test_pickle_dict(loops, pickle, options): # Warm-up runs. pickle.dumps(MICRO_DICT, options.protocol) pickle.dumps(MICRO_DICT, options.protocol) loops = max(1, loops / 10) times = [] for _ in xrange(options.num_runs): t0 = time.time() for _ in xrange(loops): pickle.dumps(MICRO_DICT, options.protocol) pickle.dumps(MICRO_DICT, options.protocol) pickle.dumps(MICRO_DICT, options.protocol) pickle.dumps(MICRO_DICT, options.protocol) pickle.dumps(MICRO_DICT, options.protocol) t1 = time.time() times.append(t1 - t0) return times if __name__ == "__main__": parser = optparse.OptionParser( usage="%prog [pickle|unpickle] [options]", description=("Test the performance of pickling.")) parser.add_option("--use_cpickle", action="store_true", help="Use the C version of pickle.") parser.add_option("--protocol", action="store", default=2, type="int", help="Which protocol to use (0, 1, 2).") util.add_standard_options_to(parser) options, args = parser.parse_args() benchmarks = ["pickle", "unpickle", "pickle_list", "unpickle_list", "pickle_dict"] for bench_name in benchmarks: if bench_name in args: benchmark = globals()["test_" + bench_name] break else: raise RuntimeError("Need to specify one of %s" % benchmarks) if options.use_cpickle: num_obj_copies = 8000 import cPickle as pickle else: num_obj_copies = 200 import pickle if options.protocol > 0: num_obj_copies *= 2 # Compensate for faster protocols. util.run_benchmark(options, num_obj_copies, benchmark, pickle, options)
''' Created on 01.10.2012 @author: vlkv ''' import os import PyQt4.QtGui as QtGui import reggata import reggata.helpers as helpers import reggata.consts as consts import reggata.statistics as stats from reggata.helpers import show_exc_info from reggata.consts import STATUSBAR_TIMEOUT from reggata.errors import MsgException, LoginError from reggata.ui.ui_aboutdialog import Ui_AboutDialog # TODO: gui imports should be removed from logic package! from reggata.data.db_schema import User from reggata.data.commands import SaveNewUserCommand, ChangeUserPasswordCommand from reggata.data.repo_mgr import RepoMgr from reggata.logic.ext_app_mgr import ExtAppMgr from reggata.logic.handler_signals import HandlerSignals from reggata.logic.worker_threads import ImportItemsThread from reggata.logic.action_handlers import AbstractActionHandler from reggata.gui.external_apps_dialog import ExternalAppsDialog from reggata.gui.user_dialogs_facade import UserDialogsFacade from reggata.gui.user_dialog import UserDialog class CreateUserActionHandler(AbstractActionHandler): def __init__(self, model): super(CreateUserActionHandler, self).__init__(model) def handle(self): try: self._model.checkActiveRepoIsNotNone() user = User() dialogs = UserDialogsFacade() if not dialogs.execUserDialog( user=user, gui=self._model.gui, dialogMode=UserDialog.CREATE_MODE): return uow = self._model.repo.createUnitOfWork() try: uow.executeCommand(SaveNewUserCommand(user)) self._model.user = user finally: uow.close() stats.sendEvent("main_window.create_user") except Exception as ex: show_exc_info(self._model.gui, ex) class LoginUserActionHandler(AbstractActionHandler): def __init__(self, model): super(LoginUserActionHandler, self).__init__(model) def handle(self): try: self._model.checkActiveRepoIsNotNone() user = User() dialogs = UserDialogsFacade() if not dialogs.execUserDialog( user=user, gui=self._model.gui, dialogMode=UserDialog.LOGIN_MODE): return self._model.loginUser(user.login, user.password) stats.sendEvent("main_window.login_user") except Exception as ex: show_exc_info(self._model.gui, ex) class LogoutUserActionHandler(AbstractActionHandler): def __init__(self, model): super(LogoutUserActionHandler, self).__init__(model) def handle(self): try: self._model.user = None stats.sendEvent("main_window.logout_user") except Exception as ex: show_exc_info(self._model.gui, ex) class ChangeUserPasswordActionHandler(AbstractActionHandler): def __init__(self, model): super(ChangeUserPasswordActionHandler, self).__init__(model) def handle(self): try: self._model.checkActiveRepoIsNotNone() self._model.checkActiveUserIsNotNone() user = self._model.user dialogs = UserDialogsFacade() dialogExecOk, newPasswordHash = \ dialogs.execChangeUserPasswordDialog(user=user, gui=self._model.gui) if not dialogExecOk: return uow = self._model.repo.createUnitOfWork() try: command = ChangeUserPasswordCommand(user.login, newPasswordHash) uow.executeCommand(command) finally: uow.close() user.password = newPasswordHash stats.sendEvent("main_window.change_user_password") except Exception as ex: show_exc_info(self._model.gui, ex) else: self._emitHandlerSignal(HandlerSignals.STATUS_BAR_MESSAGE, self.tr("Operation completed."), STATUSBAR_TIMEOUT) class CreateRepoActionHandler(AbstractActionHandler): def __init__(self, model): super(CreateRepoActionHandler, self).__init__(model) def handle(self): try: dialogs = UserDialogsFacade() basePath = dialogs.getExistingDirectory( self._model.gui, self.tr("Choose a base path for new repository")) if not basePath: raise MsgException( self.tr("You haven't chosen existent directory. Operation canceled.")) # QFileDialog returns forward slashes in windows! Because of this # the path should be normalized basePath = os.path.normpath(basePath) self._model.repo = RepoMgr.createNewRepo(basePath) self._model.user = self.__createDefaultUser() stats.sendEvent("main_window.create_repo") except Exception as ex: show_exc_info(self._model.gui, ex) def __createDefaultUser(self): self._model.checkActiveRepoIsNotNone() defaultLogin = consts.DEFAULT_USER_LOGIN defaultPassword = helpers.computePasswordHash(consts.DEFAULT_USER_PASSWORD) user = User(login=defaultLogin, password=defaultPassword) uow = self._model.repo.createUnitOfWork() try: uow.executeCommand(SaveNewUserCommand(user)) finally: uow.close() return user class CloseRepoActionHandler(AbstractActionHandler): def __init__(self, model): super(CloseRepoActionHandler, self).__init__(model) def handle(self): try: self._model.checkActiveRepoIsNotNone() self._model.repo = None self._model.user = None stats.sendEvent("main_window.close_repo") except Exception as ex: show_exc_info(self._model.gui, ex) class OpenRepoActionHandler(AbstractActionHandler): def __init__(self, model): super(OpenRepoActionHandler, self).__init__(model) def handle(self): try: dialogs = UserDialogsFacade() basePath = dialogs.getExistingDirectory( self._model.gui, self.tr("Choose a repository base path")) if not basePath: raise Exception( self.tr("You haven't chosen existent directory. Operation canceled.")) #QFileDialog returns forward slashes in windows! Because of this path should be normalized basePath = os.path.normpath(basePath) self._model.repo = RepoMgr(basePath) self._model.user = None self._model.loginRecentUser() stats.sendEvent("main_window.open_repo") except LoginError: self.__letUserLoginByHimself() except Exception as ex: show_exc_info(self._model.gui, ex) def __letUserLoginByHimself(self): user = User() dialogs = UserDialogsFacade() if not dialogs.execUserDialog( user=user, gui=self._model.gui, dialogMode=UserDialog.LOGIN_MODE): return try: self._model.loginUser(user.login, user.password) except Exception as ex: show_exc_info(self._model.gui, ex) class AddCurrentRepoToFavoritesActionHandler(AbstractActionHandler): def __init__(self, model, favoriteReposStorage): super(AddCurrentRepoToFavoritesActionHandler, self).__init__(model) self.__favoriteReposStorage = favoriteReposStorage def handle(self): try: self._model.checkActiveRepoIsNotNone() self._model.checkActiveUserIsNotNone() repoBasePath = self._model.repo.base_path userLogin = self._model.user.login #TODO: Maybe ask user for a repoAlias... self.__favoriteReposStorage.addRepoToFavorites(userLogin, repoBasePath, os.path.basename(repoBasePath)) self._emitHandlerSignal(HandlerSignals.STATUS_BAR_MESSAGE, self.tr("Current repository saved in favorites list."), STATUSBAR_TIMEOUT) self._emitHandlerSignal(HandlerSignals.LIST_OF_FAVORITE_REPOS_CHANGED) stats.sendEvent("main_window.add_repo_to_favorites") except Exception as ex: show_exc_info(self._model.gui, ex) class RemoveCurrentRepoFromFavoritesActionHandler(AbstractActionHandler): def __init__(self, model, favoriteReposStorage): super(RemoveCurrentRepoFromFavoritesActionHandler, self).__init__(model) self.__favoriteReposStorage = favoriteReposStorage def handle(self): try: self._model.checkActiveRepoIsNotNone() self._model.checkActiveUserIsNotNone() repoBasePath = self._model.repo.base_path userLogin = self._model.user.login self.__favoriteReposStorage.removeRepoFromFavorites(userLogin, repoBasePath) self._emitHandlerSignal(HandlerSignals.STATUS_BAR_MESSAGE, self.tr("Current repository removed from favorites list."), STATUSBAR_TIMEOUT) self._emitHandlerSignal(HandlerSignals.LIST_OF_FAVORITE_REPOS_CHANGED) stats.sendEvent("main_window.remove_repo_from_favorites") except Exception as ex: show_exc_info(self._model.gui, ex) class ImportItemsActionHandler(AbstractActionHandler): ''' Imports previously exported items. ''' def __init__(self, model, dialogs): super(ImportItemsActionHandler, self).__init__(model) self._dialogs = dialogs def handle(self): try: self._model.checkActiveRepoIsNotNone() self._model.checkActiveUserIsNotNone() importFromFilename = self._dialogs.getOpenFileName( self._model.gui, self.tr("Open Reggata Archive File"), self.tr("Reggata Archive File (*.raf)")) if not importFromFilename: raise MsgException(self.tr("You haven't chosen a file. Operation canceled.")) thread = ImportItemsThread(self, self._model.repo, importFromFilename, self._model.user.login) self._dialogs.startThreadWithWaitDialog(thread, self._model.gui, indeterminate=False) self._emitHandlerSignal(HandlerSignals.ITEM_CREATED) #TODO: display information about how many items were imported self._emitHandlerSignal(HandlerSignals.STATUS_BAR_MESSAGE, self.tr("Operation completed."), STATUSBAR_TIMEOUT) stats.sendEvent("main_window.import_items") except Exception as ex: show_exc_info(self._model.gui, ex) class ExitReggataActionHandler(AbstractActionHandler): def __init__(self, tool): super(ExitReggataActionHandler, self).__init__(tool) def handle(self): try: self._tool.gui.close() stats.sendEvent("main_window.exit_reggata") except Exception as ex: show_exc_info(self._tool.gui, ex) class ManageExternalAppsActionHandler(AbstractActionHandler): def __init__(self, model, dialogs): super(ManageExternalAppsActionHandler, self).__init__(model) self._dialogs = dialogs def handle(self): try: extAppMgrState = ExtAppMgr.readCurrentState() dialog = ExternalAppsDialog(self._model.gui, extAppMgrState, self._dialogs) if dialog.exec_() != QtGui.QDialog.Accepted: return ExtAppMgr.setCurrentState(dialog.extAppMgrState()) self._emitHandlerSignal(HandlerSignals.REGGATA_CONF_CHANGED) self._emitHandlerSignal(HandlerSignals.STATUS_BAR_MESSAGE, self.tr("Operation completed."), STATUSBAR_TIMEOUT) stats.sendEvent("main_window.manage_external_apps") except Exception as ex: show_exc_info(self._model.gui, ex) class ShowAboutDialogActionHandler(AbstractActionHandler): def __init__(self, model): super(ShowAboutDialogActionHandler, self).__init__(model) def handle(self): try: ad = AboutDialog(self._model.gui) ad.exec_() stats.sendEvent("main_window.show_about_dialog") except Exception as ex: show_exc_info(self._model.gui, ex) else: self._emitHandlerSignal(HandlerSignals.STATUS_BAR_MESSAGE, self.tr("Operation completed."), STATUSBAR_TIMEOUT) about_message = \ ''' <h1>Reggata</h1> <p>Version: {0}</p> <p>Reggata is a tagging system for local files.</p> <p>Copyright 2012 Vitaly Volkov, <font color="blue">[email protected]</font></p> <p>Home page: <font color="blue">http://github.com/vlkv/reggata</font></p> <p>Reggata is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. </p> <p>Reggata is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. </p> <p>You should have received a copy of the GNU General Public License along with Reggata. If not, see <font color="blue">http://www.gnu.org/licenses</font>. </p> '''.format(reggata.__version__) class AboutDialog(QtGui.QDialog): def __init__(self, parent=None): super(AboutDialog, self).__init__(parent) self.ui = Ui_AboutDialog() self.ui.setupUi(self) self.ui.textEdit.setHtml(about_message) class OpenFavoriteRepoActionHandler(AbstractActionHandler): def __init__(self, model): super(OpenFavoriteRepoActionHandler, self).__init__(model) def handle(self): try: action = self.sender() repoBasePath = action.repoBasePath currentUser = self._model.user assert currentUser is not None self._model.repo = RepoMgr(repoBasePath) try: self._model.loginUser(currentUser.login, currentUser.password) self._emitHandlerSignal(HandlerSignals.STATUS_BAR_MESSAGE, self.tr("Repository opened. Login succeded."), STATUSBAR_TIMEOUT) except LoginError: self._model.user = None self._emitHandlerSignal(HandlerSignals.STATUS_BAR_MESSAGE, self.tr("Repository opened. Login failed."), STATUSBAR_TIMEOUT) stats.sendEvent("main_window.open_favorite_repo") except Exception as ex: show_exc_info(self._model.gui, ex)
""" Form classes """ from __future__ import unicode_literals from collections import OrderedDict import copy import warnings from django.core.exceptions import ValidationError from django.forms.fields import Field, FileField from django.forms.util import flatatt, ErrorDict, ErrorList from django.forms.widgets import Media, media_property, TextInput, Textarea from django.utils.html import conditional_escape, format_html from django.utils.encoding import smart_text, force_text, python_2_unicode_compatible from django.utils.safestring import mark_safe from django.utils.translation import ugettext as _ from django.utils import six __all__ = ('BaseForm', 'Form') NON_FIELD_ERRORS = '__all__' def pretty_name(name): """Converts 'first_name' to 'First name'""" if not name: return '' return name.replace('_', ' ').capitalize() def get_declared_fields(bases, attrs, with_base_fields=True): """ Create a list of form field instances from the passed in 'attrs', plus any similar fields on the base classes (in 'bases'). This is used by both the Form and ModelForm metaclasses. If 'with_base_fields' is True, all fields from the bases are used. Otherwise, only fields in the 'declared_fields' attribute on the bases are used. The distinction is useful in ModelForm subclassing. Also integrates any additional media definitions. """ fields = [(field_name, attrs.pop(field_name)) for field_name, obj in list(six.iteritems(attrs)) if isinstance(obj, Field)] fields.sort(key=lambda x: x[1].creation_counter) # If this class is subclassing another Form, add that Form's fields. # Note that we loop over the bases in *reverse*. This is necessary in # order to preserve the correct order of fields. if with_base_fields: for base in bases[::-1]: if hasattr(base, 'base_fields'): fields = list(six.iteritems(base.base_fields)) + fields else: for base in bases[::-1]: if hasattr(base, 'declared_fields'): fields = list(six.iteritems(base.declared_fields)) + fields return OrderedDict(fields) class DeclarativeFieldsMetaclass(type): """ Metaclass that converts Field attributes to a dictionary called 'base_fields', taking into account parent class 'base_fields' as well. """ def __new__(cls, name, bases, attrs): attrs['base_fields'] = get_declared_fields(bases, attrs) new_class = super(DeclarativeFieldsMetaclass, cls).__new__(cls, name, bases, attrs) if 'media' not in attrs: new_class.media = media_property(new_class) return new_class @python_2_unicode_compatible class BaseForm(object): # This is the main implementation of all the Form logic. Note that this # class is different than Form. See the comments by the Form class for more # information. Any improvements to the form API should be made to *this* # class, not to the Form class. def __init__(self, data=None, files=None, auto_id='id_%s', prefix=None, initial=None, error_class=ErrorList, label_suffix=None, empty_permitted=False): self.is_bound = data is not None or files is not None self.data = data or {} self.files = files or {} self.auto_id = auto_id self.prefix = prefix self.initial = initial or {} self.error_class = error_class # Translators: This is the default suffix added to form field labels self.label_suffix = label_suffix if label_suffix is not None else _(':') self.empty_permitted = empty_permitted self._errors = None # Stores the errors after clean() has been called. self._changed_data = None # The base_fields class attribute is the *class-wide* definition of # fields. Because a particular *instance* of the class might want to # alter self.fields, we create self.fields here by copying base_fields. # Instances should always modify self.fields; they should not modify # self.base_fields. self.fields = copy.deepcopy(self.base_fields) def __str__(self): return self.as_table() def __iter__(self): for name in self.fields: yield self[name] def __getitem__(self, name): "Returns a BoundField with the given name." try: field = self.fields[name] except KeyError: raise KeyError('Key %r not found in Form' % name) return BoundField(self, field, name) @property def errors(self): "Returns an ErrorDict for the data provided for the form" if self._errors is None: self.full_clean() return self._errors def is_valid(self): """ Returns True if the form has no errors. Otherwise, False. If errors are being ignored, returns False. """ return self.is_bound and not bool(self.errors) def add_prefix(self, field_name): """ Returns the field name with a prefix appended, if this Form has a prefix set. Subclasses may wish to override. """ return '%s-%s' % (self.prefix, field_name) if self.prefix else field_name def add_initial_prefix(self, field_name): """ Add a 'initial' prefix for checking dynamic initial values """ return 'initial-%s' % self.add_prefix(field_name) def _html_output(self, normal_row, error_row, row_ender, help_text_html, errors_on_separate_row): "Helper function for outputting HTML. Used by as_table(), as_ul(), as_p()." top_errors = self.non_field_errors() # Errors that should be displayed above all fields. output, hidden_fields = [], [] for name, field in self.fields.items(): html_class_attr = '' bf = self[name] # Escape and cache in local variable. bf_errors = self.error_class([conditional_escape(error) for error in bf.errors]) if bf.is_hidden: if bf_errors: top_errors.extend( [_('(Hidden field %(name)s) %(error)s') % {'name': name, 'error': force_text(e)} for e in bf_errors]) hidden_fields.append(six.text_type(bf)) else: # Create a 'class="..."' atribute if the row should have any # CSS classes applied. css_classes = bf.css_classes() if css_classes: html_class_attr = ' class="%s"' % css_classes if errors_on_separate_row and bf_errors: output.append(error_row % force_text(bf_errors)) if bf.label: label = conditional_escape(force_text(bf.label)) label = bf.label_tag(label) or '' else: label = '' if field.help_text: help_text = help_text_html % force_text(field.help_text) else: help_text = '' output.append(normal_row % { 'errors': force_text(bf_errors), 'label': force_text(label), 'field': six.text_type(bf), 'help_text': help_text, 'html_class_attr': html_class_attr }) if top_errors: output.insert(0, error_row % force_text(top_errors)) if hidden_fields: # Insert any hidden fields in the last row. str_hidden = ''.join(hidden_fields) if output: last_row = output[-1] # Chop off the trailing row_ender (e.g. '</td></tr>') and # insert the hidden fields. if not last_row.endswith(row_ender): # This can happen in the as_p() case (and possibly others # that users write): if there are only top errors, we may # not be able to conscript the last row for our purposes, # so insert a new, empty row. last_row = (normal_row % {'errors': '', 'label': '', 'field': '', 'help_text':'', 'html_class_attr': html_class_attr}) output.append(last_row) output[-1] = last_row[:-len(row_ender)] + str_hidden + row_ender else: # If there aren't any rows in the output, just append the # hidden fields. output.append(str_hidden) return mark_safe('\n'.join(output)) def as_table(self): "Returns this form rendered as HTML <tr>s -- excluding the <table></table>." return self._html_output( normal_row = '<tr%(html_class_attr)s><th>%(label)s</th><td>%(errors)s%(field)s%(help_text)s</td></tr>', error_row = '<tr><td colspan="2">%s</td></tr>', row_ender = '</td></tr>', help_text_html = '<br /><span class="helptext">%s</span>', errors_on_separate_row = False) def as_ul(self): "Returns this form rendered as HTML <li>s -- excluding the <ul></ul>." return self._html_output( normal_row = '<li%(html_class_attr)s>%(errors)s%(label)s %(field)s%(help_text)s</li>', error_row = '<li>%s</li>', row_ender = '</li>', help_text_html = ' <span class="helptext">%s</span>', errors_on_separate_row = False) def as_p(self): "Returns this form rendered as HTML <p>s." return self._html_output( normal_row = '<p%(html_class_attr)s>%(label)s %(field)s%(help_text)s</p>', error_row = '%s', row_ender = '</p>', help_text_html = ' <span class="helptext">%s</span>', errors_on_separate_row = True) def non_field_errors(self): """ Returns an ErrorList of errors that aren't associated with a particular field -- i.e., from Form.clean(). Returns an empty ErrorList if there are none. """ return self.errors.get(NON_FIELD_ERRORS, self.error_class()) def _raw_value(self, fieldname): """ Returns the raw_value for a particular field name. This is just a convenient wrapper around widget.value_from_datadict. """ field = self.fields[fieldname] prefix = self.add_prefix(fieldname) return field.widget.value_from_datadict(self.data, self.files, prefix) def full_clean(self): """ Cleans all of self.data and populates self._errors and self.cleaned_data. """ self._errors = ErrorDict() if not self.is_bound: # Stop further processing. return self.cleaned_data = {} # If the form is permitted to be empty, and none of the form data has # changed from the initial data, short circuit any validation. if self.empty_permitted and not self.has_changed(): return self._clean_fields() self._clean_form() self._post_clean() def _clean_fields(self): for name, field in self.fields.items(): # value_from_datadict() gets the data from the data dictionaries. # Each widget type knows how to retrieve its own data, because some # widgets split data over several HTML fields. value = field.widget.value_from_datadict(self.data, self.files, self.add_prefix(name)) try: if isinstance(field, FileField): initial = self.initial.get(name, field.initial) value = field.clean(value, initial) else: value = field.clean(value) self.cleaned_data[name] = value if hasattr(self, 'clean_%s' % name): value = getattr(self, 'clean_%s' % name)() self.cleaned_data[name] = value except ValidationError as e: self._errors[name] = self.error_class(e.messages) if name in self.cleaned_data: del self.cleaned_data[name] def _clean_form(self): try: cleaned_data = self.clean() except ValidationError as e: self._errors[NON_FIELD_ERRORS] = self.error_class(e.messages) else: if cleaned_data is not None: self.cleaned_data = cleaned_data def _post_clean(self): """ An internal hook for performing additional cleaning after form cleaning is complete. Used for model validation in model forms. """ pass def clean(self): """ Hook for doing any extra form-wide cleaning after Field.clean() been called on every field. Any ValidationError raised by this method will not be associated with a particular field; it will have a special-case association with the field named '__all__'. """ return self.cleaned_data def has_changed(self): """ Returns True if data differs from initial. """ return bool(self.changed_data) @property def changed_data(self): if self._changed_data is None: self._changed_data = [] # XXX: For now we're asking the individual widgets whether or not the # data has changed. It would probably be more efficient to hash the # initial data, store it in a hidden field, and compare a hash of the # submitted data, but we'd need a way to easily get the string value # for a given field. Right now, that logic is embedded in the render # method of each widget. for name, field in self.fields.items(): prefixed_name = self.add_prefix(name) data_value = field.widget.value_from_datadict(self.data, self.files, prefixed_name) if not field.show_hidden_initial: initial_value = self.initial.get(name, field.initial) if callable(initial_value): initial_value = initial_value() else: initial_prefixed_name = self.add_initial_prefix(name) hidden_widget = field.hidden_widget() try: initial_value = field.to_python(hidden_widget.value_from_datadict( self.data, self.files, initial_prefixed_name)) except ValidationError: # Always assume data has changed if validation fails. self._changed_data.append(name) continue if hasattr(field.widget, '_has_changed'): warnings.warn("The _has_changed method on widgets is deprecated," " define it at field level instead.", DeprecationWarning, stacklevel=2) if field.widget._has_changed(initial_value, data_value): self._changed_data.append(name) elif field._has_changed(initial_value, data_value): self._changed_data.append(name) return self._changed_data @property def media(self): """ Provide a description of all media required to render the widgets on this form """ media = Media() for field in self.fields.values(): media = media + field.widget.media return media def is_multipart(self): """ Returns True if the form needs to be multipart-encoded, i.e. it has FileInput. Otherwise, False. """ for field in self.fields.values(): if field.widget.needs_multipart_form: return True return False def hidden_fields(self): """ Returns a list of all the BoundField objects that are hidden fields. Useful for manual form layout in templates. """ return [field for field in self if field.is_hidden] def visible_fields(self): """ Returns a list of BoundField objects that aren't hidden fields. The opposite of the hidden_fields() method. """ return [field for field in self if not field.is_hidden] class Form(six.with_metaclass(DeclarativeFieldsMetaclass, BaseForm)): "A collection of Fields, plus their associated data." # This is a separate class from BaseForm in order to abstract the way # self.fields is specified. This class (Form) is the one that does the # fancy metaclass stuff purely for the semantic sugar -- it allows one # to define a form using declarative syntax. # BaseForm itself has no way of designating self.fields. @python_2_unicode_compatible class BoundField(object): "A Field plus data" def __init__(self, form, field, name): self.form = form self.field = field self.name = name self.html_name = form.add_prefix(name) self.html_initial_name = form.add_initial_prefix(name) self.html_initial_id = form.add_initial_prefix(self.auto_id) if self.field.label is None: self.label = pretty_name(name) else: self.label = self.field.label self.help_text = field.help_text or '' def __str__(self): """Renders this field as an HTML widget.""" if self.field.show_hidden_initial: return self.as_widget() + self.as_hidden(only_initial=True) return self.as_widget() def __iter__(self): """ Yields rendered strings that comprise all widgets in this BoundField. This really is only useful for RadioSelect widgets, so that you can iterate over individual radio buttons in a template. """ id_ = self.field.widget.attrs.get('id') or self.auto_id attrs = {'id': id_} if id_ else {} for subwidget in self.field.widget.subwidgets(self.html_name, self.value(), attrs): yield subwidget def __len__(self): return len(list(self.__iter__())) def __getitem__(self, idx): return list(self.__iter__())[idx] @property def errors(self): """ Returns an ErrorList for this field. Returns an empty ErrorList if there are none. """ return self.form.errors.get(self.name, self.form.error_class()) def as_widget(self, widget=None, attrs=None, only_initial=False): """ Renders the field by rendering the passed widget, adding any HTML attributes passed as attrs. If no widget is specified, then the field's default widget will be used. """ if not widget: widget = self.field.widget attrs = attrs or {} auto_id = self.auto_id if auto_id and 'id' not in attrs and 'id' not in widget.attrs: if not only_initial: attrs['id'] = auto_id else: attrs['id'] = self.html_initial_id if not only_initial: name = self.html_name else: name = self.html_initial_name return widget.render(name, self.value(), attrs=attrs) def as_text(self, attrs=None, **kwargs): """ Returns a string of HTML for representing this as an <input type="text">. """ return self.as_widget(TextInput(), attrs, **kwargs) def as_textarea(self, attrs=None, **kwargs): "Returns a string of HTML for representing this as a <textarea>." return self.as_widget(Textarea(), attrs, **kwargs) def as_hidden(self, attrs=None, **kwargs): """ Returns a string of HTML for representing this as an <input type="hidden">. """ return self.as_widget(self.field.hidden_widget(), attrs, **kwargs) @property def data(self): """ Returns the data for this BoundField, or None if it wasn't given. """ return self.field.widget.value_from_datadict(self.form.data, self.form.files, self.html_name) def value(self): """ Returns the value for this BoundField, using the initial value if the form is not bound or the data otherwise. """ if not self.form.is_bound: data = self.form.initial.get(self.name, self.field.initial) if callable(data): data = data() else: data = self.field.bound_data( self.data, self.form.initial.get(self.name, self.field.initial) ) return self.field.prepare_value(data) def label_tag(self, contents=None, attrs=None, label_suffix=None): """ Wraps the given contents in a <label>, if the field has an ID attribute. contents should be 'mark_safe'd to avoid HTML escaping. If contents aren't given, uses the field's HTML-escaped label. If attrs are given, they're used as HTML attributes on the <label> tag. label_suffix allows overriding the form's label_suffix. """ contents = contents or self.label # Only add the suffix if the label does not end in punctuation. label_suffix = label_suffix if label_suffix is not None else self.form.label_suffix # Translators: If found as last label character, these punctuation # characters will prevent the default label_suffix to be appended to the label if label_suffix and contents and contents[-1] not in _(':?.!'): contents = format_html('{0}{1}', contents, label_suffix) widget = self.field.widget id_ = widget.attrs.get('id') or self.auto_id if id_: id_for_label = widget.id_for_label(id_) if id_for_label: attrs = dict(attrs or {}, **{'for': id_for_label}) attrs = flatatt(attrs) if attrs else '' contents = format_html('<label{0}>{1}</label>', attrs, contents) else: contents = conditional_escape(contents) return mark_safe(contents) def css_classes(self, extra_classes=None): """ Returns a string of space-separated CSS classes for this field. """ if hasattr(extra_classes, 'split'): extra_classes = extra_classes.split() extra_classes = set(extra_classes or []) if self.errors and hasattr(self.form, 'error_css_class'): extra_classes.add(self.form.error_css_class) if self.field.required and hasattr(self.form, 'required_css_class'): extra_classes.add(self.form.required_css_class) return ' '.join(extra_classes) @property def is_hidden(self): "Returns True if this BoundField's widget is hidden." return self.field.widget.is_hidden @property def auto_id(self): """ Calculates and returns the ID attribute for this BoundField, if the associated Form has specified auto_id. Returns an empty string otherwise. """ auto_id = self.form.auto_id if auto_id and '%s' in smart_text(auto_id): return smart_text(auto_id) % self.html_name elif auto_id: return self.html_name return '' @property def id_for_label(self): """ Wrapper around the field widget's `id_for_label` method. Useful, for example, for focusing on this field regardless of whether it has a single widget or a MutiWidget. """ widget = self.field.widget id_ = widget.attrs.get('id') or self.auto_id return widget.id_for_label(id_)
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (C) 2011 Radim Rehurek <[email protected]> # Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html # # Parts of the LDA inference code come from Dr. Hoffman's `onlineldavb.py` script, # (C) 2010 Matthew D. Hoffman, GNU GPL 3.0 """ Latent Dirichlet Allocation (LDA) in Python. This module allows both LDA model estimation from a training corpus and inference of topic distribution on new, unseen documents. The model can also be updated with new documents for online training. The core estimation code is based on the `onlineldavb.py` script by M. Hoffman [1]_, see **Hoffman, Blei, Bach: Online Learning for Latent Dirichlet Allocation, NIPS 2010.** The algorithm: * is **streamed**: training documents may come in sequentially, no random access required, * runs in **constant memory** w.r.t. the number of documents: size of the training corpus does not affect memory footprint, can process corpora larger than RAM, and * is **distributed**: makes use of a cluster of machines, if available, to speed up model estimation. .. [1] http://www.cs.princeton.edu/~mdhoffma """ import logging import itertools logger = logging.getLogger('gensim.models.ldamodel') import numpy # for arrays, array broadcasting etc. #numpy.seterr(divide='ignore') # ignore 0*log(0) errors from scipy.special import gammaln, digamma, psi # gamma function utils from scipy.special import gamma as gammafunc from scipy.special import polygamma try: from scipy.maxentropy import logsumexp # log(sum(exp(x))) that tries to avoid overflow except ImportError: # maxentropy has been removed for next release from scipy.misc import logsumexp from gensim import interfaces, utils from six.moves import xrange def dirichlet_expectation(alpha): """ For a vector `theta~Dir(alpha)`, compute `E[log(theta)]`. """ if (len(alpha.shape) == 1): result = psi(alpha) - psi(numpy.sum(alpha)) else: result = psi(alpha) - psi(numpy.sum(alpha, 1))[:, numpy.newaxis] return result.astype(alpha.dtype) # keep the same precision as input class LdaState(utils.SaveLoad): """ Encapsulate information for distributed computation of LdaModel objects. Objects of this class are sent over the network, so try to keep them lean to reduce traffic. """ def __init__(self, eta, shape): self.eta = eta self.sstats = numpy.zeros(shape) self.numdocs = 0 def reset(self): """ Prepare the state for a new EM iteration (reset sufficient stats). """ self.sstats[:] = 0.0 self.numdocs = 0 def merge(self, other): """ Merge the result of an E step from one node with that of another node (summing up sufficient statistics). The merging is trivial and after merging all cluster nodes, we have the exact same result as if the computation was run on a single node (no approximation). """ assert other is not None self.sstats += other.sstats self.numdocs += other.numdocs def blend(self, rhot, other, targetsize=None): """ Given LdaState `other`, merge it with the current state. Stretch both to `targetsize` documents before merging, so that they are of comparable magnitude. Merging is done by average weighting: in the extremes, `rhot=0.0` means `other` is completely ignored; `rhot=1.0` means `self` is completely ignored. This procedure corresponds to the stochastic gradient update from Hoffman et al., algorithm 2 (eq. 14). """ assert other is not None if targetsize is None: targetsize = self.numdocs # stretch the current model's expected n*phi counts to target size if self.numdocs == 0 or targetsize == self.numdocs: scale = 1.0 else: scale = 1.0 * targetsize / self.numdocs self.sstats *= (1.0 - rhot) * scale # stretch the incoming n*phi counts to target size if other.numdocs == 0 or targetsize == other.numdocs: scale = 1.0 else: logger.info("merging changes from %i documents into a model of %i documents" % (other.numdocs, targetsize)) scale = 1.0 * targetsize / other.numdocs self.sstats += rhot * scale * other.sstats self.numdocs = targetsize def blend2(self, rhot, other, targetsize=None): """ Alternative, more simple blend. """ assert other is not None if targetsize is None: targetsize = self.numdocs # merge the two matrices by summing self.sstats += other.sstats self.numdocs = targetsize def get_lambda(self): return self.eta + self.sstats def get_Elogbeta(self): return dirichlet_expectation(self.get_lambda()) #endclass LdaState class LdaModel(interfaces.TransformationABC): """ The constructor estimates Latent Dirichlet Allocation model parameters based on a training corpus: >>> lda = LdaModel(corpus, num_topics=10) You can then infer topic distributions on new, unseen documents, with >>> doc_lda = lda[doc_bow] The model can be updated (trained) with new documents via >>> lda.update(other_corpus) Model persistency is achieved through its `load`/`save` methods. """ def __init__(self, corpus=None, num_topics=100, id2word=None, distributed=False, chunksize=2000, passes=1, update_every=1, alpha='symmetric', eta=None, decay=0.5, eval_every=10, iterations=50, gamma_threshold=0.001): """ If given, start training from the iterable `corpus` straight away. If not given, the model is left untrained (presumably because you want to call `update()` manually). `num_topics` is the number of requested latent topics to be extracted from the training corpus. `id2word` is a mapping from word ids (integers) to words (strings). It is used to determine the vocabulary size, as well as for debugging and topic printing. `alpha` and `eta` are hyperparameters that affect sparsity of the document-topic (theta) and topic-word (lambda) distributions. Both default to a symmetric 1.0/num_topics prior. `alpha` can be also set to an explicit array = prior of your choice. It also support special values of 'asymmetric' and 'auto': the former uses a fixed normalized asymmetric 1.0/topicno prior, the latter learns an asymmetric prior directly from your data. Turn on `distributed` to force distributed computing (see the `web tutorial <http://radimrehurek.com/gensim/distributed.html>`_ on how to set up a cluster of machines for gensim). Calculate and log perplexity estimate from the latest mini-batch every `eval_every` model updates (setting this to 1 slows down training ~2x; default is 10 for better performance). Set to None to disable perplexity estimation. Example: >>> lda = LdaModel(corpus, num_topics=100) # train model >>> print(lda[doc_bow]) # get topic probability distribution for a document >>> lda.update(corpus2) # update the LDA model with additional documents >>> print(lda[doc_bow]) >>> lda = LdaModel(corpus, num_topics=50, alpha='auto', eval_every=5) # train asymmetric alpha from data """ # store user-supplied parameters self.id2word = id2word if corpus is None and self.id2word is None: raise ValueError('at least one of corpus/id2word must be specified, to establish input space dimensionality') if self.id2word is None: logger.warning("no word id mapping provided; initializing from corpus, assuming identity") self.id2word = utils.dict_from_corpus(corpus) self.num_terms = len(self.id2word) elif len(self.id2word) > 0: self.num_terms = 1 + max(self.id2word.keys()) else: self.num_terms = 0 if self.num_terms == 0: raise ValueError("cannot compute LDA over an empty collection (no terms)") self.distributed = bool(distributed) self.num_topics = int(num_topics) self.chunksize = chunksize self.decay = decay self.num_updates = 0 self.passes = passes self.update_every = update_every self.eval_every = eval_every self.optimize_alpha = alpha == 'auto' if alpha == 'symmetric' or alpha is None: logger.info("using symmetric alpha at %s" % (1.0 / num_topics)) self.alpha = numpy.asarray([1.0 / num_topics for i in xrange(num_topics)]) elif alpha == 'asymmetric': self.alpha = numpy.asarray([1.0 / (i + numpy.sqrt(num_topics)) for i in xrange(num_topics)]) self.alpha /= self.alpha.sum() logger.info("using asymmetric alpha %s" % list(self.alpha)) elif alpha == 'auto': self.alpha = numpy.asarray([1.0 / num_topics for i in xrange(num_topics)]) logger.info("using autotuned alpha, starting with %s" % list(self.alpha)) else: # must be either float or an array of floats, of size num_topics self.alpha = alpha if isinstance(alpha, numpy.ndarray) else numpy.asarray([alpha] * num_topics) if len(self.alpha) != num_topics: raise RuntimeError("invalid alpha shape (must match num_topics)") if eta is None: self.eta = 1.0 / num_topics else: self.eta = eta # VB constants self.iterations = iterations self.gamma_threshold = gamma_threshold # set up distributed environment if necessary if not distributed: logger.info("using serial LDA version on this node") self.dispatcher = None self.numworkers = 1 else: if self.optimize_alpha: raise NotImplementedError("auto-optimizing alpha not implemented in distributed LDA") # set up distributed version try: import Pyro4 dispatcher = Pyro4.Proxy('PYRONAME:gensim.lda_dispatcher') dispatcher._pyroOneway.add("exit") logger.debug("looking for dispatcher at %s" % str(dispatcher._pyroUri)) dispatcher.initialize(id2word=self.id2word, num_topics=num_topics, chunksize=chunksize, alpha=alpha, eta=eta, distributed=False) self.dispatcher = dispatcher self.numworkers = len(dispatcher.getworkers()) logger.info("using distributed version with %i workers" % self.numworkers) except Exception as err: logger.error("failed to initialize distributed LDA (%s)" % err) raise RuntimeError("failed to initialize distributed LDA (%s)" % err) # Initialize the variational distribution q(beta|lambda) self.state = LdaState(self.eta, (self.num_topics, self.num_terms)) self.state.sstats = numpy.random.gamma(100., 1. / 100., (self.num_topics, self.num_terms)) self.sync_state() # if a training corpus was provided, start estimating the model right away if corpus is not None: self.update(corpus) def __str__(self): return "LdaModel(num_terms=%s, num_topics=%s, decay=%s, chunksize=%s, alpha=%s)" % \ (self.num_terms, self.num_topics, self.decay, self.chunksize, self.alpha) def sync_state(self): self.expElogbeta = numpy.exp(self.state.get_Elogbeta()) def clear(self): """Clear model state (free up some memory). Used in the distributed algo.""" self.state = None self.Elogbeta = None def inference(self, chunk, collect_sstats=False): """ Given a chunk of sparse document vectors, estimate gamma (parameters controlling the topic weights) for each document in the chunk. This function does not modify the model (=is read-only aka const). The whole input chunk of document is assumed to fit in RAM; chunking of a large corpus must be done earlier in the pipeline. If `collect_sstats` is True, also collect sufficient statistics needed to update the model's topic-word distributions, and return a 2-tuple `(gamma, sstats)`. Otherwise, return `(gamma, None)`. `gamma` is of shape `len(chunk) x self.num_topics`. """ try: _ = len(chunk) except: chunk = list(chunk) # convert iterators/generators to plain list, so we have len() etc. if len(chunk) > 1: logger.debug("performing inference on a chunk of %i documents" % len(chunk)) # Initialize the variational distribution q(theta|gamma) for the chunk gamma = numpy.random.gamma(100., 1. / 100., (len(chunk), self.num_topics)) Elogtheta = dirichlet_expectation(gamma) expElogtheta = numpy.exp(Elogtheta) if collect_sstats: sstats = numpy.zeros_like(self.expElogbeta) else: sstats = None converged = 0 # Now, for each document d update that document's gamma and phi # Inference code copied from Hoffman's `onlineldavb.py` (esp. the # Lee&Seung trick which speeds things up by an order of magnitude, compared # to Blei's original LDA-C code, cool!). for d, doc in enumerate(chunk): ids = [id for id, _ in doc] cts = numpy.array([cnt for _, cnt in doc]) gammad = gamma[d, :] Elogthetad = Elogtheta[d, :] expElogthetad = expElogtheta[d, :] expElogbetad = self.expElogbeta[:, ids] # The optimal phi_{dwk} is proportional to expElogthetad_k * expElogbetad_w. # phinorm is the normalizer. phinorm = numpy.dot(expElogthetad, expElogbetad) + 1e-100 # TODO treat zeros explicitly, instead of adding eps? # Iterate between gamma and phi until convergence for _ in xrange(self.iterations): lastgamma = gammad # We represent phi implicitly to save memory and time. # Substituting the value of the optimal phi back into # the update for gamma gives this update. Cf. Lee&Seung 2001. gammad = self.alpha + expElogthetad * numpy.dot(cts / phinorm, expElogbetad.T) Elogthetad = dirichlet_expectation(gammad) expElogthetad = numpy.exp(Elogthetad) phinorm = numpy.dot(expElogthetad, expElogbetad) + 1e-100 # If gamma hasn't changed much, we're done. meanchange = numpy.mean(abs(gammad - lastgamma)) if (meanchange < self.gamma_threshold): converged += 1 break gamma[d, :] = gammad if collect_sstats: # Contribution of document d to the expected sufficient # statistics for the M step. sstats[:, ids] += numpy.outer(expElogthetad.T, cts / phinorm) if len(chunk) > 1: logger.debug("%i/%i documents converged within %i iterations" % (converged, len(chunk), self.iterations)) if collect_sstats: # This step finishes computing the sufficient statistics for the # M step, so that # sstats[k, w] = \sum_d n_{dw} * phi_{dwk} # = \sum_d n_{dw} * exp{Elogtheta_{dk} + Elogbeta_{kw}} / phinorm_{dw}. sstats *= self.expElogbeta return gamma, sstats def do_estep(self, chunk, state=None): """ Perform inference on a chunk of documents, and accumulate the collected sufficient statistics in `state` (or `self.state` if None). """ if state is None: state = self.state gamma, sstats = self.inference(chunk, collect_sstats=True) state.sstats += sstats state.numdocs += gamma.shape[0] # avoid calling len(chunk), might be a generator return gamma def update_alpha(self, gammat, rho): """ Update parameters for the Dirichlet prior on the per-document topic weights `alpha` given the last `gammat`. Uses Newton's method: http://www.stanford.edu/~jhuang11/research/dirichlet/dirichlet.pdf """ N = float(len(gammat)) logphat = sum(dirichlet_expectation(gamma) for gamma in gammat) / N dalpha = numpy.copy(self.alpha) gradf = N * (psi(numpy.sum(self.alpha)) - psi(self.alpha) + logphat) c = N * polygamma(1, numpy.sum(self.alpha)) q = -N * polygamma(1, self.alpha) b = numpy.sum(gradf / q) / ( 1 / c + numpy.sum(1 / q)) dalpha = -(gradf - b) / q if all(rho() * dalpha + self.alpha > 0): self.alpha += rho() * dalpha else: logger.warning("updated alpha not positive") logger.info("optimized alpha %s" % list(self.alpha)) return self.alpha def log_perplexity(self, chunk, total_docs=None): if total_docs is None: total_docs = len(chunk) corpus_words = sum(cnt for document in chunk for _, cnt in document) subsample_ratio = 1.0 * total_docs / len(chunk) perwordbound = self.bound(chunk, subsample_ratio=subsample_ratio) / (subsample_ratio * corpus_words) logger.info("%.3f per-word bound, %.1f perplexity estimate based on a held-out corpus of %i documents with %i words" % (perwordbound, numpy.exp2(-perwordbound), len(chunk), corpus_words)) return perwordbound def update(self, corpus, chunksize=None, decay=None, passes=None, update_every=None, eval_every=None, iterations=None, gamma_threshold=None): """ Train the model with new documents, by EM-iterating over `corpus` until the topics converge (or until the maximum number of allowed iterations is reached). `corpus` must be an iterable (repeatable stream of documents), In distributed mode, the E step is distributed over a cluster of machines. This update also supports updating an already trained model (`self`) with new documents from `corpus`; the two models are then merged in proportion to the number of old vs. new documents. This feature is still experimental for non-stationary input streams. For stationary input (no topic drift in new documents), on the other hand, this equals the online update of Hoffman et al. and is guaranteed to converge for any `decay` in (0.5, 1.0>. """ # use parameters given in constructor, unless user explicitly overrode them if chunksize is None: chunksize = self.chunksize if decay is None: decay = self.decay if passes is None: passes = self.passes if update_every is None: update_every = self.update_every if eval_every is None: eval_every = self.eval_every if iterations is None: iterations = self.iterations if gamma_threshold is None: gamma_threshold = self.gamma_threshold # rho is the "speed" of updating; TODO try other fncs rho = lambda: pow(1.0 + self.num_updates, -decay) try: lencorpus = len(corpus) except: logger.warning("input corpus stream has no len(); counting documents") lencorpus = sum(1 for _ in corpus) if lencorpus == 0: logger.warning("LdaModel.update() called with an empty corpus") return self.state.numdocs += lencorpus if update_every: updatetype = "online" updateafter = min(lencorpus, update_every * self.numworkers * chunksize) else: updatetype = "batch" updateafter = lencorpus evalafter = min(lencorpus, (eval_every or 0) * self.numworkers * chunksize) updates_per_pass = max(1, lencorpus / updateafter) logger.info("running %s LDA training, %s topics, %i passes over " "the supplied corpus of %i documents, updating model once " "every %i documents, evaluating perplexity every %i documents, " "iterating %ix with a convergence threshold of %f" % (updatetype, self.num_topics, passes, lencorpus, updateafter, evalafter, iterations, gamma_threshold)) if updates_per_pass * passes < 10: logger.warning("too few updates, training might not converge; consider " "increasing the number of passes or iterations to improve accuracy") for pass_ in xrange(passes): if self.dispatcher: logger.info('initializing %s workers' % self.numworkers) self.dispatcher.reset(self.state) else: other = LdaState(self.eta, self.state.sstats.shape) dirty = False reallen = 0 for chunk_no, chunk in enumerate(utils.grouper(corpus, chunksize, as_numpy=True)): reallen += len(chunk) # keep track of how many documents we've processed so far if eval_every and ((reallen == lencorpus) or ((chunk_no + 1) % (eval_every * self.numworkers) == 0)): self.log_perplexity(chunk, total_docs=lencorpus) if self.dispatcher: # add the chunk to dispatcher's job queue, so workers can munch on it logger.info('PROGRESS: pass %i, dispatching documents up to #%i/%i' % (pass_, chunk_no * chunksize + len(chunk), lencorpus)) # this will eventually block until some jobs finish, because the queue has a small finite length self.dispatcher.putjob(chunk) else: logger.info('PROGRESS: pass %i, at document #%i/%i' % (pass_, chunk_no * chunksize + len(chunk), lencorpus)) gammat = self.do_estep(chunk, other) if self.optimize_alpha: self.update_alpha(gammat, rho) dirty = True del chunk # perform an M step. determine when based on update_every, don't do this after every chunk if update_every and (chunk_no + 1) % (update_every * self.numworkers) == 0: if self.dispatcher: # distributed mode: wait for all workers to finish logger.info("reached the end of input; now waiting for all remaining jobs to finish") other = self.dispatcher.getstate() self.do_mstep(rho(), other) del other # free up some mem if self.dispatcher: logger.info('initializing workers') self.dispatcher.reset(self.state) else: other = LdaState(self.eta, self.state.sstats.shape) dirty = False #endfor single corpus iteration if reallen != lencorpus: raise RuntimeError("input corpus size changed during training (don't use generators as input)") if dirty: # finish any remaining updates if self.dispatcher: # distributed mode: wait for all workers to finish logger.info("reached the end of input; now waiting for all remaining jobs to finish") other = self.dispatcher.getstate() self.do_mstep(rho(), other) del other dirty = False #endfor entire corpus update def do_mstep(self, rho, other): """ M step: use linear interpolation between the existing topics and collected sufficient statistics in `other` to update the topics. """ logger.debug("updating topics") # update self with the new blend; also keep track of how much did # the topics change through this update, to assess convergence diff = numpy.log(self.expElogbeta) self.state.blend(rho, other) del other diff -= self.state.get_Elogbeta() self.sync_state() self.print_topics(15) # print out some debug info at the end of each EM iteration logger.info("topic diff=%f, rho=%f" % (numpy.mean(numpy.abs(diff)), rho)) self.num_updates += 1 def bound(self, corpus, gamma=None, subsample_ratio=1.0): """ Estimate the variational bound of documents from `corpus`: E_q[log p(corpus)] - E_q[log q(corpus)] `gamma` are the variational parameters on topic weights for each `corpus` document (=2d matrix=what comes out of `inference()`). If not supplied, will be inferred from the model. """ score = 0.0 _lambda = self.state.get_lambda() Elogbeta = dirichlet_expectation(_lambda) for d, doc in enumerate(corpus): # stream the input doc-by-doc, in case it's too large to fit in RAM if d % self.chunksize == 0: logger.debug("bound: at document #%i" % d) if gamma is None: gammad, _ = self.inference([doc]) else: gammad = gamma[d] Elogthetad = dirichlet_expectation(gammad) # E[log p(doc | theta, beta)] score += numpy.sum(cnt * logsumexp(Elogthetad + Elogbeta[:, id]) for id, cnt in doc) # E[log p(theta | alpha) - log q(theta | gamma)]; assumes alpha is a vector score += numpy.sum((self.alpha - gammad) * Elogthetad) score += numpy.sum(gammaln(gammad) - gammaln(self.alpha)) score += gammaln(numpy.sum(self.alpha)) - gammaln(numpy.sum(gammad)) # compensate likelihood for when `corpus` above is only a sample of the whole corpus score *= subsample_ratio # E[log p(beta | eta) - log q (beta | lambda)]; assumes eta is a scalar score += numpy.sum((self.eta - _lambda) * Elogbeta) score += numpy.sum(gammaln(_lambda) - gammaln(self.eta)) score += numpy.sum(gammaln(self.eta * self.num_terms) - gammaln(numpy.sum(_lambda, 1))) return score def print_topics(self, num_topics=10, num_words=10): return self.show_topics(num_topics, num_words, log=True) def show_topics(self, num_topics=10, num_words=10, log=False, formatted=True): """ For `num_topics` number of topics, return `num_words` most significant words (10 words per topic, by default). The topics are returned as a list -- a list of strings if `formatted` is True, or a list of (probability, word) 2-tuples if False. If `log` is True, also output this result to log. Unlike LSA, there is no natural ordering between the topics in LDA. The returned `num_topics <= self.num_topics` subset of all topics is therefore arbitrary and may change between two LDA training runs. """ if num_topics < 0 or num_topics >= self.num_topics: num_topics = self.num_topics chosen_topics = range(num_topics) else: num_topics = min(num_topics, self.num_topics) sort_alpha = self.alpha + 0.0001 * numpy.random.rand(len(self.alpha)) # add a little random jitter, to randomize results around the same alpha sorted_topics = list(numpy.argsort(sort_alpha)) chosen_topics = sorted_topics[:num_topics//2] + sorted_topics[-num_topics//2:] shown = [] for i in chosen_topics: if formatted: topic = self.print_topic(i, topn=num_words) else: topic = self.show_topic(i, topn=num_words) shown.append(topic) if log: logger.info("topic #%i (%.3f): %s" % (i, self.alpha[i], topic)) return shown def show_topic(self, topicid, topn=10): topic = self.state.get_lambda()[topicid] topic = topic / topic.sum() # normalize to probability dist bestn = numpy.argsort(topic)[::-1][:topn] beststr = [(topic[id], self.id2word[id]) for id in bestn] return beststr def print_topic(self, topicid, topn=10): return ' + '.join(['%.3f*%s' % v for v in self.show_topic(topicid, topn)]) def __getitem__(self, bow, eps=0.01): """ Return topic distribution for the given document `bow`, as a list of (topic_id, topic_probability) 2-tuples. Ignore topics with very low probability (below `eps`). """ # if the input vector is in fact a corpus, return a transformed corpus as result is_corpus, corpus = utils.is_corpus(bow) if is_corpus: return self._apply(corpus) gamma, _ = self.inference([bow]) topic_dist = gamma[0] / sum(gamma[0]) # normalize to proper distribution return [(topicid, topicvalue) for topicid, topicvalue in enumerate(topic_dist) if topicvalue >= eps] # ignore document's topics that have prob < eps def save(self, fname, *args, **kwargs): """ Save the model to file. Large internal arrays may be stored into separate files, with `fname` as prefix. """ if self.state is not None: self.state.save(fname + '.state', *args, **kwargs) super(LdaModel, self).save(fname, *args, ignore=['state', 'dispatcher'], **kwargs) @classmethod def load(cls, fname, *args, **kwargs): """ Load a previously saved object from file (also see `save`). Large arrays are mmap'ed back as read-only (shared memory). """ kwargs['mmap'] = kwargs.get('mmap', 'r') result = super(LdaModel, cls).load(fname, *args, **kwargs) try: result.state = super(LdaModel, cls).load(fname + '.state', *args, **kwargs) except Exception as e: logging.warning("failed to load state from %s: %s" % (fname + '.state', e)) return result #endclass LdaModel
from django.db import models from django.utils.translation import ugettext_lazy as _ from django.forms.widgets import Media import operator from cms.utils.placeholder import PlaceholderNoAction class PlaceholderManager(models.Manager): def _orphans(self): """ Private method because it should never actually return anything. """ from cms.models import CMSPlugin m2m = self.model._meta.get_all_related_many_to_many_objects() fks = self.model._meta.get_all_related_objects() kwargs = {} for rel in m2m: kwargs[rel.var_name] = None for rel in fks: if rel.model == CMSPlugin: continue kwargs[rel.var_name] = None return self.filter(**kwargs) class Placeholder(models.Model): slot = models.CharField(_("slot"), max_length=50, db_index=True, editable=False) default_width = models.PositiveSmallIntegerField(_("width"), null=True, editable=False) objects = PlaceholderManager() def __unicode__(self): return self.slot class Meta: app_label = 'cms' def has_change_permission(self, request): opts = self._meta if request.user.is_superuser: return True return request.user.has_perm(opts.app_label + '.' + opts.get_change_permission()) def render(self, context, width): from cms.plugin_rendering import render_placeholder if not 'request' in context: return '<!-- missing request -->' context.update({'width': width or self.default_width}) return render_placeholder(self, context) def get_media(self, request, context): from cms.plugins.utils import get_plugin_media media_classes = [get_plugin_media(request, context, plugin) for plugin in self.cmsplugin_set.all()] if media_classes: return reduce(operator.add, media_classes) return Media() def _get_attached_field(self): from cms.models import CMSPlugin if not hasattr(self, '_attached_field_cache'): self._attached_field_cache = None for rel in self._meta.get_all_related_objects(): if isinstance(rel.model, CMSPlugin): continue field = getattr(self, rel.get_accessor_name()) if field.count(): self._attached_field_cache = rel.field return self._attached_field_cache def _get_attached_field_name(self): field = self._get_attached_field() if field: return field.name return None def _get_attached_model(self): field = self._get_attached_field() if field: return field.model return None def get_plugins_list(self): return list(self.get_plugins()) def get_plugins(self): return self.cmsplugin_set.all().order_by('tree_id', '-rght') @property def actions(self): if not hasattr(self, '_actions_cache'): field = self._get_attached_field() self._actions_cache = getattr(field, 'actions', PlaceholderNoAction()) return self._actions_cache
import sys from services.spawn import MobileTemplate from services.spawn import WeaponTemplate from resources.datatables import WeaponType from resources.datatables import Difficulty from resources.datatables import Options from java.util import Vector def addTemplate(core): mobileTemplate = MobileTemplate() mobileTemplate.setCreatureName('gondula_veteran') mobileTemplate.setLevel(79) mobileTemplate.setDifficulty(Difficulty.NORMAL) mobileTemplate.setMinSpawnDistance(3) mobileTemplate.setMaxSpawnDistance(5) mobileTemplate.setDeathblow(False) mobileTemplate.setScale(1) mobileTemplate.setSocialGroup('gondula tribe') mobileTemplate.setAssistRange(1) mobileTemplate.setOptionsBitmask(128) mobileTemplate.setStalker(True) templates = Vector() templates.add('object/mobile/shared_dressed_ewok_f_01.iff') templates.add('object/mobile/shared_dressed_ewok_f_02.iff') templates.add('object/mobile/shared_dressed_ewok_f_03.iff') templates.add('object/mobile/shared_dressed_ewok_f_04.iff') templates.add('object/mobile/shared_dressed_ewok_f_05.iff') templates.add('object/mobile/shared_dressed_ewok_f_06.iff') templates.add('object/mobile/shared_dressed_ewok_f_07.iff') templates.add('object/mobile/shared_dressed_ewok_f_08.iff') templates.add('object/mobile/shared_dressed_ewok_f_09.iff') templates.add('object/mobile/shared_dressed_ewok_f_10.iff') templates.add('object/mobile/shared_dressed_ewok_f_11.iff') templates.add('object/mobile/shared_dressed_ewok_f_12.iff') templates.add('object/mobile/shared_dressed_ewok_m_01.iff') templates.add('object/mobile/shared_dressed_ewok_m_02.iff') templates.add('object/mobile/shared_dressed_ewok_m_03.iff') templates.add('object/mobile/shared_dressed_ewok_m_04.iff') templates.add('object/mobile/shared_dressed_ewok_m_05.iff') templates.add('object/mobile/shared_dressed_ewok_m_06.iff') templates.add('object/mobile/shared_dressed_ewok_m_07.iff') templates.add('object/mobile/shared_dressed_ewok_m_08.iff') templates.add('object/mobile/shared_dressed_ewok_m_09.iff') templates.add('object/mobile/shared_dressed_ewok_m_10.iff') templates.add('object/mobile/shared_dressed_ewok_m_11.iff') templates.add('object/mobile/shared_dressed_ewok_m_12.iff') mobileTemplate.setTemplates(templates) weaponTemplates = Vector() weapontemplate = WeaponTemplate('object/weapon/melee/unarmed/shared_unarmed_default.iff', WeaponType.UNARMED, 1.0, 6, 'kinetic') weaponTemplates.add(weapontemplate) mobileTemplate.setWeaponTemplateVector(weaponTemplates) attacks = Vector() mobileTemplate.setDefaultAttack('meleeHit') mobileTemplate.setAttacks(attacks) lootPoolNames_1 = ['Junk'] lootPoolChances_1 = [100] lootGroupChance_1 = 65 mobileTemplate.addToLootGroups(lootPoolNames_1,lootPoolChances_1,lootGroupChance_1) lootPoolNames_2 = ['random_loot_primitives'] lootPoolChances_2 = [100] lootGroupChance_2 = 35 mobileTemplate.addToLootGroups(lootPoolNames_2,lootPoolChances_2,lootGroupChance_2) core.spawnService.addMobileTemplate('gondula_veteran', mobileTemplate) return
""" Contains functions to fetch info from different simple online APIs.""" import util.web def urbandictionary_search(search): """ Searches urbandictionary's API for a given search term. :param search: The search term str to search for. :return: defenition str or None on no match or error. """ if str(search).strip(): urban_api_url = 'http://api.urbandictionary.com/v0/define?term=%s' % search response = util.web.http_get(url=urban_api_url, json=True) if response['json'] is not None: try: definition = response['json']['list'][0]['definition'] return definition.encode('ascii', 'ignore') except (KeyError, IndexError): return None else: return None def weather_search(city): """ Searches worldweatheronline's API for weather data for a given city. You must have a working API key to be able to use this function. :param city: The city str to search for. :return: weather data str or None on no match or error. """ if str(city).strip(): api_key = '' if not api_key: return 'Missing api key.' else: weather_api_url = 'http://api.worldweatheronline.com/premium/v1/weather.ashx?key=%s&q=%s&format=json' % \ (api_key, city) response = util.web.http_get(url=weather_api_url, json=True) if response['json'] is not None: try: pressure = response['json']['data']['current_condition'][0]['pressure'] temp_c = response['json']['data']['current_condition'][0]['temp_C'] temp_f = response['json']['data']['current_condition'][0]['temp_F'] query = response['json']['data']['request'][0]['query'].encode('ascii', 'ignore') result = '%s. Temperature: %sC (%sF) Pressure: %s millibars' % (query, temp_c, temp_f, pressure) return result except (IndexError, KeyError): return None else: return None def whois(ip): """ Searches ip-api for information about a given IP. :param ip: The ip str to search for. :return: information str or None on error. """ if str(ip).strip(): url = 'http://ip-api.com/json/%s' % ip response = util.web.http_get(url=url, json=True) if response['json'] is not None: try: city = response['json']['city'] country = response['json']['country'] isp = response['json']['isp'] org = response['json']['org'] region = response['json']['regionName'] zipcode = response['json']['zip'] info = country + ', ' + city + ', ' + region + ', Zipcode: ' + zipcode + ' Isp: ' + isp + '/' + org return info except KeyError: return None else: return None def chuck_norris(): """ Finds a random Chuck Norris joke/quote. :return: joke str or None on failure. """ url = 'http://api.icndb.com/jokes/random/?escape=javascript' response = util.web.http_get(url=url, json=True) if response['json'] is not None: if response['json']['type'] == 'success': joke = response['json']['value']['joke'] return joke return None
"""Analysis Category - the category of the analysis service """ from AccessControl import ClassSecurityInfo from bika.lims import bikaMessageFactory as _ from bika.lims.utils import t from bika.lims.config import PROJECTNAME from bika.lims.content.bikaschema import BikaSchema from bika.lims.interfaces import IAnalysisCategory from plone.indexer import indexer from Products.Archetypes.public import * from Products.Archetypes.references import HoldingReference from Products.CMFCore.utils import getToolByName from Products.CMFCore.WorkflowCore import WorkflowException from zope.interface import implements import sys import transaction @indexer(IAnalysisCategory) def sortable_title_with_sort_key(instance): sort_key = instance.getSortKey() if sort_key: return "{:010.3f}{}".format(sort_key, instance.Title()) return instance.Title() schema = BikaSchema.copy() + Schema(( TextField('Comments', default_output_type = 'text/plain', allowable_content_types = ('text/plain',), widget=TextAreaWidget ( description = _("To be displayed below each Analysis " "Category section on results reports."), label = _("Comments")), ), ReferenceField('Department', required=1, vocabulary='getDepartments', vocabulary_display_path_bound=sys.maxsize, allowed_types=('Department',), relationship='AnalysisCategoryDepartment', referenceClass=HoldingReference, widget=ReferenceWidget( checkbox_bound=0, label = _("Department"), description = _("The laboratory department"), ), ), ComputedField('DepartmentTitle', expression="context.getDepartment() and context.getDepartment().Title() or ''", widget=ComputedWidget( visible=False, ), ), FloatField('SortKey', validators=('SortKeyValidator',), widget=DecimalWidget( label = _("Sort Key"), description = _("Float value from 0.0 - 1000.0 indicating the sort order. Duplicate values are ordered alphabetically."), ), ), )) schema['description'].widget.visible = True schema['description'].schemata = 'default' class AnalysisCategory(BaseContent): implements(IAnalysisCategory) security = ClassSecurityInfo() displayContentsTab = False schema = schema _at_rename_after_creation = True def _renameAfterCreation(self, check_auto_id=False): from bika.lims.idserver import renameAfterCreation renameAfterCreation(self) def getDepartments(self): bsc = getToolByName(self, 'bika_setup_catalog') deps = [] for d in bsc(portal_type='Department', inactive_state='active'): deps.append((d.UID, d.Title)) return DisplayList(deps) def workflow_script_deactivat(self): # A instance cannot be deactivated if it contains services pu = getToolByName(self, 'plone_utils') bsc = getToolByName(self, 'bika_setup_catalog') ars = bsc(portal_type='AnalysisService', getCategoryUID=self.UID()) if ars: message = _("Category cannot be deactivated because " "it contains Analysis Services") pu.addPortalMessage(message, 'error') transaction.get().abort() raise WorkflowException registerType(AnalysisCategory, PROJECTNAME)
from contextlib2 import contextmanager, closing import urllib2 import tempfile import os import logging import shutil import httplib import ftplib import socket from time import sleep # Custom error wrapper for (known) exceptions thrown by the download module. class DownloadFailedError(Exception): pass @contextmanager def get(url, options={}): """ Download a file to a temporary directory, returning it. The options provided will control the behaviour of the download algorithm. * 'tries' - The maximum number of tries to download the file before giving up and raising an exception. * 'timeout' - Timeout in seconds before considering the connection to have failed. * 'verifier' - A function which is called with a filelike object. It should return True if the file is okay and appears to be fully downloaded. """ logger = logging.getLogger('download') with closing(tempfile.NamedTemporaryFile()) as tmp: # current file position = number of bytes read filepos = 0 # file size when downloaded, if known filesize = None # number of attempts so far tries = 0 # last try which resulted in some forward progress (i.e: filepos got # bigger) last_successful_try = 0 # maximum number of attempts to make max_tries = options.get('tries', 1) # timeout for blocking operations (e.g: connect) in seconds timeout = options.get('timeout', 60) # verifier function verifier = options.get('verifier') # backoff function - to delay between retries backoff = options.get('backoff') # whether the server supports Range headers (if it doesn't we'll have # to restart from the beginning every time). accept_range = False # we need to download _something_ if the file position is less than the # known size, or the size is unknown. while filesize is None or filepos < filesize: # explode if we've exceeded the number of allowed attempts if tries >= max_tries: raise DownloadFailedError("Max tries exceeded (%d) while " "downloading file %r" % (max_tries, url)) else: if backoff and tries > last_successful_try: backoff(tries - last_successful_try) tries += 1 req = urllib2.Request(url) # if the server supports accept range, and we have a partial # download then attemp to resume it. if accept_range and filepos > 0: logger.info("Continuing (try %d/%d) at %d bytes: %r" % (tries, max_tries, filepos, url)) assert filesize is not None req.headers['Range'] = 'bytes=%s-%s' % (filepos, filesize - 1) else: # otherwise, truncate the file in readiness to download from # scratch. logger.info("Downloading (try %d/%d) %r" % (tries, max_tries, url)) filepos = 0 tmp.seek(0, os.SEEK_SET) tmp.truncate(0) try: f = urllib2.urlopen(req, timeout=timeout) # try to get the filesize, if the server reports it. if filesize is None: content_length = f.info().get('Content-Length') if content_length is not None: try: filesize = int(content_length) except ValueError: pass # detect whether the server accepts Range requests. accept_range = f.info().get('Accept-Ranges') == 'bytes' # copy data from the server shutil.copyfileobj(f, tmp) except (IOError, httplib.HTTPException) as e: logger.debug("Got HTTP error: %s" % str(e)) continue except ftplib.all_errors as e: logger.debug("Got FTP error: %s" % str(e)) continue except socket.timeout as e: logger.debug("Got socket timeout: %s" % str(e)) continue # update number of bytes read (this would be nicer if copyfileobj # returned it. old_filepos = filepos filepos = tmp.tell() if filepos > old_filepos: last_successful_try = tries # if we don't know how large the file is supposed to be, then # verify it every time. if filesize is None and verifier is not None: # reset tmp file to beginning for verification tmp.seek(0, os.SEEK_SET) if verifier(tmp): break # no need to reset here - since filesize is none, then we'll be # downloading from scratch, which will truncate the file. # verify the file, if it hasn't been verified before if filesize is not None and verifier is not None: # reset tmp file to beginning for verification tmp.seek(0, os.SEEK_SET) if not verifier(tmp): raise DownloadFailedError("File downloaded from %r failed " "verification" % url) tmp.seek(0, os.SEEK_SET) yield tmp def _exponential_backoff(try_num): """ Backoff exponentially, with each request backing off 2x from the previous attempt. The time limits at 10 minutes maximum back-off. This is generally a good default if nothing else is known about the upstream rate-limiter. """ secs = min((1 << try_num) - 1, 600) sleep(secs) def options(in_opts={}): """ Extract a set of options from the input and augment them with some defaults. """ out_opts = dict() backoff = in_opts.get('backoff', 'exponential') if backoff == 'exponential': out_opts['backoff'] = _exponential_backoff else: raise NotImplementedError("Configuration backoff=%r not understood." % backoff) timeout = in_opts.get('timeout', 60) out_opts['timeout'] = int(timeout) tries = in_opts.get('tries', 10) out_opts['tries'] = int(tries) return out_opts
from __future__ import absolute_import from django.db import transaction from rest_framework import status from sentry import features from sentry.api.base import DocSection from sentry.api.bases.project import ProjectEndpoint from sentry.api.serializers import serialize from sentry.api.validators import ServiceHookValidator from sentry.models import AuditLogEntryEvent, ObjectStatus, ServiceHook from sentry.utils.apidocs import scenario, attach_scenarios @scenario('ListServiceHooks') def list_hooks_scenario(runner): runner.request( method='GET', path='/projects/%s/%s/hooks/' % (runner.org.slug, runner.default_project.slug) ) @scenario('CreateServiceHook') def create_hook_scenario(runner): runner.request( method='POST', path='/projects/%s/%s/hooks/' % (runner.org.slug, runner.default_project.slug), data={'url': 'https://example.com/sentry-hook', 'events': ['event.alert', 'event.created']} ) class ProjectServiceHooksEndpoint(ProjectEndpoint): doc_section = DocSection.PROJECTS def has_feature(self, request, project): return features.has( 'projects:servicehooks', project=project, actor=request.user, ) @attach_scenarios([list_hooks_scenario]) def get(self, request, project): """ List a Project's Service Hooks `````````````````````````````` Return a list of service hooks bound to a project. :pparam string organization_slug: the slug of the organization the client keys belong to. :pparam string project_slug: the slug of the project the client keys belong to. """ if not self.has_feature(request, project): return self.respond({ 'error_type': 'unavailable_feature', 'detail': ['You do not have that feature enabled'] }, status=403) queryset = ServiceHook.objects.filter( project_id=project.id, ) status = request.GET.get('status') if status == 'active': queryset = queryset.filter( status=ObjectStatus.ACTIVE, ) elif status == 'disabled': queryset = queryset.filter( status=ObjectStatus.DISABLED, ) elif status: queryset = queryset.none() return self.paginate( request=request, queryset=queryset, order_by='-id', on_results=lambda x: serialize(x, request.user), ) @attach_scenarios([create_hook_scenario]) def post(self, request, project): """ Register a new Service Hook ``````````````````````````` Register a new service hook on a project. Events include: - event.alert: An alert is generated for an event (via rules). - event.created: A new event has been processed. :pparam string organization_slug: the slug of the organization the client keys belong to. :pparam string project_slug: the slug of the project the client keys belong to. :param string url: the url for the webhook :param array[string] events: the events to subscribe to """ if not request.user.is_authenticated(): return self.respond(status=401) if not self.has_feature(request, project): return self.respond({ 'error_type': 'unavailable_feature', 'detail': ['You do not have that feature enabled'] }, status=403) validator = ServiceHookValidator(data=request.DATA) if not validator.is_valid(): return self.respond(validator.errors, status=status.HTTP_400_BAD_REQUEST) result = validator.object with transaction.atomic(): hook = ServiceHook.objects.create( project_id=project.id, url=result['url'], actor_id=request.user.id, events=result.get('events'), application=getattr(request.auth, 'application', None) if request.auth else None, ) self.create_audit_entry( request=request, organization=project.organization, target_object=hook.id, event=AuditLogEntryEvent.SERVICEHOOK_ADD, data=hook.get_audit_log_data(), ) return self.respond(serialize(hook, request.user), status=201)
### A custom item example import sys import gobject import gtk import goocanvas class CustomItem(gobject.GObject, goocanvas.Item): __gproperties__ = { 'title': (str, None, None, '', gobject.PARAM_READWRITE), 'description': (str, None, None, '', gobject.PARAM_READWRITE), 'can-focus': (bool, None, None, False, gobject.PARAM_READWRITE), 'visibility-threshold': (float, None, None, 0, 10e6, 0, gobject.PARAM_READWRITE), 'visibility': (goocanvas.ItemVisibility, None, None, goocanvas.ITEM_VISIBLE, gobject.PARAM_READWRITE), 'pointer-events': (goocanvas.PointerEvents, None, None, goocanvas.EVENTS_NONE, gobject.PARAM_READWRITE), 'transform': (goocanvas.TYPE_CAIRO_MATRIX, None, None, gobject.PARAM_READWRITE), 'parent': (gobject.GObject, None, None, gobject.PARAM_READWRITE), } def __init__(self, **kwargs): self.bounds = goocanvas.Bounds() self.view = None self.parent = None ## default values for properties #self.title = None #self.description = None #self.can_focus = False #self.visibility = goocanvas.ITEM_VISIBLE #self.visibility_threshold = 0.0 #self.pointer_events = goocanvas.EVENTS_NONE #self.transform = None ## chain to parent constructor gobject.GObject.__init__(self, **kwargs) def do_set_parent(self, parent): assert self.parent is None self.parent = parent def do_set_property(self, pspec, value): if pspec.name == 'title': self.title = value elif pspec.name == 'description': self.description = value elif pspec.name == 'can-focus': self.can_focus = value elif pspec.name == 'visibility': self.visibility = value elif pspec.name == 'visibility-threshold': self.visibility_threshold = value elif pspec.name == 'pointer-events': self.pointer_events = value elif pspec.name == 'transform': self.transform = value elif pspec.name == 'parent': self.parent = value else: raise AttributeError, 'unknown property %s' % pspec.name def do_get_property(self, pspec): if pspec.name == 'title': return self.title elif pspec.name == 'description': return self.description elif pspec.name == 'can-focus': return self.can_focus elif pspec.name == 'visibility': return self.visibility elif pspec.name == 'visibility-threshold': return self.visibility_threshold elif pspec.name == 'pointer-events': return self.pointer_events elif pspec.name == 'transform': return self.transform elif pspec.name == 'parent': return self.parent else: raise AttributeError, 'unknown property %s' % pspec.name ## optional methods def do_get_bounds(self): return self.bounds def do_get_item_at(self, x, y, cr, is_pointer_event, parent_is_visible): return None ## mandatory methods def do_update(self, entire_tree, cr): raise NotImplementedError def do_paint(self, cr, bounds, scale): raise NotImplementedError class CustomRectItem(CustomItem): def __init__(self, x, y, width, height, line_width, **kwargs): CustomItem.__init__(self, **kwargs) self.x = x self.y = y self.width = width self.height = height self.line_width = line_width def do_update(self, entire_tree, cr): half_lw = self.line_width/2 self.bounds.x1 = float(self.x - half_lw) self.bounds.y1 = float(self.y - half_lw) self.bounds.x2 = float(self.x + self.width + half_lw) self.bounds.y2 = float(self.y + self.height + half_lw) return self.bounds def do_paint(self, cr, bounds, scale): cr.rectangle(self.x, self.y, self.width, self.height) cr.set_line_width(self.line_width) cr.set_source_rgb(0, 0, 0) cr.stroke() gobject.type_register(CustomRectItem) def main(argv): window = gtk.Window() window.set_default_size(640, 600) window.show() window.connect("destroy", lambda w: gtk.main_quit()) scrolled_win = gtk.ScrolledWindow() scrolled_win.set_shadow_type(gtk.SHADOW_IN) scrolled_win.show() window.add(scrolled_win) canvas = goocanvas.Canvas() canvas.set_size_request(600, 450) canvas.set_bounds(0, 0, 1000, 1000) root = canvas.get_root_item() item = CustomRectItem(x=100, y=100, width=400, height=400, line_width=20) root.add_child(item) item = goocanvas.Text(text="Hello World", x=300, y=300, anchor=gtk.ANCHOR_CENTER, font="Sans 24") root.add_child(item) item.rotate(45, 300, 300) canvas.show() scrolled_win.add(canvas) gtk.main() if __name__ == "__main__": main(sys.argv)
#!/usr/bin/env python2.7 import sys import json import unicodedata import re import string if(len(sys.argv) < 3): k = 3 elif(sys.argv[1] == '-k'): k = int(sys.argv[2]) else: k = 3 def clean(input): v1 = unicodedata.normalize('NFC', input) v2 = filter(lambda x: x in string.printable, v1) remap = { ord('\t') : u' ', ord('\f') : u' ', ord('\r') : None, ord('\n') : u' ', ord('!'): None, ord('!') : None, ord('"') : None, ord('#') : None, ord('$') : None, ord('%') : None, ord('&') : None, ord('\\') : None, ord('\'') : None, ord('(') : None, ord(')') : None, ord('*') : None, ord('+') : None, ord(',') : None, ord('-') : None, ord('.') : None, ord('/') : None, ord(':') : None, ord(';') : None, ord('<') : None, ord('=') : None, ord('>') : None, ord('?') : None, ord('@') : None, ord('[') : None, ord('\\') : None, ord('\\') : None, ord(']') : None, ord('^') : None, ord('_') : None, ord('`') : None, ord('{') : None, ord('|') : None, ord('}') : None, ord('~') : None } v3 = v2.translate(remap) v4 = re.sub("\s\s+", " ", v3) v5 = v4.upper().strip() return v5 def dateToWeekNumber(unixTime): return str(int(unixTime)/604800) for line in sys.stdin: window = [None] * k index = 0 post = json.loads(line) body = clean(post['body']).split() for word in body: window[index % k] = word if(index >= k - 1): ngram = ' '.join(window[(index + 1) % k:] + window[:(index + 1) % k]) print(dateToWeekNumber(post['created_utc']) + '\t' + ngram) index += 1
import numpy as np import skimage.io from scipy.ndimage import zoom from skimage.transform import resize try: # Python3 will most likely not be able to load protobuf from caffe.proto import caffe_pb2 except: import sys if sys.version_info >= (3, 0): print("Failed to include caffe_pb2, things might go wrong!") else: raise ## proto / datum / ndarray conversion def blobproto_to_array(blob, return_diff=False): """ Convert a blob proto to an array. In default, we will just return the data, unless return_diff is True, in which case we will return the diff. """ # Read the data into an array if return_diff: data = np.array(blob.diff) else: data = np.array(blob.data) # Reshape the array if blob.HasField('num') or blob.HasField('channels') or blob.HasField('height') or blob.HasField('width'): # Use legacy 4D shape return data.reshape(blob.num, blob.channels, blob.height, blob.width) else: return data.reshape(blob.shape.dim) def array_to_blobproto(arr, diff=None): """Converts a N-dimensional array to blob proto. If diff is given, also convert the diff. You need to make sure that arr and diff have the same shape, and this function does not do sanity check. """ blob = caffe_pb2.BlobProto() blob.shape.dim.extend(arr.shape) blob.data.extend(arr.astype(float).flat) if diff is not None: blob.diff.extend(diff.astype(float).flat) return blob def arraylist_to_blobprotovecor_str(arraylist): """Converts a list of arrays to a serialized blobprotovec, which could be then passed to a network for processing. """ vec = caffe_pb2.BlobProtoVector() vec.blobs.extend([array_to_blobproto(arr) for arr in arraylist]) return vec.SerializeToString() def blobprotovector_str_to_arraylist(str): """Converts a serialized blobprotovec to a list of arrays. """ vec = caffe_pb2.BlobProtoVector() vec.ParseFromString(str) return [blobproto_to_array(blob) for blob in vec.blobs] def array_to_datum(arr, label=0): """Converts a 3-dimensional array to datum. If the array has dtype uint8, the output data will be encoded as a string. Otherwise, the output data will be stored in float format. """ if arr.ndim != 3: raise ValueError('Incorrect array shape.') datum = caffe_pb2.Datum() datum.channels, datum.height, datum.width = arr.shape if arr.dtype == np.uint8: datum.data = arr.tostring() else: datum.float_data.extend(arr.flat) datum.label = label return datum def datum_to_array(datum): """Converts a datum to an array. Note that the label is not returned, as one can easily get it by calling datum.label. """ if len(datum.data): return np.fromstring(datum.data, dtype=np.uint8).reshape( datum.channels, datum.height, datum.width) else: return np.array(datum.float_data).astype(float).reshape( datum.channels, datum.height, datum.width) ## Pre-processing class Transformer: """ Transform input for feeding into a Net. Note: this is mostly for illustrative purposes and it is likely better to define your own input preprocessing routine for your needs. Parameters ---------- net : a Net for which the input should be prepared """ def __init__(self, inputs): self.inputs = inputs self.transpose = {} self.channel_swap = {} self.raw_scale = {} self.mean = {} self.input_scale = {} def __check_input(self, in_): if in_ not in self.inputs: raise Exception('{} is not one of the net inputs: {}'.format( in_, self.inputs)) def preprocess(self, in_, data): """ Format input for Caffe: - convert to single - resize to input dimensions (preserving number of channels) - transpose dimensions to K x H x W - reorder channels (for instance color to BGR) - scale raw input (e.g. from [0, 1] to [0, 255] for ImageNet models) - subtract mean - scale feature Parameters ---------- in_ : name of input blob to preprocess for data : (H' x W' x K) ndarray Returns ------- caffe_in : (K x H x W) ndarray for input to a Net """ self.__check_input(in_) caffe_in = data.astype(np.float32, copy=False) transpose = self.transpose.get(in_) channel_swap = self.channel_swap.get(in_) raw_scale = self.raw_scale.get(in_) mean = self.mean.get(in_) input_scale = self.input_scale.get(in_) in_dims = self.inputs[in_][2:] if caffe_in.shape[:2] != in_dims: caffe_in = resize_image(caffe_in, in_dims) if transpose is not None: caffe_in = caffe_in.transpose(transpose) if channel_swap is not None: caffe_in = caffe_in[channel_swap, :, :] if raw_scale is not None: caffe_in *= raw_scale if mean is not None: caffe_in -= mean if input_scale is not None: caffe_in *= input_scale return caffe_in def deprocess(self, in_, data): """ Invert Caffe formatting; see preprocess(). """ self.__check_input(in_) decaf_in = data.copy().squeeze() transpose = self.transpose.get(in_) channel_swap = self.channel_swap.get(in_) raw_scale = self.raw_scale.get(in_) mean = self.mean.get(in_) input_scale = self.input_scale.get(in_) if input_scale is not None: decaf_in /= input_scale if mean is not None: decaf_in += mean if raw_scale is not None: decaf_in /= raw_scale if channel_swap is not None: decaf_in = decaf_in[np.argsort(channel_swap), :, :] if transpose is not None: decaf_in = decaf_in.transpose(np.argsort(transpose)) return decaf_in def set_transpose(self, in_, order): """ Set the input channel order for e.g. RGB to BGR conversion as needed for the reference ImageNet model. Parameters ---------- in_ : which input to assign this channel order order : the order to transpose the dimensions """ self.__check_input(in_) if len(order) != len(self.inputs[in_]) - 1: raise Exception('Transpose order needs to have the same number of ' 'dimensions as the input.') self.transpose[in_] = order def set_channel_swap(self, in_, order): """ Set the input channel order for e.g. RGB to BGR conversion as needed for the reference ImageNet model. N.B. this assumes the channels are the first dimension AFTER transpose. Parameters ---------- in_ : which input to assign this channel order order : the order to take the channels. (2,1,0) maps RGB to BGR for example. """ self.__check_input(in_) if len(order) != self.inputs[in_][1]: raise Exception('Channel swap needs to have the same number of ' 'dimensions as the input channels.') self.channel_swap[in_] = order def set_raw_scale(self, in_, scale): """ Set the scale of raw features s.t. the input blob = input * scale. While Python represents images in [0, 1], certain Caffe models like CaffeNet and AlexNet represent images in [0, 255] so the raw_scale of these models must be 255. Parameters ---------- in_ : which input to assign this scale factor scale : scale coefficient """ self.__check_input(in_) self.raw_scale[in_] = scale def set_mean(self, in_, mean): """ Set the mean to subtract for centering the data. Parameters ---------- in_ : which input to assign this mean. mean : mean ndarray (input dimensional or broadcastable) """ self.__check_input(in_) ms = mean.shape if mean.ndim == 1: # broadcast channels if ms[0] != self.inputs[in_][1]: raise ValueError('Mean channels incompatible with input.') mean = mean[:, np.newaxis, np.newaxis] else: # elementwise mean if len(ms) == 2: ms = (1,) + ms if len(ms) != 3: raise ValueError('Mean shape invalid') if ms != self.inputs[in_][1:]: raise ValueError('Mean shape incompatible with input shape.') self.mean[in_] = mean def set_input_scale(self, in_, scale): """ Set the scale of preprocessed inputs s.t. the blob = blob * scale. N.B. input_scale is done AFTER mean subtraction and other preprocessing while raw_scale is done BEFORE. Parameters ---------- in_ : which input to assign this scale factor scale : scale coefficient """ self.__check_input(in_) self.input_scale[in_] = scale ## Image IO def load_image(filename, color=True): """ Load an image converting from grayscale or alpha as needed. Parameters ---------- filename : string color : boolean flag for color format. True (default) loads as RGB while False loads as intensity (if image is already grayscale). Returns ------- image : an image with type np.float32 in range [0, 1] of size (H x W x 3) in RGB or of size (H x W x 1) in grayscale. """ img = skimage.img_as_float(skimage.io.imread(filename)).astype(np.float32) if img.ndim == 2: img = img[:, :, np.newaxis] if color: img = np.tile(img, (1, 1, 3)) elif img.shape[2] == 4: img = img[:, :, :3] return img def resize_image(im, new_dims, interp_order=1): """ Resize an image array with interpolation. Parameters ---------- im : (H x W x K) ndarray new_dims : (height, width) tuple of new dimensions. interp_order : interpolation order, default is linear. Returns ------- im : resized ndarray with shape (new_dims[0], new_dims[1], K) """ if im.shape[-1] == 1 or im.shape[-1] == 3: im_min, im_max = im.min(), im.max() if im_max > im_min: # skimage is fast but only understands {1,3} channel images # in [0, 1]. im_std = (im - im_min) / (im_max - im_min) resized_std = resize(im_std, new_dims, order=interp_order) resized_im = resized_std * (im_max - im_min) + im_min else: # the image is a constant -- avoid divide by 0 ret = np.empty((new_dims[0], new_dims[1], im.shape[-1]), dtype=np.float32) ret.fill(im_min) return ret else: # ndimage interpolates anything but more slowly. scale = tuple(np.array(new_dims, dtype=float) / np.array(im.shape[:2])) resized_im = zoom(im, scale + (1,), order=interp_order) return resized_im.astype(np.float32) def oversample(images, crop_dims): """ Crop images into the four corners, center, and their mirrored versions. Parameters ---------- image : iterable of (H x W x K) ndarrays crop_dims : (height, width) tuple for the crops. Returns ------- crops : (10*N x H x W x K) ndarray of crops for number of inputs N. """ # Dimensions and center. im_shape = np.array(images[0].shape) crop_dims = np.array(crop_dims) im_center = im_shape[:2] / 2.0 # Make crop coordinates h_indices = (0, im_shape[0] - crop_dims[0]) w_indices = (0, im_shape[1] - crop_dims[1]) crops_ix = np.empty((5, 4), dtype=int) curr = 0 for i in h_indices: for j in w_indices: crops_ix[curr] = (i, j, i + crop_dims[0], j + crop_dims[1]) curr += 1 crops_ix[4] = np.tile(im_center, (1, 2)) + np.concatenate([ -crop_dims / 2.0, crop_dims / 2.0 ]) crops_ix = np.tile(crops_ix, (2, 1)) # Extract crops crops = np.empty((10 * len(images), crop_dims[0], crop_dims[1], im_shape[-1]), dtype=np.float32) ix = 0 for im in images: for crop in crops_ix: crops[ix] = im[crop[0]:crop[2], crop[1]:crop[3], :] ix += 1 crops[ix-5:ix] = crops[ix-5:ix, :, ::-1, :] # flip for mirrors return crops
#!/usr/bin/env python # -*- coding: utf-8 -*- from pafy import Pafy url = "http://www.youtube.com/watch?v=cyMHZVT91Dw" # create a video instance video = Pafy(url) # get certain attributes print("\n\n") print("Title, Rating, Length...") print("------------------------") print(video.title) print(video.rating) # out of 5 print(video.length) # seconds print("\n") # get video metadata print("Video meta info...") print("------------------") print(video) print("\n") # show all formats for a video: print("All available formats...") print("------------------------") streams = video.streams print([(s.resolution, s.extension) for s in streams]) print("\n") # show all formats and their download/stream url: print("All available streams...") print("------------------------") for s in streams: print(s.resolution, s.extension, s.url) print("\n") # get best resolution regardless of file format print("Best available quality...") print("-------------------------") best = video.getbest() print(best.resolution, best.extension) print("\n") # get best resolution for a specified file format # (mp4, webm, flv or 3gp) print("Best available mp4 quality...") print("-----------------------------") best = video.getbest(preftype="mp4") print(best.resolution, best.extension) print("\n") # get best resolution for specified file format, or return a different format # if one happens to have a better resolution than the specified format print("Best available quality, mp4 if exists as best") print("---------------------------------------------") best = video.getbest(preftype="mp4", ftypestrict=False) print(best.resolution, best.extension) print("\n") # get url - for download or for streaming in mplayer / vlc print("Best available quality url") print("--------------------------") print(best.url) print("\n") # download video, show progress print("Download video, show progress") print("-----------------------------") print("Uncomment line in example.py source file to enable") #best.download(quiet=False) print("\n") # download, specify output filepath print("Download video, specify filepath") print("--------------------------------") print("Uncomment line in example.py source file to enable") filename = "/tmp/" + best.title + best.extension #best.download(quiet=False, filepath=filename)
# -*- coding: utf-8 -*- # This file is part of Shuup. # # Copyright (c) 2012-2019, Shoop Commerce Ltd. All rights reserved. # # This source code is licensed under the OSL-3.0 license found in the # LICENSE file in the root directory of this source tree. import json import pytest from django.test import override_settings from django.utils.translation import activate, get_language from shuup.admin.views.select import MultiselectAjaxView from shuup.core.models import ( Category, CompanyContact, PersonContact, Product, ProductMode, SalesUnit, ShopProduct, ShopProductVisibility, CategoryStatus, Supplier ) from shuup.testing.factories import create_product, get_default_shop, get_shop, create_random_user from shuup.testing.utils import apply_request_middleware from shuup_tests.utils.fixtures import regular_user def _get_search_results(rf, view, model_name, search_str, user, search_mode=None, sales_units=None, shop=None): data = { "model": model_name, "search": search_str } if search_mode: data.update({"searchMode": search_mode}) if sales_units: data.update({"salesUnits": sales_units}) if shop: data.update({"shop": shop.pk}) request = apply_request_middleware(rf.get("sa/search", data), user=user) response = view(request) assert response.status_code == 200 return json.loads(response.content.decode("utf-8")).get("results") @pytest.mark.django_db def test_ajax_select_view_with_products(rf, admin_user): shop = get_default_shop() activate("en") view = MultiselectAjaxView.as_view() # No products, no results results = _get_search_results(rf, view, "shuup.Product", "some str", admin_user) assert len(results) == 0 product_name_en = "The Product" product = create_product("the product", shop=shop, **{"name": product_name_en}) shop_product = product.get_shop_instance(shop) product_name_fi = "tuote" product.set_current_language("fi") # Making sure we are not getting duplicates from translations product.name = product_name_fi # It seems that finnish translation overlaps with english name product.save() view = MultiselectAjaxView.as_view() results = _get_search_results(rf, view, "shuup.Product", "some str", admin_user) assert len(results) == 0 results = _get_search_results(rf, view, "shuup.Product", None, admin_user) assert len(results) == 0 results = _get_search_results(rf, view, "shuup.Product", "product", admin_user) assert len(results) == 1 assert results[0].get("id") == product.id assert results[0].get("name") == product_name_en results = _get_search_results(rf, view, "shuup.ShopProduct", "product", admin_user) assert len(results) == 1 assert results[0].get("id") == shop_product.id assert results[0].get("name") == product_name_en activate("fi") results = _get_search_results(rf, view, "shuup.Product", "product", admin_user) assert get_language() == 'fi' assert len(results) == 1 assert results[0].get("id") == product.id assert results[0].get("name") == product_name_fi results = _get_search_results(rf, view, "shuup.Product", " product ", admin_user) assert len(results) == 1 assert results[0].get("id") == product.id assert results[0].get("name") == product_name_fi product.soft_delete() results = _get_search_results(rf, view, "shuup.Product", "product", admin_user) assert len(results) == 0 supplier1 = Supplier.objects.create(name="supplier1", enabled=True) supplier1.shops.add(shop) product = create_product( "test-product", shop, default_price="200", supplier=supplier1, mode=ProductMode.SIMPLE_VARIATION_PARENT) results = _get_search_results(rf, view, "shuup.Product", " product ", admin_user, "parent_product") assert len(results) == 1 shop2 = get_shop(identifier="shop2") supplier2 = Supplier.objects.create(name="supplier2", enabled=False) supplier2.shops.add(shop2) product2 = create_product( "test-product-two", shop2, default_price="200", supplier=supplier2, mode=ProductMode.SIMPLE_VARIATION_PARENT) results = _get_search_results(rf, view, "shuup.Product", " product ", admin_user, "parent_product") assert len(results) == 1 @pytest.mark.django_db def test_multi_select_with_main_products(rf, admin_user): shop = get_default_shop() activate("en") view = MultiselectAjaxView.as_view() var1 = "size" var2 = "color" parent = create_product("test", shop=shop, **{"name": "test"}) for a in range(4): for b in range(3): product_name = "test-%s-%s" % (a, b) child = create_product(product_name, shop=shop, **{"name": product_name}) child.link_to_parent(parent, variables={var1: a, var2: b}) assert child.mode == ProductMode.VARIATION_CHILD assert parent.variation_children.count() == 4 * 3 assert Product.objects.count() == 4*3 + 1 results = _get_search_results(rf, view, "shuup.Product", "test", admin_user) assert len(results) == Product.objects.count() results = _get_search_results(rf, view, "shuup.Product", "test", admin_user, "main") assert len(results) == 1 create_product("test1", shop=shop, **{"name": "test 123"}) results = _get_search_results(rf, view, "shuup.Product", "test", admin_user, "main") assert len(results) == 2 create_product("2", shop=shop, **{"name": "something that doesn not match with the search term"}) results = _get_search_results(rf, view, "shuup.Product", "test", admin_user, "main") assert len(results) == 2 @pytest.mark.django_db def test_multi_select_with_sellable_only_products(rf, admin_user): shop = get_default_shop() activate("en") view = MultiselectAjaxView.as_view() var1 = "size" var2 = "color" parent = create_product("test", shop=shop, **{"name": "test"}) for a in range(4): for b in range(3): product_name = "test-%s-%s" % (a, b) child = create_product(product_name, shop=shop, **{"name": product_name}) child.link_to_parent(parent, variables={var1: a, var2: b}) assert child.mode == ProductMode.VARIATION_CHILD assert parent.variation_children.count() == 4 * 3 assert Product.objects.count() == 4 * 3 + 1 results = _get_search_results(rf, view, "shuup.Product", "test", admin_user) assert len(results) == Product.objects.count() results = _get_search_results(rf, view, "shuup.Product", "test", admin_user, "sellable_mode_only") assert len(results) == Product.objects.count() - 1 create_product("test1", shop=shop, **{"name": "test 123"}) results = _get_search_results(rf, view, "shuup.Product", "test", admin_user, "sellable_mode_only") assert len(results) == Product.objects.count() - 1 # Still only the parent is excluded assert Product.objects.count() == 4 * 3 + 2 # hide all shop products ShopProduct.objects.all().update(visibility=ShopProductVisibility.NOT_VISIBLE) results = _get_search_results(rf, view, "shuup.Product", "test", admin_user, "sellable_mode_only") assert len(results) == 0 # show them again ShopProduct.objects.all().update(visibility=ShopProductVisibility.ALWAYS_VISIBLE) results = _get_search_results(rf, view, "shuup.Product", "test", admin_user, "sellable_mode_only") assert len(results) == Product.objects.count() - 1 # delete all products [product.soft_delete() for product in Product.objects.all()] results = _get_search_results(rf, view, "shuup.Product", "test", admin_user, "sellable_mode_only") assert len(results) == 0 @pytest.mark.django_db def test_multi_select_with_product_sales_unit(rf, admin_user): shop = get_default_shop() activate("en") gram = SalesUnit.objects.create(symbol="g", name="Grams") create_product("gram", shop=shop, **{"name": "Gram Product", "sales_unit": gram}) pieces = SalesUnit.objects.create(symbol="pcs", name="Pieces") create_product("pcs", shop=shop, **{"name": "Pieces Product", "sales_unit": pieces}) kg = SalesUnit.objects.create(symbol="kg", name="Kilograms") create_product("kg", shop=shop, **{"name": "Kilogram Product", "sales_unit": kg}) oz = SalesUnit.objects.create(symbol="oz", name="Ounce") create_product("oz", shop=shop, **{"name": "Ounce Product", "sales_unit": oz}) view = MultiselectAjaxView.as_view() results = _get_search_results(rf, view, "shuup.Product", "Product", admin_user) assert len(results) == 4 assert len(_get_search_results(rf, view, "shuup.Product", "Product", admin_user, sales_units="g")) == 1 assert len(_get_search_results(rf, view, "shuup.Product", "Product", admin_user, sales_units="pcs")) == 1 assert len(_get_search_results(rf, view, "shuup.Product", "Product", admin_user, sales_units="kg")) == 1 assert len(_get_search_results(rf, view, "shuup.Product", "Product", admin_user, sales_units="oz")) == 1 assert len(_get_search_results(rf, view, "shuup.Product", "Product", admin_user, sales_units="g,oz")) == 2 assert len(_get_search_results(rf, view, "shuup.Product", "Product", admin_user, sales_units="g,kg,pcs")) == 3 assert len(_get_search_results(rf, view, "shuup.Product", "Product", admin_user, sales_units="oz,pcs,g,kg")) == 4 @pytest.mark.django_db @pytest.mark.parametrize("contact_cls", [ PersonContact, CompanyContact ]) def test_ajax_select_view_with_contacts(rf, contact_cls, admin_user): shop = get_default_shop() view = MultiselectAjaxView.as_view() results = _get_search_results(rf, view, "", "some str", admin_user) assert len(results) == 0 model_name = "shuup.%s" % contact_cls._meta.model_name results = _get_search_results(rf, view, model_name, "some str", admin_user) assert len(results) == 0 # customer doesn't belong to shop customer = contact_cls.objects.create(name="Michael Jackson", email="[email protected]") results = _get_search_results(rf, view, model_name, "michael", admin_user) assert len(results) == 0 customer.add_to_shop(shop) results = _get_search_results(rf, view, model_name, "michael", admin_user) assert len(results) == 1 assert results[0].get("id") == customer.id assert results[0].get("name") == customer.name results = _get_search_results(rf, view, model_name, "jacks", admin_user) assert len(results) == 1 assert results[0].get("id") == customer.id assert results[0].get("name") == customer.name results = _get_search_results(rf, view, model_name, "el@ex", admin_user) assert len(results) == 1 assert results[0].get("id") == customer.id assert results[0].get("name") == customer.name results = _get_search_results(rf, view, model_name, "random", admin_user) # Shouldn't find anything with this assert len(results) == 0 @pytest.mark.django_db @pytest.mark.parametrize("contact_cls", [ PersonContact, CompanyContact ]) def test_ajax_select_view_with_contacts_multipleshop(rf, contact_cls): shop1 = get_default_shop() shop2 = get_shop(identifier="shop2") staff = create_random_user(is_staff=True) shop1.staff_members.add(staff) shop2.staff_members.add(staff) view = MultiselectAjaxView.as_view() model_name = "shuup.%s" % contact_cls._meta.model_name customer = contact_cls.objects.create(name="Michael Jackson", email="[email protected]") customer_shop1 = contact_cls.objects.create(name="Roberto", email="[email protected]") customer_shop2 = contact_cls.objects.create(name="Maria", email="[email protected]") results = _get_search_results(rf, view, model_name, "michael", staff) assert len(results) == 0 customer.add_to_shop(shop1) customer.add_to_shop(shop2) customer_shop1.add_to_shop(shop1) customer_shop2.add_to_shop(shop2) for shop in [shop1, shop2]: results = _get_search_results(rf, view, model_name, "michael", staff, shop=shop) assert len(results) == 1 assert results[0].get("id") == customer.id assert results[0].get("name") == customer.name results = _get_search_results(rf, view, model_name, "roberto", staff, shop=shop) if shop == shop1: assert len(results) == 1 assert results[0].get("id") == customer_shop1.id assert results[0].get("name") == customer_shop1.name else: assert len(results) == 0 results = _get_search_results(rf, view, model_name, "maria", staff, shop=shop) if shop == shop2: assert len(results) == 1 assert results[0].get("id") == customer_shop2.id assert results[0].get("name") == customer_shop2.name else: assert len(results) == 0 @pytest.mark.django_db def test_ajax_select_view_with_categories(rf, admin_user): activate("en") shop = get_default_shop() view = MultiselectAjaxView.as_view() # No categories, no results results = _get_search_results(rf, view, "shuup.Category", "some str", admin_user) assert len(results) == 0 category = Category.objects.create( parent=None, identifier="test", name="test", ) category.shops.add(shop) results = _get_search_results(rf, view, "shuup.Category", "some str", admin_user) assert len(results) == 0 results = _get_search_results(rf, view, "shuup.Category", category.name, admin_user) assert len(results) == 1 category.soft_delete() results = _get_search_results(rf, view, "shuup.Category", category.name, admin_user) assert len(results) == 0 @pytest.mark.django_db def test_multiselect_inactive_users_and_contacts(rf, regular_user, admin_user): """ Make sure inactive users and contacts are filtered from search results. """ shop = get_default_shop() view = MultiselectAjaxView.as_view() assert "joe" in regular_user.username results = _get_search_results(rf, view, "auth.User", "joe", admin_user) assert len(results) == 1 assert results[0].get("id") == regular_user.id assert results[0].get("name") == regular_user.username contact = PersonContact.objects.create(first_name="Joe", last_name="Somebody") # contact not in shop results = _get_search_results(rf, view, "shuup.PersonContact", "joe", admin_user) assert len(results) == 0 contact.add_to_shop(shop) results = _get_search_results(rf, view, "shuup.PersonContact", "joe", admin_user) assert len(results) == 1 assert results[0].get("id") == contact.id assert results[0].get("name") == contact.name contact.is_active = False contact.save() results = _get_search_results(rf, view, "shuup.PersonContact", "joe", admin_user) assert len(results) == 0 @pytest.mark.django_db def test_select_category(rf, admin_user): shop = get_default_shop() activate("en") view = MultiselectAjaxView.as_view() category1 = Category.objects.create(name="category", status=CategoryStatus.VISIBLE) category2 = Category.objects.create(name="category", status=CategoryStatus.INVISIBLE) Category.objects.create(name="category") category1.shops.add(shop) category2.shops.add(shop) results = _get_search_results(rf, view, "shuup.Category", "category", admin_user) assert len(results) == 2 # only visible results = _get_search_results(rf, view, "shuup.Category", "category", admin_user, search_mode="visible") assert len(results) == 1 @pytest.mark.django_db def test_select_supplier(rf, admin_user): shop = get_default_shop() activate("en") view = MultiselectAjaxView.as_view() supplier1 = Supplier.objects.create(name="supplier1", enabled=True) supplier2 = Supplier.objects.create(name="supplier2", enabled=False) Supplier.objects.create(name="supplier3", enabled=True) supplier1.shops.add(shop) supplier2.shops.add(shop) results = _get_search_results(rf, view, "shuup.supplier", "supplier", admin_user) assert len(results) == 2 # only enabled results = _get_search_results(rf, view, "shuup.supplier", "supplier", admin_user, search_mode="enabled") assert len(results) == 1 @pytest.mark.django_db def test_shop_products_with_supplier_filter(rf, admin_user): shop = get_default_shop() activate("en") view = MultiselectAjaxView.as_view() superuser1 = create_random_user(is_superuser=True, is_staff=True) supplier1 = Supplier.objects.create(identifier=superuser1.username) superuser2 = create_random_user(is_superuser=True, is_staff=True) supplier2 = Supplier.objects.create(identifier=superuser2.username) product_name_en = "ok" product = create_product("test1", shop=shop, supplier=supplier1, **{"name": product_name_en}) shop_product = product.get_shop_instance(shop) assert shop_product.suppliers.filter(pk=supplier1.pk).exists() supplier_provider = "shuup.testing.supplier_provider.UsernameSupplierProvider" with override_settings(SHUUP_ADMIN_SUPPLIER_PROVIDER_SPEC=supplier_provider): results = _get_search_results(rf, view, "shuup.ShopProduct", "ok", superuser1) assert len(results) == 1 assert results[0].get("id") == shop_product.id assert results[0].get("name") == product_name_en results = _get_search_results(rf, view, "shuup.ShopProduct", "ok", superuser2) assert len(results) == 0
#!/usr/bin/python import numpy as np import sys from sim2 import * ## where all the BF stuff is; for the four 'a' matrices import galsim import matplotlib matplotlib.use('Pdf') import matplotlib.cm as cm # color bar, to plot import matplotlib.pyplot as plt from matplotlib.colors import LogNorm from matplotlib.backends.backend_pdf import PdfPages import matplotlib.patches as patches pp=PdfPages("wfirst_psf.pdf") def my_imshow(im, ax=None, **kwargs): if ax is None: ax = plt.gca() def format_coord(x, y): x = int(x + 0.5) y = int(y + 0.5) try: return '%8e @ [%4i, %4i]' % (im[y, x], x, y) except IndexError: return '' img = ax.imshow(im, **kwargs) ax.format_coord=format_coord return img def measurement_function(profile, noise=None, beta=3.566e-7, base_size='1024', type='nl', n='3', offset = (0.,0.), pixel_scale=0.11, new_params=galsim.hsm.HSMParams(max_amoment=60000000, max_mom2_iter=10000000000, max_moment_nsig2=25)): """ This function receives a GSObject profile and applies one of the two sensor effects: 1) NL (cuadratic, with a single /beta parameter) 2) BF (cdModel implemented in GalSim for CCDs. Antilogus et al. 2014) Return: None, it is a void function. But the input vectors e1_inter_vec=[], e2_inter_vec=[], size_inter_vec=[] should be filled. """ #print "INSIDE meas. function: ", beta # Figure out how many times we are going to go through the whole rendering process # Even if n_offsets = 0, we are going to draw once. #if n_offsets == 0: # n_iter = 1 #else: # n_iter = n_offsets draw_wfirst_psf=False #offset_input=(0.0, 0.0) if type == 'nl': method='oversampling' #method='interleaving' # Just temporal #f=lambda x,beta : x - beta*x*x*x*x f=lambda x,beta : x - beta*x*x #f=lambda x,beta : x - beta*x*x #f=lambda x, (b,g,d) : x + b*x*x + g*x*x*x + d*x*x*x*x #f=lambda x, b : x + b*x*x*x*x #+ g*x*x*x + d*x*x*x*x elif type == 'bf': method='interleaving' else: print "ERROR in call to 'measurement_function': wrong type (nor 'nl' nor 'bf')" sys.exit(1) if method == 'oversampling': ## NL does not need interleaving print "METHOD: oversampling" #### Calculate moments without effect print "Applied FLUX in electrons: ", profile.getFlux() # Do several realizations at differen centroid offsets """ vec_ud=[] for ind in range(n_iter): ud=galsim.UniformDeviate() vec_ud.append(ud) if n_offsets > 0: offset=(ud(), ud()) # For the high-res image, have to find how many high-res pixels the offset is, and then take # only the sub-pixel part. offset_highres = (offset[0]*n % 1, offset[1]*n % 1) else: offset = (0., 0.) offset_highres = (0., 0.) image=profile.drawImage(image=galsim.Image(base_size, base_size, dtype=np.float64 ), scale=pixel_scale/n, method='no_pixel', offset=offset_highres) #print "Maximum flux: ", np.amax(image.array) #print "Flux of image after being drawn (using np.sum(image.array)): ", np.sum(image.array) #print image.array.shape image_mult=(n*n)*image #print "Maximum flux: ", np.amax(image.array) #print "Flux of image after adjusting n*n(using np.sum(image.array)): ", np.sum(image.array) if ind == 0: image_sum= image_mult else: image_sum+=image_mult image=image_sum/float(n_iter) """ offset= (0.0, 0.0) print "Offset: ", offset image=profile.drawImage(image=galsim.Image(base_size, base_size, dtype=np.float64), scale=pixel_scale/n, method='no_pixel', offset=offset) image=(n*n)*image #image #sys.exit() #if not noise == None: # read_noise = galsim.GaussianNoise(sigma=noise/(n**2)) # image.addNoise(read_noise) # IMAGE if draw_wfirst_psf == True: k=64 delta=15 bm, bp = 0.5*(1.5*k)-delta, 0.5*(1.5*k) + delta bounds=galsim.BoundsI(bm,bp,bm,bp) before=image[bounds].array fig=plt.figure() ax=fig.add_subplot(223) plt.imshow(before, cmap='cubehelix', norm=LogNorm(), interpolation='nearest' ) ax.get_xaxis().set_ticks([]) ax.get_yaxis().set_ticks([]) ax.set_title ('Y106: no NL (core)') plt.colorbar() before_all=image.array ax=fig.add_subplot(221) plt.imshow((before_all), cmap='cubehelix', norm=LogNorm(), interpolation='nearest') plt.colorbar() ax.get_xaxis().set_ticks([]) ax.get_yaxis().set_ticks([]) ax.set_title ('Y106: no NL (full stamp)') ax.add_patch( patches.Rectangle( (0.5*(1.5*k) - delta, 0.5*(1.5*k) - delta),2*delta,2*delta, fill=False)) #IMAGE results=image.FindAdaptiveMom(hsmparams=new_params) ref_e1=results.observed_shape.e1 ref_e2=results.observed_shape.e2 ref_s=results.moments_sigma #print "Image shape, before interleave: ", image.array.shape print "ref_e1, ref_e2, ref_s", ref_e1, ref_e2, ref_s #### Calculate moments with the effect """ # Do several realizations at differen centroid offsets for ind in range(n_iter): #ud=galsim.UniformDeviate() ud=vec_ud[ind] if n_offsets > 0: offset=(ud(), ud()) # For the high-res image, have to find how many high-res pixels the offset is, and then take # only the sub-pixel part. offset_highres = (offset[0]*n % 1, offset[1]*n % 1) else: offset = (0., 0.) offset_highres = (0., 0.) image=profile.drawImage(image=galsim.Image(base_size, base_size), scale=pixel_scale/n, method='no_pixel', offset=offset_highres) #print "Maximum flux: ", np.amax(image.array) #print "Flux of image after being drawn (using np.sum(image.array)): ", np.sum(image.array) #print image.array.shape image_mult=(n*n)*image #print "Maximum flux: ", np.amax(image.array) #print "Flux of image after adjusting n*n(using np.sum(image.array)): ", np.sum(image.array) if ind == 0: image_sum= image_mult else: image_sum+=image_mult image=image_sum/float(n_iter) """ image=profile.drawImage(image=galsim.Image(base_size, base_size, dtype=np.float64), scale=pixel_scale/n, method='no_pixel', offset=offset) image=(n*n)*image image.applyNonlinearity(f,beta) #sys.exit() print "Flux of image after VNL (using np.sum(image.array)): ", np.sum(image.array) if draw_wfirst_psf == True: # IMAGE after=image[bounds].array print "drawing fractional difference " diff= (before - after)/before # VNL attenuates ax=fig.add_subplot(122) #ax=plt.subplot2grid ( (2,2), (1,1), colspan=2 ) #ax.set_position ([0.1, 0.5, 0.5, 0.5]) #print "diff: ", diff #sys.exit() plt.imshow((diff), cmap='gnuplot2', norm=LogNorm(), interpolation='nearest') plt.colorbar() ax.get_xaxis().set_ticks([]) ax.get_yaxis().set_ticks([]) ax.set_title ('NL vs no NL: \n fractional difference (core)') plt.tight_layout() pp.savefig() pp.close() sys.exit() #IMAGE #results=image.FindAdaptiveMom(hsmparams=new_params) #print "results.observed_shape.e1, results.observed_shape.e2, results.moments_sigma ", results.observed_shape.e1, results.observed_shape.e2, results.moments_sigma #print "Differences: ", results.observed_shape.e1 - ref_e1, results.observed_shape.e2 - ref_e2, (results.moments_sigma - ref_s) / ref_s # Output values #e1_out=results.observed_shape.e1 - ref_e1 #e2_out=results.observed_shape.e2 - ref_e2 #size_out=(results.moments_sigma - ref_s) / ref_s #return e1_out, e2_out, size_out results=image.FindAdaptiveMom(hsmparams=new_params) obs_e1=(results.observed_shape.e1) obs_e2=(results.observed_shape.e2) obs_s=(results.moments_sigma) d_e1=(obs_e1 - ref_e1) d_e2=(obs_e2 - ref_e2) d_s=(obs_s/ref_s -1.) print "obs_e1: %.16g, obs_e2 : %.16g, obs_s: %.16g" %(obs_e1, obs_e2, obs_s) print "Differences: d_e1: %.16g, d_e2 : %.16g, d_s: %.16g" %(d_e1, d_e2, d_s) # Output values e1_out= d_e1 e2_out= d_e2 size_out= d_s return e1_out, e2_out, size_out if method == 'interleaving': print "METHOD: Interleaving" ## Interleave the profiles with NO EFFECT im_list=[] offsets_list=[] #create list of images to interleave-no effect # First, draw a big image from which to obtain n^2 subimages. This is to avoid calling draImage n^2 times big_image=galsim.Image for j in xrange(n): for i in xrange(n): im=galsim.Image(base_size, base_size, dtype=np.float64) offset=galsim.PositionD(offset_input[0] - (i+0.5)/n+0.5, offset_input[1] - (j+0.5)/n+0.5) ## Add randon uniform offset offsets_list.append(offset) #print "Offset: ", offset profile.drawImage(image=im, scale=pixel_scale, offset=offset, method='no_pixel') im_list.append(im) image=galsim.utilities.interleaveImages(im_list=im_list, N=(n,n), offsets=offsets_list, add_flux=True) print "Image shape, after interleave, no effect: ", image.array.shape print "Flux of image after interleave (using np.sum(image.array)): ", np.sum(image.array) if not noise == None: read_noise = galsim.GaussianNoise(sigma=noise) image.addNoise(read_noise) results=image.FindAdaptiveMom(hsmparams=new_params) ref_e1=results.observed_shape.e1 ref_e2=results.observed_shape.e2 ref_s=results.moments_sigma print "ref_e1, ref_e2, ref_s", ref_e1, ref_e2, ref_s ## Interleave the profiles with the effect im_list=[] offsets_list=[] #create list of images to interleave-no effect for j in xrange(n): for i in xrange(n): im=galsim.Image(base_size, base_size, dtype=np.float64) offset=galsim.PositionD(offset_input[0] -(i+0.5)/n+0.5, offset_input[1] - (j+0.5)/n+0.5) offsets_list.append(offset) #print "Offset: ", offset im=profile.drawImage(image=im, scale=pixel_scale, offset=offset, method='no_pixel') if type == 'bf': #cd = PowerLawCD(5, 5.e-7, 5.e-7, 1.5e-7, 1.5e-7, 2.5e-7, 2.5e-7, 1.3) (aL,aR,aB,aT) = readmeanmatrices() cd = galsim.cdmodel.BaseCDModel (aL,aR,aB,aT) im=cd.applyForward(im) elif type == 'nl': im.applyNonlinearity(f,beta) im_list.append(im) image2=galsim.utilities.interleaveImages(im_list=im_list, N=(n,n), offsets=offsets_list, add_flux=True) print "Image shape, after interleave: ", image2.array.shape print "Flux of image after interleave (using np.sum(image.array)): ", np.sum(image.array) if not noise == None: read_noise = galsim.GaussianNoise(sigma=noise) image2.addNoise(read_noise) results=image2.FindAdaptiveMom(hsmparams=new_params) print "results.observed_shape.e1, results.observed_shape.e2, results.moments_sigma ", results.observed_shape.e1, results.observed_shape.e2, results.moments_sigma print "Differences: ", results.observed_shape.e1 - ref_e1, results.observed_shape.e2 - ref_e2, (results.moments_sigma - ref_s) / ref_s #e1_inter_vec.append (results.observed_shape.e1 - ref_e1) #e2_inter_vec.append (results.observed_shape.e2 - ref_e2) #size_inter_vec.append ( (results.moments_sigma - ref_s) / ref_s) # Output values e1_out=results.observed_shape.e1 - ref_e1 e2_out=results.observed_shape.e2 - ref_e2 size_out=(results.moments_sigma - ref_s) / ref_s return e1_out, e2_out, size_out
# -*- coding: utf-8 -*- # # This file is part of INSPIRE. # Copyright (C) 2015, 2016 CERN. # # INSPIRE is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation; either version 2 of the # License, or (at your option) any later version. # # INSPIRE is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with INSPIRE; if not, write to the Free Software Foundation, Inc., # 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. """Model for WorkflowsAudit.""" from __future__ import absolute_import, print_function import requests import json from flask import current_app from .models import WorkflowsAudit def json_api_request(url, data, headers=None): """Make JSON API request and return JSON response.""" final_headers = { "Content-Type": "application/json", "Accept": "application/json" } if headers: final_headers.update(headers) current_app.logger.debug("POST {0} with \n{1}".format( url, json.dumps(data, indent=4) )) try: response = requests.post( url=url, headers=final_headers, data=json.dumps(data), timeout=30 ) except requests.exceptions.RequestException as err: current_app.logger.exception(err) raise if response.status_code == 200: return response.json() def log_workflows_action(action, prediction_results, object_id, user_id, source, user_action=""): """Log the action taken by user compared to a prediction.""" if prediction_results: score = prediction_results.get("max_score") # returns 0.222113 decision = prediction_results.get("decision") # returns "Rejected" # Map actions to align with the prediction format action_map = { 'accept': 'Non-CORE', 'accept_core': 'CORE', 'reject': 'Rejected' } logging_info = { 'object_id': object_id, 'user_id': user_id, 'score': score, 'user_action': action_map.get(user_action, ""), 'decision': decision, 'source': source, 'action': action } audit = WorkflowsAudit(**logging_info) audit.save()
# -*- coding: utf-8 -*- # -- This file is part of the Apio project # -- (C) 2016-2018 FPGAwars # -- Author Jesús Arroyo # -- Licence GPLv2 import click import requests from apio import util requests.packages.urllib3.disable_warnings() def api_request(command, organization='FPGAwars'): result = None r = None try: r = requests.get( 'https://api.github.com/repos/{0}/{1}'.format( organization, command), headers=_get_headers()) result = r.json() r.raise_for_status() except requests.exceptions.ConnectionError as e: error_message = str(e) if 'NewConnectionError' in error_message: click.secho('Error: could not connect to GitHub API.\n' 'Check your internet connection and try again', fg='red') else: click.secho(error_message, fg='red') exit(1) except Exception as e: click.secho('Error: ' + str(e), fg='red') exit(1) finally: if r: r.close() if result is None: click.secho('Error: wrong data from GitHub API', fg='red') exit(1) return result def _get_headers(): enc = 'eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJwdWJsaWNfdG9rZW4iOiJ0' + \ 'b2tlbiBhNTk2OTUwNjFhYzRkMjBkZjEwNTFlZDljOWZjNGI4M2Q0NzAyYzA3I' + \ 'n0.POR6Iae_pSt0m6h-AaRi1X6QaRcnnfl9aZbTSV0BUJw' return {'Authorization': util.decode(enc).get('public_token')}
# Copyright (c) 2010-2017 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. """ A standard ring built using the :ref:`ring-builder <ring_builder>` will attempt to randomly disperse replicas or erasure-coded fragments across failure domains, but does not provide any guarantees such as placing at least one replica of every partition into each region. Composite rings are intended to provide operators with greater control over the dispersion of object replicas or fragments across a cluster, in particular when there is a desire to have strict guarantees that some replicas or fragments are placed in certain failure domains. This is particularly important for policies with duplicated erasure-coded fragments. A composite ring comprises two or more component rings that are combined to form a single ring with a replica count equal to the sum of replica counts from the component rings. The component rings are built independently, using distinct devices in distinct regions, which means that the dispersion of replicas between the components can be guaranteed. The ``composite_builder`` utilities may then be used to combine components into a composite ring. For example, consider a normal ring ``ring0`` with replica count of 4 and devices in two regions ``r1`` and ``r2``. Despite the best efforts of the ring-builder, it is possible for there to be three replicas of a particular partition placed in one region and only one replica placed in the other region. For example:: part_n -> r1z1h110/sdb r1z2h12/sdb r1z3h13/sdb r2z1h21/sdb Now consider two normal rings each with replica count of 2: ``ring1`` has devices in only ``r1``; ``ring2`` has devices in only ``r2``. When these rings are combined into a composite ring then every partition is guaranteed to be mapped to two devices in each of ``r1`` and ``r2``, for example:: part_n -> r1z1h10/sdb r1z2h20/sdb r2z1h21/sdb r2z2h22/sdb |_____________________| |_____________________| | | ring1 ring2 The dispersion of partition replicas across failure domains within each of the two component rings may change as they are modified and rebalanced, but the dispersion of replicas between the two regions is guaranteed by the use of a composite ring. For rings to be formed into a composite they must satisfy the following requirements: * All component rings must have the same part power (and therefore number of partitions) * All component rings must have an integer replica count * Each region may only be used in one component ring * Each device may only be used in one component ring Under the hood, the composite ring has a ``_replica2part2dev_id`` table that is the union of the tables from the component rings. Whenever the component rings are rebalanced, the composite ring must be rebuilt. There is no dynamic rebuilding of the composite ring. .. note:: The order in which component rings are combined into a composite ring is very significant because it determines the order in which the Ring.get_part_nodes() method will provide primary nodes for the composite ring and consequently the node indexes assigned to the primary nodes. For an erasure-coded policy, inadvertent changes to the primary node indexes could result in large amounts of data movement due to fragments being moved to their new correct primary. The ``id`` of each component RingBuilder is therefore stored in metadata of the composite and used to check for the component ordering when the same composite ring is re-composed. RingBuilder ``id``\s are normally assigned when a RingBuilder instance is first saved. Older RingBuilder instances loaded from file may not have an ``id`` assigned and will need to be saved before they can be used as components of a composite ring. This can be achieved by, for example:: swift-ring-builder <builder-file> rebalance --force """ import copy import json import os from swift.common.ring import RingBuilder from swift.common.ring import RingData from collections import defaultdict from itertools import combinations MUST_MATCH_ATTRS = ( 'part_power', ) def pre_validate_all_builders(builders): """ Pre-validation for all component ring builders that are to be included in the composite ring. Checks that all component rings are valid with respect to each other. :param builders: a list of :class:`swift.common.ring.builder.RingBuilder` instances :raises ValueError: if the builders are invalid with respect to each other """ if len(builders) < 2: raise ValueError('Two or more component builders are required.') # all ring builders should be consistent for each MUST_MATCH_ATTRS for attr in MUST_MATCH_ATTRS: attr_dict = defaultdict(list) for i, builder in enumerate(builders): value = getattr(builder, attr, None) attr_dict[value].append(i) if len(attr_dict) > 1: variations = ['%s=%s found at indexes %s' % (attr, val, indexes) for val, indexes in attr_dict.items()] raise ValueError( 'All builders must have same value for %r.\n%s' % (attr, '\n '.join(variations))) # all ring builders should have int replica count and not have dirty mods errors = [] for index, builder in enumerate(builders): if int(builder.replicas) != builder.replicas: errors.append( 'Non integer replica count %s found at index %s' % (builder.replicas, index)) if builder.devs_changed: errors.append( 'Builder needs rebalance to apply changes at index %s' % index) if errors: raise ValueError( 'Problem with builders.\n%s' % ('\n '.join(errors))) # check regions regions_info = {} for builder in builders: regions_info[builder] = set( dev['region'] for dev in builder._iter_devs()) for first_region_set, second_region_set in combinations( regions_info.values(), 2): inter = first_region_set & second_region_set if inter: raise ValueError('Same region found in different rings') # check device uniqueness check_for_dev_uniqueness(builders) def check_for_dev_uniqueness(builders): """ Check that no device appears in more than one of the given list of builders. :param builders: a list of :class:`swift.common.ring.builder.RingBuilder` instances :raises ValueError: if the same device is found in more than one builder """ builder2devs = [] for i, builder in enumerate(builders): dev_set = set() for dev in builder._iter_devs(): ip, port, device = (dev['ip'], dev['port'], dev['device']) for j, (other_builder, devs) in enumerate(builder2devs): if (ip, port, device) in devs: raise ValueError( 'Duplicate ip/port/device combination %s/%s/%s found ' 'in builders at indexes %s and %s' % (ip, port, device, j, i) ) dev_set.add((ip, port, device)) builder2devs.append((builder, dev_set)) def _make_composite_ring(builders): """ Given a list of component ring builders, return a composite RingData instance. :param builders: a list of :class:`swift.common.ring.builder.RingBuilder` instances :return: a new RingData instance built from the component builders :raises ValueError: if the builders are invalid with respect to each other """ composite_r2p2d = [] composite_devs = [] device_offset = 0 for builder in builders: # copy all devs list and replica2part2dev table to be able # to modify the id for each dev devs = copy.deepcopy(builder.devs) r2p2d = copy.deepcopy(builder._replica2part2dev) for part2dev in r2p2d: for part, dev in enumerate(part2dev): part2dev[part] += device_offset for dev in [d for d in devs if d]: # note that some devs may not be referenced in r2p2d but update # their dev id nonetheless dev['id'] += device_offset composite_r2p2d.extend(r2p2d) composite_devs.extend(devs) device_offset += len(builder.devs) return RingData(composite_r2p2d, composite_devs, builders[0].part_shift) def compose_rings(builders): """ Given a list of component ring builders, perform validation on the list of builders and return a composite RingData instance. :param builders: a list of :class:`swift.common.ring.builder.RingBuilder` instances :return: a new RingData instance built from the component builders :raises ValueError: if the builders are invalid with respect to each other """ pre_validate_all_builders(builders) rd = _make_composite_ring(builders) return rd def _make_component_meta(builder): """ Return a dict of selected builder attributes to save in composite meta. The dict has keys ``version``, ``replicas`` and ``id``. :param builder: a :class:`swift.common.ring.builder.RingBuilder` instance :return: a dict of component metadata """ attrs = ['version', 'replicas', 'id'] metadata = dict((attr, getattr(builder, attr)) for attr in attrs) return metadata def _make_composite_metadata(builders): """ Return a dict with key ``components`` that maps to a list of dicts, each dict being of the form returned by :func:`_make_component_meta`. :param builders: a list of :class:`swift.common.ring.builder.RingBuilder` instances :return: a dict of composite metadata """ component_meta = [_make_component_meta(builder) for builder in builders] return {'components': component_meta} def check_same_builder(old_component, new_component): """ Check that the given new_component metadata describes the same builder as the given old_component metadata. The new_component builder does not necessarily need to be in the same state as when the old_component metadata was created to satisfy this check e.g. it may have changed devs and been rebalanced. :param old_component: a dict of metadata describing a component builder :param new_component: a dict of metadata describing a component builder :raises ValueError: if the new_component is not the same as that described by the old_component """ for key in ['replicas', 'id']: if old_component[key] != new_component[key]: raise ValueError("Attribute mismatch for %s: %r != %r" % (key, old_component[key], new_component[key])) def is_builder_newer(old_component, new_component): """ Return True if the given builder has been modified with respect to its state when the given component_meta was created. :param old_component: a dict of metadata describing a component ring :param new_component: a dict of metadata describing a component ring :return: True if the builder has been modified, False otherwise. :raises ValueError: if the version of the new_component is older than the version of the existing component. """ if new_component['version'] < old_component['version']: raise ValueError('Older builder version: %s < %s' % (new_component['version'], old_component['version'])) return old_component['version'] < new_component['version'] def check_against_existing(old_composite_meta, new_composite_meta): """ Check that the given builders and their order are the same as that used to build an existing composite ring. Return True if any of the given builders has been modified with respect to its state when the given component_meta was created. :param old_composite_meta: a dict of the form returned by :func:`_make_composite_meta` :param new_composite_meta: a dict of the form returned by :func:`_make_composite_meta` :return: True if any of the components has been modified, False otherwise. :raises Value Error: if proposed new components do not match any existing components. """ errors = [] newer = False old_components = old_composite_meta['components'] new_components = new_composite_meta['components'] for i, old_component in enumerate(old_components): try: new_component = new_components[i] except IndexError: errors.append("Missing builder at index %d" % i) continue try: # check we have same component builder in this position vs existing check_same_builder(old_component, new_component) newer |= is_builder_newer(old_component, new_component) except ValueError as err: errors.append("Invalid builder change at index %d: %s" % (i, err)) for j, new_component in enumerate(new_components[i + 1:], start=i + 1): errors.append("Unexpected extra builder at index %d: %r" % (j, new_component)) if errors: raise ValueError('\n'.join(errors)) return newer def check_builder_ids(builders): """ Check that all builders in the given list have id's assigned and that no id appears more than once in the list. :param builders: a list instances of :class:`swift.common.ring.builder.RingBuilder` :raises: ValueError if any builder id is missing or repeated """ id2index = defaultdict(list) errors = [] for i, builder in enumerate(builders): try: id2index[builder.id].append(str(i)) except AttributeError as err: errors.append("Problem with builder at index %d: %s" % (i, err)) for builder_id, index in id2index.items(): if len(index) > 1: errors.append("Builder id %r used at indexes %s" % (builder_id, ', '.join(index))) if errors: raise ValueError('\n'.join(errors)) class CompositeRingBuilder(object): """ Provides facility to create, persist, load and update composite rings, for example:: # create a CompositeRingBuilder instance with a list of # component builder files crb = CompositeRingBuilder(["region1.builder", "region2.builder"]) # call compose which will make a new RingData instance ring_data = crb.compose() # save the composite ring file ring_data.save("composite_ring.gz") # save the composite metadata file crb.save("composite_builder.composite") # load the persisted composite metadata file crb = CompositeRingBuilder.load("composite_builder.composite") # compose (optionally update the paths to the component builder files) crb.compose(["/path/to/region1.builder", "/path/to/region2.builder"]) Composite ring metadata is persisted to file in JSON format. The metadata has the structure shown below (using example values):: { "version": 4, "components": [ { "version": 3, "id": "8e56f3b692d43d9a666440a3d945a03a", "replicas": 1 }, { "version": 5, "id": "96085923c2b644999dbfd74664f4301b", "replicas": 1 } ] "component_builder_files": { "8e56f3b692d43d9a666440a3d945a03a": "/etc/swift/region1.builder", "96085923c2b644999dbfd74664f4301b": "/etc/swift/region2.builder", } "serialization_version": 1, "saved_path": "/etc/swift/multi-ring-1.composite", } `version` is an integer representing the current version of the composite ring, which increments each time the ring is successfully (re)composed. `components` is a list of dicts, each of which describes relevant properties of a component ring `component_builder_files` is a dict that maps component ring builder ids to the file from which that component ring builder was loaded. `serialization_version` is an integer constant. `saved_path` is the path to which the metadata was written. :params builder_files: a list of paths to builder files that will be used as components of the composite ring. """ def __init__(self, builder_files=None): self.version = 0 self.components = [] self.ring_data = None self._builder_files = None self._set_builder_files(builder_files or []) def _set_builder_files(self, builder_files): self._builder_files = [os.path.abspath(bf) for bf in builder_files] @classmethod def load(cls, path_to_file): """ Load composite ring metadata. :param path_to_file: Absolute path to a composite ring JSON file. :return: an instance of :class:`CompositeRingBuilder` :raises IOError: if there is a problem opening the file :raises ValueError: if the file does not contain valid composite ring metadata """ try: with open(path_to_file, 'rb') as fp: metadata = json.load(fp) builder_files = [metadata['component_builder_files'][comp['id']] for comp in metadata['components']] builder = CompositeRingBuilder(builder_files) builder.components = metadata['components'] builder.version = metadata['version'] except (ValueError, TypeError, KeyError): raise ValueError("File does not contain valid composite ring data") return builder def to_dict(self): """ Transform the composite ring attributes to a dict. See :class:`CompositeRingBuilder` for details of the persisted metadata format. :return: a composite ring metadata dict """ id2builder_file = dict((component['id'], self._builder_files[i]) for i, component in enumerate(self.components)) return {'components': self.components, 'component_builder_files': id2builder_file, 'version': self.version} def save(self, path_to_file): """ Save composite ring metadata to given file. See :class:`CompositeRingBuilder` for details of the persisted metadata format. :param path_to_file: Absolute path to a composite ring file :raises ValueError: if no composite ring has been built yet with this instance """ if not self.components or not self._builder_files: raise ValueError("No composed ring to save.") # persist relative paths to builder files with open(path_to_file, 'wb') as fp: metadata = self.to_dict() # future-proofing: # - saving abs path to component builder files and this file should # allow the relative paths to be derived if required when loading # a set of {composite builder file, component builder files} that # has been moved, so long as their relative locations are # unchanged. # - save a serialization format version number metadata['saved_path'] = os.path.abspath(path_to_file) metadata['serialization_version'] = 1 json.dump(metadata, fp) def compose(self, builder_files=None, force=False): """ Builds a composite ring using component ring builders loaded from a list of builder files. If a list of component ring builder files is given then that will be used to load component ring builders. Otherwise, component ring builders will be loaded using the list of builder files that was set when the instance was constructed. In either case, if metadata for an existing composite ring has been loaded then the component ring builders are verified for consistency with the existing composition of builders, unless the optional ``force`` flag if set True. :param builder_files: Optional list of paths to ring builder files that will be used to load the component ring builders. Typically the list of component builder files will have been set when the instance was constructed, for example when using the load() class method. However, this parameter may be used if the component builder file paths have moved, or, in conjunction with the ``force`` parameter, if a new list of component builders is to be used. :param force: if True then do not verify given builders are consistent with any existing composite ring. :return: An instance of :class:`swift.common.ring.ring.RingData` :raises: ValueError if the component ring builders are not suitable for composing with each other, or are inconsistent with any existing composite ring, or if there has been no change with respect to the existing ring. """ builder_files = builder_files or self._builder_files builders = [RingBuilder.load(f) for f in builder_files] check_builder_ids(builders) new_metadata = _make_composite_metadata(builders) if self.components and self._builder_files and not force: modified = check_against_existing(self.to_dict(), new_metadata) if not modified: raise ValueError( "None of the component builders has been modified" " since the existing composite ring was built.") self.ring_data = compose_rings(builders) self.version += 1 self.components = new_metadata['components'] self._set_builder_files(builder_files) return self.ring_data
#!/usr/bin/env python3 # -*- encoding: utf-8 -*- # # Author: Carlos Garcia Gomez # Date: 29-11-2013 # web: http://www.facturaScripts.com import time, http.server, os from urllib.request import urlopen from subprocess import call HOST_NAME = 'localhost' PORT_NUMBER = 10080 class MyHandler(http.server.BaseHTTPRequestHandler): def do_HEAD(s): s.send_response(200) s.send_header("Content-type", "text/html") s.end_headers() def do_GET(s): s.send_response(200) s.send_header("Content-type", "text/html") s.end_headers() global api_url extra_url = '' if len(s.path) > 2: extra_url = '&'+s.path[2:] response = urlopen(api_url+'?v=2&f=remote_printer'+extra_url) html = response.read() if html: f = open('ticket.txt', 'wb') f.write( html + b'\n' ) f.close() global printer_name call(['lpr', '-P', printer_name, 'ticket.txt']) if __name__ == '__main__': # preguntamos por la configuración global api_url global printer_name if os.path.isfile('config.txt'): f = open('config.txt', 'r') line = f.readline() api_url = line[5:].rstrip() line = f.readline() printer_name = line[9:].rstrip() f.close() else: api_url = input('URL de la api: ') printer_name = input('Nombre de la impresora: ') f = open('config.txt', 'w') f.write('api: '+api_url+"\nprinter: "+printer_name) f.close() # iniciamos el servidor web server_class = http.server.HTTPServer httpd = server_class((HOST_NAME, PORT_NUMBER), MyHandler) print( time.asctime(), "Server Starts - %s:%s" % (HOST_NAME, PORT_NUMBER) ) try: httpd.serve_forever() except KeyboardInterrupt: pass httpd.server_close() print( time.asctime(), "Server Stops - %s:%s" % (HOST_NAME, PORT_NUMBER) ) # borramos el ticket if os.path.isfile('ticket.txt'): os.remove('ticket.txt')
# -*- coding: utf-8 -*- # ------------------------------------------------------------ # streamondemand - XBMC Plugin # Conector para vidspot # http://www.mimediacenter.info/foro/viewforum.php?f=36 # ------------------------------------------------------------ import re from core import logger from core import scrapertools def test_video_exists(page_url): logger.info("streamondemand.servers.vidspot test_video_exists(page_url='%s')" % page_url) # No existe / borrado: http://vidspot.net/8jcgbrzhujri data = scrapertools.cache_page("http://anonymouse.org/cgi-bin/anon-www.cgi/" + page_url) if "File Not Found" in data or "Archivo no encontrado" in data or '<b class="err">Deleted' in data \ or '<b class="err">Removed' in data or '<font class="err">No such' in data: return False, "No existe o ha sido borrado de vidspot" return True, "" def get_video_url(page_url, premium=False, user="", password="", video_password=""): logger.info("streamondemand.servers.vidspot url=%s" % page_url) # Normaliza la URL videoid = scrapertools.get_match(page_url, "http://vidspot.net/([a-z0-9A-Z]+)") page_url = "http://vidspot.net/embed-%s-728x400.html" % videoid data = scrapertools.cachePage(page_url) if "Access denied" in data: geobloqueo = True else: geobloqueo = False if geobloqueo: url = "http://www.videoproxy.co/hide.php" post = "go=%s" % page_url location = scrapertools.get_header_from_response(url, post=post, header_to_get="location") url = "http://www.videoproxy.co/%s" % location data = scrapertools.cachePage(url) # Extrae la URL media_url = scrapertools.find_single_match(data, '"file" : "([^"]+)",') video_urls = [] if media_url != "": if geobloqueo: url = "http://www.videoproxy.co/hide.php" post = "go=%s" % media_url location = scrapertools.get_header_from_response(url, post=post, header_to_get="location") media_url = "http://www.videoproxy.co/%s&direct=false" % location else: media_url += "&direct=false" video_urls.append([scrapertools.get_filename_from_url(media_url)[-4:] + " [vidspot]", media_url]) for video_url in video_urls: logger.info("[vidspot.py] %s - %s" % (video_url[0], video_url[1])) return video_urls # Encuentra vídeos del servidor en el texto pasado def find_videos(data): # Añade manualmente algunos erróneos para evitarlos encontrados = set() encontrados.add("http://vidspot.net/embed-theme.html") encontrados.add("http://vidspot.net/embed-jquery.html") encontrados.add("http://vidspot.net/embed-s.html") encontrados.add("http://vidspot.net/embed-images.html") encontrados.add("http://vidspot.net/embed-faq.html") encontrados.add("http://vidspot.net/embed-embed.html") encontrados.add("http://vidspot.net/embed-ri.html") encontrados.add("http://vidspot.net/embed-d.html") encontrados.add("http://vidspot.net/embed-css.html") encontrados.add("http://vidspot.net/embed-js.html") encontrados.add("http://vidspot.net/embed-player.html") encontrados.add("http://vidspot.net/embed-cgi.html") encontrados.add("http://vidspot.net/embed-i.html") encontrados.add("http://vidspot.net/images") encontrados.add("http://vidspot.net/theme") encontrados.add("http://vidspot.net/xupload") encontrados.add("http://vidspot.net/s") encontrados.add("http://vidspot.net/js") encontrados.add("http://vidspot.net/jquery") encontrados.add("http://vidspot.net/login") encontrados.add("http://vidspot.net/make") encontrados.add("http://vidspot.net/i") encontrados.add("http://vidspot.net/faq") encontrados.add("http://vidspot.net/tos") encontrados.add("http://vidspot.net/premium") encontrados.add("http://vidspot.net/checkfiles") encontrados.add("http://vidspot.net/privacy") encontrados.add("http://vidspot.net/refund") encontrados.add("http://vidspot.net/links") encontrados.add("http://vidspot.net/contact") devuelve = [] # http://vidspot.net/3sw6tewl21sn # http://vidspot.net/embed-3sw6tewl21sn.html # http://vidspot.net/embed-3sw6tewl21sn-728x400.html # http://www.cinetux.org/video/vidspot.php?id=3sw6tewl21sn patronvideos = 'vidspot.(?:net/|php\?id=)(?:embed-|)([a-z0-9]+)' logger.info("streamondemand.servers.vidspot find_videos #" + patronvideos + "#") matches = re.compile(patronvideos, re.DOTALL).findall(data) if len(matches) > 0: for match in matches: titulo = "[vidspot]" url = "http://vidspot.net/" + match if url not in encontrados: logger.info(" url=" + url) devuelve.append([titulo, url, 'vidspot']) encontrados.add(url) else: logger.info(" url duplicada=" + url) return devuelve
"""Logical Clocks and Synchronization.""" from __future__ import absolute_import, unicode_literals from threading import Lock from itertools import islice from operator import itemgetter from .five import python_2_unicode_compatible, zip __all__ = ['LamportClock', 'timetuple'] R_CLOCK = '_lamport(clock={0}, timestamp={1}, id={2} {3!r})' @python_2_unicode_compatible class timetuple(tuple): """Tuple of event clock information. Can be used as part of a heap to keep events ordered. Arguments: clock (int): Event clock value. timestamp (float): Event UNIX timestamp value. id (str): Event host id (e.g. ``hostname:pid``). obj (Any): Optional obj to associate with this event. """ __slots__ = () def __new__(cls, clock, timestamp, id, obj=None): return tuple.__new__(cls, (clock, timestamp, id, obj)) def __repr__(self): return R_CLOCK.format(*self) def __getnewargs__(self): return tuple(self) def __lt__(self, other): # 0: clock 1: timestamp 3: process id try: A, B = self[0], other[0] # uses logical clock value first if A and B: # use logical clock if available if A == B: # equal clocks use lower process id return self[2] < other[2] return A < B return self[1] < other[1] # ... or use timestamp except IndexError: return NotImplemented def __gt__(self, other): return other < self def __le__(self, other): return not other < self def __ge__(self, other): return not self < other clock = property(itemgetter(0)) timestamp = property(itemgetter(1)) id = property(itemgetter(2)) obj = property(itemgetter(3)) @python_2_unicode_compatible class LamportClock(object): """Lamport's logical clock. From Wikipedia: A Lamport logical clock is a monotonically incrementing software counter maintained in each process. It follows some simple rules: * A process increments its counter before each event in that process; * When a process sends a message, it includes its counter value with the message; * On receiving a message, the receiver process sets its counter to be greater than the maximum of its own value and the received value before it considers the message received. Conceptually, this logical clock can be thought of as a clock that only has meaning in relation to messages moving between processes. When a process receives a message, it resynchronizes its logical clock with the sender. See Also: * `Lamport timestamps`_ * `Lamports distributed mutex`_ .. _`Lamport Timestamps`: http://en.wikipedia.org/wiki/Lamport_timestamps .. _`Lamports distributed mutex`: http://bit.ly/p99ybE *Usage* When sending a message use :meth:`forward` to increment the clock, when receiving a message use :meth:`adjust` to sync with the time stamp of the incoming message. """ #: The clocks current value. value = 0 def __init__(self, initial_value=0, Lock=Lock): self.value = initial_value self.mutex = Lock() def adjust(self, other): with self.mutex: value = self.value = max(self.value, other) + 1 return value def forward(self): with self.mutex: self.value += 1 return self.value def sort_heap(self, h): """Sort heap of events. List of tuples containing at least two elements, representing an event, where the first element is the event's scalar clock value, and the second element is the id of the process (usually ``"hostname:pid"``): ``sh([(clock, processid, ...?), (...)])`` The list must already be sorted, which is why we refer to it as a heap. The tuple will not be unpacked, so more than two elements can be present. Will return the latest event. """ if h[0][0] == h[1][0]: same = [] for PN in zip(h, islice(h, 1, None)): if PN[0][0] != PN[1][0]: break # Prev and Next's clocks differ same.append(PN[0]) # return first item sorted by process id return sorted(same, key=lambda event: event[1])[0] # clock values unique, return first item return h[0] def __str__(self): return str(self.value) def __repr__(self): return '<LamportClock: {0.value}>'.format(self)
import socket, sys from zeroconf import ServiceInfo, ServiceBrowser, ServiceStateChange, Zeroconf def get_hosts(): """ Returns a list of available hosts in the network """ hosts = [] def search_hostnames(zeroconf, service_type, name, state_change): """ Prints the hostname to stdout """ if state_change is ServiceStateChange.Added: hostname = name.split('.') hosts.append(hostname[0]) zeroconf = Zeroconf() browser = ServiceBrowser(zeroconf, '_lanshare._tcp.local.', handlers=[search_hostnames]) # Should sleep to allow discover? zeroconf.close() return hosts def list_files(address, port): """ Returns a list of files shared by the given host """ files = [] received = "" address = host sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: # Connect to server sock.connect((address, port)) # Request the list of files sock.sendall(b"LIST") buff = sock.recv(1024) while buff: received += buff.decode('utf-8') buff = sock.recv(1024) finally: sock.close() if len(received) == 0 and received[0] != '2': raise Exception() files = received.split("\n") files.pop() return files def browse_host(hostname): """ Gets the info of the hostname from mDNS and then retrieves a list of files hosted in that server and returns them """ filenames = [] found = False zeroconf = Zeroconf() fqdn = '{0}.local.'.format(hostname) def get_hostnames(zeroconf, service_type, name, state_change): if state_change is ServiceStateChange.Added: host = zeroconf.get_service_info(service_type, name) if host is not None and host.server == fqdn: found = True address = socket_inet_ntoa(host.address) filenames = list_files(address, host.port) browser = ServiceBrowser(zeroconf, '_lanshare._tcp.local.', handlers=[get_hostnames]) if not found: print("Couldn't find {0} in the network".format(hostname), file=sys.stderr) return filenames
# -*- coding: utf-8 -*- from flask import render_template, redirect, url_for, abort, flash, request,\ current_app, make_response from flask_login import login_required, current_user from flask_sqlalchemy import get_debug_queries from .. import files from . import main from ..models import Post, Tag, Category, Spc, User from ..post.posts import Archive from ..tools.jinja_keys import JinjaKeys from ..decorators import admin_required import os @main.route('/') def index(): page = request.args.get('page', 1, type=int) pagination = Post.query.order_by(Post.timestamp.desc()).paginate( page, per_page=current_app.config['FLASKY_POSTS_PER_PAGE'], error_out=False) posts = pagination.items value = JinjaKeys() value.add_keys({'posts': posts, 'pagination': pagination}) my_dict = value.keys() return render_template('index.html', **my_dict) @main.route('/admin-images/', defaults={'page': 1}) @main.route('/admin-images/<int:page>') @admin_required def admin_images(page): from ..tools.pagination import Pagination, PageItem PER_PAGE = 20 all_file = os.listdir(current_app.config['UPLOADED_FILES_DEST']) count = len(all_file) page_item = PageItem(page, PER_PAGE, all_file, count) files_list = page_item.get_item() pagination = Pagination(page, PER_PAGE, count) return render_template('admin/admin_images.html', pagination=pagination, files_list=files_list, files=files) @main.route('/delete-image/<filename>') @admin_required def delete_image(filename): file_path = files.path(filename) os.remove(file_path) return redirect(url_for('main.admin_images')) @main.route('/baidu_verify_ruyZUdOLs5.html') def baidu_api(): return render_template('baidu_verify_ruyZUdOLs5.html')
import pytest import re import subprocess from pynetlinux import ifconfig def interface(request, name): i = ifconfig.Interface(name) ip = i.ip mac = i.mac netmask = i.netmask i.up() def cleanup(): i.ip = ip i.mac = mac i.netmask = netmask i.up() request.addfinalizer(cleanup) return i @pytest.fixture def if1(request): return interface(request, b'eth1') @pytest.fixture def if2(request): return interface(request, b'eth2') def check_output(shell_cmd, regex=[], substr=[], not_regex=[], not_substr=[], debug=False): assert regex or substr or not_regex or not_substr output = subprocess.check_output(shell_cmd, stderr=subprocess.STDOUT, shell=True) if debug: print(regex, substr, not_regex, not_substr) print(output) for s in substr: assert s in output for r in regex: assert re.search(r, output, re.MULTILINE) for s in not_substr: assert s not in output for r in not_regex: assert not re.search(r, output, re.MULTILINE)
""" TextTable is use to generate a pretty table in text format, which can be easily printed on console or output into text file Sample: Name Age Gender Desc Nationality You 10 male You are a boy China Me 100 male I am an old man Japan She 18 female She is a pretty girl America He 1 male He is a little baby British """ import textwrap from pylib.exceptions import Error class TextTable(object): def __init__(self, field_names, **kwargs): ''' Arguments: field_names - list or tuple of field names vertical_str - vertical separator betwwen each columns ''' self._field_names = field_names self._rows = [] self._sequence = [False, '', 0] self._max_widths = {} self._vertical_str = ' ' self._padding_width = 0 supported_options = ('vertical_str',) for key, value in kwargs.items(): if key not in supported_options: raise Error('unsupported option: ' + key) setattr(self, '_'+key, value) def set_sequence(self, enable, field_name='Seq', start=1): ''' set whether need sequence for each row. Arguments: enable - whether need sequence for each row field_name - the name of sequence field start - the start number of sequence ''' self._sequence = [enable, field_name, start] def set_max_width(self, field_name, max_width): ''' set max width of sepcified column, if max width is shorter than the length of field name, the max width will be the length of field name Arguments: field_name - specify the field max_width - max width of the specified field if the actual value exceed the max width, will be split in multiple lines ''' self._max_widths[field_name] = max_width def _format_rows(self, rows): ''' convert each column to string ''' formatted_rows = [] for index, row in enumerate(rows): formatted_row = [str(col) for col in row] if self._sequence[0]: formatted_row.insert(0, str(index+self._sequence[2])) formatted_rows.append(formatted_row) return formatted_rows def _calculate_widths(self, field_names, rows): ''' calculate max width of each column ''' widths = [len(field) for field in field_names] for row in rows: for index, value in enumerate(row): lines = value.split('\n') max_len = max([len(line) for line in lines]) field_name = field_names[index] if field_name in self._max_widths: widths[index] = max(widths[index], min(max_len, self._max_widths[field_name])) else: widths[index] = max(widths[index], max_len) return widths def _get_row_string(self, field_names, row, widths): ''' get formatted row string ''' lines = [] total_width = 0 padding = self._padding_width * ' ' for index, field, value, width, in zip(range(0, len(row)), field_names, row, widths): last_column = True if index == len(row) - 1 else False col_lines = value.split('\n') final_col_lines = [] for line in col_lines: final_col_lines += textwrap.wrap(line, width) for index, line in enumerate(final_col_lines): if len(lines) <= index: column = total_width*' ' + line + (width-len(line))*' ' lines.append(padding + column + padding) if not last_column: lines[index] += self._vertical_str else: column = (total_width-len(lines[index]))*' ' + line + (width-len(line))*' ' lines[index] += padding + column + padding if not last_column: lines[index] += self._vertical_str total_width += width + self._padding_width*2 + len(self._vertical_str) return '\n'.join(lines) def to_string(self, ignore_field_names=False): ''' get formatted result ''' return '\n'.join(self.to_lines(ignore_field_names)) def to_lines(self, ignore_field_names=False): ''' get formatted result ''' field_names = [self._sequence[1]] + list(self._field_names) if self._sequence[0] else self._field_names formatted_rows = self._format_rows(self._rows) widths = self._calculate_widths(field_names, formatted_rows) lines = [] if not ignore_field_names: lines.append(self._get_row_string(field_names, field_names, widths)) for row in formatted_rows: lines.append(self._get_row_string(field_names, row, widths)) return lines def add_row(self, row): ''' Arguments: row - list or tuple of field values ''' if len(row) != len(self._field_names): raise Error("Row has different number of values with field names, (row) %d!=%d (field)" \ % (len(row), len(self._field_names))) new_row = [col if col is not None else '' for col in row] self._rows.append(new_row) def add_rows(self, rows): for row in rows: self.add_row(row) if __name__ == "__main__": table = TextTable(['Name', 'Age', 'Gender', 'Desc', 'Nationality'], vertical_str=' ') table.add_row(('You', 10, 'male', 'You are a boy', 'China')) table.add_row(('Me', 100, 'male', 'I am an old man', 'Japan')) table.add_row(('She', 18, 'female', 'She is a pretty girl', 'America')) table.add_row(('He', 1, 'male', 'He is a little baby', 'British')) #table.set_sequence(True) print(table.to_string())
# Copyright 2012 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import collections import os import eventlet from oslo_config import cfg from oslo_log import log as logging import oslo_messaging from oslo_utils import importutils from neutron.agent.linux import dhcp from neutron.agent.linux import external_process from neutron.agent.linux import utils as linux_utils from neutron.agent.metadata import driver as metadata_driver from neutron.agent import rpc as agent_rpc from neutron.common import constants from neutron.common import exceptions from neutron.common import rpc as n_rpc from neutron.common import topics from neutron.common import utils from neutron import context from neutron.i18n import _LE, _LI, _LW from neutron import manager from neutron.openstack.common import loopingcall LOG = logging.getLogger(__name__) class DhcpAgent(manager.Manager): """DHCP agent service manager. Note that the public methods of this class are exposed as the server side of an rpc interface. The neutron server uses neutron.api.rpc.agentnotifiers.dhcp_rpc_agent_api.DhcpAgentNotifyApi as the client side to execute the methods here. For more information about changing rpc interfaces, see doc/source/devref/rpc_api.rst. """ target = oslo_messaging.Target(version='1.0') def __init__(self, host=None): super(DhcpAgent, self).__init__(host=host) self.needs_resync_reasons = collections.defaultdict(list) self.conf = cfg.CONF self.cache = NetworkCache() self.dhcp_driver_cls = importutils.import_class(self.conf.dhcp_driver) ctx = context.get_admin_context_without_session() self.plugin_rpc = DhcpPluginApi(topics.PLUGIN, ctx, self.conf.use_namespaces) # create dhcp dir to store dhcp info dhcp_dir = os.path.dirname("/%s/dhcp/" % self.conf.state_path) linux_utils.ensure_dir(dhcp_dir) self.dhcp_version = self.dhcp_driver_cls.check_version() self._populate_networks_cache() self._process_monitor = external_process.ProcessMonitor( config=self.conf, resource_type='dhcp') def _populate_networks_cache(self): """Populate the networks cache when the DHCP-agent starts.""" try: existing_networks = self.dhcp_driver_cls.existing_dhcp_networks( self.conf ) for net_id in existing_networks: net = dhcp.NetModel(self.conf.use_namespaces, {"id": net_id, "subnets": [], "ports": []}) self.cache.put(net) except NotImplementedError: # just go ahead with an empty networks cache LOG.debug("The '%s' DHCP-driver does not support retrieving of a " "list of existing networks", self.conf.dhcp_driver) def after_start(self): self.run() LOG.info(_LI("DHCP agent started")) def run(self): """Activate the DHCP agent.""" self.sync_state() self.periodic_resync() def call_driver(self, action, network, **action_kwargs): """Invoke an action on a DHCP driver instance.""" LOG.debug('Calling driver for network: %(net)s action: %(action)s', {'net': network.id, 'action': action}) try: # the Driver expects something that is duck typed similar to # the base models. driver = self.dhcp_driver_cls(self.conf, network, self._process_monitor, self.dhcp_version, self.plugin_rpc) getattr(driver, action)(**action_kwargs) return True except exceptions.Conflict: # No need to resync here, the agent will receive the event related # to a status update for the network LOG.warning(_LW('Unable to %(action)s dhcp for %(net_id)s: there ' 'is a conflict with its current state; please ' 'check that the network and/or its subnet(s) ' 'still exist.'), {'net_id': network.id, 'action': action}) except Exception as e: if getattr(e, 'exc_type', '') != 'IpAddressGenerationFailure': # Don't resync if port could not be created because of an IP # allocation failure. When the subnet is updated with a new # allocation pool or a port is deleted to free up an IP, this # will automatically be retried on the notification self.schedule_resync(e, network.id) if (isinstance(e, oslo_messaging.RemoteError) and e.exc_type == 'NetworkNotFound' or isinstance(e, exceptions.NetworkNotFound)): LOG.warning(_LW("Network %s has been deleted."), network.id) else: LOG.exception(_LE('Unable to %(action)s dhcp for %(net_id)s.'), {'net_id': network.id, 'action': action}) def schedule_resync(self, reason, network=None): """Schedule a resync for a given network and reason. If no network is specified, resync all networks. """ self.needs_resync_reasons[network].append(reason) @utils.synchronized('dhcp-agent') def sync_state(self, networks=None): """Sync the local DHCP state with Neutron. If no networks are passed, or 'None' is one of the networks, sync all of the networks. """ only_nets = set([] if (not networks or None in networks) else networks) LOG.info(_LI('Synchronizing state')) pool = eventlet.GreenPool(cfg.CONF.num_sync_threads) known_network_ids = set(self.cache.get_network_ids()) try: active_networks = self.plugin_rpc.get_active_networks_info() active_network_ids = set(network.id for network in active_networks) for deleted_id in known_network_ids - active_network_ids: try: self.disable_dhcp_helper(deleted_id) except Exception as e: self.schedule_resync(e, deleted_id) LOG.exception(_LE('Unable to sync network state on ' 'deleted network %s'), deleted_id) for network in active_networks: if (not only_nets or # specifically resync all network.id not in known_network_ids or # missing net network.id in only_nets): # specific network to sync pool.spawn(self.safe_configure_dhcp_for_network, network) pool.waitall() LOG.info(_LI('Synchronizing state complete')) except Exception as e: self.schedule_resync(e) LOG.exception(_LE('Unable to sync network state.')) @utils.exception_logger() def _periodic_resync_helper(self): """Resync the dhcp state at the configured interval.""" while True: eventlet.sleep(self.conf.resync_interval) if self.needs_resync_reasons: # be careful to avoid a race with additions to list # from other threads reasons = self.needs_resync_reasons self.needs_resync_reasons = collections.defaultdict(list) for net, r in reasons.items(): if not net: net = "*" LOG.debug("resync (%(network)s): %(reason)s", {"reason": r, "network": net}) self.sync_state(reasons.keys()) def periodic_resync(self): """Spawn a thread to periodically resync the dhcp state.""" eventlet.spawn(self._periodic_resync_helper) def safe_get_network_info(self, network_id): try: network = self.plugin_rpc.get_network_info(network_id) if not network: LOG.warn(_LW('Network %s has been deleted.'), network_id) return network except Exception as e: self.schedule_resync(e, network_id) LOG.exception(_LE('Network %s info call failed.'), network_id) def enable_dhcp_helper(self, network_id): """Enable DHCP for a network that meets enabling criteria.""" network = self.safe_get_network_info(network_id) if network: self.configure_dhcp_for_network(network) @utils.exception_logger() def safe_configure_dhcp_for_network(self, network): try: self.configure_dhcp_for_network(network) except (exceptions.NetworkNotFound, RuntimeError): LOG.warn(_LW('Network %s may have been deleted and its resources ' 'may have already been disposed.'), network.id) def configure_dhcp_for_network(self, network): if not network.admin_state_up: return enable_metadata = self.dhcp_driver_cls.should_enable_metadata( self.conf, network) dhcp_network_enabled = False for subnet in network.subnets: if subnet.enable_dhcp: if self.call_driver('enable', network): dhcp_network_enabled = True self.cache.put(network) break if enable_metadata and dhcp_network_enabled: for subnet in network.subnets: if subnet.ip_version == 4 and subnet.enable_dhcp: self.enable_isolated_metadata_proxy(network) break def disable_dhcp_helper(self, network_id): """Disable DHCP for a network known to the agent.""" network = self.cache.get_network_by_id(network_id) if network: if (self.conf.use_namespaces and self.conf.enable_isolated_metadata): # NOTE(jschwarz): In the case where a network is deleted, all # the subnets and ports are deleted before this function is # called, so checking if 'should_enable_metadata' is True # for any subnet is false logic here. self.disable_isolated_metadata_proxy(network) if self.call_driver('disable', network): self.cache.remove(network) def refresh_dhcp_helper(self, network_id): """Refresh or disable DHCP for a network depending on the current state of the network. """ old_network = self.cache.get_network_by_id(network_id) if not old_network: # DHCP current not running for network. return self.enable_dhcp_helper(network_id) network = self.safe_get_network_info(network_id) if not network: return old_cidrs = set(s.cidr for s in old_network.subnets if s.enable_dhcp) new_cidrs = set(s.cidr for s in network.subnets if s.enable_dhcp) if new_cidrs and old_cidrs == new_cidrs: self.call_driver('reload_allocations', network) self.cache.put(network) elif new_cidrs: if self.call_driver('restart', network): self.cache.put(network) else: self.disable_dhcp_helper(network.id) @utils.synchronized('dhcp-agent') def network_create_end(self, context, payload): """Handle the network.create.end notification event.""" network_id = payload['network']['id'] self.enable_dhcp_helper(network_id) @utils.synchronized('dhcp-agent') def network_update_end(self, context, payload): """Handle the network.update.end notification event.""" network_id = payload['network']['id'] if payload['network']['admin_state_up']: self.enable_dhcp_helper(network_id) else: self.disable_dhcp_helper(network_id) @utils.synchronized('dhcp-agent') def network_delete_end(self, context, payload): """Handle the network.delete.end notification event.""" self.disable_dhcp_helper(payload['network_id']) @utils.synchronized('dhcp-agent') def subnet_update_end(self, context, payload): """Handle the subnet.update.end notification event.""" network_id = payload['subnet']['network_id'] self.refresh_dhcp_helper(network_id) # Use the update handler for the subnet create event. subnet_create_end = subnet_update_end @utils.synchronized('dhcp-agent') def subnet_delete_end(self, context, payload): """Handle the subnet.delete.end notification event.""" subnet_id = payload['subnet_id'] network = self.cache.get_network_by_subnet_id(subnet_id) if network: self.refresh_dhcp_helper(network.id) @utils.synchronized('dhcp-agent') def port_update_end(self, context, payload): """Handle the port.update.end notification event.""" updated_port = dhcp.DictModel(payload['port']) network = self.cache.get_network_by_id(updated_port.network_id) if network: driver_action = 'reload_allocations' if self._is_port_on_this_agent(updated_port): orig = self.cache.get_port_by_id(updated_port['id']) # assume IP change if not in cache old_ips = {i['ip_address'] for i in orig['fixed_ips'] or []} new_ips = {i['ip_address'] for i in updated_port['fixed_ips']} if old_ips != new_ips: driver_action = 'restart' self.cache.put_port(updated_port) self.call_driver(driver_action, network) def _is_port_on_this_agent(self, port): thishost = utils.get_dhcp_agent_device_id( port['network_id'], self.conf.host) return port['device_id'] == thishost # Use the update handler for the port create event. port_create_end = port_update_end @utils.synchronized('dhcp-agent') def port_delete_end(self, context, payload): """Handle the port.delete.end notification event.""" port = self.cache.get_port_by_id(payload['port_id']) if port: network = self.cache.get_network_by_id(port.network_id) self.cache.remove_port(port) self.call_driver('reload_allocations', network) def enable_isolated_metadata_proxy(self, network): # The proxy might work for either a single network # or all the networks connected via a router # to the one passed as a parameter kwargs = {'network_id': network.id} # When the metadata network is enabled, the proxy might # be started for the router attached to the network if self.conf.enable_metadata_network: router_ports = [port for port in network.ports if (port.device_owner in constants.ROUTER_INTERFACE_OWNERS)] if router_ports: # Multiple router ports should not be allowed if len(router_ports) > 1: LOG.warning(_LW("%(port_num)d router ports found on the " "metadata access network. Only the port " "%(port_id)s, for router %(router_id)s " "will be considered"), {'port_num': len(router_ports), 'port_id': router_ports[0].id, 'router_id': router_ports[0].device_id}) kwargs = {'router_id': router_ports[0].device_id} metadata_driver.MetadataDriver.spawn_monitored_metadata_proxy( self._process_monitor, network.namespace, dhcp.METADATA_PORT, self.conf, **kwargs) def disable_isolated_metadata_proxy(self, network): metadata_driver.MetadataDriver.destroy_monitored_metadata_proxy( self._process_monitor, network.id, network.namespace, self.conf) class DhcpPluginApi(object): """Agent side of the dhcp rpc API. This class implements the client side of an rpc interface. The server side of this interface can be found in neutron.api.rpc.handlers.dhcp_rpc.DhcpRpcCallback. For more information about changing rpc interfaces, see doc/source/devref/rpc_api.rst. API version history: 1.0 - Initial version. 1.1 - Added get_active_networks_info, create_dhcp_port, and update_dhcp_port methods. """ def __init__(self, topic, context, use_namespaces): self.context = context self.host = cfg.CONF.host self.use_namespaces = use_namespaces target = oslo_messaging.Target( topic=topic, namespace=constants.RPC_NAMESPACE_DHCP_PLUGIN, version='1.0') self.client = n_rpc.get_client(target) def get_active_networks_info(self): """Make a remote process call to retrieve all network info.""" cctxt = self.client.prepare(version='1.1') networks = cctxt.call(self.context, 'get_active_networks_info', host=self.host) return [dhcp.NetModel(self.use_namespaces, n) for n in networks] def get_network_info(self, network_id): """Make a remote process call to retrieve network info.""" cctxt = self.client.prepare() network = cctxt.call(self.context, 'get_network_info', network_id=network_id, host=self.host) if network: return dhcp.NetModel(self.use_namespaces, network) def get_dhcp_port(self, network_id, device_id): """Make a remote process call to get the dhcp port.""" cctxt = self.client.prepare() port = cctxt.call(self.context, 'get_dhcp_port', network_id=network_id, device_id=device_id, host=self.host) if port: return dhcp.DictModel(port) def create_dhcp_port(self, port): """Make a remote process call to create the dhcp port.""" cctxt = self.client.prepare(version='1.1') port = cctxt.call(self.context, 'create_dhcp_port', port=port, host=self.host) if port: return dhcp.DictModel(port) def update_dhcp_port(self, port_id, port): """Make a remote process call to update the dhcp port.""" cctxt = self.client.prepare(version='1.1') port = cctxt.call(self.context, 'update_dhcp_port', port_id=port_id, port=port, host=self.host) if port: return dhcp.DictModel(port) def release_dhcp_port(self, network_id, device_id): """Make a remote process call to release the dhcp port.""" cctxt = self.client.prepare() return cctxt.call(self.context, 'release_dhcp_port', network_id=network_id, device_id=device_id, host=self.host) def release_port_fixed_ip(self, network_id, device_id, subnet_id): """Make a remote process call to release a fixed_ip on the port.""" cctxt = self.client.prepare() return cctxt.call(self.context, 'release_port_fixed_ip', network_id=network_id, subnet_id=subnet_id, device_id=device_id, host=self.host) class NetworkCache(object): """Agent cache of the current network state.""" def __init__(self): self.cache = {} self.subnet_lookup = {} self.port_lookup = {} def get_network_ids(self): return self.cache.keys() def get_network_by_id(self, network_id): return self.cache.get(network_id) def get_network_by_subnet_id(self, subnet_id): return self.cache.get(self.subnet_lookup.get(subnet_id)) def get_network_by_port_id(self, port_id): return self.cache.get(self.port_lookup.get(port_id)) def put(self, network): if network.id in self.cache: self.remove(self.cache[network.id]) self.cache[network.id] = network for subnet in network.subnets: self.subnet_lookup[subnet.id] = network.id for port in network.ports: self.port_lookup[port.id] = network.id def remove(self, network): del self.cache[network.id] for subnet in network.subnets: del self.subnet_lookup[subnet.id] for port in network.ports: del self.port_lookup[port.id] def put_port(self, port): network = self.get_network_by_id(port.network_id) for index in range(len(network.ports)): if network.ports[index].id == port.id: network.ports[index] = port break else: network.ports.append(port) self.port_lookup[port.id] = network.id def remove_port(self, port): network = self.get_network_by_port_id(port.id) for index in range(len(network.ports)): if network.ports[index] == port: del network.ports[index] del self.port_lookup[port.id] break def get_port_by_id(self, port_id): network = self.get_network_by_port_id(port_id) if network: for port in network.ports: if port.id == port_id: return port def get_state(self): net_ids = self.get_network_ids() num_nets = len(net_ids) num_subnets = 0 num_ports = 0 for net_id in net_ids: network = self.get_network_by_id(net_id) num_subnets += len(network.subnets) num_ports += len(network.ports) return {'networks': num_nets, 'subnets': num_subnets, 'ports': num_ports} class DhcpAgentWithStateReport(DhcpAgent): def __init__(self, host=None): super(DhcpAgentWithStateReport, self).__init__(host=host) self.state_rpc = agent_rpc.PluginReportStateAPI(topics.PLUGIN) self.agent_state = { 'binary': 'neutron-dhcp-agent', 'host': host, 'topic': topics.DHCP_AGENT, 'configurations': { 'dhcp_driver': cfg.CONF.dhcp_driver, 'use_namespaces': cfg.CONF.use_namespaces, 'dhcp_lease_duration': cfg.CONF.dhcp_lease_duration}, 'start_flag': True, 'agent_type': constants.AGENT_TYPE_DHCP} report_interval = cfg.CONF.AGENT.report_interval self.use_call = True if report_interval: self.heartbeat = loopingcall.FixedIntervalLoopingCall( self._report_state) self.heartbeat.start(interval=report_interval) def _report_state(self): try: self.agent_state.get('configurations').update( self.cache.get_state()) ctx = context.get_admin_context_without_session() self.state_rpc.report_state(ctx, self.agent_state, self.use_call) self.use_call = False except AttributeError: # This means the server does not support report_state LOG.warn(_LW("Neutron server does not support state report." " State report for this agent will be disabled.")) self.heartbeat.stop() self.run() return except Exception: LOG.exception(_LE("Failed reporting state!")) return if self.agent_state.pop('start_flag', None): self.run() def agent_updated(self, context, payload): """Handle the agent_updated notification event.""" self.schedule_resync(_("Agent updated: %(payload)s") % {"payload": payload}) LOG.info(_LI("agent_updated by server side %s!"), payload) def after_start(self): LOG.info(_LI("DHCP agent started"))
# Copyright (C) 2016 - Oscar Campos <[email protected]> # This program is Free Software see LICENSE file for details from anaconda_go.lib import go from anaconda_go.lib.helpers import get_settings from anaconda_go.lib.plugin import completion, Worker, Callback, is_code import sublime class GoCompletionEventListener(completion.AnacondaCompletionEventListener): """Completion listener for anaconda_go """ def on_query_completions(self, view, prefix, locations): """Fired directly from Sublime Text 3 events systems """ if not is_code(view, lang='go'): return if not go.ANAGONDA_PRESENT: if go.AVAILABLE: go.init() else: return if self.ready_from_defer is True: completion_flags = 0 if get_settings(view, 'suppress_word_completions', False): completion_flags = sublime.INHIBIT_WORD_COMPLETIONS if get_settings(view, 'suppress_explicit_completions', False): completion_flags |= sublime.INHIBIT_EXPLICIT_COMPLETIONS cpl = self.completions self.completions = [] self.ready_from_defer = False return (cpl, completion_flags) code = view.substr(sublime.Region(0, view.size())) row, col = view.rowcol(locations[0]) data = { 'vid': view.id(), 'path': view.file_name(), 'code': code, 'offset': view.text_point(row, col), 'add_params': get_settings( view, 'anaconda_go_add_completion_params', True), 'go_env': { 'GOROOT': go.GOROOT, 'GOPATH': go.GOPATH, 'CGO_ENABLED': go.CGO_ENABLED }, 'method': 'autocomplete', 'handler': 'anaGonda' } Worker.execute( Callback( on_success=self._complete, on_failure=self._on_failure, on_timeout=self._on_timeout ), **data ) def _on_timeout(self, _): """Called when request times out """ print('anaconda_go completion timed out...') def _on_failure(self, data): """Called when request fails """ print('anaconda_go error: {}'.format(data['error'])) def _on_modified(self, view): """Just override anaconda superclass func """ return
from utils import * # Q2 def if_this_not_that(i_list, this): """ >>> original_list = [1, 2, 3, 4, 5] >>> if_this_not_that(original_list, 3) that that that 4 5 """ "*** YOUR CODE HERE ***" for elem in i_list: if elem <= this: print('that') else: print(elem) # Q3 def reverse_iter(lst): """Returns the reverse of the given list. >>> reverse_iter([1, 2, 3, 4]) [4, 3, 2, 1] """ "*** YOUR CODE HERE ***" rev = [] for elem in lst: rev = [elem] + rev return rev # Q4 def closer_city(lat, lon, city1, city2): """ Returns the name of either city1 or city2, whichever is closest to coordinate (lat, lon). >>> berkeley = make_city('Berkeley', 37.87, 112.26) >>> stanford = make_city('Stanford', 34.05, 118.25) >>> closer_city(38.33, 121.44, berkeley, stanford) 'Stanford' >>> bucharest = make_city('Bucharest', 44.43, 26.10) >>> vienna = make_city('Vienna', 48.20, 16.37) >>> closer_city(41.29, 174.78, bucharest, vienna) 'Bucharest' """ my_city = make_city('MYCITY', lat, lon) distance1, distance2 = distance(my_city, city1), distance(my_city, city2) return get_name(city1) if distance1 < distance2 else get_name(city2) # Connect N: Q5-11 ###################### ### Connect N Game ### ###################### def create_row(size): """Returns a single, empty row with the given size. Each empty spot is represented by the string '-'. >>> create_row(5) ['-', '-', '-', '-', '-'] """ return ['-'] * size def create_board(rows, columns): """Returns a board with the given dimensions. >>> create_board(3, 5) [['-', '-', '-', '-', '-'], ['-', '-', '-', '-', '-'], ['-', '-', '-', '-', '-']] """ "*** YOUR CODE HERE ***" return [create_row(columns)] * rows def replace_elem(lst, index, elem): """Create and return a new list whose elements are the same as those in LST except at index INDEX, which should contain element ELEM instead. >>> old = [1, 2, 3, 4, 5, 6, 7] >>> new = replace_elem(old, 2, 8) >>> new [1, 2, 8, 4, 5, 6, 7] >>> new is old # check that replace_elem outputs a new list False """ assert index >= 0 and index < len(lst), 'Index is out of bounds' "*** YOUR CODE HERE ***" return lst[:index] + [elem] + lst[index + 1:] def get_piece(board, row, column): """Returns the piece at location (row, column) in the board. >>> rows, columns = 2, 2 >>> board = create_board(rows, columns) >>> board = put_piece(board, rows, 0, 'X')[1] >>> board = put_piece(board, rows, 0, 'O')[1] >>> get_piece(board, 1, 0) 'X' >>> get_piece(board, 1, 1) '-' """ "*** YOUR CODE HERE ***" return board[row][column] def put_piece(board, max_rows, column, player): """Puts PLAYER's piece in the bottommost empty spot in the given column of the board. Returns a tuple of two elements: 1. The index of the row the piece ends up in, or -1 if the column is full. 2. The new board >>> rows, columns = 2, 2 >>> board = create_board(rows, columns) >>> row, new_board = put_piece(board, rows, 0, 'X') >>> row 1 >>> row, new_board = put_piece(new_board, rows, 0, 'O') >>> row 0 >>> row, new_board = put_piece(new_board, rows, 0, 'X') >>> row -1 """ "*** YOUR CODE HERE ***" row = 0 while row < max_rows and get_piece(board, row, column) == '-': row = row + 1 if row != 0: new_row = replace_elem(board[row - 1], column, player) board = replace_elem(board, row - 1, new_row) return row - 1, board def make_move(board, max_rows, max_cols, col, player): """Put player's piece in column COL of the board, if it is a valid move. Return a tuple of two values: 1. If the move is valid, make_move returns the index of the row the piece is placed in. Otherwise, it returns -1. 2. The updated board >>> rows, columns = 2, 2 >>> board = create_board(rows, columns) >>> row, board = make_move(board, rows, columns, 0, 'X') >>> row 1 >>> get_piece(board, 1, 0) 'X' >>> row, board = make_move(board, rows, columns, 0, 'O') >>> row 0 >>> row, board = make_move(board, rows, columns, 0, 'X') >>> row -1 >>> row, board = make_move(board, rows, columns, -4, '0') >>> row -1 """ "*** YOUR CODE HERE ***" if col < 0 or col >= max_cols: return -1, board else: row, new_board = put_piece(board, max_rows, col, player) return row, new_board def print_board(board, max_rows, max_cols): """Prints the board. Row 0 is at the top, and column 0 at the far left. >>> rows, columns = 2, 2 >>> board = create_board(rows, columns) >>> print_board(board, rows, columns) - - - - >>> new_board = make_move(board, rows, columns, 0, 'X')[1] >>> print_board(new_board, rows, columns) - - X - """ "*** YOUR CODE HERE ***" assert max_rows > 0 and max_cols > 0 row = 0 while row < max_rows: col = 1 line = get_piece(board, row, 0) while col < max_cols: line = line + ' ' + get_piece(board, row, col) col = col + 1 print(line) row = row + 1 def check_win_row(board, max_rows, max_cols, num_connect, row, player): """ Returns True if the given player has a horizontal win in the given row, and otherwise False. >>> rows, columns, num_connect = 4, 4, 2 >>> board = create_board(rows, columns) >>> board = make_move(board, rows, columns, 0, 'X')[1] >>> board = make_move(board, rows, columns, 0, 'O')[1] >>> check_win_row(board, rows, columns, num_connect, 3, 'O') False >>> board = make_move(board, rows, columns, 2, 'X')[1] >>> board = make_move(board, rows, columns, 0, 'O')[1] >>> check_win_row(board, rows, columns, num_connect, 3, 'X') False >>> board = make_move(board, rows, columns, 1, 'X')[1] >>> check_win_row(board, rows, columns, num_connect, 3, 'X') True >>> check_win_row(board, rows, columns, 4, 3, 'X') # A win depends on the value of num_connect False >>> check_win_row(board, rows, columns, num_connect, 3, 'O') # We only detect wins for the given player False """ "*** YOUR CODE HERE ***" assert row >= 0 and row < max_rows max_consec, cur_consec = 0, 0 for col in range(0, max_cols): if get_piece(board, row, col) == player: cur_consec += 1 if cur_consec > max_consec: max_consec = cur_consec else: cur_consec = 0 return max_consec >= num_connect def check_win_column(board, max_rows, max_cols, num_connect, col, player): """ Returns True if the given player has a vertical win in the given column, and otherwise False. >>> rows, columns, num_connect = 5, 5, 2 >>> board = create_board(rows, columns) >>> board = make_move(board, rows, columns, 0, 'X')[1] >>> board = make_move(board, rows, columns, 1, 'O')[1] >>> check_win_column(board, rows, columns, num_connect, 0, 'X') False >>> board = make_move(board, rows, columns, 1, 'X')[1] >>> board = make_move(board, rows, columns, 1, 'O')[1] >>> check_win_column(board, rows, columns, num_connect, 1, 'O') False >>> board = make_move(board, rows, columns, 2, 'X')[1] >>> board = make_move(board, rows, columns, 1, 'O')[1] >>> check_win_column(board, rows, columns, num_connect, 1, 'O') True >>> check_win_column(board, rows, columns, 4, 1, 'O') False >>> check_win_column(board, rows, columns, num_connect, 1, 'X') False """ "*** YOUR CODE HERE ***" assert col >= 0 and col < max_cols max_consec, cur_consec = 0, 0 for row in range(0, max_cols): if get_piece(board, row, col) == player: cur_consec += 1 if cur_consec > max_consec: max_consec = cur_consec else: cur_consec = 0 return max_consec >= num_connect def check_win(board, max_rows, max_cols, num_connect, row, col, player): """ Returns True if the given player has any kind of win after placing a piece at (row, col), and False otherwise. >>> rows, columns, num_connect = 2, 2, 2 >>> board = create_board(rows, columns) >>> board = make_move(board, rows, columns, 0, 'X')[1] >>> board = make_move(board, rows, columns, 1, 'O')[1] >>> board = make_move(board, rows, columns, 0, 'X')[1] >>> check_win(board, rows, columns, num_connect, 0, 0, 'O') False >>> check_win(board, rows, columns, num_connect, 0, 0, 'X') True >>> board = create_board(rows, columns) >>> board = make_move(board, rows, columns, 0, 'X')[1] >>> board = make_move(board, rows, columns, 0, 'O')[1] >>> board = make_move(board, rows, columns, 1, 'X')[1] >>> check_win(board, rows, columns, num_connect, 1, 0, 'X') True >>> check_win(board, rows, columns, num_connect, 0, 0, 'X') False >>> board = create_board(rows, columns) >>> board = make_move(board, rows, columns, 0, 'X')[1] >>> board = make_move(board, rows, columns, 1, 'O')[1] >>> board = make_move(board, rows, columns, 1, 'X')[1] >>> check_win(board, rows, columns, num_connect, 0, 0, 'X') False >>> check_win(board, rows, columns, num_connect, 1, 0, 'X') True """ diagonal_win = check_win_diagonal(board, max_rows, max_cols, num_connect, row, col, player) "*** YOUR CODE HERE ***" return diagonal_win or check_win_row(board, max_rows, max_cols, num_connect, row, player) or \ check_win_column(board, max_rows, max_cols, num_connect, col, player) ############################################################### ### Functions for reference when solving the other problems ### ############################################################### def check_win_diagonal(board, max_rows, max_cols, num_connect, row, col, player): """ Returns True if the given player has a diagonal win passing the spot (row, column), and False otherwise. """ # Find top left of diagonal passing through the newly placed piece. adjacent = 0 row_top_left, col_top_left = row, col while row_top_left > 0 and col_top_left > 0: row_top_left -= 1 col_top_left -= 1 # Loop through top left to bottom right diagonal and check for win. while row_top_left < max_rows and col_top_left < max_cols: piece = get_piece(board, row_top_left, col_top_left) if piece == player: adjacent += 1 else: adjacent = 0 if adjacent >= num_connect: return True row_top_left += 1 col_top_left += 1 # Find top right of diagonal passing through the newly placed piece. adjacent = 0 row_top_right, col_top_right = row, col while row_top_right > 0 and col_top_right < max_cols - 1: row_top_right -= 1 col_top_right += 1 # Loop through top right to bottom left diagonal and check for win. while row_top_right < max_rows and col_top_right >= 0: piece = get_piece(board, row_top_right, col_top_right) if piece == player: adjacent += 1 else: adjacent = 0 if adjacent >= num_connect: return True row_top_right += 1 col_top_right -= 1 return False ##################################################################################### ### You do not need to read or understand the following code for this assignment. ### ##################################################################################### import sys def other(player): """ Returns the given player's opponent. """ if player == 'X': return 'O' return 'X' def play(board, max_rows, max_cols, num_connect): max_turns = max_rows * max_cols playing = True print("Player 'X' starts") who = 'X' turns = 0 while True: turns += 1 if turns > max_turns: print("No more moves. It's a tie!") sys.exit() while True: try: col_index = int(input('Which column, player {}? '.format(who))) except ValueError as e: print('Invalid input. Please try again.') continue row_index, board = make_move(board, max_rows, max_cols, col_index, who) if row_index != -1: break print("Oops, you can't put a piece there") print_board(board, max_rows, max_cols) if check_win(board, max_rows, max_cols, num_connect, row_index, col_index, who): print("Player {} wins!".format(who)) sys.exit() who = other(who) def start_game(): # Get all parameters for the game from user. while True: # Get num_connect from user. while True: try: num_connect = int(input('How many to connect (e.g. 4 for Connect 4)? ')) except ValueError as e: print('Invalid input. Please try again.') continue break # Get number of rows for board from user. while True: try: max_rows = int(input('How many rows? ')) except ValueError as e: print('Invalid input. Please try again.') continue break # Get number of columns for board from user. while True: try: max_cols = int(input('How many columns? ')) except ValueError as e: print('Invalid input. Please try again.') continue break if max_rows >= num_connect or max_cols >= num_connect: break print("Invalid dimensions for connect {0}. Please try again.".format(num_connect)) board = create_board(max_rows, max_cols) play(board, max_rows, max_cols, num_connect)
# # IIT Kharagpur - Hall Management System # System to manage Halls of residences, Warden grant requests, student complaints # hall worker attendances and salary payments # # MIT License # """ @ authors: Madhav Datt, Avikalp Srivastava """ import password_validation as pv import re import db_rebuild as dbr from ..workers import clerk, mess_manager def is_valid(password): """ Check if passed plain-text string is a valid password Valid passwords - minimum criteria: 8 characters 1 capital letter 1 numerical value no spaces """ present_capital = re.search(r'[A-Z]', password, re.M) present_num = re.search(r'\d', password, re.M) if (len(password) >= 8) and (" " not in password) and present_capital and present_num: return True return False def authenticate(table, user_ID, password): """ Authenticate login with entered user_ID and password Check table to match and return True if correct """ if table == "clerk": table_data = dbr.rebuild("worker") if user_ID not in table_data: return False if isinstance(table_data[user_ID], clerk.Clerk): if pv.check_password(password, table_data[user_ID].password): return True elif table == "mess_manager": table_data = dbr.rebuild("worker") if user_ID not in table_data: return False if isinstance(table_data[user_ID], mess_manager.MessManager): if pv.check_password(password, table_data[user_ID].password): return True elif table == "student": table_data = dbr.rebuild(table) if user_ID not in table_data: return False if pv.check_password(password, table_data[user_ID].password): return True elif table == "warden": table_data = dbr.rebuild(table) if user_ID not in table_data: return False if pv.check_password(password, table_data[user_ID].password): return True elif table == "hmc": table_data = dbr.rebuild(table) for key in table_data: if pv.check_password(password, table_data[key].password): return True return False
import csv import pandas as pd from time import time, sleep import numpy as np import nltk import string import ast import re import os import sys import multiprocessing from os import listdir from os.path import isfile, join csv.field_size_limit(sys.maxsize) #os.system("taskset -p 0xff %d" % os.getpid()) def IsNotNull(value): return value is not None and len(value) > 0 totallist = [] #create +/- word-dict #Bing Liu's dictionary dict_p = [] f = open('positive-words.txt', 'r') for line in f: t = line.strip().lower() if IsNotNull(t): dict_p.append(t) f.close dict_n = [] f = open('negative-words.txt', 'r') for line in f: t = line.strip().lower() if IsNotNull(t): dict_n.append(t) f.close #change to MASTER DICTIONARY dict_n2 = [] f = open('negative - master dictionary.txt', 'r') for line in f: t = line.strip().lower() if IsNotNull(t): dict_n2.append(t) f.close dict_p2 = [] f = open('positive - master dictionary.txt', 'r') for line in f: t = line.strip().lower() if IsNotNull(t): dict_p2.append(t) f.close #EXTENDED SENTIMENT dict_uncertainty = [] f = open('uncertainty - master dictionary.txt', 'r') for line in f: t = line.strip().lower() if IsNotNull(t): dict_uncertainty.append(t) f.close dict_litigious = [] f = open('litigious - master dictionary.txt', 'r') for line in f: t = line.strip().lower() if IsNotNull(t): dict_litigious.append(t) f.close dict_constraining = [] f = open('constraining - master dictionary.txt', 'r') for line in f: t = line.strip().lower() if IsNotNull(t): dict_constraining.append(t) f.close dict_superfluous = [] f = open('superfluous - master dictionary.txt', 'r') for line in f: t = line.strip().lower() if IsNotNull(t): dict_superfluous.append(t) f.close dict_interesting = [] f = open('interesting - master dictionary.txt', 'r') for line in f: t = line.strip().lower() if IsNotNull(t): dict_interesting.append(t) f.close dict_modal = [] f = open('modal - master dictionary.txt', 'r') for line in f: t = line.strip().lower() if IsNotNull(t): dict_modal.append(t) f.close rowlist = [] rowlist2 = [] newlist = [] netcnt2 = 0 netcnt = 0 counti = 1 qa = 0 qb = 0 qa2 = 0 qb2 = 0 unc = 0 lit = 0 con = 0 sup = 0 inte = 0 mod = 0 mypath = '/Users/francis/Documents/FORDHAM/2nd Term/Text Analytics/' #path where files are located onlyfiles = [f for f in listdir(mypath) if isfile(join(mypath, f))] for i in onlyfiles: qa = 0 qb = 0 if i.endswith('.txt'): # get code j = i.replace('.txt','') # string filename file = mypath + str(i) f = open(file,'rU') raw = f.read() raw = raw.replace('\n',' ') #raw = raw.decode('utf8') for word in dict_p: if word in raw: qa += 1 for word in dict_n: if word in raw: qb += 1 qc = qa - qb if qc > 0: sentiment = 'POSITIVE' elif qc == 0: sentiment = 'NEUTRAL' else: sentiment = 'NEGATIVE' #version 2 - dictionaries for word in dict_p2: if word in raw: qa2 += 1 for word in dict_n2: if word in raw: qb2 += 1 qc2 = qa2 - qb2 if qc2 > 0: sentiment2 = 'POSITIVE' elif qc2 == 0: sentiment2 = 'NEUTRAL' else: sentiment2 = 'NEGATIVE' #extended for word in dict_uncertainty: if word in raw: unc += 1 for word in dict_litigious: if word in raw: lit += 1 for word in dict_constraining: if word in raw: con += 1 for word in dict_superfluous: if word in raw: sup += 1 for word in dict_interesting: if word in raw: inte += 1 for word in dict_modal: if word in raw: mod += 1 rowlist.append(i) rowlist.append(qa) rowlist.append(qb) rowlist.append(qc) rowlist.append(sentiment) rowlist.append(qa2) rowlist.append(qb2) rowlist.append(qc2) rowlist.append(sentiment2) rowlist.append(unc) rowlist.append(lit) rowlist.append(con) rowlist.append(sup) rowlist.append(inte) rowlist.append(mod) print counti counti += 1 totallist.append(rowlist) rowlist2 = [] rowlist = [] labels = ('file', 'BL_P', 'BL_N', 'BL_NET', 'BL_SENTIMENT','M_P', 'M_N', 'M_NET', 'M_SENTIMENT','M_UNCERTAINTY','M_LITIGIOUS','M_CONSTRAINING','M_SUPERFLUOUS','M_INTERESTING','M_MODAL') df = pd.DataFrame.from_records(totallist, columns = labels) df.to_csv('allsentiment.csv', index = False) # netcnt += qc # netcnt2 += qc2 # if netcnt > 0: # print "V1 - TOTAL +" # elif netcnt == 0: # print "V1 - TOTAL ~" # else: # print "V1 - TOTAL -" # netcnt = 0 # if netcnt2 > 0: # print "V2 - TOTAL +" # elif netcnt2 == 0: # print "V2 - TOTAL ~" # else: # print "V2 - TOTAL -" # netcnt2 = 0
#!/usr/bin/env python # -*- coding: utf-8 -*- #=============================================================================== # T9 message problem #=============================================================================== from __future__ import unicode_literals from codejam.common import CodeJamIO, Problem, ProblemInstance #------------------------------------------------------------------------------ T9 = { ' ': '0', 'a': '2', 'b': '22', 'c': '222', 'd': '3', 'e': '33', 'f': '333', 'g': '4', 'h': '44', 'i': '444', 'j': '5', 'k': '55', 'l': '555', 'm': '6', 'n': '66', 'o': '666', 'p': '7', 'q': '77', 'r': '777', 's': '7777', 't': '8', 'u': '88', 'v': '888', 'w': '9', 'x': '99', 'y': '999', 'z': '9999' } class T9Message(ProblemInstance): def __init__(self): self.msg = CodeJamIO.read_input(strip=False) def solve(self): t9 = '' for l in self.msg: v = T9[l] t9 += ' ' + v if (t9 and t9[-1] == v[0]) else v return t9 #------------------------------------------------------------------------------ if __name__ == '__main__': p = Problem(T9Message) p.solve()
#!/usr/bin/env python3 # Copyright (c) 2015-2019 The Starwels developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test transaction signing using the signrawtransaction RPC.""" from test_framework.test_framework import StarwelsTestFramework from test_framework.util import * class SignRawTransactionsTest(StarwelsTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 1 def successful_signing_test(self): """Create and sign a valid raw transaction with one input. Expected results: 1) The transaction has a complete set of signatures 2) No script verification error occurred""" privKeys = ['cUeKHd5orzT3mz8P9pxyREHfsWtVfgsfDjiZZBcjUBAaGk1BTj7N', 'cVKpPfVKSJxKqVpE9awvXNWuLHCa5j5tiE7K6zbUSptFpTEtiFrA'] inputs = [ # Valid pay-to-pubkey scripts {'txid': '9b907ef1e3c26fc71fe4a4b3580bc75264112f95050014157059c736f0202e71', 'vout': 0, 'scriptPubKey': '76a91460baa0f494b38ce3c940dea67f3804dc52d1fb9488ac'}, {'txid': '83a4f6a6b73660e13ee6cb3c6063fa3759c50c9b7521d0536022961898f4fb02', 'vout': 0, 'scriptPubKey': '76a914669b857c03a5ed269d5d85a1ffac9ed5d663072788ac'}, ] outputs = {'mpLQjfK79b7CCV4VMJWEWAj5Mpx8Up5zxB': 0.1} rawTx = self.nodes[0].createrawtransaction(inputs, outputs) rawTxSigned = self.nodes[0].signrawtransaction(rawTx, inputs, privKeys) # 1) The transaction has a complete set of signatures assert 'complete' in rawTxSigned assert_equal(rawTxSigned['complete'], True) # 2) No script verification error occurred assert 'errors' not in rawTxSigned def script_verification_error_test(self): """Create and sign a raw transaction with valid (vin 0), invalid (vin 1) and one missing (vin 2) input script. Expected results: 3) The transaction has no complete set of signatures 4) Two script verification errors occurred 5) Script verification errors have certain properties ("txid", "vout", "scriptSig", "sequence", "error") 6) The verification errors refer to the invalid (vin 1) and missing input (vin 2)""" privKeys = ['cUeKHd5orzT3mz8P9pxyREHfsWtVfgsfDjiZZBcjUBAaGk1BTj7N'] inputs = [ # Valid pay-to-pubkey script {'txid': '9b907ef1e3c26fc71fe4a4b3580bc75264112f95050014157059c736f0202e71', 'vout': 0}, # Invalid script {'txid': '5b8673686910442c644b1f4993d8f7753c7c8fcb5c87ee40d56eaeef25204547', 'vout': 7}, # Missing scriptPubKey {'txid': '9b907ef1e3c26fc71fe4a4b3580bc75264112f95050014157059c736f0202e71', 'vout': 1}, ] scripts = [ # Valid pay-to-pubkey script {'txid': '9b907ef1e3c26fc71fe4a4b3580bc75264112f95050014157059c736f0202e71', 'vout': 0, 'scriptPubKey': '76a91460baa0f494b38ce3c940dea67f3804dc52d1fb9488ac'}, # Invalid script {'txid': '5b8673686910442c644b1f4993d8f7753c7c8fcb5c87ee40d56eaeef25204547', 'vout': 7, 'scriptPubKey': 'badbadbadbad'} ] outputs = {'mpLQjfK79b7CCV4VMJWEWAj5Mpx8Up5zxB': 0.1} rawTx = self.nodes[0].createrawtransaction(inputs, outputs) # Make sure decoderawtransaction is at least marginally sane decodedRawTx = self.nodes[0].decoderawtransaction(rawTx) for i, inp in enumerate(inputs): assert_equal(decodedRawTx["vin"][i]["txid"], inp["txid"]) assert_equal(decodedRawTx["vin"][i]["vout"], inp["vout"]) # Make sure decoderawtransaction throws if there is extra data assert_raises_rpc_error(-22, "TX decode failed", self.nodes[0].decoderawtransaction, rawTx + "00") rawTxSigned = self.nodes[0].signrawtransaction(rawTx, scripts, privKeys) # 3) The transaction has no complete set of signatures assert 'complete' in rawTxSigned assert_equal(rawTxSigned['complete'], False) # 4) Two script verification errors occurred assert 'errors' in rawTxSigned assert_equal(len(rawTxSigned['errors']), 2) # 5) Script verification errors have certain properties assert 'txid' in rawTxSigned['errors'][0] assert 'vout' in rawTxSigned['errors'][0] assert 'witness' in rawTxSigned['errors'][0] assert 'scriptSig' in rawTxSigned['errors'][0] assert 'sequence' in rawTxSigned['errors'][0] assert 'error' in rawTxSigned['errors'][0] # 6) The verification errors refer to the invalid (vin 1) and missing input (vin 2) assert_equal(rawTxSigned['errors'][0]['txid'], inputs[1]['txid']) assert_equal(rawTxSigned['errors'][0]['vout'], inputs[1]['vout']) assert_equal(rawTxSigned['errors'][1]['txid'], inputs[2]['txid']) assert_equal(rawTxSigned['errors'][1]['vout'], inputs[2]['vout']) assert not rawTxSigned['errors'][0]['witness'] # Now test signing failure for transaction with input witnesses p2wpkh_raw_tx = "01000000000102fff7f7881a8099afa6940d42d1e7f6362bec38171ea3edf433541db4e4ad969f00000000494830450221008b9d1dc26ba6a9cb62127b02742fa9d754cd3bebf337f7a55d114c8e5cdd30be022040529b194ba3f9281a99f2b1c0a19c0489bc22ede944ccf4ecbab4cc618ef3ed01eeffffffef51e1b804cc89d182d279655c3aa89e815b1b309fe287d9b2b55d57b90ec68a0100000000ffffffff02202cb206000000001976a9148280b37df378db99f66f85c95a783a76ac7a6d5988ac9093510d000000001976a9143bde42dbee7e4dbe6a21b2d50ce2f0167faa815988ac000247304402203609e17b84f6a7d30c80bfa610b5b4542f32a8a0d5447a12fb1366d7f01cc44a0220573a954c4518331561406f90300e8f3358f51928d43c212a8caed02de67eebee0121025476c2e83188368da1ff3e292e7acafcdb3566bb0ad253f62fc70f07aeee635711000000" rawTxSigned = self.nodes[0].signrawtransaction(p2wpkh_raw_tx) # 7) The transaction has no complete set of signatures assert 'complete' in rawTxSigned assert_equal(rawTxSigned['complete'], False) # 8) Two script verification errors occurred assert 'errors' in rawTxSigned assert_equal(len(rawTxSigned['errors']), 2) # 9) Script verification errors have certain properties assert 'txid' in rawTxSigned['errors'][0] assert 'vout' in rawTxSigned['errors'][0] assert 'witness' in rawTxSigned['errors'][0] assert 'scriptSig' in rawTxSigned['errors'][0] assert 'sequence' in rawTxSigned['errors'][0] assert 'error' in rawTxSigned['errors'][0] # Non-empty witness checked here assert_equal(rawTxSigned['errors'][1]['witness'], ["304402203609e17b84f6a7d30c80bfa610b5b4542f32a8a0d5447a12fb1366d7f01cc44a0220573a954c4518331561406f90300e8f3358f51928d43c212a8caed02de67eebee01", "025476c2e83188368da1ff3e292e7acafcdb3566bb0ad253f62fc70f07aeee6357"]) assert not rawTxSigned['errors'][0]['witness'] def run_test(self): self.successful_signing_test() self.script_verification_error_test() if __name__ == '__main__': SignRawTransactionsTest().main()
import os import unittest from avro import schema from avro import io from avro import datafile class TestAvro(unittest.TestCase): def test_container(self): writer = open('data.avro', 'wb') datum_writer = io.DatumWriter() schema_object = schema.parse("""\ { "type": "record", "name": "StringPair", "doc": "A pair of strings.", "fields": [ {"name": "left", "type": "string"}, {"name": "right", "type": "string"} ] } """) dfw = datafile.DataFileWriter(writer, datum_writer, schema_object) datum = {'left':'L', 'right':'R'} dfw.append(datum) dfw.close() reader = open('data.avro', 'rb') datum_reader = io.DatumReader() dfr = datafile.DataFileReader(reader, datum_reader) data = [] for datum in dfr: data.append(datum) self.assertEquals(1, len(data)); self.assertEquals(datum, data[0]); def test_write_data(self): writer = open('pairs.avro', 'wb') datum_writer = io.DatumWriter() schema_object = schema.parse(open('/Users/tom/workspace/hadoop-book-avro/src/main/java/Pair.avsc').read()) dfw = datafile.DataFileWriter(writer, datum_writer, schema_object) dfw.append({'left':'a', 'right':'1'}) dfw.append({'left':'c', 'right':'2'}) dfw.append({'left':'b', 'right':'3'}) dfw.append({'left':'b', 'right':'2'}) dfw.close() if __name__ == '__main__': unittest.main()
'''Basic test cases for QGraphicsScene''' import unittest import gc from PySide.QtCore import QPointF from PySide.QtGui import QApplication, QPushButton, QPolygonF, QPixmap from PySide.QtGui import QGraphicsScene, QPainterPath from PySide.QtGui import QGraphicsEllipseItem, QGraphicsLineItem from PySide.QtGui import QGraphicsPathItem, QGraphicsPixmapItem from PySide.QtGui import QGraphicsPolygonItem, QGraphicsRectItem from PySide.QtGui import QGraphicsSimpleTextItem, QGraphicsTextItem from PySide.QtGui import QGraphicsProxyWidget from helper import UsesQApplication class Constructor(unittest.TestCase): '''QGraphicsScene constructor''' def testConstructor(self): #QGraphicsScene constructor obj = QGraphicsScene() self.assertTrue(isinstance(obj, QGraphicsScene)) class ConstructorWithRect(unittest.TestCase): '''QGraphicsScene qrect constructor and related sizes''' def setUp(self): #Acquire resources # PyQt4 doesn't accept a QRect as argument to constructor self.scene = QGraphicsScene(0, 200, 150, 175) def tearDown(self): #Release resources del self.scene def testHeight(self): #QGraphicsScene.height() self.assertEqual(self.scene.height(), 175) def testWidth(self): #QGraphicsScene.width() self.assertEqual(self.scene.width(), 150) class AddItem(UsesQApplication): '''Tests for QGraphicsScene.add*''' qapplication = True def setUp(self): #Acquire resources super(AddItem, self).setUp() self.scene = QGraphicsScene() # While the scene does not inherits from QWidget, requires # an application to make the internals work. def tearDown(self): #Release resources del self.scene super(AddItem, self).tearDown() def testEllipse(self): #QGraphicsScene.addEllipse item = self.scene.addEllipse(100, 100, 100, 100) self.assertTrue(isinstance(item, QGraphicsEllipseItem)) def testLine(self): #QGraphicsScene.addLine item = self.scene.addLine(100, 100, 200, 200) self.assertTrue(isinstance(item, QGraphicsLineItem)) def testPath(self): #QGraphicsScene.addPath item = self.scene.addPath(QPainterPath()) self.assertTrue(isinstance(item, QGraphicsPathItem)) def testPixmap(self): #QGraphicsScene.addPixmap item = self.scene.addPixmap(QPixmap()) self.assertTrue(isinstance(item, QGraphicsPixmapItem)) def testPolygon(self): #QGraphicsScene.addPolygon points = [QPointF(0, 0), QPointF(100, 100), QPointF(0, 100)] item = self.scene.addPolygon(QPolygonF(points)) self.assertTrue(isinstance(item, QGraphicsPolygonItem)) def testRect(self): #QGraphicsScene.addRect item = self.scene.addRect(100, 100, 100, 100) self.assertTrue(isinstance(item, QGraphicsRectItem)) def testSimpleText(self): #QGraphicsScene.addSimpleText item = self.scene.addSimpleText('Monty Python 42') self.assertTrue(isinstance(item, QGraphicsSimpleTextItem)) def testText(self): #QGraphicsScene.addText item = self.scene.addText('Monty Python 42') self.assertTrue(isinstance(item, QGraphicsTextItem)) def testWidget(self): #QGraphicsScene.addWidget # XXX: printing some X11 error when using under PyQt4 item = self.scene.addWidget(QPushButton()) self.assertTrue(isinstance(item, QGraphicsProxyWidget)) class ItemRetrieve(UsesQApplication): '''Tests for QGraphicsScene item retrieval methods''' qapplication = True def setUp(self): #Acquire resources super(ItemRetrieve, self).setUp() self.scene = QGraphicsScene() self.topleft = QGraphicsRectItem(0, 0, 100, 100) self.topright = QGraphicsRectItem(100, 0, 100, 100) self.bottomleft = QGraphicsRectItem(0, 100, 100, 100) self.bottomright = QGraphicsRectItem(100, 100, 100, 100) self.items = [self.topleft, self.topright, self.bottomleft, self.bottomright] for item in self.items: self.scene.addItem(item) def tearDown(self): #Release resources del self.scene super(ItemRetrieve, self).tearDown() def testItems(self): #QGraphicsScene.items() items = self.scene.items() for i in items: self.assertTrue(i in self.items) def testItemAt(self): #QGraphicsScene.itemAt() self.assertEqual(self.scene.itemAt(50, 50), self.topleft) self.assertEqual(self.scene.itemAt(150, 50), self.topright) self.assertEqual(self.scene.itemAt(50, 150), self.bottomleft) self.assertEqual(self.scene.itemAt(150, 150), self.bottomright) class TestGraphicsGroup(UsesQApplication): def testIt(self): scene = QGraphicsScene() i1 = QGraphicsRectItem() scene.addItem(i1) i2 = QGraphicsRectItem(i1) i3 = QGraphicsRectItem() i4 = QGraphicsRectItem() group = scene.createItemGroup((i2, i3, i4)) scene.removeItem(i1) del i1 # this shouldn't delete i2 self.assertEqual(i2.scene(), scene) scene.destroyItemGroup(group) self.assertRaises(RuntimeError, group.type) if __name__ == '__main__': unittest.main()
# -*- coding: utf-8 -*- # # This file is part of Invenio. # Copyright (C) 2011 CERN. # # Invenio is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation; either version 2 of the # License, or (at your option) any later version. # # Invenio is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Invenio; if not, write to the Free Software Foundation, Inc., # 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. """ WebAuthorProfile daemon """ from sys import stdout import bibtask from invenio.bibauthorid_dbinterface import get_existing_authors from invenio.webauthorprofile_dbapi import get_expired_person_ids from invenio.webauthorprofile_corefunctions import _compute_cache_for_person def webauthorprofile_daemon(): """ Constructs the webauthorprofile bibtask. """ bibtask.task_init(authorization_action='runbibclassify', authorization_msg="WebAuthorProfile Task Submission", description=""" Purpose: Precompute WebAuthorProfile caches. Examples: $webauthorprofile -u admin --all """, help_specific_usage=""" webauthorprofile [OPTIONS] OPTIONS Options for update personid (default) Computes all caches for all persons with at least one expired cache --all Computes all caches for all persons --mp Enables multiprocessing computation """, version="Invenio WebAuthorProfile v 1.0", specific_params=("i:", ["all", "mp"]), task_submit_elaborate_specific_parameter_fnc=_task_submit_elaborate_specific_parameter, task_submit_check_options_fnc=_task_submit_check_options, task_run_fnc=_task_run_core) def _task_submit_elaborate_specific_parameter(key, value, opts, args): """ Given the string key it checks it's meaning, eventually using the value. Usually, it fills some key in the options dict. It must return True if it has elaborated the key, False, if it doesn't know that key. """ if key in ("--all",): bibtask.task_set_option("all_pids", True) elif key in ("--mp",): bibtask.task_set_option("mp", True) else: return False return True def _task_run_core(): """ Runs the requested task in the bibsched environment. """ def compute_cache_f(mp): if mp: return compute_cache_mp else: return compute_cache all_pids = bibtask.task_get_option('all_pids', False) mp = bibtask.task_get_option('mp', False) if all_pids: pids = list(get_existing_authors(with_papers_only=True)) compute_cache_f(mp)(pids) else: pids = get_expired_person_ids() if pids: compute_cache_f(mp)(pids) return 1 def _task_submit_check_options(): """ Required by bibtask. Checks the options. """ return True def compute_cache(pids): bibtask.write_message("WebAuthorProfile: %s persons to go" % len(pids), stream=stdout, verbose=0) for _, p in enumerate(pids): bibtask.write_message("WebAuthorProfile: doing %s out of %s (personid: %s)" % (pids.index(p) + 1, len(pids), p)) bibtask.task_update_progress("WebAuthorProfile: doing %s out of %s (personid: %s)" % (pids.index(p) + 1, len(pids), p)) _compute_cache_for_person(p) bibtask.task_sleep_now_if_required(can_stop_too=True) def compute_cache_mp(pids): from multiprocessing import Pool p = Pool() bibtask.write_message("WebAuthorProfileMP: %s persons to go" % len(pids), stream=stdout, verbose=0) sl = 100 ss = [pids[i: i + sl] for i in range(0, len(pids), sl)] for i, bunch in enumerate(ss): bibtask.write_message("WebAuthorProfileMP: doing bunch %s out of %s" % (str(i + 1), len(ss))) bibtask.task_update_progress("WebAuthorProfileMP: doing bunch %s out of %s" % (str(i + 1), len(ss))) p.map(_compute_cache_for_person, bunch) bibtask.task_sleep_now_if_required(can_stop_too=True)
# vim: ft=python fileencoding=utf-8 sts=4 sw=4 et: # Copyright 2014-2015 Florian Bruhin (The Compiler) <[email protected]> # # This file is part of qutebrowser. # # qutebrowser is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # qutebrowser is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with qutebrowser. If not, see <http://www.gnu.org/licenses/>. # pylint: disable=unused-import,import-error """The qutebrowser test suite conftest file.""" import os import sys import collections import itertools import logging import textwrap import warnings import pytest import helpers.stubs as stubsmod from helpers import logfail from helpers.logfail import fail_on_logging from helpers.messagemock import message_mock from qutebrowser.config import config from qutebrowser.utils import objreg from PyQt5.QtNetwork import QNetworkCookieJar import xvfbwrapper def _apply_platform_markers(item): """Apply a skip marker to a given item.""" markers = [ ('posix', os.name != 'posix', "Requires a POSIX os"), ('windows', os.name != 'nt', "Requires Windows"), ('linux', not sys.platform.startswith('linux'), "Requires Linux"), ('osx', sys.platform != 'darwin', "Requires OS X"), ('not_osx', sys.platform == 'darwin', "Skipped on OS X"), ('not_frozen', getattr(sys, 'frozen', False), "Can't be run when frozen"), ('frozen', not getattr(sys, 'frozen', False), "Can only run when frozen"), ('not_xvfb', item.config.xvfb_display is not None, "Can't be run with Xvfb."), ] for searched_marker, condition, default_reason in markers: marker = item.get_marker(searched_marker) if not marker or not condition: continue if 'reason' in marker.kwargs: reason = '{}: {}'.format(default_reason, marker.kwargs['reason']) del marker.kwargs['reason'] else: reason = default_reason + '.' skipif_marker = pytest.mark.skipif(condition, *marker.args, reason=reason, **marker.kwargs) item.add_marker(skipif_marker) def pytest_collection_modifyitems(items): """Handle custom markers. pytest hook called after collection has been performed. Adds a marker named "gui" which can be used to filter gui tests from the command line. For example: py.test -m "not gui" # run all tests except gui tests py.test -m "gui" # run only gui tests It also handles the platform specific markers by translating them to skipif markers. Args: items: list of _pytest.main.Node items, where each item represents a python test that will be executed. Reference: http://pytest.org/latest/plugins.html """ for item in items: if 'qapp' in getattr(item, 'fixturenames', ()): item.add_marker('gui') if sys.platform == 'linux' and not os.environ.get('DISPLAY', ''): if ('CI' in os.environ and not os.environ.get('QUTE_NO_DISPLAY_OK', '')): raise Exception("No display available on CI!") skip_marker = pytest.mark.skipif( True, reason="No DISPLAY available") item.add_marker(skip_marker) if hasattr(item, 'module'): module_path = os.path.relpath( item.module.__file__, os.path.commonprefix([__file__, item.module.__file__])) module_root_dir = os.path.split(module_path)[0] if module_root_dir == 'integration': item.add_marker(pytest.mark.integration) _apply_platform_markers(item) def pytest_ignore_collect(path): """Ignore BDD tests during collection if frozen.""" rel_path = path.relto(os.path.dirname(__file__)) return (rel_path == os.path.join('integration', 'features') and hasattr(sys, 'frozen')) @pytest.fixture(scope='session') def qapp(qapp): """Change the name of the QApplication instance.""" qapp.setApplicationName('qute_test') return qapp class WinRegistryHelper: """Helper class for win_registry.""" FakeWindow = collections.namedtuple('FakeWindow', ['registry']) def __init__(self): self._ids = [] def add_window(self, win_id): assert win_id not in objreg.window_registry registry = objreg.ObjectRegistry() window = self.FakeWindow(registry) objreg.window_registry[win_id] = window self._ids.append(win_id) def cleanup(self): for win_id in self._ids: del objreg.window_registry[win_id] @pytest.yield_fixture def win_registry(): """Fixture providing a window registry for win_id 0 and 1.""" helper = WinRegistryHelper() helper.add_window(0) yield helper helper.cleanup() @pytest.yield_fixture def tab_registry(win_registry): """Fixture providing a tab registry for win_id 0.""" registry = objreg.ObjectRegistry() objreg.register('tab-registry', registry, scope='window', window=0) yield registry objreg.delete('tab-registry', scope='window', window=0) def _generate_cmdline_tests(): """Generate testcases for test_split_binding.""" # pylint: disable=invalid-name TestCase = collections.namedtuple('TestCase', 'cmd, valid') separators = [';;', ' ;; ', ';; ', ' ;;'] invalid = ['foo', ''] valid = ['leave-mode', 'hint all'] # Valid command only -> valid for item in valid: yield TestCase(''.join(item), True) # Invalid command only -> invalid for item in invalid: yield TestCase(''.join(item), False) # Invalid command combined with invalid command -> invalid for item in itertools.product(invalid, separators, invalid): yield TestCase(''.join(item), False) # Valid command combined with valid command -> valid for item in itertools.product(valid, separators, valid): yield TestCase(''.join(item), True) # Valid command combined with invalid command -> invalid for item in itertools.product(valid, separators, invalid): yield TestCase(''.join(item), False) # Invalid command combined with valid command -> invalid for item in itertools.product(invalid, separators, valid): yield TestCase(''.join(item), False) # Command with no_cmd_split combined with an "invalid" command -> valid for item in itertools.product(['bind x open'], separators, invalid): yield TestCase(''.join(item), True) @pytest.fixture(params=_generate_cmdline_tests(), ids=lambda e: e.cmd) def cmdline_test(request): """Fixture which generates tests for things validating commandlines.""" # Import qutebrowser.app so all cmdutils.register decorators get run. import qutebrowser.app # pylint: disable=unused-variable return request.param @pytest.yield_fixture def config_stub(stubs): """Fixture which provides a fake config object.""" stub = stubs.ConfigStub() objreg.register('config', stub) yield stub objreg.delete('config') @pytest.yield_fixture def default_config(): """Fixture that provides and registers an empty default config object.""" config_obj = config.ConfigManager(configdir=None, fname=None, relaxed=True) objreg.register('config', config_obj) yield config_obj objreg.delete('config') @pytest.yield_fixture def key_config_stub(stubs): """Fixture which provides a fake key config object.""" stub = stubs.KeyConfigStub() objreg.register('key-config', stub) yield stub objreg.delete('key-config') @pytest.yield_fixture def host_blocker_stub(stubs): """Fixture which provides a fake host blocker object.""" stub = stubs.HostBlockerStub() objreg.register('host-blocker', stub) yield stub objreg.delete('host-blocker') @pytest.fixture(scope='session') def stubs(): """Provide access to stub objects useful for testing.""" return stubsmod @pytest.fixture(scope='session') def unicode_encode_err(): """Provide a fake UnicodeEncodeError exception.""" return UnicodeEncodeError('ascii', # codec '', # object 0, # start 2, # end 'fake exception') # reason @pytest.fixture(scope='session') def qnam(qapp): """Session-wide QNetworkAccessManager.""" from PyQt5.QtNetwork import QNetworkAccessManager nam = QNetworkAccessManager() nam.setNetworkAccessible(QNetworkAccessManager.NotAccessible) return nam @pytest.fixture def webpage(qnam): """Get a new QWebPage object.""" from PyQt5.QtWebKitWidgets import QWebPage page = QWebPage() page.networkAccessManager().deleteLater() page.setNetworkAccessManager(qnam) return page @pytest.fixture def webview(qtbot, webpage): """Get a new QWebView object.""" from PyQt5.QtWebKitWidgets import QWebView view = QWebView() qtbot.add_widget(view) view.page().deleteLater() view.setPage(webpage) view.resize(640, 480) return view @pytest.fixture def webframe(webpage): """Convenience fixture to get a mainFrame of a QWebPage.""" return webpage.mainFrame() @pytest.fixture def fake_keyevent_factory(): """Fixture that when called will return a mock instance of a QKeyEvent.""" from unittest import mock from PyQt5.QtGui import QKeyEvent def fake_keyevent(key, modifiers=0, text=''): """Generate a new fake QKeyPressEvent.""" evtmock = mock.create_autospec(QKeyEvent, instance=True) evtmock.key.return_value = key evtmock.modifiers.return_value = modifiers evtmock.text.return_value = text return evtmock return fake_keyevent @pytest.yield_fixture def cookiejar_and_cache(stubs): """Fixture providing a fake cookie jar and cache.""" jar = QNetworkCookieJar() cache = stubs.FakeNetworkCache() objreg.register('cookie-jar', jar) objreg.register('cache', cache) yield objreg.delete('cookie-jar') objreg.delete('cache') @pytest.fixture def py_proc(): """Get a python executable and args list which executes the given code.""" def func(code): return (sys.executable, ['-c', textwrap.dedent(code.strip('\n'))]) return func @pytest.yield_fixture(autouse=True) def fail_tests_on_warnings(): warnings.simplefilter('error') # https://github.com/pytest-dev/pytest-bdd/issues/153 warnings.filterwarnings('ignore', message=r'inspect.getargspec\(\) is ' r'deprecated, use inspect.signature\(\) instead', category=DeprecationWarning) yield warnings.resetwarnings() def pytest_addoption(parser): parser.addoption('--no-xvfb', action='store_true', default=False, help='Disable xvfb in tests.') parser.addoption('--qute-delay', action='store', default=0, type=int, help="Delay between qutebrowser commands.") def pytest_configure(config): """Start Xvfb if we're on Linux, not on a CI and Xvfb is available. This is a lot nicer than having windows popping up. """ config.xvfb_display = None if os.environ.get('DISPLAY', None) == '': # xvfbwrapper doesn't handle DISPLAY="" correctly del os.environ['DISPLAY'] if sys.platform.startswith('linux') and not config.getoption('--no-xvfb'): assert 'QUTE_BUILDBOT' not in os.environ try: disp = xvfbwrapper.Xvfb(width=800, height=600, colordepth=16) disp.start() except FileNotFoundError: # We run without Xvfb if it's unavailable. pass else: config.xvfb_display = disp def pytest_unconfigure(config): if config.xvfb_display is not None: config.xvfb_display.stop()
import numpy as np from numpy.linalg import LinAlgError from .blas import get_blas_funcs from .lapack import get_lapack_funcs __all__ = ['LinAlgError', 'LinAlgWarning', 'norm'] class LinAlgWarning(RuntimeWarning): """ The warning emitted when a linear algebra related operation is close to fail conditions of the algorithm or loss of accuracy is expected. """ pass def norm(a, ord=None, axis=None, keepdims=False, check_finite=True): """ Matrix or vector norm. This function is able to return one of eight different matrix norms, or one of an infinite number of vector norms (described below), depending on the value of the ``ord`` parameter. For tensors with rank different from 1 or 2, only `ord=None` is supported. Parameters ---------- a : array_like Input array. If `axis` is None, `a` must be 1-D or 2-D, unless `ord` is None. If both `axis` and `ord` are None, the 2-norm of ``a.ravel`` will be returned. ord : {int, inf, -inf, 'fro', 'nuc', None}, optional Order of the norm (see table under ``Notes``). inf means NumPy's `inf` object. axis : {int, 2-tuple of ints, None}, optional If `axis` is an integer, it specifies the axis of `a` along which to compute the vector norms. If `axis` is a 2-tuple, it specifies the axes that hold 2-D matrices, and the matrix norms of these matrices are computed. If `axis` is None then either a vector norm (when `a` is 1-D) or a matrix norm (when `a` is 2-D) is returned. keepdims : bool, optional If this is set to True, the axes which are normed over are left in the result as dimensions with size one. With this option the result will broadcast correctly against the original `a`. check_finite : bool, optional Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Returns ------- n : float or ndarray Norm of the matrix or vector(s). Notes ----- For values of ``ord <= 0``, the result is, strictly speaking, not a mathematical 'norm', but it may still be useful for various numerical purposes. The following norms can be calculated: ===== ============================ ========================== ord norm for matrices norm for vectors ===== ============================ ========================== None Frobenius norm 2-norm 'fro' Frobenius norm -- 'nuc' nuclear norm -- inf max(sum(abs(a), axis=1)) max(abs(a)) -inf min(sum(abs(a), axis=1)) min(abs(a)) 0 -- sum(a != 0) 1 max(sum(abs(a), axis=0)) as below -1 min(sum(abs(a), axis=0)) as below 2 2-norm (largest sing. value) as below -2 smallest singular value as below other -- sum(abs(a)**ord)**(1./ord) ===== ============================ ========================== The Frobenius norm is given by [1]_: :math:`||A||_F = [\\sum_{i,j} abs(a_{i,j})^2]^{1/2}` The nuclear norm is the sum of the singular values. Both the Frobenius and nuclear norm orders are only defined for matrices. References ---------- .. [1] G. H. Golub and C. F. Van Loan, *Matrix Computations*, Baltimore, MD, Johns Hopkins University Press, 1985, pg. 15 Examples -------- >>> from scipy.linalg import norm >>> a = np.arange(9) - 4.0 >>> a array([-4., -3., -2., -1., 0., 1., 2., 3., 4.]) >>> b = a.reshape((3, 3)) >>> b array([[-4., -3., -2.], [-1., 0., 1.], [ 2., 3., 4.]]) >>> norm(a) 7.745966692414834 >>> norm(b) 7.745966692414834 >>> norm(b, 'fro') 7.745966692414834 >>> norm(a, np.inf) 4 >>> norm(b, np.inf) 9 >>> norm(a, -np.inf) 0 >>> norm(b, -np.inf) 2 >>> norm(a, 1) 20 >>> norm(b, 1) 7 >>> norm(a, -1) -4.6566128774142013e-010 >>> norm(b, -1) 6 >>> norm(a, 2) 7.745966692414834 >>> norm(b, 2) 7.3484692283495345 >>> norm(a, -2) 0 >>> norm(b, -2) 1.8570331885190563e-016 >>> norm(a, 3) 5.8480354764257312 >>> norm(a, -3) 0 """ # Differs from numpy only in non-finite handling and the use of blas. if check_finite: a = np.asarray_chkfinite(a) else: a = np.asarray(a) if a.size and a.dtype.char in 'fdFD' and axis is None and not keepdims: if ord in (None, 2) and (a.ndim == 1): # use blas for fast and stable euclidean norm nrm2 = get_blas_funcs('nrm2', dtype=a.dtype, ilp64='preferred') return nrm2(a) if a.ndim == 2: # Use lapack for a couple fast matrix norms. # For some reason the *lange frobenius norm is slow. lange_args = None # Make sure this works if the user uses the axis keywords # to apply the norm to the transpose. if ord == 1: if np.isfortran(a): lange_args = '1', a elif np.isfortran(a.T): lange_args = 'i', a.T elif ord == np.inf: if np.isfortran(a): lange_args = 'i', a elif np.isfortran(a.T): lange_args = '1', a.T if lange_args: lange = get_lapack_funcs('lange', dtype=a.dtype, ilp64='preferred') return lange(*lange_args) # fall back to numpy in every other case return np.linalg.norm(a, ord=ord, axis=axis, keepdims=keepdims) def _datacopied(arr, original): """ Strict check for `arr` not sharing any data with `original`, under the assumption that arr = asarray(original) """ if arr is original: return False if not isinstance(original, np.ndarray) and hasattr(original, '__array__'): return False return arr.base is None
#!/usr/bin/python # # Licensed to the Software Freedom Conservancy (SFC) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The SFC licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import unittest import pytest from selenium.webdriver.common.by import By class PageLoadingTests(unittest.TestCase): def testShouldWaitForDocumentToBeLoaded(self): self._loadSimplePage() self.assertEqual(self.driver.title, "Hello WebDriver") # Disabled till Java WebServer is used #def testShouldFollowRedirectsSentInTheHttpResponseHeaders(self): # self.driver.get(pages.redirectPage); # self.assertEqual(self.driver.title, "We Arrive Here") # Disabled till the Java WebServer is used #def testShouldFollowMetaRedirects(self): # self._loadPage("metaRedirect") # self.assertEqual(self.driver.title, "We Arrive Here") def testShouldBeAbleToGetAFragmentOnTheCurrentPage(self): self._loadPage("xhtmlTest") location = self.driver.current_url self.driver.get(location + "#text") self.driver.find_element(by=By.ID, value="id1") @pytest.mark.ignore_safari def testShouldReturnWhenGettingAUrlThatDoesNotResolve(self): try: # Of course, we're up the creek if this ever does get registered self.driver.get("http://www.thisurldoesnotexist.comx/") except ValueError: pass @pytest.mark.ignore_safari def testShouldReturnWhenGettingAUrlThatDoesNotConnect(self): # Here's hoping that there's nothing here. There shouldn't be self.driver.get("http://localhost:3001") #@Ignore({IE, IPHONE, SELENESE}) #def testShouldBeAbleToLoadAPageWithFramesetsAndWaitUntilAllFramesAreLoaded() { # self.driver.get(pages.framesetPage); # self.driver.switchTo().frame(0); # WebElement pageNumber = self.driver.findElement(By.xpath("#span[@id='pageNumber']")); # self.assertEqual((pageNumber.getText().trim(), equalTo("1")); # self.driver.switchTo().defaultContent().switchTo().frame(1); # pageNumber = self.driver.findElement(By.xpath("#span[@id='pageNumber']")); # self.assertEqual((pageNumber.getText().trim(), equalTo("2")); #Need to implement this decorator #@NeedsFreshDriver #def testSouldDoNothingIfThereIsNothingToGoBackTo() { # String originalTitle = self.driver.getTitle(); # self.driver.get(pages.formPage); # self.driver.back(); # We may have returned to the browser's home page # self.assertEqual(self.driver.title, anyOf(equalTo(originalTitle), equalTo("We Leave From Here"))); def testShouldBeAbleToNavigateBackInTheBrowserHistory(self): self._loadPage("formPage") self.driver.find_element(by=By.ID, value="imageButton").submit() self.assertEqual(self.driver.title, "We Arrive Here") self.driver.back() self.assertEqual(self.driver.title, "We Leave From Here") def testShouldBeAbleToNavigateBackInTheBrowserHistoryInPresenceOfIframes(self): self._loadPage("xhtmlTest") self.driver.find_element(by=By.NAME,value="sameWindow").click() self.assertEqual(self.driver.title, "This page has iframes") self.driver.back() self.assertEqual(self.driver.title, "XHTML Test Page") def testShouldBeAbleToNavigateForwardsInTheBrowserHistory(self): self._loadPage("formPage") self.driver.find_element(by=By.ID, value="imageButton").submit() self.assertEqual(self.driver.title, "We Arrive Here") self.driver.back() self.assertEqual(self.driver.title, "We Leave From Here") self.driver.forward() self.assertEqual(self.driver.title, "We Arrive Here") @pytest.mark.ignore_ie def testShouldNotHangifDocumentOpenCallIsNeverFollowedByDocumentCloseCall(self): self._loadPage("document_write_in_onload") self.driver.find_element(By.XPATH, "//body") def testShouldBeAbleToRefreshAPage(self): self._loadPage("xhtmlTest") self.driver.refresh() self.assertEqual(self.driver.title, "XHTML Test Page") def _pageURL(self, name): return self.webserver.where_is(name + '.html') def _loadSimplePage(self): self._loadPage("simpleTest") def _loadPage(self, name): self.driver.get(self._pageURL(name))
# gLifestream Copyright (C) 2009, 2010, 2014, 2015 Wojciech Polak # # This program is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the # Free Software Foundation; either version 3 of the License, or (at your # option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program. If not, see <http://www.gnu.org/licenses/>. import feedparser from glifestream.utils import httpclient from glifestream.utils.time import mtime, now from glifestream.utils.html import strip_script from glifestream.stream.models import Entry from glifestream.stream import media class API: name = 'Webfeed API' limit_sec = 3600 fetch_only = False payload = None def __init__(self, service, verbose=0, force_overwrite=False): self.service = service self.verbose = verbose self.force_overwrite = force_overwrite if self.verbose: print('%s: %s' % (self.name, self.service)) def get_urls(self): return (self.service.url,) def run(self): for url in self.get_urls(): try: self.fetch(url) except Exception: pass def fetch(self, url): self.fp_error = False if not self.payload: try: hs = httpclient.gen_auth(self.service) r = httpclient.get(url, auth=hs) alturl = httpclient.get_alturl_if_html(r) if alturl: r = httpclient.get(alturl, auth=hs) self.fp = feedparser.parse(r.text) self.fp.etag = r.headers.get('etag') self.fp.modified = r.headers.get('last-modified') except (IOError, httpclient.HTTPError) as e: self.fp_error = True if self.verbose: # pylint: disable=no-member error = e.message if hasattr(e, 'message') else '' print('%s (%d) HTTPError: %s' % (self.service.api, self.service.id, error)) return else: self.fp = feedparser.parse(self.payload) if hasattr(self.fp, 'bozo') and self.fp.bozo: self.fp_error = True if isinstance(self.fp.bozo_exception, feedparser.CharacterEncodingOverride): self.fp_error = False if self.verbose: print('%s (%d) Bozo: %s' % (self.service.api, self.service.id, self.fp)) if not self.fp_error: self.service.etag = self.fp.get('etag', '') if self.service.etag is None: self.service.etag = '' try: self.service.last_modified = mtime(self.fp.modified) except Exception: pass self.service.last_checked = now() if not self.service.link: self.service.link = self.fp.feed.get('link', '') self.service.save() if not self.fetch_only: self.process() def process(self): for ent in self.fp.entries: guid = ent.id if 'id' in ent else ent.link if self.verbose: print('ID: %s' % guid) try: e = Entry.objects.get(service=self.service, guid=guid) if not self.force_overwrite and 'updated_parsed' in ent: if e.date_updated and \ mtime(ent.updated_parsed) <= e.date_updated: continue if e.protected: continue except Entry.DoesNotExist: e = Entry(service=self.service, guid=guid) e.title = ent.title e.link = ent.get('feedburner_origlink', ent.get('link', '')) if 'author_detail' in ent: e.author_name = ent.author_detail.get('name', '') e.author_email = ent.author_detail.get('email', '') e.author_uri = ent.author_detail.get('href', '') else: e.author_name = ent.get('author', ent.get('creator', '')) if not e.author_name and 'author_detail' in self.fp.feed: e.author_name = self.fp.feed.author_detail.get('name', '') e.author_email = self.fp.feed.author_detail.get( 'email', '') e.author_uri = self.fp.feed.author_detail.get('href', '') try: e.content = ent.content[0].value except Exception: e.content = ent.get('summary', ent.get('description', '')) if 'published_parsed' in ent: e.date_published = mtime(ent.published_parsed) elif 'updated_parsed' in ent: e.date_published = mtime(ent.updated_parsed) if 'updated_parsed' in ent: e.date_updated = mtime(ent.updated_parsed) if 'geo_lat' in ent and 'geo_long' in ent: e.geolat = ent.geo_lat e.geolng = ent.geo_long elif 'georss_point' in ent: geo = ent['georss_point'].split(' ') e.geolat = geo[0] e.geolng = geo[1] if 'image' in self.fp.feed: e.link_image = media.save_image(self.fp.feed.image.url) else: for link in ent.links: if link.rel == 'image' or link.rel == 'photo': e.link_image = media.save_image(link.href) if hasattr(self, 'custom_process'): self.custom_process(e, ent) # pylint: disable=no-member if hasattr(e, 'custom_mblob'): e.mblob = e.custom_mblob else: e.mblob = None mblob = media.mrss_init(e.mblob) if 'media_content' in ent: mblob['content'].append(ent.media_content) e.mblob = media.mrss_gen_json(mblob) e.content = strip_script(e.content) try: e.save() media.extract_and_register(e) except Exception: pass def filter_title(entry): return entry.title def filter_content(entry): return entry.content
# CubETL # Copyright (c) 2013-2019 Jose Juan Montes # This is a CubETL example # See: https://github.com/jjmontesl/cubetl import datetime from cubetl import text, flow, fs, script, olap, pcaxis, table, util from cubetl.cubes import cubes10 from cubetl.olap import sqlschema from cubetl.olap.sql import TableMapper from cubetl.sql import sql, schemaimport from cubetl.table import cache from cubetl.util import log from cubetl.sdmx import sdmx from cubetl.sql.sql import SQLTable, SQLColumn def cubetl_config(ctx): # Input database connection ctx.add('example.sql.connection', sql.Connection(url='sqlite:///Chinook_Sqlite.sqlite')) # Read database schema schemaimport.DBToSQL.db2sql(ctx, ctx.get("example.sql.connection")) # Add output database and schema ctx.add('example.sql.connection_out', sql.Connection(url='sqlite:///chinook-aggregated.sqlite3')) ctx.add('example.agg.table', SQLTable( name='example_aggregates', label='Album Sales', connection=ctx.get('example.sql.connection_out'), columns=[ SQLColumn(name='album_id', type='Integer', pk=True, label='AlbumId'), SQLColumn(name='album_title', type='String', label='Title'), SQLColumn(name='total_sales', type='Float', label='Sales')])) # Process ctx.add('example.process', flow.Chain(steps=[ sql.Transaction(connection=ctx.get('example.sql.connection_out')), # Query album sales sql.Query(connection=ctx.get('example.sql.connection'), query=""" select Album.AlbumId as album_id, Album.Title as album_title, sum(InvoiceLine.UnitPrice * InvoiceLine.Quantity) as total_sales, sum(InvoiceLine.Quantity) as total_count from InvoiceLine join Track on InvoiceLine.TrackId = Track.TrackId join Album on Track.AlbumId = Album.AlbumId group by Album.AlbumId """), util.Print(), sql.StoreRow(sqltable=ctx.get('example.agg.table'), store_mode=sql.SQLTable.STORE_MODE_UPSERT), log.LogPerformance(), ]))
# Copyright 2016 - 2020 Ternaris. # SPDX-License-Identifier: AGPL-3.0-only # pylint: disable=blacklisted-name,unused-variable,unused-argument,too-few-public-methods import marv_api as marv from marv_api.dag import Model from marv_api.decorators import getdag @marv.node() def source1(): yield # pragma: nocoverage @marv.node() def source2(): yield # pragma: nocoverage @marv.node() @marv.input('foo', type=int) @marv.input('stream', default=source1) def consumer(foo, stream): yield # pragma: nocoverage class Foo(Model): xyz: int class Bar(Model): xyz: int def test_hashable(): assert hash(Foo(xyz=1)) != hash(Bar(xyz=1)) assert hash(getdag(source1)) != hash(getdag(source2)) assert hash(getdag(consumer)) != hash(consumer.clone(foo=1)) assert hash(consumer.clone(foo=1)) == hash(consumer.clone(foo=1)) assert hash(getdag(consumer)) != hash(consumer.clone(stream=source2)) assert hash(consumer.clone(stream=source2)) == hash(consumer.clone(stream=source2)) assert hash(consumer.clone(stream=marv.select(source2, name='foo'))) != \ hash(consumer.clone(stream=marv.select(source2, name='bar'))) assert hash(consumer.clone(stream=marv.select(source2, name='foo'))) == \ hash(consumer.clone(stream=marv.select(source2, name='foo')))
from django.conf import settings from django.contrib import messages from django.contrib.auth import authenticate, login, logout from django.http import HttpResponseRedirect from django.utils.translation import ugettext_lazy as _lazy from kitsune.sumo.urlresolvers import reverse class TokenLoginMiddleware(object): """Allows users to be logged in via one time tokens.""" def process_request(self, request): try: auth = request.GET.get('auth') except IOError: # Django can throw an IOError when trying to read the GET # data. return if auth is None or (request.user and request.user.is_authenticated()): return user = authenticate(auth=auth) if user and user.is_active: login(request, user) msg = _lazy(u'You have been automatically logged in.') messages.success(request, msg) class LogoutDeactivatedUsersMiddleware(object): """Verifies that user.is_active == True. If a user has been deactivated, we log them out. If a user isn't active but is in the AAQ process, we let them be. """ def process_request(self, request): user = request.user if (user.is_authenticated() and not user.is_active and not request.session.get('in-aaq', False)): # The user is auth'd, not active and not in AAQ. /KICK logout(request) res = HttpResponseRedirect(reverse('home')) res.delete_cookie(settings.SESSION_EXISTS_COOKIE) return res
#!/usr/bin/env python # Copyright 2013 The Mozilla Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import gzip import inspect import sys from urllib import urlretrieve from wsgiref.simple_server import make_server import nose from webob import Request from geodude import load_geodude parser = argparse.ArgumentParser(description=globals()['__doc__'], formatter_class=argparse.RawTextHelpFormatter) subparsers = parser.add_subparsers(title='Commands') def command(func): """ Decorator that turns a function into a sub-command. The command will be named after the function, and the help text will be taken from the docstring. Command arguments are automatically set up based on the function arguments. """ cmd_parser = subparsers.add_parser(func.__name__, help=func.__doc__) cmd_parser.set_defaults(func=func) # Set which function this command runs. # Inspect the function arguments and create them on the parser. spec = inspect.getargspec(func) for idx, arg in enumerate(spec.args): try: # First try treating this is a kwarg. default_index = idx - (len(spec.args) - len(spec.defaults)) cmd_parser.add_argument(arg, default=spec.defaults[default_index], nargs='?') except (TypeError, IndexError): # Required, positional argument. cmd_parser.add_argument(arg) return func @command def runserver(port=8000): """Run a development instance of the geodude server.""" application = load_geodude() server = make_server('', int(port), application) print 'Serving HTTP on port {0}...'.format(port) try: server.serve_forever() except KeyboardInterrupt: print 'Exiting server...' @command def test_ip(ip_address, path='/country.js'): """Run a mock request against the service.""" application = load_geodude() request = Request.blank(path, remote_addr=ip_address) response = request.get_response(application) print response.status for header in response.headers: print header, ':', response.headers[header] print '\n', response.body @command def download_db(): """Download MaxMind's free GeoLite Country database.""" urlretrieve('http://geolite.maxmind.com/download/geoip/database/' 'GeoLiteCountry/GeoIP.dat.gz', 'GeoIP.dat.gz') # `with` doesn't work with GzipFiles in Python 2.6. :( infile = gzip.open('GeoIP.dat.gz') with open('GeoIP.dat', 'w+b') as outfile: outfile.write(infile.read()) infile.close() @command def test(): """Run the test suite.""" argv = sys.argv argv.pop(1) nose.main(argv=argv) def main(): """Parses command-line arguments and delegates to the specified command.""" args = vars(parser.parse_args()) func = args.pop('func') func(**args) if __name__ == '__main__': main()
from __future__ import division import numpy as np from sklearn import linear_model from sklearn.cross_validation import KFold from sklearn import preprocessing as prep from sklearn.metrics import r2_score from scipy.stats import pearsonr from collections import namedtuple import warnings from sklearn.utils import ConvergenceWarning Md = namedtuple('Md', ['model', 'idx', 'cor', 'r2']) def LassoSelector(x, y, cv, njob): cor_score = lambda x, y: pearsonr(x, y)[0] lr = linear_model.LinearRegression(n_jobs=njob) skf = KFold(len(y), n_folds=cv) model = linear_model.LassoLarsCV(fit_intercept=False, cv=cv, n_jobs=njob) with warnings.catch_warnings(): warnings.simplefilter('ignore', UserWarning) warnings.simplefilter('ignore', ConvergenceWarning) model.fit(x, y) columns = np.arange(x.shape[1])[model.coef_ != 0] mdl_eval = lambda func: lambda idx_tr, idx_te: func(y[idx_te], lr.fit(x[idx_tr][:,columns], y[idx_tr]).predict(x[idx_te][:,columns])) res_eval = lambda func: np.average(map(mdl_eval(func), *zip(*[(idx_tr, idx_te) for idx_tr, idx_te in skf]))) l1r2 = res_eval(r2_score) l1cor = res_eval(cor_score) lr.fit(x[:,columns], y) return Md(model=lr, idx=columns, cor=l1cor, r2=l1r2)
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file '/home/maarten/programming/subdownloader_old/scripts/gui/ui/uploadWidget.ui' # # Created by: PyQt5 UI code generator 5.13.0 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_UploadWidget(object): def setupUi(self, UploadWidget): UploadWidget.setObjectName("UploadWidget") UploadWidget.resize(935, 725) self.verticalLayout_2 = QtWidgets.QVBoxLayout(UploadWidget) self.verticalLayout_2.setObjectName("verticalLayout_2") self.groupBox_2 = QtWidgets.QGroupBox(UploadWidget) self.groupBox_2.setEnabled(True) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.MinimumExpanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.groupBox_2.sizePolicy().hasHeightForWidth()) self.groupBox_2.setSizePolicy(sizePolicy) self.groupBox_2.setLayoutDirection(QtCore.Qt.LeftToRight) self.groupBox_2.setAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Qt.AlignVCenter) self.groupBox_2.setObjectName("groupBox_2") self.verticalLayout = QtWidgets.QVBoxLayout(self.groupBox_2) self.verticalLayout.setContentsMargins(-1, 1, -1, 1) self.verticalLayout.setSpacing(0) self.verticalLayout.setObjectName("verticalLayout") self.horizontalLayout_5 = QtWidgets.QHBoxLayout() self.horizontalLayout_5.setObjectName("horizontalLayout_5") self.buttonUploadBrowseFolder = QtWidgets.QToolButton(self.groupBox_2) icon = QtGui.QIcon() icon.addPixmap(QtGui.QPixmap(":/images/openfolder.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.buttonUploadBrowseFolder.setIcon(icon) self.buttonUploadBrowseFolder.setIconSize(QtCore.QSize(24, 24)) self.buttonUploadBrowseFolder.setObjectName("buttonUploadBrowseFolder") self.horizontalLayout_5.addWidget(self.buttonUploadBrowseFolder) self.line_3 = QtWidgets.QFrame(self.groupBox_2) self.line_3.setFrameShape(QtWidgets.QFrame.VLine) self.line_3.setFrameShadow(QtWidgets.QFrame.Sunken) self.line_3.setObjectName("line_3") self.horizontalLayout_5.addWidget(self.line_3) self.buttonUploadPlusRow = QtWidgets.QToolButton(self.groupBox_2) self.buttonUploadPlusRow.setEnabled(True) icon1 = QtGui.QIcon() icon1.addPixmap(QtGui.QPixmap(":/images/plus.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.buttonUploadPlusRow.setIcon(icon1) self.buttonUploadPlusRow.setIconSize(QtCore.QSize(24, 24)) self.buttonUploadPlusRow.setObjectName("buttonUploadPlusRow") self.horizontalLayout_5.addWidget(self.buttonUploadPlusRow) self.buttonUploadMinusRow = QtWidgets.QToolButton(self.groupBox_2) self.buttonUploadMinusRow.setEnabled(False) icon2 = QtGui.QIcon() icon2.addPixmap(QtGui.QPixmap(":/images/minus.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.buttonUploadMinusRow.setIcon(icon2) self.buttonUploadMinusRow.setIconSize(QtCore.QSize(24, 24)) self.buttonUploadMinusRow.setObjectName("buttonUploadMinusRow") self.horizontalLayout_5.addWidget(self.buttonUploadMinusRow) self.buttonUploadDeleteAllRow = QtWidgets.QToolButton(self.groupBox_2) self.buttonUploadDeleteAllRow.setEnabled(True) icon3 = QtGui.QIcon() icon3.addPixmap(QtGui.QPixmap(":/images/delete_all.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.buttonUploadDeleteAllRow.setIcon(icon3) self.buttonUploadDeleteAllRow.setIconSize(QtCore.QSize(24, 24)) self.buttonUploadDeleteAllRow.setObjectName("buttonUploadDeleteAllRow") self.horizontalLayout_5.addWidget(self.buttonUploadDeleteAllRow) self.line_2 = QtWidgets.QFrame(self.groupBox_2) self.line_2.setFrameShape(QtWidgets.QFrame.VLine) self.line_2.setFrameShadow(QtWidgets.QFrame.Sunken) self.line_2.setObjectName("line_2") self.horizontalLayout_5.addWidget(self.line_2) self.buttonUploadUpRow = QtWidgets.QToolButton(self.groupBox_2) self.buttonUploadUpRow.setEnabled(False) icon4 = QtGui.QIcon() icon4.addPixmap(QtGui.QPixmap(":/images/up.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.buttonUploadUpRow.setIcon(icon4) self.buttonUploadUpRow.setIconSize(QtCore.QSize(24, 24)) self.buttonUploadUpRow.setObjectName("buttonUploadUpRow") self.horizontalLayout_5.addWidget(self.buttonUploadUpRow) self.buttonUploadDownRow = QtWidgets.QToolButton(self.groupBox_2) self.buttonUploadDownRow.setEnabled(False) icon5 = QtGui.QIcon() icon5.addPixmap(QtGui.QPixmap(":/images/down.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.buttonUploadDownRow.setIcon(icon5) self.buttonUploadDownRow.setIconSize(QtCore.QSize(24, 24)) self.buttonUploadDownRow.setObjectName("buttonUploadDownRow") self.horizontalLayout_5.addWidget(self.buttonUploadDownRow) spacerItem = QtWidgets.QSpacerItem(401, 33, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout_5.addItem(spacerItem) self.verticalLayout.addLayout(self.horizontalLayout_5) self.uploadView = UploadListView(self.groupBox_2) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.MinimumExpanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.uploadView.sizePolicy().hasHeightForWidth()) self.uploadView.setSizePolicy(sizePolicy) self.uploadView.setMinimumSize(QtCore.QSize(0, 0)) self.uploadView.setAutoScrollMargin(16) self.uploadView.setObjectName("uploadView") self.verticalLayout.addWidget(self.uploadView) self.uploadDetailsWidget = QtWidgets.QWidget(self.groupBox_2) self.uploadDetailsWidget.setMaximumSize(QtCore.QSize(16777215, 16777215)) self.uploadDetailsWidget.setObjectName("uploadDetailsWidget") self.verticalLayout_7 = QtWidgets.QVBoxLayout(self.uploadDetailsWidget) self.verticalLayout_7.setObjectName("verticalLayout_7") self.gridLayout = QtWidgets.QGridLayout() self.gridLayout.setVerticalSpacing(0) self.gridLayout.setObjectName("gridLayout") self.labelReleaseName = QtWidgets.QLabel(self.uploadDetailsWidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.labelReleaseName.sizePolicy().hasHeightForWidth()) self.labelReleaseName.setSizePolicy(sizePolicy) self.labelReleaseName.setObjectName("labelReleaseName") self.gridLayout.addWidget(self.labelReleaseName, 0, 0, 1, 1) self.comboAutomaticTranslation = QtWidgets.QCheckBox(self.uploadDetailsWidget) self.comboAutomaticTranslation.setText("") self.comboAutomaticTranslation.setObjectName("comboAutomaticTranslation") self.gridLayout.addWidget(self.comboAutomaticTranslation, 7, 2, 1, 1) self.labelTranslator = QtWidgets.QLabel(self.uploadDetailsWidget) self.labelTranslator.setObjectName("labelTranslator") self.gridLayout.addWidget(self.labelTranslator, 9, 0, 1, 1) self.comboHearingImpaired = QtWidgets.QCheckBox(self.uploadDetailsWidget) self.comboHearingImpaired.setText("") self.comboHearingImpaired.setObjectName("comboHearingImpaired") self.gridLayout.addWidget(self.comboHearingImpaired, 6, 2, 1, 1) self.horizontalLayout_12 = QtWidgets.QHBoxLayout() self.horizontalLayout_12.setObjectName("horizontalLayout_12") self.uploadLanguages = LanguageComboBox(self.uploadDetailsWidget) self.uploadLanguages.setObjectName("uploadLanguages") self.horizontalLayout_12.addWidget(self.uploadLanguages) spacerItem1 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout_12.addItem(spacerItem1) self.gridLayout.addLayout(self.horizontalLayout_12, 2, 2, 1, 2) self.labelHearingImpaired = QtWidgets.QLabel(self.uploadDetailsWidget) self.labelHearingImpaired.setObjectName("labelHearingImpaired") self.gridLayout.addWidget(self.labelHearingImpaired, 6, 0, 1, 1) self.label = QtWidgets.QLabel(self.uploadDetailsWidget) self.label.setObjectName("label") self.gridLayout.addWidget(self.label, 12, 0, 1, 1) self.buttonUploadFindIMDB = QtWidgets.QPushButton(self.uploadDetailsWidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.buttonUploadFindIMDB.sizePolicy().hasHeightForWidth()) self.buttonUploadFindIMDB.setSizePolicy(sizePolicy) self.buttonUploadFindIMDB.setMinimumSize(QtCore.QSize(0, 0)) self.buttonUploadFindIMDB.setMaximumSize(QtCore.QSize(120, 16777215)) icon6 = QtGui.QIcon() icon6.addPixmap(QtGui.QPixmap(":/images/search.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.buttonUploadFindIMDB.setIcon(icon6) self.buttonUploadFindIMDB.setObjectName("buttonUploadFindIMDB") self.gridLayout.addWidget(self.buttonUploadFindIMDB, 1, 3, 1, 1) self.horizontalLayout_2 = QtWidgets.QHBoxLayout() self.horizontalLayout_2.setObjectName("horizontalLayout_2") self.gridLayout.addLayout(self.horizontalLayout_2, 13, 0, 1, 4) self.labelMovieTitle = QtWidgets.QLabel(self.uploadDetailsWidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.labelMovieTitle.sizePolicy().hasHeightForWidth()) self.labelMovieTitle.setSizePolicy(sizePolicy) self.labelMovieTitle.setObjectName("labelMovieTitle") self.gridLayout.addWidget(self.labelMovieTitle, 1, 0, 1, 1) self.buttonUpload = QtWidgets.QPushButton(self.uploadDetailsWidget) self.buttonUpload.setEnabled(True) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.buttonUpload.setFont(font) icon7 = QtGui.QIcon() icon7.addPixmap(QtGui.QPixmap(":/images/upload.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.buttonUpload.setIcon(icon7) self.buttonUpload.setIconSize(QtCore.QSize(24, 24)) self.buttonUpload.setObjectName("buttonUpload") self.gridLayout.addWidget(self.buttonUpload, 12, 3, 1, 1) self.uploadTranslator = QtWidgets.QLineEdit(self.uploadDetailsWidget) self.uploadTranslator.setObjectName("uploadTranslator") self.gridLayout.addWidget(self.uploadTranslator, 9, 2, 1, 2) self.labelSubtitleLanguage = QtWidgets.QLabel(self.uploadDetailsWidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.labelSubtitleLanguage.sizePolicy().hasHeightForWidth()) self.labelSubtitleLanguage.setSizePolicy(sizePolicy) self.labelSubtitleLanguage.setObjectName("labelSubtitleLanguage") self.gridLayout.addWidget(self.labelSubtitleLanguage, 2, 0, 1, 1) self.comboHighDefinition = QtWidgets.QCheckBox(self.uploadDetailsWidget) self.comboHighDefinition.setText("") self.comboHighDefinition.setObjectName("comboHighDefinition") self.gridLayout.addWidget(self.comboHighDefinition, 5, 2, 1, 1) self.uploadReleaseText = QtWidgets.QLineEdit(self.uploadDetailsWidget) self.uploadReleaseText.setObjectName("uploadReleaseText") self.gridLayout.addWidget(self.uploadReleaseText, 0, 2, 1, 2) self.uploadComments = QtWidgets.QTextEdit(self.uploadDetailsWidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.uploadComments.sizePolicy().hasHeightForWidth()) self.uploadComments.setSizePolicy(sizePolicy) self.uploadComments.setMaximumSize(QtCore.QSize(16777215, 50)) self.uploadComments.setObjectName("uploadComments") self.gridLayout.addWidget(self.uploadComments, 11, 2, 1, 2) self.uploadIMDB = QtWidgets.QComboBox(self.uploadDetailsWidget) self.uploadIMDB.setObjectName("uploadIMDB") self.uploadIMDB.addItem("") self.gridLayout.addWidget(self.uploadIMDB, 1, 2, 1, 1) self.labelAutomaticTranslation = QtWidgets.QLabel(self.uploadDetailsWidget) self.labelAutomaticTranslation.setObjectName("labelAutomaticTranslation") self.gridLayout.addWidget(self.labelAutomaticTranslation, 7, 0, 1, 1) self.labelHighDefinition = QtWidgets.QLabel(self.uploadDetailsWidget) self.labelHighDefinition.setObjectName("labelHighDefinition") self.gridLayout.addWidget(self.labelHighDefinition, 5, 0, 1, 1) self.labelComments = QtWidgets.QLabel(self.uploadDetailsWidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.labelComments.sizePolicy().hasHeightForWidth()) self.labelComments.setSizePolicy(sizePolicy) self.labelComments.setObjectName("labelComments") self.gridLayout.addWidget(self.labelComments, 11, 0, 1, 1) self.horizontalLayout = QtWidgets.QHBoxLayout() self.horizontalLayout.setObjectName("horizontalLayout") self.comboProvider = ProviderComboBox(self.uploadDetailsWidget) self.comboProvider.setObjectName("comboProvider") self.horizontalLayout.addWidget(self.comboProvider) spacerItem2 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout.addItem(spacerItem2) self.gridLayout.addLayout(self.horizontalLayout, 12, 2, 1, 1) self.verticalLayout_7.addLayout(self.gridLayout) self.verticalLayout.addWidget(self.uploadDetailsWidget) self.verticalLayout_2.addWidget(self.groupBox_2) self.retranslateUi(UploadWidget) QtCore.QMetaObject.connectSlotsByName(UploadWidget) def retranslateUi(self, UploadWidget): _translate = QtCore.QCoreApplication.translate UploadWidget.setWindowTitle(_("Form")) self.groupBox_2.setTitle(_("Select the videos and subtitles (only subtitles will be uploaded):")) self.labelReleaseName.setText(_("Release name:")) self.labelTranslator.setText(_("Translator")) self.labelHearingImpaired.setText(_("Hearing impaired")) self.label.setText(_("Provider:")) self.buttonUploadFindIMDB.setText(_("Find")) self.labelMovieTitle.setText(_("Movie Title:")) self.buttonUpload.setText(_("Upload")) self.labelSubtitleLanguage.setText(_("Subtitle Language:")) self.uploadIMDB.setItemText(0, _("Click on the Find button to identify the movie")) self.labelAutomaticTranslation.setText(_("Automatic translation")) self.labelHighDefinition.setText(_("High Definition")) self.labelComments.setText(_("Comments:")) from subdownloader.client.gui.views.language import LanguageComboBox from subdownloader.client.gui.views.provider import ProviderComboBox from subdownloader.client.gui.views.upload import UploadListView
"""Test game scheduler""" import asyncio import numpy as np import numpy.random as rand import pytest from gameanalysis import gamegen from gameanalysis import rsgame from egta import gamesched @pytest.mark.asyncio async def test_basic_profile(): """Test basic profile""" game = gamegen.game([4, 3], [3, 4]) profs = game.random_profiles(20) sched = gamesched.gamesched(game) assert rsgame.empty_copy(sched) == rsgame.empty_copy(game) paylist = await asyncio.gather(*[sched.sample_payoffs(p) for p in profs]) pays = np.stack(paylist) assert np.allclose(pays[profs == 0], 0) assert str(sched) == repr(game) @pytest.mark.asyncio async def test_basic_profile_sample(): """Test basic profile in sample game""" sgame = gamegen.samplegame([4, 3], [3, 4]) profs = sgame.random_profiles(20) sched = gamesched.samplegamesched(sgame) assert rsgame.empty_copy(sched) == rsgame.empty_copy(sgame) paylist = await asyncio.gather(*[sched.sample_payoffs(p) for p in profs]) pays = np.stack(paylist) assert np.allclose(pays[profs == 0], 0) assert str(sched) == repr(sgame) @pytest.mark.asyncio async def test_duplicate_profile_sample(): """Test duplicate profile in sample game""" sgame = gamegen.samplegame([4, 3], [3, 4], 0) profs = sgame.random_profiles(20) sched = gamesched.samplegamesched(sgame) paylist1 = await asyncio.gather(*[sched.sample_payoffs(p) for p in profs]) pays1 = np.stack(paylist1) paylist2 = await asyncio.gather(*[sched.sample_payoffs(p) for p in profs]) pays2 = np.stack(paylist2) assert np.allclose(pays1[profs == 0], 0) assert np.allclose(pays2[profs == 0], 0) assert np.allclose(pays1, pays2) @pytest.mark.asyncio async def test_basic_profile_aggfn(): """Test using an action graph game""" agame = gamegen.normal_aggfn([4, 3], [3, 4], 5) profs = agame.random_profiles(20) sched = gamesched.gamesched(agame) paylist = await asyncio.gather(*[sched.sample_payoffs(p) for p in profs]) pays = np.stack(paylist) assert np.allclose(pays[profs == 0], 0) @pytest.mark.asyncio async def test_noise_profile(): """Test adding noise""" sgame = gamegen.samplegame([4, 3], [3, 4]) profs = sgame.random_profiles(20) sched = gamesched.samplegamesched( sgame, lambda w: rand.normal(0, w, sgame.num_strats), lambda: (rand.random(),) ) paylist = await asyncio.gather(*[sched.sample_payoffs(p) for p in profs]) pays = np.stack(paylist) assert np.allclose(pays[profs == 0], 0) @pytest.mark.asyncio async def test_duplicate_prof(): """Test that duplicate profiles can be scheduled""" game = gamegen.game([4, 3], [3, 4]) profs = game.random_profiles(20) sched = gamesched.gamesched(game) paylist1 = await asyncio.gather(*[sched.sample_payoffs(p) for p in profs]) pays1 = np.stack(paylist1) paylist2 = await asyncio.gather(*[sched.sample_payoffs(p) for p in profs]) pays2 = np.stack(paylist2) assert np.allclose(pays1[profs == 0], 0) assert np.allclose(pays2[profs == 0], 0) assert np.allclose(pays1, pays2)
# -*- encoding: utf-8 -*- # Yuuno - IPython + VapourSynth # Copyright (C) 2017 StuxCrystal (Roland Netzsch <[email protected]>) # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import ast import time import hashlib import linecache from typing import Callable from yuuno.yuuno import Yuuno EXECUTE_CODE_LINENO = 0 RESULT_VAR = '_yuuno_exec_last_' def _code_name(code, file, number=0): hash_digest = hashlib.sha1(code.encode("utf-8")).hexdigest() return f"<{file}-{number}-{hash_digest[:12]}>" def compile_with_cache(ipython, code, ast, file, symbol): # Increment the cache name. global EXECUTE_CODE_LINENO exec_no = EXECUTE_CODE_LINENO EXECUTE_CODE_LINENO += 1 # Directly drop the fake python file into the cache. name = _code_name(code, file, exec_no) entry = (len(code), time.time(), [line + '\n' for line in code.splitlines()], name) linecache.cache[name] = entry if hasattr(linecache, '_ipython_cache'): linecache._ipython_cache[name] = entry # Compile the code return ipython.compile(ast, name, symbol) def execute_code(expr, file, fail_on_error=True, ns=None): ipy = Yuuno.instance().environment.ipython expr = ipy.input_transformer_manager.transform_cell(expr) expr_ast = ipy.compile.ast_parse(expr) expr_ast = ipy.transform_ast(expr_ast) if len(expr_ast.body) == 0: # There is no code to execute. # Take the fast path and skip executing. return None elif isinstance(expr_ast.body[-1], ast.Expr): last_expr = expr_ast.body[-1] assign = ast.Assign( # _yuuno_exec_last_ = <LAST_EXPR> targets=[ast.Name( id=RESULT_VAR, ctx=ast.Store() )], value=last_expr.value ) expr_ast.body[-1] = assign else: assign = ast.Assign( # _yuuno_exec_last_ = None targets=[ast.Name( id=RESULT_VAR, ctx=ast.Store(), )], value=ast.NameConstant( value=None ) ) expr_ast.body.append(assign) ast.fix_missing_locations(expr_ast) code = compile_with_cache(ipy, expr, expr_ast, file, "exec") if ns is None: ns = ipy.user_ns try: exec(code, ipy.user_ns, ns) result = ipy.user_ns.get(RESULT_VAR, None) finally: ns.pop(RESULT_VAR, None) return result
#!/usr/bin/env python """ Stream-based publishing and subscribing """ __author__ = 'Luke Campbell <[email protected]>, Michael Meisinger' import gevent from pyon.core.bootstrap import get_sys_name, CFG from pyon.core.exception import BadRequest from pyon.net.endpoint import Publisher, Subscriber from pyon.ion.identifier import create_simple_unique_id from pyon.ion.service import BaseService from pyon.util.log import log from interface.objects import StreamRoute DEFAULT_SYSTEM_XS = "system" DEFAULT_DATA_XP = "data" class StreamPublisher(Publisher): """ Publishes outgoing messages on "streams", while setting proper message headers. """ def __init__(self, process, stream, **kwargs): """ Creates a StreamPublisher which publishes to the specified stream and is attached to the specified process. @param process The IonProcess to attach to. @param stream Name of the stream or StreamRoute object """ super(StreamPublisher, self).__init__() if not isinstance(process, BaseService): raise BadRequest("No valid process provided.") if isinstance(stream, basestring): self.stream_route = StreamRoute(routing_key=stream) elif isinstance(stream, StreamRoute): self.stream_route = stream else: raise BadRequest("No valid stream information provided.") self.container = process.container self.xp_name = get_streaming_xp(self.stream_route.exchange_point) # Fully qualified self.xp = self.container.ex_manager.create_xp(self.stream_route.exchange_point or DEFAULT_DATA_XP) self.xp_route = self.xp.create_route(self.stream_route.routing_key) Publisher.__init__(self, to_name=self.xp_route, **kwargs) def publish(self, msg, *args, **kwargs): """ Encapsulates and publishes a message; the message is sent to either the specified stream/route or the stream/route specified at instantiation """ pub_hdrs = self._get_publish_headers(msg, kwargs) super(StreamPublisher, self).publish(msg, to_name=self._send_name, headers=pub_hdrs) def _get_publish_headers(self, msg, kwargs): headers = {} if "headers" in kwargs: headers.update(kwargs["headers"]) headers.update({'exchange_point': self.xp_name, 'stream': self.stream_route.routing_key}) return headers class StreamSubscriber(Subscriber): """ StreamSubscriber is a subscribing class to be attached to an ION process. The callback should accept three parameters: message The incoming message stream_route The route from where the message came. stream_name The identifier of the stream. """ def __init__(self, process, exchange_name=None, stream=None, exchange_point=None, callback=None): """ Creates a new StreamSubscriber which will listen on the specified queue (exchange_name). @param process The IonProcess to attach to. @param exchange_name The subscribing queue name. @param stream (optional) Name of the stream or StreamRoute object, to subscribe to @param callback The callback to execute upon receipt of a packet. """ if not isinstance(process, BaseService): raise BadRequest("No valid process provided.") self.queue_name = exchange_name or ("subsc_" + create_simple_unique_id()) self.streams = [] self.container = process.container exchange_point = exchange_point or DEFAULT_DATA_XP self.xp_name = get_streaming_xp(exchange_point) self.xp = self.container.ex_manager.create_xp(exchange_point) self.xn = self.container.ex_manager.create_queue_xn(self.queue_name, xs=self.xp) self.started = False self.callback = callback or process.call_process super(StreamSubscriber, self).__init__(from_name=self.xn, callback=self.preprocess) if stream: self.add_stream_subscription(stream) def add_stream_subscription(self, stream): if isinstance(stream, basestring): stream_route = StreamRoute(routing_key=stream) elif isinstance(stream, StreamRoute): stream_route = stream else: raise BadRequest("No valid stream information provided.") xp = self.container.ex_manager.create_xp(stream_route.exchange_point or DEFAULT_DATA_XP) self.xn.bind(stream_route.routing_key, xp) self.streams.append(stream_route) def remove_stream_subscription(self, stream): if isinstance(stream, basestring): stream_route = StreamRoute(routing_key=stream) elif isinstance(stream, StreamRoute): stream_route = stream else: raise BadRequest("No valid stream information provided.") existing_st = None for st in self.streams: if st.routing_key == stream_route.routing_key and st.exchange_point == stream_route.exchange_point: self.streams.remove(st) existing_st = st break if existing_st: xp = get_streaming_xp(stream_route.exchange_point) self.xn.unbind(existing_st.routing_key, xp) else: raise BadRequest("Stream was not a subscription") def preprocess(self, msg, headers): """ Unwrap the incoming message and calls the callback. @param msg The incoming packet. @param headers The headers of the incoming message. """ route = StreamRoute(headers['exchange_point'], headers['routing_key']) self.callback(msg, route, headers['stream']) def start(self): """ Begins consuming on the queue. """ if self.started: raise BadRequest("Subscriber already started") self.started = True self.greenlet = gevent.spawn(self.listen) self.greenlet._glname = "StreamSubscriber" def stop(self): """ Ceases consuming on the queue. """ if not self.started: raise BadRequest("Subscriber is not running.") self.close() self.greenlet.join(timeout=10) self.greenlet.kill() self.started = False def get_streaming_xp(streaming_xp_name=None): root_xs = CFG.get_safe("exchange.core.system_xs", DEFAULT_SYSTEM_XS) events_xp = streaming_xp_name or CFG.get_safe("exchange.core.data_streams", DEFAULT_DATA_XP) return "%s.%s.%s" % (get_sys_name(), root_xs, events_xp)
# coding: utf-8 # Copyright (c) 2013 Jorge Javier Araya Navarro <[email protected]> # # This file is free software: you may copy, redistribute and/or modify it # under the terms of the GNU General Public License as published by the # Free Software Foundation, either version 3 of the License, or (at your # option) any later version. # This file is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # # This file incorporates work covered by the following copyright and # permission notice: # # cocos2d # Copyright (c) 2008-2012 Daniel Moisset, Ricardo Quesada, Rayentray Tappa, # Lucio Torre # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # * Neither the name of cocos2d nor the names of its # contributors may be used to endorse or promote products # derived from this software without specific prior written # permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # ---------------------------------------------------------------------------- import math import cPickle import summa from summa import euclid import pyglet from pyglet import gl import copy class Skin(summa.summanode.SummaNode): def __init__(self, skeleton): super(Skin, self).__init__() self.skeleton = skeleton class ColorSkin(Skin): def __init__(self, skeleton, color): super(ColorSkin, self).__init__(skeleton) self.color = color def draw(self): self.skeleton.propagate_matrix() glPushMatrix() self.transform() self.skeleton.visit_children( lambda bone: self.draw_bone( bone ) ) bones = self.skeleton.visit_children( lambda bone: (bone.label, bone.parent_matrix*bone.matrix)) bones = dict(bones) glPopMatrix() def draw_bone(self, bone): p1 = bone.get_start() p2 = bone.get_end() glColor4ub(*self.color) glLineWidth(5) glBegin(GL_LINES) glVertex2f(*p1) glVertex2f(*p2) glEnd() class BitmapSkin(Skin): skin_parts = [] def __init__(self, skeleton, skin_def, alpha=255): super(BitmapSkin, self).__init__(skeleton) self.alpha = alpha self.skin_parts = skin_def self.regenerate() def move(self, idx, dx, dy): sp = self.skin_parts pos = sp[idx][1] sp[idx] = sp[idx][0], (pos[0]+dx, pos[1]+dy), sp[idx][2], \ sp[idx][3], sp[idx][4], sp[idx][5] self.regenerate() def get_control_points(self): return [ (i, p[0]) for i,p in enumerate(self.skin_parts) ] def regenerate(self): # print self.skin_parts self.parts = [ (name, position, scale,\ pyglet.resource.image(image,flip_y=flip_y, flip_x=flip_x)) \ for name, position, image, flip_x, flip_y, scale in self.skin_parts ] def draw(self): self.skeleton.propagate_matrix() glPushMatrix() self.transform() bones = self.skeleton.visit_children( lambda bone: (bone.label, bone.parent_matrix*bone.matrix)) bones = dict(bones) for bname, position, scale, image in self.parts: matrix = bones[bname] self.blit_image(matrix, position, scale, image) glPopMatrix() def blit_image(self, matrix, position, scale, image): x, y = image.width*scale, image.height*scale #dx = self.x + position[0] #dy = self.y + position[1] dx, dy = position glEnable(image.target) glBindTexture(image.target, image.id) glPushAttrib(GL_COLOR_BUFFER_BIT) glEnable(GL_BLEND) glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) # blit img points = [ (-dx, -dy), (x-dx, -dy), (x-dx, y-dy), (-dx, y-dy) ] a,b,_,c,d,_,e,f,_,g,h,_ = image.texture.tex_coords textures = [ a,b,c,d,e,f,g,h ] np = [ matrix*euclid.Point2(*p) for p in points ] glColor4ub(255,255,255,self.alpha) glBegin(GL_QUADS) glTexCoord2f(a,b) glVertex2f(*np[0]) glTexCoord2f(c,d) glVertex2f(*np[1]) glTexCoord2f(e,f) glVertex2f(*np[2]) glTexCoord2f(g,h) glVertex2f(*np[3]) glEnd() glColor4ub(255,255,255,255) #pyglet.graphics.draw(4, GL_QUADS, # ("v2f", new_points), # ("t2f", textures), # ("c4B", [255,255,255,self.alpha]*4), # ) glPopAttrib() glDisable(image.target) def flip(self): nsp = [] for name, position, image, flip_x, flip_y, scale in self.skin_parts: im = pyglet.resource.image(image,flip_y=flip_y, flip_x=flip_x) x = im.width*scale - position[0] y = position[1] nsp.append( (name, (x,y), image, not flip_x, flip_y, scale)) self.skin_parts = nsp self.regenerate() self.skeleton = self.skeleton.flipped() class Animate(summa.actions.IntervalAction): def init(self, animation, recenter=False, recenter_x=False, recenter_y=False): if recenter: recenter_x = recenter_y = True self.recenter_x = recenter_x self.recenter_y = recenter_y self.duration = animation.get_duration() self.animation = animation def start(self): nsk = copy.deepcopy(self.target.skeleton) if self.recenter_x: self.target.x += nsk.translation.x nsk.translation.x = 0 if self.recenter_y: self.target.y += nsk.translation.y nsk.translation.y = 0 self.start_skeleton = nsk def update(self, t): self.animation.pose(self.target.skeleton, t, self.start_skeleton) def __reversed__(self): raise NotImplementedError("gimme some time") class Skeleton(object): def __init__(self, bone): super(Skeleton, self).__init__() self.bone = bone self.matrix = euclid.Matrix3.new_identity() self.translation = euclid.Vector2(0,0) def flipped(self): sk = Skeleton(self.bone.flipped()) sk.translation.x = -self.translation.x sk.translation.y = self.translation.y sk.matrix = euclid.Matrix3.new_translate( *sk.translation ) return sk def save(self, name): f = open(name, "w") cPickle.dump(self, f) f.close() def move(self, dx, dy): self.matrix.translate(dx, dy) self.translation.x += dx self.translation.y += dy def propagate_matrix(self): def visit(matrix, child): child.parent_matrix = matrix matrix = matrix * child.matrix for c in child.children: visit(matrix, c) visit(self.matrix, self.bone) def visit_children(self, func): result = [] def inner(bone): result.append( func( bone ) ) for b in bone.children: inner(b) inner(self.bone) return result def get_control_points(self): points = [self] self.propagate_matrix() points += self.visit_children( lambda bone: bone ) return points def interpolated_to(self, next, delta): sk = Skeleton(self.bone.interpolated_to(next.bone, delta)) sk.translation = (next.translation-self.translation) * delta + self.translation sk.matrix = euclid.Matrix3.new_translate( *sk.translation ) return sk def pose_from(self, other): self.matrix = other.matrix self.translation = other.translation self.bone = copy.deepcopy(other.bone) class Bone(object): def __init__(self, label, size, rotation, translation): self.size = size self.label = label self.children = [] self.matrix = euclid.Matrix3.new_translate(*translation) * \ euclid.Matrix3.new_rotate( math.radians(rotation) ) self.parent_matrix = euclid.Matrix3.new_identity() self.translation = euclid.Point2(*translation) self.rotation = math.radians(rotation) def move(self, dx, dy): self.translation.x += dx self.translation.y += dy self.matrix = euclid.Matrix3.new_translate(*self.translation) * \ euclid.Matrix3.new_rotate( self.rotation) def flipped(self): bone = Bone(self.label, self.size, -math.degrees(self.rotation), (-self.translation[0], self.translation[1])) for b in self.children: bone.add( b.flipped() ) return bone def rotate(self, angle): self.rotation += angle self.matrix.rotate( angle ) def add(self, bone): self.children.append(bone) return self def get_end(self): return self.parent_matrix * self.matrix * euclid.Point2(0, -self.size) def get_start(self): return self.parent_matrix * self.matrix * euclid.Point2(0, 0) def interpolated_to(self, next, delta): ea = next.rotation%(math.pi*2) sa = self.rotation %(math.pi*2) angle = ((ea%(math.pi*2)) - (sa%(math.pi*2))) if angle > math.pi: angle = -math.pi*2+angle if angle < -math.pi: angle = math.pi*2+angle nr = ( sa + angle * delta ) % (math.pi*2) nr = math.degrees( nr ) bone = Bone(self.label, self.size, nr, self.translation) for i, c in enumerate(self.children): nc = c.interpolated_to(next.children[i], delta) bone.add( nc ) return bone def dump(self, depth=0): print "-"*depth, self for c in self.children: c.dump(depth+1) def repr(self, depth=0): repr = " "*depth*4 + "Bone('%s', %s, %s, %s)"%( self.label, self.size, math.degrees(self.rotation), self.translation ) for c in self.children: repr += " "*depth*4 +".add(\n" + c.repr(depth+1) + ")" repr += "\n" return repr class Animation(object): def __init__(self, skeleton): self.frames = {} self.position = 0 self.skeleton = skeleton def flipped(self): c = copy.deepcopy(self) for t, sk in c.frames.items(): c.frames[t] = sk.flipped() return c def pose(self, who, t, start): dt = t * self.get_duration() self.position = dt ct, curr = self.get_keyframe() #print who.tranlation # if we are in a keyframe, pose that if curr: who.pose_from( curr ) return # find previous, if not, use start pt, prev = self.get_keyframe(-1) if not prev: prev = start pt = 0 # find next, if not, pose at prev nt, next = self.get_keyframe(1) if not next: who.pose_from( prev ) return # we find the dt betwen prev and next and pose from it ft = (nt-dt)/(nt-pt) who.pose_from( next.interpolated_to( prev, ft ) ) def get_duration(self): if self.frames: return max(max( self.frames ), self.position ) else: return self.position def get_markers(self): return self.frames.keys() def get_position(self): return self.position def get_keyframe(self, offset=0): if offset == 0: if self.position in self.frames: return self.position, self.frames[self.position] else: return None, None elif offset < 0: prevs = [ t for t in self.frames if t < self.position ] prevs.sort() if abs(offset) <= len(prevs): return prevs[offset], self.frames[prevs[offset]] else: return None, None elif offset > 0: next = [ t for t in self.frames if t > self.position ] next.sort() if abs(offset) <= len(next): return next[offset-1], self.frames[next[offset-1]] else: return None, None def next_keyframe(self): next = [ t for t in self.frames if t > self.position ] if not next: return False self.position = min(next) return True def prev_keyframe(self): prevs = [ t for t in self.frames if t < self.position ] if not prevs: return False self.position = max(prevs) return True def move_position(self, delta): self.position = max(self.position+delta, 0) return True def move_start(self): self.position = 0 return True def move_end(self): if self.frames: self.position = max( self.frames ) else: self.position = 0 return True def insert_keyframe(self): if self.position not in self.frames: t, sk = self.get_keyframe(-1) if not sk: sk = self.skeleton self.frames[ self.position ] = copy.deepcopy(sk) return True return False def remove_keyframe(self): if self.position in self.frames: del self.frames[ self.position ] return True return False def insert_time(self, delta): new_frames = {} for t, sk in sorted(self.frames.items()): if t >= self.position: t += delta new_frames[ t ] = sk self.frames = new_frames def delete_time(self, delta): for t in self.frames: if self.position <= t < self.position + delta: return False new_frames = {} for t, sk in sorted(self.frames.items()): if t > self.position: t -= delta new_frames[ t ] = sk self.frames = new_frames
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter, FileType from importlib.util import find_spec from .main_cross_validation import cross_validation_core from .main_predict import predict_core from .main_retraining import retrain_core from .main_train import train_core from ..version import version class DefaultList(list): @staticmethod def __copy__(*_): return [] def _common(parser): parser.add_argument("--type_model", "-tm", type=str, default="nb", choices=['nb', 'mlp', 'keras'], help="Model type used for training / prediction AAM:" "'nb' - used naive Bayes classifier;" "'mlp' - used MLPClassifier;" "'keras' - used Keras_MLPClassifier.") parser.add_argument("--mlp_hls", "-hls", action='append', type=int, default=DefaultList([100]), help="If the model type is 'mlp', then the following hyper-parameters 'hidden_layer_sizes'." "Example, write -hls 100 -hls 100 => [100, 100].") parser.add_argument("--mlp_a", "-a", type=str, default="relu", choices=['identity', 'logistic', 'tanh', 'relu'], help="If the model type is 'mlp', then the following hyper-parameters 'activation'.") parser.add_argument("--mlp_s", "-s", type=str, default="adam", choices=['lbfgs', 'sgd', 'adam'], help="If the model type is 'mlp', then the following hyper-parameters 'solver'.") parser.add_argument("--mlp_alpha", "-alpha", type=float, default=0.0001, help="If the model type is 'mlp', then the following hyper-parameters 'alpha'.") parser.add_argument("--mlp_bs", "-bs", type=int, default=200, help="If the model type is 'mlp', then the following hyper-parameters 'batch_size'.") parser.add_argument("--mlp_lr", "-lr", type=str, default="constant", choices=['constant', 'invscaling', 'adaptive'], help="If the model type is 'mlp', then the following hyper-parameters 'learning_rate'.") parser.add_argument("--mlp_mi", "-mi", type=int, default=200, help="If the model type is 'mlp', then the following hyper-parameters 'max_iter'.") parser.add_argument("--mlp_es", "-es", type=bool, default=False, help="If the model type is 'mlp', then the following hyper-parameters 'early_stopping'.") parser.add_argument("--keras_dropout", "-do", action='append', type=int, default=DefaultList([]), help="If the model type is 'keras', then the following hyper-parameters 'dropout'." "Example, write -do 0 -do 0.5 => [0, 0.5].") parser.add_argument("--batch_chunk", "-bc", type=int, default=1, help="Breakdown by the count of reactions (for model training).") parser.add_argument("--pairs", "-p", type=int, default=0, help="Type of union of atoms pairs:\n" "0 = 'sim' - uniting atoms with the same name (in periodic table),\n" "1 = 'eqv' - uniting same name with atoms symmetries refinement.") parser.add_argument("--duplicate", "-d", type=bool, default=True, help="Accounted the atomic pairs information duplicates:\n" "True - doesn't duplicate,\n" "False - does all duplicate.") # "2-does 'False' duplicate") parser.add_argument("--fragment_type", "-ft", type=str, default='augSeq', choices=['seq', 'aug', 'augSeq', 'fSeq', 'fAug'], help="Method of fragmentation of a molecule:\n" "'seq' - sequenced fragments,\n" "'aug' - augmented fragments,\n" "'augSeq' - sequenced and augmented fragments,\n" "'fSeq' - fuzzy sequenced fragments,\n" "'fAug' - fuzzy augmented fragments.") parser.add_argument("--min", "-m", type=int, default=1, help="The minimal sequenced fragments length.") parser.add_argument("--min2", "-m2", type=int, default=3, help="The minimal fuzzy sequenced fragments length.") parser.add_argument("--max", "-M", type=int, default=8, help="The maximal sequenced fragments length.") parser.add_argument("--max2", "-M2", type=int, default=8, help="The maximal fuzzy sequenced fragments length.") parser.add_argument("--deep", "-deep", type=int, default=3, help="The maximum number of levels of augmented fragments.") parser.add_argument("--fuzzy", "-fl", type=int, default=2, help="The count of fuzzy first N-bonds.") parser.add_argument("--fragment_count", "-fc", type=bool, default=False, help="Accounted for the number of fragments of each type:\n" "False - to ignored,\n" "True - to account.") parser.add_argument("--bitstring", "-b", type=int, default=0, help="Type of union bit-strings the reagents (A) and the products (B):\n" "0 = 'and' - intersection of information [A & B],\n" "1 = [A+B+(A*B)],\n" "2 = [(A!B)+(B!A)+(A*B)],\n" "3 = [A+B],\n" "4 = 'xor_&_and' - United 'symmetric difference' and 'intersection' [(A ^ B) + (A & B)],\n" "5 = 'kron' - Tensor product of information.") parser.add_argument("--length", "-l", type=int, default=2048, help="Length the bit-strings.") parser.add_argument("--chunk", "-c", type=int, default=None, help="Necessary partitioning of the process of creating bit strings, " "if the LENGTH value exceeding 100,000.") def train(subparsers): parser = subparsers.add_parser('train', help='The stage of the mapping learning on the reaction sets', formatter_class=ArgumentDefaultsHelpFormatter) parser.add_argument("--input", "-i", default="input.rdf", type=str, help="RDF input file on which to learn to create mapping") parser.add_argument("--model", "-n", default="model.dat", type=FileType('wb'), help="File with trained model") parser.add_argument("--model_filename", "-n2", default="trained_keras_model.h5", type=str, help="File with trained keras-model") parser.add_argument("--debug", action='store_true', help="debug mod") _common(parser) parser.set_defaults(func=train_core) def predict(subparsers): parser = subparsers.add_parser('predict', help='The stage of the mapping prediction on the new reaction sets', formatter_class=ArgumentDefaultsHelpFormatter) parser.add_argument("--input", "-i", default="input.rdf", type=str, help="RDF input filename, to which want to create the mapping") parser.add_argument("--model", "-n", default="model.dat", type=FileType('rb'), help="File with trained model") parser.add_argument("--output", "-o", default="output.rdf", type=str, help="RDF outputfile") parser.add_argument("--dfs", "-dfs", type=int, default=0, help="Choice of the revision method (Depth-first search):\n" "0 - by the symmetrically equivalent groups,\n" "1 - by the values of probabilities.") '''parser.add_argument("--rank", "-ro", default="rank/rank.txt", type=FileType('w'), help="The debug file with average values of the mapping probability a reaction atoms " "at the mappings value True/False")''' parser.add_argument("--debug", action='store_true', help="debug mod") parser.set_defaults(func=predict_core) def cross_validation(subparsers): parser = subparsers.add_parser('cross_validation', help='The stage of the process cross-validation', formatter_class=ArgumentDefaultsHelpFormatter) parser.add_argument("--input", "-i", default="input.rdf", type=str, help="RDF input file") parser.add_argument("--output", "-o", default="cross_v", type=str, help="The path to the directory with service/output files.") parser.add_argument("--fold", "-k", type=int, default=5, help="Split the data into k consecutive folds.") parser.add_argument("--repeat", "-r", type=int, default=1, help="The number of repetitions of the cross-validation procedure.") parser.add_argument("--weights", "-w_dfs2", action='append', type=float, default=None, help="Selection of the weights parameters, for 'trimming a tree' in dfs2. " "Needed 3 float parameters. " "Example, write -w_dfs2 0.1 -w_dfs2 0.1 -w_dfs2 1.0 => [0.1, 0.1, 1.0].") parser.add_argument("--debug", action='store_true', help="debug mod") _common(parser) parser.set_defaults(func=cross_validation_core) def retrain(subparsers): parser = subparsers.add_parser('retrain', help='The stage of the mapping retrain on the new reaction sets', formatter_class=ArgumentDefaultsHelpFormatter) parser.add_argument("--input", "-i", default="input.rdf", type=str, help="RDF input file on which to learn to create mapping") parser.add_argument("--model", "-n", default="model.dat", type=FileType('rb'), help="File with trained model") parser.add_argument("--model2", "-n2", default="model2.dat", type=FileType('wb'), help="File with trained model") parser.add_argument("--debug", action='store_true', help="debug mod") _common(parser) parser.set_defaults(func=retrain_core) def argparser(): parser = ArgumentParser(description="NaiveMapper", epilog="(c) A-Deal1993", prog='naivemapper') parser.add_argument("--version", "-v", action="version", version=version(), default=False) subparsers = parser.add_subparsers(title='subcommands', description='available utilities') train(subparsers) predict(subparsers) cross_validation(subparsers) retrain(subparsers) if find_spec('argcomplete'): from argcomplete import autocomplete autocomplete(parser) return parser
# coding=utf-8 # 这是一个查找项目中未国际化的脚本 import os import re # 汉语写入文件时需要 import sys reload(sys) sys.setdefaultencoding('utf-8') # 将要解析的项目名称 DESPATH = "/Users/wangsuyan/Desktop/Kmart" # 解析结果存放的路径 WDESPATH = "/Users/wangsuyan/Desktop/unlocalized.log" #目录黑名单,这个目录下所有的文件将被忽略 BLACKDIRLIST = [ DESPATH + '/Classes/Personal/PERSetting/PERAccount', # 多级目录 DESPATH + '/Utils', # Utils 下所有的文件将被忽略 'PREPhoneNumResetViewController.m', # 文件名直接写,将忽略这个文件 ] # 输出分隔符 SEPREATE = ' <=> ' def isInBlackList(filePath): if os.path.isfile(filePath): return fileNameAtPath(filePath) in BLACKDIRLIST if filePath: return filePath in BLACKDIRLIST return False def fileNameAtPath(filePath): return os.path.split(filePath)[1] def isSignalNote(str): if '//' in str: return True if str.startswith('#pragma'): return True return False def isLogMsg(str): if str.startswith('NSLog') or str.startswith('FLOG'): return True return False def unlocalizedStrs(filePath): f = open(filePath) fileName = fileNameAtPath(filePath) isMutliNote = False isHaveWriteFileName = False for index, line in enumerate(f): #多行注释 line = line.strip() if '/*' in line: isMutliNote = True if '*/' in line: isMutliNote = False if isMutliNote: continue #单行注释 if isSignalNote(line): continue #打印信息 if isLogMsg(line): continue matchList = re.findall(u'@"[\u4e00-\u9fff]+', line.decode('utf-8')) if matchList: if not isHaveWriteFileName: wf.write('\n' + fileName + '\n') isHaveWriteFileName = True for item in matchList: wf.write(str(index + 1) + ':' + item[2 : len(item)] + SEPREATE + line + '\n') def findFromFile(path): paths = os.listdir(path) for aCompent in paths: aPath = os.path.join(path, aCompent) if isInBlackList(aPath): print('在黑名单中,被自动忽略' + aPath) continue if os.path.isdir(aPath): findFromFile(aPath) elif os.path.isfile(aPath) and os.path.splitext(aPath)[1]=='.m': unlocalizedStrs(aPath) if __name__ == '__main__': wf = open(WDESPATH, 'w') findFromFile(DESPATH) wf.close()