The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code: DatasetGenerationCastError Exception: DatasetGenerationCastError Message: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 30 new columns ({'Temperature (K)', 'Maximum longevity (yrs)', 'Litter/Clutch size', 'IMR (per yr)', 'Sample size', 'Genus', 'Weaning (days)', 'Litters/Clutches per year', 'Family', 'Phylum', 'Body mass (g)', 'Kingdom', 'Female maturity (days)', 'MRDT (yrs)', 'Gestation/Incubation (days)', 'Male maturity (days)', 'Order', 'Data quality', 'Species', 'Metabolic rate (W)', 'Specimen origin', 'References', 'Class', 'HAGRID', 'Weaning weight (g)', 'Source', 'Adult weight (g)', 'Growth rate (1/days)', 'Inter-litter/Interbirth interval', 'Birth weight (g)'}) and 7 missing columns ({'Scientific name', 'Taxon ID', 'Genebuild Method', 'Accession', 'Ensembl Assembly', 'Variation database', 'Regulation database'}). This happened while the csv dataset builder was generating data using hf://datasets/longevity-genie/bio-mcp-data/hagr/anage_data.csv (at revision 9bc1d26c25f7bf5c79a407610f1497c1fc16f63d) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations) Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1871, in _prepare_split_single writer.write_table(table) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 643, in write_table pa_table = table_cast(pa_table, self._schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2293, in table_cast return cast_table_to_schema(table, schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2241, in cast_table_to_schema raise CastError( datasets.table.CastError: Couldn't cast HAGRID: int64 Kingdom: string Phylum: string Class: string Order: string Family: string Genus: string Species: string Common name: string Female maturity (days): double Male maturity (days): double Gestation/Incubation (days): double Weaning (days): double Litter/Clutch size: double Litters/Clutches per year: double Inter-litter/Interbirth interval: double Birth weight (g): double Weaning weight (g): double Adult weight (g): double Growth rate (1/days): double Maximum longevity (yrs): double Source: string Specimen origin: string Sample size: string Data quality: string IMR (per yr): double MRDT (yrs): double Metabolic rate (W): double Body mass (g): double Temperature (K): double References: string -- schema metadata -- pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 4238 to {'Common name': Value(dtype='string', id=None), 'Scientific name': Value(dtype='string', id=None), 'Taxon ID': Value(dtype='int64', id=None), 'Ensembl Assembly': Value(dtype='string', id=None), 'Accession': Value(dtype='string', id=None), 'Genebuild Method': Value(dtype='string', id=None), 'Variation database': Value(dtype='string', id=None), 'Regulation database': Value(dtype='string', id=None)} because column names don't match During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1436, in compute_config_parquet_and_info_response parquet_operations = convert_to_parquet(builder) File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1053, in convert_to_parquet builder.download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 925, in download_and_prepare self._download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1001, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1742, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1873, in _prepare_split_single raise DatasetGenerationCastError.from_cast_error( datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 30 new columns ({'Temperature (K)', 'Maximum longevity (yrs)', 'Litter/Clutch size', 'IMR (per yr)', 'Sample size', 'Genus', 'Weaning (days)', 'Litters/Clutches per year', 'Family', 'Phylum', 'Body mass (g)', 'Kingdom', 'Female maturity (days)', 'MRDT (yrs)', 'Gestation/Incubation (days)', 'Male maturity (days)', 'Order', 'Data quality', 'Species', 'Metabolic rate (W)', 'Specimen origin', 'References', 'Class', 'HAGRID', 'Weaning weight (g)', 'Source', 'Adult weight (g)', 'Growth rate (1/days)', 'Inter-litter/Interbirth interval', 'Birth weight (g)'}) and 7 missing columns ({'Scientific name', 'Taxon ID', 'Genebuild Method', 'Accession', 'Ensembl Assembly', 'Variation database', 'Regulation database'}). This happened while the csv dataset builder was generating data using hf://datasets/longevity-genie/bio-mcp-data/hagr/anage_data.csv (at revision 9bc1d26c25f7bf5c79a407610f1497c1fc16f63d) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Common name
string | Scientific name
string | Taxon ID
int64 | Ensembl Assembly
string | Accession
string | Genebuild Method
string | Variation database
string | Regulation database
string |
---|---|---|---|---|---|---|---|
Abingdon island giant tortoise | Chelonoidis abingdonii | 106,734 | ASM359739v1 | GCA_003597395.1 | Full genebuild | - | - |
African ostrich | Struthio camelus australis | 441,894 | ASM69896v1 | GCA_000698965.1 | Full genebuild | - | - |
Agassiz's desert tortoise | Gopherus agassizii | 38,772 | ASM289641v1 | GCA_002896415.1 | Full genebuild | - | - |
Algerian mouse | Mus spretus | 10,096 | SPRET_EiJ_v1 | GCA_001624865.1 | External annotation import | - | Y |
Alpaca | Vicugna pacos | 30,538 | vicPac1 | - | Projection build | - | - |
Alpine marmot | Marmota marmota marmota | 9,994 | marMar2.1 | GCA_001458135.1 | Full genebuild | - | - |
Amazon molly | Poecilia formosa | 48,698 | Poecilia_formosa-5.1.2 | GCA_000485575.1 | Full genebuild | - | - |
American beaver | Castor canadensis | 51,338 | C.can_genome_v1.0 | GCA_001984765.1 | Full genebuild | - | - |
American bison | Bison bison bison | 43,346 | Bison_UMD1.0 | GCA_000754665.1 | Full genebuild | Y | - |
American black bear | Ursus americanus | 9,643 | ASM334442v1 | GCA_003344425.1 | Full genebuild | - | - |
American mink | Neovison vison | 452,646 | NNQGG.v01 | GCA_900108605.1 | Full genebuild | Y | - |
Angola colobus | Colobus angolensis palliatus | 336,983 | Cang.pa_1.0 | GCA_000951035.1 | Full genebuild | - | Y |
Arabian camel | Camelus dromedarius | 9,838 | CamDro2 | GCA_000803125.2 | Full genebuild | - | - |
Arctic ground squirrel | Urocitellus parryii | 9,999 | ASM342692v1 | GCA_003426925.1 | Full genebuild | - | - |
Argentine black and white tegu | Salvator merianae | 96,440 | HLtupMer3 | GCA_003586115.1 | Full genebuild | - | - |
Armadillo | Dasypus novemcinctus | 9,361 | Dasnov3.0 | GCA_000208655.2 | Mixed strategy build | - | - |
Asian bonytongue | Scleropages formosus | 113,540 | fSclFor1.1 | GCA_900964775.1 | Full genebuild | - | - |
Asiatic black bear | Ursus thibetanus thibetanus | 441,215 | ASM966005v1 | GCA_009660055.1 | Full genebuild | - | - |
Atlantic cod | Gadus morhua | 8,049 | gadMor3.0 | GCA_902167405.1 | Full genebuild | - | - |
Atlantic cod - Celtic sea | Gadus morhua | 8,049 | gadMor_Celtic | GCA_010882105.1 | Full genebuild | - | - |
Atlantic herring | Clupea harengus | 7,950 | Ch_v2.0.2v2 | GCA_900700415.2 | Full genebuild | - | - |
Atlantic salmon | Salmo salar | 8,030 | Ssal_v3.1 | GCA_905237065.2 | Full genebuild | Y | Y |
Atlantic salmon - European origin ALTA | Salmo salar | 8,030 | Ssal_ALTA | GCA_931346935.2 | Full genebuild | - | - |
Atlantic salmon - North American Atlantic Salmon | Salmo salar | 8,030 | USDA_NASsal_1.1 | GCA_021399835.1 | Full genebuild | - | - |
Atlantic salmon - North American origin Brian | Salmo salar | 8,030 | Ssal_Brian_v1.0 | GCA_923944775.1 | Full genebuild | - | - |
Australian saltwater crocodile | Crocodylus porosus | 8,502 | CroPor_comp1 | GCA_001723895.1 | Full genebuild | - | - |
Ballan wrasse | Labrus bergylta | 56,723 | BallGen_V1 | GCA_900080235.1 | Full genebuild | - | - |
Barramundi perch | Lates calcarifer | 8,187 | ASB_HGAPassembly_v1 | GCA_900066035.1 | Full genebuild | - | - |
Beluga whale | Delphinapterus leucas | 9,749 | ASM228892v3 | GCA_002288925.3 | Full genebuild | - | - |
Bengalese finch | Lonchura striata domestica | 299,123 | LonStrDom1 | GCA_002197715.1 | Full genebuild | - | - |
Bicolor damselfish | Stegastes partitus | 144,197 | Stegastes_partitus-1.0.2 | GCA_000690725.1 | Full genebuild | - | - |
Black snub-nosed monkey | Rhinopithecus bieti | 61,621 | ASM169854v1 | GCA_001698545.1 | Full genebuild | - | Y |
Blind barbel | Sinocyclocheilus anshuiensis | 1,608,454 | SAMN03320099.WGS_v1.1 | GCA_001515605.1 | Full genebuild | - | - |
Blue tilapia | Oreochromis aureus | 47,969 | ZZ_aureus | GCA_013358895.1 | Full genebuild | - | - |
Blue tit | Cyanistes caeruleus | 156,563 | cyaCae2 | GCA_002901205.1 | Full genebuild | - | - |
Blue whale | Balaenoptera musculus | 9,771 | mBalMus1.v2 | GCA_009873245.2 | Full genebuild | - | - |
Blue-crowned manakin | Lepidothrix coronata | 321,398 | Lepidothrix_coronata-1.0 | GCA_001604755.1 | Full genebuild | - | - |
Blue-ringed sea krait | Laticauda laticaudata | 8,630 | latLat_1.0 | GCA_004320025.1 | Full genebuild | - | - |
Blunt-snouted clingfish | Gouania willdenowi | 441,366 | fGouWil2.1 | GCA_900634775.1 | Full genebuild | - | - |
Bolivian squirrel monkey | Saimiri boliviensis boliviensis | 39,432 | SaiBol1.0 | GCA_000235385.1 | Full genebuild | - | Y |
Bonobo | Pan paniscus | 9,597 | panpan1.1 | GCA_000258655.2 | Full genebuild | - | Y |
Brazilian guinea pig | Cavia aperea | 37,548 | CavAp1.0 | GCA_000688575.1 | Full genebuild | - | - |
Brown trout | Salmo trutta | 8,032 | fSalTru1.1 | GCA_901001165.1 | Full genebuild | - | - |
Budgerigar | Melopsittacus undulatus | 13,146 | bMelUnd1.mat.Z | GCA_012275295.1 | Full genebuild | - | - |
Burrowing owl | Athene cunicularia | 194,338 | athCun1 | GCA_003259725.1 | Full genebuild | - | - |
Burton's mouthbrooder | Haplochromis burtoni | 8,153 | AstBur1.0 | GCA_000239415.1 | Full genebuild | - | - |
Bushbaby | Otolemur garnettii | 30,611 | OtoGar3 | GCA_000181295.3 | Full genebuild | - | - |
C.intestinalis | Ciona intestinalis | 7,719 | KH | GCA_000224145.1 | Full genebuild | Y | Y |
C.savignyi | Ciona savignyi | 51,511 | CSAV 2.0 | - | Full genebuild | - | - |
Caenorhabditis elegans (Nematode, N2) | Caenorhabditis elegans | 6,239 | WBcel235 | GCA_000002985.3 | Import | - | Y |
California sea lion | Zalophus californianus | 9,704 | mZalCal1.pri | GCA_009762305.1 | Full genebuild | - | - |
Canada lynx | Lynx canadensis | 61,383 | mLynCan4_v1.p | GCA_007474595.1 | Full genebuild | - | - |
Cat | Felis catus | 9,685 | Felis_catus_9.0 | GCA_000181335.4 | Full genebuild | Y | Y |
Central bearded dragon | Pogona vitticeps | 103,695 | pvi1.1 | GCA_900067755.1 | Full genebuild | - | - |
Chacoan peccary | Catagonus wagneri | 51,154 | CatWag_v2_BIUU_UCD | GCA_004024745.2 | Full genebuild | - | - |
Channel bull blenny | Cottoperca gobio | 56,716 | fCotGob3.1 | GCA_900634415.1 | Full genebuild | - | - |
Channel catfish | Ictalurus punctatus | 7,998 | ASM400665v3 | GCA_004006655.3 | Full genebuild | - | Y |
Chicken | Gallus gallus | 9,031 | bGalGal1.mat.broiler.GRCg7b | GCA_016699485.1 | Full genebuild | Y | Y |
Chicken (Red Jungle fowl) | Gallus gallus | 9,031 | GRCg6a | GCA_000002315.5 | Full genebuild | Y | Y |
Chicken (paternal White leghorn layer) | Gallus gallus | 9,031 | bGalGal1.pat.whiteleghornlayer.GRCg7w | GCA_016700215.2 | Full genebuild | - | - |
Chilean tinamou | Nothoprocta perdicaria | 30,464 | notPer1 | GCA_003342845.1 | Full genebuild | - | - |
Chimpanzee | Pan troglodytes | 9,598 | Pan_tro_3.0 | GCA_000001515.5 | Full genebuild | Y | Y |
Chinese hamster CHOK1GS | Cricetulus griseus | 10,029 | CHOK1GS_HDv1 | GCA_900186095.1 | Full genebuild | - | Y |
Chinese hamster CriGri | Cricetulus griseus | 10,029 | CriGri_1.0 | GCA_000223135.1 | Full genebuild | - | Y |
Chinese hamster PICR | Cricetulus griseus | 10,029 | CriGri-PICRH-1.0 | GCA_003668045.2 | Full genebuild | - | - |
Chinese medaka | Oryzias sinensis | 183,150 | ASM858656v1 | GCA_008586565.1 | Full genebuild | - | - |
Chinese softshell turtle | Pelodiscus sinensis | 13,735 | PelSin_1.0 | GCA_000230535.1 | Mixed strategy build | - | - |
Chinook salmon | Oncorhynchus tshawytscha | 74,940 | Otsh_v2.0 | GCA_018296145.1 | Full genebuild | - | - |
Climbing perch | Anabas testudineus | 64,144 | fAnaTes1.3 | GCA_900324465.3 | Full genebuild | - | - |
Clown anemonefish | Amphiprion ocellaris | 80,972 | ASM2253959v1 | GCA_022539595.1 | Full genebuild | - | - |
Coelacanth | Latimeria chalumnae | 7,897 | LatCha1 | GCA_000225785.1 | Full genebuild | - | - |
Coho salmon | Oncorhynchus kisutch | 8,019 | Okis_V2 | GCA_002021735.2 | Full genebuild | - | - |
Collared flycatcher | Ficedula albicollis | 59,894 | FicAlb1.5 | GCA_000247815.2 | Full genebuild | Y | - |
Common canary | Serinus canaria | 9,135 | SCA1 | GCA_000534875.1 | Full genebuild | - | - |
Common carp | Cyprinus carpio carpio | 630,221 | Cypcar_WagV4.0 | GCA_905221575.1 | Full genebuild | - | Y |
Common carp german mirror | Cyprinus carpio | 7,962 | German_Mirror_carp_1.0 | GCA_004011555.1 | Full genebuild | - | - |
Common carp hebao red | Cyprinus carpio | 7,962 | Hebao_red_carp_1.0 | GCA_004011595.1 | Full genebuild | - | - |
Common carp huanghe | Cyprinus carpio | 7,962 | Hunaghe_carp_2.0 | GCA_004011575.1 | Full genebuild | - | - |
Common kestrel | Falco tinnunculus | 100,819 | FalTin1.0 | GCA_010332995.1 | Full genebuild | - | - |
Common snapping turtle | Chelydra serpentina | 8,475 | Chelydra_serpentina-1.0 | GCA_007922165.1 | Full genebuild | - | - |
Common wall lizard | Podarcis muralis | 64,176 | PodMur_1.0 | GCA_004329235.1 | Full genebuild | - | - |
Common wombat | Vombatus ursinus | 29,139 | bare-nosed_wombat_genome_assembly | GCA_900497805.2 | Full genebuild | - | - |
Coquerel's sifaka | Propithecus coquereli | 379,532 | Pcoq_1.0 | GCA_000956105.1 | Full genebuild | - | Y |
Cow | Bos taurus | 9,913 | ARS-UCD1.3 | GCA_002263795.3 | Full genebuild | Y | Y |
Crab-eating macaque | Macaca fascicularis | 9,541 | Macaca_fascicularis_6.0 | GCA_011100615.1 | Full genebuild | Y | - |
Damara mole rat | Fukomys damarensis | 885,580 | DMR_v1.0 | GCA_000743615.1 | Full genebuild | - | - |
Dark-eyed junco | Junco hyemalis | 40,217 | ASM382977v1 | GCA_003829775.1 | Full genebuild | - | - |
Daurian ground squirrel | Spermophilus dauricus | 99,837 | ASM240643v1 | GCA_002406435.1 | Full genebuild | - | - |
Degu | Octodon degus | 10,160 | OctDeg1.0 | GCA_000260255.1 | Full genebuild | - | - |
Denticle herring | Denticeps clupeoides | 299,321 | fDenClu1.2 | GCA_900700375.2 | Full genebuild | - | - |
Dingo | Canis lupus dingo | 286,419 | ASM325472v1 | GCA_003254725.1 | Full genebuild | - | - |
Dog | Canis lupus familiaris | 9,615 | ROS_Cfam_1.0 | GCA_014441545.1 | Full genebuild | Y | Y |
Dog - Basenji | Canis lupus familiaris | 9,615 | Basenji_breed-1.1 | GCA_004886185.1 | Full genebuild | - | Y |
Dog - Boxer | Canis lupus familiaris | 9,615 | Dog10K_Boxer_Tasha | GCA_000002285.4 | Full genebuild | Y | Y |
Dog - German Shepherd | Canis lupus familiaris | 9,615 | UU_Cfam_GSD_1.0 | GCA_011100685.1 | Full genebuild | - | - |
Dog - Great Dane | Canis lupus familiaris | 9,615 | UMICH_Zoey_3.1 | GCA_005444595.1 | Full genebuild | - | Y |
Dolphin | Tursiops truncatus | 9,739 | turTru1 | - | Projection build | - | - |
Domestic yak | Bos grunniens | 30,521 | LU_Bosgru_v3.0 | GCA_005887515.1 | Full genebuild | Y | - |
Donkey | Equus asinus | 9,793 | ASM1607732v2 | GCA_016077325.2 | Full genebuild | - | - |
Drill | Mandrillus leucophaeus | 9,568 | Mleu.le_1.0 | GCA_000951045.1 | Full genebuild | - | Y |
Bio-MCP-Data
A repository containing biological datasets that will be used by BIO-MCP MCP (Model Context Protocol) standard.
About
This repository hosts biological data assets formatted to be compatible with the Model Context Protocol, enabling AI models to efficiently access and process biological information. The data is managed using Git Large File Storage (LFS) to handle large biological datasets.
Purpose
- Provide standardized biological datasets for AI model training and inference
- Enable seamless integration with MCP-compatible AI agents
- Support research in computational biology, genomics, and bioinformatics
Usage
To clone this repository including the LFS data:
git lfs install
git clone https://huggingface.co/datasets/longevity-genie/bio-mcp-data
Alternatively, you can clone using SSH:
git lfs install
git clone [email protected]:datasets/longevity-genie/bio-mcp-data
Data Format
The datasets in this repository store datasets used by our MCP server which enable structured data access for AI systems. This standardization facilitates:
- Consistent data integration across different AI models
- Improved context handling for biological information
- Enhanced tool access for AI agents working with biological data
Contributing
Contributions to this dataset collection are welcome. Please follow standard Git LFS practices when adding new biological data files.
Using the Data in Your Project
To use the datasets in this repository with your Python projects, you can leverage the huggingface-hub
library for easy downloading and caching of specific files, and uv
for managing your project dependencies.
1. Setting up your environment with uv
First, ensure you have uv
installed. If not, you can install it following the official uv
installation guide (e.g., pip install uv
or other methods recommended by astral.sh).
Then, create and activate a virtual environment for your project:
uv venv my_project_env # Creates a virtual environment named my_project_env
source my_project_env/bin/activate # On Linux/macOS
# my_project_env\Scripts\activate # On Windows
Install the huggingface-hub
library into your activated environment:
uv pip install huggingface-hub
If you plan to work with common data formats, you might also want to install libraries like pandas
:
uv pip install pandas
2. Accessing data files with huggingface-hub
You can download individual files from this Hugging Face Dataset repository using the hf_hub_download
function from the huggingface-hub
library. This function handles the download and caches the file locally for future use.
Example:
Let's assume you want to download a specific data file, for instance, hagr/anage_data.csv
from this repository.
from huggingface_hub import hf_hub_download
import os # Optional: for constructing paths
# Define the repository ID and the file path within the repository
repo_id = "longevity-genie/bio-mcp-data" # This is the Hugging Face Hub ID for this dataset
# IMPORTANT: Replace "hagr/anage_data.csv" with the actual path to a file in this repository.
# You can browse the files on the Hugging Face Hub page for this dataset to find correct paths.
file_to_download = "hagr/anage_data.csv"
try:
# Download the file
downloaded_file_path = hf_hub_download(
repo_id=repo_id,
filename=file_to_download,
repo_type="dataset" # Crucial for dataset repositories
)
print(f"File '{file_to_download}' downloaded successfully to: {downloaded_file_path}")
# Now you can use the downloaded_file_path to load and process the data.
# For example, if it's a CSV file and you have pandas installed:
import pandas as pd
try:
data_frame = pd.read_csv(downloaded_file_path)
print("Successfully loaded data into pandas DataFrame:")
print(data_frame.head())
except Exception as e_pandas:
print(f"Could not load CSV with pandas: {e_pandas}")
except Exception as e:
print(f"An error occurred while trying to download '{file_to_download}': {e}")
print(f"Please ensure the file path is correct and the file exists in the repository '{repo_id}'.")
print("You can check available files at: https://huggingface.co/datasets/longevity-genie/bio-mcp-data/tree/main")
Explanation:
repo_id
: This is the identifier of the dataset on Hugging Face Hub (longevity-genie/bio-mcp-data
).filename
: This is the relative path to the file within the repository (e.g.,data/some_file.fasta
,annotations/genes.gff
). You need to replace"hagr/anage_data.csv"
with the actual path to a file you intend to use.repo_type="dataset"
: This tellshuggingface-hub
that you are targeting a dataset repository.- The
hf_hub_download
function returns the local path to the downloaded (and cached) file. You can then use this path with any Python library that can read files (likepandas
for CSVs,BioPython
for sequence files, etc.).
This method is efficient as it only downloads the files you specifically request and utilizes local caching, saving time and bandwidth on subsequent runs.
License
This project is licensed under the MIT License - see the license information above for details.
- Downloads last month
- 190