datasetId
large_stringlengths
6
116
author
large_stringlengths
2
42
last_modified
large_stringdate
2021-04-29 15:34:29
2025-06-06 22:02:15
downloads
int64
0
3.97M
likes
int64
0
7.74k
tags
large listlengths
1
7.92k
task_categories
large listlengths
0
48
createdAt
large_stringdate
2022-03-02 23:29:22
2025-06-06 20:13:22
trending_score
float64
0
40
card
large_stringlengths
31
1.01M
sumukshashidhar-testing/yourbench_example
sumukshashidhar-testing
2025-06-04T11:22:58Z
8
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-31T12:17:57Z
null
--- dataset_info: - config_name: chunked features: - name: document_id dtype: string - name: document_text dtype: string - name: document_filename dtype: string - name: document_metadata struct: - name: file_size dtype: int64 - name: raw_chunk_summaries sequence: string - name: chunk_summaries sequence: string - name: raw_document_summary dtype: string - name: document_summary dtype: string - name: summarization_model dtype: string - name: chunks list: - name: chunk_id dtype: string - name: chunk_text dtype: string - name: multihop_chunks list: - name: chunk_ids sequence: string - name: chunks_text sequence: string splits: - name: train num_bytes: 57298 num_examples: 2 download_size: 72936 dataset_size: 57298 - config_name: ingested features: - name: document_id dtype: string - name: document_text dtype: string - name: document_filename dtype: string - name: document_metadata struct: - name: file_size dtype: int64 splits: - name: train num_bytes: 18022 num_examples: 2 download_size: 13492 dataset_size: 18022 - config_name: lighteval features: - name: question dtype: string - name: additional_instructions dtype: string - name: ground_truth_answer dtype: string - name: gold sequence: string - name: choices sequence: 'null' - name: question_category dtype: string - name: kind dtype: string - name: estimated_difficulty dtype: int64 - name: citations sequence: string - name: document_id dtype: string - name: chunk_ids sequence: string - name: question_generating_model dtype: string - name: chunks sequence: string - name: document dtype: string - name: document_summary dtype: string - name: answer_citation_score dtype: float64 - name: chunk_citation_score dtype: float64 - name: citation_score dtype: float64 splits: - name: train num_bytes: 211444 num_examples: 20 download_size: 47040 dataset_size: 211444 - config_name: single_shot_questions features: - name: chunk_id dtype: string - name: document_id dtype: string - name: additional_instructions dtype: string - name: question dtype: string - name: self_answer dtype: string - name: choices sequence: 'null' - name: estimated_difficulty dtype: int64 - name: self_assessed_question_type dtype: string - name: generating_model dtype: string - name: thought_process dtype: string - name: raw_response dtype: string - name: citations sequence: string splits: - name: train num_bytes: 193816 num_examples: 20 download_size: 39271 dataset_size: 193816 - config_name: summarized features: - name: document_id dtype: string - name: document_text dtype: string - name: document_filename dtype: string - name: document_metadata struct: - name: file_size dtype: int64 - name: raw_chunk_summaries sequence: string - name: chunk_summaries sequence: string - name: raw_document_summary dtype: string - name: document_summary dtype: string - name: summarization_model dtype: string splits: - name: train num_bytes: 28605 num_examples: 2 download_size: 43552 dataset_size: 28605 configs: - config_name: chunked data_files: - split: train path: chunked/train-* - config_name: ingested data_files: - split: train path: ingested/train-* - config_name: lighteval data_files: - split: train path: lighteval/train-* - config_name: single_shot_questions data_files: - split: train path: single_shot_questions/train-* - config_name: summarized data_files: - split: train path: summarized/train-* ---
anonloftune/insurance-30-sft-pythia-1b
anonloftune
2025-06-04T11:22:37Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T11:22:34Z
null
--- dataset_info: features: - name: question dtype: string - name: answer dtype: string splits: - name: train num_bytes: 11927481 num_examples: 16380 - name: validation num_bytes: 1405312 num_examples: 1980 download_size: 5209582 dataset_size: 13332793 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
qizekun/OmniSpatial
qizekun
2025-06-04T11:19:16Z
128
5
[ "task_categories:visual-question-answering", "language:en", "license:apache-2.0", "size_categories:1K<n<10K", "format:imagefolder", "modality:image", "library:datasets", "library:mlcroissant", "region:us", "Spatial Reasoning" ]
[ "visual-question-answering" ]
2025-04-15T13:23:53Z
null
--- license: apache-2.0 task_categories: - visual-question-answering language: - en tags: - Spatial Reasoning size_categories: - 1K<n<10K --- # OmniSpatial ## Task Schema Documentation This document provides a structured explanation of the task schema for the visual-spatial reasoning benchmark. --- ## Schema Structure The schema is represented in JSON format, containing the following key components: | Key | Description | |-------------------|--------------------------------------------------------------------------------------------------------------| | **id** | Identifier for the question, formatted as `{image_number}_{question_number}`. | | **question** | The prompt or query that needs to be answered based on visual-spatial reasoning. | | **options** | A list of possible answer choices for the question. | | **answer** | The index of the correct answer (Ground Truth, GT) within the `options` list. | | **task_type** | The main category of the reasoning task, with four types: | | | - `Dynamic_Reasoning`: Analyzing motion or changes over time. | | | - `Spatial_Interaction`: Understanding spatial relationships and object interactions. | | | - `Complex_Logic`: Multi-step logical reasoning involving spatial or interactive elements. | | | - `Perspective_Taking`: Reasoning about the scene from different viewpoints or observer positions. | | **sub_task_type** | A more specific categorization of the task, for example, `Motion_Analysis` under `Dynamic_Reasoning`. | | **sub_sub_task_type** | An additional layer of task categorization, currently not provided but planned for future updates. | --- ## Example Below is an example schema instance: ```json { "id": "15_1", "question": "If the giraffe on the right reaches the camera in 4 s, what is its speed?", "options": [ "10.9m/s", "0.9m/s", "35.7m/s", "14.7m/s" ], "answer": 1, "task_type": "Dynamic_Reasoning", "sub_task_type": "Motion_Analysis" }
nyuuzyou/Minecraft-Skins-20M
nyuuzyou
2025-06-04T11:16:46Z
0
0
[ "task_categories:image-classification", "task_categories:text-to-image", "annotations_creators:found", "multilinguality:monolingual", "source_datasets:original", "license:other", "size_categories:10M<n<100M", "format:json", "modality:text", "modality:image", "library:datasets", "library:dask", "library:mlcroissant", "region:us", "image" ]
[ "image-classification", "text-to-image" ]
2025-06-03T21:17:18Z
null
--- pretty_name: Minecraft Skins Dataset size_categories: - 10M<n<100M task_categories: - image-classification - text-to-image annotations_creators: - found multilinguality: - monolingual source_datasets: - original configs: - config_name: default data_files: - split: train path: "dataset_*.jsonl.zst" default: true tags: - image license: - other --- # Dataset Card for Minecraft Skins ### Dataset Summary This dataset contains 19,973,928 unique Minecraft player skins collected from various sources. Each skin is stored as a base64-encoded image with a unique identifier. ## Dataset Structure ### Data Fields This dataset includes the following fields: - `id`: A randomly generated UUID for each skin entry. These UUIDs are not linked to any external APIs or services (such as Mojang's player UUIDs) and serve solely as unique identifiers within this dataset. - `image`: The skin image encoded in base64 format. ### Data Splits All examples are in the train split, there is no validation split. ### Data Format - **Format**: JSONL (JSON Lines) compressed with Zstandard (.jsonl.zst) - **File Structure**: Multiple files containing approximately 100,000 entries each - **Total Entries**: 19,973,928 unique skins - **Image Format**: Base64-encoded PNG images (64x64 pixels, standard Minecraft skin format) ### Disclaimer This dataset is not affiliated with, endorsed by, or associated with Microsoft Corporation or Mojang Studios. Minecraft is a trademark of Microsoft Corporation and Mojang Studios. This dataset is provided for research and educational purposes only.
erdem-erdem/24-puzzle-game-10k-q-t-format-v0.3
erdem-erdem
2025-06-04T11:15:14Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T11:15:12Z
null
--- dataset_info: features: - name: num sequence: int64 - name: target dtype: int64 splits: - name: train num_bytes: 440000 num_examples: 10000 download_size: 31593 dataset_size: 440000 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "24-puzzle-game-10k-q-t-format-v0.3" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
anonloftune/insurance-30-sft-pythia-410m
anonloftune
2025-06-04T11:14:45Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T11:14:41Z
null
--- dataset_info: features: - name: question dtype: string - name: answer dtype: string splits: - name: train num_bytes: 14394827 num_examples: 16380 - name: validation num_bytes: 1718891 num_examples: 1980 download_size: 6205752 dataset_size: 16113718 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
danthepol/m3-rag-corpus
danthepol
2025-06-04T11:11:39Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T11:30:16Z
null
--- dataset_info: features: - name: text dtype: string - name: source dtype: string splits: - name: train num_bytes: 46532474.89776381 num_examples: 54053 download_size: 24426950 dataset_size: 46532474.89776381 configs: - config_name: default data_files: - split: train path: data/train-* ---
yufanhuangNV/Cosmos-SFT-Nexar-Test
yufanhuangNV
2025-06-04T11:10:22Z
0
0
[ "task_categories:visual-question-answering", "task_categories:video-text-to-text", "language:en", "license:cc-by-4.0", "size_categories:n<1K", "format:json", "modality:text", "modality:video", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "video" ]
[ "visual-question-answering", "video-text-to-text" ]
2025-06-04T11:09:20Z
null
--- configs: - config_name: nexar-sft data_files: - split: understanding path: nexar-sft/nexar_understanding.json language: - en task_categories: - visual-question-answering - video-text-to-text tags: - video license: cc-by-4.0 ---
kowndinya23/alpaca_eval_prompts
kowndinya23
2025-06-04T10:59:34Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T10:59:32Z
null
--- dataset_info: features: - name: id dtype: int64 - name: prompt dtype: string splits: - name: train num_bytes: 254435 num_examples: 805 download_size: 103885 dataset_size: 254435 configs: - config_name: default data_files: - split: train path: data/train-* ---
french-datasets/rntc_clinical-insights
french-datasets
2025-06-04T10:49:11Z
0
0
[ "language:fra", "region:us" ]
[]
2025-06-04T10:48:46Z
null
--- language: - fra viewer: false --- Ce répertoire est vide, il a été créé pour améliorer le référencement du jeu de données [rntc/clinical-insights](https://huggingface.co/datasets/rntc/clinical-insights).
erdem-erdem/24-puzzle-game-10k-q-t-format-v0.2
erdem-erdem
2025-06-04T10:40:26Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T10:40:24Z
null
--- dataset_info: features: - name: num sequence: int64 - name: target dtype: int64 splits: - name: train num_bytes: 440000 num_examples: 10000 download_size: 31593 dataset_size: 440000 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "24-puzzle-game-10k-q-t-format-v0.2" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
HaeChan0305/Qwen3-32B-AIME-2023-2024-2025-sampling64
HaeChan0305
2025-06-04T10:29:18Z
0
0
[ "task_categories:text-generation", "language:en", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "math" ]
[ "text-generation" ]
2025-06-04T10:14:30Z
null
--- dataset_info: features: - name: query_index dtype: int64 - name: response_index dtype: int64 - name: problem dtype: string - name: solution dtype: 'null' - name: answer dtype: string - name: subject dtype: 'null' - name: level dtype: 'null' - name: unique_id dtype: string - name: thinking dtype: string - name: content dtype: string - name: thinking_length dtype: int64 - name: content_length dtype: int64 - name: correct dtype: bool splits: - name: train num_bytes: 55796417 num_examples: 1536 download_size: 21968184 dataset_size: 55796417 configs: - config_name: default data_files: - split: train path: data/train-* task_categories: - text-generation language: - en tags: - math size_categories: - 1K<n<10K --- - Model : Qwen3-32B - Original Dataset : first 24 queries in AIME2023 (시간 없어서 뒤에꺼 못함.) - Sampilng Sie : 64 - ‘correct’ : computed by the code in the link (https://github.com/LeapLabTHU/Absolute-Zero-Reasoner/blob/master/absolute_zero_reasoner/rewards/math_utils.py)
ihsanbasheer/legal-docs-images-labels
ihsanbasheer
2025-06-04T10:25:33Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T10:25:30Z
null
--- dataset_info: features: - name: image dtype: image - name: label dtype: string splits: - name: train num_bytes: 101742015.554 num_examples: 1237 download_size: 113372719 dataset_size: 101742015.554 configs: - config_name: default data_files: - split: train path: data/train-* ---
french-datasets/ahmadSiddiqi_amazon_reviews_fr
french-datasets
2025-06-04T10:15:39Z
0
0
[ "task_categories:text-classification", "language:fra", "region:us" ]
[ "text-classification" ]
2025-06-04T10:12:07Z
null
--- language: - fra viewer: false task_categories: - text-classification --- Ce répertoire est vide, il a été créé pour améliorer le référencement du jeu de données [ahmadSiddiqi/amazon_reviews_fr](https://huggingface.co/datasets/ahmadSiddiqi/amazon_reviews_fr).
coolroman/15_OID_0
coolroman
2025-06-04T10:10:54Z
0
0
[ "license:apache-2.0", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T08:50:23Z
null
--- license: apache-2.0 ---
rajivmehtapy/highland_json_ds
rajivmehtapy
2025-06-04T10:01:50Z
0
0
[ "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T09:53:54Z
null
--- license: apache-2.0 configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: title dtype: string - name: detail dtype: string - name: file_name dtype: string splits: - name: train num_bytes: 81416 num_examples: 131 download_size: 34809 dataset_size: 81416 ---
dwb2023/azure-ai-engineer-golden-dataset
dwb2023
2025-06-04T09:56:52Z
20
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-02T18:38:26Z
null
--- dataset_info: features: - name: user_input dtype: string - name: reference_contexts sequence: string - name: reference dtype: string - name: synthesizer_name dtype: string splits: - name: train num_bytes: 223514 num_examples: 34 download_size: 28373 dataset_size: 223514 configs: - config_name: default data_files: - split: train path: data/train-* ---
kristaller486/tmp_ds
kristaller486
2025-06-04T09:49:37Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T09:49:21Z
null
--- dataset_info: features: - name: source dtype: string - name: conversation list: - name: content dtype: string - name: role dtype: string - name: prompt_tokens dtype: int64 - name: answer_tokens dtype: int64 - name: cluster dtype: int64 - name: prompt_lang dtype: string - name: answer_lang dtype: string - name: prompt dtype: string splits: - name: train num_bytes: 387179317 num_examples: 86180 download_size: 180444089 dataset_size: 387179317 configs: - config_name: default data_files: - split: train path: data/train-* ---
Anjan9320/20250604151632
Anjan9320
2025-06-04T09:46:57Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T09:46:53Z
null
--- dataset_info: features: - name: audio dtype: audio - name: text dtype: string splits: - name: train num_bytes: 5932065.0 num_examples: 10 download_size: 4977868 dataset_size: 5932065.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
ziadrone/datasetcreation-tes5
ziadrone
2025-06-04T09:44:54Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T09:44:49Z
null
--- configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: messages list: - name: content dtype: string - name: role dtype: string - name: num_tokens dtype: int64 - name: source dtype: string splits: - name: train num_bytes: 107870 num_examples: 30 download_size: 58494 dataset_size: 107870 --- # Dataset Card for "datasetcreation-tes5" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
mdhasnainali/job-html-to-json
mdhasnainali
2025-06-04T09:26:09Z
210
0
[ "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-25T11:26:53Z
null
--- license: mit configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* dataset_info: features: - name: html dtype: string - name: json struct: - name: application_info struct: - name: apply_url dtype: string - name: contact_email dtype: string - name: deadline dtype: string - name: benefits sequence: string - name: cloud_providers sequence: string - name: databases sequence: string - name: department dtype: string - name: employment_type dtype: string - name: experience_level dtype: string - name: job_id dtype: string - name: language_requirements sequence: string - name: location struct: - name: city dtype: string - name: country dtype: string - name: hybrid dtype: bool - name: remote dtype: bool - name: state dtype: string - name: nice_to_have sequence: string - name: posted_date dtype: string - name: programming_languages sequence: string - name: qualifications struct: - name: certifications sequence: string - name: education_level dtype: string - name: fields_of_study dtype: string - name: recruitment_process sequence: string - name: requirements sequence: string - name: responsibilities sequence: string - name: salary struct: - name: currency dtype: string - name: max dtype: float64 - name: min dtype: float64 - name: period dtype: string - name: title dtype: string - name: tools sequence: string - name: work_schedule dtype: string - name: years_of_experience struct: - name: max dtype: float64 - name: min dtype: float64 - name: filename dtype: string splits: - name: train num_bytes: 53805084.25297892 num_examples: 5400 - name: test num_bytes: 548014.7470210816 num_examples: 55 download_size: 28261588 dataset_size: 54353099.0 ---
myfi/parser_dataset_sgpt_v3.4
myfi
2025-06-04T09:23:44Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T09:23:39Z
null
--- dataset_info: features: - name: conversations dtype: string splits: - name: train num_bytes: 11034506 num_examples: 1924 download_size: 1087613 dataset_size: 11034506 configs: - config_name: default data_files: - split: train path: data/train-* ---
ChavyvAkvar/synthetic-trades-ADA-batch-30
ChavyvAkvar
2025-06-04T09:12:36Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T09:11:28Z
null
--- dataset_info: features: - name: scenario_id dtype: string - name: final_pnl_ratio dtype: float64 - name: max_drawdown dtype: float64 - name: total_trades dtype: int64 - name: synthetic_ohlc_open sequence: float64 - name: synthetic_ohlc_high sequence: float64 - name: synthetic_ohlc_low sequence: float64 - name: synthetic_ohlc_close sequence: float64 - name: garch_params_used_for_sim_str dtype: string - name: strategy_params_str dtype: string - name: strategy_exit_rules_str dtype: string splits: - name: train num_bytes: 923453990 num_examples: 1000 download_size: 924469330 dataset_size: 923453990 configs: - config_name: default data_files: - split: train path: data/train-* ---
RasmusP/1armmovement
RasmusP
2025-06-04T09:11:34Z
112
0
[ "task_categories:robotics", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "phosphobot", "so100", "phospho-dk" ]
[ "robotics" ]
2025-05-17T13:13:03Z
null
--- tags: - phosphobot - so100 - phospho-dk task_categories: - robotics --- # 1armmovement **This dataset was generated using a [phospho starter pack](https://robots.phospho.ai).** This dataset contains a series of episodes recorded with a robot and multiple cameras. It can be directly used to train a policy using imitation learning. It's compatible with LeRobot and RLDS.
A113NW3I/TIIF-Bench-Data
A113NW3I
2025-06-04T08:58:58Z
293
4
[ "license:mit", "size_categories:1K<n<10K", "format:imagefolder", "modality:image", "library:datasets", "library:mlcroissant", "arxiv:2506.02161", "region:us" ]
[]
2025-05-22T10:57:35Z
null
--- license: mit paperswithcode: - arxiv:2506.02161 --- We release the images generated by the proprietary models evaluated in [“🔍TIIF-Bench: How Does Your T2I Model Follow Your Instructions?”](https://arxiv.org/abs/2506.02161). Produced under carefully crafted, high-quality prompts, these images form a valuable asset that can benefit the open-source community in a variety of applications🔥.
nqzfaizal77ai/nqzanime-multiple-character-512
nqzfaizal77ai
2025-06-04T08:56:38Z
113
0
[ "license:cc-by-nc-4.0", "size_categories:n<1K", "format:imagefolder", "modality:image", "library:datasets", "library:mlcroissant", "region:us" ]
[]
2025-05-24T04:03:42Z
null
--- license: cc-by-nc-4.0 --- this is collection dataset from extracting anime : * angel beats (available only reach episode 2) * argevollen (available only reach episode 2) * asterisk war * azur lane * baby steps * black bullet * break blade * btooom * chrome shelled regios (available only reach episode 2) * clannad * classroom crisis * classroom of the elite * code geass lelouch rebellion * darling in the franxx * date a live * death note * devil survivor 2 * diamond no ace * egao no daika * full metal panic * gargantia * guilty crown * hanebado * heavy object * highscool dxd * highschool of the dead * hinomaruzumou * hyouka * kantai collection * knight in area * k-on * kyoukai no kanata * legend of the galactic heroes * little buster * magical girl spec ops asuka * majestic prince (available only reach episode 2) * mahouka koukou no rettousei * mobile suit gundam 00 * mobile suit gundam: iron-blooded orphans * oregairu * oreshura * oresuki * phantasy star * rakudai kishi no cavalry * sakurasau no pet na kanojo * steins gate * strike the blood * suzumiya haruhi * taboo tattoo * toaru kagaku no accelerator * toaru kagaku no magical index * toaru kagaku no railgun * unbreakable machine doll * upotte * valvrave the liberator * zenonzard * zetsuen no tempest * z/x ignition and some is from hunting anime image related to work,school,law,modern military,scientist,sport,martial-art,and sci-fi
allenai/reward-bench-2
allenai
2025-06-04T08:53:38Z
189
8
[ "task_categories:question-answering", "language:en", "license:odc-by", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2506.01937", "region:us" ]
[ "question-answering" ]
2025-05-30T22:48:39Z
null
--- language: - en license: odc-by size_categories: - 1K<n<10K task_categories: - question-answering dataset_info: features: - name: id dtype: string - name: prompt dtype: string - name: chosen sequence: string - name: rejected sequence: string - name: num_correct dtype: int64 - name: num_incorrect dtype: int64 - name: total_completions dtype: int64 - name: models sequence: string - name: subset dtype: string - name: additional_metadata struct: - name: category dtype: string - name: correct dtype: string - name: index dtype: float64 - name: instruction_id_list sequence: string - name: label dtype: string - name: method dtype: string - name: models sequence: string - name: prompt_norm dtype: string - name: subcategory dtype: string - name: valid dtype: float64 splits: - name: test num_bytes: 13772499 num_examples: 1865 download_size: 6973189 dataset_size: 13772499 configs: - config_name: default data_files: - split: test path: data/test-* --- <!-- <img src="https://huggingface.co/spaces/allenai/reward-bench/resolve/main/src/logo.png" alt="RewardBench Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/> --> [Code](https://github.com/allenai/reward-bench) | [Leaderboard](https://huggingface.co/spaces/allenai/reward-bench) | [Results](https://huggingface.co/datasets/allenai/reward-bench-2-results) | [Paper](https://arxiv.org/abs/2506.01937) # RewardBench 2 Evaluation Dataset Card The RewardBench 2 evaluation dataset is the new version of RewardBench that is based on unseen human data and designed to be substantially more difficult! RewardBench 2 evaluates capabilities of reward models over the following categories: 1. **Factuality** (*NEW!*): Tests the ability of RMs to detect hallucinations and other basic errors in completions. 2. **Precise Instruction Following** (*NEW!*): Tests the ability of RMs to judge whether text follows precise instructions, such as "Answer without the letter u". 3. **Math**: Tests RMs' abilities at math, on open-ended human prompts ranging from middle school physics and geometry to college-level chemistry, calculus, combinatorics, and more. 4. **Safety**: Tests RMs' abilities to correctly comply with or refuse prompts related to harmful use cases as well as general compliance behaviors. 5. **Focus**: Tests RMs' ability to detect high-quality, on-topic answers to general user queries. 6. **Ties** (*NEW*!): This new type of subset tests the robustness of RMs in domains with many possible similar answers. For example, the question "Name a color of the rainbow" has seven possible correct answers and infinitely many incorrect ones. The RewardBench 2 leaderboard averages over these six subsets. For the first five categories, the scoring for RewardBench 2 evaluates success as whether the score of a prompt-chosen pair is greater than the score of *three* prompt-rejected pairs. The "Ties" score is a weighted score of accuracy (as measured by *all* valid correct answers being scored higher than *all* incorrect answers) and whether the reward margin between correct and incorrect answers exceeds that of the highest and lowest-scored correct responses. This metric rewards not only correctness, but also a model's ability to prioritize correct answers over incorrect ones more strongly than it distinguishes between equally valid correct responses. <img src="https://huggingface.co/datasets/allenai/blog-images/resolve/main/reward-bench/main-fig-hor.png" alt="RewardBench 2 Flow" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/> ## Dataset Construction Summary | Domain | Count | Prompt Source | Method of generating completions | Completion Filtering | |--------|-------|---------------|----------------------------------|---------------------| | Factuality | 475 | Human | Both | Multi-LM-as-a-judge | | Precise IF | 160 | Human | Natural | Verifier functions | | Math | 183 | Human | Natural | Majority voting | | Safety | 450 | CoCoNot | Both | LM-as-a-judge & rubrics | | Focus | 495 | Human | System Prompt Variation | N/A | | Ties | 102 | Manual | System Prompt Variation | Manual verification | ## Dataset Details Each sample in the dataset has the following items. Note, the dataset is single-turn: * `prompt` (`str`): the instruction given in the various test sets. * `chosen` (`list[str]`): the chosen response(s) (1 chosen response for all subsets but ties) * `rejected` (`list[str]`): the rejected responses (3 chosen responses for all subsets but ties) * `num_correct` (`int`): the number of chosen responses * `num_rejected` (`int`): the number of rejected responses * `total_completions` (`int`): the total number of responses * `models` (`list[str]`): a list of models that the chosen and rejected responses are generated from, respectively * `subset` (`str`): the subset the datapoint is part of. * `id` (`int`): an incremented id for every prompt in the benchmark. To select a specific subset use HuggingFace Datasets `.filter` functionality. ``` dataset = dataset.filter(lambda ex: ex["subset"] == "Factuality") ``` ## Models Used We generated completions from the following models: - [Mistral 7B Instruct v0.3](https://huggingface.co/mistralai/Mistral-7B-v0.3) (Apache 2.0) - [Tulu 3 8B](https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B) (Llama 3.1 Community License Agreement) - [Tulu 3 70B](https://huggingface.co/allenai/Llama-3.1-Tulu-3-70B) (Llama 3.1 Community License Agreement) - [Llama 3.1 8B Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) (Llama 3.1 Community License Agreement) - [Llama 3.1 70B Instruct](https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct) (Llama 3.1 Community License Agreement) - [Llama 3.2 1B Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) (Llama 3.2 Community License Agreement) - [Llama 2 7B Chat](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) (Llama 2 Community License Agreement) - [Tulu 2 70B](https://huggingface.co/allenai/tulu-2-dpo-70b) (Ai2 ImpACT Low Risk License) - [Qwen2.5 72B Instruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct) (Qwen License Agreement) - [Qwen2.5 7B Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) (Apache 2.0) - [Qwen2.5 14B Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) (Apache 2.0) - [Qwen2.5 0.5B Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) (Apache 2.0) - [Qwen2.5 Math 72B Instruct](https://huggingface.co/Qwen/Qwen2.5-Math-72B-Instruct) (Qwen License Agreement) - [Qwen2.5 Math 7B Instruct](https://huggingface.co/Qwen/Qwen2.5-Math-7B-Instruct) (Apache 2.0) - [Deepseek Math 7B RL](https://huggingface.co/deepseek-ai/deepseek-math-7b-rl) (This model is licensed under the Deepseek License. Any use of the outputs from this model must be in accordance with the use restrictions in the [Deepseek License](https://github.com/deepseek-ai/DeepSeek-Math/blob/main/LICENSE-MODEL).) - [OLMoE 1B 7B 0924 Instruct](https://huggingface.co/allenai/OLMoE-1B-7B-0924) (Apache 2.0) - [Dolphin 2.0 Mistral 7b](https://huggingface.co/cognitivecomputations/dolphin-2.0-mistral-7b) (Apache 2.0) - [Zephyr 7b Beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) (MIT License) - GPT-4o (Outputs produced by GPT-4 are subject to OpenAI's [terms of use](https://openai.com/policies/row-terms-of-use/)) - Claude 3.5 Sonnet (Outputs produced by Claude are subject to Anthropic [terms of service](https://www.anthropic.com/legal/consumer-terms) and [usage policy](https://www.anthropic.com/legal/aup)) ## License This dataset is licensed under ODC-BY. It is intended for research and educational use in accordance with Ai2's [Responsible Use Guidelines](https://allenai.org/responsible-use). This dataset includes output data generated from third party models that are subject to separate terms governing their use. ## Trained Reward Models We also trained and released several reward models— check out the [RewardBench 2 Collection](https://huggingface.co/collections/allenai/reward-bench-2-683d2612a4b3e38a3e53bb51) to use them! ## Citation ``` @misc{malik2025rewardbench2advancingreward, title={RewardBench 2: Advancing Reward Model Evaluation}, author={Saumya Malik and Valentina Pyatkin and Sander Land and Jacob Morrison and Noah A. Smith and Hannaneh Hajishirzi and Nathan Lambert}, year={2025}, eprint={2506.01937}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2506.01937}, } ```
Yofuria/llama3-ultrafeedback-armorm-swapped-40
Yofuria
2025-06-04T08:51:45Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T08:46:02Z
null
--- dataset_info: features: - name: prompt_id dtype: string - name: prompt dtype: string - name: all_generated_responses sequence: string - name: all_rm_scores sequence: float64 - name: chosen list: - name: content dtype: string - name: role dtype: string - name: rejected list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 882657158 num_examples: 59876 - name: test num_bytes: 28683892 num_examples: 1961 download_size: 419146669 dataset_size: 911341050 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
Sicong/caption_rl
Sicong
2025-06-04T08:50:01Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T07:49:10Z
null
--- dataset_info: features: - name: images sequence: image - name: problem dtype: string - name: answer dtype: string splits: - name: train num_bytes: 1327022766.28 num_examples: 3728 - name: validation num_bytes: 67436706.0 num_examples: 200 download_size: 1380617170 dataset_size: 1394459472.28 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
anonloftune/insurance-30-loftune-j
anonloftune
2025-06-04T08:37:17Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T08:37:12Z
null
--- dataset_info: features: - name: question dtype: string - name: chosen dtype: string - name: rejected dtype: string splits: - name: train num_bytes: 236720985 num_examples: 136462 - name: validation num_bytes: 28185680 num_examples: 17053 download_size: 11351608 dataset_size: 264906665 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
Toycat/scLibrary
Toycat
2025-06-04T08:36:31Z
370
5
[ "license:mit", "arxiv:2405.06708", "region:us" ]
[]
2024-12-29T15:39:44Z
null
--- license: mit --- The dataset scLibrary is the pre-training dataset used by the LangCell model. You can use `git-lfs` to download `sclibrary.dataset` from this repository, and then use the following code to load the data: ```python from datasets import load_from_disk sclibrary=load_from_disk("/path/to/sclibrary.dataset") ``` Model github: https://github.com/PharMolix/LangCell Paper: https://arxiv.org/abs/2405.06708
PAphospho/orange-circle-black-box
PAphospho
2025-06-04T08:34:10Z
0
0
[ "task_categories:robotics", "size_categories:n<1K", "modality:video", "library:datasets", "library:mlcroissant", "region:us", "phosphobot", "so100", "phospho-dk" ]
[ "robotics" ]
2025-06-04T08:33:00Z
null
--- tags: - phosphobot - so100 - phospho-dk task_categories: - robotics --- # orange-circle-black-box **This dataset was generated using a [phospho starter pack](https://robots.phospho.ai).** This dataset contains a series of episodes recorded with a robot and multiple cameras. It can be directly used to train a policy using imitation learning. It's compatible with LeRobot and RLDS.
LockeLamora2077/hayabusa_llm_report_forensic_reasoning
LockeLamora2077
2025-06-04T08:33:42Z
88
0
[ "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-30T08:15:19Z
null
--- license: apache-2.0 ---
siqiLi/eval_act_so100_test_12
siqiLi
2025-06-04T08:31:42Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so100", "tutorial", "eval" ]
[ "robotics" ]
2025-06-04T08:30:20Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so100 - tutorial - eval configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.0", "robot_type": "so100", "total_episodes": 10, "total_frames": 7060, "total_tasks": 1, "total_videos": 20, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:10" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.phone": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
pepijn223/lekiwi1749025613
pepijn223
2025-06-04T08:27:28Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
[ "robotics" ]
2025-06-04T08:27:25Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "lekiwi_client", "total_episodes": 1, "total_frames": 250, "total_tasks": 1, "total_videos": 2, "total_chunks": 1, "chunks_size": 1000, "fps": 10, "splits": { "train": "0:1" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 9 ], "names": [ "arm_shoulder_pan.pos", "arm_shoulder_lift.pos", "arm_elbow_flex.pos", "arm_wrist_flex.pos", "arm_wrist_roll.pos", "arm_gripper.pos", "x.vel", "y.vel", "theta.vel" ] }, "observation.state": { "dtype": "float32", "shape": [ 9 ], "names": [ "arm_shoulder_pan.pos", "arm_shoulder_lift.pos", "arm_elbow_flex.pos", "arm_wrist_flex.pos", "arm_wrist_roll.pos", "arm_gripper.pos", "x.vel", "y.vel", "theta.vel" ] }, "observation.images.front": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 10, "video.channels": 3, "has_audio": false } }, "observation.images.wrist": { "dtype": "video", "shape": [ 640, 480, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 640, "video.width": 480, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 10, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
aichamrf/traduccionjuridica
aichamrf
2025-06-04T08:20:28Z
0
0
[ "task_categories:translation", "language:es", "language:en", "size_categories:n<1K", "format:text", "modality:text", "library:datasets", "library:mlcroissant", "region:us" ]
[ "translation" ]
2025-06-04T08:11:34Z
null
--- task_categories: - translation language: - es - en ---
oulianov/my_dataset_16
oulianov
2025-06-04T08:13:23Z
387
0
[ "task_categories:robotics", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "phosphobot", "so100", "phospho-dk" ]
[ "robotics" ]
2025-05-05T11:59:15Z
null
--- tags: - phosphobot - so100 - phospho-dk task_categories: - robotics --- # my_dataset_16 **This dataset was generated using a [phospho starter pack](https://robots.phospho.ai).** This dataset contains a series of episodes recorded with a robot and multiple cameras. It can be directly used to train a policy using imitation learning. It's compatible with LeRobot and RLDS.
danthepol/m3-rag-training
danthepol
2025-06-04T08:04:26Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T07:56:44Z
null
--- dataset_info: features: - name: question dtype: string - name: context dtype: string - name: source dtype: string splits: - name: train num_bytes: 44538501 num_examples: 55049 download_size: 25166641 dataset_size: 44538501 configs: - config_name: default data_files: - split: train path: data/train-* ---
svjack/Xiang-Lookalike-Videos-Splited
svjack
2025-06-04T08:02:53Z
0
0
[ "size_categories:n<1K", "modality:video", "library:datasets", "library:mlcroissant", "region:us" ]
[]
2025-06-04T08:00:40Z
null
--- configs: - config_name: default data_files: - split: train path: - "*.mp4" ---
pepijn223/lekiwi1749024087
pepijn223
2025-06-04T08:01:45Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
[ "robotics" ]
2025-06-04T08:01:41Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "lekiwi_client", "total_episodes": 1, "total_frames": 250, "total_tasks": 1, "total_videos": 2, "total_chunks": 1, "chunks_size": 1000, "fps": 10, "splits": { "train": "0:1" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 9 ], "names": [ "arm_shoulder_pan.pos", "arm_shoulder_lift.pos", "arm_elbow_flex.pos", "arm_wrist_flex.pos", "arm_wrist_roll.pos", "arm_gripper.pos", "x.vel", "y.vel", "theta.vel" ] }, "observation.state": { "dtype": "float32", "shape": [ 9 ], "names": [ "arm_shoulder_pan.pos", "arm_shoulder_lift.pos", "arm_elbow_flex.pos", "arm_wrist_flex.pos", "arm_wrist_roll.pos", "arm_gripper.pos", "x.vel", "y.vel", "theta.vel" ] }, "observation.images.front": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 10, "video.channels": 3, "has_audio": false } }, "observation.images.wrist": { "dtype": "video", "shape": [ 640, 480, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 640, "video.width": 480, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 10, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
yufanhuangNV/CS-SFT-Nexar-Test
yufanhuangNV
2025-06-04T08:01:07Z
0
0
[ "task_categories:visual-question-answering", "task_categories:video-text-to-text", "language:en", "license:cc-by-4.0", "size_categories:n<1K", "format:json", "modality:text", "modality:video", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "video" ]
[ "visual-question-answering", "video-text-to-text" ]
2025-06-04T07:54:29Z
null
--- configs: - config_name: nexar-sft data_files: - split: understanding path: nexar-sft/nexar_understanding.json language: - en task_categories: - visual-question-answering - video-text-to-text tags: - video license: cc-by-4.0 ---
lenankamp/SummaTheologica-UserAssistantPairing
lenankamp
2025-06-04T07:58:09Z
0
0
[ "task_categories:text-generation", "language:en", "license:cc0-1.0", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "region:us" ]
[ "text-generation" ]
2025-06-04T07:38:00Z
null
--- license: cc0-1.0 task_categories: - text-generation language: - en --- # Summa Theologica Q&A Dataset Welcome to the **Summa Theologica Q&A Dataset**, where medieval theology meets modern AI in a glorious, slightly absurd clash of eras. This dataset takes Thomas Aquinas' *Summa Theologica*—a 13th-century theological heavyweight—and chops it up into neat little user/assistant pairings, perfect for training your AI to pontificate on the nature of paradise or argue about angels on pinheads. ## What's in the Box? - **Format**: JSON, because apparently that's the only way we store knowledge these days. - **Content**: Hundreds of question-answer pairs, where: - **User**: Asks profound questions like "Is paradise a corporeal place?" or other brain-benders straight from Aquinas' quill. - **Assistant**: Responds with Aquinas' verbose, occasionally sassy reasoning, often citing Augustine or Isidore like the ultimate academic name-dropper. - **Example**: ```json { "User": "Whether Paradise Is a Corporeal Place?", "Assistant": "On the contrary, Augustine says (Gen. ad lit. viii, 1): 'Three general opinions prevail about paradise...' [and so on, because brevity was not Aquinas' forte]." } ``` ## Why This Dataset Exists Because someone thought, "Hey, what if we turned a 700-year-old theological tome into a chatbot's training fodder?" And here we are. Use it to: - Train your AI to sound like a medieval scholar with a penchant for overexplaining. - Generate the most erudite chatbot responses this side of the 13th century. - Confuse your friends by dropping "corporeal vs. spiritual paradise" debates at parties. ## How to Use It 1. Clone this dataset from Hugging Face (you know the drill). 2. Feed it into your favorite language model. Bonus points if it starts citing Aristotle unprompted. 3. Watch your AI wax poetic about lunar circles and the "right hand of the heavens." 4. Regret nothing, because life's too short to not have fun with theology. ## Caveats - **Length**: Aquinas didn't believe in short answers. Some responses are longer than your average TikTok attention span. - **Tone**: Expect a mix of divine wisdom, philosophical flexing, and the occasional medieval mic-drop. - **Relevance**: If you're looking for practical data, like stock prices or cat memes, this ain't it. ## License Public domain, because Aquinas has been dead for a while, and we're pretty sure he won't sue. ## Contributing Got more medieval theology to add? Found a typo in our parsing of the *Summa*? Submit a pull request, and we'll consider canonizing you (just kidding about that last part... or are we?). ## Acknowledgments - Thomas Aquinas, for writing the *Summa Theologica* and giving us something to parse. - Augustine and Isidore, for being the most-quoted wingmen in history. - The brave souls who read this README and still decide to download. *Now go forth and make your AI debate the nature of paradise. Or, you know, just use it to sound smart at trivia night.*
One-RL-to-See-Them-All/Orsta-Data-47k
One-RL-to-See-Them-All
2025-06-04T07:54:00Z
236
7
[ "task_categories:image-text-to-text", "language:en", "license:mit", "size_categories:10K<n<100K", "arxiv:2505.18129", "arxiv:2307.12813", "arxiv:1612.06890", "arxiv:2002.10215", "region:us", "vision-language", "multimodal", "reinforcement-learning", "visual-reasoning", "visual-perception", "V-Triune", "Orsta" ]
[ "image-text-to-text" ]
2025-05-26T02:50:12Z
null
--- language: - en license: mit size_categories: - 10K<n<100K task_categories: - image-text-to-text tags: - vision-language - multimodal - reinforcement-learning - visual-reasoning - visual-perception - V-Triune - Orsta configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* - config_name: train_chart_chartqapro_498 data_files: - split: train path: train_chart_chartqapro_498/train-* dataset_info: - config_name: default features: - name: data_source dtype: string - name: images sequence: image - name: prompt list: - name: content dtype: string - name: role dtype: string - name: ability dtype: string - name: reward_model struct: - name: answer dtype: string - name: ground_truth dtype: string - name: accuracy_ratio dtype: float32 - name: format_ratio dtype: float32 - name: verifier dtype: string - name: verifier_parm struct: - name: det_verifier_normalized dtype: bool - name: det_reward_ratio struct: - name: iou_max_label_first dtype: float32 - name: iou_max_iou_first dtype: float32 - name: iou_completeness dtype: float32 - name: map dtype: float32 - name: map50 dtype: float32 - name: map75 dtype: float32 - name: extra_info struct: - name: id dtype: string - name: image_path dtype: string splits: - name: train num_bytes: 39912717.0 num_examples: 498 - name: test num_bytes: 15158256.0 num_examples: 176 download_size: 46636238 dataset_size: 55070973.0 - config_name: train_chart_chartqapro_498 features: - name: data_source dtype: string - name: images sequence: image - name: prompt list: - name: content dtype: string - name: role dtype: string - name: ability dtype: string - name: reward_model struct: - name: answer dtype: string - name: ground_truth dtype: string - name: accuracy_ratio dtype: float32 - name: format_ratio dtype: float32 - name: verifier dtype: string - name: verifier_parm struct: - name: det_verifier_normalized dtype: bool - name: det_reward_ratio struct: - name: iou_max_label_first dtype: float32 - name: iou_max_iou_first dtype: float32 - name: iou_completeness dtype: float32 - name: map dtype: float32 - name: map50 dtype: float32 - name: map75 dtype: float32 - name: extra_info struct: - name: id dtype: string - name: image_path dtype: string splits: - name: train num_bytes: 39912717.0 num_examples: 498 download_size: 33774705 dataset_size: 39912717.0 --- # Orsta-Data-47k Dataset * 🐙 **GitHub Repo:** [MiniMax-AI/One-RL-to-See-Them-All](https://github.com/MiniMax-AI/One-RL-to-See-Them-All) * 📜 **Paper (arXiv):** [V-Triune: One RL to See Them All (arXiv:2505.18129)](https://arxiv.org/abs/2505.18129) ## Dataset Description 📖 **Orsta-Data-47k** is a specialized dataset curated for the post-training of Vision-Language Models (VLMs) using our [V-Triune](https://github.com/MiniMax-AI/One-RL-to-See-Them-All) unified reinforcement learning system. Its primary purpose is to enable robust joint training across a diverse spectrum of both visual reasoning and visual perception tasks, powering models like [Orsta](https://huggingface.co/collections/One-RL-to-See-Them-All/one-rl-to-see-them-all-6833d27abce23898b2f9815a) to achieve advanced multimodal capabilities. This dataset is a carefully selected aggregation from 18 publicly available datasets, refined through a rigorous filtering process to ensure high quality and suitability for RL-based fine-tuning. ## Tasks Covered 🎯 The dataset is structured to cover eight principal task categories, balanced between reasoning and perception: * **Visual Reasoning Tasks 🤔:** * Mathematics (Math QA) * Puzzle Solving (Visual Puzzles) * Science Question Answering (Science QA) * Chart Understanding (Chart QA) * **Visual Perception Tasks 👁️:** * Object Detection * Visual Grounding * Object Counting * Optical Character Recognition (OCR) ## Data Curation Process 🛠️ To create a high-quality corpus for effective RL post-training, we implemented a comprehensive two-stage data curation pipeline: 1. **Rule-based Filtering:** An initial filtering stage applied a set of predefined rules to the source datasets. These rules were tailored differently for reasoning and perception tasks, aiming to remove noisy samples, questions prone to "hacking" (e.g., certain multiple-choice formats), and problematic answer formats. For perception tasks, this also involved standardizing coordinate systems and filtering based on object size or count. 2. **Difficulty-based Filtering:** Following rule-based cleaning, a difficulty filter was applied. This stage removed samples deemed too easy (e.g., already solvable by baseline models) or excessively hard, ensuring that the remaining data provides a meaningful and efficient learning signal for the models. This meticulous process resulted in a high-quality collection of approximately **47,700 samples**. To address potential dataset imbalances, data for certain tasks (e.g., puzzles) was strategically duplicated to ensure adequate representation. ## Dataset Composition & Structure 📊 * **Total Samples:** ~47.7K * **Task Categories:** 8 (4 reasoning, 4 perception) * **Aggregated From:** 18 distinct public datasets * **Content Breakdown:** * Visual Perception Samples: ~20.6K * Visual Reasoning Samples: ~27.1K * **Interaction Format:** The data primarily consists of single-image, single-turn conversational interactions (e.g., an image paired with a question and its corresponding answer/grounding). * **Storage Format:** All curated data is stored in the efficient Parquet format. ## Intended Use & Training 🚀 This dataset is designed for use with the [V-Triune](https://github.com/MiniMax-AI/One-RL-to-See-Them-All) framework for reinforcement learning-based post-training of VLMs. In the training of [Orsta](https://huggingface.co/collections/One-RL-to-See-Them-All/one-rl-to-see-them-all-6833d27abce23898b2f9815a) models, all samples from this dataset were uniformly mixed and utilized. ## Dataset Usage This section outlines how to download and use the Orsta-Data-47k dataset. ### Downloading the Dataset You can download the dataset directly from the Hugging Face Hub using the `huggingface-cli` tool. Make sure you have `huggingface_hub` installed (`pip install huggingface_hub`). Execute the following command in your terminal: ```bash huggingface-cli download --repo-type dataset --resume-download One-RL-to-See-Them-All/Orsta-Data-47k --local-dir Orsta-Data-47k ``` This command will download all dataset files into a local directory named `Orsta-Data-47k`. The `--resume-download` flag is useful for resuming downloads if interrupted. ### Dataset Structure Once downloaded, the dataset will have the following structure within the `Orsta-Data-47k` directory. All data files are in the Parquet (`.parquet`) format. ``` Orsta-Data-47k/ ├── test/ │ ├── test_chart_megabench_176.parquet ...... │ └── test_science_megabench_91.parquet └── train/ ├── train_chart_chartqapro_498.parquet ...... └── train_science_virl39k_2539.parquet ``` ### File Naming Convention The files within the `train/` and `test/` directories follow this naming convention: `{split}_{task_name}_{source_name}_{num}.parquet` Where: * `{split}`: Indicates the dataset split, either `train` or `test`. * `{task_name}`: Specifies the general task category. * `{source_name}`: Denotes the specific benchmark or origin of the data. * `{num}`: Represents the number of samples contained within that Parquet file. ### Purpose of Each Split * **`train/` directory**: These files constitute the training corpus for the Orsta model. * **`test/` directory**: These files contain samples specifically curated for online evaluation of the model's performance on different tasks *during* the training process. Analyzing performance on these samples helps in diagnosing the training status and understanding the model's learning progression for each task category. ### Data Format ```python { 'data_source': Value(dtype='string', id=None), 'images': Sequence(feature=Image(mode=None, decode=True, id=None), length=-1, id=None), 'prompt': [{'content': Value(dtype='string', id=None), 'role': Value(dtype='string', id=None)}], 'ability': Value(dtype='string', id=None), 'reward_model': { 'answer': Value(dtype='string', id=None), 'ground_truth': Value(dtype='string', id=None), 'accuracy_ratio': Value(dtype='float32', id=None), 'format_ratio': Value(dtype='float32', id=None), 'verifier': Value(dtype='string', id=None), 'verifier_parm': { 'det_verifier_normalized': Value(dtype='bool', id=None), 'det_reward_ratio': { 'iou_max_label_first': Value(dtype='float32', id=None), 'iou_max_iou_first': Value(dtype='float32', id=None), 'iou_completeness': Value(dtype='float32', id=None), 'map': Value(dtype='float32', id=None), 'map50': Value(dtype='float32', id=None), 'map75': Value(dtype='float32', id=None) } } }, 'extra_info': {'id': Value(dtype='string', id=None), 'image_path': Value(dtype='string', id=None)} } ``` ## 📊 Data Sources and Composition The **Orsta-Data-47k** dataset is constructed entirely from publicly available, open-source datasets. These have been aggregated and curated to create a collection suitable for VLM post-training on both visual reasoning and perception tasks. Orsta-Data-47k is compiled from 18 distinct public datasets. The primary contributing sources for each task category are as follows: * **Math**: [mm_math](https://huggingface.co/datasets/THU-KEG/MM_Math), [geometry3k](https://huggingface.co/datasets/hiyouga/geometry3k), [mmk12](https://huggingface.co/datasets/FanqingM/MMK12) * **Puzzle**: [PuzzleVQA](https://huggingface.co/datasets/declare-lab/PuzzleVQA), [AlgoPuzzleVQA](https://huggingface.co/datasets/declare-lab/AlgoPuzzleVQA), [VisualPuzzles](https://huggingface.co/datasets/neulab/VisualPuzzles) * **Science**: [ScienceQA](https://huggingface.co/datasets/lmms-lab/ScienceQA), [SciVQA](https://huggingface.co/datasets/katebor/SciVQA), [ViRL39K-Science](https://huggingface.co/datasets/TIGER-Lab/ViRL39K) * **Chart**: [ChartQAPro](https://huggingface.co/datasets/ahmed-masry/ChartQAPro), [ChartX](https://huggingface.co/datasets/U4R/ChartX), [Table-VQA-Bench](https://huggingface.co/datasets/terryoo/TableVQA-Bench), [ViRL39K-Chart](https://huggingface.co/datasets/TIGER-Lab/ViRL39K) * **Detection**: [V3Det](https://arxiv.org/abs/2307.12813), [Object365](https://www.objects365.org/overview.html) * **Grounding**: [D^3](https://arxiv.org/abs/2307.12813) * **Counting**: [CLEVR](https://arxiv.org/abs/1612.06890) * **OCR**: [LLaVA-OV Data](https://huggingface.co/datasets/lmms-lab/LLaVA-OneVision-Data), [EST-VQA](https://arxiv.org/abs/2002.10215) For detailed information and licensing for each source dataset, please refer to their original publications and repositories. Our specific aggregation and curation methodology for Orsta-Data-47k is described in our paper: [V-Triune: One RL to See Them All (arXiv:2505.18129)](https://arxiv.org/abs/2505.18129). ## Citation Information 📜 If you use the Orsta-Data-47k dataset or our V-Triune framework in your research, please cite our accompanying paper: ```bibtex @article{ma2025one, title={One RL to See Them All: Visual Triple Unified Reinforcement Learning}, author={Ma, Yan and Du, Linge and Shen, Xuyang and Chen, Shaoxiang and Li, Pengfei and Ren, Qibing and Ma, Lizhuang and Dai, Yuchao and Liu, Pengfei and Yan, Junjie}, journal={arXiv preprint arXiv:2505.18129}, year={2025} } ```
ChavyvAkvar/synthetic-trades-ADA-batch-25
ChavyvAkvar
2025-06-04T07:52:23Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T07:51:18Z
null
--- dataset_info: features: - name: scenario_id dtype: string - name: final_pnl_ratio dtype: float64 - name: max_drawdown dtype: float64 - name: total_trades dtype: int64 - name: synthetic_ohlc_open sequence: float64 - name: synthetic_ohlc_high sequence: float64 - name: synthetic_ohlc_low sequence: float64 - name: synthetic_ohlc_close sequence: float64 - name: garch_params_used_for_sim_str dtype: string - name: strategy_params_str dtype: string - name: strategy_exit_rules_str dtype: string splits: - name: train num_bytes: 923454142 num_examples: 1000 download_size: 924505797 dataset_size: 923454142 configs: - config_name: default data_files: - split: train path: data/train-* ---
ByteDance-Seed/BM-6M
ByteDance-Seed
2025-06-04T07:38:27Z
1,647
4
[ "task_categories:image-to-image", "license:cc0-1.0", "size_categories:1M<n<10M", "arxiv:2506.03107", "region:us" ]
[ "image-to-image" ]
2025-05-27T06:40:16Z
null
--- license: cc0-1.0 dataset_info: features: - name: image_id dtype: string - name: src_img dtype: image - name: tgt_img dtype: image - name: edit_prompt dtype: string - name: edit_prompt_rewrite_instruction dtype: string - name: src_img_caption dtype: string - name: tgt_img_caption dtype: string splits: - name: train num_bytes: 45095600735.92 num_examples: 780308 download_size: 44625567266 dataset_size: 45095600735.92 configs: - config_name: default data_files: - split: train path: data/train-* task_categories: - image-to-image size_categories: - 1M<n<10M --- [![Paper](https://img.shields.io/badge/%20arXiv-Paper-red)](https://arxiv.org/abs/2506.03107) [![Prohect-Page](https://img.shields.io/badge/%20Project-Website-blue)](https://boese0601.github.io/bytemorph/) [![Benchmaek](https://img.shields.io/badge/🤗%20Huggingface-Benchmark-yellow)](https://huggingface.co/datasets/ByteDance-Seed/BM-Bench) [![Dataset-Demo](https://img.shields.io/badge/🤗%20Huggingface-Dataset_Demo-yellow)](https://huggingface.co/datasets/ByteDance-Seed/BM-6M-Demo) [![Dataset](https://img.shields.io/badge/🤗%20Huggingface-Dataset-yellow)](https://huggingface.co/datasets/ByteDance-Seed/BM-6M) [![Gradio-Demo](https://img.shields.io/badge/🤗%20Huggingface-Gradio_Demo-yellow)](https://huggingface.co/spaces/Boese0601/ByteMorpher-Demo) [![Checkpoint](https://img.shields.io/badge/🤗%20Huggingface-Checkpoint-yellow)](https://huggingface.co/ByteDance-Seed/BM-Model) [![Code](https://img.shields.io/badge/%20Github-Code-blue)](https://github.com/ByteDance-Seed/BM-code) # Dataset Card for ByteMorph-6M The task of editing images to reflect non-rigid motions, such as changes in camera viewpoint, object deformation, human articulation, or complex interactions, represents a significant yet underexplored frontier in computer vision. Current methodologies and datasets often concentrate on static imagery or rigid transformations, thus limiting their applicability to expressive edits involving dynamic movement. To bridge this gap, we present ByteMorph, a substantial benchmark specifically created for instruction-based image editing focused on non-rigid motions. This dataset card contains the example training data subset and instructions for ByteMorph-6M. ## Dataset Details Original videos are generated by [Seaweed](https://seaweed.video/) and sampled into frames as source-target image editing pairs. These frames are further filtered and captioned by VLM. For visualization of a subset of the whole dataset, please visit [this repo](https://huggingface.co/datasets/ByteDance-Seed/BM-6M-Demo). ## Intended use Primary intended uses: The primary use of ByteMorph is research on text-to-image and instruction-based image editing. Primary intended users: The model's primary intended users are researchers and hobbyists in computer vision, image generation, image processing, and AIGC. ## Dataset Structure ```bash BM-6M |----subset-1 # We will release this subset soon |----sample_frames # extracted first and last frames from the video |----batch_0.tar |----batch_1.tar |----... |----sample_multi_frames # extracted multi frames from the video |----batch_0.tar |----batch_1.tar |----... |----subset-2 # This subset has been released |----subset-3 # This subset has been released |----... # These have been released |----subset-9 # This subset has been released ``` ### How to use ByteMorph-6M Simply download this dataset with [git-lfs](https://github.com/git-lfs/git-lfs/blob/main/INSTALLING.md). You can also download the subset of the whole dataset. ```bash git lfs clone https://huggingface.co/datasets/ByteDance-Seed/BM-6M ``` ## Bibtex citation ```bibtex @misc{chang2025bytemorphbenchmarkinginstructionguidedimage, title={ByteMorph: Benchmarking Instruction-Guided Image Editing with Non-Rigid Motions}, author={Di Chang and Mingdeng Cao and Yichun Shi and Bo Liu and Shengqu Cai and Shijie Zhou and Weilin Huang and Gordon Wetzstein and Mohammad Soleymani and Peng Wang}, year={2025}, eprint={2506.03107}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2506.03107}, } ```
iantc104/av_aloha_sim_pour_test_tube
iantc104
2025-06-04T07:34:56Z
145
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
[ "robotics" ]
2025-06-02T05:30:44Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": null, "total_episodes": 20, "total_frames": 5990, "total_tasks": 1, "total_videos": 120, "total_chunks": 1, "chunks_size": 1000, "fps": 25, "splits": { "train": "0:20" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "observation.images.zed_cam_left": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channel" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 25, "video.channels": 3, "has_audio": false } }, "observation.images.zed_cam_right": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channel" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 25, "video.channels": 3, "has_audio": false } }, "observation.images.wrist_cam_left": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channel" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 25, "video.channels": 3, "has_audio": false } }, "observation.images.wrist_cam_right": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channel" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 25, "video.channels": 3, "has_audio": false } }, "observation.images.overhead_cam": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channel" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 25, "video.channels": 3, "has_audio": false } }, "observation.images.worms_eye_cam": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channel" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 25, "video.channels": 3, "has_audio": false } }, "observation.state": { "dtype": "float32", "shape": [ 21 ], "names": null }, "observation.environment_state": { "dtype": "float32", "shape": [ 21 ], "names": null }, "action": { "dtype": "float32", "shape": [ 21 ], "names": null }, "left_eye": { "dtype": "float32", "shape": [ 2 ], "names": null }, "right_eye": { "dtype": "float32", "shape": [ 2 ], "names": null }, "left_arm_pose": { "dtype": "float32", "shape": [ 16 ], "names": null }, "right_arm_pose": { "dtype": "float32", "shape": [ 16 ], "names": null }, "middle_arm_pose": { "dtype": "float32", "shape": [ 16 ], "names": null }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
nguyentranai07/FullyIndicatorReport4
nguyentranai07
2025-06-04T07:22:06Z
363
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-30T01:48:11Z
null
--- dataset_info: features: - name: Content dtype: string - name: Key dtype: string splits: - name: train num_bytes: 23409810 num_examples: 2000 download_size: 10423127 dataset_size: 23409810 configs: - config_name: default data_files: - split: train path: data/train-* ---
rubenroy/GammaCorpus-v2-5m
rubenroy
2025-06-04T07:19:17Z
0
1
[ "task_categories:text-generation", "language:en", "license:apache-2.0", "size_categories:1M<n<10M", "region:us", "chat-dataset", "conversational-ai", "natural-language-processing", "ai-generated", "multiple-turn-dialogue", "jsonl", "nlp", "gammacorpus", "chat", "conversational" ]
[ "text-generation" ]
2025-06-04T07:15:51Z
null
--- license: apache-2.0 task_categories: - text-generation language: - en tags: - chat-dataset - conversational-ai - natural-language-processing - ai-generated - multiple-turn-dialogue - jsonl - nlp - gammacorpus - chat - conversational pretty_name: GammaCorpus size_categories: - 1M<n<10M --- # GammaCorpus: v2 - 5 Million Lines of Pure Dialogue ## What is it? The **GammaCorpus v2 5m** dataset consists of 5 million structured multi-turn conversations, where each interaction includes: - **Input**: A user prompt or question. - **Output**: A response generated by an AI assistant. > [!IMPORTANT] > The dataset files were mistakenly deleted; I'm working to restore them. For now, check out [GammaCorpus v2 1m](https://huggingface.co/datasets/rubenroy/GammaCorpus-v2-1m) > [!TIP] > This is the *SECOND* and *LATEST* version of the GammaCorpus dataset. This is a significantly improved version as it contains higher quality conversations and heavy cleaning than the GammaCorpus v1 dataset collection. ## Dataset Summary - **Number of Rows**: 5,000,000 - **Format**: JSONL - **Language**: English - **Data Type**: User and AI-generated content ## Dataset Structure ### Data Instances The dataset is formatted in JSONL, where each line is a JSON object containing a conversation. Below is an example: ```jsonl {"conversation": [{"input": "What can be seen once in a minute, twice in a moment, and never in a thousand years?", "output": "The letter 'M'."}]} ``` ### Data Fields - **`conversation` (array)**: A list of conversation objects, each containing: - **`input` (string)**: The user-provided query or prompt. - **`output` (string)**: The AI-generated response to the input. ## Considerations for Using the Data ### Biases As the dataset is generated from user queries and AI responses, it may contain biases inherent in the underlying AI model or reflective of common societal biases. Additionally: - Some entries may contain NSFW or toxic content. - Ethical, cultural, and societal biases present in the data could propagate to models trained on it. We have made a substantial effort with this version of GammaCorpus to filter innapropriate information, but we still strongly recommend any users to preprocess the dataset before using in production evironments. ### Other Known Limitations - Certain topics may be overrepresented or underrepresented based on user query patterns. - Content diversity may not fully reflect real-world conversational scenarios. ## Additional Information ### Licensing Information The dataset is released under the **[Apache 2.0 License](https://www.apache.org/licenses/LICENSE-2.0)**. Please refer to the license for usage rights and restrictions.
Lijiaxin0111/M3_VOS
Lijiaxin0111
2025-06-04T07:18:14Z
3
0
[ "task_categories:video-classification", "language:en", "language:zh", "license:apache-2.0", "size_categories:n<1K", "format:json", "modality:image", "modality:text", "modality:video", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2412.13803", "region:us", "CVPR2025", "video", "segmentation", "computer-vision", "physical", "M3-VOS" ]
[ "video-classification" ]
2025-05-31T10:25:15Z
null
--- configs: - config_name: default data_files: - split: test path: m3vos_viewer_data_with_paths.jsonl license: apache-2.0 task_categories: - video-classification language: - en - zh tags: - CVPR2025 - video - segmentation - computer-vision - physical - M3-VOS pretty_name: M3-VOS size_categories: - n<1K --- <h2 align="center"> <a href="https://zixuan-chen.github.io/M-cube-VOS.github.io/">[CVPR 2025] M<sup>3</sup>-VOS: Multi-Phase, Multi-Transition, and Multi-Scenery Video Object Segmentation</a></h2> <h5 align="center">If you like our project, please give us a star ⭐ on GitHub for the latest update. </h5> ## 💡 Description - **Venue:** CVPR2025 - **Repository:** [🛠️Tool](https://github.com/Lijiaxin0111/SemiAuto-Multi-Level-Annotation-Tool), [🏠Page](https://zixuan-chen.github.io/M-cube-VOS.github.io/) - **Paper:** arxiv.org/html/2412.13803v2 - **Point of Contact:** [Jiaxin Li]([email protected]) , [Zixuan Chen]([email protected]) ### 📁 Structure This dataset contains annotated videos and images for object segmentation tasks with phase transition information. The directory structure and file descriptions are as follows: - `meta/` - `all_core_seqs.txt`: A list of core sequences used in the dataset. - `all_phase_transition.json`: Metadata describing the phase transition states of target objects. - `target_object.json`: Contains information about the target objects in each video sequence. - `data/` - `Annotations/`: Contains segmentation masks for the annotated target objects. - `Videos/`: The original video files corresponding to each sequence. - `JPEGImages/`: Extracted image frames from the videos. - `ImageSets/` - `val.txt`: A list of video sequences used for validation. For more details, please refer to our paper on arXiv: [2412.13803](https://arxiv.org/abs/2412.13803). ## ✏️ Citation If you find our paper and code useful in your research, please consider giving a star and citation. ```BibTeX @InProceedings{chen2024m3vos_2025_CVPR, author = {Zixuan Chen and Jiaxin Li and Liming Tan and Yejie Guo and Junxuan Liang and Cewu Lu and Yong-Lu Li}, title = {M$^3$-VOS: Multi-Phase, Multi-Transition, and Multi-Scenery Video Object Segmentation}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2025} } ```
Yukinonooo/animation-data
Yukinonooo
2025-06-04T07:18:10Z
130
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-30T09:31:29Z
null
--- dataset_info: features: - name: svg dtype: string - name: animation_prompt_normal dtype: string - name: filename dtype: string - name: diff dtype: string - name: animation_prompt_expert dtype: string - name: animation_prompt_designer dtype: string splits: - name: train num_bytes: 88480 num_examples: 3 - name: test num_bytes: 624 num_examples: 3 download_size: 11866 dataset_size: 89104 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
ChavyvAkvar/synthetic-trades-BNB-batch-38
ChavyvAkvar
2025-06-04T07:12:38Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T07:11:39Z
null
--- dataset_info: features: - name: scenario_id dtype: string - name: final_pnl_ratio dtype: float64 - name: max_drawdown dtype: float64 - name: total_trades dtype: int64 - name: synthetic_ohlc_open sequence: float64 - name: synthetic_ohlc_high sequence: float64 - name: synthetic_ohlc_low sequence: float64 - name: synthetic_ohlc_close sequence: float64 - name: garch_params_used_for_sim_str dtype: string - name: strategy_params_str dtype: string - name: strategy_exit_rules_str dtype: string splits: - name: train num_bytes: 923450337 num_examples: 1000 download_size: 924507502 dataset_size: 923450337 configs: - config_name: default data_files: - split: train path: data/train-* ---
ChavyvAkvar/synthetic-trades-ADA-batch-22
ChavyvAkvar
2025-06-04T07:12:10Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T07:11:12Z
null
--- dataset_info: features: - name: scenario_id dtype: string - name: final_pnl_ratio dtype: float64 - name: max_drawdown dtype: float64 - name: total_trades dtype: int64 - name: synthetic_ohlc_open sequence: float64 - name: synthetic_ohlc_high sequence: float64 - name: synthetic_ohlc_low sequence: float64 - name: synthetic_ohlc_close sequence: float64 - name: garch_params_used_for_sim_str dtype: string - name: strategy_params_str dtype: string - name: strategy_exit_rules_str dtype: string splits: - name: train num_bytes: 923453992 num_examples: 1000 download_size: 924431627 dataset_size: 923453992 configs: - config_name: default data_files: - split: train path: data/train-* ---
ncnynl/lekiwi_test
ncnynl
2025-06-04T07:11:25Z
429
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "tutorial" ]
[ "robotics" ]
2025-05-28T11:09:13Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "lekiwi", "total_episodes": 2, "total_frames": 672, "total_tasks": 1, "total_videos": 4, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:2" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 9 ], "names": [ "shoulder_pan", "shoulder_lift", "elbow_flex", "wrist_flex", "wrist_roll", "gripper", "x_mm", "y_mm", "theta" ] }, "observation.state": { "dtype": "float32", "shape": [ 9 ], "names": [ "shoulder_pan", "shoulder_lift", "elbow_flex", "wrist_flex", "wrist_roll", "gripper", "x_mm", "y_mm", "theta" ] }, "observation.images.front": { "dtype": "video", "shape": [ 640, 480, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 640, "video.width": 480, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.wrist": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
Daemontatox/medical-conversations-20250604-100242
Daemontatox
2025-06-04T07:08:03Z
0
0
[ "task_categories:question-answering", "language:en", "license:apache-2.0", "size_categories:n<1K", "region:us", "medical", "healthcare", "conversations", "synthetic" ]
[ "conversational", "question-answering" ]
2025-06-04T07:07:43Z
null
--- license: apache-2.0 task_categories: - conversational - question-answering language: - en tags: - medical - healthcare - conversations - synthetic size_categories: - n<1K --- # Medical Conversation Dataset This dataset contains synthetic medical conversations generated from medical literature and documents. ## Dataset Information - **Format:** Unknown - **Number of Records:** 0 - **Generated:** 2025-06-04 10:07:54 UTC ## Structure Unknown format. ## Generation Statistics - **PDFs Processed:** 1 - **Text Chunks Extracted:** 11 - **Conversations Generated:** 0 - **Success Rate:** 100.0% - **Average Confidence Score:** 0.00 - **Processing Time:** 298.4 seconds ## Usage This dataset is designed for training conversational AI models for medical applications. It should be used responsibly and always in conjunction with proper medical disclaimers. ### Loading the Dataset ```python import json # Load the dataset with open('dataset_file.json', 'r') as f: dataset = json.load(f) # Access conversations for record in dataset: # Process based on format pass ``` ## Important Medical Disclaimer ⚠️ **This dataset is for educational and research purposes only. The generated conversations should not be used as a substitute for professional medical advice, diagnosis, or treatment. Always consult with qualified healthcare professionals for medical concerns.** ## License Apache 2.0 ## Citation If you use this dataset, please cite: ``` @dataset{medical_conversations_2025, title={Medical Conversation Dataset}, author={Generated using DS_Creator}, year={2025}, url={https://huggingface.co/datasets/Daemontatox/medical-conversations-20250604-100242} } ```
ChavyvAkvar/synthetic-trades-BNB-batch-37
ChavyvAkvar
2025-06-04T06:47:17Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T06:46:20Z
null
--- dataset_info: features: - name: scenario_id dtype: string - name: final_pnl_ratio dtype: float64 - name: max_drawdown dtype: float64 - name: total_trades dtype: int64 - name: synthetic_ohlc_open sequence: float64 - name: synthetic_ohlc_high sequence: float64 - name: synthetic_ohlc_low sequence: float64 - name: synthetic_ohlc_close sequence: float64 - name: garch_params_used_for_sim_str dtype: string - name: strategy_params_str dtype: string - name: strategy_exit_rules_str dtype: string splits: - name: train num_bytes: 923450559 num_examples: 1000 download_size: 924491081 dataset_size: 923450559 configs: - config_name: default data_files: - split: train path: data/train-* ---
bigai-nlco/ReflectionEvo
bigai-nlco
2025-06-04T06:30:41Z
518
7
[ "task_categories:question-answering", "task_categories:text-generation", "language:en", "license:mit", "size_categories:100K<n<1M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2505.16475", "region:us" ]
[ "question-answering", "text-generation" ]
2025-05-06T06:18:17Z
null
--- language: - en license: mit task_categories: - question-answering - text-generation size_categories: - 10K<n<100K configs: - config_name: Dpref data_files: - split: train path: - Dpref/Meta-Llama-3-8B-Instruct_bigbench.jsonl - Dpref/Meta-Llama-3-8B-Instruct_logiqa.jsonl - Dpref/Meta-Llama-3-8B-Instruct_math.jsonl - Dpref/Meta-Llama-3-8B-Instruct_mbpp.jsonl - Dpref/Mistral-7B-Instruct-v0.2_bigbench.jsonl - Dpref/Mistral-7B-Instruct-v0.2_logiqa.jsonl - Dpref/Mistral-7B-Instruct-v0.2_mbpp.jsonl - Dpref/gemma-2-9b-it_bigbench.jsonl - Dpref/gemma-2-9b-it_logiqa.jsonl - Dpref/gemma-2-9b-it_math.jsonl - Dpref/gemma-2-9b-it_mbpp.jsonl - config_name: D+- data_files: - split: train path: - D+-/Meta-Llama-3-8B-Instruct_bigbench.jsonl - D+-/Meta-Llama-3-8B-Instruct_logiqa.jsonl - D+-/Meta-Llama-3-8B-Instruct_math.jsonl - D+-/Meta-Llama-3-8B-Instruct_mbpp.jsonl - D+-/Mistral-7B-Instruct-v0.2_bigbench.jsonl - D+-/Mistral-7B-Instruct-v0.2_logiqa.jsonl - D+-/Mistral-7B-Instruct-v0.2_mbpp.jsonl - D+-/gemma-2-9b-it_bigbench.jsonl - D+-/gemma-2-9b-it_logiqa.jsonl - D+-/gemma-2-9b-it_math.jsonl - D+-/gemma-2-9b-it_mbpp.jsonl - config_name: D+ data_files: - split: train path: - D+/Meta-Llama-3-8B-Instruct_bigbench.jsonl - D+/Meta-Llama-3-8B-Instruct_logiqa.jsonl - D+/Meta-Llama-3-8B-Instruct_math.jsonl - D+/Meta-Llama-3-8B-Instruct_mbpp.jsonl - D+/Mistral-7B-Instruct-v0.2_bigbench.jsonl - D+/Mistral-7B-Instruct-v0.2_logiqa.jsonl - D+/Mistral-7B-Instruct-v0.2_mbpp.jsonl - D+/gemma-2-9b-it_bigbench.jsonl - D+/gemma-2-9b-it_logiqa.jsonl - D+/gemma-2-9b-it_math.jsonl - D+/gemma-2-9b-it_mbpp.jsonl --- Github Repo for ReflectEvo: https://github.com/bigai-nlco/ReflectEvo Arxiv Paper for ReflectEvo: https://arxiv.org/abs/2505.16475
RobotisSW/ai_worker_dataset_0604_8
RobotisSW
2025-06-04T05:57:14Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "ROBOTIS", "ai_worker" ]
[ "robotics" ]
2025-06-04T05:57:05Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - ROBOTIS - ai_worker configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": null, "total_episodes": 3, "total_frames": 903, "total_tasks": 1, "total_videos": 6, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:3" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "observation.images.cam_wrist_right": { "dtype": "video", "names": [ "channels", "height", "width" ], "shape": [ 240, 424, 3 ], "info": { "video.height": 240, "video.width": 424, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.cam_wrist_left": { "dtype": "video", "names": [ "channels", "height", "width" ], "shape": [ 240, 424, 3 ], "info": { "video.height": 240, "video.width": 424, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.state": { "dtype": "float32", "names": [ "arm_l_joint1", "arm_l_joint2", "arm_l_joint3", "arm_l_joint4", "arm_l_joint5", "arm_l_joint6", "arm_l_joint7", "gripper_l_joint1", "arm_r_joint1", "arm_r_joint2", "arm_r_joint3", "arm_r_joint4", "arm_r_joint5", "arm_r_joint6", "arm_r_joint7", "gripper_r_joint1", "head_joint1", "head_joint2", "lift_joint" ], "shape": [ 19 ] }, "action": { "dtype": "float32", "names": [ "arm_l_joint1", "arm_l_joint2", "arm_l_joint3", "arm_l_joint4", "arm_l_joint5", "arm_l_joint6", "arm_l_joint7", "gripper_l_joint1", "arm_r_joint1", "arm_r_joint2", "arm_r_joint3", "arm_r_joint4", "arm_r_joint5", "arm_r_joint6", "arm_r_joint7", "gripper_r_joint1", "head_joint1", "head_joint2", "lift_joint" ], "shape": [ 19 ] } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
ChavyvAkvar/synthetic-trades-BNB-batch-35
ChavyvAkvar
2025-06-04T05:55:01Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T05:54:01Z
null
--- dataset_info: features: - name: scenario_id dtype: string - name: final_pnl_ratio dtype: float64 - name: max_drawdown dtype: float64 - name: total_trades dtype: int64 - name: synthetic_ohlc_open sequence: float64 - name: synthetic_ohlc_high sequence: float64 - name: synthetic_ohlc_low sequence: float64 - name: synthetic_ohlc_close sequence: float64 - name: garch_params_used_for_sim_str dtype: string - name: strategy_params_str dtype: string - name: strategy_exit_rules_str dtype: string splits: - name: train num_bytes: 923450732 num_examples: 1000 download_size: 924490767 dataset_size: 923450732 configs: - config_name: default data_files: - split: train path: data/train-* ---
cosrigel/Vietnamese-Emo
cosrigel
2025-06-04T05:44:00Z
0
0
[ "license:gemma", "size_categories:n<1K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T07:11:06Z
null
--- license: gemma configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: audio dtype: audio - name: transcription dtype: string splits: - name: train num_bytes: 1051343949.0 num_examples: 365 download_size: 1004625567 dataset_size: 1051343949.0 ---
gamga200/Smart_Inf_2025_Source_1
gamga200
2025-06-04T05:35:10Z
0
0
[ "license:apache-2.0", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T05:30:16Z
null
--- license: apache-2.0 ---
ArlingtonCL2/Barkopedia_Dog_Sex_Classification_Dataset
ArlingtonCL2
2025-06-04T05:08:43Z
455
0
[ "task_categories:audio-classification", "language:en", "license:mit", "size_categories:10K<n<100K", "modality:audio", "region:us", "biology", "dog" ]
[ "audio-classification" ]
2025-04-15T06:03:21Z
null
--- license: mit task_categories: - audio-classification language: - en tags: - biology - dog pretty_name: BpAE size_categories: - 10K<n<100K --- ## 📦 Dataset Description This dataset is part of the **Barkopedia Challenge**: [https://uta-acl2.github.io/barkopedia.html](https://uta-acl2.github.io/barkopedia.html) Check training data on Hugging Face: 👉 [ArlingtonCL2/Barkopedia_Dog_Sex_Classification_Dataset](https://huggingface.co/datasets/ArlingtonCL2/Barkopedia_Dog_Sex_Classification_Dataset/) This challenge provides a dataset of labeled dog bark audio clips: **29,345 total clips** of vocalizations from **156 individual dogs** across **5 breeds**: - **Shiba Inu** - **Husky** - **Chihuahua** - **German Shepherd** - **Pitbull** - **Training set**: **26,895** clips - 13,567 female - 13,328 male - **Test set**: **2,450** clips - 1,271 female - 1,179 male - Among these, - **980 clips (~40%)** are used for public leaderboard evaluation - **1,470 clips (~60%)** are used for final private leaderboard evaluation - The full 2,450 evaluation clips are included in the dataset, but only public clips yield visible scores. --- ### 🔖 Labels Each audio clip is annotated with the **sex of the dog** (`male` or `female`). The labels were **manually generated and verified** by us. The `train_labels.csv` file provides the ground truth (correct labels) for the training set. It includes: - **audio_id**: The filename of the dog bark audio clip (e.g., `bark_2408`) - **pred_dog_sex**: The annotated sex of the dog (`male` or `female`) --- ## 🛠️ Setup Instructions You need to merge the training splits (train_0, train_1, train_2) into a single directory by running the provided script: ```bash python merge_train_set.py ```
ChavyvAkvar/synthetic-trades-BNB-batch-33
ChavyvAkvar
2025-06-04T05:08:02Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T05:07:05Z
null
--- dataset_info: features: - name: scenario_id dtype: string - name: final_pnl_ratio dtype: float64 - name: max_drawdown dtype: float64 - name: total_trades dtype: int64 - name: synthetic_ohlc_open sequence: float64 - name: synthetic_ohlc_high sequence: float64 - name: synthetic_ohlc_low sequence: float64 - name: synthetic_ohlc_close sequence: float64 - name: garch_params_used_for_sim_str dtype: string - name: strategy_params_str dtype: string - name: strategy_exit_rules_str dtype: string splits: - name: train num_bytes: 923450285 num_examples: 1000 download_size: 924509994 dataset_size: 923450285 configs: - config_name: default data_files: - split: train path: data/train-* ---
ChavyvAkvar/synthetic-trades-XRP-full
ChavyvAkvar
2025-06-04T05:06:32Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T04:29:20Z
null
--- dataset_info: features: - name: scenario_id dtype: string - name: final_pnl_ratio dtype: float64 - name: max_drawdown dtype: float64 - name: total_trades dtype: int64 - name: synthetic_ohlc_open sequence: float64 - name: synthetic_ohlc_high sequence: float64 - name: synthetic_ohlc_low sequence: float64 - name: synthetic_ohlc_close sequence: float64 - name: garch_params_used_for_sim_str dtype: string - name: strategy_params_str dtype: string - name: strategy_exit_rules_str dtype: string splits: - name: train num_bytes: 46172405750 num_examples: 50000 download_size: 46216207849 dataset_size: 46172405750 configs: - config_name: default data_files: - split: train path: data/train-* ---
Envy1025/seti_analysis_results
Envy1025
2025-06-04T04:59:41Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T04:59:38Z
null
--- dataset_info: features: - name: type dtype: string - name: inp_date dtype: string - name: category dtype: string - name: category_sub dtype: string - name: origin_nm dtype: string - name: origin_url dtype: string - name: title dtype: string - name: content dtype: string - name: extracted_keywords dtype: string - name: doc_neg_prob dtype: float64 - name: doc_pos_prob dtype: float64 - name: label dtype: int64 - name: sentence_details list: - name: sent_neg_prob dtype: float64 - name: sent_pos_prob dtype: float64 - name: sentence dtype: string splits: - name: train num_bytes: 259202 num_examples: 20 download_size: 166720 dataset_size: 259202 configs: - config_name: default data_files: - split: train path: data/train-* ---
Noah0214/aloha_mobile_wash_pan
Noah0214
2025-06-04T04:55:16Z
0
0
[ "license:apache-2.0", "region:us" ]
[]
2025-06-03T16:03:33Z
null
--- license: apache-2.0 ---
gouthxm07/fertilizer-rec-disease-control_by_GP
gouthxm07
2025-06-04T04:40:45Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T04:37:54Z
null
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 438752 num_examples: 2738 download_size: 194135 dataset_size: 438752 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "fertilizer-rec-disease-control_by_GP" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
ko-vlm/K-MMStar
ko-vlm
2025-06-04T04:26:10Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T04:25:34Z
null
--- dataset_info: features: - name: images dtype: image - name: conversations list: - name: content dtype: string - name: role dtype: string - name: category dtype: string - name: l2_category dtype: string - name: meta_info dtype: string splits: - name: val num_bytes: 45138945.5 num_examples: 1500 download_size: 41892141 dataset_size: 45138945.5 configs: - config_name: default data_files: - split: val path: data/val-* ---
Allen-UQ/cora_2_hop_nei_aug
Allen-UQ
2025-06-04T04:21:35Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T04:21:15Z
null
--- dataset_info: features: - name: problem dtype: string - name: solution dtype: string - name: dataset dtype: string - name: split dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 8067719 num_examples: 1133 - name: validation num_bytes: 26585828 num_examples: 3727 - name: test num_bytes: 109633444 num_examples: 15277 download_size: 71028871 dataset_size: 144286991 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
Raiff1982/Codettesspecial
Raiff1982
2025-06-04T04:14:02Z
33
0
[ "task_categories:question-answering", "task_categories:text-classification", "task_categories:summarization", "task_categories:text-generation", "language:en", "license:other", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "doi:10.57967/hf/5196", "region:us", "music", "art", "legal", "chemistry" ]
[ "question-answering", "text-classification", "summarization", "text-generation" ]
2025-04-21T07:39:21Z
null
--- license: other license_name: other license_link: LICENSE task_categories: - question-answering - text-classification - summarization - text-generation language: - en tags: - music - art - legal - chemistry pretty_name: Codettes special size_categories: - n>1T ---
ChavyvAkvar/synthetic-trades-BNB-batch-31
ChavyvAkvar
2025-06-04T04:11:08Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T04:10:05Z
null
--- dataset_info: features: - name: scenario_id dtype: string - name: final_pnl_ratio dtype: float64 - name: max_drawdown dtype: float64 - name: total_trades dtype: int64 - name: synthetic_ohlc_open sequence: float64 - name: synthetic_ohlc_high sequence: float64 - name: synthetic_ohlc_low sequence: float64 - name: synthetic_ohlc_close sequence: float64 - name: garch_params_used_for_sim_str dtype: string - name: strategy_params_str dtype: string - name: strategy_exit_rules_str dtype: string splits: - name: train num_bytes: 923450102 num_examples: 1000 download_size: 924475257 dataset_size: 923450102 configs: - config_name: default data_files: - split: train path: data/train-* ---
robb-0/kawaii_chibi_avatar_dataset
robb-0
2025-06-04T04:07:39Z
103
0
[ "task_categories:text-to-image", "task_categories:image-classification", "language:en", "license:cc-by-4.0", "size_categories:n<1K", "format:imagefolder", "modality:image", "modality:text", "library:datasets", "library:mlcroissant", "region:us", "art" ]
[ "text-to-image", "image-classification" ]
2025-05-25T12:03:14Z
null
--- license: cc-by-4.0 task_categories: - text-to-image - image-classification language: - en tags: - art pretty_name: Kawaii Chibi Avatar Dataset size_categories: - n<1K --- # Kawaii Chibi Avatar Dataset ![867103772915054982.png](https://cdn-uploads.huggingface.co/production/uploads/6740a691ddc2c8e208a41102/TCnuhn-n1E5IvLKfCcioM.png) This is the dataset used to train **Kawaii Chibi Avatar for Illustrious**. --- * All images have a `.txt` file auto-tagged on Civitai. * All images were generated on SDXL using Kawaii Chibi Avatar for SDXL --- ## License License: CC BY 4.0 Attribution: Kawaii Chibi Avatar Dataset © 2025 by Robb-0 is licensed under CC BY 4.0 ---
clnine/sample-dataset-wikipedia-cs-terms
clnine
2025-06-04T04:05:54Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T04:05:50Z
null
--- dataset_info: features: - name: id dtype: int64 - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 2427827 num_examples: 158 download_size: 1135197 dataset_size: 2427827 configs: - config_name: default data_files: - split: train path: data/train-* ---
jiseop11892/gung_fix
jiseop11892
2025-06-04T04:05:45Z
0
0
[ "license:mit", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T04:05:22Z
null
--- license: mit configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: instruction dtype: string - name: output dtype: string - name: input dtype: string splits: - name: train num_bytes: 111273 num_examples: 127 download_size: 67057 dataset_size: 111273 ---
netager/finance_news_summarizer
netager
2025-06-04T04:02:44Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T04:02:41Z
null
--- dataset_info: features: - name: system_prompt dtype: string - name: user_prompt dtype: string - name: assistant struct: - name: is_stock_related dtype: bool - name: negative_impact_stocks sequence: string - name: negative_keywords sequence: string - name: positive_impact_stocks sequence: string - name: positive_keywords sequence: string - name: reason_for_negative_impact dtype: string - name: reason_for_positive_impact dtype: string - name: summary dtype: string splits: - name: train num_bytes: 58345 num_examples: 10 download_size: 45793 dataset_size: 58345 configs: - config_name: default data_files: - split: train path: data/train-* ---
Yuyeong/rw_pubmed_simple_1_public
Yuyeong
2025-06-04T03:57:43Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T03:57:19Z
null
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': '0' '1': '1' '2': '2' - name: group_idx dtype: int64 - name: node_idx dtype: int64 - name: train_0 dtype: bool - name: validation_0 dtype: bool - name: test_0 dtype: bool splits: - name: train num_bytes: 259376973.5923315 num_examples: 156000 download_size: 165382772 dataset_size: 259376973.5923315 configs: - config_name: default data_files: - split: train path: data/train-* ---
nguyentranai07/HIVT_all
nguyentranai07
2025-06-04T03:51:22Z
105
0
[ "region:us" ]
[]
2025-06-01T02:36:30Z
null
--- dataset_info: features: - name: Question dtype: string - name: Answer dtype: string splits: - name: train num_bytes: 142270179 num_examples: 32942 download_size: 64859862 dataset_size: 142270179 configs: - config_name: default data_files: - split: train path: data/train-* ---
DonJoey/extract_principle_parallel_16
DonJoey
2025-06-04T03:35:30Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T03:35:23Z
null
--- dataset_info: features: - name: id dtype: string - name: messages list: - name: content dtype: string - name: role dtype: string - name: source dtype: string splits: - name: train num_bytes: 171433461 num_examples: 31914 download_size: 78051916 dataset_size: 171433461 configs: - config_name: default data_files: - split: train path: data/train-* ---
DonJoey/extract_principle_direct
DonJoey
2025-06-04T03:35:10Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T03:35:00Z
null
--- dataset_info: features: - name: id dtype: string - name: messages list: - name: content dtype: string - name: role dtype: string - name: source dtype: string splits: - name: train num_bytes: 94044570 num_examples: 31914 download_size: 39633989 dataset_size: 94044570 configs: - config_name: default data_files: - split: train path: data/train-* ---
ljnlonoljpiljm/stockimage-1.5M-scored-high-similarity
ljnlonoljpiljm
2025-06-04T03:34:35Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T02:50:26Z
null
--- dataset_info: features: - name: id dtype: string - name: image dtype: image - name: text dtype: string - name: similarity dtype: float64 splits: - name: train num_bytes: 22490818813.355957 num_examples: 575394 download_size: 22354991127 dataset_size: 22490818813.355957 configs: - config_name: default data_files: - split: train path: data/train-* ---
CohenQu/RLAD-joint.00.00
CohenQu
2025-06-04T03:29:08Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T03:23:27Z
null
--- dataset_info: features: - name: messages list: - name: content dtype: string - name: role dtype: string - name: suffix dtype: string splits: - name: train num_bytes: 5032369426 num_examples: 102312 - name: test num_bytes: 560289342 num_examples: 11392 download_size: 1524300867 dataset_size: 5592658768 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
zhang0jhon/Aesthetic-4K
zhang0jhon
2025-06-04T03:28:12Z
1,152
23
[ "license:mit", "size_categories:1K<n<10K", "format:imagefolder", "modality:image", "modality:text", "library:datasets", "library:mlcroissant", "arxiv:2503.18352", "arxiv:2506.01331", "doi:10.57967/hf/5209", "region:us" ]
[]
2025-02-16T01:47:04Z
null
--- license: mit --- # Aesthetic-4K Dataset We introduce Aesthetic-4K, a high-quality dataset for ultra-high-resolution image generation, featuring carefully selected images and captions generated by GPT-4o. Additionally, we have meticulously filtered out low-quality images through manual inspection, excluding those with motion blur, focus issues, or mismatched text prompts. For more details, please refer to our paper: * [Diffusion-4K: Ultra-High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2503.18352) (CVPR 2025) * [Ultra-High-Resolution Image Synthesis: Data, Method and Evaluation](https://arxiv.org/abs/2506.01331) * Source code is available at [https://github.com/zhang0jhon/diffusion-4k](https://github.com/zhang0jhon/diffusion-4k). ## Citation If you find our paper or dataset is helpful in your research or applications, generously cite with: ``` @inproceedings{zhang2025diffusion4k, title={Diffusion-4K: Ultra-High-Resolution Image Synthesis with Latent Diffusion Models}, author={Zhang, Jinjin and Huang, Qiuyu and Liu, Junjie and Guo, Xiefan and Huang, Di}, year={2025}, booktitle={IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, } @misc{zhang2025ultrahighresolutionimagesynthesis, title={Ultra-High-Resolution Image Synthesis: Data, Method and Evaluation}, author={Zhang, Jinjin and Huang, Qiuyu and Liu, Junjie and Guo, Xiefan and Huang, Di}, year={2025}, note={arXiv:2506.01331}, } ```
prerit2k/eval_act_bench01_21__112
prerit2k
2025-06-04T03:19:35Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "tutorial" ]
[ "robotics" ]
2025-06-04T03:19:33Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "trossen_subversion": "v1.0", "robot_type": "trossen_ai_solo", "total_episodes": 1, "total_frames": 855, "total_tasks": 1, "total_videos": 2, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:1" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 7 ], "names": [ "main_joint_0", "main_joint_1", "main_joint_2", "main_joint_3", "main_joint_4", "main_joint_5", "main_joint_6" ] }, "observation.state": { "dtype": "float32", "shape": [ 7 ], "names": [ "main_joint_0", "main_joint_1", "main_joint_2", "main_joint_3", "main_joint_4", "main_joint_5", "main_joint_6" ] }, "observation.images.cam_main": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.cam_wrist": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
gbennani/RAG_wiki_corpus
gbennani
2025-06-04T03:13:32Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T03:13:19Z
null
--- dataset_info: features: - name: text dtype: string - name: page_title dtype: string - name: source dtype: string splits: - name: train num_bytes: 251283752 num_examples: 118092 download_size: 123094150 dataset_size: 251283752 configs: - config_name: default data_files: - split: train path: data/train-* ---
yangfengzzz/so101_test50
yangfengzzz
2025-06-04T03:12:03Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so101", "tutorial" ]
[ "robotics" ]
2025-06-04T03:04:41Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so101 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so101", "total_episodes": 50, "total_frames": 43427, "total_tasks": 1, "total_videos": 100, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:50" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.phone": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
ShuoHsuan/grasp_0604
ShuoHsuan
2025-06-04T03:11:10Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "grasp" ]
[ "robotics" ]
2025-06-04T03:10:55Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - grasp configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 10, "total_frames": 2389, "total_tasks": 1, "total_videos": 20, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:10" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.top": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.side": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
anirudhb11/star-graph-deg-7-path-3-nodes-300
anirudhb11
2025-06-04T03:02:40Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T03:02:38Z
null
--- dataset_info: features: - name: graph dtype: string - name: source dtype: string - name: destination dtype: string - name: path dtype: string splits: - name: train num_bytes: 26379705 num_examples: 200000 - name: test num_bytes: 2637583 num_examples: 20000 download_size: 19070077 dataset_size: 29017288 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
anirudhb11/star-graph-deg-6-path-3-nodes-300
anirudhb11
2025-06-04T03:02:01Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T03:01:59Z
null
--- dataset_info: features: - name: graph dtype: string - name: source dtype: string - name: destination dtype: string - name: path dtype: string splits: - name: train num_bytes: 23474986 num_examples: 200000 - name: test num_bytes: 2346572 num_examples: 20000 download_size: 16995454 dataset_size: 25821558 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
smirki/postview-commons
smirki
2025-06-04T02:58:48Z
0
0
[ "license:fair-noncommercial-research-license", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T02:58:25Z
null
--- license: fair-noncommercial-research-license ---
anirudhb11/star-graph-deg-5-path-3-nodes-300
anirudhb11
2025-06-04T02:57:04Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T02:57:02Z
null
--- dataset_info: features: - name: graph dtype: string - name: source dtype: string - name: destination dtype: string - name: path dtype: string splits: - name: train num_bytes: 20565629 num_examples: 200000 - name: test num_bytes: 2057233 num_examples: 20000 download_size: 14862114 dataset_size: 22622862 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
GarrieD/toy_in_pot_v2_simple
GarrieD
2025-06-04T02:47:56Z
0
0
[ "task_categories:robotics", "size_categories:n<1K", "modality:video", "library:datasets", "library:mlcroissant", "region:us", "phosphobot", "so100", "phospho-dk" ]
[ "robotics" ]
2025-06-04T01:45:42Z
null
--- tags: - phosphobot - so100 - phospho-dk task_categories: - robotics --- # toy_in_pot_v2_simple **This dataset was generated using a [phospho starter pack](https://robots.phospho.ai).** This dataset contains a series of episodes recorded with a robot and multiple cameras. It can be directly used to train a policy using imitation learning. It's compatible with LeRobot and RLDS.
akahana/anti-spoofing-casiafasd
akahana
2025-06-04T02:46:55Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T02:44:55Z
null
--- dataset_info: - config_name: test features: - name: filename dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 142884 num_examples: 2408 download_size: 26320 dataset_size: 142884 - config_name: train features: - name: filename dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 101314 num_examples: 1655 download_size: 17963 dataset_size: 101314 configs: - config_name: test data_files: - split: train path: test/train-* - config_name: train data_files: - split: train path: train/train-* ---
luojunyu/FinMME
luojunyu
2025-06-04T02:43:29Z
79
2
[ "task_categories:multiple-choice", "task_categories:question-answering", "language:en", "license:mit", "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2505.24714", "region:us", "finance", "multimodal", "reasoning" ]
[ "multiple-choice", "question-answering" ]
2025-05-28T16:56:56Z
null
--- license: mit dataset_info: features: - name: id dtype: int32 - name: image dtype: image - name: question_text dtype: string - name: question_type dtype: string - name: options dtype: string - name: answer dtype: string - name: unit dtype: string - name: tolerance dtype: float32 - name: verified_caption dtype: string - name: related_sentences dtype: string splits: - name: train num_bytes: 419829046.637 num_examples: 11099 download_size: 398554212 dataset_size: 419829046.637 configs: - config_name: default data_files: - split: train path: data/train-* task_categories: - multiple-choice - question-answering language: - en tags: - finance - multimodal - reasoning pretty_name: FinMME size_categories: - 10K<n<100K --- Multimodal Large Language Models (MLLMs) have experienced rapid development in recent years. However, there is a notable lack of effective and specialized multimodal evaluation datasets in the financial domain. To advance the development of MLLMs in the finance domain, we introduce FinMME, encompassing more than 11,000 high-quality financial research samples across 18 financial domains and 6 asset classes, featuring 10 major chart types and 21 subtypes. We ensure data quality through 20 annotators and carefully designed validation mechanisms. Additionally, we develop FinScore, an evaluation system incorporating hallucination penalties and multi-dimensional capability assessment to provide an unbiased evaluation. ## Usage Please refer to https://github.com/luo-junyu/FinMME for the evaluation protocol. ## Citation Paper Link: https://arxiv.org/abs/2505.24714 If you find our work helpful, please consider citing our work: ```BibTex @inproceedings{finmme, title={FinMME: Benchmark Dataset for Financial Multi-Modal Reasoning Evaluation}, author={Junyu Luo and Zhizhuo Kou and Liming Yang and Xiao Luo and Jinsheng Huang and Zhiping Xiao and Jingshu Peng and Chengzhong Liu and Jiaming Ji and Xuanzhe Liu and Sirui Han and Ming Zhang and Yike Guo}, booktitle={Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics}, year={2025} } ```
prayog-io/eval
prayog-io
2025-06-04T02:35:18Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T02:34:54Z
null
--- dataset_info: features: - name: document dtype: string - name: chunk_id dtype: int64 - name: is_table dtype: bool - name: question dtype: string - name: answer dtype: string - name: evaluation_criteria dtype: string - name: difficulty dtype: int64 - name: category dtype: string - name: model dtype: string - name: original_question dtype: string - name: original_answer dtype: string splits: - name: train num_bytes: 13010 num_examples: 16 - name: eval num_bytes: 13010 num_examples: 16 download_size: 25840 dataset_size: 26020 configs: - config_name: default data_files: - split: train path: data/train-* - split: eval path: data/eval-* ---
ArlingtonCL2/Barkopedia_Dog_Act_Env
ArlingtonCL2
2025-06-04T02:35:06Z
130
2
[ "task_categories:audio-classification", "language:en", "license:mit", "size_categories:10K<n<100K", "region:us", "biology", "dog" ]
[ "audio-classification" ]
2025-04-10T21:20:42Z
null
--- license: mit task_categories: - audio-classification language: - en tags: - biology - dog pretty_name: BpAE size_categories: - 10K<n<100K --- # 🐶 Barkopedia Challenge Dataset [🔗 Barkopedia Website](https://uta-acl2.github.io/barkopedia.html) ## 📦 Dataset Description This challenge provides a labeled dataset of dog bark audio clips for understanding **activity** and **environment** from sound. ### 📁 Current Release - **Training Set** - Located in the `train/` folder - Includes: - `split1.zip` and `split2.zip` — each contains a portion of the audio files - `train_label.csv` — contains labels for all training clips - Total: **12,480** training audio clips - **Test Set** - To be released in **June** - Will contain **3,120** audio clips - **40% public (1,248)** — used for live leaderboard updates - **60% private (1,872)** — used for final evaluation ## 🔖 Labels Each clip is annotated with **one activity** and **one environment** category. ### 🎯 Activity Categories (`act_category`) - `rest` - `alerting to sounds` - `seeking attention` - `playing with human` - `playing with other animals` - `playing with toy` - `begging for food` - `taking shower` ### 🌍 Environment Categories (`env_category`) - `indoor (general)` - `near window` - `near door` - `on grass` - `near other animals` - `vehicle interior` > Labels were initially generated using video-assisted inference via a visual-language model (Janus-Pro-7B), and later manually verified to ensure quality. ## 🚀 Submission & Leaderboard All competition data, result submission, and the live leaderboard are hosted on **[Hugging Face](https://huggingface.co/)**. If you don’t have a Hugging Face account yet, please [register here](https://huggingface.co/join). --- 📌 *Stay tuned for the test set release in June and leaderboard launch!* ---
ChavyvAkvar/synthetic-trades-BNB-batch-27
ChavyvAkvar
2025-06-04T02:30:04Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T02:28:46Z
null
--- dataset_info: features: - name: scenario_id dtype: string - name: final_pnl_ratio dtype: float64 - name: max_drawdown dtype: float64 - name: total_trades dtype: int64 - name: synthetic_ohlc_open sequence: float64 - name: synthetic_ohlc_high sequence: float64 - name: synthetic_ohlc_low sequence: float64 - name: synthetic_ohlc_close sequence: float64 - name: garch_params_used_for_sim_str dtype: string - name: strategy_params_str dtype: string - name: strategy_exit_rules_str dtype: string splits: - name: train num_bytes: 923450340 num_examples: 1000 download_size: 924490395 dataset_size: 923450340 configs: - config_name: default data_files: - split: train path: data/train-* ---
paultr/so101_test
paultr
2025-06-04T02:24:41Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so101", "tutorial" ]
[ "robotics" ]
2025-06-04T02:23:37Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so101 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so101", "total_episodes": 10, "total_frames": 3632, "total_tasks": 1, "total_videos": 20, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:10" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.wrist": { "dtype": "video", "shape": [ 720, 1280, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 720, "video.width": 1280, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.topdown": { "dtype": "video", "shape": [ 1080, 1920, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 1080, "video.width": 1920, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
sysuyy/ImgEdit_recap_mask
sysuyy
2025-06-04T02:22:10Z
1,649
0
[ "license:mit", "arxiv:2505.20275", "region:us" ]
[]
2025-05-25T02:47:41Z
null
--- license: mit --- [ImgEdit: A Unified Image Editing Dataset and Benchmark](https://huggingface.co/papers/2505.20275) # 🌍 Introduction **ImgEdit** is a large-scale, high-quality image-editing dataset comprising 1.2 million carefully curated edit pairs, which contain both novel and complex single-turn edits, as well as challenging multi-turn tasks. To ensure the data quality, we employ a multi-stage pipeline that integrates a cutting-edge vision-language model, a detection model, a segmentation model, alongside task-specific in-painting procedures and strict post-processing. ImgEdit surpasses existing datasets in both task novelty and data quality. Using ImgEdit, we train **ImgEdit-E1**, an editing model using Vision Language Model to process the reference image and editing prompt, which outperforms existing open-source models on multiple tasks, highlighting the value of ImgEdit and model design. For comprehensive evaluation, we introduce **ImgEdit-Bench**, a benchmark designed to evaluate image editing performance in terms of instruction adherence, editing quality, and detail preservation. It includes a basic testsuite, a challenging single-turn suite, and a dedicated multi-turn suite. We evaluate both open-source and proprietary models, as well as ImgEdit-E1. # 📜 Citation If you find our paper and code useful in your research, please consider giving a star ⭐ and citation 📝. ```bibtex @article{ye2025imgedit, title={ImgEdit: A Unified Image Editing Dataset and Benchmark}, author={Ye, Yang and He, Xianyi and Li, Zongjian and Lin, Bin and Yuan, Shenghai and Yan, Zhiyuan and Hou, Bohan and Yuan, Li}, journal={arXiv preprint arXiv:2505.20275}, year={2025} } ```
DUTAOZHANG/Style2Code_datasets
DUTAOZHANG
2025-06-04T02:12:30Z
0
0
[ "task_categories:text-generation", "language:en", "license:apache-2.0", "size_categories:10M<n<100M", "region:us", "code" ]
[ "text-generation" ]
2025-06-04T02:04:12Z
null
--- license: apache-2.0 task_categories: - text-generation language: - en tags: - code size_categories: - 10M<n<100M --- ## 📦 Dataset Source and Processing The dataset for this project is derived from the [iamtarun/python_code_instructions_18k_alpacadataset](https://huggingface.co/datasets/iamtarun/python_code_instructions_18k_alpacadataset), which contains approximately 18,000 Python code snippets paired with instructions. It was designed to provide high-quality samples for instruction-driven code generation tasks. To enrich the style diversity and support style-controllable generation, we employed three powerful large language models—**DeepSeek**, **Qwen**, and **Doubao**—to generate diverse code samples for each instruction in the dataset. We then carefully cleaned and aligned the generated code snippets to ensure that they are semantically equivalent yet stylistically distinct. The resulting pairs (same functionality, different styles) serve as the training corpus for our contrastive style encoder and style-controlled generator. This enhanced dataset enables fine-grained style transfer and stylistic alignment during code generation in Style2Code. --- ✅ **Key Details for Reproduction** - **Source dataset**: [iamtarun/python_code_instructions_18k_alpacadataset](https://huggingface.co/datasets/iamtarun/python_code_instructions_18k_alpacadataset) - **Style-variant generation models**: DeepSeek, Qwen, Doubao - **Cleaning and alignment**: Post-processing to remove low-quality outputs and ensure semantic equivalence across style variants - **Use case**: Training Style2Code for explicit style vector extraction and style-controlled code generation For further details and usage instructions, please refer to the [Style2Code GitHub repository](https://github.com/zh19980811/Style2Code).
ztony0712/object_detection
ztony0712
2025-06-04T02:12:22Z
56
0
[ "task_categories:object-detection", "language:en", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "object-detection" ]
2025-05-15T17:57:31Z
null
--- dataset_info: features: - name: image_id dtype: int64 - name: Label dtype: string - name: image dtype: image - name: Rating dtype: float64 - name: Deviation dtype: float64 - name: percentile dtype: float64 splits: - name: val num_bytes: 200575077.073 num_examples: 4951 download_size: 214465256 dataset_size: 200575077.073 configs: - config_name: default data_files: - split: val path: data/val-* license: apache-2.0 task_categories: - object-detection language: - en pretty_name: Object Detection size_categories: - 1K<n<10K --- # Visualization of Object Detection Task Cases Samples Check dataset samples visualization by viewing Dataset Viewer. The sampling procedure is guided by the Elo distribution introduced in our method. Original dataset is validation set of COCO dataset. samples/origin: 4951/5000 # License This repository is licensed under the Apache License 2.0
songtingyu/vf-eval
songtingyu
2025-06-04T01:42:39Z
39
0
[ "task_categories:video-text-to-text", "task_categories:visual-question-answering", "license:mit", "size_categories:1K<n<10K", "modality:video", "arxiv:2505.23693", "region:us" ]
[ "video-text-to-text", "visual-question-answering" ]
2025-05-28T09:46:31Z
null
--- license: mit task_categories: - video-text-to-text - visual-question-answering size_categories: - 1K<n<10K configs: - config_name: val data_files: - split: yesno path: "yesno/yesno_val.json" - split: multichoice path: "multi/multi_val.json" - split: openend path: "openend/openend_val.json" - config_name: test data_files: - split: yesno path: "yesno/yesno_test.json" - split: multichoice path: "multi/multi_test.json" - split: openend path: "openend/openend_test.json" - config_name: total default: true data_files: - split: yesno path: "yesno/yesno_final.json" - split: multichoice path: "multi/multi_final.json" - split: openend path: "openend/openend_final.json" --- # Dataset Card for VF-Eval Benchmark Repository: [sighingsnow/vf-eval](https://github.com/SighingSnow/VF-EVAL) For the usage of this dataset, please refer to the github repo. If you find this repository helpful, feel free to cite our paper: ```bibtex @misc{song2025vfeval, title={VF-Eval: Evaluating Multimodal LLMs for Generating Feedback on AIGC Videos}, author={Tingyu Song and Tongyan Hu and Guo Gan and Yilun Zhao}, year={2025}, eprint={2505.23693}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2505.23693}, } ```