prompt
stringlengths
94
42.6k
completion
stringlengths
6
120
api
stringlengths
14
68
import math import megengine as mge import megengine.functional as F import numpy as np from megengine import Tensor import pdb def restore_bbox(rois, deltas, unnormalize=True, config = None): assert deltas.ndim == 3 if unnormalize: std_opr = mge.tensor(config.bbox_normalize_stds.reshape(1, 1, -1)) mean_opr = mge.tensor(config.bbox_normalize_means.reshape(1, 1, -1)) deltas = deltas * std_opr deltas = deltas + mean_opr # n = deltas.shape[1] n, c = deltas.shape[0], deltas.shape[1] all_rois = F.broadcast_to(F.expand_dims(rois, 1), (n, c, rois.shape[1])).reshape(-1, rois.shape[1]) deltas = deltas.reshape(-1, deltas.shape[2]) pred_bbox = bbox_transform_inv_opr(all_rois, deltas) pred_bbox = pred_bbox.reshape(-1, c, pred_bbox.shape[1]) return pred_bbox def filter_boxes_opr(boxes, min_size): """Remove all boxes with any side smaller than min_size.""" wh = boxes[:, 2:4] - boxes[:, 0:2] + 1 keep_mask = F.prod(wh >= min_size, axis = 1).astype(np.float32) keep_mask = keep_mask + F.equal(keep_mask.sum(), 0).astype(np.float32) return keep def clip_boxes_opr(boxes, im_info): """ Clip the boxes into the image region.""" w = im_info[1] - 1 h = im_info[0] - 1 boxes[:, 0::4] = boxes[:, 0::4].clamp(min=0, max=w) boxes[:, 1::4] = boxes[:, 1::4].clamp(min=0, max=h) boxes[:, 2::4] = boxes[:, 2::4].clamp(min=0, max=w) boxes[:, 3::4] = boxes[:, 3::4].clamp(min=0, max=h) return boxes def bbox_transform_inv_opr(bbox, deltas): max_delta = math.log(1000.0 / 16) """ Transforms the learned deltas to the final bbox coordinates, the axis is 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height pred_ctr_x = bbox_ctr_x + deltas[:, 0] * bbox_width pred_ctr_y = bbox_ctr_y + deltas[:, 1] * bbox_height dw = deltas[:, 2] dh = deltas[:, 3] dw = F.minimum(dw, max_delta) dh = F.minimum(dh, max_delta) pred_width = bbox_width * F.exp(dw) pred_height = bbox_height * F.exp(dh) pred_x1 = pred_ctr_x - 0.5 * pred_width pred_y1 = pred_ctr_y - 0.5 * pred_height pred_x2 = pred_ctr_x + 0.5 * pred_width pred_y2 = pred_ctr_y + 0.5 * pred_height # pred_boxes = F.concat((pred_x1.reshape(-1, 1), pred_y1.reshape(-1, 1), # pred_x2.reshape(-1, 1), pred_y2.reshape(-1, 1)), axis=1) pred_boxes = F.stack([pred_x1, pred_y1, pred_x2, pred_y2], axis = 1) return pred_boxes def bbox_transform_opr(bbox, gt): """ Transform the bounding box and ground truth to the loss targets. The 4 box coordinates are in axis 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height gt_width = gt[:, 2] - gt[:, 0] + 1 gt_height = gt[:, 3] - gt[:, 1] + 1 gt_ctr_x = gt[:, 0] + 0.5 * gt_width gt_ctr_y = gt[:, 1] + 0.5 * gt_height target_dx = (gt_ctr_x - bbox_ctr_x) / bbox_width target_dy = (gt_ctr_y - bbox_ctr_y) / bbox_height target_dw = F.log(gt_width / bbox_width) target_dh =
F.log(gt_height / bbox_height)
megengine.functional.log
import math import megengine as mge import megengine.functional as F import numpy as np from megengine import Tensor import pdb def restore_bbox(rois, deltas, unnormalize=True, config = None): assert deltas.ndim == 3 if unnormalize: std_opr = mge.tensor(config.bbox_normalize_stds.reshape(1, 1, -1)) mean_opr = mge.tensor(config.bbox_normalize_means.reshape(1, 1, -1)) deltas = deltas * std_opr deltas = deltas + mean_opr # n = deltas.shape[1] n, c = deltas.shape[0], deltas.shape[1] all_rois = F.broadcast_to(F.expand_dims(rois, 1), (n, c, rois.shape[1])).reshape(-1, rois.shape[1]) deltas = deltas.reshape(-1, deltas.shape[2]) pred_bbox = bbox_transform_inv_opr(all_rois, deltas) pred_bbox = pred_bbox.reshape(-1, c, pred_bbox.shape[1]) return pred_bbox def filter_boxes_opr(boxes, min_size): """Remove all boxes with any side smaller than min_size.""" wh = boxes[:, 2:4] - boxes[:, 0:2] + 1 keep_mask = F.prod(wh >= min_size, axis = 1).astype(np.float32) keep_mask = keep_mask + F.equal(keep_mask.sum(), 0).astype(np.float32) return keep def clip_boxes_opr(boxes, im_info): """ Clip the boxes into the image region.""" w = im_info[1] - 1 h = im_info[0] - 1 boxes[:, 0::4] = boxes[:, 0::4].clamp(min=0, max=w) boxes[:, 1::4] = boxes[:, 1::4].clamp(min=0, max=h) boxes[:, 2::4] = boxes[:, 2::4].clamp(min=0, max=w) boxes[:, 3::4] = boxes[:, 3::4].clamp(min=0, max=h) return boxes def bbox_transform_inv_opr(bbox, deltas): max_delta = math.log(1000.0 / 16) """ Transforms the learned deltas to the final bbox coordinates, the axis is 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height pred_ctr_x = bbox_ctr_x + deltas[:, 0] * bbox_width pred_ctr_y = bbox_ctr_y + deltas[:, 1] * bbox_height dw = deltas[:, 2] dh = deltas[:, 3] dw = F.minimum(dw, max_delta) dh = F.minimum(dh, max_delta) pred_width = bbox_width * F.exp(dw) pred_height = bbox_height * F.exp(dh) pred_x1 = pred_ctr_x - 0.5 * pred_width pred_y1 = pred_ctr_y - 0.5 * pred_height pred_x2 = pred_ctr_x + 0.5 * pred_width pred_y2 = pred_ctr_y + 0.5 * pred_height # pred_boxes = F.concat((pred_x1.reshape(-1, 1), pred_y1.reshape(-1, 1), # pred_x2.reshape(-1, 1), pred_y2.reshape(-1, 1)), axis=1) pred_boxes = F.stack([pred_x1, pred_y1, pred_x2, pred_y2], axis = 1) return pred_boxes def bbox_transform_opr(bbox, gt): """ Transform the bounding box and ground truth to the loss targets. The 4 box coordinates are in axis 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height gt_width = gt[:, 2] - gt[:, 0] + 1 gt_height = gt[:, 3] - gt[:, 1] + 1 gt_ctr_x = gt[:, 0] + 0.5 * gt_width gt_ctr_y = gt[:, 1] + 0.5 * gt_height target_dx = (gt_ctr_x - bbox_ctr_x) / bbox_width target_dy = (gt_ctr_y - bbox_ctr_y) / bbox_height target_dw = F.log(gt_width / bbox_width) target_dh = F.log(gt_height / bbox_height) target =
F.stack([target_dx, target_dy, target_dw, target_dh], axis=1)
megengine.functional.stack
import math import megengine as mge import megengine.functional as F import numpy as np from megengine import Tensor import pdb def restore_bbox(rois, deltas, unnormalize=True, config = None): assert deltas.ndim == 3 if unnormalize: std_opr = mge.tensor(config.bbox_normalize_stds.reshape(1, 1, -1)) mean_opr = mge.tensor(config.bbox_normalize_means.reshape(1, 1, -1)) deltas = deltas * std_opr deltas = deltas + mean_opr # n = deltas.shape[1] n, c = deltas.shape[0], deltas.shape[1] all_rois = F.broadcast_to(F.expand_dims(rois, 1), (n, c, rois.shape[1])).reshape(-1, rois.shape[1]) deltas = deltas.reshape(-1, deltas.shape[2]) pred_bbox = bbox_transform_inv_opr(all_rois, deltas) pred_bbox = pred_bbox.reshape(-1, c, pred_bbox.shape[1]) return pred_bbox def filter_boxes_opr(boxes, min_size): """Remove all boxes with any side smaller than min_size.""" wh = boxes[:, 2:4] - boxes[:, 0:2] + 1 keep_mask = F.prod(wh >= min_size, axis = 1).astype(np.float32) keep_mask = keep_mask + F.equal(keep_mask.sum(), 0).astype(np.float32) return keep def clip_boxes_opr(boxes, im_info): """ Clip the boxes into the image region.""" w = im_info[1] - 1 h = im_info[0] - 1 boxes[:, 0::4] = boxes[:, 0::4].clamp(min=0, max=w) boxes[:, 1::4] = boxes[:, 1::4].clamp(min=0, max=h) boxes[:, 2::4] = boxes[:, 2::4].clamp(min=0, max=w) boxes[:, 3::4] = boxes[:, 3::4].clamp(min=0, max=h) return boxes def bbox_transform_inv_opr(bbox, deltas): max_delta = math.log(1000.0 / 16) """ Transforms the learned deltas to the final bbox coordinates, the axis is 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height pred_ctr_x = bbox_ctr_x + deltas[:, 0] * bbox_width pred_ctr_y = bbox_ctr_y + deltas[:, 1] * bbox_height dw = deltas[:, 2] dh = deltas[:, 3] dw = F.minimum(dw, max_delta) dh = F.minimum(dh, max_delta) pred_width = bbox_width * F.exp(dw) pred_height = bbox_height * F.exp(dh) pred_x1 = pred_ctr_x - 0.5 * pred_width pred_y1 = pred_ctr_y - 0.5 * pred_height pred_x2 = pred_ctr_x + 0.5 * pred_width pred_y2 = pred_ctr_y + 0.5 * pred_height # pred_boxes = F.concat((pred_x1.reshape(-1, 1), pred_y1.reshape(-1, 1), # pred_x2.reshape(-1, 1), pred_y2.reshape(-1, 1)), axis=1) pred_boxes = F.stack([pred_x1, pred_y1, pred_x2, pred_y2], axis = 1) return pred_boxes def bbox_transform_opr(bbox, gt): """ Transform the bounding box and ground truth to the loss targets. The 4 box coordinates are in axis 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height gt_width = gt[:, 2] - gt[:, 0] + 1 gt_height = gt[:, 3] - gt[:, 1] + 1 gt_ctr_x = gt[:, 0] + 0.5 * gt_width gt_ctr_y = gt[:, 1] + 0.5 * gt_height target_dx = (gt_ctr_x - bbox_ctr_x) / bbox_width target_dy = (gt_ctr_y - bbox_ctr_y) / bbox_height target_dw = F.log(gt_width / bbox_width) target_dh = F.log(gt_height / bbox_height) target = F.stack([target_dx, target_dy, target_dw, target_dh], axis=1) return target def box_overlap_opr(box: Tensor, gt: Tensor) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shape[0], boxes2.shape[0], 4) N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1),(N, K, box.shape[1])) b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1])) # b_gt = F.expand_dims(gt, 0).broadcast_to(N, K, gt.shape[1]) # b_box = F.expand_dims(boxes1, 1).broadcast(*target_shape) # b_gt = F.expand_dims(boxes2, 0).broadcast(*target_shape) iw = F.minimum(b_box[:, :, 2], b_gt[:, :, 2]) - F.maximum( b_box[:, :, 0], b_gt[:, :, 0] ) ih = F.minimum(b_box[:, :, 3], b_gt[:, :, 3]) - F.maximum( b_box[:, :, 1], b_gt[:, :, 1] ) inter = F.maximum(iw, 0) * F.maximum(ih, 0) area_box = F.maximum(box[:, 2] - box[:, 0], 0) * F.maximum(box[:, 3] - box[:, 1], 0) area_gt = F.maximum(gt[:, 2] - gt[:, 0], 0) * F.maximum(gt[:, 3] - gt[:, 1], 0) # area_target_shape = (box.shape[0], gt.shapeof()[0]) b_area_box = F.broadcast_to(F.expand_dims(area_box, 1), (N, K)) b_area_gt = F.broadcast_to(F.expand_dims(area_gt, 0), (N, K)) # b_area_box = F.expand_dims(area_box, 1).broadcast_to(N, K) # b_area_gt = F.expand_dims(area_gt, 0).broadcast_to(N, K) # b_area_box = F.add_axis(area_box, 1).broadcast(*area_target_shape) # b_area_gt = F.add_axis(area_gt, 0).broadcast(*area_target_shape) union = b_area_box + b_area_gt - inter overlaps =
F.maximum(inter / union, 0)
megengine.functional.maximum
import math import megengine as mge import megengine.functional as F import numpy as np from megengine import Tensor import pdb def restore_bbox(rois, deltas, unnormalize=True, config = None): assert deltas.ndim == 3 if unnormalize: std_opr = mge.tensor(config.bbox_normalize_stds.reshape(1, 1, -1)) mean_opr = mge.tensor(config.bbox_normalize_means.reshape(1, 1, -1)) deltas = deltas * std_opr deltas = deltas + mean_opr # n = deltas.shape[1] n, c = deltas.shape[0], deltas.shape[1] all_rois = F.broadcast_to(F.expand_dims(rois, 1), (n, c, rois.shape[1])).reshape(-1, rois.shape[1]) deltas = deltas.reshape(-1, deltas.shape[2]) pred_bbox = bbox_transform_inv_opr(all_rois, deltas) pred_bbox = pred_bbox.reshape(-1, c, pred_bbox.shape[1]) return pred_bbox def filter_boxes_opr(boxes, min_size): """Remove all boxes with any side smaller than min_size.""" wh = boxes[:, 2:4] - boxes[:, 0:2] + 1 keep_mask = F.prod(wh >= min_size, axis = 1).astype(np.float32) keep_mask = keep_mask + F.equal(keep_mask.sum(), 0).astype(np.float32) return keep def clip_boxes_opr(boxes, im_info): """ Clip the boxes into the image region.""" w = im_info[1] - 1 h = im_info[0] - 1 boxes[:, 0::4] = boxes[:, 0::4].clamp(min=0, max=w) boxes[:, 1::4] = boxes[:, 1::4].clamp(min=0, max=h) boxes[:, 2::4] = boxes[:, 2::4].clamp(min=0, max=w) boxes[:, 3::4] = boxes[:, 3::4].clamp(min=0, max=h) return boxes def bbox_transform_inv_opr(bbox, deltas): max_delta = math.log(1000.0 / 16) """ Transforms the learned deltas to the final bbox coordinates, the axis is 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height pred_ctr_x = bbox_ctr_x + deltas[:, 0] * bbox_width pred_ctr_y = bbox_ctr_y + deltas[:, 1] * bbox_height dw = deltas[:, 2] dh = deltas[:, 3] dw = F.minimum(dw, max_delta) dh = F.minimum(dh, max_delta) pred_width = bbox_width * F.exp(dw) pred_height = bbox_height * F.exp(dh) pred_x1 = pred_ctr_x - 0.5 * pred_width pred_y1 = pred_ctr_y - 0.5 * pred_height pred_x2 = pred_ctr_x + 0.5 * pred_width pred_y2 = pred_ctr_y + 0.5 * pred_height # pred_boxes = F.concat((pred_x1.reshape(-1, 1), pred_y1.reshape(-1, 1), # pred_x2.reshape(-1, 1), pred_y2.reshape(-1, 1)), axis=1) pred_boxes = F.stack([pred_x1, pred_y1, pred_x2, pred_y2], axis = 1) return pred_boxes def bbox_transform_opr(bbox, gt): """ Transform the bounding box and ground truth to the loss targets. The 4 box coordinates are in axis 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height gt_width = gt[:, 2] - gt[:, 0] + 1 gt_height = gt[:, 3] - gt[:, 1] + 1 gt_ctr_x = gt[:, 0] + 0.5 * gt_width gt_ctr_y = gt[:, 1] + 0.5 * gt_height target_dx = (gt_ctr_x - bbox_ctr_x) / bbox_width target_dy = (gt_ctr_y - bbox_ctr_y) / bbox_height target_dw = F.log(gt_width / bbox_width) target_dh = F.log(gt_height / bbox_height) target = F.stack([target_dx, target_dy, target_dw, target_dh], axis=1) return target def box_overlap_opr(box: Tensor, gt: Tensor) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shape[0], boxes2.shape[0], 4) N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1),(N, K, box.shape[1])) b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1])) # b_gt = F.expand_dims(gt, 0).broadcast_to(N, K, gt.shape[1]) # b_box = F.expand_dims(boxes1, 1).broadcast(*target_shape) # b_gt = F.expand_dims(boxes2, 0).broadcast(*target_shape) iw = F.minimum(b_box[:, :, 2], b_gt[:, :, 2]) - F.maximum( b_box[:, :, 0], b_gt[:, :, 0] ) ih = F.minimum(b_box[:, :, 3], b_gt[:, :, 3]) - F.maximum( b_box[:, :, 1], b_gt[:, :, 1] ) inter = F.maximum(iw, 0) * F.maximum(ih, 0) area_box = F.maximum(box[:, 2] - box[:, 0], 0) * F.maximum(box[:, 3] - box[:, 1], 0) area_gt = F.maximum(gt[:, 2] - gt[:, 0], 0) * F.maximum(gt[:, 3] - gt[:, 1], 0) # area_target_shape = (box.shape[0], gt.shapeof()[0]) b_area_box = F.broadcast_to(F.expand_dims(area_box, 1), (N, K)) b_area_gt = F.broadcast_to(F.expand_dims(area_gt, 0), (N, K)) # b_area_box = F.expand_dims(area_box, 1).broadcast_to(N, K) # b_area_gt = F.expand_dims(area_gt, 0).broadcast_to(N, K) # b_area_box = F.add_axis(area_box, 1).broadcast(*area_target_shape) # b_area_gt = F.add_axis(area_gt, 0).broadcast(*area_target_shape) union = b_area_box + b_area_gt - inter overlaps = F.maximum(inter / union, 0) return overlaps def box_overlap_ignore_opr(box: Tensor, gt: Tensor, ignore_label=-1) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shapeof()[0], boxes2.shapeof()[0], 4) eps = 1e-5 N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1), (N, K, box.shape[1])) b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1])) # b_box = F.add_axis(boxes1, 1).broadcast(*target_shape) # b_gt = F.add_axis(boxes2[:, :4], 0).broadcast(*target_shape) iw = F.minimum(b_box[:, :, 2], b_gt[:, :, 2]) - F.maximum( b_box[:, :, 0], b_gt[:, :, 0] ) ih = F.minimum(b_box[:, :, 3], b_gt[:, :, 3]) - F.maximum( b_box[:, :, 1], b_gt[:, :, 1] ) inter = F.maximum(iw, 0) * F.maximum(ih, 0) area_box = F.maximum(box[:, 2] - box[:, 0], 0) * F.maximum(box[:, 3] - box[:, 1], 0) area_gt = F.maximum(gt[:, 2] - gt[:, 0], 0) * F.maximum(gt[:, 3] - gt[:, 1], 0) # area_target_shape = (box.shapeof()[0], gt.shapeof()[0]) # b_area_box = F.add_axis(area_box, 1).broadcast(*area_target_shape) # b_area_gt = F.add_axis(area_gt, 0).broadcast(*area_target_shape) b_area_box = F.broadcast_to(F.expand_dims(area_box, 1), (N, K)) + eps b_area_gt = F.broadcast_to(F.expand_dims(area_gt, 0), (N, K)) union = b_area_box + b_area_gt - inter + eps overlaps_normal =
F.maximum(inter / union, 0)
megengine.functional.maximum
import math import megengine as mge import megengine.functional as F import numpy as np from megengine import Tensor import pdb def restore_bbox(rois, deltas, unnormalize=True, config = None): assert deltas.ndim == 3 if unnormalize: std_opr = mge.tensor(config.bbox_normalize_stds.reshape(1, 1, -1)) mean_opr = mge.tensor(config.bbox_normalize_means.reshape(1, 1, -1)) deltas = deltas * std_opr deltas = deltas + mean_opr # n = deltas.shape[1] n, c = deltas.shape[0], deltas.shape[1] all_rois = F.broadcast_to(F.expand_dims(rois, 1), (n, c, rois.shape[1])).reshape(-1, rois.shape[1]) deltas = deltas.reshape(-1, deltas.shape[2]) pred_bbox = bbox_transform_inv_opr(all_rois, deltas) pred_bbox = pred_bbox.reshape(-1, c, pred_bbox.shape[1]) return pred_bbox def filter_boxes_opr(boxes, min_size): """Remove all boxes with any side smaller than min_size.""" wh = boxes[:, 2:4] - boxes[:, 0:2] + 1 keep_mask = F.prod(wh >= min_size, axis = 1).astype(np.float32) keep_mask = keep_mask + F.equal(keep_mask.sum(), 0).astype(np.float32) return keep def clip_boxes_opr(boxes, im_info): """ Clip the boxes into the image region.""" w = im_info[1] - 1 h = im_info[0] - 1 boxes[:, 0::4] = boxes[:, 0::4].clamp(min=0, max=w) boxes[:, 1::4] = boxes[:, 1::4].clamp(min=0, max=h) boxes[:, 2::4] = boxes[:, 2::4].clamp(min=0, max=w) boxes[:, 3::4] = boxes[:, 3::4].clamp(min=0, max=h) return boxes def bbox_transform_inv_opr(bbox, deltas): max_delta = math.log(1000.0 / 16) """ Transforms the learned deltas to the final bbox coordinates, the axis is 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height pred_ctr_x = bbox_ctr_x + deltas[:, 0] * bbox_width pred_ctr_y = bbox_ctr_y + deltas[:, 1] * bbox_height dw = deltas[:, 2] dh = deltas[:, 3] dw = F.minimum(dw, max_delta) dh = F.minimum(dh, max_delta) pred_width = bbox_width * F.exp(dw) pred_height = bbox_height * F.exp(dh) pred_x1 = pred_ctr_x - 0.5 * pred_width pred_y1 = pred_ctr_y - 0.5 * pred_height pred_x2 = pred_ctr_x + 0.5 * pred_width pred_y2 = pred_ctr_y + 0.5 * pred_height # pred_boxes = F.concat((pred_x1.reshape(-1, 1), pred_y1.reshape(-1, 1), # pred_x2.reshape(-1, 1), pred_y2.reshape(-1, 1)), axis=1) pred_boxes = F.stack([pred_x1, pred_y1, pred_x2, pred_y2], axis = 1) return pred_boxes def bbox_transform_opr(bbox, gt): """ Transform the bounding box and ground truth to the loss targets. The 4 box coordinates are in axis 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height gt_width = gt[:, 2] - gt[:, 0] + 1 gt_height = gt[:, 3] - gt[:, 1] + 1 gt_ctr_x = gt[:, 0] + 0.5 * gt_width gt_ctr_y = gt[:, 1] + 0.5 * gt_height target_dx = (gt_ctr_x - bbox_ctr_x) / bbox_width target_dy = (gt_ctr_y - bbox_ctr_y) / bbox_height target_dw = F.log(gt_width / bbox_width) target_dh = F.log(gt_height / bbox_height) target = F.stack([target_dx, target_dy, target_dw, target_dh], axis=1) return target def box_overlap_opr(box: Tensor, gt: Tensor) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shape[0], boxes2.shape[0], 4) N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1),(N, K, box.shape[1])) b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1])) # b_gt = F.expand_dims(gt, 0).broadcast_to(N, K, gt.shape[1]) # b_box = F.expand_dims(boxes1, 1).broadcast(*target_shape) # b_gt = F.expand_dims(boxes2, 0).broadcast(*target_shape) iw = F.minimum(b_box[:, :, 2], b_gt[:, :, 2]) - F.maximum( b_box[:, :, 0], b_gt[:, :, 0] ) ih = F.minimum(b_box[:, :, 3], b_gt[:, :, 3]) - F.maximum( b_box[:, :, 1], b_gt[:, :, 1] ) inter = F.maximum(iw, 0) * F.maximum(ih, 0) area_box = F.maximum(box[:, 2] - box[:, 0], 0) * F.maximum(box[:, 3] - box[:, 1], 0) area_gt = F.maximum(gt[:, 2] - gt[:, 0], 0) * F.maximum(gt[:, 3] - gt[:, 1], 0) # area_target_shape = (box.shape[0], gt.shapeof()[0]) b_area_box = F.broadcast_to(F.expand_dims(area_box, 1), (N, K)) b_area_gt = F.broadcast_to(F.expand_dims(area_gt, 0), (N, K)) # b_area_box = F.expand_dims(area_box, 1).broadcast_to(N, K) # b_area_gt = F.expand_dims(area_gt, 0).broadcast_to(N, K) # b_area_box = F.add_axis(area_box, 1).broadcast(*area_target_shape) # b_area_gt = F.add_axis(area_gt, 0).broadcast(*area_target_shape) union = b_area_box + b_area_gt - inter overlaps = F.maximum(inter / union, 0) return overlaps def box_overlap_ignore_opr(box: Tensor, gt: Tensor, ignore_label=-1) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shapeof()[0], boxes2.shapeof()[0], 4) eps = 1e-5 N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1), (N, K, box.shape[1])) b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1])) # b_box = F.add_axis(boxes1, 1).broadcast(*target_shape) # b_gt = F.add_axis(boxes2[:, :4], 0).broadcast(*target_shape) iw = F.minimum(b_box[:, :, 2], b_gt[:, :, 2]) - F.maximum( b_box[:, :, 0], b_gt[:, :, 0] ) ih = F.minimum(b_box[:, :, 3], b_gt[:, :, 3]) - F.maximum( b_box[:, :, 1], b_gt[:, :, 1] ) inter = F.maximum(iw, 0) * F.maximum(ih, 0) area_box = F.maximum(box[:, 2] - box[:, 0], 0) * F.maximum(box[:, 3] - box[:, 1], 0) area_gt = F.maximum(gt[:, 2] - gt[:, 0], 0) * F.maximum(gt[:, 3] - gt[:, 1], 0) # area_target_shape = (box.shapeof()[0], gt.shapeof()[0]) # b_area_box = F.add_axis(area_box, 1).broadcast(*area_target_shape) # b_area_gt = F.add_axis(area_gt, 0).broadcast(*area_target_shape) b_area_box = F.broadcast_to(F.expand_dims(area_box, 1), (N, K)) + eps b_area_gt = F.broadcast_to(F.expand_dims(area_gt, 0), (N, K)) union = b_area_box + b_area_gt - inter + eps overlaps_normal = F.maximum(inter / union, 0) overlaps_ignore =
F.maximum(inter / b_area_box, 0)
megengine.functional.maximum
import math import megengine as mge import megengine.functional as F import numpy as np from megengine import Tensor import pdb def restore_bbox(rois, deltas, unnormalize=True, config = None): assert deltas.ndim == 3 if unnormalize: std_opr = mge.tensor(config.bbox_normalize_stds.reshape(1, 1, -1)) mean_opr = mge.tensor(config.bbox_normalize_means.reshape(1, 1, -1)) deltas = deltas * std_opr deltas = deltas + mean_opr # n = deltas.shape[1] n, c = deltas.shape[0], deltas.shape[1] all_rois = F.broadcast_to(F.expand_dims(rois, 1), (n, c, rois.shape[1])).reshape(-1, rois.shape[1]) deltas = deltas.reshape(-1, deltas.shape[2]) pred_bbox = bbox_transform_inv_opr(all_rois, deltas) pred_bbox = pred_bbox.reshape(-1, c, pred_bbox.shape[1]) return pred_bbox def filter_boxes_opr(boxes, min_size): """Remove all boxes with any side smaller than min_size.""" wh = boxes[:, 2:4] - boxes[:, 0:2] + 1 keep_mask = F.prod(wh >= min_size, axis = 1).astype(np.float32) keep_mask = keep_mask + F.equal(keep_mask.sum(), 0).astype(np.float32) return keep def clip_boxes_opr(boxes, im_info): """ Clip the boxes into the image region.""" w = im_info[1] - 1 h = im_info[0] - 1 boxes[:, 0::4] = boxes[:, 0::4].clamp(min=0, max=w) boxes[:, 1::4] = boxes[:, 1::4].clamp(min=0, max=h) boxes[:, 2::4] = boxes[:, 2::4].clamp(min=0, max=w) boxes[:, 3::4] = boxes[:, 3::4].clamp(min=0, max=h) return boxes def bbox_transform_inv_opr(bbox, deltas): max_delta = math.log(1000.0 / 16) """ Transforms the learned deltas to the final bbox coordinates, the axis is 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height pred_ctr_x = bbox_ctr_x + deltas[:, 0] * bbox_width pred_ctr_y = bbox_ctr_y + deltas[:, 1] * bbox_height dw = deltas[:, 2] dh = deltas[:, 3] dw = F.minimum(dw, max_delta) dh = F.minimum(dh, max_delta) pred_width = bbox_width * F.exp(dw) pred_height = bbox_height * F.exp(dh) pred_x1 = pred_ctr_x - 0.5 * pred_width pred_y1 = pred_ctr_y - 0.5 * pred_height pred_x2 = pred_ctr_x + 0.5 * pred_width pred_y2 = pred_ctr_y + 0.5 * pred_height # pred_boxes = F.concat((pred_x1.reshape(-1, 1), pred_y1.reshape(-1, 1), # pred_x2.reshape(-1, 1), pred_y2.reshape(-1, 1)), axis=1) pred_boxes = F.stack([pred_x1, pred_y1, pred_x2, pred_y2], axis = 1) return pred_boxes def bbox_transform_opr(bbox, gt): """ Transform the bounding box and ground truth to the loss targets. The 4 box coordinates are in axis 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height gt_width = gt[:, 2] - gt[:, 0] + 1 gt_height = gt[:, 3] - gt[:, 1] + 1 gt_ctr_x = gt[:, 0] + 0.5 * gt_width gt_ctr_y = gt[:, 1] + 0.5 * gt_height target_dx = (gt_ctr_x - bbox_ctr_x) / bbox_width target_dy = (gt_ctr_y - bbox_ctr_y) / bbox_height target_dw = F.log(gt_width / bbox_width) target_dh = F.log(gt_height / bbox_height) target = F.stack([target_dx, target_dy, target_dw, target_dh], axis=1) return target def box_overlap_opr(box: Tensor, gt: Tensor) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shape[0], boxes2.shape[0], 4) N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1),(N, K, box.shape[1])) b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1])) # b_gt = F.expand_dims(gt, 0).broadcast_to(N, K, gt.shape[1]) # b_box = F.expand_dims(boxes1, 1).broadcast(*target_shape) # b_gt = F.expand_dims(boxes2, 0).broadcast(*target_shape) iw = F.minimum(b_box[:, :, 2], b_gt[:, :, 2]) - F.maximum( b_box[:, :, 0], b_gt[:, :, 0] ) ih = F.minimum(b_box[:, :, 3], b_gt[:, :, 3]) - F.maximum( b_box[:, :, 1], b_gt[:, :, 1] ) inter = F.maximum(iw, 0) * F.maximum(ih, 0) area_box = F.maximum(box[:, 2] - box[:, 0], 0) * F.maximum(box[:, 3] - box[:, 1], 0) area_gt = F.maximum(gt[:, 2] - gt[:, 0], 0) * F.maximum(gt[:, 3] - gt[:, 1], 0) # area_target_shape = (box.shape[0], gt.shapeof()[0]) b_area_box = F.broadcast_to(F.expand_dims(area_box, 1), (N, K)) b_area_gt = F.broadcast_to(F.expand_dims(area_gt, 0), (N, K)) # b_area_box = F.expand_dims(area_box, 1).broadcast_to(N, K) # b_area_gt = F.expand_dims(area_gt, 0).broadcast_to(N, K) # b_area_box = F.add_axis(area_box, 1).broadcast(*area_target_shape) # b_area_gt = F.add_axis(area_gt, 0).broadcast(*area_target_shape) union = b_area_box + b_area_gt - inter overlaps = F.maximum(inter / union, 0) return overlaps def box_overlap_ignore_opr(box: Tensor, gt: Tensor, ignore_label=-1) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shapeof()[0], boxes2.shapeof()[0], 4) eps = 1e-5 N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1), (N, K, box.shape[1])) b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1])) # b_box = F.add_axis(boxes1, 1).broadcast(*target_shape) # b_gt = F.add_axis(boxes2[:, :4], 0).broadcast(*target_shape) iw = F.minimum(b_box[:, :, 2], b_gt[:, :, 2]) - F.maximum( b_box[:, :, 0], b_gt[:, :, 0] ) ih = F.minimum(b_box[:, :, 3], b_gt[:, :, 3]) - F.maximum( b_box[:, :, 1], b_gt[:, :, 1] ) inter = F.maximum(iw, 0) * F.maximum(ih, 0) area_box = F.maximum(box[:, 2] - box[:, 0], 0) * F.maximum(box[:, 3] - box[:, 1], 0) area_gt = F.maximum(gt[:, 2] - gt[:, 0], 0) * F.maximum(gt[:, 3] - gt[:, 1], 0) # area_target_shape = (box.shapeof()[0], gt.shapeof()[0]) # b_area_box = F.add_axis(area_box, 1).broadcast(*area_target_shape) # b_area_gt = F.add_axis(area_gt, 0).broadcast(*area_target_shape) b_area_box = F.broadcast_to(F.expand_dims(area_box, 1), (N, K)) + eps b_area_gt = F.broadcast_to(F.expand_dims(area_gt, 0), (N, K)) union = b_area_box + b_area_gt - inter + eps overlaps_normal = F.maximum(inter / union, 0) overlaps_ignore = F.maximum(inter / b_area_box, 0) overlaps =
F.maximum(inter / union, 0)
megengine.functional.maximum
import math import megengine as mge import megengine.functional as F import numpy as np from megengine import Tensor import pdb def restore_bbox(rois, deltas, unnormalize=True, config = None): assert deltas.ndim == 3 if unnormalize: std_opr = mge.tensor(config.bbox_normalize_stds.reshape(1, 1, -1)) mean_opr = mge.tensor(config.bbox_normalize_means.reshape(1, 1, -1)) deltas = deltas * std_opr deltas = deltas + mean_opr # n = deltas.shape[1] n, c = deltas.shape[0], deltas.shape[1] all_rois = F.broadcast_to(F.expand_dims(rois, 1), (n, c, rois.shape[1])).reshape(-1, rois.shape[1]) deltas = deltas.reshape(-1, deltas.shape[2]) pred_bbox = bbox_transform_inv_opr(all_rois, deltas) pred_bbox = pred_bbox.reshape(-1, c, pred_bbox.shape[1]) return pred_bbox def filter_boxes_opr(boxes, min_size): """Remove all boxes with any side smaller than min_size.""" wh = boxes[:, 2:4] - boxes[:, 0:2] + 1 keep_mask = F.prod(wh >= min_size, axis = 1).astype(np.float32) keep_mask = keep_mask + F.equal(keep_mask.sum(), 0).astype(np.float32) return keep def clip_boxes_opr(boxes, im_info): """ Clip the boxes into the image region.""" w = im_info[1] - 1 h = im_info[0] - 1 boxes[:, 0::4] = boxes[:, 0::4].clamp(min=0, max=w) boxes[:, 1::4] = boxes[:, 1::4].clamp(min=0, max=h) boxes[:, 2::4] = boxes[:, 2::4].clamp(min=0, max=w) boxes[:, 3::4] = boxes[:, 3::4].clamp(min=0, max=h) return boxes def bbox_transform_inv_opr(bbox, deltas): max_delta = math.log(1000.0 / 16) """ Transforms the learned deltas to the final bbox coordinates, the axis is 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height pred_ctr_x = bbox_ctr_x + deltas[:, 0] * bbox_width pred_ctr_y = bbox_ctr_y + deltas[:, 1] * bbox_height dw = deltas[:, 2] dh = deltas[:, 3] dw = F.minimum(dw, max_delta) dh = F.minimum(dh, max_delta) pred_width = bbox_width * F.exp(dw) pred_height = bbox_height * F.exp(dh) pred_x1 = pred_ctr_x - 0.5 * pred_width pred_y1 = pred_ctr_y - 0.5 * pred_height pred_x2 = pred_ctr_x + 0.5 * pred_width pred_y2 = pred_ctr_y + 0.5 * pred_height # pred_boxes = F.concat((pred_x1.reshape(-1, 1), pred_y1.reshape(-1, 1), # pred_x2.reshape(-1, 1), pred_y2.reshape(-1, 1)), axis=1) pred_boxes = F.stack([pred_x1, pred_y1, pred_x2, pred_y2], axis = 1) return pred_boxes def bbox_transform_opr(bbox, gt): """ Transform the bounding box and ground truth to the loss targets. The 4 box coordinates are in axis 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height gt_width = gt[:, 2] - gt[:, 0] + 1 gt_height = gt[:, 3] - gt[:, 1] + 1 gt_ctr_x = gt[:, 0] + 0.5 * gt_width gt_ctr_y = gt[:, 1] + 0.5 * gt_height target_dx = (gt_ctr_x - bbox_ctr_x) / bbox_width target_dy = (gt_ctr_y - bbox_ctr_y) / bbox_height target_dw = F.log(gt_width / bbox_width) target_dh = F.log(gt_height / bbox_height) target = F.stack([target_dx, target_dy, target_dw, target_dh], axis=1) return target def box_overlap_opr(box: Tensor, gt: Tensor) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shape[0], boxes2.shape[0], 4) N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1),(N, K, box.shape[1])) b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1])) # b_gt = F.expand_dims(gt, 0).broadcast_to(N, K, gt.shape[1]) # b_box = F.expand_dims(boxes1, 1).broadcast(*target_shape) # b_gt = F.expand_dims(boxes2, 0).broadcast(*target_shape) iw = F.minimum(b_box[:, :, 2], b_gt[:, :, 2]) - F.maximum( b_box[:, :, 0], b_gt[:, :, 0] ) ih = F.minimum(b_box[:, :, 3], b_gt[:, :, 3]) - F.maximum( b_box[:, :, 1], b_gt[:, :, 1] ) inter = F.maximum(iw, 0) * F.maximum(ih, 0) area_box = F.maximum(box[:, 2] - box[:, 0], 0) * F.maximum(box[:, 3] - box[:, 1], 0) area_gt = F.maximum(gt[:, 2] - gt[:, 0], 0) * F.maximum(gt[:, 3] - gt[:, 1], 0) # area_target_shape = (box.shape[0], gt.shapeof()[0]) b_area_box = F.broadcast_to(F.expand_dims(area_box, 1), (N, K)) b_area_gt = F.broadcast_to(F.expand_dims(area_gt, 0), (N, K)) # b_area_box = F.expand_dims(area_box, 1).broadcast_to(N, K) # b_area_gt = F.expand_dims(area_gt, 0).broadcast_to(N, K) # b_area_box = F.add_axis(area_box, 1).broadcast(*area_target_shape) # b_area_gt = F.add_axis(area_gt, 0).broadcast(*area_target_shape) union = b_area_box + b_area_gt - inter overlaps = F.maximum(inter / union, 0) return overlaps def box_overlap_ignore_opr(box: Tensor, gt: Tensor, ignore_label=-1) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shapeof()[0], boxes2.shapeof()[0], 4) eps = 1e-5 N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1), (N, K, box.shape[1])) b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1])) # b_box = F.add_axis(boxes1, 1).broadcast(*target_shape) # b_gt = F.add_axis(boxes2[:, :4], 0).broadcast(*target_shape) iw = F.minimum(b_box[:, :, 2], b_gt[:, :, 2]) - F.maximum( b_box[:, :, 0], b_gt[:, :, 0] ) ih = F.minimum(b_box[:, :, 3], b_gt[:, :, 3]) - F.maximum( b_box[:, :, 1], b_gt[:, :, 1] ) inter = F.maximum(iw, 0) * F.maximum(ih, 0) area_box = F.maximum(box[:, 2] - box[:, 0], 0) * F.maximum(box[:, 3] - box[:, 1], 0) area_gt = F.maximum(gt[:, 2] - gt[:, 0], 0) * F.maximum(gt[:, 3] - gt[:, 1], 0) # area_target_shape = (box.shapeof()[0], gt.shapeof()[0]) # b_area_box = F.add_axis(area_box, 1).broadcast(*area_target_shape) # b_area_gt = F.add_axis(area_gt, 0).broadcast(*area_target_shape) b_area_box = F.broadcast_to(F.expand_dims(area_box, 1), (N, K)) + eps b_area_gt = F.broadcast_to(F.expand_dims(area_gt, 0), (N, K)) union = b_area_box + b_area_gt - inter + eps overlaps_normal = F.maximum(inter / union, 0) overlaps_ignore = F.maximum(inter / b_area_box, 0) overlaps = F.maximum(inter / union, 0) # gt_ignore_mask = F.add_axis(F.equal(gt[:, 4], ignore_label), 0).broadcast(*area_target_shape) ignore_mask =
F.equal(gt[:, 4], ignore_label)
megengine.functional.equal
import math import megengine as mge import megengine.functional as F import numpy as np from megengine import Tensor import pdb def restore_bbox(rois, deltas, unnormalize=True, config = None): assert deltas.ndim == 3 if unnormalize: std_opr = mge.tensor(config.bbox_normalize_stds.reshape(1, 1, -1)) mean_opr = mge.tensor(config.bbox_normalize_means.reshape(1, 1, -1)) deltas = deltas * std_opr deltas = deltas + mean_opr # n = deltas.shape[1] n, c = deltas.shape[0], deltas.shape[1] all_rois = F.broadcast_to(F.expand_dims(rois, 1), (n, c, rois.shape[1])).reshape(-1, rois.shape[1]) deltas = deltas.reshape(-1, deltas.shape[2]) pred_bbox = bbox_transform_inv_opr(all_rois, deltas) pred_bbox = pred_bbox.reshape(-1, c, pred_bbox.shape[1]) return pred_bbox def filter_boxes_opr(boxes, min_size): """Remove all boxes with any side smaller than min_size.""" wh = boxes[:, 2:4] - boxes[:, 0:2] + 1 keep_mask = F.prod(wh >= min_size, axis = 1).astype(np.float32) keep_mask = keep_mask + F.equal(keep_mask.sum(), 0).astype(np.float32) return keep def clip_boxes_opr(boxes, im_info): """ Clip the boxes into the image region.""" w = im_info[1] - 1 h = im_info[0] - 1 boxes[:, 0::4] = boxes[:, 0::4].clamp(min=0, max=w) boxes[:, 1::4] = boxes[:, 1::4].clamp(min=0, max=h) boxes[:, 2::4] = boxes[:, 2::4].clamp(min=0, max=w) boxes[:, 3::4] = boxes[:, 3::4].clamp(min=0, max=h) return boxes def bbox_transform_inv_opr(bbox, deltas): max_delta = math.log(1000.0 / 16) """ Transforms the learned deltas to the final bbox coordinates, the axis is 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height pred_ctr_x = bbox_ctr_x + deltas[:, 0] * bbox_width pred_ctr_y = bbox_ctr_y + deltas[:, 1] * bbox_height dw = deltas[:, 2] dh = deltas[:, 3] dw = F.minimum(dw, max_delta) dh = F.minimum(dh, max_delta) pred_width = bbox_width * F.exp(dw) pred_height = bbox_height * F.exp(dh) pred_x1 = pred_ctr_x - 0.5 * pred_width pred_y1 = pred_ctr_y - 0.5 * pred_height pred_x2 = pred_ctr_x + 0.5 * pred_width pred_y2 = pred_ctr_y + 0.5 * pred_height # pred_boxes = F.concat((pred_x1.reshape(-1, 1), pred_y1.reshape(-1, 1), # pred_x2.reshape(-1, 1), pred_y2.reshape(-1, 1)), axis=1) pred_boxes = F.stack([pred_x1, pred_y1, pred_x2, pred_y2], axis = 1) return pred_boxes def bbox_transform_opr(bbox, gt): """ Transform the bounding box and ground truth to the loss targets. The 4 box coordinates are in axis 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height gt_width = gt[:, 2] - gt[:, 0] + 1 gt_height = gt[:, 3] - gt[:, 1] + 1 gt_ctr_x = gt[:, 0] + 0.5 * gt_width gt_ctr_y = gt[:, 1] + 0.5 * gt_height target_dx = (gt_ctr_x - bbox_ctr_x) / bbox_width target_dy = (gt_ctr_y - bbox_ctr_y) / bbox_height target_dw = F.log(gt_width / bbox_width) target_dh = F.log(gt_height / bbox_height) target = F.stack([target_dx, target_dy, target_dw, target_dh], axis=1) return target def box_overlap_opr(box: Tensor, gt: Tensor) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shape[0], boxes2.shape[0], 4) N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1),(N, K, box.shape[1])) b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1])) # b_gt = F.expand_dims(gt, 0).broadcast_to(N, K, gt.shape[1]) # b_box = F.expand_dims(boxes1, 1).broadcast(*target_shape) # b_gt = F.expand_dims(boxes2, 0).broadcast(*target_shape) iw = F.minimum(b_box[:, :, 2], b_gt[:, :, 2]) - F.maximum( b_box[:, :, 0], b_gt[:, :, 0] ) ih = F.minimum(b_box[:, :, 3], b_gt[:, :, 3]) - F.maximum( b_box[:, :, 1], b_gt[:, :, 1] ) inter = F.maximum(iw, 0) * F.maximum(ih, 0) area_box = F.maximum(box[:, 2] - box[:, 0], 0) * F.maximum(box[:, 3] - box[:, 1], 0) area_gt = F.maximum(gt[:, 2] - gt[:, 0], 0) * F.maximum(gt[:, 3] - gt[:, 1], 0) # area_target_shape = (box.shape[0], gt.shapeof()[0]) b_area_box = F.broadcast_to(F.expand_dims(area_box, 1), (N, K)) b_area_gt = F.broadcast_to(F.expand_dims(area_gt, 0), (N, K)) # b_area_box = F.expand_dims(area_box, 1).broadcast_to(N, K) # b_area_gt = F.expand_dims(area_gt, 0).broadcast_to(N, K) # b_area_box = F.add_axis(area_box, 1).broadcast(*area_target_shape) # b_area_gt = F.add_axis(area_gt, 0).broadcast(*area_target_shape) union = b_area_box + b_area_gt - inter overlaps = F.maximum(inter / union, 0) return overlaps def box_overlap_ignore_opr(box: Tensor, gt: Tensor, ignore_label=-1) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shapeof()[0], boxes2.shapeof()[0], 4) eps = 1e-5 N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1), (N, K, box.shape[1])) b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1])) # b_box = F.add_axis(boxes1, 1).broadcast(*target_shape) # b_gt = F.add_axis(boxes2[:, :4], 0).broadcast(*target_shape) iw = F.minimum(b_box[:, :, 2], b_gt[:, :, 2]) - F.maximum( b_box[:, :, 0], b_gt[:, :, 0] ) ih = F.minimum(b_box[:, :, 3], b_gt[:, :, 3]) - F.maximum( b_box[:, :, 1], b_gt[:, :, 1] ) inter = F.maximum(iw, 0) * F.maximum(ih, 0) area_box = F.maximum(box[:, 2] - box[:, 0], 0) * F.maximum(box[:, 3] - box[:, 1], 0) area_gt = F.maximum(gt[:, 2] - gt[:, 0], 0) * F.maximum(gt[:, 3] - gt[:, 1], 0) # area_target_shape = (box.shapeof()[0], gt.shapeof()[0]) # b_area_box = F.add_axis(area_box, 1).broadcast(*area_target_shape) # b_area_gt = F.add_axis(area_gt, 0).broadcast(*area_target_shape) b_area_box = F.broadcast_to(F.expand_dims(area_box, 1), (N, K)) + eps b_area_gt = F.broadcast_to(F.expand_dims(area_gt, 0), (N, K)) union = b_area_box + b_area_gt - inter + eps overlaps_normal = F.maximum(inter / union, 0) overlaps_ignore = F.maximum(inter / b_area_box, 0) overlaps = F.maximum(inter / union, 0) # gt_ignore_mask = F.add_axis(F.equal(gt[:, 4], ignore_label), 0).broadcast(*area_target_shape) ignore_mask = F.equal(gt[:, 4], ignore_label) gt_ignore_mask =
F.expand_dims(ignore_mask, 0)
megengine.functional.expand_dims
import math import megengine as mge import megengine.functional as F import numpy as np from megengine import Tensor import pdb def restore_bbox(rois, deltas, unnormalize=True, config = None): assert deltas.ndim == 3 if unnormalize: std_opr = mge.tensor(config.bbox_normalize_stds.reshape(1, 1, -1)) mean_opr = mge.tensor(config.bbox_normalize_means.reshape(1, 1, -1)) deltas = deltas * std_opr deltas = deltas + mean_opr # n = deltas.shape[1] n, c = deltas.shape[0], deltas.shape[1] all_rois = F.broadcast_to(F.expand_dims(rois, 1), (n, c, rois.shape[1])).reshape(-1, rois.shape[1]) deltas = deltas.reshape(-1, deltas.shape[2]) pred_bbox = bbox_transform_inv_opr(all_rois, deltas) pred_bbox = pred_bbox.reshape(-1, c, pred_bbox.shape[1]) return pred_bbox def filter_boxes_opr(boxes, min_size): """Remove all boxes with any side smaller than min_size.""" wh = boxes[:, 2:4] - boxes[:, 0:2] + 1 keep_mask = F.prod(wh >= min_size, axis = 1).astype(np.float32) keep_mask = keep_mask + F.equal(keep_mask.sum(), 0).astype(np.float32) return keep def clip_boxes_opr(boxes, im_info): """ Clip the boxes into the image region.""" w = im_info[1] - 1 h = im_info[0] - 1 boxes[:, 0::4] = boxes[:, 0::4].clamp(min=0, max=w) boxes[:, 1::4] = boxes[:, 1::4].clamp(min=0, max=h) boxes[:, 2::4] = boxes[:, 2::4].clamp(min=0, max=w) boxes[:, 3::4] = boxes[:, 3::4].clamp(min=0, max=h) return boxes def bbox_transform_inv_opr(bbox, deltas): max_delta = math.log(1000.0 / 16) """ Transforms the learned deltas to the final bbox coordinates, the axis is 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height pred_ctr_x = bbox_ctr_x + deltas[:, 0] * bbox_width pred_ctr_y = bbox_ctr_y + deltas[:, 1] * bbox_height dw = deltas[:, 2] dh = deltas[:, 3] dw = F.minimum(dw, max_delta) dh = F.minimum(dh, max_delta) pred_width = bbox_width *
F.exp(dw)
megengine.functional.exp
import math import megengine as mge import megengine.functional as F import numpy as np from megengine import Tensor import pdb def restore_bbox(rois, deltas, unnormalize=True, config = None): assert deltas.ndim == 3 if unnormalize: std_opr = mge.tensor(config.bbox_normalize_stds.reshape(1, 1, -1)) mean_opr = mge.tensor(config.bbox_normalize_means.reshape(1, 1, -1)) deltas = deltas * std_opr deltas = deltas + mean_opr # n = deltas.shape[1] n, c = deltas.shape[0], deltas.shape[1] all_rois = F.broadcast_to(F.expand_dims(rois, 1), (n, c, rois.shape[1])).reshape(-1, rois.shape[1]) deltas = deltas.reshape(-1, deltas.shape[2]) pred_bbox = bbox_transform_inv_opr(all_rois, deltas) pred_bbox = pred_bbox.reshape(-1, c, pred_bbox.shape[1]) return pred_bbox def filter_boxes_opr(boxes, min_size): """Remove all boxes with any side smaller than min_size.""" wh = boxes[:, 2:4] - boxes[:, 0:2] + 1 keep_mask = F.prod(wh >= min_size, axis = 1).astype(np.float32) keep_mask = keep_mask + F.equal(keep_mask.sum(), 0).astype(np.float32) return keep def clip_boxes_opr(boxes, im_info): """ Clip the boxes into the image region.""" w = im_info[1] - 1 h = im_info[0] - 1 boxes[:, 0::4] = boxes[:, 0::4].clamp(min=0, max=w) boxes[:, 1::4] = boxes[:, 1::4].clamp(min=0, max=h) boxes[:, 2::4] = boxes[:, 2::4].clamp(min=0, max=w) boxes[:, 3::4] = boxes[:, 3::4].clamp(min=0, max=h) return boxes def bbox_transform_inv_opr(bbox, deltas): max_delta = math.log(1000.0 / 16) """ Transforms the learned deltas to the final bbox coordinates, the axis is 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height pred_ctr_x = bbox_ctr_x + deltas[:, 0] * bbox_width pred_ctr_y = bbox_ctr_y + deltas[:, 1] * bbox_height dw = deltas[:, 2] dh = deltas[:, 3] dw = F.minimum(dw, max_delta) dh = F.minimum(dh, max_delta) pred_width = bbox_width * F.exp(dw) pred_height = bbox_height *
F.exp(dh)
megengine.functional.exp
import math import megengine as mge import megengine.functional as F import numpy as np from megengine import Tensor import pdb def restore_bbox(rois, deltas, unnormalize=True, config = None): assert deltas.ndim == 3 if unnormalize: std_opr = mge.tensor(config.bbox_normalize_stds.reshape(1, 1, -1)) mean_opr = mge.tensor(config.bbox_normalize_means.reshape(1, 1, -1)) deltas = deltas * std_opr deltas = deltas + mean_opr # n = deltas.shape[1] n, c = deltas.shape[0], deltas.shape[1] all_rois = F.broadcast_to(F.expand_dims(rois, 1), (n, c, rois.shape[1])).reshape(-1, rois.shape[1]) deltas = deltas.reshape(-1, deltas.shape[2]) pred_bbox = bbox_transform_inv_opr(all_rois, deltas) pred_bbox = pred_bbox.reshape(-1, c, pred_bbox.shape[1]) return pred_bbox def filter_boxes_opr(boxes, min_size): """Remove all boxes with any side smaller than min_size.""" wh = boxes[:, 2:4] - boxes[:, 0:2] + 1 keep_mask = F.prod(wh >= min_size, axis = 1).astype(np.float32) keep_mask = keep_mask + F.equal(keep_mask.sum(), 0).astype(np.float32) return keep def clip_boxes_opr(boxes, im_info): """ Clip the boxes into the image region.""" w = im_info[1] - 1 h = im_info[0] - 1 boxes[:, 0::4] = boxes[:, 0::4].clamp(min=0, max=w) boxes[:, 1::4] = boxes[:, 1::4].clamp(min=0, max=h) boxes[:, 2::4] = boxes[:, 2::4].clamp(min=0, max=w) boxes[:, 3::4] = boxes[:, 3::4].clamp(min=0, max=h) return boxes def bbox_transform_inv_opr(bbox, deltas): max_delta = math.log(1000.0 / 16) """ Transforms the learned deltas to the final bbox coordinates, the axis is 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height pred_ctr_x = bbox_ctr_x + deltas[:, 0] * bbox_width pred_ctr_y = bbox_ctr_y + deltas[:, 1] * bbox_height dw = deltas[:, 2] dh = deltas[:, 3] dw = F.minimum(dw, max_delta) dh = F.minimum(dh, max_delta) pred_width = bbox_width * F.exp(dw) pred_height = bbox_height * F.exp(dh) pred_x1 = pred_ctr_x - 0.5 * pred_width pred_y1 = pred_ctr_y - 0.5 * pred_height pred_x2 = pred_ctr_x + 0.5 * pred_width pred_y2 = pred_ctr_y + 0.5 * pred_height # pred_boxes = F.concat((pred_x1.reshape(-1, 1), pred_y1.reshape(-1, 1), # pred_x2.reshape(-1, 1), pred_y2.reshape(-1, 1)), axis=1) pred_boxes = F.stack([pred_x1, pred_y1, pred_x2, pred_y2], axis = 1) return pred_boxes def bbox_transform_opr(bbox, gt): """ Transform the bounding box and ground truth to the loss targets. The 4 box coordinates are in axis 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height gt_width = gt[:, 2] - gt[:, 0] + 1 gt_height = gt[:, 3] - gt[:, 1] + 1 gt_ctr_x = gt[:, 0] + 0.5 * gt_width gt_ctr_y = gt[:, 1] + 0.5 * gt_height target_dx = (gt_ctr_x - bbox_ctr_x) / bbox_width target_dy = (gt_ctr_y - bbox_ctr_y) / bbox_height target_dw = F.log(gt_width / bbox_width) target_dh = F.log(gt_height / bbox_height) target = F.stack([target_dx, target_dy, target_dw, target_dh], axis=1) return target def box_overlap_opr(box: Tensor, gt: Tensor) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shape[0], boxes2.shape[0], 4) N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(
F.expand_dims(box, 1)
megengine.functional.expand_dims
import math import megengine as mge import megengine.functional as F import numpy as np from megengine import Tensor import pdb def restore_bbox(rois, deltas, unnormalize=True, config = None): assert deltas.ndim == 3 if unnormalize: std_opr = mge.tensor(config.bbox_normalize_stds.reshape(1, 1, -1)) mean_opr = mge.tensor(config.bbox_normalize_means.reshape(1, 1, -1)) deltas = deltas * std_opr deltas = deltas + mean_opr # n = deltas.shape[1] n, c = deltas.shape[0], deltas.shape[1] all_rois = F.broadcast_to(F.expand_dims(rois, 1), (n, c, rois.shape[1])).reshape(-1, rois.shape[1]) deltas = deltas.reshape(-1, deltas.shape[2]) pred_bbox = bbox_transform_inv_opr(all_rois, deltas) pred_bbox = pred_bbox.reshape(-1, c, pred_bbox.shape[1]) return pred_bbox def filter_boxes_opr(boxes, min_size): """Remove all boxes with any side smaller than min_size.""" wh = boxes[:, 2:4] - boxes[:, 0:2] + 1 keep_mask = F.prod(wh >= min_size, axis = 1).astype(np.float32) keep_mask = keep_mask + F.equal(keep_mask.sum(), 0).astype(np.float32) return keep def clip_boxes_opr(boxes, im_info): """ Clip the boxes into the image region.""" w = im_info[1] - 1 h = im_info[0] - 1 boxes[:, 0::4] = boxes[:, 0::4].clamp(min=0, max=w) boxes[:, 1::4] = boxes[:, 1::4].clamp(min=0, max=h) boxes[:, 2::4] = boxes[:, 2::4].clamp(min=0, max=w) boxes[:, 3::4] = boxes[:, 3::4].clamp(min=0, max=h) return boxes def bbox_transform_inv_opr(bbox, deltas): max_delta = math.log(1000.0 / 16) """ Transforms the learned deltas to the final bbox coordinates, the axis is 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height pred_ctr_x = bbox_ctr_x + deltas[:, 0] * bbox_width pred_ctr_y = bbox_ctr_y + deltas[:, 1] * bbox_height dw = deltas[:, 2] dh = deltas[:, 3] dw = F.minimum(dw, max_delta) dh = F.minimum(dh, max_delta) pred_width = bbox_width * F.exp(dw) pred_height = bbox_height * F.exp(dh) pred_x1 = pred_ctr_x - 0.5 * pred_width pred_y1 = pred_ctr_y - 0.5 * pred_height pred_x2 = pred_ctr_x + 0.5 * pred_width pred_y2 = pred_ctr_y + 0.5 * pred_height # pred_boxes = F.concat((pred_x1.reshape(-1, 1), pred_y1.reshape(-1, 1), # pred_x2.reshape(-1, 1), pred_y2.reshape(-1, 1)), axis=1) pred_boxes = F.stack([pred_x1, pred_y1, pred_x2, pred_y2], axis = 1) return pred_boxes def bbox_transform_opr(bbox, gt): """ Transform the bounding box and ground truth to the loss targets. The 4 box coordinates are in axis 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height gt_width = gt[:, 2] - gt[:, 0] + 1 gt_height = gt[:, 3] - gt[:, 1] + 1 gt_ctr_x = gt[:, 0] + 0.5 * gt_width gt_ctr_y = gt[:, 1] + 0.5 * gt_height target_dx = (gt_ctr_x - bbox_ctr_x) / bbox_width target_dy = (gt_ctr_y - bbox_ctr_y) / bbox_height target_dw = F.log(gt_width / bbox_width) target_dh = F.log(gt_height / bbox_height) target = F.stack([target_dx, target_dy, target_dw, target_dh], axis=1) return target def box_overlap_opr(box: Tensor, gt: Tensor) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shape[0], boxes2.shape[0], 4) N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1),(N, K, box.shape[1])) b_gt = F.broadcast_to(
F.expand_dims(gt, 0)
megengine.functional.expand_dims
import math import megengine as mge import megengine.functional as F import numpy as np from megengine import Tensor import pdb def restore_bbox(rois, deltas, unnormalize=True, config = None): assert deltas.ndim == 3 if unnormalize: std_opr = mge.tensor(config.bbox_normalize_stds.reshape(1, 1, -1)) mean_opr = mge.tensor(config.bbox_normalize_means.reshape(1, 1, -1)) deltas = deltas * std_opr deltas = deltas + mean_opr # n = deltas.shape[1] n, c = deltas.shape[0], deltas.shape[1] all_rois = F.broadcast_to(F.expand_dims(rois, 1), (n, c, rois.shape[1])).reshape(-1, rois.shape[1]) deltas = deltas.reshape(-1, deltas.shape[2]) pred_bbox = bbox_transform_inv_opr(all_rois, deltas) pred_bbox = pred_bbox.reshape(-1, c, pred_bbox.shape[1]) return pred_bbox def filter_boxes_opr(boxes, min_size): """Remove all boxes with any side smaller than min_size.""" wh = boxes[:, 2:4] - boxes[:, 0:2] + 1 keep_mask = F.prod(wh >= min_size, axis = 1).astype(np.float32) keep_mask = keep_mask + F.equal(keep_mask.sum(), 0).astype(np.float32) return keep def clip_boxes_opr(boxes, im_info): """ Clip the boxes into the image region.""" w = im_info[1] - 1 h = im_info[0] - 1 boxes[:, 0::4] = boxes[:, 0::4].clamp(min=0, max=w) boxes[:, 1::4] = boxes[:, 1::4].clamp(min=0, max=h) boxes[:, 2::4] = boxes[:, 2::4].clamp(min=0, max=w) boxes[:, 3::4] = boxes[:, 3::4].clamp(min=0, max=h) return boxes def bbox_transform_inv_opr(bbox, deltas): max_delta = math.log(1000.0 / 16) """ Transforms the learned deltas to the final bbox coordinates, the axis is 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height pred_ctr_x = bbox_ctr_x + deltas[:, 0] * bbox_width pred_ctr_y = bbox_ctr_y + deltas[:, 1] * bbox_height dw = deltas[:, 2] dh = deltas[:, 3] dw = F.minimum(dw, max_delta) dh = F.minimum(dh, max_delta) pred_width = bbox_width * F.exp(dw) pred_height = bbox_height * F.exp(dh) pred_x1 = pred_ctr_x - 0.5 * pred_width pred_y1 = pred_ctr_y - 0.5 * pred_height pred_x2 = pred_ctr_x + 0.5 * pred_width pred_y2 = pred_ctr_y + 0.5 * pred_height # pred_boxes = F.concat((pred_x1.reshape(-1, 1), pred_y1.reshape(-1, 1), # pred_x2.reshape(-1, 1), pred_y2.reshape(-1, 1)), axis=1) pred_boxes = F.stack([pred_x1, pred_y1, pred_x2, pred_y2], axis = 1) return pred_boxes def bbox_transform_opr(bbox, gt): """ Transform the bounding box and ground truth to the loss targets. The 4 box coordinates are in axis 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height gt_width = gt[:, 2] - gt[:, 0] + 1 gt_height = gt[:, 3] - gt[:, 1] + 1 gt_ctr_x = gt[:, 0] + 0.5 * gt_width gt_ctr_y = gt[:, 1] + 0.5 * gt_height target_dx = (gt_ctr_x - bbox_ctr_x) / bbox_width target_dy = (gt_ctr_y - bbox_ctr_y) / bbox_height target_dw = F.log(gt_width / bbox_width) target_dh = F.log(gt_height / bbox_height) target = F.stack([target_dx, target_dy, target_dw, target_dh], axis=1) return target def box_overlap_opr(box: Tensor, gt: Tensor) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shape[0], boxes2.shape[0], 4) N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1),(N, K, box.shape[1])) b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1])) # b_gt = F.expand_dims(gt, 0).broadcast_to(N, K, gt.shape[1]) # b_box = F.expand_dims(boxes1, 1).broadcast(*target_shape) # b_gt = F.expand_dims(boxes2, 0).broadcast(*target_shape) iw =
F.minimum(b_box[:, :, 2], b_gt[:, :, 2])
megengine.functional.minimum
import math import megengine as mge import megengine.functional as F import numpy as np from megengine import Tensor import pdb def restore_bbox(rois, deltas, unnormalize=True, config = None): assert deltas.ndim == 3 if unnormalize: std_opr = mge.tensor(config.bbox_normalize_stds.reshape(1, 1, -1)) mean_opr = mge.tensor(config.bbox_normalize_means.reshape(1, 1, -1)) deltas = deltas * std_opr deltas = deltas + mean_opr # n = deltas.shape[1] n, c = deltas.shape[0], deltas.shape[1] all_rois = F.broadcast_to(F.expand_dims(rois, 1), (n, c, rois.shape[1])).reshape(-1, rois.shape[1]) deltas = deltas.reshape(-1, deltas.shape[2]) pred_bbox = bbox_transform_inv_opr(all_rois, deltas) pred_bbox = pred_bbox.reshape(-1, c, pred_bbox.shape[1]) return pred_bbox def filter_boxes_opr(boxes, min_size): """Remove all boxes with any side smaller than min_size.""" wh = boxes[:, 2:4] - boxes[:, 0:2] + 1 keep_mask = F.prod(wh >= min_size, axis = 1).astype(np.float32) keep_mask = keep_mask + F.equal(keep_mask.sum(), 0).astype(np.float32) return keep def clip_boxes_opr(boxes, im_info): """ Clip the boxes into the image region.""" w = im_info[1] - 1 h = im_info[0] - 1 boxes[:, 0::4] = boxes[:, 0::4].clamp(min=0, max=w) boxes[:, 1::4] = boxes[:, 1::4].clamp(min=0, max=h) boxes[:, 2::4] = boxes[:, 2::4].clamp(min=0, max=w) boxes[:, 3::4] = boxes[:, 3::4].clamp(min=0, max=h) return boxes def bbox_transform_inv_opr(bbox, deltas): max_delta = math.log(1000.0 / 16) """ Transforms the learned deltas to the final bbox coordinates, the axis is 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height pred_ctr_x = bbox_ctr_x + deltas[:, 0] * bbox_width pred_ctr_y = bbox_ctr_y + deltas[:, 1] * bbox_height dw = deltas[:, 2] dh = deltas[:, 3] dw = F.minimum(dw, max_delta) dh = F.minimum(dh, max_delta) pred_width = bbox_width * F.exp(dw) pred_height = bbox_height * F.exp(dh) pred_x1 = pred_ctr_x - 0.5 * pred_width pred_y1 = pred_ctr_y - 0.5 * pred_height pred_x2 = pred_ctr_x + 0.5 * pred_width pred_y2 = pred_ctr_y + 0.5 * pred_height # pred_boxes = F.concat((pred_x1.reshape(-1, 1), pred_y1.reshape(-1, 1), # pred_x2.reshape(-1, 1), pred_y2.reshape(-1, 1)), axis=1) pred_boxes = F.stack([pred_x1, pred_y1, pred_x2, pred_y2], axis = 1) return pred_boxes def bbox_transform_opr(bbox, gt): """ Transform the bounding box and ground truth to the loss targets. The 4 box coordinates are in axis 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height gt_width = gt[:, 2] - gt[:, 0] + 1 gt_height = gt[:, 3] - gt[:, 1] + 1 gt_ctr_x = gt[:, 0] + 0.5 * gt_width gt_ctr_y = gt[:, 1] + 0.5 * gt_height target_dx = (gt_ctr_x - bbox_ctr_x) / bbox_width target_dy = (gt_ctr_y - bbox_ctr_y) / bbox_height target_dw = F.log(gt_width / bbox_width) target_dh = F.log(gt_height / bbox_height) target = F.stack([target_dx, target_dy, target_dw, target_dh], axis=1) return target def box_overlap_opr(box: Tensor, gt: Tensor) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shape[0], boxes2.shape[0], 4) N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1),(N, K, box.shape[1])) b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1])) # b_gt = F.expand_dims(gt, 0).broadcast_to(N, K, gt.shape[1]) # b_box = F.expand_dims(boxes1, 1).broadcast(*target_shape) # b_gt = F.expand_dims(boxes2, 0).broadcast(*target_shape) iw = F.minimum(b_box[:, :, 2], b_gt[:, :, 2]) - F.maximum( b_box[:, :, 0], b_gt[:, :, 0] ) ih =
F.minimum(b_box[:, :, 3], b_gt[:, :, 3])
megengine.functional.minimum
import math import megengine as mge import megengine.functional as F import numpy as np from megengine import Tensor import pdb def restore_bbox(rois, deltas, unnormalize=True, config = None): assert deltas.ndim == 3 if unnormalize: std_opr = mge.tensor(config.bbox_normalize_stds.reshape(1, 1, -1)) mean_opr = mge.tensor(config.bbox_normalize_means.reshape(1, 1, -1)) deltas = deltas * std_opr deltas = deltas + mean_opr # n = deltas.shape[1] n, c = deltas.shape[0], deltas.shape[1] all_rois = F.broadcast_to(F.expand_dims(rois, 1), (n, c, rois.shape[1])).reshape(-1, rois.shape[1]) deltas = deltas.reshape(-1, deltas.shape[2]) pred_bbox = bbox_transform_inv_opr(all_rois, deltas) pred_bbox = pred_bbox.reshape(-1, c, pred_bbox.shape[1]) return pred_bbox def filter_boxes_opr(boxes, min_size): """Remove all boxes with any side smaller than min_size.""" wh = boxes[:, 2:4] - boxes[:, 0:2] + 1 keep_mask = F.prod(wh >= min_size, axis = 1).astype(np.float32) keep_mask = keep_mask + F.equal(keep_mask.sum(), 0).astype(np.float32) return keep def clip_boxes_opr(boxes, im_info): """ Clip the boxes into the image region.""" w = im_info[1] - 1 h = im_info[0] - 1 boxes[:, 0::4] = boxes[:, 0::4].clamp(min=0, max=w) boxes[:, 1::4] = boxes[:, 1::4].clamp(min=0, max=h) boxes[:, 2::4] = boxes[:, 2::4].clamp(min=0, max=w) boxes[:, 3::4] = boxes[:, 3::4].clamp(min=0, max=h) return boxes def bbox_transform_inv_opr(bbox, deltas): max_delta = math.log(1000.0 / 16) """ Transforms the learned deltas to the final bbox coordinates, the axis is 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height pred_ctr_x = bbox_ctr_x + deltas[:, 0] * bbox_width pred_ctr_y = bbox_ctr_y + deltas[:, 1] * bbox_height dw = deltas[:, 2] dh = deltas[:, 3] dw = F.minimum(dw, max_delta) dh = F.minimum(dh, max_delta) pred_width = bbox_width * F.exp(dw) pred_height = bbox_height * F.exp(dh) pred_x1 = pred_ctr_x - 0.5 * pred_width pred_y1 = pred_ctr_y - 0.5 * pred_height pred_x2 = pred_ctr_x + 0.5 * pred_width pred_y2 = pred_ctr_y + 0.5 * pred_height # pred_boxes = F.concat((pred_x1.reshape(-1, 1), pred_y1.reshape(-1, 1), # pred_x2.reshape(-1, 1), pred_y2.reshape(-1, 1)), axis=1) pred_boxes = F.stack([pred_x1, pred_y1, pred_x2, pred_y2], axis = 1) return pred_boxes def bbox_transform_opr(bbox, gt): """ Transform the bounding box and ground truth to the loss targets. The 4 box coordinates are in axis 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height gt_width = gt[:, 2] - gt[:, 0] + 1 gt_height = gt[:, 3] - gt[:, 1] + 1 gt_ctr_x = gt[:, 0] + 0.5 * gt_width gt_ctr_y = gt[:, 1] + 0.5 * gt_height target_dx = (gt_ctr_x - bbox_ctr_x) / bbox_width target_dy = (gt_ctr_y - bbox_ctr_y) / bbox_height target_dw = F.log(gt_width / bbox_width) target_dh = F.log(gt_height / bbox_height) target = F.stack([target_dx, target_dy, target_dw, target_dh], axis=1) return target def box_overlap_opr(box: Tensor, gt: Tensor) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shape[0], boxes2.shape[0], 4) N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1),(N, K, box.shape[1])) b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1])) # b_gt = F.expand_dims(gt, 0).broadcast_to(N, K, gt.shape[1]) # b_box = F.expand_dims(boxes1, 1).broadcast(*target_shape) # b_gt = F.expand_dims(boxes2, 0).broadcast(*target_shape) iw = F.minimum(b_box[:, :, 2], b_gt[:, :, 2]) - F.maximum( b_box[:, :, 0], b_gt[:, :, 0] ) ih = F.minimum(b_box[:, :, 3], b_gt[:, :, 3]) - F.maximum( b_box[:, :, 1], b_gt[:, :, 1] ) inter =
F.maximum(iw, 0)
megengine.functional.maximum
import math import megengine as mge import megengine.functional as F import numpy as np from megengine import Tensor import pdb def restore_bbox(rois, deltas, unnormalize=True, config = None): assert deltas.ndim == 3 if unnormalize: std_opr = mge.tensor(config.bbox_normalize_stds.reshape(1, 1, -1)) mean_opr = mge.tensor(config.bbox_normalize_means.reshape(1, 1, -1)) deltas = deltas * std_opr deltas = deltas + mean_opr # n = deltas.shape[1] n, c = deltas.shape[0], deltas.shape[1] all_rois = F.broadcast_to(F.expand_dims(rois, 1), (n, c, rois.shape[1])).reshape(-1, rois.shape[1]) deltas = deltas.reshape(-1, deltas.shape[2]) pred_bbox = bbox_transform_inv_opr(all_rois, deltas) pred_bbox = pred_bbox.reshape(-1, c, pred_bbox.shape[1]) return pred_bbox def filter_boxes_opr(boxes, min_size): """Remove all boxes with any side smaller than min_size.""" wh = boxes[:, 2:4] - boxes[:, 0:2] + 1 keep_mask = F.prod(wh >= min_size, axis = 1).astype(np.float32) keep_mask = keep_mask + F.equal(keep_mask.sum(), 0).astype(np.float32) return keep def clip_boxes_opr(boxes, im_info): """ Clip the boxes into the image region.""" w = im_info[1] - 1 h = im_info[0] - 1 boxes[:, 0::4] = boxes[:, 0::4].clamp(min=0, max=w) boxes[:, 1::4] = boxes[:, 1::4].clamp(min=0, max=h) boxes[:, 2::4] = boxes[:, 2::4].clamp(min=0, max=w) boxes[:, 3::4] = boxes[:, 3::4].clamp(min=0, max=h) return boxes def bbox_transform_inv_opr(bbox, deltas): max_delta = math.log(1000.0 / 16) """ Transforms the learned deltas to the final bbox coordinates, the axis is 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height pred_ctr_x = bbox_ctr_x + deltas[:, 0] * bbox_width pred_ctr_y = bbox_ctr_y + deltas[:, 1] * bbox_height dw = deltas[:, 2] dh = deltas[:, 3] dw = F.minimum(dw, max_delta) dh = F.minimum(dh, max_delta) pred_width = bbox_width * F.exp(dw) pred_height = bbox_height * F.exp(dh) pred_x1 = pred_ctr_x - 0.5 * pred_width pred_y1 = pred_ctr_y - 0.5 * pred_height pred_x2 = pred_ctr_x + 0.5 * pred_width pred_y2 = pred_ctr_y + 0.5 * pred_height # pred_boxes = F.concat((pred_x1.reshape(-1, 1), pred_y1.reshape(-1, 1), # pred_x2.reshape(-1, 1), pred_y2.reshape(-1, 1)), axis=1) pred_boxes = F.stack([pred_x1, pred_y1, pred_x2, pred_y2], axis = 1) return pred_boxes def bbox_transform_opr(bbox, gt): """ Transform the bounding box and ground truth to the loss targets. The 4 box coordinates are in axis 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height gt_width = gt[:, 2] - gt[:, 0] + 1 gt_height = gt[:, 3] - gt[:, 1] + 1 gt_ctr_x = gt[:, 0] + 0.5 * gt_width gt_ctr_y = gt[:, 1] + 0.5 * gt_height target_dx = (gt_ctr_x - bbox_ctr_x) / bbox_width target_dy = (gt_ctr_y - bbox_ctr_y) / bbox_height target_dw = F.log(gt_width / bbox_width) target_dh = F.log(gt_height / bbox_height) target = F.stack([target_dx, target_dy, target_dw, target_dh], axis=1) return target def box_overlap_opr(box: Tensor, gt: Tensor) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shape[0], boxes2.shape[0], 4) N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1),(N, K, box.shape[1])) b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1])) # b_gt = F.expand_dims(gt, 0).broadcast_to(N, K, gt.shape[1]) # b_box = F.expand_dims(boxes1, 1).broadcast(*target_shape) # b_gt = F.expand_dims(boxes2, 0).broadcast(*target_shape) iw = F.minimum(b_box[:, :, 2], b_gt[:, :, 2]) - F.maximum( b_box[:, :, 0], b_gt[:, :, 0] ) ih = F.minimum(b_box[:, :, 3], b_gt[:, :, 3]) - F.maximum( b_box[:, :, 1], b_gt[:, :, 1] ) inter = F.maximum(iw, 0) *
F.maximum(ih, 0)
megengine.functional.maximum
import math import megengine as mge import megengine.functional as F import numpy as np from megengine import Tensor import pdb def restore_bbox(rois, deltas, unnormalize=True, config = None): assert deltas.ndim == 3 if unnormalize: std_opr = mge.tensor(config.bbox_normalize_stds.reshape(1, 1, -1)) mean_opr = mge.tensor(config.bbox_normalize_means.reshape(1, 1, -1)) deltas = deltas * std_opr deltas = deltas + mean_opr # n = deltas.shape[1] n, c = deltas.shape[0], deltas.shape[1] all_rois = F.broadcast_to(F.expand_dims(rois, 1), (n, c, rois.shape[1])).reshape(-1, rois.shape[1]) deltas = deltas.reshape(-1, deltas.shape[2]) pred_bbox = bbox_transform_inv_opr(all_rois, deltas) pred_bbox = pred_bbox.reshape(-1, c, pred_bbox.shape[1]) return pred_bbox def filter_boxes_opr(boxes, min_size): """Remove all boxes with any side smaller than min_size.""" wh = boxes[:, 2:4] - boxes[:, 0:2] + 1 keep_mask = F.prod(wh >= min_size, axis = 1).astype(np.float32) keep_mask = keep_mask + F.equal(keep_mask.sum(), 0).astype(np.float32) return keep def clip_boxes_opr(boxes, im_info): """ Clip the boxes into the image region.""" w = im_info[1] - 1 h = im_info[0] - 1 boxes[:, 0::4] = boxes[:, 0::4].clamp(min=0, max=w) boxes[:, 1::4] = boxes[:, 1::4].clamp(min=0, max=h) boxes[:, 2::4] = boxes[:, 2::4].clamp(min=0, max=w) boxes[:, 3::4] = boxes[:, 3::4].clamp(min=0, max=h) return boxes def bbox_transform_inv_opr(bbox, deltas): max_delta = math.log(1000.0 / 16) """ Transforms the learned deltas to the final bbox coordinates, the axis is 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height pred_ctr_x = bbox_ctr_x + deltas[:, 0] * bbox_width pred_ctr_y = bbox_ctr_y + deltas[:, 1] * bbox_height dw = deltas[:, 2] dh = deltas[:, 3] dw = F.minimum(dw, max_delta) dh = F.minimum(dh, max_delta) pred_width = bbox_width * F.exp(dw) pred_height = bbox_height * F.exp(dh) pred_x1 = pred_ctr_x - 0.5 * pred_width pred_y1 = pred_ctr_y - 0.5 * pred_height pred_x2 = pred_ctr_x + 0.5 * pred_width pred_y2 = pred_ctr_y + 0.5 * pred_height # pred_boxes = F.concat((pred_x1.reshape(-1, 1), pred_y1.reshape(-1, 1), # pred_x2.reshape(-1, 1), pred_y2.reshape(-1, 1)), axis=1) pred_boxes = F.stack([pred_x1, pred_y1, pred_x2, pred_y2], axis = 1) return pred_boxes def bbox_transform_opr(bbox, gt): """ Transform the bounding box and ground truth to the loss targets. The 4 box coordinates are in axis 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height gt_width = gt[:, 2] - gt[:, 0] + 1 gt_height = gt[:, 3] - gt[:, 1] + 1 gt_ctr_x = gt[:, 0] + 0.5 * gt_width gt_ctr_y = gt[:, 1] + 0.5 * gt_height target_dx = (gt_ctr_x - bbox_ctr_x) / bbox_width target_dy = (gt_ctr_y - bbox_ctr_y) / bbox_height target_dw = F.log(gt_width / bbox_width) target_dh = F.log(gt_height / bbox_height) target = F.stack([target_dx, target_dy, target_dw, target_dh], axis=1) return target def box_overlap_opr(box: Tensor, gt: Tensor) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shape[0], boxes2.shape[0], 4) N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1),(N, K, box.shape[1])) b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1])) # b_gt = F.expand_dims(gt, 0).broadcast_to(N, K, gt.shape[1]) # b_box = F.expand_dims(boxes1, 1).broadcast(*target_shape) # b_gt = F.expand_dims(boxes2, 0).broadcast(*target_shape) iw = F.minimum(b_box[:, :, 2], b_gt[:, :, 2]) - F.maximum( b_box[:, :, 0], b_gt[:, :, 0] ) ih = F.minimum(b_box[:, :, 3], b_gt[:, :, 3]) - F.maximum( b_box[:, :, 1], b_gt[:, :, 1] ) inter = F.maximum(iw, 0) * F.maximum(ih, 0) area_box =
F.maximum(box[:, 2] - box[:, 0], 0)
megengine.functional.maximum
import math import megengine as mge import megengine.functional as F import numpy as np from megengine import Tensor import pdb def restore_bbox(rois, deltas, unnormalize=True, config = None): assert deltas.ndim == 3 if unnormalize: std_opr = mge.tensor(config.bbox_normalize_stds.reshape(1, 1, -1)) mean_opr = mge.tensor(config.bbox_normalize_means.reshape(1, 1, -1)) deltas = deltas * std_opr deltas = deltas + mean_opr # n = deltas.shape[1] n, c = deltas.shape[0], deltas.shape[1] all_rois = F.broadcast_to(F.expand_dims(rois, 1), (n, c, rois.shape[1])).reshape(-1, rois.shape[1]) deltas = deltas.reshape(-1, deltas.shape[2]) pred_bbox = bbox_transform_inv_opr(all_rois, deltas) pred_bbox = pred_bbox.reshape(-1, c, pred_bbox.shape[1]) return pred_bbox def filter_boxes_opr(boxes, min_size): """Remove all boxes with any side smaller than min_size.""" wh = boxes[:, 2:4] - boxes[:, 0:2] + 1 keep_mask = F.prod(wh >= min_size, axis = 1).astype(np.float32) keep_mask = keep_mask + F.equal(keep_mask.sum(), 0).astype(np.float32) return keep def clip_boxes_opr(boxes, im_info): """ Clip the boxes into the image region.""" w = im_info[1] - 1 h = im_info[0] - 1 boxes[:, 0::4] = boxes[:, 0::4].clamp(min=0, max=w) boxes[:, 1::4] = boxes[:, 1::4].clamp(min=0, max=h) boxes[:, 2::4] = boxes[:, 2::4].clamp(min=0, max=w) boxes[:, 3::4] = boxes[:, 3::4].clamp(min=0, max=h) return boxes def bbox_transform_inv_opr(bbox, deltas): max_delta = math.log(1000.0 / 16) """ Transforms the learned deltas to the final bbox coordinates, the axis is 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height pred_ctr_x = bbox_ctr_x + deltas[:, 0] * bbox_width pred_ctr_y = bbox_ctr_y + deltas[:, 1] * bbox_height dw = deltas[:, 2] dh = deltas[:, 3] dw = F.minimum(dw, max_delta) dh = F.minimum(dh, max_delta) pred_width = bbox_width * F.exp(dw) pred_height = bbox_height * F.exp(dh) pred_x1 = pred_ctr_x - 0.5 * pred_width pred_y1 = pred_ctr_y - 0.5 * pred_height pred_x2 = pred_ctr_x + 0.5 * pred_width pred_y2 = pred_ctr_y + 0.5 * pred_height # pred_boxes = F.concat((pred_x1.reshape(-1, 1), pred_y1.reshape(-1, 1), # pred_x2.reshape(-1, 1), pred_y2.reshape(-1, 1)), axis=1) pred_boxes = F.stack([pred_x1, pred_y1, pred_x2, pred_y2], axis = 1) return pred_boxes def bbox_transform_opr(bbox, gt): """ Transform the bounding box and ground truth to the loss targets. The 4 box coordinates are in axis 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height gt_width = gt[:, 2] - gt[:, 0] + 1 gt_height = gt[:, 3] - gt[:, 1] + 1 gt_ctr_x = gt[:, 0] + 0.5 * gt_width gt_ctr_y = gt[:, 1] + 0.5 * gt_height target_dx = (gt_ctr_x - bbox_ctr_x) / bbox_width target_dy = (gt_ctr_y - bbox_ctr_y) / bbox_height target_dw = F.log(gt_width / bbox_width) target_dh = F.log(gt_height / bbox_height) target = F.stack([target_dx, target_dy, target_dw, target_dh], axis=1) return target def box_overlap_opr(box: Tensor, gt: Tensor) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shape[0], boxes2.shape[0], 4) N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1),(N, K, box.shape[1])) b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1])) # b_gt = F.expand_dims(gt, 0).broadcast_to(N, K, gt.shape[1]) # b_box = F.expand_dims(boxes1, 1).broadcast(*target_shape) # b_gt = F.expand_dims(boxes2, 0).broadcast(*target_shape) iw = F.minimum(b_box[:, :, 2], b_gt[:, :, 2]) - F.maximum( b_box[:, :, 0], b_gt[:, :, 0] ) ih = F.minimum(b_box[:, :, 3], b_gt[:, :, 3]) - F.maximum( b_box[:, :, 1], b_gt[:, :, 1] ) inter = F.maximum(iw, 0) * F.maximum(ih, 0) area_box = F.maximum(box[:, 2] - box[:, 0], 0) *
F.maximum(box[:, 3] - box[:, 1], 0)
megengine.functional.maximum
import math import megengine as mge import megengine.functional as F import numpy as np from megengine import Tensor import pdb def restore_bbox(rois, deltas, unnormalize=True, config = None): assert deltas.ndim == 3 if unnormalize: std_opr = mge.tensor(config.bbox_normalize_stds.reshape(1, 1, -1)) mean_opr = mge.tensor(config.bbox_normalize_means.reshape(1, 1, -1)) deltas = deltas * std_opr deltas = deltas + mean_opr # n = deltas.shape[1] n, c = deltas.shape[0], deltas.shape[1] all_rois = F.broadcast_to(F.expand_dims(rois, 1), (n, c, rois.shape[1])).reshape(-1, rois.shape[1]) deltas = deltas.reshape(-1, deltas.shape[2]) pred_bbox = bbox_transform_inv_opr(all_rois, deltas) pred_bbox = pred_bbox.reshape(-1, c, pred_bbox.shape[1]) return pred_bbox def filter_boxes_opr(boxes, min_size): """Remove all boxes with any side smaller than min_size.""" wh = boxes[:, 2:4] - boxes[:, 0:2] + 1 keep_mask = F.prod(wh >= min_size, axis = 1).astype(np.float32) keep_mask = keep_mask + F.equal(keep_mask.sum(), 0).astype(np.float32) return keep def clip_boxes_opr(boxes, im_info): """ Clip the boxes into the image region.""" w = im_info[1] - 1 h = im_info[0] - 1 boxes[:, 0::4] = boxes[:, 0::4].clamp(min=0, max=w) boxes[:, 1::4] = boxes[:, 1::4].clamp(min=0, max=h) boxes[:, 2::4] = boxes[:, 2::4].clamp(min=0, max=w) boxes[:, 3::4] = boxes[:, 3::4].clamp(min=0, max=h) return boxes def bbox_transform_inv_opr(bbox, deltas): max_delta = math.log(1000.0 / 16) """ Transforms the learned deltas to the final bbox coordinates, the axis is 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height pred_ctr_x = bbox_ctr_x + deltas[:, 0] * bbox_width pred_ctr_y = bbox_ctr_y + deltas[:, 1] * bbox_height dw = deltas[:, 2] dh = deltas[:, 3] dw = F.minimum(dw, max_delta) dh = F.minimum(dh, max_delta) pred_width = bbox_width * F.exp(dw) pred_height = bbox_height * F.exp(dh) pred_x1 = pred_ctr_x - 0.5 * pred_width pred_y1 = pred_ctr_y - 0.5 * pred_height pred_x2 = pred_ctr_x + 0.5 * pred_width pred_y2 = pred_ctr_y + 0.5 * pred_height # pred_boxes = F.concat((pred_x1.reshape(-1, 1), pred_y1.reshape(-1, 1), # pred_x2.reshape(-1, 1), pred_y2.reshape(-1, 1)), axis=1) pred_boxes = F.stack([pred_x1, pred_y1, pred_x2, pred_y2], axis = 1) return pred_boxes def bbox_transform_opr(bbox, gt): """ Transform the bounding box and ground truth to the loss targets. The 4 box coordinates are in axis 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height gt_width = gt[:, 2] - gt[:, 0] + 1 gt_height = gt[:, 3] - gt[:, 1] + 1 gt_ctr_x = gt[:, 0] + 0.5 * gt_width gt_ctr_y = gt[:, 1] + 0.5 * gt_height target_dx = (gt_ctr_x - bbox_ctr_x) / bbox_width target_dy = (gt_ctr_y - bbox_ctr_y) / bbox_height target_dw = F.log(gt_width / bbox_width) target_dh = F.log(gt_height / bbox_height) target = F.stack([target_dx, target_dy, target_dw, target_dh], axis=1) return target def box_overlap_opr(box: Tensor, gt: Tensor) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shape[0], boxes2.shape[0], 4) N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1),(N, K, box.shape[1])) b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1])) # b_gt = F.expand_dims(gt, 0).broadcast_to(N, K, gt.shape[1]) # b_box = F.expand_dims(boxes1, 1).broadcast(*target_shape) # b_gt = F.expand_dims(boxes2, 0).broadcast(*target_shape) iw = F.minimum(b_box[:, :, 2], b_gt[:, :, 2]) - F.maximum( b_box[:, :, 0], b_gt[:, :, 0] ) ih = F.minimum(b_box[:, :, 3], b_gt[:, :, 3]) - F.maximum( b_box[:, :, 1], b_gt[:, :, 1] ) inter = F.maximum(iw, 0) * F.maximum(ih, 0) area_box = F.maximum(box[:, 2] - box[:, 0], 0) * F.maximum(box[:, 3] - box[:, 1], 0) area_gt =
F.maximum(gt[:, 2] - gt[:, 0], 0)
megengine.functional.maximum
import math import megengine as mge import megengine.functional as F import numpy as np from megengine import Tensor import pdb def restore_bbox(rois, deltas, unnormalize=True, config = None): assert deltas.ndim == 3 if unnormalize: std_opr = mge.tensor(config.bbox_normalize_stds.reshape(1, 1, -1)) mean_opr = mge.tensor(config.bbox_normalize_means.reshape(1, 1, -1)) deltas = deltas * std_opr deltas = deltas + mean_opr # n = deltas.shape[1] n, c = deltas.shape[0], deltas.shape[1] all_rois = F.broadcast_to(F.expand_dims(rois, 1), (n, c, rois.shape[1])).reshape(-1, rois.shape[1]) deltas = deltas.reshape(-1, deltas.shape[2]) pred_bbox = bbox_transform_inv_opr(all_rois, deltas) pred_bbox = pred_bbox.reshape(-1, c, pred_bbox.shape[1]) return pred_bbox def filter_boxes_opr(boxes, min_size): """Remove all boxes with any side smaller than min_size.""" wh = boxes[:, 2:4] - boxes[:, 0:2] + 1 keep_mask = F.prod(wh >= min_size, axis = 1).astype(np.float32) keep_mask = keep_mask + F.equal(keep_mask.sum(), 0).astype(np.float32) return keep def clip_boxes_opr(boxes, im_info): """ Clip the boxes into the image region.""" w = im_info[1] - 1 h = im_info[0] - 1 boxes[:, 0::4] = boxes[:, 0::4].clamp(min=0, max=w) boxes[:, 1::4] = boxes[:, 1::4].clamp(min=0, max=h) boxes[:, 2::4] = boxes[:, 2::4].clamp(min=0, max=w) boxes[:, 3::4] = boxes[:, 3::4].clamp(min=0, max=h) return boxes def bbox_transform_inv_opr(bbox, deltas): max_delta = math.log(1000.0 / 16) """ Transforms the learned deltas to the final bbox coordinates, the axis is 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height pred_ctr_x = bbox_ctr_x + deltas[:, 0] * bbox_width pred_ctr_y = bbox_ctr_y + deltas[:, 1] * bbox_height dw = deltas[:, 2] dh = deltas[:, 3] dw = F.minimum(dw, max_delta) dh = F.minimum(dh, max_delta) pred_width = bbox_width * F.exp(dw) pred_height = bbox_height * F.exp(dh) pred_x1 = pred_ctr_x - 0.5 * pred_width pred_y1 = pred_ctr_y - 0.5 * pred_height pred_x2 = pred_ctr_x + 0.5 * pred_width pred_y2 = pred_ctr_y + 0.5 * pred_height # pred_boxes = F.concat((pred_x1.reshape(-1, 1), pred_y1.reshape(-1, 1), # pred_x2.reshape(-1, 1), pred_y2.reshape(-1, 1)), axis=1) pred_boxes = F.stack([pred_x1, pred_y1, pred_x2, pred_y2], axis = 1) return pred_boxes def bbox_transform_opr(bbox, gt): """ Transform the bounding box and ground truth to the loss targets. The 4 box coordinates are in axis 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height gt_width = gt[:, 2] - gt[:, 0] + 1 gt_height = gt[:, 3] - gt[:, 1] + 1 gt_ctr_x = gt[:, 0] + 0.5 * gt_width gt_ctr_y = gt[:, 1] + 0.5 * gt_height target_dx = (gt_ctr_x - bbox_ctr_x) / bbox_width target_dy = (gt_ctr_y - bbox_ctr_y) / bbox_height target_dw = F.log(gt_width / bbox_width) target_dh = F.log(gt_height / bbox_height) target = F.stack([target_dx, target_dy, target_dw, target_dh], axis=1) return target def box_overlap_opr(box: Tensor, gt: Tensor) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shape[0], boxes2.shape[0], 4) N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1),(N, K, box.shape[1])) b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1])) # b_gt = F.expand_dims(gt, 0).broadcast_to(N, K, gt.shape[1]) # b_box = F.expand_dims(boxes1, 1).broadcast(*target_shape) # b_gt = F.expand_dims(boxes2, 0).broadcast(*target_shape) iw = F.minimum(b_box[:, :, 2], b_gt[:, :, 2]) - F.maximum( b_box[:, :, 0], b_gt[:, :, 0] ) ih = F.minimum(b_box[:, :, 3], b_gt[:, :, 3]) - F.maximum( b_box[:, :, 1], b_gt[:, :, 1] ) inter = F.maximum(iw, 0) * F.maximum(ih, 0) area_box = F.maximum(box[:, 2] - box[:, 0], 0) * F.maximum(box[:, 3] - box[:, 1], 0) area_gt = F.maximum(gt[:, 2] - gt[:, 0], 0) *
F.maximum(gt[:, 3] - gt[:, 1], 0)
megengine.functional.maximum
import math import megengine as mge import megengine.functional as F import numpy as np from megengine import Tensor import pdb def restore_bbox(rois, deltas, unnormalize=True, config = None): assert deltas.ndim == 3 if unnormalize: std_opr = mge.tensor(config.bbox_normalize_stds.reshape(1, 1, -1)) mean_opr = mge.tensor(config.bbox_normalize_means.reshape(1, 1, -1)) deltas = deltas * std_opr deltas = deltas + mean_opr # n = deltas.shape[1] n, c = deltas.shape[0], deltas.shape[1] all_rois = F.broadcast_to(F.expand_dims(rois, 1), (n, c, rois.shape[1])).reshape(-1, rois.shape[1]) deltas = deltas.reshape(-1, deltas.shape[2]) pred_bbox = bbox_transform_inv_opr(all_rois, deltas) pred_bbox = pred_bbox.reshape(-1, c, pred_bbox.shape[1]) return pred_bbox def filter_boxes_opr(boxes, min_size): """Remove all boxes with any side smaller than min_size.""" wh = boxes[:, 2:4] - boxes[:, 0:2] + 1 keep_mask = F.prod(wh >= min_size, axis = 1).astype(np.float32) keep_mask = keep_mask + F.equal(keep_mask.sum(), 0).astype(np.float32) return keep def clip_boxes_opr(boxes, im_info): """ Clip the boxes into the image region.""" w = im_info[1] - 1 h = im_info[0] - 1 boxes[:, 0::4] = boxes[:, 0::4].clamp(min=0, max=w) boxes[:, 1::4] = boxes[:, 1::4].clamp(min=0, max=h) boxes[:, 2::4] = boxes[:, 2::4].clamp(min=0, max=w) boxes[:, 3::4] = boxes[:, 3::4].clamp(min=0, max=h) return boxes def bbox_transform_inv_opr(bbox, deltas): max_delta = math.log(1000.0 / 16) """ Transforms the learned deltas to the final bbox coordinates, the axis is 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height pred_ctr_x = bbox_ctr_x + deltas[:, 0] * bbox_width pred_ctr_y = bbox_ctr_y + deltas[:, 1] * bbox_height dw = deltas[:, 2] dh = deltas[:, 3] dw = F.minimum(dw, max_delta) dh = F.minimum(dh, max_delta) pred_width = bbox_width * F.exp(dw) pred_height = bbox_height * F.exp(dh) pred_x1 = pred_ctr_x - 0.5 * pred_width pred_y1 = pred_ctr_y - 0.5 * pred_height pred_x2 = pred_ctr_x + 0.5 * pred_width pred_y2 = pred_ctr_y + 0.5 * pred_height # pred_boxes = F.concat((pred_x1.reshape(-1, 1), pred_y1.reshape(-1, 1), # pred_x2.reshape(-1, 1), pred_y2.reshape(-1, 1)), axis=1) pred_boxes = F.stack([pred_x1, pred_y1, pred_x2, pred_y2], axis = 1) return pred_boxes def bbox_transform_opr(bbox, gt): """ Transform the bounding box and ground truth to the loss targets. The 4 box coordinates are in axis 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height gt_width = gt[:, 2] - gt[:, 0] + 1 gt_height = gt[:, 3] - gt[:, 1] + 1 gt_ctr_x = gt[:, 0] + 0.5 * gt_width gt_ctr_y = gt[:, 1] + 0.5 * gt_height target_dx = (gt_ctr_x - bbox_ctr_x) / bbox_width target_dy = (gt_ctr_y - bbox_ctr_y) / bbox_height target_dw = F.log(gt_width / bbox_width) target_dh = F.log(gt_height / bbox_height) target = F.stack([target_dx, target_dy, target_dw, target_dh], axis=1) return target def box_overlap_opr(box: Tensor, gt: Tensor) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shape[0], boxes2.shape[0], 4) N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1),(N, K, box.shape[1])) b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1])) # b_gt = F.expand_dims(gt, 0).broadcast_to(N, K, gt.shape[1]) # b_box = F.expand_dims(boxes1, 1).broadcast(*target_shape) # b_gt = F.expand_dims(boxes2, 0).broadcast(*target_shape) iw = F.minimum(b_box[:, :, 2], b_gt[:, :, 2]) - F.maximum( b_box[:, :, 0], b_gt[:, :, 0] ) ih = F.minimum(b_box[:, :, 3], b_gt[:, :, 3]) - F.maximum( b_box[:, :, 1], b_gt[:, :, 1] ) inter = F.maximum(iw, 0) * F.maximum(ih, 0) area_box = F.maximum(box[:, 2] - box[:, 0], 0) * F.maximum(box[:, 3] - box[:, 1], 0) area_gt = F.maximum(gt[:, 2] - gt[:, 0], 0) * F.maximum(gt[:, 3] - gt[:, 1], 0) # area_target_shape = (box.shape[0], gt.shapeof()[0]) b_area_box = F.broadcast_to(
F.expand_dims(area_box, 1)
megengine.functional.expand_dims
import math import megengine as mge import megengine.functional as F import numpy as np from megengine import Tensor import pdb def restore_bbox(rois, deltas, unnormalize=True, config = None): assert deltas.ndim == 3 if unnormalize: std_opr = mge.tensor(config.bbox_normalize_stds.reshape(1, 1, -1)) mean_opr = mge.tensor(config.bbox_normalize_means.reshape(1, 1, -1)) deltas = deltas * std_opr deltas = deltas + mean_opr # n = deltas.shape[1] n, c = deltas.shape[0], deltas.shape[1] all_rois = F.broadcast_to(F.expand_dims(rois, 1), (n, c, rois.shape[1])).reshape(-1, rois.shape[1]) deltas = deltas.reshape(-1, deltas.shape[2]) pred_bbox = bbox_transform_inv_opr(all_rois, deltas) pred_bbox = pred_bbox.reshape(-1, c, pred_bbox.shape[1]) return pred_bbox def filter_boxes_opr(boxes, min_size): """Remove all boxes with any side smaller than min_size.""" wh = boxes[:, 2:4] - boxes[:, 0:2] + 1 keep_mask = F.prod(wh >= min_size, axis = 1).astype(np.float32) keep_mask = keep_mask + F.equal(keep_mask.sum(), 0).astype(np.float32) return keep def clip_boxes_opr(boxes, im_info): """ Clip the boxes into the image region.""" w = im_info[1] - 1 h = im_info[0] - 1 boxes[:, 0::4] = boxes[:, 0::4].clamp(min=0, max=w) boxes[:, 1::4] = boxes[:, 1::4].clamp(min=0, max=h) boxes[:, 2::4] = boxes[:, 2::4].clamp(min=0, max=w) boxes[:, 3::4] = boxes[:, 3::4].clamp(min=0, max=h) return boxes def bbox_transform_inv_opr(bbox, deltas): max_delta = math.log(1000.0 / 16) """ Transforms the learned deltas to the final bbox coordinates, the axis is 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height pred_ctr_x = bbox_ctr_x + deltas[:, 0] * bbox_width pred_ctr_y = bbox_ctr_y + deltas[:, 1] * bbox_height dw = deltas[:, 2] dh = deltas[:, 3] dw = F.minimum(dw, max_delta) dh = F.minimum(dh, max_delta) pred_width = bbox_width * F.exp(dw) pred_height = bbox_height * F.exp(dh) pred_x1 = pred_ctr_x - 0.5 * pred_width pred_y1 = pred_ctr_y - 0.5 * pred_height pred_x2 = pred_ctr_x + 0.5 * pred_width pred_y2 = pred_ctr_y + 0.5 * pred_height # pred_boxes = F.concat((pred_x1.reshape(-1, 1), pred_y1.reshape(-1, 1), # pred_x2.reshape(-1, 1), pred_y2.reshape(-1, 1)), axis=1) pred_boxes = F.stack([pred_x1, pred_y1, pred_x2, pred_y2], axis = 1) return pred_boxes def bbox_transform_opr(bbox, gt): """ Transform the bounding box and ground truth to the loss targets. The 4 box coordinates are in axis 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height gt_width = gt[:, 2] - gt[:, 0] + 1 gt_height = gt[:, 3] - gt[:, 1] + 1 gt_ctr_x = gt[:, 0] + 0.5 * gt_width gt_ctr_y = gt[:, 1] + 0.5 * gt_height target_dx = (gt_ctr_x - bbox_ctr_x) / bbox_width target_dy = (gt_ctr_y - bbox_ctr_y) / bbox_height target_dw = F.log(gt_width / bbox_width) target_dh = F.log(gt_height / bbox_height) target = F.stack([target_dx, target_dy, target_dw, target_dh], axis=1) return target def box_overlap_opr(box: Tensor, gt: Tensor) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shape[0], boxes2.shape[0], 4) N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1),(N, K, box.shape[1])) b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1])) # b_gt = F.expand_dims(gt, 0).broadcast_to(N, K, gt.shape[1]) # b_box = F.expand_dims(boxes1, 1).broadcast(*target_shape) # b_gt = F.expand_dims(boxes2, 0).broadcast(*target_shape) iw = F.minimum(b_box[:, :, 2], b_gt[:, :, 2]) - F.maximum( b_box[:, :, 0], b_gt[:, :, 0] ) ih = F.minimum(b_box[:, :, 3], b_gt[:, :, 3]) - F.maximum( b_box[:, :, 1], b_gt[:, :, 1] ) inter = F.maximum(iw, 0) * F.maximum(ih, 0) area_box = F.maximum(box[:, 2] - box[:, 0], 0) * F.maximum(box[:, 3] - box[:, 1], 0) area_gt = F.maximum(gt[:, 2] - gt[:, 0], 0) * F.maximum(gt[:, 3] - gt[:, 1], 0) # area_target_shape = (box.shape[0], gt.shapeof()[0]) b_area_box = F.broadcast_to(F.expand_dims(area_box, 1), (N, K)) b_area_gt = F.broadcast_to(
F.expand_dims(area_gt, 0)
megengine.functional.expand_dims
import math import megengine as mge import megengine.functional as F import numpy as np from megengine import Tensor import pdb def restore_bbox(rois, deltas, unnormalize=True, config = None): assert deltas.ndim == 3 if unnormalize: std_opr = mge.tensor(config.bbox_normalize_stds.reshape(1, 1, -1)) mean_opr = mge.tensor(config.bbox_normalize_means.reshape(1, 1, -1)) deltas = deltas * std_opr deltas = deltas + mean_opr # n = deltas.shape[1] n, c = deltas.shape[0], deltas.shape[1] all_rois = F.broadcast_to(F.expand_dims(rois, 1), (n, c, rois.shape[1])).reshape(-1, rois.shape[1]) deltas = deltas.reshape(-1, deltas.shape[2]) pred_bbox = bbox_transform_inv_opr(all_rois, deltas) pred_bbox = pred_bbox.reshape(-1, c, pred_bbox.shape[1]) return pred_bbox def filter_boxes_opr(boxes, min_size): """Remove all boxes with any side smaller than min_size.""" wh = boxes[:, 2:4] - boxes[:, 0:2] + 1 keep_mask = F.prod(wh >= min_size, axis = 1).astype(np.float32) keep_mask = keep_mask + F.equal(keep_mask.sum(), 0).astype(np.float32) return keep def clip_boxes_opr(boxes, im_info): """ Clip the boxes into the image region.""" w = im_info[1] - 1 h = im_info[0] - 1 boxes[:, 0::4] = boxes[:, 0::4].clamp(min=0, max=w) boxes[:, 1::4] = boxes[:, 1::4].clamp(min=0, max=h) boxes[:, 2::4] = boxes[:, 2::4].clamp(min=0, max=w) boxes[:, 3::4] = boxes[:, 3::4].clamp(min=0, max=h) return boxes def bbox_transform_inv_opr(bbox, deltas): max_delta = math.log(1000.0 / 16) """ Transforms the learned deltas to the final bbox coordinates, the axis is 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height pred_ctr_x = bbox_ctr_x + deltas[:, 0] * bbox_width pred_ctr_y = bbox_ctr_y + deltas[:, 1] * bbox_height dw = deltas[:, 2] dh = deltas[:, 3] dw = F.minimum(dw, max_delta) dh = F.minimum(dh, max_delta) pred_width = bbox_width * F.exp(dw) pred_height = bbox_height * F.exp(dh) pred_x1 = pred_ctr_x - 0.5 * pred_width pred_y1 = pred_ctr_y - 0.5 * pred_height pred_x2 = pred_ctr_x + 0.5 * pred_width pred_y2 = pred_ctr_y + 0.5 * pred_height # pred_boxes = F.concat((pred_x1.reshape(-1, 1), pred_y1.reshape(-1, 1), # pred_x2.reshape(-1, 1), pred_y2.reshape(-1, 1)), axis=1) pred_boxes = F.stack([pred_x1, pred_y1, pred_x2, pred_y2], axis = 1) return pred_boxes def bbox_transform_opr(bbox, gt): """ Transform the bounding box and ground truth to the loss targets. The 4 box coordinates are in axis 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height gt_width = gt[:, 2] - gt[:, 0] + 1 gt_height = gt[:, 3] - gt[:, 1] + 1 gt_ctr_x = gt[:, 0] + 0.5 * gt_width gt_ctr_y = gt[:, 1] + 0.5 * gt_height target_dx = (gt_ctr_x - bbox_ctr_x) / bbox_width target_dy = (gt_ctr_y - bbox_ctr_y) / bbox_height target_dw = F.log(gt_width / bbox_width) target_dh = F.log(gt_height / bbox_height) target = F.stack([target_dx, target_dy, target_dw, target_dh], axis=1) return target def box_overlap_opr(box: Tensor, gt: Tensor) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shape[0], boxes2.shape[0], 4) N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1),(N, K, box.shape[1])) b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1])) # b_gt = F.expand_dims(gt, 0).broadcast_to(N, K, gt.shape[1]) # b_box = F.expand_dims(boxes1, 1).broadcast(*target_shape) # b_gt = F.expand_dims(boxes2, 0).broadcast(*target_shape) iw = F.minimum(b_box[:, :, 2], b_gt[:, :, 2]) - F.maximum( b_box[:, :, 0], b_gt[:, :, 0] ) ih = F.minimum(b_box[:, :, 3], b_gt[:, :, 3]) - F.maximum( b_box[:, :, 1], b_gt[:, :, 1] ) inter = F.maximum(iw, 0) * F.maximum(ih, 0) area_box = F.maximum(box[:, 2] - box[:, 0], 0) * F.maximum(box[:, 3] - box[:, 1], 0) area_gt = F.maximum(gt[:, 2] - gt[:, 0], 0) * F.maximum(gt[:, 3] - gt[:, 1], 0) # area_target_shape = (box.shape[0], gt.shapeof()[0]) b_area_box = F.broadcast_to(F.expand_dims(area_box, 1), (N, K)) b_area_gt = F.broadcast_to(F.expand_dims(area_gt, 0), (N, K)) # b_area_box = F.expand_dims(area_box, 1).broadcast_to(N, K) # b_area_gt = F.expand_dims(area_gt, 0).broadcast_to(N, K) # b_area_box = F.add_axis(area_box, 1).broadcast(*area_target_shape) # b_area_gt = F.add_axis(area_gt, 0).broadcast(*area_target_shape) union = b_area_box + b_area_gt - inter overlaps = F.maximum(inter / union, 0) return overlaps def box_overlap_ignore_opr(box: Tensor, gt: Tensor, ignore_label=-1) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shapeof()[0], boxes2.shapeof()[0], 4) eps = 1e-5 N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(
F.expand_dims(box, 1)
megengine.functional.expand_dims
import math import megengine as mge import megengine.functional as F import numpy as np from megengine import Tensor import pdb def restore_bbox(rois, deltas, unnormalize=True, config = None): assert deltas.ndim == 3 if unnormalize: std_opr = mge.tensor(config.bbox_normalize_stds.reshape(1, 1, -1)) mean_opr = mge.tensor(config.bbox_normalize_means.reshape(1, 1, -1)) deltas = deltas * std_opr deltas = deltas + mean_opr # n = deltas.shape[1] n, c = deltas.shape[0], deltas.shape[1] all_rois = F.broadcast_to(F.expand_dims(rois, 1), (n, c, rois.shape[1])).reshape(-1, rois.shape[1]) deltas = deltas.reshape(-1, deltas.shape[2]) pred_bbox = bbox_transform_inv_opr(all_rois, deltas) pred_bbox = pred_bbox.reshape(-1, c, pred_bbox.shape[1]) return pred_bbox def filter_boxes_opr(boxes, min_size): """Remove all boxes with any side smaller than min_size.""" wh = boxes[:, 2:4] - boxes[:, 0:2] + 1 keep_mask = F.prod(wh >= min_size, axis = 1).astype(np.float32) keep_mask = keep_mask + F.equal(keep_mask.sum(), 0).astype(np.float32) return keep def clip_boxes_opr(boxes, im_info): """ Clip the boxes into the image region.""" w = im_info[1] - 1 h = im_info[0] - 1 boxes[:, 0::4] = boxes[:, 0::4].clamp(min=0, max=w) boxes[:, 1::4] = boxes[:, 1::4].clamp(min=0, max=h) boxes[:, 2::4] = boxes[:, 2::4].clamp(min=0, max=w) boxes[:, 3::4] = boxes[:, 3::4].clamp(min=0, max=h) return boxes def bbox_transform_inv_opr(bbox, deltas): max_delta = math.log(1000.0 / 16) """ Transforms the learned deltas to the final bbox coordinates, the axis is 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height pred_ctr_x = bbox_ctr_x + deltas[:, 0] * bbox_width pred_ctr_y = bbox_ctr_y + deltas[:, 1] * bbox_height dw = deltas[:, 2] dh = deltas[:, 3] dw = F.minimum(dw, max_delta) dh = F.minimum(dh, max_delta) pred_width = bbox_width * F.exp(dw) pred_height = bbox_height * F.exp(dh) pred_x1 = pred_ctr_x - 0.5 * pred_width pred_y1 = pred_ctr_y - 0.5 * pred_height pred_x2 = pred_ctr_x + 0.5 * pred_width pred_y2 = pred_ctr_y + 0.5 * pred_height # pred_boxes = F.concat((pred_x1.reshape(-1, 1), pred_y1.reshape(-1, 1), # pred_x2.reshape(-1, 1), pred_y2.reshape(-1, 1)), axis=1) pred_boxes = F.stack([pred_x1, pred_y1, pred_x2, pred_y2], axis = 1) return pred_boxes def bbox_transform_opr(bbox, gt): """ Transform the bounding box and ground truth to the loss targets. The 4 box coordinates are in axis 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height gt_width = gt[:, 2] - gt[:, 0] + 1 gt_height = gt[:, 3] - gt[:, 1] + 1 gt_ctr_x = gt[:, 0] + 0.5 * gt_width gt_ctr_y = gt[:, 1] + 0.5 * gt_height target_dx = (gt_ctr_x - bbox_ctr_x) / bbox_width target_dy = (gt_ctr_y - bbox_ctr_y) / bbox_height target_dw = F.log(gt_width / bbox_width) target_dh = F.log(gt_height / bbox_height) target = F.stack([target_dx, target_dy, target_dw, target_dh], axis=1) return target def box_overlap_opr(box: Tensor, gt: Tensor) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shape[0], boxes2.shape[0], 4) N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1),(N, K, box.shape[1])) b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1])) # b_gt = F.expand_dims(gt, 0).broadcast_to(N, K, gt.shape[1]) # b_box = F.expand_dims(boxes1, 1).broadcast(*target_shape) # b_gt = F.expand_dims(boxes2, 0).broadcast(*target_shape) iw = F.minimum(b_box[:, :, 2], b_gt[:, :, 2]) - F.maximum( b_box[:, :, 0], b_gt[:, :, 0] ) ih = F.minimum(b_box[:, :, 3], b_gt[:, :, 3]) - F.maximum( b_box[:, :, 1], b_gt[:, :, 1] ) inter = F.maximum(iw, 0) * F.maximum(ih, 0) area_box = F.maximum(box[:, 2] - box[:, 0], 0) * F.maximum(box[:, 3] - box[:, 1], 0) area_gt = F.maximum(gt[:, 2] - gt[:, 0], 0) * F.maximum(gt[:, 3] - gt[:, 1], 0) # area_target_shape = (box.shape[0], gt.shapeof()[0]) b_area_box = F.broadcast_to(F.expand_dims(area_box, 1), (N, K)) b_area_gt = F.broadcast_to(F.expand_dims(area_gt, 0), (N, K)) # b_area_box = F.expand_dims(area_box, 1).broadcast_to(N, K) # b_area_gt = F.expand_dims(area_gt, 0).broadcast_to(N, K) # b_area_box = F.add_axis(area_box, 1).broadcast(*area_target_shape) # b_area_gt = F.add_axis(area_gt, 0).broadcast(*area_target_shape) union = b_area_box + b_area_gt - inter overlaps = F.maximum(inter / union, 0) return overlaps def box_overlap_ignore_opr(box: Tensor, gt: Tensor, ignore_label=-1) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shapeof()[0], boxes2.shapeof()[0], 4) eps = 1e-5 N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1), (N, K, box.shape[1])) b_gt = F.broadcast_to(
F.expand_dims(gt, 0)
megengine.functional.expand_dims
import math import megengine as mge import megengine.functional as F import numpy as np from megengine import Tensor import pdb def restore_bbox(rois, deltas, unnormalize=True, config = None): assert deltas.ndim == 3 if unnormalize: std_opr = mge.tensor(config.bbox_normalize_stds.reshape(1, 1, -1)) mean_opr = mge.tensor(config.bbox_normalize_means.reshape(1, 1, -1)) deltas = deltas * std_opr deltas = deltas + mean_opr # n = deltas.shape[1] n, c = deltas.shape[0], deltas.shape[1] all_rois = F.broadcast_to(F.expand_dims(rois, 1), (n, c, rois.shape[1])).reshape(-1, rois.shape[1]) deltas = deltas.reshape(-1, deltas.shape[2]) pred_bbox = bbox_transform_inv_opr(all_rois, deltas) pred_bbox = pred_bbox.reshape(-1, c, pred_bbox.shape[1]) return pred_bbox def filter_boxes_opr(boxes, min_size): """Remove all boxes with any side smaller than min_size.""" wh = boxes[:, 2:4] - boxes[:, 0:2] + 1 keep_mask = F.prod(wh >= min_size, axis = 1).astype(np.float32) keep_mask = keep_mask + F.equal(keep_mask.sum(), 0).astype(np.float32) return keep def clip_boxes_opr(boxes, im_info): """ Clip the boxes into the image region.""" w = im_info[1] - 1 h = im_info[0] - 1 boxes[:, 0::4] = boxes[:, 0::4].clamp(min=0, max=w) boxes[:, 1::4] = boxes[:, 1::4].clamp(min=0, max=h) boxes[:, 2::4] = boxes[:, 2::4].clamp(min=0, max=w) boxes[:, 3::4] = boxes[:, 3::4].clamp(min=0, max=h) return boxes def bbox_transform_inv_opr(bbox, deltas): max_delta = math.log(1000.0 / 16) """ Transforms the learned deltas to the final bbox coordinates, the axis is 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height pred_ctr_x = bbox_ctr_x + deltas[:, 0] * bbox_width pred_ctr_y = bbox_ctr_y + deltas[:, 1] * bbox_height dw = deltas[:, 2] dh = deltas[:, 3] dw = F.minimum(dw, max_delta) dh = F.minimum(dh, max_delta) pred_width = bbox_width * F.exp(dw) pred_height = bbox_height * F.exp(dh) pred_x1 = pred_ctr_x - 0.5 * pred_width pred_y1 = pred_ctr_y - 0.5 * pred_height pred_x2 = pred_ctr_x + 0.5 * pred_width pred_y2 = pred_ctr_y + 0.5 * pred_height # pred_boxes = F.concat((pred_x1.reshape(-1, 1), pred_y1.reshape(-1, 1), # pred_x2.reshape(-1, 1), pred_y2.reshape(-1, 1)), axis=1) pred_boxes = F.stack([pred_x1, pred_y1, pred_x2, pred_y2], axis = 1) return pred_boxes def bbox_transform_opr(bbox, gt): """ Transform the bounding box and ground truth to the loss targets. The 4 box coordinates are in axis 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height gt_width = gt[:, 2] - gt[:, 0] + 1 gt_height = gt[:, 3] - gt[:, 1] + 1 gt_ctr_x = gt[:, 0] + 0.5 * gt_width gt_ctr_y = gt[:, 1] + 0.5 * gt_height target_dx = (gt_ctr_x - bbox_ctr_x) / bbox_width target_dy = (gt_ctr_y - bbox_ctr_y) / bbox_height target_dw = F.log(gt_width / bbox_width) target_dh = F.log(gt_height / bbox_height) target = F.stack([target_dx, target_dy, target_dw, target_dh], axis=1) return target def box_overlap_opr(box: Tensor, gt: Tensor) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shape[0], boxes2.shape[0], 4) N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1),(N, K, box.shape[1])) b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1])) # b_gt = F.expand_dims(gt, 0).broadcast_to(N, K, gt.shape[1]) # b_box = F.expand_dims(boxes1, 1).broadcast(*target_shape) # b_gt = F.expand_dims(boxes2, 0).broadcast(*target_shape) iw = F.minimum(b_box[:, :, 2], b_gt[:, :, 2]) - F.maximum( b_box[:, :, 0], b_gt[:, :, 0] ) ih = F.minimum(b_box[:, :, 3], b_gt[:, :, 3]) - F.maximum( b_box[:, :, 1], b_gt[:, :, 1] ) inter = F.maximum(iw, 0) * F.maximum(ih, 0) area_box = F.maximum(box[:, 2] - box[:, 0], 0) * F.maximum(box[:, 3] - box[:, 1], 0) area_gt = F.maximum(gt[:, 2] - gt[:, 0], 0) * F.maximum(gt[:, 3] - gt[:, 1], 0) # area_target_shape = (box.shape[0], gt.shapeof()[0]) b_area_box = F.broadcast_to(F.expand_dims(area_box, 1), (N, K)) b_area_gt = F.broadcast_to(F.expand_dims(area_gt, 0), (N, K)) # b_area_box = F.expand_dims(area_box, 1).broadcast_to(N, K) # b_area_gt = F.expand_dims(area_gt, 0).broadcast_to(N, K) # b_area_box = F.add_axis(area_box, 1).broadcast(*area_target_shape) # b_area_gt = F.add_axis(area_gt, 0).broadcast(*area_target_shape) union = b_area_box + b_area_gt - inter overlaps = F.maximum(inter / union, 0) return overlaps def box_overlap_ignore_opr(box: Tensor, gt: Tensor, ignore_label=-1) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shapeof()[0], boxes2.shapeof()[0], 4) eps = 1e-5 N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1), (N, K, box.shape[1])) b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1])) # b_box = F.add_axis(boxes1, 1).broadcast(*target_shape) # b_gt = F.add_axis(boxes2[:, :4], 0).broadcast(*target_shape) iw =
F.minimum(b_box[:, :, 2], b_gt[:, :, 2])
megengine.functional.minimum
import math import megengine as mge import megengine.functional as F import numpy as np from megengine import Tensor import pdb def restore_bbox(rois, deltas, unnormalize=True, config = None): assert deltas.ndim == 3 if unnormalize: std_opr = mge.tensor(config.bbox_normalize_stds.reshape(1, 1, -1)) mean_opr = mge.tensor(config.bbox_normalize_means.reshape(1, 1, -1)) deltas = deltas * std_opr deltas = deltas + mean_opr # n = deltas.shape[1] n, c = deltas.shape[0], deltas.shape[1] all_rois = F.broadcast_to(F.expand_dims(rois, 1), (n, c, rois.shape[1])).reshape(-1, rois.shape[1]) deltas = deltas.reshape(-1, deltas.shape[2]) pred_bbox = bbox_transform_inv_opr(all_rois, deltas) pred_bbox = pred_bbox.reshape(-1, c, pred_bbox.shape[1]) return pred_bbox def filter_boxes_opr(boxes, min_size): """Remove all boxes with any side smaller than min_size.""" wh = boxes[:, 2:4] - boxes[:, 0:2] + 1 keep_mask = F.prod(wh >= min_size, axis = 1).astype(np.float32) keep_mask = keep_mask + F.equal(keep_mask.sum(), 0).astype(np.float32) return keep def clip_boxes_opr(boxes, im_info): """ Clip the boxes into the image region.""" w = im_info[1] - 1 h = im_info[0] - 1 boxes[:, 0::4] = boxes[:, 0::4].clamp(min=0, max=w) boxes[:, 1::4] = boxes[:, 1::4].clamp(min=0, max=h) boxes[:, 2::4] = boxes[:, 2::4].clamp(min=0, max=w) boxes[:, 3::4] = boxes[:, 3::4].clamp(min=0, max=h) return boxes def bbox_transform_inv_opr(bbox, deltas): max_delta = math.log(1000.0 / 16) """ Transforms the learned deltas to the final bbox coordinates, the axis is 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height pred_ctr_x = bbox_ctr_x + deltas[:, 0] * bbox_width pred_ctr_y = bbox_ctr_y + deltas[:, 1] * bbox_height dw = deltas[:, 2] dh = deltas[:, 3] dw = F.minimum(dw, max_delta) dh = F.minimum(dh, max_delta) pred_width = bbox_width * F.exp(dw) pred_height = bbox_height * F.exp(dh) pred_x1 = pred_ctr_x - 0.5 * pred_width pred_y1 = pred_ctr_y - 0.5 * pred_height pred_x2 = pred_ctr_x + 0.5 * pred_width pred_y2 = pred_ctr_y + 0.5 * pred_height # pred_boxes = F.concat((pred_x1.reshape(-1, 1), pred_y1.reshape(-1, 1), # pred_x2.reshape(-1, 1), pred_y2.reshape(-1, 1)), axis=1) pred_boxes = F.stack([pred_x1, pred_y1, pred_x2, pred_y2], axis = 1) return pred_boxes def bbox_transform_opr(bbox, gt): """ Transform the bounding box and ground truth to the loss targets. The 4 box coordinates are in axis 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height gt_width = gt[:, 2] - gt[:, 0] + 1 gt_height = gt[:, 3] - gt[:, 1] + 1 gt_ctr_x = gt[:, 0] + 0.5 * gt_width gt_ctr_y = gt[:, 1] + 0.5 * gt_height target_dx = (gt_ctr_x - bbox_ctr_x) / bbox_width target_dy = (gt_ctr_y - bbox_ctr_y) / bbox_height target_dw = F.log(gt_width / bbox_width) target_dh = F.log(gt_height / bbox_height) target = F.stack([target_dx, target_dy, target_dw, target_dh], axis=1) return target def box_overlap_opr(box: Tensor, gt: Tensor) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shape[0], boxes2.shape[0], 4) N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1),(N, K, box.shape[1])) b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1])) # b_gt = F.expand_dims(gt, 0).broadcast_to(N, K, gt.shape[1]) # b_box = F.expand_dims(boxes1, 1).broadcast(*target_shape) # b_gt = F.expand_dims(boxes2, 0).broadcast(*target_shape) iw = F.minimum(b_box[:, :, 2], b_gt[:, :, 2]) - F.maximum( b_box[:, :, 0], b_gt[:, :, 0] ) ih = F.minimum(b_box[:, :, 3], b_gt[:, :, 3]) - F.maximum( b_box[:, :, 1], b_gt[:, :, 1] ) inter = F.maximum(iw, 0) * F.maximum(ih, 0) area_box = F.maximum(box[:, 2] - box[:, 0], 0) * F.maximum(box[:, 3] - box[:, 1], 0) area_gt = F.maximum(gt[:, 2] - gt[:, 0], 0) * F.maximum(gt[:, 3] - gt[:, 1], 0) # area_target_shape = (box.shape[0], gt.shapeof()[0]) b_area_box = F.broadcast_to(F.expand_dims(area_box, 1), (N, K)) b_area_gt = F.broadcast_to(F.expand_dims(area_gt, 0), (N, K)) # b_area_box = F.expand_dims(area_box, 1).broadcast_to(N, K) # b_area_gt = F.expand_dims(area_gt, 0).broadcast_to(N, K) # b_area_box = F.add_axis(area_box, 1).broadcast(*area_target_shape) # b_area_gt = F.add_axis(area_gt, 0).broadcast(*area_target_shape) union = b_area_box + b_area_gt - inter overlaps = F.maximum(inter / union, 0) return overlaps def box_overlap_ignore_opr(box: Tensor, gt: Tensor, ignore_label=-1) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shapeof()[0], boxes2.shapeof()[0], 4) eps = 1e-5 N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1), (N, K, box.shape[1])) b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1])) # b_box = F.add_axis(boxes1, 1).broadcast(*target_shape) # b_gt = F.add_axis(boxes2[:, :4], 0).broadcast(*target_shape) iw = F.minimum(b_box[:, :, 2], b_gt[:, :, 2]) - F.maximum( b_box[:, :, 0], b_gt[:, :, 0] ) ih =
F.minimum(b_box[:, :, 3], b_gt[:, :, 3])
megengine.functional.minimum
import math import megengine as mge import megengine.functional as F import numpy as np from megengine import Tensor import pdb def restore_bbox(rois, deltas, unnormalize=True, config = None): assert deltas.ndim == 3 if unnormalize: std_opr = mge.tensor(config.bbox_normalize_stds.reshape(1, 1, -1)) mean_opr = mge.tensor(config.bbox_normalize_means.reshape(1, 1, -1)) deltas = deltas * std_opr deltas = deltas + mean_opr # n = deltas.shape[1] n, c = deltas.shape[0], deltas.shape[1] all_rois = F.broadcast_to(F.expand_dims(rois, 1), (n, c, rois.shape[1])).reshape(-1, rois.shape[1]) deltas = deltas.reshape(-1, deltas.shape[2]) pred_bbox = bbox_transform_inv_opr(all_rois, deltas) pred_bbox = pred_bbox.reshape(-1, c, pred_bbox.shape[1]) return pred_bbox def filter_boxes_opr(boxes, min_size): """Remove all boxes with any side smaller than min_size.""" wh = boxes[:, 2:4] - boxes[:, 0:2] + 1 keep_mask = F.prod(wh >= min_size, axis = 1).astype(np.float32) keep_mask = keep_mask + F.equal(keep_mask.sum(), 0).astype(np.float32) return keep def clip_boxes_opr(boxes, im_info): """ Clip the boxes into the image region.""" w = im_info[1] - 1 h = im_info[0] - 1 boxes[:, 0::4] = boxes[:, 0::4].clamp(min=0, max=w) boxes[:, 1::4] = boxes[:, 1::4].clamp(min=0, max=h) boxes[:, 2::4] = boxes[:, 2::4].clamp(min=0, max=w) boxes[:, 3::4] = boxes[:, 3::4].clamp(min=0, max=h) return boxes def bbox_transform_inv_opr(bbox, deltas): max_delta = math.log(1000.0 / 16) """ Transforms the learned deltas to the final bbox coordinates, the axis is 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height pred_ctr_x = bbox_ctr_x + deltas[:, 0] * bbox_width pred_ctr_y = bbox_ctr_y + deltas[:, 1] * bbox_height dw = deltas[:, 2] dh = deltas[:, 3] dw = F.minimum(dw, max_delta) dh = F.minimum(dh, max_delta) pred_width = bbox_width * F.exp(dw) pred_height = bbox_height * F.exp(dh) pred_x1 = pred_ctr_x - 0.5 * pred_width pred_y1 = pred_ctr_y - 0.5 * pred_height pred_x2 = pred_ctr_x + 0.5 * pred_width pred_y2 = pred_ctr_y + 0.5 * pred_height # pred_boxes = F.concat((pred_x1.reshape(-1, 1), pred_y1.reshape(-1, 1), # pred_x2.reshape(-1, 1), pred_y2.reshape(-1, 1)), axis=1) pred_boxes = F.stack([pred_x1, pred_y1, pred_x2, pred_y2], axis = 1) return pred_boxes def bbox_transform_opr(bbox, gt): """ Transform the bounding box and ground truth to the loss targets. The 4 box coordinates are in axis 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height gt_width = gt[:, 2] - gt[:, 0] + 1 gt_height = gt[:, 3] - gt[:, 1] + 1 gt_ctr_x = gt[:, 0] + 0.5 * gt_width gt_ctr_y = gt[:, 1] + 0.5 * gt_height target_dx = (gt_ctr_x - bbox_ctr_x) / bbox_width target_dy = (gt_ctr_y - bbox_ctr_y) / bbox_height target_dw = F.log(gt_width / bbox_width) target_dh = F.log(gt_height / bbox_height) target = F.stack([target_dx, target_dy, target_dw, target_dh], axis=1) return target def box_overlap_opr(box: Tensor, gt: Tensor) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shape[0], boxes2.shape[0], 4) N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1),(N, K, box.shape[1])) b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1])) # b_gt = F.expand_dims(gt, 0).broadcast_to(N, K, gt.shape[1]) # b_box = F.expand_dims(boxes1, 1).broadcast(*target_shape) # b_gt = F.expand_dims(boxes2, 0).broadcast(*target_shape) iw = F.minimum(b_box[:, :, 2], b_gt[:, :, 2]) - F.maximum( b_box[:, :, 0], b_gt[:, :, 0] ) ih = F.minimum(b_box[:, :, 3], b_gt[:, :, 3]) - F.maximum( b_box[:, :, 1], b_gt[:, :, 1] ) inter = F.maximum(iw, 0) * F.maximum(ih, 0) area_box = F.maximum(box[:, 2] - box[:, 0], 0) * F.maximum(box[:, 3] - box[:, 1], 0) area_gt = F.maximum(gt[:, 2] - gt[:, 0], 0) * F.maximum(gt[:, 3] - gt[:, 1], 0) # area_target_shape = (box.shape[0], gt.shapeof()[0]) b_area_box = F.broadcast_to(F.expand_dims(area_box, 1), (N, K)) b_area_gt = F.broadcast_to(F.expand_dims(area_gt, 0), (N, K)) # b_area_box = F.expand_dims(area_box, 1).broadcast_to(N, K) # b_area_gt = F.expand_dims(area_gt, 0).broadcast_to(N, K) # b_area_box = F.add_axis(area_box, 1).broadcast(*area_target_shape) # b_area_gt = F.add_axis(area_gt, 0).broadcast(*area_target_shape) union = b_area_box + b_area_gt - inter overlaps = F.maximum(inter / union, 0) return overlaps def box_overlap_ignore_opr(box: Tensor, gt: Tensor, ignore_label=-1) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shapeof()[0], boxes2.shapeof()[0], 4) eps = 1e-5 N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1), (N, K, box.shape[1])) b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1])) # b_box = F.add_axis(boxes1, 1).broadcast(*target_shape) # b_gt = F.add_axis(boxes2[:, :4], 0).broadcast(*target_shape) iw = F.minimum(b_box[:, :, 2], b_gt[:, :, 2]) - F.maximum( b_box[:, :, 0], b_gt[:, :, 0] ) ih = F.minimum(b_box[:, :, 3], b_gt[:, :, 3]) - F.maximum( b_box[:, :, 1], b_gt[:, :, 1] ) inter =
F.maximum(iw, 0)
megengine.functional.maximum
import math import megengine as mge import megengine.functional as F import numpy as np from megengine import Tensor import pdb def restore_bbox(rois, deltas, unnormalize=True, config = None): assert deltas.ndim == 3 if unnormalize: std_opr = mge.tensor(config.bbox_normalize_stds.reshape(1, 1, -1)) mean_opr = mge.tensor(config.bbox_normalize_means.reshape(1, 1, -1)) deltas = deltas * std_opr deltas = deltas + mean_opr # n = deltas.shape[1] n, c = deltas.shape[0], deltas.shape[1] all_rois = F.broadcast_to(F.expand_dims(rois, 1), (n, c, rois.shape[1])).reshape(-1, rois.shape[1]) deltas = deltas.reshape(-1, deltas.shape[2]) pred_bbox = bbox_transform_inv_opr(all_rois, deltas) pred_bbox = pred_bbox.reshape(-1, c, pred_bbox.shape[1]) return pred_bbox def filter_boxes_opr(boxes, min_size): """Remove all boxes with any side smaller than min_size.""" wh = boxes[:, 2:4] - boxes[:, 0:2] + 1 keep_mask = F.prod(wh >= min_size, axis = 1).astype(np.float32) keep_mask = keep_mask + F.equal(keep_mask.sum(), 0).astype(np.float32) return keep def clip_boxes_opr(boxes, im_info): """ Clip the boxes into the image region.""" w = im_info[1] - 1 h = im_info[0] - 1 boxes[:, 0::4] = boxes[:, 0::4].clamp(min=0, max=w) boxes[:, 1::4] = boxes[:, 1::4].clamp(min=0, max=h) boxes[:, 2::4] = boxes[:, 2::4].clamp(min=0, max=w) boxes[:, 3::4] = boxes[:, 3::4].clamp(min=0, max=h) return boxes def bbox_transform_inv_opr(bbox, deltas): max_delta = math.log(1000.0 / 16) """ Transforms the learned deltas to the final bbox coordinates, the axis is 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height pred_ctr_x = bbox_ctr_x + deltas[:, 0] * bbox_width pred_ctr_y = bbox_ctr_y + deltas[:, 1] * bbox_height dw = deltas[:, 2] dh = deltas[:, 3] dw = F.minimum(dw, max_delta) dh = F.minimum(dh, max_delta) pred_width = bbox_width * F.exp(dw) pred_height = bbox_height * F.exp(dh) pred_x1 = pred_ctr_x - 0.5 * pred_width pred_y1 = pred_ctr_y - 0.5 * pred_height pred_x2 = pred_ctr_x + 0.5 * pred_width pred_y2 = pred_ctr_y + 0.5 * pred_height # pred_boxes = F.concat((pred_x1.reshape(-1, 1), pred_y1.reshape(-1, 1), # pred_x2.reshape(-1, 1), pred_y2.reshape(-1, 1)), axis=1) pred_boxes = F.stack([pred_x1, pred_y1, pred_x2, pred_y2], axis = 1) return pred_boxes def bbox_transform_opr(bbox, gt): """ Transform the bounding box and ground truth to the loss targets. The 4 box coordinates are in axis 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height gt_width = gt[:, 2] - gt[:, 0] + 1 gt_height = gt[:, 3] - gt[:, 1] + 1 gt_ctr_x = gt[:, 0] + 0.5 * gt_width gt_ctr_y = gt[:, 1] + 0.5 * gt_height target_dx = (gt_ctr_x - bbox_ctr_x) / bbox_width target_dy = (gt_ctr_y - bbox_ctr_y) / bbox_height target_dw = F.log(gt_width / bbox_width) target_dh = F.log(gt_height / bbox_height) target = F.stack([target_dx, target_dy, target_dw, target_dh], axis=1) return target def box_overlap_opr(box: Tensor, gt: Tensor) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shape[0], boxes2.shape[0], 4) N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1),(N, K, box.shape[1])) b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1])) # b_gt = F.expand_dims(gt, 0).broadcast_to(N, K, gt.shape[1]) # b_box = F.expand_dims(boxes1, 1).broadcast(*target_shape) # b_gt = F.expand_dims(boxes2, 0).broadcast(*target_shape) iw = F.minimum(b_box[:, :, 2], b_gt[:, :, 2]) - F.maximum( b_box[:, :, 0], b_gt[:, :, 0] ) ih = F.minimum(b_box[:, :, 3], b_gt[:, :, 3]) - F.maximum( b_box[:, :, 1], b_gt[:, :, 1] ) inter = F.maximum(iw, 0) * F.maximum(ih, 0) area_box = F.maximum(box[:, 2] - box[:, 0], 0) * F.maximum(box[:, 3] - box[:, 1], 0) area_gt = F.maximum(gt[:, 2] - gt[:, 0], 0) * F.maximum(gt[:, 3] - gt[:, 1], 0) # area_target_shape = (box.shape[0], gt.shapeof()[0]) b_area_box = F.broadcast_to(F.expand_dims(area_box, 1), (N, K)) b_area_gt = F.broadcast_to(F.expand_dims(area_gt, 0), (N, K)) # b_area_box = F.expand_dims(area_box, 1).broadcast_to(N, K) # b_area_gt = F.expand_dims(area_gt, 0).broadcast_to(N, K) # b_area_box = F.add_axis(area_box, 1).broadcast(*area_target_shape) # b_area_gt = F.add_axis(area_gt, 0).broadcast(*area_target_shape) union = b_area_box + b_area_gt - inter overlaps = F.maximum(inter / union, 0) return overlaps def box_overlap_ignore_opr(box: Tensor, gt: Tensor, ignore_label=-1) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shapeof()[0], boxes2.shapeof()[0], 4) eps = 1e-5 N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1), (N, K, box.shape[1])) b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1])) # b_box = F.add_axis(boxes1, 1).broadcast(*target_shape) # b_gt = F.add_axis(boxes2[:, :4], 0).broadcast(*target_shape) iw = F.minimum(b_box[:, :, 2], b_gt[:, :, 2]) - F.maximum( b_box[:, :, 0], b_gt[:, :, 0] ) ih = F.minimum(b_box[:, :, 3], b_gt[:, :, 3]) - F.maximum( b_box[:, :, 1], b_gt[:, :, 1] ) inter = F.maximum(iw, 0) *
F.maximum(ih, 0)
megengine.functional.maximum
import math import megengine as mge import megengine.functional as F import numpy as np from megengine import Tensor import pdb def restore_bbox(rois, deltas, unnormalize=True, config = None): assert deltas.ndim == 3 if unnormalize: std_opr = mge.tensor(config.bbox_normalize_stds.reshape(1, 1, -1)) mean_opr = mge.tensor(config.bbox_normalize_means.reshape(1, 1, -1)) deltas = deltas * std_opr deltas = deltas + mean_opr # n = deltas.shape[1] n, c = deltas.shape[0], deltas.shape[1] all_rois = F.broadcast_to(F.expand_dims(rois, 1), (n, c, rois.shape[1])).reshape(-1, rois.shape[1]) deltas = deltas.reshape(-1, deltas.shape[2]) pred_bbox = bbox_transform_inv_opr(all_rois, deltas) pred_bbox = pred_bbox.reshape(-1, c, pred_bbox.shape[1]) return pred_bbox def filter_boxes_opr(boxes, min_size): """Remove all boxes with any side smaller than min_size.""" wh = boxes[:, 2:4] - boxes[:, 0:2] + 1 keep_mask = F.prod(wh >= min_size, axis = 1).astype(np.float32) keep_mask = keep_mask + F.equal(keep_mask.sum(), 0).astype(np.float32) return keep def clip_boxes_opr(boxes, im_info): """ Clip the boxes into the image region.""" w = im_info[1] - 1 h = im_info[0] - 1 boxes[:, 0::4] = boxes[:, 0::4].clamp(min=0, max=w) boxes[:, 1::4] = boxes[:, 1::4].clamp(min=0, max=h) boxes[:, 2::4] = boxes[:, 2::4].clamp(min=0, max=w) boxes[:, 3::4] = boxes[:, 3::4].clamp(min=0, max=h) return boxes def bbox_transform_inv_opr(bbox, deltas): max_delta = math.log(1000.0 / 16) """ Transforms the learned deltas to the final bbox coordinates, the axis is 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height pred_ctr_x = bbox_ctr_x + deltas[:, 0] * bbox_width pred_ctr_y = bbox_ctr_y + deltas[:, 1] * bbox_height dw = deltas[:, 2] dh = deltas[:, 3] dw = F.minimum(dw, max_delta) dh = F.minimum(dh, max_delta) pred_width = bbox_width * F.exp(dw) pred_height = bbox_height * F.exp(dh) pred_x1 = pred_ctr_x - 0.5 * pred_width pred_y1 = pred_ctr_y - 0.5 * pred_height pred_x2 = pred_ctr_x + 0.5 * pred_width pred_y2 = pred_ctr_y + 0.5 * pred_height # pred_boxes = F.concat((pred_x1.reshape(-1, 1), pred_y1.reshape(-1, 1), # pred_x2.reshape(-1, 1), pred_y2.reshape(-1, 1)), axis=1) pred_boxes = F.stack([pred_x1, pred_y1, pred_x2, pred_y2], axis = 1) return pred_boxes def bbox_transform_opr(bbox, gt): """ Transform the bounding box and ground truth to the loss targets. The 4 box coordinates are in axis 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height gt_width = gt[:, 2] - gt[:, 0] + 1 gt_height = gt[:, 3] - gt[:, 1] + 1 gt_ctr_x = gt[:, 0] + 0.5 * gt_width gt_ctr_y = gt[:, 1] + 0.5 * gt_height target_dx = (gt_ctr_x - bbox_ctr_x) / bbox_width target_dy = (gt_ctr_y - bbox_ctr_y) / bbox_height target_dw = F.log(gt_width / bbox_width) target_dh = F.log(gt_height / bbox_height) target = F.stack([target_dx, target_dy, target_dw, target_dh], axis=1) return target def box_overlap_opr(box: Tensor, gt: Tensor) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shape[0], boxes2.shape[0], 4) N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1),(N, K, box.shape[1])) b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1])) # b_gt = F.expand_dims(gt, 0).broadcast_to(N, K, gt.shape[1]) # b_box = F.expand_dims(boxes1, 1).broadcast(*target_shape) # b_gt = F.expand_dims(boxes2, 0).broadcast(*target_shape) iw = F.minimum(b_box[:, :, 2], b_gt[:, :, 2]) - F.maximum( b_box[:, :, 0], b_gt[:, :, 0] ) ih = F.minimum(b_box[:, :, 3], b_gt[:, :, 3]) - F.maximum( b_box[:, :, 1], b_gt[:, :, 1] ) inter = F.maximum(iw, 0) * F.maximum(ih, 0) area_box = F.maximum(box[:, 2] - box[:, 0], 0) * F.maximum(box[:, 3] - box[:, 1], 0) area_gt = F.maximum(gt[:, 2] - gt[:, 0], 0) * F.maximum(gt[:, 3] - gt[:, 1], 0) # area_target_shape = (box.shape[0], gt.shapeof()[0]) b_area_box = F.broadcast_to(F.expand_dims(area_box, 1), (N, K)) b_area_gt = F.broadcast_to(F.expand_dims(area_gt, 0), (N, K)) # b_area_box = F.expand_dims(area_box, 1).broadcast_to(N, K) # b_area_gt = F.expand_dims(area_gt, 0).broadcast_to(N, K) # b_area_box = F.add_axis(area_box, 1).broadcast(*area_target_shape) # b_area_gt = F.add_axis(area_gt, 0).broadcast(*area_target_shape) union = b_area_box + b_area_gt - inter overlaps = F.maximum(inter / union, 0) return overlaps def box_overlap_ignore_opr(box: Tensor, gt: Tensor, ignore_label=-1) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shapeof()[0], boxes2.shapeof()[0], 4) eps = 1e-5 N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1), (N, K, box.shape[1])) b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1])) # b_box = F.add_axis(boxes1, 1).broadcast(*target_shape) # b_gt = F.add_axis(boxes2[:, :4], 0).broadcast(*target_shape) iw = F.minimum(b_box[:, :, 2], b_gt[:, :, 2]) - F.maximum( b_box[:, :, 0], b_gt[:, :, 0] ) ih = F.minimum(b_box[:, :, 3], b_gt[:, :, 3]) - F.maximum( b_box[:, :, 1], b_gt[:, :, 1] ) inter = F.maximum(iw, 0) * F.maximum(ih, 0) area_box =
F.maximum(box[:, 2] - box[:, 0], 0)
megengine.functional.maximum
import math import megengine as mge import megengine.functional as F import numpy as np from megengine import Tensor import pdb def restore_bbox(rois, deltas, unnormalize=True, config = None): assert deltas.ndim == 3 if unnormalize: std_opr = mge.tensor(config.bbox_normalize_stds.reshape(1, 1, -1)) mean_opr = mge.tensor(config.bbox_normalize_means.reshape(1, 1, -1)) deltas = deltas * std_opr deltas = deltas + mean_opr # n = deltas.shape[1] n, c = deltas.shape[0], deltas.shape[1] all_rois = F.broadcast_to(F.expand_dims(rois, 1), (n, c, rois.shape[1])).reshape(-1, rois.shape[1]) deltas = deltas.reshape(-1, deltas.shape[2]) pred_bbox = bbox_transform_inv_opr(all_rois, deltas) pred_bbox = pred_bbox.reshape(-1, c, pred_bbox.shape[1]) return pred_bbox def filter_boxes_opr(boxes, min_size): """Remove all boxes with any side smaller than min_size.""" wh = boxes[:, 2:4] - boxes[:, 0:2] + 1 keep_mask = F.prod(wh >= min_size, axis = 1).astype(np.float32) keep_mask = keep_mask + F.equal(keep_mask.sum(), 0).astype(np.float32) return keep def clip_boxes_opr(boxes, im_info): """ Clip the boxes into the image region.""" w = im_info[1] - 1 h = im_info[0] - 1 boxes[:, 0::4] = boxes[:, 0::4].clamp(min=0, max=w) boxes[:, 1::4] = boxes[:, 1::4].clamp(min=0, max=h) boxes[:, 2::4] = boxes[:, 2::4].clamp(min=0, max=w) boxes[:, 3::4] = boxes[:, 3::4].clamp(min=0, max=h) return boxes def bbox_transform_inv_opr(bbox, deltas): max_delta = math.log(1000.0 / 16) """ Transforms the learned deltas to the final bbox coordinates, the axis is 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height pred_ctr_x = bbox_ctr_x + deltas[:, 0] * bbox_width pred_ctr_y = bbox_ctr_y + deltas[:, 1] * bbox_height dw = deltas[:, 2] dh = deltas[:, 3] dw = F.minimum(dw, max_delta) dh = F.minimum(dh, max_delta) pred_width = bbox_width * F.exp(dw) pred_height = bbox_height * F.exp(dh) pred_x1 = pred_ctr_x - 0.5 * pred_width pred_y1 = pred_ctr_y - 0.5 * pred_height pred_x2 = pred_ctr_x + 0.5 * pred_width pred_y2 = pred_ctr_y + 0.5 * pred_height # pred_boxes = F.concat((pred_x1.reshape(-1, 1), pred_y1.reshape(-1, 1), # pred_x2.reshape(-1, 1), pred_y2.reshape(-1, 1)), axis=1) pred_boxes = F.stack([pred_x1, pred_y1, pred_x2, pred_y2], axis = 1) return pred_boxes def bbox_transform_opr(bbox, gt): """ Transform the bounding box and ground truth to the loss targets. The 4 box coordinates are in axis 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height gt_width = gt[:, 2] - gt[:, 0] + 1 gt_height = gt[:, 3] - gt[:, 1] + 1 gt_ctr_x = gt[:, 0] + 0.5 * gt_width gt_ctr_y = gt[:, 1] + 0.5 * gt_height target_dx = (gt_ctr_x - bbox_ctr_x) / bbox_width target_dy = (gt_ctr_y - bbox_ctr_y) / bbox_height target_dw = F.log(gt_width / bbox_width) target_dh = F.log(gt_height / bbox_height) target = F.stack([target_dx, target_dy, target_dw, target_dh], axis=1) return target def box_overlap_opr(box: Tensor, gt: Tensor) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shape[0], boxes2.shape[0], 4) N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1),(N, K, box.shape[1])) b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1])) # b_gt = F.expand_dims(gt, 0).broadcast_to(N, K, gt.shape[1]) # b_box = F.expand_dims(boxes1, 1).broadcast(*target_shape) # b_gt = F.expand_dims(boxes2, 0).broadcast(*target_shape) iw = F.minimum(b_box[:, :, 2], b_gt[:, :, 2]) - F.maximum( b_box[:, :, 0], b_gt[:, :, 0] ) ih = F.minimum(b_box[:, :, 3], b_gt[:, :, 3]) - F.maximum( b_box[:, :, 1], b_gt[:, :, 1] ) inter = F.maximum(iw, 0) * F.maximum(ih, 0) area_box = F.maximum(box[:, 2] - box[:, 0], 0) * F.maximum(box[:, 3] - box[:, 1], 0) area_gt = F.maximum(gt[:, 2] - gt[:, 0], 0) * F.maximum(gt[:, 3] - gt[:, 1], 0) # area_target_shape = (box.shape[0], gt.shapeof()[0]) b_area_box = F.broadcast_to(F.expand_dims(area_box, 1), (N, K)) b_area_gt = F.broadcast_to(F.expand_dims(area_gt, 0), (N, K)) # b_area_box = F.expand_dims(area_box, 1).broadcast_to(N, K) # b_area_gt = F.expand_dims(area_gt, 0).broadcast_to(N, K) # b_area_box = F.add_axis(area_box, 1).broadcast(*area_target_shape) # b_area_gt = F.add_axis(area_gt, 0).broadcast(*area_target_shape) union = b_area_box + b_area_gt - inter overlaps = F.maximum(inter / union, 0) return overlaps def box_overlap_ignore_opr(box: Tensor, gt: Tensor, ignore_label=-1) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shapeof()[0], boxes2.shapeof()[0], 4) eps = 1e-5 N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1), (N, K, box.shape[1])) b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1])) # b_box = F.add_axis(boxes1, 1).broadcast(*target_shape) # b_gt = F.add_axis(boxes2[:, :4], 0).broadcast(*target_shape) iw = F.minimum(b_box[:, :, 2], b_gt[:, :, 2]) - F.maximum( b_box[:, :, 0], b_gt[:, :, 0] ) ih = F.minimum(b_box[:, :, 3], b_gt[:, :, 3]) - F.maximum( b_box[:, :, 1], b_gt[:, :, 1] ) inter = F.maximum(iw, 0) * F.maximum(ih, 0) area_box = F.maximum(box[:, 2] - box[:, 0], 0) *
F.maximum(box[:, 3] - box[:, 1], 0)
megengine.functional.maximum
import math import megengine as mge import megengine.functional as F import numpy as np from megengine import Tensor import pdb def restore_bbox(rois, deltas, unnormalize=True, config = None): assert deltas.ndim == 3 if unnormalize: std_opr = mge.tensor(config.bbox_normalize_stds.reshape(1, 1, -1)) mean_opr = mge.tensor(config.bbox_normalize_means.reshape(1, 1, -1)) deltas = deltas * std_opr deltas = deltas + mean_opr # n = deltas.shape[1] n, c = deltas.shape[0], deltas.shape[1] all_rois = F.broadcast_to(F.expand_dims(rois, 1), (n, c, rois.shape[1])).reshape(-1, rois.shape[1]) deltas = deltas.reshape(-1, deltas.shape[2]) pred_bbox = bbox_transform_inv_opr(all_rois, deltas) pred_bbox = pred_bbox.reshape(-1, c, pred_bbox.shape[1]) return pred_bbox def filter_boxes_opr(boxes, min_size): """Remove all boxes with any side smaller than min_size.""" wh = boxes[:, 2:4] - boxes[:, 0:2] + 1 keep_mask = F.prod(wh >= min_size, axis = 1).astype(np.float32) keep_mask = keep_mask + F.equal(keep_mask.sum(), 0).astype(np.float32) return keep def clip_boxes_opr(boxes, im_info): """ Clip the boxes into the image region.""" w = im_info[1] - 1 h = im_info[0] - 1 boxes[:, 0::4] = boxes[:, 0::4].clamp(min=0, max=w) boxes[:, 1::4] = boxes[:, 1::4].clamp(min=0, max=h) boxes[:, 2::4] = boxes[:, 2::4].clamp(min=0, max=w) boxes[:, 3::4] = boxes[:, 3::4].clamp(min=0, max=h) return boxes def bbox_transform_inv_opr(bbox, deltas): max_delta = math.log(1000.0 / 16) """ Transforms the learned deltas to the final bbox coordinates, the axis is 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height pred_ctr_x = bbox_ctr_x + deltas[:, 0] * bbox_width pred_ctr_y = bbox_ctr_y + deltas[:, 1] * bbox_height dw = deltas[:, 2] dh = deltas[:, 3] dw = F.minimum(dw, max_delta) dh = F.minimum(dh, max_delta) pred_width = bbox_width * F.exp(dw) pred_height = bbox_height * F.exp(dh) pred_x1 = pred_ctr_x - 0.5 * pred_width pred_y1 = pred_ctr_y - 0.5 * pred_height pred_x2 = pred_ctr_x + 0.5 * pred_width pred_y2 = pred_ctr_y + 0.5 * pred_height # pred_boxes = F.concat((pred_x1.reshape(-1, 1), pred_y1.reshape(-1, 1), # pred_x2.reshape(-1, 1), pred_y2.reshape(-1, 1)), axis=1) pred_boxes = F.stack([pred_x1, pred_y1, pred_x2, pred_y2], axis = 1) return pred_boxes def bbox_transform_opr(bbox, gt): """ Transform the bounding box and ground truth to the loss targets. The 4 box coordinates are in axis 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height gt_width = gt[:, 2] - gt[:, 0] + 1 gt_height = gt[:, 3] - gt[:, 1] + 1 gt_ctr_x = gt[:, 0] + 0.5 * gt_width gt_ctr_y = gt[:, 1] + 0.5 * gt_height target_dx = (gt_ctr_x - bbox_ctr_x) / bbox_width target_dy = (gt_ctr_y - bbox_ctr_y) / bbox_height target_dw = F.log(gt_width / bbox_width) target_dh = F.log(gt_height / bbox_height) target = F.stack([target_dx, target_dy, target_dw, target_dh], axis=1) return target def box_overlap_opr(box: Tensor, gt: Tensor) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shape[0], boxes2.shape[0], 4) N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1),(N, K, box.shape[1])) b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1])) # b_gt = F.expand_dims(gt, 0).broadcast_to(N, K, gt.shape[1]) # b_box = F.expand_dims(boxes1, 1).broadcast(*target_shape) # b_gt = F.expand_dims(boxes2, 0).broadcast(*target_shape) iw = F.minimum(b_box[:, :, 2], b_gt[:, :, 2]) - F.maximum( b_box[:, :, 0], b_gt[:, :, 0] ) ih = F.minimum(b_box[:, :, 3], b_gt[:, :, 3]) - F.maximum( b_box[:, :, 1], b_gt[:, :, 1] ) inter = F.maximum(iw, 0) * F.maximum(ih, 0) area_box = F.maximum(box[:, 2] - box[:, 0], 0) * F.maximum(box[:, 3] - box[:, 1], 0) area_gt = F.maximum(gt[:, 2] - gt[:, 0], 0) * F.maximum(gt[:, 3] - gt[:, 1], 0) # area_target_shape = (box.shape[0], gt.shapeof()[0]) b_area_box = F.broadcast_to(F.expand_dims(area_box, 1), (N, K)) b_area_gt = F.broadcast_to(F.expand_dims(area_gt, 0), (N, K)) # b_area_box = F.expand_dims(area_box, 1).broadcast_to(N, K) # b_area_gt = F.expand_dims(area_gt, 0).broadcast_to(N, K) # b_area_box = F.add_axis(area_box, 1).broadcast(*area_target_shape) # b_area_gt = F.add_axis(area_gt, 0).broadcast(*area_target_shape) union = b_area_box + b_area_gt - inter overlaps = F.maximum(inter / union, 0) return overlaps def box_overlap_ignore_opr(box: Tensor, gt: Tensor, ignore_label=-1) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shapeof()[0], boxes2.shapeof()[0], 4) eps = 1e-5 N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1), (N, K, box.shape[1])) b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1])) # b_box = F.add_axis(boxes1, 1).broadcast(*target_shape) # b_gt = F.add_axis(boxes2[:, :4], 0).broadcast(*target_shape) iw = F.minimum(b_box[:, :, 2], b_gt[:, :, 2]) - F.maximum( b_box[:, :, 0], b_gt[:, :, 0] ) ih = F.minimum(b_box[:, :, 3], b_gt[:, :, 3]) - F.maximum( b_box[:, :, 1], b_gt[:, :, 1] ) inter = F.maximum(iw, 0) * F.maximum(ih, 0) area_box = F.maximum(box[:, 2] - box[:, 0], 0) * F.maximum(box[:, 3] - box[:, 1], 0) area_gt =
F.maximum(gt[:, 2] - gt[:, 0], 0)
megengine.functional.maximum
import math import megengine as mge import megengine.functional as F import numpy as np from megengine import Tensor import pdb def restore_bbox(rois, deltas, unnormalize=True, config = None): assert deltas.ndim == 3 if unnormalize: std_opr = mge.tensor(config.bbox_normalize_stds.reshape(1, 1, -1)) mean_opr = mge.tensor(config.bbox_normalize_means.reshape(1, 1, -1)) deltas = deltas * std_opr deltas = deltas + mean_opr # n = deltas.shape[1] n, c = deltas.shape[0], deltas.shape[1] all_rois = F.broadcast_to(F.expand_dims(rois, 1), (n, c, rois.shape[1])).reshape(-1, rois.shape[1]) deltas = deltas.reshape(-1, deltas.shape[2]) pred_bbox = bbox_transform_inv_opr(all_rois, deltas) pred_bbox = pred_bbox.reshape(-1, c, pred_bbox.shape[1]) return pred_bbox def filter_boxes_opr(boxes, min_size): """Remove all boxes with any side smaller than min_size.""" wh = boxes[:, 2:4] - boxes[:, 0:2] + 1 keep_mask = F.prod(wh >= min_size, axis = 1).astype(np.float32) keep_mask = keep_mask + F.equal(keep_mask.sum(), 0).astype(np.float32) return keep def clip_boxes_opr(boxes, im_info): """ Clip the boxes into the image region.""" w = im_info[1] - 1 h = im_info[0] - 1 boxes[:, 0::4] = boxes[:, 0::4].clamp(min=0, max=w) boxes[:, 1::4] = boxes[:, 1::4].clamp(min=0, max=h) boxes[:, 2::4] = boxes[:, 2::4].clamp(min=0, max=w) boxes[:, 3::4] = boxes[:, 3::4].clamp(min=0, max=h) return boxes def bbox_transform_inv_opr(bbox, deltas): max_delta = math.log(1000.0 / 16) """ Transforms the learned deltas to the final bbox coordinates, the axis is 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height pred_ctr_x = bbox_ctr_x + deltas[:, 0] * bbox_width pred_ctr_y = bbox_ctr_y + deltas[:, 1] * bbox_height dw = deltas[:, 2] dh = deltas[:, 3] dw = F.minimum(dw, max_delta) dh = F.minimum(dh, max_delta) pred_width = bbox_width * F.exp(dw) pred_height = bbox_height * F.exp(dh) pred_x1 = pred_ctr_x - 0.5 * pred_width pred_y1 = pred_ctr_y - 0.5 * pred_height pred_x2 = pred_ctr_x + 0.5 * pred_width pred_y2 = pred_ctr_y + 0.5 * pred_height # pred_boxes = F.concat((pred_x1.reshape(-1, 1), pred_y1.reshape(-1, 1), # pred_x2.reshape(-1, 1), pred_y2.reshape(-1, 1)), axis=1) pred_boxes = F.stack([pred_x1, pred_y1, pred_x2, pred_y2], axis = 1) return pred_boxes def bbox_transform_opr(bbox, gt): """ Transform the bounding box and ground truth to the loss targets. The 4 box coordinates are in axis 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height gt_width = gt[:, 2] - gt[:, 0] + 1 gt_height = gt[:, 3] - gt[:, 1] + 1 gt_ctr_x = gt[:, 0] + 0.5 * gt_width gt_ctr_y = gt[:, 1] + 0.5 * gt_height target_dx = (gt_ctr_x - bbox_ctr_x) / bbox_width target_dy = (gt_ctr_y - bbox_ctr_y) / bbox_height target_dw = F.log(gt_width / bbox_width) target_dh = F.log(gt_height / bbox_height) target = F.stack([target_dx, target_dy, target_dw, target_dh], axis=1) return target def box_overlap_opr(box: Tensor, gt: Tensor) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shape[0], boxes2.shape[0], 4) N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1),(N, K, box.shape[1])) b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1])) # b_gt = F.expand_dims(gt, 0).broadcast_to(N, K, gt.shape[1]) # b_box = F.expand_dims(boxes1, 1).broadcast(*target_shape) # b_gt = F.expand_dims(boxes2, 0).broadcast(*target_shape) iw = F.minimum(b_box[:, :, 2], b_gt[:, :, 2]) - F.maximum( b_box[:, :, 0], b_gt[:, :, 0] ) ih = F.minimum(b_box[:, :, 3], b_gt[:, :, 3]) - F.maximum( b_box[:, :, 1], b_gt[:, :, 1] ) inter = F.maximum(iw, 0) * F.maximum(ih, 0) area_box = F.maximum(box[:, 2] - box[:, 0], 0) * F.maximum(box[:, 3] - box[:, 1], 0) area_gt = F.maximum(gt[:, 2] - gt[:, 0], 0) * F.maximum(gt[:, 3] - gt[:, 1], 0) # area_target_shape = (box.shape[0], gt.shapeof()[0]) b_area_box = F.broadcast_to(F.expand_dims(area_box, 1), (N, K)) b_area_gt = F.broadcast_to(F.expand_dims(area_gt, 0), (N, K)) # b_area_box = F.expand_dims(area_box, 1).broadcast_to(N, K) # b_area_gt = F.expand_dims(area_gt, 0).broadcast_to(N, K) # b_area_box = F.add_axis(area_box, 1).broadcast(*area_target_shape) # b_area_gt = F.add_axis(area_gt, 0).broadcast(*area_target_shape) union = b_area_box + b_area_gt - inter overlaps = F.maximum(inter / union, 0) return overlaps def box_overlap_ignore_opr(box: Tensor, gt: Tensor, ignore_label=-1) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shapeof()[0], boxes2.shapeof()[0], 4) eps = 1e-5 N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1), (N, K, box.shape[1])) b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1])) # b_box = F.add_axis(boxes1, 1).broadcast(*target_shape) # b_gt = F.add_axis(boxes2[:, :4], 0).broadcast(*target_shape) iw = F.minimum(b_box[:, :, 2], b_gt[:, :, 2]) - F.maximum( b_box[:, :, 0], b_gt[:, :, 0] ) ih = F.minimum(b_box[:, :, 3], b_gt[:, :, 3]) - F.maximum( b_box[:, :, 1], b_gt[:, :, 1] ) inter = F.maximum(iw, 0) * F.maximum(ih, 0) area_box = F.maximum(box[:, 2] - box[:, 0], 0) * F.maximum(box[:, 3] - box[:, 1], 0) area_gt = F.maximum(gt[:, 2] - gt[:, 0], 0) *
F.maximum(gt[:, 3] - gt[:, 1], 0)
megengine.functional.maximum
import math import megengine as mge import megengine.functional as F import numpy as np from megengine import Tensor import pdb def restore_bbox(rois, deltas, unnormalize=True, config = None): assert deltas.ndim == 3 if unnormalize: std_opr = mge.tensor(config.bbox_normalize_stds.reshape(1, 1, -1)) mean_opr = mge.tensor(config.bbox_normalize_means.reshape(1, 1, -1)) deltas = deltas * std_opr deltas = deltas + mean_opr # n = deltas.shape[1] n, c = deltas.shape[0], deltas.shape[1] all_rois = F.broadcast_to(F.expand_dims(rois, 1), (n, c, rois.shape[1])).reshape(-1, rois.shape[1]) deltas = deltas.reshape(-1, deltas.shape[2]) pred_bbox = bbox_transform_inv_opr(all_rois, deltas) pred_bbox = pred_bbox.reshape(-1, c, pred_bbox.shape[1]) return pred_bbox def filter_boxes_opr(boxes, min_size): """Remove all boxes with any side smaller than min_size.""" wh = boxes[:, 2:4] - boxes[:, 0:2] + 1 keep_mask = F.prod(wh >= min_size, axis = 1).astype(np.float32) keep_mask = keep_mask + F.equal(keep_mask.sum(), 0).astype(np.float32) return keep def clip_boxes_opr(boxes, im_info): """ Clip the boxes into the image region.""" w = im_info[1] - 1 h = im_info[0] - 1 boxes[:, 0::4] = boxes[:, 0::4].clamp(min=0, max=w) boxes[:, 1::4] = boxes[:, 1::4].clamp(min=0, max=h) boxes[:, 2::4] = boxes[:, 2::4].clamp(min=0, max=w) boxes[:, 3::4] = boxes[:, 3::4].clamp(min=0, max=h) return boxes def bbox_transform_inv_opr(bbox, deltas): max_delta = math.log(1000.0 / 16) """ Transforms the learned deltas to the final bbox coordinates, the axis is 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height pred_ctr_x = bbox_ctr_x + deltas[:, 0] * bbox_width pred_ctr_y = bbox_ctr_y + deltas[:, 1] * bbox_height dw = deltas[:, 2] dh = deltas[:, 3] dw = F.minimum(dw, max_delta) dh = F.minimum(dh, max_delta) pred_width = bbox_width * F.exp(dw) pred_height = bbox_height * F.exp(dh) pred_x1 = pred_ctr_x - 0.5 * pred_width pred_y1 = pred_ctr_y - 0.5 * pred_height pred_x2 = pred_ctr_x + 0.5 * pred_width pred_y2 = pred_ctr_y + 0.5 * pred_height # pred_boxes = F.concat((pred_x1.reshape(-1, 1), pred_y1.reshape(-1, 1), # pred_x2.reshape(-1, 1), pred_y2.reshape(-1, 1)), axis=1) pred_boxes = F.stack([pred_x1, pred_y1, pred_x2, pred_y2], axis = 1) return pred_boxes def bbox_transform_opr(bbox, gt): """ Transform the bounding box and ground truth to the loss targets. The 4 box coordinates are in axis 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height gt_width = gt[:, 2] - gt[:, 0] + 1 gt_height = gt[:, 3] - gt[:, 1] + 1 gt_ctr_x = gt[:, 0] + 0.5 * gt_width gt_ctr_y = gt[:, 1] + 0.5 * gt_height target_dx = (gt_ctr_x - bbox_ctr_x) / bbox_width target_dy = (gt_ctr_y - bbox_ctr_y) / bbox_height target_dw = F.log(gt_width / bbox_width) target_dh = F.log(gt_height / bbox_height) target = F.stack([target_dx, target_dy, target_dw, target_dh], axis=1) return target def box_overlap_opr(box: Tensor, gt: Tensor) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shape[0], boxes2.shape[0], 4) N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1),(N, K, box.shape[1])) b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1])) # b_gt = F.expand_dims(gt, 0).broadcast_to(N, K, gt.shape[1]) # b_box = F.expand_dims(boxes1, 1).broadcast(*target_shape) # b_gt = F.expand_dims(boxes2, 0).broadcast(*target_shape) iw = F.minimum(b_box[:, :, 2], b_gt[:, :, 2]) - F.maximum( b_box[:, :, 0], b_gt[:, :, 0] ) ih = F.minimum(b_box[:, :, 3], b_gt[:, :, 3]) - F.maximum( b_box[:, :, 1], b_gt[:, :, 1] ) inter = F.maximum(iw, 0) * F.maximum(ih, 0) area_box = F.maximum(box[:, 2] - box[:, 0], 0) * F.maximum(box[:, 3] - box[:, 1], 0) area_gt = F.maximum(gt[:, 2] - gt[:, 0], 0) * F.maximum(gt[:, 3] - gt[:, 1], 0) # area_target_shape = (box.shape[0], gt.shapeof()[0]) b_area_box = F.broadcast_to(F.expand_dims(area_box, 1), (N, K)) b_area_gt = F.broadcast_to(F.expand_dims(area_gt, 0), (N, K)) # b_area_box = F.expand_dims(area_box, 1).broadcast_to(N, K) # b_area_gt = F.expand_dims(area_gt, 0).broadcast_to(N, K) # b_area_box = F.add_axis(area_box, 1).broadcast(*area_target_shape) # b_area_gt = F.add_axis(area_gt, 0).broadcast(*area_target_shape) union = b_area_box + b_area_gt - inter overlaps = F.maximum(inter / union, 0) return overlaps def box_overlap_ignore_opr(box: Tensor, gt: Tensor, ignore_label=-1) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shapeof()[0], boxes2.shapeof()[0], 4) eps = 1e-5 N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1), (N, K, box.shape[1])) b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1])) # b_box = F.add_axis(boxes1, 1).broadcast(*target_shape) # b_gt = F.add_axis(boxes2[:, :4], 0).broadcast(*target_shape) iw = F.minimum(b_box[:, :, 2], b_gt[:, :, 2]) - F.maximum( b_box[:, :, 0], b_gt[:, :, 0] ) ih = F.minimum(b_box[:, :, 3], b_gt[:, :, 3]) - F.maximum( b_box[:, :, 1], b_gt[:, :, 1] ) inter = F.maximum(iw, 0) * F.maximum(ih, 0) area_box = F.maximum(box[:, 2] - box[:, 0], 0) * F.maximum(box[:, 3] - box[:, 1], 0) area_gt = F.maximum(gt[:, 2] - gt[:, 0], 0) * F.maximum(gt[:, 3] - gt[:, 1], 0) # area_target_shape = (box.shapeof()[0], gt.shapeof()[0]) # b_area_box = F.add_axis(area_box, 1).broadcast(*area_target_shape) # b_area_gt = F.add_axis(area_gt, 0).broadcast(*area_target_shape) b_area_box = F.broadcast_to(F.expand_dims(area_box, 1), (N, K)) + eps b_area_gt = F.broadcast_to(
F.expand_dims(area_gt, 0)
megengine.functional.expand_dims
import math import megengine as mge import megengine.functional as F import numpy as np from megengine import Tensor import pdb def restore_bbox(rois, deltas, unnormalize=True, config = None): assert deltas.ndim == 3 if unnormalize: std_opr = mge.tensor(config.bbox_normalize_stds.reshape(1, 1, -1)) mean_opr = mge.tensor(config.bbox_normalize_means.reshape(1, 1, -1)) deltas = deltas * std_opr deltas = deltas + mean_opr # n = deltas.shape[1] n, c = deltas.shape[0], deltas.shape[1] all_rois = F.broadcast_to(F.expand_dims(rois, 1), (n, c, rois.shape[1])).reshape(-1, rois.shape[1]) deltas = deltas.reshape(-1, deltas.shape[2]) pred_bbox = bbox_transform_inv_opr(all_rois, deltas) pred_bbox = pred_bbox.reshape(-1, c, pred_bbox.shape[1]) return pred_bbox def filter_boxes_opr(boxes, min_size): """Remove all boxes with any side smaller than min_size.""" wh = boxes[:, 2:4] - boxes[:, 0:2] + 1 keep_mask = F.prod(wh >= min_size, axis = 1).astype(np.float32) keep_mask = keep_mask + F.equal(keep_mask.sum(), 0).astype(np.float32) return keep def clip_boxes_opr(boxes, im_info): """ Clip the boxes into the image region.""" w = im_info[1] - 1 h = im_info[0] - 1 boxes[:, 0::4] = boxes[:, 0::4].clamp(min=0, max=w) boxes[:, 1::4] = boxes[:, 1::4].clamp(min=0, max=h) boxes[:, 2::4] = boxes[:, 2::4].clamp(min=0, max=w) boxes[:, 3::4] = boxes[:, 3::4].clamp(min=0, max=h) return boxes def bbox_transform_inv_opr(bbox, deltas): max_delta = math.log(1000.0 / 16) """ Transforms the learned deltas to the final bbox coordinates, the axis is 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height pred_ctr_x = bbox_ctr_x + deltas[:, 0] * bbox_width pred_ctr_y = bbox_ctr_y + deltas[:, 1] * bbox_height dw = deltas[:, 2] dh = deltas[:, 3] dw = F.minimum(dw, max_delta) dh = F.minimum(dh, max_delta) pred_width = bbox_width * F.exp(dw) pred_height = bbox_height * F.exp(dh) pred_x1 = pred_ctr_x - 0.5 * pred_width pred_y1 = pred_ctr_y - 0.5 * pred_height pred_x2 = pred_ctr_x + 0.5 * pred_width pred_y2 = pred_ctr_y + 0.5 * pred_height # pred_boxes = F.concat((pred_x1.reshape(-1, 1), pred_y1.reshape(-1, 1), # pred_x2.reshape(-1, 1), pred_y2.reshape(-1, 1)), axis=1) pred_boxes = F.stack([pred_x1, pred_y1, pred_x2, pred_y2], axis = 1) return pred_boxes def bbox_transform_opr(bbox, gt): """ Transform the bounding box and ground truth to the loss targets. The 4 box coordinates are in axis 1""" bbox_width = bbox[:, 2] - bbox[:, 0] + 1 bbox_height = bbox[:, 3] - bbox[:, 1] + 1 bbox_ctr_x = bbox[:, 0] + 0.5 * bbox_width bbox_ctr_y = bbox[:, 1] + 0.5 * bbox_height gt_width = gt[:, 2] - gt[:, 0] + 1 gt_height = gt[:, 3] - gt[:, 1] + 1 gt_ctr_x = gt[:, 0] + 0.5 * gt_width gt_ctr_y = gt[:, 1] + 0.5 * gt_height target_dx = (gt_ctr_x - bbox_ctr_x) / bbox_width target_dy = (gt_ctr_y - bbox_ctr_y) / bbox_height target_dw = F.log(gt_width / bbox_width) target_dh = F.log(gt_height / bbox_height) target = F.stack([target_dx, target_dy, target_dw, target_dh], axis=1) return target def box_overlap_opr(box: Tensor, gt: Tensor) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shape[0], boxes2.shape[0], 4) N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1),(N, K, box.shape[1])) b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1])) # b_gt = F.expand_dims(gt, 0).broadcast_to(N, K, gt.shape[1]) # b_box = F.expand_dims(boxes1, 1).broadcast(*target_shape) # b_gt = F.expand_dims(boxes2, 0).broadcast(*target_shape) iw = F.minimum(b_box[:, :, 2], b_gt[:, :, 2]) - F.maximum( b_box[:, :, 0], b_gt[:, :, 0] ) ih = F.minimum(b_box[:, :, 3], b_gt[:, :, 3]) - F.maximum( b_box[:, :, 1], b_gt[:, :, 1] ) inter = F.maximum(iw, 0) * F.maximum(ih, 0) area_box = F.maximum(box[:, 2] - box[:, 0], 0) * F.maximum(box[:, 3] - box[:, 1], 0) area_gt = F.maximum(gt[:, 2] - gt[:, 0], 0) * F.maximum(gt[:, 3] - gt[:, 1], 0) # area_target_shape = (box.shape[0], gt.shapeof()[0]) b_area_box = F.broadcast_to(F.expand_dims(area_box, 1), (N, K)) b_area_gt = F.broadcast_to(F.expand_dims(area_gt, 0), (N, K)) # b_area_box = F.expand_dims(area_box, 1).broadcast_to(N, K) # b_area_gt = F.expand_dims(area_gt, 0).broadcast_to(N, K) # b_area_box = F.add_axis(area_box, 1).broadcast(*area_target_shape) # b_area_gt = F.add_axis(area_gt, 0).broadcast(*area_target_shape) union = b_area_box + b_area_gt - inter overlaps = F.maximum(inter / union, 0) return overlaps def box_overlap_ignore_opr(box: Tensor, gt: Tensor, ignore_label=-1) -> Tensor: """ Given two lists of boxes of size N and M, compute the IoU (intersection over union) between __all__ N x M pairs of boxes. The box order must be (xmin, ymin, xmax, ymax). Args: boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively. Returns: Tensor: IoU, sized [N,M]. """ # box = boxes1 # gt = boxes2 # target_shape = (boxes1.shapeof()[0], boxes2.shapeof()[0], 4) eps = 1e-5 N, K = box.shape[0], gt.shape[0] b_box = F.broadcast_to(F.expand_dims(box, 1), (N, K, box.shape[1])) b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1])) # b_box = F.add_axis(boxes1, 1).broadcast(*target_shape) # b_gt = F.add_axis(boxes2[:, :4], 0).broadcast(*target_shape) iw = F.minimum(b_box[:, :, 2], b_gt[:, :, 2]) - F.maximum( b_box[:, :, 0], b_gt[:, :, 0] ) ih = F.minimum(b_box[:, :, 3], b_gt[:, :, 3]) - F.maximum( b_box[:, :, 1], b_gt[:, :, 1] ) inter = F.maximum(iw, 0) * F.maximum(ih, 0) area_box = F.maximum(box[:, 2] - box[:, 0], 0) * F.maximum(box[:, 3] - box[:, 1], 0) area_gt = F.maximum(gt[:, 2] - gt[:, 0], 0) * F.maximum(gt[:, 3] - gt[:, 1], 0) # area_target_shape = (box.shapeof()[0], gt.shapeof()[0]) # b_area_box = F.add_axis(area_box, 1).broadcast(*area_target_shape) # b_area_gt = F.add_axis(area_gt, 0).broadcast(*area_target_shape) b_area_box = F.broadcast_to(
F.expand_dims(area_box, 1)
megengine.functional.expand_dims
import math import megengine as mge import megengine.functional as F import numpy as np from megengine import Tensor import pdb def restore_bbox(rois, deltas, unnormalize=True, config = None): assert deltas.ndim == 3 if unnormalize: std_opr = mge.tensor(config.bbox_normalize_stds.reshape(1, 1, -1)) mean_opr = mge.tensor(config.bbox_normalize_means.reshape(1, 1, -1)) deltas = deltas * std_opr deltas = deltas + mean_opr # n = deltas.shape[1] n, c = deltas.shape[0], deltas.shape[1] all_rois = F.broadcast_to(
F.expand_dims(rois, 1)
megengine.functional.expand_dims
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. from collections import OrderedDict from enum import Enum from functools import cmp_to_key from typing import Set # pylint: disable=unused-import from typing import Callable, Dict, Sequence import numpy as np from megengine import Tensor from megengine.functional import sqrt from ..converter_ir.ir_graph import IRGraph from .ir_op import ( AddOpr, Conv2dOpr, ConvRelu2dOpr, Deconv2dOpr, DropoutOpr, ExpOpr, FlattenOpr, FuseMulAdd3Opr, GetSubTensorOpr, HardSigmoidOpr, HardSwishOpr, IdentityOpr, LeakyReluOpr, MulOpr, OpBase, PadOpr, ReduceOpr, ReluOpr, ReshapeOpr, ResizeOpr, SoftmaxOpr, SqueezeOpr, SubOpr, TanHOpr, TransposeOpr, TrueDivOpr, _PoolOpr, ) from .ir_tensor import AxisOrder, IRTensor class TransformerRule(Enum): # general rules NOPE = 1 # for TFLite REDUCE_AXIS_AS_INPUT = 100 REMOVE_RESHAPE_INPUT = 101 # FUSE_FOR_RELU6 pass should happen before FUSE_ACTIVATION FUSE_FOR_RELU6 = 102 ## EXPAND_CONVRELU = 102.1 CONV_ADD_ZERO_BIAS = 103 FUSE_FOR_CONV_BIAS = 103.1 FUSE_CONV_BN = 104 DECONV_ADD_ZERO_BIAS = 105 # DEPTHWISE_CONV_RESHAPE_WEIGHT requirs RESHAPE_BIAS_TO_1DIM DEPTHWISE_CONV_RESHAPE_WEIGHT = 106 FUSE_SOFTMAX = 107 # RESHAPE_BIAS_TO_1DIM should happen before DECONV_SHAPE_AS_INPUT RESHAPE_BIAS_TO_1DIM = 108 DECONV_SHAPE_AS_INPUT = 109 FUSE_ASTYPE = 110 ## PADDING_FOR_CONV_AND_POOLING = 111 TRANSPOSE_PATTERN_AS_INPUT = 112 # FUSE_FOR_LEAKY_RELU should happen before EXPAND_MUL_ADD3 FUSE_FOR_LEAKY_RELU = 113 EXPAND_MUL_ADD3 = 114 EXPAND_ADD_SIGMOID = 115 ## FUSE_FOR_DECONV_BIAS = 117 FUSE_FOR_FULLY_CONNECTED = 118 ## # for TFLite Converter SLICE_PARAMS_AS_INPUTS_AND_MAKE_SQUEEZE = 119 RESIZE_PARAMS_AS_INPUT = 120 REPLACE_FLATTEN_TO_RESHAPE = 120.1 # remove reshape REMOVE_RESHAPE_REALTED_OP = 121 REMOVE_DROPOUT = 122 FUSE_ACTIVATION = 123 REMOVE_IDENTITY = 124 REMOVE_RELU = 125 REMOVE_UNRELATED_IROP = 130 ADD_FAKE_HSIGMOID_OUT = 131 RENAME_CAFFE_LAYER_TENSOR = 132 def cmp_rules(a, b): if a.value < b.value: return -1 if a.value > b.value: return 1 return 0 class IRTransform: def __init__(self, transformer_options): if not isinstance(transformer_options, Sequence): transformer_options = [ transformer_options, ] # bias of depthwise_conv must be 1 dim if TransformerRule.DEPTHWISE_CONV_RESHAPE_WEIGHT in transformer_options: if TransformerRule.RESHAPE_BIAS_TO_1DIM not in transformer_options: transformer_options.append(TransformerRule.RESHAPE_BIAS_TO_1DIM) self.trans_options = sorted(transformer_options, key=cmp_to_key(cmp_rules)) def transform(self, ir_graph): for option in self.trans_options: TRANSFORMMAP[option](ir_graph) return ir_graph TRANSFORMMAP: Dict[Enum, Callable] = {} def _register_tranformation_rule(transformer_option): def callback(impl): TRANSFORMMAP[transformer_option] = impl return callback def cal_pad_mode(tm_opr): out_shape = tm_opr.out_tensors[0].shape inp_shape = tm_opr.inp_tensors[0].shape if out_shape[2:] == inp_shape[2:]: return "SAME" else: return "VALID" @_register_tranformation_rule(TransformerRule.REMOVE_RESHAPE_INPUT) def _remove_reshape_input(net): for op in net.all_oprs: if not isinstance(op, ReshapeOpr): continue if len(op.inp_tensors) == 2: del op.inp_tensors[1] @_register_tranformation_rule(TransformerRule.TRANSPOSE_PATTERN_AS_INPUT) def _transpose_pattern_as_input(net): for op in net.all_oprs: if not isinstance(op, TransposeOpr): continue perm_tensor = IRTensor( name=op.inp_tensors[0].name + "_perm", shape=np.array(op.pattern).shape, dtype=np.int32, np_data=np.array(op.pattern, dtype=np.int32), owner_opr=op, q_type=np.int32, axis=None, ) op.add_inp_tensors(perm_tensor) @_register_tranformation_rule(TransformerRule.REDUCE_AXIS_AS_INPUT) def _reduce_axis_as_input(net): for op in net.all_oprs: if not isinstance(op, ReduceOpr): continue axis_tensor = IRTensor( name=op.inp_tensors[0].name + "_axis", shape=[1], dtype=np.int32, np_data=np.array(op.axis, dtype=np.int32), owner_opr=op, q_type=np.int32, axis=None, ) op.add_inp_tensors(axis_tensor) @_register_tranformation_rule(TransformerRule.PADDING_FOR_CONV_AND_POOLING) def _make_padding(net: IRGraph): def have_padding(opr): if isinstance(opr, Conv2dOpr): if cal_pad_mode(opr) == "SAME": return False if hasattr(opr, "padding") and (opr.padding[0] > 0 or opr.padding[1] > 0): return True return False insert_intended = OrderedDict() # type: OrderedDict for op in net.all_oprs: if not isinstance(op, (Conv2dOpr, _PoolOpr)): continue if have_padding(op): assert op.inp_tensors[0].ndim == 4, "ERROR: unsupported padding mode" np_data = np.array( [ 0, 0, op.padding[0], op.padding[0], op.padding[1], op.padding[1], 0, 0, ], dtype=np.int32, ) new_tensor_id = max(net._tensor_ids) + 1 pad_in_tensor = IRTensor( name=op.inp_tensors[0].name + "_paddings", shape=[4, 2], dtype=np.int32, owner_opr=None, np_data=np_data, q_type=np.int32, axis=None, ) net.add_tensor(new_tensor_id, pad_in_tensor) shape = list(op.inp_tensors[0].shape) new_tensor_id = max(net._tensor_ids) + 1 pad_out_tensor = IRTensor( name=op.inp_tensors[0].name + "_pad_out", shape=[ shape[0], shape[1], shape[2] + op.padding[0] * 2, shape[3] + op.padding[1] * 2, ], dtype=op.inp_tensors[0].dtype, ) if ( hasattr(op.inp_tensors[0], "scale") and op.inp_tensors[0].scale is not None ): pad_out_tensor.scale = op.inp_tensors[0].scale pad_out_tensor.q_dtype = op.inp_tensors[0].q_dtype if hasattr(op.inp_tensors[0], "zero_point"): pad_out_tensor.zero_point = op.inp_tensors[0].zero_point net.add_tensor(new_tensor_id, pad_out_tensor) pad_opr = PadOpr() pad_opr.inp_tensors = [op.inp_tensors[0], pad_in_tensor] index = op.inp_tensors[0].user_opr.index(op) op.inp_tensors[0].user_opr[index] = pad_opr pad_opr.out_tensors = [pad_out_tensor] pad_out_tensor.owner_opr = pad_opr op.inp_tensors = [pad_out_tensor] + op.inp_tensors[1:] pad_out_tensor.user_opr.append(op) index = net._opr_ids.index(id(op)) insert_intended[index] = (id(pad_opr), pad_opr) for index, generated_pair in list(insert_intended.items())[::-1]: net._opr_ids.insert(index, generated_pair[0]) net.all_oprs.insert(index, generated_pair[1]) @_register_tranformation_rule(TransformerRule.DECONV_SHAPE_AS_INPUT) def _deconv_shape_as_input(net: IRGraph): for op in net.all_oprs: if not isinstance(op, Deconv2dOpr): continue result_shape = op.out_tensors[0].shape np_data = np.array( [result_shape[0], result_shape[2], result_shape[3], result_shape[1],], dtype=np.int32, ) new_tensor_id = max(net._tensor_ids) + 1 shape_symvar = IRTensor( name=op.inp_tensors[0].name + "_deconv_out_shape", shape=[4], dtype=np.int32, owner_opr=op, np_data=np_data, q_type=np.int32, axis=None, ) shape_tensor = net.get_tensor(new_tensor_id, shape_symvar) if len(op.inp_tensors) == 2: op.inp_tensors = [ shape_tensor, op.inp_tensors[1], op.inp_tensors[0], ] else: op.inp_tensors = [ shape_tensor, op.inp_tensors[1], op.inp_tensors[0], op.inp_tensors[2], ] @_register_tranformation_rule(TransformerRule.RESIZE_PARAMS_AS_INPUT) def _resize_params_as_input(net): for op in net.all_oprs: if not isinstance(op, ResizeOpr): continue if len(op.inp_tensors) == 2: continue out_size_tensor = IRTensor( name=op.inp_tensors[0].name + "_out_size", shape=(2,), dtype=np.int32, np_data=np.array(op.out_size, dtype=np.int32), q_type=np.int32, axis=None, ) op.add_inp_tensors(out_size_tensor) @_register_tranformation_rule(TransformerRule.CONV_ADD_ZERO_BIAS) def _add_bias_for_conv(net: IRGraph): for op in net.all_oprs: if not isinstance(op, Conv2dOpr): continue if len(op.inp_tensors) == 3: continue weight_shape = op.inp_tensors[1].shape bias_shape = ( weight_shape[0] if len(weight_shape) == 4 else weight_shape[0] * weight_shape[1] ) bias_shape = (1, bias_shape, 1, 1) bias = np.zeros(bias_shape, dtype=np.float32) bias_tensor = IRTensor( name=op.inp_tensors[0].name + "_bias", shape=bias_shape, dtype=np.float32, np_data=bias, axis=AxisOrder.NCHW, ) if op.inp_tensors[0].scale and op.inp_tensors[1].scale: bias_tensor.set_qparams( op.inp_tensors[0].scale * op.inp_tensors[1].scale, 0 ) bias_tensor.q_dtype = "int32" op.inp_tensors.append(bias_tensor) @_register_tranformation_rule(TransformerRule.DECONV_ADD_ZERO_BIAS) def _add_bias_for_deconv(net: IRGraph): for op in net.all_oprs: if not isinstance(op, Deconv2dOpr): continue if len(op.inp_tensors) == 3: continue weight_shape = op.inp_tensors[1].shape bias_shape = ( weight_shape[1] if len(weight_shape) == 4 else weight_shape[0] * weight_shape[2] ) bias_shape = (1, bias_shape, 1, 1) bias = np.zeros(bias_shape, dtype=np.float32) bias_tensor = IRTensor( name=op.inp_tensors[0].name + "_bias", shape=bias_shape, dtype=np.float32, np_data=bias, axis=AxisOrder.NCHW, ) if op.inp_tensors[0].scale and op.inp_tensors[1].scale: bias_tensor.set_qparams( op.inp_tensors[0].scale * op.inp_tensors[1].scale, 0 ) bias_tensor.q_dtype = "int32" op.inp_tensors.append(bias_tensor) @_register_tranformation_rule(TransformerRule.RESHAPE_BIAS_TO_1DIM) def _reshape_bias_to_1dim(net: IRGraph): for op in net.all_oprs: if not isinstance(op, (Deconv2dOpr, Conv2dOpr)): continue if len(op.inp_tensors) == 2: continue bias = op.inp_tensors[2] if bias.ndim == 4: bias.shape = (bias.shape[1],) bias.np_data = bias.np_data.reshape(-1) @_register_tranformation_rule(TransformerRule.DEPTHWISE_CONV_RESHAPE_WEIGHT) def _depthwise_conv_reshape_weight(net: IRGraph): # general group conv is not supported for TFLite for op in net.all_oprs: if not isinstance(op, Conv2dOpr): continue if op.groups == 1: continue weight = op.inp_tensors[1] # G, oc/G, ic/G, kh, kw ic, cm = weight.shape[1] * op.groups, weight.shape[2] h, w = weight.shape[3:5] weight.shape = (ic, cm, h, w) # oc, ic/G, kh, kw weight.np_data = weight.np_data.reshape(ic, cm, h, w) @_register_tranformation_rule(TransformerRule.FUSE_ACTIVATION) def _fuse_activation(net): delete_intended = [] for op_id, op in zip(net._opr_ids, net.all_oprs): if isinstance(op, (ReluOpr, TanHOpr)): prev_ops = net.find_inp_oprs(op) if len(prev_ops) == 0: continue prev_op = prev_ops[0] if not isinstance(prev_op, OpBase): continue if prev_op.activation != "IDENTITY" or prev_op.name == "Deconv2d": continue activation = op.name.upper() prev_op.activation = activation prev_op.out_tensors = op.out_tensors for t in prev_op.out_tensors: t.owner_opr = prev_op delete_intended.append(net._opr_ids.index(op_id)) for delete_idx in delete_intended[::-1]: net.delete_ops(delete_idx) @_register_tranformation_rule(TransformerRule.SLICE_PARAMS_AS_INPUTS_AND_MAKE_SQUEEZE) def _make_slice_as_inputs(net: IRGraph): for op in net.all_oprs: if not isinstance(op, GetSubTensorOpr): continue ndim = op.inp_tensors[0].ndim def make_input(axis, param, init_value): # make inputs: begin, end and step. ret = [init_value] * ndim # pylint:disable=cell-var-from-loop for k, v in zip(axis, param): ret[k] = v ret = IRTensor( name=op.name + "_fake_input", # pylint:disable=cell-var-from-loop shape=[len(ret)], dtype=np.int32, np_data=np.array(ret, dtype=np.int32), owner_opr=op, # pylint:disable=cell-var-from-loop q_type=np.int32, ) return ret begins_tensor = make_input(op.axis, op.begin_params, 0) ends_tensor = make_input(op.axis, op.end_params, np.iinfo(np.int32).max) steps_tensor = make_input(op.axis, op.step_params, 1) op.inp_tensors = [op.inp_tensors[0], begins_tensor, ends_tensor, steps_tensor] # TFLite slice do not support squeeze axis, so insert a squeeze opr here. # infer actual output shape of tflite slice desired_out_shape = op.out_tensors[0].shape actual_out_shape = [1] * ndim idx = 0 for i in range(ndim): if i in op.squeeze_axis: continue actual_out_shape[i] = desired_out_shape[idx] idx += 1 slice_out_tensor = IRTensor( name=op.name + "fake_output", shape=actual_out_shape, dtype=op.out_tensors[0].dtype, q_type=op.out_tensors[0].q_dtype, owner_opr=op, ) old_out = op.out_tensors op.out_tensors = [slice_out_tensor] squeeze = SqueezeOpr(op.squeeze_axis) squeeze.inp_tensors = [slice_out_tensor] squeeze.out_tensors = old_out idx = net._opr_ids.index(id(op)) + 1 net.add_op(squeeze, idx) # caffe transormer rules class PatternNode: def __init__(self, type, is_output=False, const_value=None): self.op = None self.type = type self.inp_oprs = [] self.inp_const = [] self.inp_tensors = [] self.is_output = is_output self.const_value = const_value def check_const_value(self, op): inp_tensors = [v.np_data for v in op.inp_tensors] for const in self.const_value: idx = const[0] if idx == -1: find = False for index, v in enumerate(inp_tensors): if np.array_equal(const[1], v): find = True del inp_tensors[index] break if not find: return False elif not np.array_equal(const[1], inp_tensors[idx]): return False return True get_type = lambda op: type(op).__name__ def match(node, opr): node_queue = [node] opr_queue = [opr] matched_opr = set() matched_node = set() while len(node_queue) != 0: cur_node = node_queue.pop(0) cur_opr = opr_queue.pop(0) if cur_node.type != get_type(cur_opr) and cur_node.type != "*" or cur_opr.skip: return False if cur_node.op == None: cur_node.op = cur_opr if cur_node.const_value != None: if not cur_node.check_const_value(cur_opr): return False elif cur_node.op != cur_opr: return False matched_opr.add(cur_opr) matched_node.add(cur_node) for i, var in enumerate(cur_opr.inp_tensors): if var.np_data is not None: cur_node.inp_const.append([i, var.np_data]) else: cur_node.inp_tensors.append([i, var]) if len(cur_node.inp_oprs) == 0: continue if len(cur_node.inp_oprs) != len(cur_opr.inp_oprs): return False for i, j in zip(cur_node.inp_oprs, cur_opr.inp_oprs): node_queue.append(i) opr_queue.append(j) for n in matched_node: if n.is_output: continue for op in n.op.out_oprs: if op not in matched_opr: return False return True def get_softmax_axis(ndim: int) -> int: if ndim in (0, 1, 3): return 0 return 1 @_register_tranformation_rule(TransformerRule.FUSE_SOFTMAX) def _fuse_softmax(net: IRGraph): matches = OrderedDict() # type: OrderedDict for op in net.all_oprs: if not isinstance(op, TrueDivOpr): continue try: prev_op = net.find_inp_oprs(op)[1] cur_index = net._opr_ids.index(id(op)) if ( not isinstance(prev_op, ReduceOpr) or prev_op.mode != "SUM" or prev_op.axis != get_softmax_axis(prev_op.inp_tensors[0].ndim) or net._opr_ids.index(id(prev_op)) != cur_index - 1 ): continue prev_op = net.find_inp_oprs(op)[0] if ( not isinstance(prev_op, ExpOpr) or net._opr_ids.index(id(prev_op)) != cur_index - 2 ): continue prev_op = net.find_inp_oprs(prev_op)[0] if ( not isinstance(prev_op, SubOpr) or net._opr_ids.index(id(prev_op)) != cur_index - 3 ): continue prev_op = net.find_inp_oprs(prev_op)[1] if ( not isinstance(prev_op, ReduceOpr) or prev_op.mode != "MAX" or prev_op.axis != get_softmax_axis(prev_op.inp_tensors[0].ndim) or net._opr_ids.index(id(prev_op)) != cur_index - 4 ): continue except IndexError: # doesn't match continue softmax_opr = SoftmaxOpr(axis=get_softmax_axis(prev_op.inp_tensors[0].ndim)) softmax_opr.beta = 1 softmax_opr.inp_tensors = prev_op.inp_tensors[:1] for i in softmax_opr.inp_tensors: i.user_opr.append(softmax_opr) softmax_opr.out_tensors = op.out_tensors softmax_out_oprs = net.find_out_oprs(op) matches[id(prev_op)] = (id(prev_op), softmax_opr, softmax_out_oprs) for original_id, generated_pair in list(matches.items())[::-1]: index = net._opr_ids.index(original_id) for out_op in generated_pair[2]: generated_pair[1].out_tensors[0].user_opr.append(out_op) del net._opr_ids[index : index + 5] del net.all_oprs[index : index + 5] net._opr_ids.insert(index, generated_pair[0]) net.all_oprs.insert(index, generated_pair[1]) @_register_tranformation_rule(TransformerRule.FUSE_FOR_LEAKY_RELU) def _fuse_leaky_relu(net: IRGraph): """ Elemwise(ADD) + Elemwise(MUL) + Elemwise(MAX) + Elemwise(MIN) -> LeakyRelu """ for opr in net.all_oprs: if ( opr.name == "Add" and len(net.find_inp_oprs(opr)) == 2 and net.find_inp_oprs(opr)[0].name == "Max" and net.find_inp_oprs(opr)[1].name == "Mul" ): max_op = net.find_inp_oprs(opr)[0] mul_op = net.find_inp_oprs(opr)[1] if not mul_op.inp_tensors[1].shape == (1,): continue if not max_op.inp_tensors[1].shape == (1,): continue if ( len(net.find_inp_oprs(mul_op)) != 1 or net.find_inp_oprs(mul_op)[0].name != "Min" or net.find_inp_oprs(mul_op)[0].inp_tensors[1].shape != (1,) ): continue min_op = net.find_inp_oprs(mul_op)[0] if not min_op.inp_tensors[1].shape == (1,): continue if max_op.inp_tensors[0] != min_op.inp_tensors[0]: continue leaky_relu = LeakyReluOpr( negative_slope=float(mul_op.inp_tensors[1].np_data) ) leaky_relu.inp_tensors = [max_op.inp_tensors[0]] max_op.inp_tensors[0].user_opr.remove(max_op) max_op.inp_tensors[0].user_opr.remove(min_op) max_op.inp_tensors[0].user_opr.append(leaky_relu) leaky_relu.out_tensors = opr.out_tensors opr.out_tensors[0].owner_opr = leaky_relu index = net.all_oprs.index(max_op) del net.all_oprs[index : index + 4] del net._opr_ids[index : index + 4] net.add_op(leaky_relu, index) @_register_tranformation_rule(TransformerRule.FUSE_FOR_CONV_BIAS) def _fuse_for_conv_bias(net: IRGraph): """ ConvolutionForward + Elemwise(ADD) -> ConvForwardBias """ for opr in net.all_oprs: if ( opr.name == "Conv2d" and len(net.find_out_oprs(opr)) == 1 and net.find_out_oprs(opr)[0].name == "Add" ): bias_op = net.find_out_oprs(opr)[0] if not ( ( bias_op.inp_tensors[1].np_data is not None and len(bias_op.inp_tensors[1].np_data.reshape(-1)) == opr.inp_tensors[1].shape[0] ) or ( ( bias_op.inp_tensors[0].np_data is not None and len(bias_op.inp_tensors[0].np_data.reshape(-1)) == opr.inp_tensors[1].shape[0] ) ) ): continue bias_idx = 0 if bias_op.inp_tensors[0].np_data is not None else 1 if len(opr.inp_tensors) == 2: opr.inp_tensors.append(bias_op.inp_tensors[bias_idx]) else: bias_shape = opr.inp_tensors[2].np_data.shape add_tensor = bias_op.inp_tensors[bias_idx].np_data if add_tensor.shape != bias_shape: add_tensor = add_tensor.reshape(bias_shape) opr.inp_tensors[2].np_data += add_tensor if bias_op in opr.out_tensors[0].user_opr: opr.out_tensors[0].user_opr.remove(bias_op) bias_out_op = net.find_out_oprs(bias_op) if len(bias_out_op) > 0: for op in bias_out_op: op.inp_tensors[0] = opr.out_tensors[0] opr.out_tensors[0].user_opr.append(op) else: # last op of the graph assert bias_op.out_tensors[0] in net.graph_outputs index = net.graph_outputs.index(bias_op.out_tensors[0]) net.graph_outputs[index] = opr.out_tensors[0] opr.activation = bias_op.activation index = net.all_oprs.index(bias_op) del net.all_oprs[index] del net._opr_ids[index] @_register_tranformation_rule(TransformerRule.FUSE_FOR_DECONV_BIAS) def _fuse_for_deconv_bias(net: IRGraph): for opr in net.all_oprs: if ( opr.name == "Deconv2d" and len(net.find_out_oprs(opr)) == 1 and net.find_out_oprs(opr)[0].name == "Add" ): bias_op = net.find_out_oprs(opr)[0] if not ( ( bias_op.inp_tensors[1].np_data is not None and len(bias_op.inp_tensors[1].np_data.reshape(-1)) == opr.inp_tensors[1].shape[1] ) or ( ( bias_op.inp_tensors[0].np_data is not None and len(bias_op.inp_tensors[0].np_data.reshape(-1)) == opr.inp_tensors[1].shape[1] ) ) ): continue bias_idx = 0 if bias_op.inp_tensors[0].np_data is not None else 1 if len(opr.inp_tensors) == 3: # shape, weight, input, bias opr.inp_tensors.append(bias_op.inp_tensors[bias_idx]) else: bias_shape = opr.inp_tensors[3].np_data.shape add_tensor = bias_op.inp_tensors[bias_idx].np_data if add_tensor.shape != bias_shape: add_tensor = add_tensor.reshape(bias_shape) opr.inp_tensors[3].np_data += add_tensor if bias_op in opr.out_tensors[0].user_opr: opr.out_tensors[0].user_opr.remove(bias_op) bias_out_op = net.find_out_oprs(bias_op) if len(bias_out_op) > 0: for op in bias_out_op: op.inp_tensors[0] = opr.out_tensors[0] opr.out_tensors[0].user_opr.append(op) else: # last op of the graph assert bias_op.out_tensors[0] in net.graph_outputs index = net.graph_outputs.index(bias_op.out_tensors[0]) net.graph_outputs[index] = opr.out_tensors[0] opr.activation = bias_op.activation index = net.all_oprs.index(bias_op) del net.all_oprs[index] del net._opr_ids[index] @_register_tranformation_rule(TransformerRule.EXPAND_MUL_ADD3) def _expand_mul_add3(net: IRGraph): for op in net.all_oprs: if not isinstance(op, FuseMulAdd3Opr): continue last_op = net.find_inp_oprs(op) assert len(last_op) == 1 mul_out_tensor = IRTensor( name=op.inp_tensors[0].name + "_mul_out", shape=op.inp_tensors[0].shape, dtype=op.inp_tensors[0].dtype, ) new_tensor_id = max(net._tensor_ids) + 1 net.add_tensor(new_tensor_id, mul_out_tensor) mul_op = MulOpr() mul_out_tensor.owner_opr = mul_op mul_op.inp_tensors = op.inp_tensors[:2] for o in mul_op.inp_tensors: index = o.user_opr.index(op) o.user_opr[index] = mul_op mul_op.out_tensors = [mul_out_tensor] add_op = AddOpr() add_op.inp_tensors = [mul_out_tensor, op.inp_tensors[2]] mul_out_tensor.user_opr.append(add_op) add_op.out_tensors = op.out_tensors index = net._opr_ids.index(id(op)) net.delete_ops(index) net.add_op(mul_op, index) net.add_op(add_op, index + 1) @_register_tranformation_rule(TransformerRule.REPLACE_FLATTEN_TO_RESHAPE) def _replace_flatten_to_reshape(net: IRGraph): for opr in net.all_oprs: if isinstance(opr, FlattenOpr): out_shape = tuple(list(opr.inp_tensors[0].shape[: opr.start_axis]) + [-1]) reshape_op = ReshapeOpr(out_shape=out_shape) reshape_op.inp_tensors = opr.inp_tensors for t in reshape_op.inp_tensors: idx = t.user_opr.index(opr) t.user_opr[idx] = reshape_op reshape_op.out_tensors = opr.out_tensors for t in reshape_op.out_tensors: t.owner_opr = reshape_op net.replace_op(opr, reshape_op) @_register_tranformation_rule(TransformerRule.REMOVE_RESHAPE_REALTED_OP) def _remove_reshape_tensors(net: IRGraph): for opr in net.all_oprs: if isinstance(opr, ReshapeOpr) and len(opr.inp_tensors) > 1: opr.inp_tensors = opr.inp_tensors[:1] @_register_tranformation_rule(TransformerRule.REMOVE_DROPOUT) def _remove_dropout(net: IRGraph): for opr in net.all_oprs: for idx, inp in enumerate(opr.inp_tensors): owner_opr = inp.owner_opr if isinstance(owner_opr, DropoutOpr) and owner_opr.drop_prob == 0: opr.inp_tensors[idx] = owner_opr.inp_tensors[0] for idx, out in enumerate(net.graph_outputs): owner_opr = out.owner_opr if isinstance(owner_opr, DropoutOpr) and owner_opr.drop_prob == 0: net.graph_outputs[idx] = owner_opr.inp_tensors[0] @_register_tranformation_rule(TransformerRule.REMOVE_RELU) def _remove_relu(net: IRGraph): for opr in net.all_oprs: for idx, inp in enumerate(opr.inp_tensors): owner_opr = inp.owner_opr if isinstance(owner_opr, ReluOpr): opr.inp_tensors[idx] = owner_opr.inp_tensors[0] for idx, out in enumerate(net.graph_outputs): owner_opr = out.owner_opr if isinstance(owner_opr, ReluOpr): net.graph_outputs[idx] = owner_opr.inp_tensors[0] visited_tensor = set() # type: set def _dfs_recursive(op_set, tensor): owner_opr = tensor.owner_opr op_set.add(owner_opr) if tensor in visited_tensor: return visited_tensor.add(tensor) if isinstance(owner_opr, IRGraph) or owner_opr is None: return for tt in owner_opr.inp_tensors: _dfs_recursive(op_set, tt) @_register_tranformation_rule(TransformerRule.REMOVE_UNRELATED_IROP) def _remove_unrelated_op(net: IRGraph): match_sets = set() # type: Set[OpBase] for out_tensor in net.graph_outputs: _dfs_recursive(match_sets, out_tensor) remove_idx = [] for opr in net.all_oprs: if opr not in match_sets: index = net._opr_ids.index(id(opr)) remove_idx.append(index) for i in remove_idx[::-1]: net.delete_ops(i) @_register_tranformation_rule(TransformerRule.ADD_FAKE_HSIGMOID_OUT) def _add_fake_hsigmoid_tensor(net: IRGraph): for opr in net.all_oprs: if isinstance(opr, (HardSwishOpr, HardSigmoidOpr)): add_3_out_tensor = IRTensor( opr.out_tensors[0].name + "_fake_add3_out", opr.inp_tensors[0].shape, opr.inp_tensors[0].dtype, q_type=opr.inp_tensors[0].q_dtype, scale=opr.inp_tensors[0].scale, zero_point=opr.inp_tensors[0].zero_point, ) opr.add_inp_tensors(add_3_out_tensor) relu6_out_tensor = IRTensor( opr.out_tensors[0].name + "_relu6_out", opr.inp_tensors[0].shape, opr.inp_tensors[0].dtype, q_type=opr.inp_tensors[0].q_dtype, scale=opr.inp_tensors[0].scale, zero_point=opr.inp_tensors[0].zero_point, ) opr.add_inp_tensors(relu6_out_tensor) if isinstance(opr, HardSwishOpr): div6_out_tensor = IRTensor( opr.out_tensors[0].name + "_div_out", opr.inp_tensors[0].shape, opr.inp_tensors[0].dtype, q_type=opr.inp_tensors[0].q_dtype, scale=opr.inp_tensors[0].scale, zero_point=opr.inp_tensors[0].zero_point, ) opr.add_inp_tensors(div6_out_tensor) def fold_conv_bn( conv_weight, conv_bias, conv_groups, gamma, beta, bn_mean, bn_var, eps ): conv_bias = conv_bias.reshape(1, -1, 1, 1) gamma = gamma.reshape(1, -1, 1, 1) beta = beta.reshape(1, -1, 1, 1) bn_mean = bn_mean.reshape(1, -1, 1, 1) bn_var = bn_var.reshape(1, -1, 1, 1) # bn_istd = 1 / bn_std bn_istd = 1.0 /
sqrt(bn_var + eps)
megengine.functional.sqrt
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. from collections import OrderedDict from enum import Enum from functools import cmp_to_key from typing import Set # pylint: disable=unused-import from typing import Callable, Dict, Sequence import numpy as np from megengine import Tensor from megengine.functional import sqrt from ..converter_ir.ir_graph import IRGraph from .ir_op import ( AddOpr, Conv2dOpr, ConvRelu2dOpr, Deconv2dOpr, DropoutOpr, ExpOpr, FlattenOpr, FuseMulAdd3Opr, GetSubTensorOpr, HardSigmoidOpr, HardSwishOpr, IdentityOpr, LeakyReluOpr, MulOpr, OpBase, PadOpr, ReduceOpr, ReluOpr, ReshapeOpr, ResizeOpr, SoftmaxOpr, SqueezeOpr, SubOpr, TanHOpr, TransposeOpr, TrueDivOpr, _PoolOpr, ) from .ir_tensor import AxisOrder, IRTensor class TransformerRule(Enum): # general rules NOPE = 1 # for TFLite REDUCE_AXIS_AS_INPUT = 100 REMOVE_RESHAPE_INPUT = 101 # FUSE_FOR_RELU6 pass should happen before FUSE_ACTIVATION FUSE_FOR_RELU6 = 102 ## EXPAND_CONVRELU = 102.1 CONV_ADD_ZERO_BIAS = 103 FUSE_FOR_CONV_BIAS = 103.1 FUSE_CONV_BN = 104 DECONV_ADD_ZERO_BIAS = 105 # DEPTHWISE_CONV_RESHAPE_WEIGHT requirs RESHAPE_BIAS_TO_1DIM DEPTHWISE_CONV_RESHAPE_WEIGHT = 106 FUSE_SOFTMAX = 107 # RESHAPE_BIAS_TO_1DIM should happen before DECONV_SHAPE_AS_INPUT RESHAPE_BIAS_TO_1DIM = 108 DECONV_SHAPE_AS_INPUT = 109 FUSE_ASTYPE = 110 ## PADDING_FOR_CONV_AND_POOLING = 111 TRANSPOSE_PATTERN_AS_INPUT = 112 # FUSE_FOR_LEAKY_RELU should happen before EXPAND_MUL_ADD3 FUSE_FOR_LEAKY_RELU = 113 EXPAND_MUL_ADD3 = 114 EXPAND_ADD_SIGMOID = 115 ## FUSE_FOR_DECONV_BIAS = 117 FUSE_FOR_FULLY_CONNECTED = 118 ## # for TFLite Converter SLICE_PARAMS_AS_INPUTS_AND_MAKE_SQUEEZE = 119 RESIZE_PARAMS_AS_INPUT = 120 REPLACE_FLATTEN_TO_RESHAPE = 120.1 # remove reshape REMOVE_RESHAPE_REALTED_OP = 121 REMOVE_DROPOUT = 122 FUSE_ACTIVATION = 123 REMOVE_IDENTITY = 124 REMOVE_RELU = 125 REMOVE_UNRELATED_IROP = 130 ADD_FAKE_HSIGMOID_OUT = 131 RENAME_CAFFE_LAYER_TENSOR = 132 def cmp_rules(a, b): if a.value < b.value: return -1 if a.value > b.value: return 1 return 0 class IRTransform: def __init__(self, transformer_options): if not isinstance(transformer_options, Sequence): transformer_options = [ transformer_options, ] # bias of depthwise_conv must be 1 dim if TransformerRule.DEPTHWISE_CONV_RESHAPE_WEIGHT in transformer_options: if TransformerRule.RESHAPE_BIAS_TO_1DIM not in transformer_options: transformer_options.append(TransformerRule.RESHAPE_BIAS_TO_1DIM) self.trans_options = sorted(transformer_options, key=cmp_to_key(cmp_rules)) def transform(self, ir_graph): for option in self.trans_options: TRANSFORMMAP[option](ir_graph) return ir_graph TRANSFORMMAP: Dict[Enum, Callable] = {} def _register_tranformation_rule(transformer_option): def callback(impl): TRANSFORMMAP[transformer_option] = impl return callback def cal_pad_mode(tm_opr): out_shape = tm_opr.out_tensors[0].shape inp_shape = tm_opr.inp_tensors[0].shape if out_shape[2:] == inp_shape[2:]: return "SAME" else: return "VALID" @_register_tranformation_rule(TransformerRule.REMOVE_RESHAPE_INPUT) def _remove_reshape_input(net): for op in net.all_oprs: if not isinstance(op, ReshapeOpr): continue if len(op.inp_tensors) == 2: del op.inp_tensors[1] @_register_tranformation_rule(TransformerRule.TRANSPOSE_PATTERN_AS_INPUT) def _transpose_pattern_as_input(net): for op in net.all_oprs: if not isinstance(op, TransposeOpr): continue perm_tensor = IRTensor( name=op.inp_tensors[0].name + "_perm", shape=np.array(op.pattern).shape, dtype=np.int32, np_data=np.array(op.pattern, dtype=np.int32), owner_opr=op, q_type=np.int32, axis=None, ) op.add_inp_tensors(perm_tensor) @_register_tranformation_rule(TransformerRule.REDUCE_AXIS_AS_INPUT) def _reduce_axis_as_input(net): for op in net.all_oprs: if not isinstance(op, ReduceOpr): continue axis_tensor = IRTensor( name=op.inp_tensors[0].name + "_axis", shape=[1], dtype=np.int32, np_data=np.array(op.axis, dtype=np.int32), owner_opr=op, q_type=np.int32, axis=None, ) op.add_inp_tensors(axis_tensor) @_register_tranformation_rule(TransformerRule.PADDING_FOR_CONV_AND_POOLING) def _make_padding(net: IRGraph): def have_padding(opr): if isinstance(opr, Conv2dOpr): if cal_pad_mode(opr) == "SAME": return False if hasattr(opr, "padding") and (opr.padding[0] > 0 or opr.padding[1] > 0): return True return False insert_intended = OrderedDict() # type: OrderedDict for op in net.all_oprs: if not isinstance(op, (Conv2dOpr, _PoolOpr)): continue if have_padding(op): assert op.inp_tensors[0].ndim == 4, "ERROR: unsupported padding mode" np_data = np.array( [ 0, 0, op.padding[0], op.padding[0], op.padding[1], op.padding[1], 0, 0, ], dtype=np.int32, ) new_tensor_id = max(net._tensor_ids) + 1 pad_in_tensor = IRTensor( name=op.inp_tensors[0].name + "_paddings", shape=[4, 2], dtype=np.int32, owner_opr=None, np_data=np_data, q_type=np.int32, axis=None, ) net.add_tensor(new_tensor_id, pad_in_tensor) shape = list(op.inp_tensors[0].shape) new_tensor_id = max(net._tensor_ids) + 1 pad_out_tensor = IRTensor( name=op.inp_tensors[0].name + "_pad_out", shape=[ shape[0], shape[1], shape[2] + op.padding[0] * 2, shape[3] + op.padding[1] * 2, ], dtype=op.inp_tensors[0].dtype, ) if ( hasattr(op.inp_tensors[0], "scale") and op.inp_tensors[0].scale is not None ): pad_out_tensor.scale = op.inp_tensors[0].scale pad_out_tensor.q_dtype = op.inp_tensors[0].q_dtype if hasattr(op.inp_tensors[0], "zero_point"): pad_out_tensor.zero_point = op.inp_tensors[0].zero_point net.add_tensor(new_tensor_id, pad_out_tensor) pad_opr = PadOpr() pad_opr.inp_tensors = [op.inp_tensors[0], pad_in_tensor] index = op.inp_tensors[0].user_opr.index(op) op.inp_tensors[0].user_opr[index] = pad_opr pad_opr.out_tensors = [pad_out_tensor] pad_out_tensor.owner_opr = pad_opr op.inp_tensors = [pad_out_tensor] + op.inp_tensors[1:] pad_out_tensor.user_opr.append(op) index = net._opr_ids.index(id(op)) insert_intended[index] = (id(pad_opr), pad_opr) for index, generated_pair in list(insert_intended.items())[::-1]: net._opr_ids.insert(index, generated_pair[0]) net.all_oprs.insert(index, generated_pair[1]) @_register_tranformation_rule(TransformerRule.DECONV_SHAPE_AS_INPUT) def _deconv_shape_as_input(net: IRGraph): for op in net.all_oprs: if not isinstance(op, Deconv2dOpr): continue result_shape = op.out_tensors[0].shape np_data = np.array( [result_shape[0], result_shape[2], result_shape[3], result_shape[1],], dtype=np.int32, ) new_tensor_id = max(net._tensor_ids) + 1 shape_symvar = IRTensor( name=op.inp_tensors[0].name + "_deconv_out_shape", shape=[4], dtype=np.int32, owner_opr=op, np_data=np_data, q_type=np.int32, axis=None, ) shape_tensor = net.get_tensor(new_tensor_id, shape_symvar) if len(op.inp_tensors) == 2: op.inp_tensors = [ shape_tensor, op.inp_tensors[1], op.inp_tensors[0], ] else: op.inp_tensors = [ shape_tensor, op.inp_tensors[1], op.inp_tensors[0], op.inp_tensors[2], ] @_register_tranformation_rule(TransformerRule.RESIZE_PARAMS_AS_INPUT) def _resize_params_as_input(net): for op in net.all_oprs: if not isinstance(op, ResizeOpr): continue if len(op.inp_tensors) == 2: continue out_size_tensor = IRTensor( name=op.inp_tensors[0].name + "_out_size", shape=(2,), dtype=np.int32, np_data=np.array(op.out_size, dtype=np.int32), q_type=np.int32, axis=None, ) op.add_inp_tensors(out_size_tensor) @_register_tranformation_rule(TransformerRule.CONV_ADD_ZERO_BIAS) def _add_bias_for_conv(net: IRGraph): for op in net.all_oprs: if not isinstance(op, Conv2dOpr): continue if len(op.inp_tensors) == 3: continue weight_shape = op.inp_tensors[1].shape bias_shape = ( weight_shape[0] if len(weight_shape) == 4 else weight_shape[0] * weight_shape[1] ) bias_shape = (1, bias_shape, 1, 1) bias = np.zeros(bias_shape, dtype=np.float32) bias_tensor = IRTensor( name=op.inp_tensors[0].name + "_bias", shape=bias_shape, dtype=np.float32, np_data=bias, axis=AxisOrder.NCHW, ) if op.inp_tensors[0].scale and op.inp_tensors[1].scale: bias_tensor.set_qparams( op.inp_tensors[0].scale * op.inp_tensors[1].scale, 0 ) bias_tensor.q_dtype = "int32" op.inp_tensors.append(bias_tensor) @_register_tranformation_rule(TransformerRule.DECONV_ADD_ZERO_BIAS) def _add_bias_for_deconv(net: IRGraph): for op in net.all_oprs: if not isinstance(op, Deconv2dOpr): continue if len(op.inp_tensors) == 3: continue weight_shape = op.inp_tensors[1].shape bias_shape = ( weight_shape[1] if len(weight_shape) == 4 else weight_shape[0] * weight_shape[2] ) bias_shape = (1, bias_shape, 1, 1) bias = np.zeros(bias_shape, dtype=np.float32) bias_tensor = IRTensor( name=op.inp_tensors[0].name + "_bias", shape=bias_shape, dtype=np.float32, np_data=bias, axis=AxisOrder.NCHW, ) if op.inp_tensors[0].scale and op.inp_tensors[1].scale: bias_tensor.set_qparams( op.inp_tensors[0].scale * op.inp_tensors[1].scale, 0 ) bias_tensor.q_dtype = "int32" op.inp_tensors.append(bias_tensor) @_register_tranformation_rule(TransformerRule.RESHAPE_BIAS_TO_1DIM) def _reshape_bias_to_1dim(net: IRGraph): for op in net.all_oprs: if not isinstance(op, (Deconv2dOpr, Conv2dOpr)): continue if len(op.inp_tensors) == 2: continue bias = op.inp_tensors[2] if bias.ndim == 4: bias.shape = (bias.shape[1],) bias.np_data = bias.np_data.reshape(-1) @_register_tranformation_rule(TransformerRule.DEPTHWISE_CONV_RESHAPE_WEIGHT) def _depthwise_conv_reshape_weight(net: IRGraph): # general group conv is not supported for TFLite for op in net.all_oprs: if not isinstance(op, Conv2dOpr): continue if op.groups == 1: continue weight = op.inp_tensors[1] # G, oc/G, ic/G, kh, kw ic, cm = weight.shape[1] * op.groups, weight.shape[2] h, w = weight.shape[3:5] weight.shape = (ic, cm, h, w) # oc, ic/G, kh, kw weight.np_data = weight.np_data.reshape(ic, cm, h, w) @_register_tranformation_rule(TransformerRule.FUSE_ACTIVATION) def _fuse_activation(net): delete_intended = [] for op_id, op in zip(net._opr_ids, net.all_oprs): if isinstance(op, (ReluOpr, TanHOpr)): prev_ops = net.find_inp_oprs(op) if len(prev_ops) == 0: continue prev_op = prev_ops[0] if not isinstance(prev_op, OpBase): continue if prev_op.activation != "IDENTITY" or prev_op.name == "Deconv2d": continue activation = op.name.upper() prev_op.activation = activation prev_op.out_tensors = op.out_tensors for t in prev_op.out_tensors: t.owner_opr = prev_op delete_intended.append(net._opr_ids.index(op_id)) for delete_idx in delete_intended[::-1]: net.delete_ops(delete_idx) @_register_tranformation_rule(TransformerRule.SLICE_PARAMS_AS_INPUTS_AND_MAKE_SQUEEZE) def _make_slice_as_inputs(net: IRGraph): for op in net.all_oprs: if not isinstance(op, GetSubTensorOpr): continue ndim = op.inp_tensors[0].ndim def make_input(axis, param, init_value): # make inputs: begin, end and step. ret = [init_value] * ndim # pylint:disable=cell-var-from-loop for k, v in zip(axis, param): ret[k] = v ret = IRTensor( name=op.name + "_fake_input", # pylint:disable=cell-var-from-loop shape=[len(ret)], dtype=np.int32, np_data=np.array(ret, dtype=np.int32), owner_opr=op, # pylint:disable=cell-var-from-loop q_type=np.int32, ) return ret begins_tensor = make_input(op.axis, op.begin_params, 0) ends_tensor = make_input(op.axis, op.end_params, np.iinfo(np.int32).max) steps_tensor = make_input(op.axis, op.step_params, 1) op.inp_tensors = [op.inp_tensors[0], begins_tensor, ends_tensor, steps_tensor] # TFLite slice do not support squeeze axis, so insert a squeeze opr here. # infer actual output shape of tflite slice desired_out_shape = op.out_tensors[0].shape actual_out_shape = [1] * ndim idx = 0 for i in range(ndim): if i in op.squeeze_axis: continue actual_out_shape[i] = desired_out_shape[idx] idx += 1 slice_out_tensor = IRTensor( name=op.name + "fake_output", shape=actual_out_shape, dtype=op.out_tensors[0].dtype, q_type=op.out_tensors[0].q_dtype, owner_opr=op, ) old_out = op.out_tensors op.out_tensors = [slice_out_tensor] squeeze = SqueezeOpr(op.squeeze_axis) squeeze.inp_tensors = [slice_out_tensor] squeeze.out_tensors = old_out idx = net._opr_ids.index(id(op)) + 1 net.add_op(squeeze, idx) # caffe transormer rules class PatternNode: def __init__(self, type, is_output=False, const_value=None): self.op = None self.type = type self.inp_oprs = [] self.inp_const = [] self.inp_tensors = [] self.is_output = is_output self.const_value = const_value def check_const_value(self, op): inp_tensors = [v.np_data for v in op.inp_tensors] for const in self.const_value: idx = const[0] if idx == -1: find = False for index, v in enumerate(inp_tensors): if np.array_equal(const[1], v): find = True del inp_tensors[index] break if not find: return False elif not np.array_equal(const[1], inp_tensors[idx]): return False return True get_type = lambda op: type(op).__name__ def match(node, opr): node_queue = [node] opr_queue = [opr] matched_opr = set() matched_node = set() while len(node_queue) != 0: cur_node = node_queue.pop(0) cur_opr = opr_queue.pop(0) if cur_node.type != get_type(cur_opr) and cur_node.type != "*" or cur_opr.skip: return False if cur_node.op == None: cur_node.op = cur_opr if cur_node.const_value != None: if not cur_node.check_const_value(cur_opr): return False elif cur_node.op != cur_opr: return False matched_opr.add(cur_opr) matched_node.add(cur_node) for i, var in enumerate(cur_opr.inp_tensors): if var.np_data is not None: cur_node.inp_const.append([i, var.np_data]) else: cur_node.inp_tensors.append([i, var]) if len(cur_node.inp_oprs) == 0: continue if len(cur_node.inp_oprs) != len(cur_opr.inp_oprs): return False for i, j in zip(cur_node.inp_oprs, cur_opr.inp_oprs): node_queue.append(i) opr_queue.append(j) for n in matched_node: if n.is_output: continue for op in n.op.out_oprs: if op not in matched_opr: return False return True def get_softmax_axis(ndim: int) -> int: if ndim in (0, 1, 3): return 0 return 1 @_register_tranformation_rule(TransformerRule.FUSE_SOFTMAX) def _fuse_softmax(net: IRGraph): matches = OrderedDict() # type: OrderedDict for op in net.all_oprs: if not isinstance(op, TrueDivOpr): continue try: prev_op = net.find_inp_oprs(op)[1] cur_index = net._opr_ids.index(id(op)) if ( not isinstance(prev_op, ReduceOpr) or prev_op.mode != "SUM" or prev_op.axis != get_softmax_axis(prev_op.inp_tensors[0].ndim) or net._opr_ids.index(id(prev_op)) != cur_index - 1 ): continue prev_op = net.find_inp_oprs(op)[0] if ( not isinstance(prev_op, ExpOpr) or net._opr_ids.index(id(prev_op)) != cur_index - 2 ): continue prev_op = net.find_inp_oprs(prev_op)[0] if ( not isinstance(prev_op, SubOpr) or net._opr_ids.index(id(prev_op)) != cur_index - 3 ): continue prev_op = net.find_inp_oprs(prev_op)[1] if ( not isinstance(prev_op, ReduceOpr) or prev_op.mode != "MAX" or prev_op.axis != get_softmax_axis(prev_op.inp_tensors[0].ndim) or net._opr_ids.index(id(prev_op)) != cur_index - 4 ): continue except IndexError: # doesn't match continue softmax_opr = SoftmaxOpr(axis=get_softmax_axis(prev_op.inp_tensors[0].ndim)) softmax_opr.beta = 1 softmax_opr.inp_tensors = prev_op.inp_tensors[:1] for i in softmax_opr.inp_tensors: i.user_opr.append(softmax_opr) softmax_opr.out_tensors = op.out_tensors softmax_out_oprs = net.find_out_oprs(op) matches[id(prev_op)] = (id(prev_op), softmax_opr, softmax_out_oprs) for original_id, generated_pair in list(matches.items())[::-1]: index = net._opr_ids.index(original_id) for out_op in generated_pair[2]: generated_pair[1].out_tensors[0].user_opr.append(out_op) del net._opr_ids[index : index + 5] del net.all_oprs[index : index + 5] net._opr_ids.insert(index, generated_pair[0]) net.all_oprs.insert(index, generated_pair[1]) @_register_tranformation_rule(TransformerRule.FUSE_FOR_LEAKY_RELU) def _fuse_leaky_relu(net: IRGraph): """ Elemwise(ADD) + Elemwise(MUL) + Elemwise(MAX) + Elemwise(MIN) -> LeakyRelu """ for opr in net.all_oprs: if ( opr.name == "Add" and len(net.find_inp_oprs(opr)) == 2 and net.find_inp_oprs(opr)[0].name == "Max" and net.find_inp_oprs(opr)[1].name == "Mul" ): max_op = net.find_inp_oprs(opr)[0] mul_op = net.find_inp_oprs(opr)[1] if not mul_op.inp_tensors[1].shape == (1,): continue if not max_op.inp_tensors[1].shape == (1,): continue if ( len(net.find_inp_oprs(mul_op)) != 1 or net.find_inp_oprs(mul_op)[0].name != "Min" or net.find_inp_oprs(mul_op)[0].inp_tensors[1].shape != (1,) ): continue min_op = net.find_inp_oprs(mul_op)[0] if not min_op.inp_tensors[1].shape == (1,): continue if max_op.inp_tensors[0] != min_op.inp_tensors[0]: continue leaky_relu = LeakyReluOpr( negative_slope=float(mul_op.inp_tensors[1].np_data) ) leaky_relu.inp_tensors = [max_op.inp_tensors[0]] max_op.inp_tensors[0].user_opr.remove(max_op) max_op.inp_tensors[0].user_opr.remove(min_op) max_op.inp_tensors[0].user_opr.append(leaky_relu) leaky_relu.out_tensors = opr.out_tensors opr.out_tensors[0].owner_opr = leaky_relu index = net.all_oprs.index(max_op) del net.all_oprs[index : index + 4] del net._opr_ids[index : index + 4] net.add_op(leaky_relu, index) @_register_tranformation_rule(TransformerRule.FUSE_FOR_CONV_BIAS) def _fuse_for_conv_bias(net: IRGraph): """ ConvolutionForward + Elemwise(ADD) -> ConvForwardBias """ for opr in net.all_oprs: if ( opr.name == "Conv2d" and len(net.find_out_oprs(opr)) == 1 and net.find_out_oprs(opr)[0].name == "Add" ): bias_op = net.find_out_oprs(opr)[0] if not ( ( bias_op.inp_tensors[1].np_data is not None and len(bias_op.inp_tensors[1].np_data.reshape(-1)) == opr.inp_tensors[1].shape[0] ) or ( ( bias_op.inp_tensors[0].np_data is not None and len(bias_op.inp_tensors[0].np_data.reshape(-1)) == opr.inp_tensors[1].shape[0] ) ) ): continue bias_idx = 0 if bias_op.inp_tensors[0].np_data is not None else 1 if len(opr.inp_tensors) == 2: opr.inp_tensors.append(bias_op.inp_tensors[bias_idx]) else: bias_shape = opr.inp_tensors[2].np_data.shape add_tensor = bias_op.inp_tensors[bias_idx].np_data if add_tensor.shape != bias_shape: add_tensor = add_tensor.reshape(bias_shape) opr.inp_tensors[2].np_data += add_tensor if bias_op in opr.out_tensors[0].user_opr: opr.out_tensors[0].user_opr.remove(bias_op) bias_out_op = net.find_out_oprs(bias_op) if len(bias_out_op) > 0: for op in bias_out_op: op.inp_tensors[0] = opr.out_tensors[0] opr.out_tensors[0].user_opr.append(op) else: # last op of the graph assert bias_op.out_tensors[0] in net.graph_outputs index = net.graph_outputs.index(bias_op.out_tensors[0]) net.graph_outputs[index] = opr.out_tensors[0] opr.activation = bias_op.activation index = net.all_oprs.index(bias_op) del net.all_oprs[index] del net._opr_ids[index] @_register_tranformation_rule(TransformerRule.FUSE_FOR_DECONV_BIAS) def _fuse_for_deconv_bias(net: IRGraph): for opr in net.all_oprs: if ( opr.name == "Deconv2d" and len(net.find_out_oprs(opr)) == 1 and net.find_out_oprs(opr)[0].name == "Add" ): bias_op = net.find_out_oprs(opr)[0] if not ( ( bias_op.inp_tensors[1].np_data is not None and len(bias_op.inp_tensors[1].np_data.reshape(-1)) == opr.inp_tensors[1].shape[1] ) or ( ( bias_op.inp_tensors[0].np_data is not None and len(bias_op.inp_tensors[0].np_data.reshape(-1)) == opr.inp_tensors[1].shape[1] ) ) ): continue bias_idx = 0 if bias_op.inp_tensors[0].np_data is not None else 1 if len(opr.inp_tensors) == 3: # shape, weight, input, bias opr.inp_tensors.append(bias_op.inp_tensors[bias_idx]) else: bias_shape = opr.inp_tensors[3].np_data.shape add_tensor = bias_op.inp_tensors[bias_idx].np_data if add_tensor.shape != bias_shape: add_tensor = add_tensor.reshape(bias_shape) opr.inp_tensors[3].np_data += add_tensor if bias_op in opr.out_tensors[0].user_opr: opr.out_tensors[0].user_opr.remove(bias_op) bias_out_op = net.find_out_oprs(bias_op) if len(bias_out_op) > 0: for op in bias_out_op: op.inp_tensors[0] = opr.out_tensors[0] opr.out_tensors[0].user_opr.append(op) else: # last op of the graph assert bias_op.out_tensors[0] in net.graph_outputs index = net.graph_outputs.index(bias_op.out_tensors[0]) net.graph_outputs[index] = opr.out_tensors[0] opr.activation = bias_op.activation index = net.all_oprs.index(bias_op) del net.all_oprs[index] del net._opr_ids[index] @_register_tranformation_rule(TransformerRule.EXPAND_MUL_ADD3) def _expand_mul_add3(net: IRGraph): for op in net.all_oprs: if not isinstance(op, FuseMulAdd3Opr): continue last_op = net.find_inp_oprs(op) assert len(last_op) == 1 mul_out_tensor = IRTensor( name=op.inp_tensors[0].name + "_mul_out", shape=op.inp_tensors[0].shape, dtype=op.inp_tensors[0].dtype, ) new_tensor_id = max(net._tensor_ids) + 1 net.add_tensor(new_tensor_id, mul_out_tensor) mul_op = MulOpr() mul_out_tensor.owner_opr = mul_op mul_op.inp_tensors = op.inp_tensors[:2] for o in mul_op.inp_tensors: index = o.user_opr.index(op) o.user_opr[index] = mul_op mul_op.out_tensors = [mul_out_tensor] add_op = AddOpr() add_op.inp_tensors = [mul_out_tensor, op.inp_tensors[2]] mul_out_tensor.user_opr.append(add_op) add_op.out_tensors = op.out_tensors index = net._opr_ids.index(id(op)) net.delete_ops(index) net.add_op(mul_op, index) net.add_op(add_op, index + 1) @_register_tranformation_rule(TransformerRule.REPLACE_FLATTEN_TO_RESHAPE) def _replace_flatten_to_reshape(net: IRGraph): for opr in net.all_oprs: if isinstance(opr, FlattenOpr): out_shape = tuple(list(opr.inp_tensors[0].shape[: opr.start_axis]) + [-1]) reshape_op = ReshapeOpr(out_shape=out_shape) reshape_op.inp_tensors = opr.inp_tensors for t in reshape_op.inp_tensors: idx = t.user_opr.index(opr) t.user_opr[idx] = reshape_op reshape_op.out_tensors = opr.out_tensors for t in reshape_op.out_tensors: t.owner_opr = reshape_op net.replace_op(opr, reshape_op) @_register_tranformation_rule(TransformerRule.REMOVE_RESHAPE_REALTED_OP) def _remove_reshape_tensors(net: IRGraph): for opr in net.all_oprs: if isinstance(opr, ReshapeOpr) and len(opr.inp_tensors) > 1: opr.inp_tensors = opr.inp_tensors[:1] @_register_tranformation_rule(TransformerRule.REMOVE_DROPOUT) def _remove_dropout(net: IRGraph): for opr in net.all_oprs: for idx, inp in enumerate(opr.inp_tensors): owner_opr = inp.owner_opr if isinstance(owner_opr, DropoutOpr) and owner_opr.drop_prob == 0: opr.inp_tensors[idx] = owner_opr.inp_tensors[0] for idx, out in enumerate(net.graph_outputs): owner_opr = out.owner_opr if isinstance(owner_opr, DropoutOpr) and owner_opr.drop_prob == 0: net.graph_outputs[idx] = owner_opr.inp_tensors[0] @_register_tranformation_rule(TransformerRule.REMOVE_RELU) def _remove_relu(net: IRGraph): for opr in net.all_oprs: for idx, inp in enumerate(opr.inp_tensors): owner_opr = inp.owner_opr if isinstance(owner_opr, ReluOpr): opr.inp_tensors[idx] = owner_opr.inp_tensors[0] for idx, out in enumerate(net.graph_outputs): owner_opr = out.owner_opr if isinstance(owner_opr, ReluOpr): net.graph_outputs[idx] = owner_opr.inp_tensors[0] visited_tensor = set() # type: set def _dfs_recursive(op_set, tensor): owner_opr = tensor.owner_opr op_set.add(owner_opr) if tensor in visited_tensor: return visited_tensor.add(tensor) if isinstance(owner_opr, IRGraph) or owner_opr is None: return for tt in owner_opr.inp_tensors: _dfs_recursive(op_set, tt) @_register_tranformation_rule(TransformerRule.REMOVE_UNRELATED_IROP) def _remove_unrelated_op(net: IRGraph): match_sets = set() # type: Set[OpBase] for out_tensor in net.graph_outputs: _dfs_recursive(match_sets, out_tensor) remove_idx = [] for opr in net.all_oprs: if opr not in match_sets: index = net._opr_ids.index(id(opr)) remove_idx.append(index) for i in remove_idx[::-1]: net.delete_ops(i) @_register_tranformation_rule(TransformerRule.ADD_FAKE_HSIGMOID_OUT) def _add_fake_hsigmoid_tensor(net: IRGraph): for opr in net.all_oprs: if isinstance(opr, (HardSwishOpr, HardSigmoidOpr)): add_3_out_tensor = IRTensor( opr.out_tensors[0].name + "_fake_add3_out", opr.inp_tensors[0].shape, opr.inp_tensors[0].dtype, q_type=opr.inp_tensors[0].q_dtype, scale=opr.inp_tensors[0].scale, zero_point=opr.inp_tensors[0].zero_point, ) opr.add_inp_tensors(add_3_out_tensor) relu6_out_tensor = IRTensor( opr.out_tensors[0].name + "_relu6_out", opr.inp_tensors[0].shape, opr.inp_tensors[0].dtype, q_type=opr.inp_tensors[0].q_dtype, scale=opr.inp_tensors[0].scale, zero_point=opr.inp_tensors[0].zero_point, ) opr.add_inp_tensors(relu6_out_tensor) if isinstance(opr, HardSwishOpr): div6_out_tensor = IRTensor( opr.out_tensors[0].name + "_div_out", opr.inp_tensors[0].shape, opr.inp_tensors[0].dtype, q_type=opr.inp_tensors[0].q_dtype, scale=opr.inp_tensors[0].scale, zero_point=opr.inp_tensors[0].zero_point, ) opr.add_inp_tensors(div6_out_tensor) def fold_conv_bn( conv_weight, conv_bias, conv_groups, gamma, beta, bn_mean, bn_var, eps ): conv_bias = conv_bias.reshape(1, -1, 1, 1) gamma = gamma.reshape(1, -1, 1, 1) beta = beta.reshape(1, -1, 1, 1) bn_mean = bn_mean.reshape(1, -1, 1, 1) bn_var = bn_var.reshape(1, -1, 1, 1) # bn_istd = 1 / bn_std bn_istd = 1.0 / sqrt(bn_var + eps) # type: ignore[attr-defined] # w_fold = gamma / bn_std * W scale_factor = gamma * bn_istd if conv_groups == 1: w_fold = conv_weight * scale_factor.reshape(-1, 1, 1, 1) else: w_fold = conv_weight * scale_factor.reshape(conv_groups, -1, 1, 1, 1) # b_fold = gamma * (b - bn_mean) / bn_std + beta b_fold = beta + gamma * (conv_bias - bn_mean) * bn_istd return w_fold, b_fold @_register_tranformation_rule(TransformerRule.FUSE_CONV_BN) def _fuse_conv_bn(net: IRGraph): for opr in net.all_oprs: if ( opr.name == "BatchNormalization" and len(net.find_inp_oprs(opr)) == 1 and net.find_inp_oprs(opr)[0].name == "Conv2d" and len(net.find_out_oprs(net.find_inp_oprs(opr)[0])) == 1 and net.find_out_oprs(net.find_inp_oprs(opr)[0])[0] == opr ): gamma = (
Tensor(opr.weight)
megengine.Tensor
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. from collections import OrderedDict from enum import Enum from functools import cmp_to_key from typing import Set # pylint: disable=unused-import from typing import Callable, Dict, Sequence import numpy as np from megengine import Tensor from megengine.functional import sqrt from ..converter_ir.ir_graph import IRGraph from .ir_op import ( AddOpr, Conv2dOpr, ConvRelu2dOpr, Deconv2dOpr, DropoutOpr, ExpOpr, FlattenOpr, FuseMulAdd3Opr, GetSubTensorOpr, HardSigmoidOpr, HardSwishOpr, IdentityOpr, LeakyReluOpr, MulOpr, OpBase, PadOpr, ReduceOpr, ReluOpr, ReshapeOpr, ResizeOpr, SoftmaxOpr, SqueezeOpr, SubOpr, TanHOpr, TransposeOpr, TrueDivOpr, _PoolOpr, ) from .ir_tensor import AxisOrder, IRTensor class TransformerRule(Enum): # general rules NOPE = 1 # for TFLite REDUCE_AXIS_AS_INPUT = 100 REMOVE_RESHAPE_INPUT = 101 # FUSE_FOR_RELU6 pass should happen before FUSE_ACTIVATION FUSE_FOR_RELU6 = 102 ## EXPAND_CONVRELU = 102.1 CONV_ADD_ZERO_BIAS = 103 FUSE_FOR_CONV_BIAS = 103.1 FUSE_CONV_BN = 104 DECONV_ADD_ZERO_BIAS = 105 # DEPTHWISE_CONV_RESHAPE_WEIGHT requirs RESHAPE_BIAS_TO_1DIM DEPTHWISE_CONV_RESHAPE_WEIGHT = 106 FUSE_SOFTMAX = 107 # RESHAPE_BIAS_TO_1DIM should happen before DECONV_SHAPE_AS_INPUT RESHAPE_BIAS_TO_1DIM = 108 DECONV_SHAPE_AS_INPUT = 109 FUSE_ASTYPE = 110 ## PADDING_FOR_CONV_AND_POOLING = 111 TRANSPOSE_PATTERN_AS_INPUT = 112 # FUSE_FOR_LEAKY_RELU should happen before EXPAND_MUL_ADD3 FUSE_FOR_LEAKY_RELU = 113 EXPAND_MUL_ADD3 = 114 EXPAND_ADD_SIGMOID = 115 ## FUSE_FOR_DECONV_BIAS = 117 FUSE_FOR_FULLY_CONNECTED = 118 ## # for TFLite Converter SLICE_PARAMS_AS_INPUTS_AND_MAKE_SQUEEZE = 119 RESIZE_PARAMS_AS_INPUT = 120 REPLACE_FLATTEN_TO_RESHAPE = 120.1 # remove reshape REMOVE_RESHAPE_REALTED_OP = 121 REMOVE_DROPOUT = 122 FUSE_ACTIVATION = 123 REMOVE_IDENTITY = 124 REMOVE_RELU = 125 REMOVE_UNRELATED_IROP = 130 ADD_FAKE_HSIGMOID_OUT = 131 RENAME_CAFFE_LAYER_TENSOR = 132 def cmp_rules(a, b): if a.value < b.value: return -1 if a.value > b.value: return 1 return 0 class IRTransform: def __init__(self, transformer_options): if not isinstance(transformer_options, Sequence): transformer_options = [ transformer_options, ] # bias of depthwise_conv must be 1 dim if TransformerRule.DEPTHWISE_CONV_RESHAPE_WEIGHT in transformer_options: if TransformerRule.RESHAPE_BIAS_TO_1DIM not in transformer_options: transformer_options.append(TransformerRule.RESHAPE_BIAS_TO_1DIM) self.trans_options = sorted(transformer_options, key=cmp_to_key(cmp_rules)) def transform(self, ir_graph): for option in self.trans_options: TRANSFORMMAP[option](ir_graph) return ir_graph TRANSFORMMAP: Dict[Enum, Callable] = {} def _register_tranformation_rule(transformer_option): def callback(impl): TRANSFORMMAP[transformer_option] = impl return callback def cal_pad_mode(tm_opr): out_shape = tm_opr.out_tensors[0].shape inp_shape = tm_opr.inp_tensors[0].shape if out_shape[2:] == inp_shape[2:]: return "SAME" else: return "VALID" @_register_tranformation_rule(TransformerRule.REMOVE_RESHAPE_INPUT) def _remove_reshape_input(net): for op in net.all_oprs: if not isinstance(op, ReshapeOpr): continue if len(op.inp_tensors) == 2: del op.inp_tensors[1] @_register_tranformation_rule(TransformerRule.TRANSPOSE_PATTERN_AS_INPUT) def _transpose_pattern_as_input(net): for op in net.all_oprs: if not isinstance(op, TransposeOpr): continue perm_tensor = IRTensor( name=op.inp_tensors[0].name + "_perm", shape=np.array(op.pattern).shape, dtype=np.int32, np_data=np.array(op.pattern, dtype=np.int32), owner_opr=op, q_type=np.int32, axis=None, ) op.add_inp_tensors(perm_tensor) @_register_tranformation_rule(TransformerRule.REDUCE_AXIS_AS_INPUT) def _reduce_axis_as_input(net): for op in net.all_oprs: if not isinstance(op, ReduceOpr): continue axis_tensor = IRTensor( name=op.inp_tensors[0].name + "_axis", shape=[1], dtype=np.int32, np_data=np.array(op.axis, dtype=np.int32), owner_opr=op, q_type=np.int32, axis=None, ) op.add_inp_tensors(axis_tensor) @_register_tranformation_rule(TransformerRule.PADDING_FOR_CONV_AND_POOLING) def _make_padding(net: IRGraph): def have_padding(opr): if isinstance(opr, Conv2dOpr): if cal_pad_mode(opr) == "SAME": return False if hasattr(opr, "padding") and (opr.padding[0] > 0 or opr.padding[1] > 0): return True return False insert_intended = OrderedDict() # type: OrderedDict for op in net.all_oprs: if not isinstance(op, (Conv2dOpr, _PoolOpr)): continue if have_padding(op): assert op.inp_tensors[0].ndim == 4, "ERROR: unsupported padding mode" np_data = np.array( [ 0, 0, op.padding[0], op.padding[0], op.padding[1], op.padding[1], 0, 0, ], dtype=np.int32, ) new_tensor_id = max(net._tensor_ids) + 1 pad_in_tensor = IRTensor( name=op.inp_tensors[0].name + "_paddings", shape=[4, 2], dtype=np.int32, owner_opr=None, np_data=np_data, q_type=np.int32, axis=None, ) net.add_tensor(new_tensor_id, pad_in_tensor) shape = list(op.inp_tensors[0].shape) new_tensor_id = max(net._tensor_ids) + 1 pad_out_tensor = IRTensor( name=op.inp_tensors[0].name + "_pad_out", shape=[ shape[0], shape[1], shape[2] + op.padding[0] * 2, shape[3] + op.padding[1] * 2, ], dtype=op.inp_tensors[0].dtype, ) if ( hasattr(op.inp_tensors[0], "scale") and op.inp_tensors[0].scale is not None ): pad_out_tensor.scale = op.inp_tensors[0].scale pad_out_tensor.q_dtype = op.inp_tensors[0].q_dtype if hasattr(op.inp_tensors[0], "zero_point"): pad_out_tensor.zero_point = op.inp_tensors[0].zero_point net.add_tensor(new_tensor_id, pad_out_tensor) pad_opr = PadOpr() pad_opr.inp_tensors = [op.inp_tensors[0], pad_in_tensor] index = op.inp_tensors[0].user_opr.index(op) op.inp_tensors[0].user_opr[index] = pad_opr pad_opr.out_tensors = [pad_out_tensor] pad_out_tensor.owner_opr = pad_opr op.inp_tensors = [pad_out_tensor] + op.inp_tensors[1:] pad_out_tensor.user_opr.append(op) index = net._opr_ids.index(id(op)) insert_intended[index] = (id(pad_opr), pad_opr) for index, generated_pair in list(insert_intended.items())[::-1]: net._opr_ids.insert(index, generated_pair[0]) net.all_oprs.insert(index, generated_pair[1]) @_register_tranformation_rule(TransformerRule.DECONV_SHAPE_AS_INPUT) def _deconv_shape_as_input(net: IRGraph): for op in net.all_oprs: if not isinstance(op, Deconv2dOpr): continue result_shape = op.out_tensors[0].shape np_data = np.array( [result_shape[0], result_shape[2], result_shape[3], result_shape[1],], dtype=np.int32, ) new_tensor_id = max(net._tensor_ids) + 1 shape_symvar = IRTensor( name=op.inp_tensors[0].name + "_deconv_out_shape", shape=[4], dtype=np.int32, owner_opr=op, np_data=np_data, q_type=np.int32, axis=None, ) shape_tensor = net.get_tensor(new_tensor_id, shape_symvar) if len(op.inp_tensors) == 2: op.inp_tensors = [ shape_tensor, op.inp_tensors[1], op.inp_tensors[0], ] else: op.inp_tensors = [ shape_tensor, op.inp_tensors[1], op.inp_tensors[0], op.inp_tensors[2], ] @_register_tranformation_rule(TransformerRule.RESIZE_PARAMS_AS_INPUT) def _resize_params_as_input(net): for op in net.all_oprs: if not isinstance(op, ResizeOpr): continue if len(op.inp_tensors) == 2: continue out_size_tensor = IRTensor( name=op.inp_tensors[0].name + "_out_size", shape=(2,), dtype=np.int32, np_data=np.array(op.out_size, dtype=np.int32), q_type=np.int32, axis=None, ) op.add_inp_tensors(out_size_tensor) @_register_tranformation_rule(TransformerRule.CONV_ADD_ZERO_BIAS) def _add_bias_for_conv(net: IRGraph): for op in net.all_oprs: if not isinstance(op, Conv2dOpr): continue if len(op.inp_tensors) == 3: continue weight_shape = op.inp_tensors[1].shape bias_shape = ( weight_shape[0] if len(weight_shape) == 4 else weight_shape[0] * weight_shape[1] ) bias_shape = (1, bias_shape, 1, 1) bias = np.zeros(bias_shape, dtype=np.float32) bias_tensor = IRTensor( name=op.inp_tensors[0].name + "_bias", shape=bias_shape, dtype=np.float32, np_data=bias, axis=AxisOrder.NCHW, ) if op.inp_tensors[0].scale and op.inp_tensors[1].scale: bias_tensor.set_qparams( op.inp_tensors[0].scale * op.inp_tensors[1].scale, 0 ) bias_tensor.q_dtype = "int32" op.inp_tensors.append(bias_tensor) @_register_tranformation_rule(TransformerRule.DECONV_ADD_ZERO_BIAS) def _add_bias_for_deconv(net: IRGraph): for op in net.all_oprs: if not isinstance(op, Deconv2dOpr): continue if len(op.inp_tensors) == 3: continue weight_shape = op.inp_tensors[1].shape bias_shape = ( weight_shape[1] if len(weight_shape) == 4 else weight_shape[0] * weight_shape[2] ) bias_shape = (1, bias_shape, 1, 1) bias = np.zeros(bias_shape, dtype=np.float32) bias_tensor = IRTensor( name=op.inp_tensors[0].name + "_bias", shape=bias_shape, dtype=np.float32, np_data=bias, axis=AxisOrder.NCHW, ) if op.inp_tensors[0].scale and op.inp_tensors[1].scale: bias_tensor.set_qparams( op.inp_tensors[0].scale * op.inp_tensors[1].scale, 0 ) bias_tensor.q_dtype = "int32" op.inp_tensors.append(bias_tensor) @_register_tranformation_rule(TransformerRule.RESHAPE_BIAS_TO_1DIM) def _reshape_bias_to_1dim(net: IRGraph): for op in net.all_oprs: if not isinstance(op, (Deconv2dOpr, Conv2dOpr)): continue if len(op.inp_tensors) == 2: continue bias = op.inp_tensors[2] if bias.ndim == 4: bias.shape = (bias.shape[1],) bias.np_data = bias.np_data.reshape(-1) @_register_tranformation_rule(TransformerRule.DEPTHWISE_CONV_RESHAPE_WEIGHT) def _depthwise_conv_reshape_weight(net: IRGraph): # general group conv is not supported for TFLite for op in net.all_oprs: if not isinstance(op, Conv2dOpr): continue if op.groups == 1: continue weight = op.inp_tensors[1] # G, oc/G, ic/G, kh, kw ic, cm = weight.shape[1] * op.groups, weight.shape[2] h, w = weight.shape[3:5] weight.shape = (ic, cm, h, w) # oc, ic/G, kh, kw weight.np_data = weight.np_data.reshape(ic, cm, h, w) @_register_tranformation_rule(TransformerRule.FUSE_ACTIVATION) def _fuse_activation(net): delete_intended = [] for op_id, op in zip(net._opr_ids, net.all_oprs): if isinstance(op, (ReluOpr, TanHOpr)): prev_ops = net.find_inp_oprs(op) if len(prev_ops) == 0: continue prev_op = prev_ops[0] if not isinstance(prev_op, OpBase): continue if prev_op.activation != "IDENTITY" or prev_op.name == "Deconv2d": continue activation = op.name.upper() prev_op.activation = activation prev_op.out_tensors = op.out_tensors for t in prev_op.out_tensors: t.owner_opr = prev_op delete_intended.append(net._opr_ids.index(op_id)) for delete_idx in delete_intended[::-1]: net.delete_ops(delete_idx) @_register_tranformation_rule(TransformerRule.SLICE_PARAMS_AS_INPUTS_AND_MAKE_SQUEEZE) def _make_slice_as_inputs(net: IRGraph): for op in net.all_oprs: if not isinstance(op, GetSubTensorOpr): continue ndim = op.inp_tensors[0].ndim def make_input(axis, param, init_value): # make inputs: begin, end and step. ret = [init_value] * ndim # pylint:disable=cell-var-from-loop for k, v in zip(axis, param): ret[k] = v ret = IRTensor( name=op.name + "_fake_input", # pylint:disable=cell-var-from-loop shape=[len(ret)], dtype=np.int32, np_data=np.array(ret, dtype=np.int32), owner_opr=op, # pylint:disable=cell-var-from-loop q_type=np.int32, ) return ret begins_tensor = make_input(op.axis, op.begin_params, 0) ends_tensor = make_input(op.axis, op.end_params, np.iinfo(np.int32).max) steps_tensor = make_input(op.axis, op.step_params, 1) op.inp_tensors = [op.inp_tensors[0], begins_tensor, ends_tensor, steps_tensor] # TFLite slice do not support squeeze axis, so insert a squeeze opr here. # infer actual output shape of tflite slice desired_out_shape = op.out_tensors[0].shape actual_out_shape = [1] * ndim idx = 0 for i in range(ndim): if i in op.squeeze_axis: continue actual_out_shape[i] = desired_out_shape[idx] idx += 1 slice_out_tensor = IRTensor( name=op.name + "fake_output", shape=actual_out_shape, dtype=op.out_tensors[0].dtype, q_type=op.out_tensors[0].q_dtype, owner_opr=op, ) old_out = op.out_tensors op.out_tensors = [slice_out_tensor] squeeze = SqueezeOpr(op.squeeze_axis) squeeze.inp_tensors = [slice_out_tensor] squeeze.out_tensors = old_out idx = net._opr_ids.index(id(op)) + 1 net.add_op(squeeze, idx) # caffe transormer rules class PatternNode: def __init__(self, type, is_output=False, const_value=None): self.op = None self.type = type self.inp_oprs = [] self.inp_const = [] self.inp_tensors = [] self.is_output = is_output self.const_value = const_value def check_const_value(self, op): inp_tensors = [v.np_data for v in op.inp_tensors] for const in self.const_value: idx = const[0] if idx == -1: find = False for index, v in enumerate(inp_tensors): if np.array_equal(const[1], v): find = True del inp_tensors[index] break if not find: return False elif not np.array_equal(const[1], inp_tensors[idx]): return False return True get_type = lambda op: type(op).__name__ def match(node, opr): node_queue = [node] opr_queue = [opr] matched_opr = set() matched_node = set() while len(node_queue) != 0: cur_node = node_queue.pop(0) cur_opr = opr_queue.pop(0) if cur_node.type != get_type(cur_opr) and cur_node.type != "*" or cur_opr.skip: return False if cur_node.op == None: cur_node.op = cur_opr if cur_node.const_value != None: if not cur_node.check_const_value(cur_opr): return False elif cur_node.op != cur_opr: return False matched_opr.add(cur_opr) matched_node.add(cur_node) for i, var in enumerate(cur_opr.inp_tensors): if var.np_data is not None: cur_node.inp_const.append([i, var.np_data]) else: cur_node.inp_tensors.append([i, var]) if len(cur_node.inp_oprs) == 0: continue if len(cur_node.inp_oprs) != len(cur_opr.inp_oprs): return False for i, j in zip(cur_node.inp_oprs, cur_opr.inp_oprs): node_queue.append(i) opr_queue.append(j) for n in matched_node: if n.is_output: continue for op in n.op.out_oprs: if op not in matched_opr: return False return True def get_softmax_axis(ndim: int) -> int: if ndim in (0, 1, 3): return 0 return 1 @_register_tranformation_rule(TransformerRule.FUSE_SOFTMAX) def _fuse_softmax(net: IRGraph): matches = OrderedDict() # type: OrderedDict for op in net.all_oprs: if not isinstance(op, TrueDivOpr): continue try: prev_op = net.find_inp_oprs(op)[1] cur_index = net._opr_ids.index(id(op)) if ( not isinstance(prev_op, ReduceOpr) or prev_op.mode != "SUM" or prev_op.axis != get_softmax_axis(prev_op.inp_tensors[0].ndim) or net._opr_ids.index(id(prev_op)) != cur_index - 1 ): continue prev_op = net.find_inp_oprs(op)[0] if ( not isinstance(prev_op, ExpOpr) or net._opr_ids.index(id(prev_op)) != cur_index - 2 ): continue prev_op = net.find_inp_oprs(prev_op)[0] if ( not isinstance(prev_op, SubOpr) or net._opr_ids.index(id(prev_op)) != cur_index - 3 ): continue prev_op = net.find_inp_oprs(prev_op)[1] if ( not isinstance(prev_op, ReduceOpr) or prev_op.mode != "MAX" or prev_op.axis != get_softmax_axis(prev_op.inp_tensors[0].ndim) or net._opr_ids.index(id(prev_op)) != cur_index - 4 ): continue except IndexError: # doesn't match continue softmax_opr = SoftmaxOpr(axis=get_softmax_axis(prev_op.inp_tensors[0].ndim)) softmax_opr.beta = 1 softmax_opr.inp_tensors = prev_op.inp_tensors[:1] for i in softmax_opr.inp_tensors: i.user_opr.append(softmax_opr) softmax_opr.out_tensors = op.out_tensors softmax_out_oprs = net.find_out_oprs(op) matches[id(prev_op)] = (id(prev_op), softmax_opr, softmax_out_oprs) for original_id, generated_pair in list(matches.items())[::-1]: index = net._opr_ids.index(original_id) for out_op in generated_pair[2]: generated_pair[1].out_tensors[0].user_opr.append(out_op) del net._opr_ids[index : index + 5] del net.all_oprs[index : index + 5] net._opr_ids.insert(index, generated_pair[0]) net.all_oprs.insert(index, generated_pair[1]) @_register_tranformation_rule(TransformerRule.FUSE_FOR_LEAKY_RELU) def _fuse_leaky_relu(net: IRGraph): """ Elemwise(ADD) + Elemwise(MUL) + Elemwise(MAX) + Elemwise(MIN) -> LeakyRelu """ for opr in net.all_oprs: if ( opr.name == "Add" and len(net.find_inp_oprs(opr)) == 2 and net.find_inp_oprs(opr)[0].name == "Max" and net.find_inp_oprs(opr)[1].name == "Mul" ): max_op = net.find_inp_oprs(opr)[0] mul_op = net.find_inp_oprs(opr)[1] if not mul_op.inp_tensors[1].shape == (1,): continue if not max_op.inp_tensors[1].shape == (1,): continue if ( len(net.find_inp_oprs(mul_op)) != 1 or net.find_inp_oprs(mul_op)[0].name != "Min" or net.find_inp_oprs(mul_op)[0].inp_tensors[1].shape != (1,) ): continue min_op = net.find_inp_oprs(mul_op)[0] if not min_op.inp_tensors[1].shape == (1,): continue if max_op.inp_tensors[0] != min_op.inp_tensors[0]: continue leaky_relu = LeakyReluOpr( negative_slope=float(mul_op.inp_tensors[1].np_data) ) leaky_relu.inp_tensors = [max_op.inp_tensors[0]] max_op.inp_tensors[0].user_opr.remove(max_op) max_op.inp_tensors[0].user_opr.remove(min_op) max_op.inp_tensors[0].user_opr.append(leaky_relu) leaky_relu.out_tensors = opr.out_tensors opr.out_tensors[0].owner_opr = leaky_relu index = net.all_oprs.index(max_op) del net.all_oprs[index : index + 4] del net._opr_ids[index : index + 4] net.add_op(leaky_relu, index) @_register_tranformation_rule(TransformerRule.FUSE_FOR_CONV_BIAS) def _fuse_for_conv_bias(net: IRGraph): """ ConvolutionForward + Elemwise(ADD) -> ConvForwardBias """ for opr in net.all_oprs: if ( opr.name == "Conv2d" and len(net.find_out_oprs(opr)) == 1 and net.find_out_oprs(opr)[0].name == "Add" ): bias_op = net.find_out_oprs(opr)[0] if not ( ( bias_op.inp_tensors[1].np_data is not None and len(bias_op.inp_tensors[1].np_data.reshape(-1)) == opr.inp_tensors[1].shape[0] ) or ( ( bias_op.inp_tensors[0].np_data is not None and len(bias_op.inp_tensors[0].np_data.reshape(-1)) == opr.inp_tensors[1].shape[0] ) ) ): continue bias_idx = 0 if bias_op.inp_tensors[0].np_data is not None else 1 if len(opr.inp_tensors) == 2: opr.inp_tensors.append(bias_op.inp_tensors[bias_idx]) else: bias_shape = opr.inp_tensors[2].np_data.shape add_tensor = bias_op.inp_tensors[bias_idx].np_data if add_tensor.shape != bias_shape: add_tensor = add_tensor.reshape(bias_shape) opr.inp_tensors[2].np_data += add_tensor if bias_op in opr.out_tensors[0].user_opr: opr.out_tensors[0].user_opr.remove(bias_op) bias_out_op = net.find_out_oprs(bias_op) if len(bias_out_op) > 0: for op in bias_out_op: op.inp_tensors[0] = opr.out_tensors[0] opr.out_tensors[0].user_opr.append(op) else: # last op of the graph assert bias_op.out_tensors[0] in net.graph_outputs index = net.graph_outputs.index(bias_op.out_tensors[0]) net.graph_outputs[index] = opr.out_tensors[0] opr.activation = bias_op.activation index = net.all_oprs.index(bias_op) del net.all_oprs[index] del net._opr_ids[index] @_register_tranformation_rule(TransformerRule.FUSE_FOR_DECONV_BIAS) def _fuse_for_deconv_bias(net: IRGraph): for opr in net.all_oprs: if ( opr.name == "Deconv2d" and len(net.find_out_oprs(opr)) == 1 and net.find_out_oprs(opr)[0].name == "Add" ): bias_op = net.find_out_oprs(opr)[0] if not ( ( bias_op.inp_tensors[1].np_data is not None and len(bias_op.inp_tensors[1].np_data.reshape(-1)) == opr.inp_tensors[1].shape[1] ) or ( ( bias_op.inp_tensors[0].np_data is not None and len(bias_op.inp_tensors[0].np_data.reshape(-1)) == opr.inp_tensors[1].shape[1] ) ) ): continue bias_idx = 0 if bias_op.inp_tensors[0].np_data is not None else 1 if len(opr.inp_tensors) == 3: # shape, weight, input, bias opr.inp_tensors.append(bias_op.inp_tensors[bias_idx]) else: bias_shape = opr.inp_tensors[3].np_data.shape add_tensor = bias_op.inp_tensors[bias_idx].np_data if add_tensor.shape != bias_shape: add_tensor = add_tensor.reshape(bias_shape) opr.inp_tensors[3].np_data += add_tensor if bias_op in opr.out_tensors[0].user_opr: opr.out_tensors[0].user_opr.remove(bias_op) bias_out_op = net.find_out_oprs(bias_op) if len(bias_out_op) > 0: for op in bias_out_op: op.inp_tensors[0] = opr.out_tensors[0] opr.out_tensors[0].user_opr.append(op) else: # last op of the graph assert bias_op.out_tensors[0] in net.graph_outputs index = net.graph_outputs.index(bias_op.out_tensors[0]) net.graph_outputs[index] = opr.out_tensors[0] opr.activation = bias_op.activation index = net.all_oprs.index(bias_op) del net.all_oprs[index] del net._opr_ids[index] @_register_tranformation_rule(TransformerRule.EXPAND_MUL_ADD3) def _expand_mul_add3(net: IRGraph): for op in net.all_oprs: if not isinstance(op, FuseMulAdd3Opr): continue last_op = net.find_inp_oprs(op) assert len(last_op) == 1 mul_out_tensor = IRTensor( name=op.inp_tensors[0].name + "_mul_out", shape=op.inp_tensors[0].shape, dtype=op.inp_tensors[0].dtype, ) new_tensor_id = max(net._tensor_ids) + 1 net.add_tensor(new_tensor_id, mul_out_tensor) mul_op = MulOpr() mul_out_tensor.owner_opr = mul_op mul_op.inp_tensors = op.inp_tensors[:2] for o in mul_op.inp_tensors: index = o.user_opr.index(op) o.user_opr[index] = mul_op mul_op.out_tensors = [mul_out_tensor] add_op = AddOpr() add_op.inp_tensors = [mul_out_tensor, op.inp_tensors[2]] mul_out_tensor.user_opr.append(add_op) add_op.out_tensors = op.out_tensors index = net._opr_ids.index(id(op)) net.delete_ops(index) net.add_op(mul_op, index) net.add_op(add_op, index + 1) @_register_tranformation_rule(TransformerRule.REPLACE_FLATTEN_TO_RESHAPE) def _replace_flatten_to_reshape(net: IRGraph): for opr in net.all_oprs: if isinstance(opr, FlattenOpr): out_shape = tuple(list(opr.inp_tensors[0].shape[: opr.start_axis]) + [-1]) reshape_op = ReshapeOpr(out_shape=out_shape) reshape_op.inp_tensors = opr.inp_tensors for t in reshape_op.inp_tensors: idx = t.user_opr.index(opr) t.user_opr[idx] = reshape_op reshape_op.out_tensors = opr.out_tensors for t in reshape_op.out_tensors: t.owner_opr = reshape_op net.replace_op(opr, reshape_op) @_register_tranformation_rule(TransformerRule.REMOVE_RESHAPE_REALTED_OP) def _remove_reshape_tensors(net: IRGraph): for opr in net.all_oprs: if isinstance(opr, ReshapeOpr) and len(opr.inp_tensors) > 1: opr.inp_tensors = opr.inp_tensors[:1] @_register_tranformation_rule(TransformerRule.REMOVE_DROPOUT) def _remove_dropout(net: IRGraph): for opr in net.all_oprs: for idx, inp in enumerate(opr.inp_tensors): owner_opr = inp.owner_opr if isinstance(owner_opr, DropoutOpr) and owner_opr.drop_prob == 0: opr.inp_tensors[idx] = owner_opr.inp_tensors[0] for idx, out in enumerate(net.graph_outputs): owner_opr = out.owner_opr if isinstance(owner_opr, DropoutOpr) and owner_opr.drop_prob == 0: net.graph_outputs[idx] = owner_opr.inp_tensors[0] @_register_tranformation_rule(TransformerRule.REMOVE_RELU) def _remove_relu(net: IRGraph): for opr in net.all_oprs: for idx, inp in enumerate(opr.inp_tensors): owner_opr = inp.owner_opr if isinstance(owner_opr, ReluOpr): opr.inp_tensors[idx] = owner_opr.inp_tensors[0] for idx, out in enumerate(net.graph_outputs): owner_opr = out.owner_opr if isinstance(owner_opr, ReluOpr): net.graph_outputs[idx] = owner_opr.inp_tensors[0] visited_tensor = set() # type: set def _dfs_recursive(op_set, tensor): owner_opr = tensor.owner_opr op_set.add(owner_opr) if tensor in visited_tensor: return visited_tensor.add(tensor) if isinstance(owner_opr, IRGraph) or owner_opr is None: return for tt in owner_opr.inp_tensors: _dfs_recursive(op_set, tt) @_register_tranformation_rule(TransformerRule.REMOVE_UNRELATED_IROP) def _remove_unrelated_op(net: IRGraph): match_sets = set() # type: Set[OpBase] for out_tensor in net.graph_outputs: _dfs_recursive(match_sets, out_tensor) remove_idx = [] for opr in net.all_oprs: if opr not in match_sets: index = net._opr_ids.index(id(opr)) remove_idx.append(index) for i in remove_idx[::-1]: net.delete_ops(i) @_register_tranformation_rule(TransformerRule.ADD_FAKE_HSIGMOID_OUT) def _add_fake_hsigmoid_tensor(net: IRGraph): for opr in net.all_oprs: if isinstance(opr, (HardSwishOpr, HardSigmoidOpr)): add_3_out_tensor = IRTensor( opr.out_tensors[0].name + "_fake_add3_out", opr.inp_tensors[0].shape, opr.inp_tensors[0].dtype, q_type=opr.inp_tensors[0].q_dtype, scale=opr.inp_tensors[0].scale, zero_point=opr.inp_tensors[0].zero_point, ) opr.add_inp_tensors(add_3_out_tensor) relu6_out_tensor = IRTensor( opr.out_tensors[0].name + "_relu6_out", opr.inp_tensors[0].shape, opr.inp_tensors[0].dtype, q_type=opr.inp_tensors[0].q_dtype, scale=opr.inp_tensors[0].scale, zero_point=opr.inp_tensors[0].zero_point, ) opr.add_inp_tensors(relu6_out_tensor) if isinstance(opr, HardSwishOpr): div6_out_tensor = IRTensor( opr.out_tensors[0].name + "_div_out", opr.inp_tensors[0].shape, opr.inp_tensors[0].dtype, q_type=opr.inp_tensors[0].q_dtype, scale=opr.inp_tensors[0].scale, zero_point=opr.inp_tensors[0].zero_point, ) opr.add_inp_tensors(div6_out_tensor) def fold_conv_bn( conv_weight, conv_bias, conv_groups, gamma, beta, bn_mean, bn_var, eps ): conv_bias = conv_bias.reshape(1, -1, 1, 1) gamma = gamma.reshape(1, -1, 1, 1) beta = beta.reshape(1, -1, 1, 1) bn_mean = bn_mean.reshape(1, -1, 1, 1) bn_var = bn_var.reshape(1, -1, 1, 1) # bn_istd = 1 / bn_std bn_istd = 1.0 / sqrt(bn_var + eps) # type: ignore[attr-defined] # w_fold = gamma / bn_std * W scale_factor = gamma * bn_istd if conv_groups == 1: w_fold = conv_weight * scale_factor.reshape(-1, 1, 1, 1) else: w_fold = conv_weight * scale_factor.reshape(conv_groups, -1, 1, 1, 1) # b_fold = gamma * (b - bn_mean) / bn_std + beta b_fold = beta + gamma * (conv_bias - bn_mean) * bn_istd return w_fold, b_fold @_register_tranformation_rule(TransformerRule.FUSE_CONV_BN) def _fuse_conv_bn(net: IRGraph): for opr in net.all_oprs: if ( opr.name == "BatchNormalization" and len(net.find_inp_oprs(opr)) == 1 and net.find_inp_oprs(opr)[0].name == "Conv2d" and len(net.find_out_oprs(net.find_inp_oprs(opr)[0])) == 1 and net.find_out_oprs(net.find_inp_oprs(opr)[0])[0] == opr ): gamma = ( Tensor(opr.weight) # type: ignore[attr-defined] if opr.weight is not None # type: ignore[attr-defined] else
Tensor(opr.inp_tensors[1].np_data)
megengine.Tensor
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. from collections import OrderedDict from enum import Enum from functools import cmp_to_key from typing import Set # pylint: disable=unused-import from typing import Callable, Dict, Sequence import numpy as np from megengine import Tensor from megengine.functional import sqrt from ..converter_ir.ir_graph import IRGraph from .ir_op import ( AddOpr, Conv2dOpr, ConvRelu2dOpr, Deconv2dOpr, DropoutOpr, ExpOpr, FlattenOpr, FuseMulAdd3Opr, GetSubTensorOpr, HardSigmoidOpr, HardSwishOpr, IdentityOpr, LeakyReluOpr, MulOpr, OpBase, PadOpr, ReduceOpr, ReluOpr, ReshapeOpr, ResizeOpr, SoftmaxOpr, SqueezeOpr, SubOpr, TanHOpr, TransposeOpr, TrueDivOpr, _PoolOpr, ) from .ir_tensor import AxisOrder, IRTensor class TransformerRule(Enum): # general rules NOPE = 1 # for TFLite REDUCE_AXIS_AS_INPUT = 100 REMOVE_RESHAPE_INPUT = 101 # FUSE_FOR_RELU6 pass should happen before FUSE_ACTIVATION FUSE_FOR_RELU6 = 102 ## EXPAND_CONVRELU = 102.1 CONV_ADD_ZERO_BIAS = 103 FUSE_FOR_CONV_BIAS = 103.1 FUSE_CONV_BN = 104 DECONV_ADD_ZERO_BIAS = 105 # DEPTHWISE_CONV_RESHAPE_WEIGHT requirs RESHAPE_BIAS_TO_1DIM DEPTHWISE_CONV_RESHAPE_WEIGHT = 106 FUSE_SOFTMAX = 107 # RESHAPE_BIAS_TO_1DIM should happen before DECONV_SHAPE_AS_INPUT RESHAPE_BIAS_TO_1DIM = 108 DECONV_SHAPE_AS_INPUT = 109 FUSE_ASTYPE = 110 ## PADDING_FOR_CONV_AND_POOLING = 111 TRANSPOSE_PATTERN_AS_INPUT = 112 # FUSE_FOR_LEAKY_RELU should happen before EXPAND_MUL_ADD3 FUSE_FOR_LEAKY_RELU = 113 EXPAND_MUL_ADD3 = 114 EXPAND_ADD_SIGMOID = 115 ## FUSE_FOR_DECONV_BIAS = 117 FUSE_FOR_FULLY_CONNECTED = 118 ## # for TFLite Converter SLICE_PARAMS_AS_INPUTS_AND_MAKE_SQUEEZE = 119 RESIZE_PARAMS_AS_INPUT = 120 REPLACE_FLATTEN_TO_RESHAPE = 120.1 # remove reshape REMOVE_RESHAPE_REALTED_OP = 121 REMOVE_DROPOUT = 122 FUSE_ACTIVATION = 123 REMOVE_IDENTITY = 124 REMOVE_RELU = 125 REMOVE_UNRELATED_IROP = 130 ADD_FAKE_HSIGMOID_OUT = 131 RENAME_CAFFE_LAYER_TENSOR = 132 def cmp_rules(a, b): if a.value < b.value: return -1 if a.value > b.value: return 1 return 0 class IRTransform: def __init__(self, transformer_options): if not isinstance(transformer_options, Sequence): transformer_options = [ transformer_options, ] # bias of depthwise_conv must be 1 dim if TransformerRule.DEPTHWISE_CONV_RESHAPE_WEIGHT in transformer_options: if TransformerRule.RESHAPE_BIAS_TO_1DIM not in transformer_options: transformer_options.append(TransformerRule.RESHAPE_BIAS_TO_1DIM) self.trans_options = sorted(transformer_options, key=cmp_to_key(cmp_rules)) def transform(self, ir_graph): for option in self.trans_options: TRANSFORMMAP[option](ir_graph) return ir_graph TRANSFORMMAP: Dict[Enum, Callable] = {} def _register_tranformation_rule(transformer_option): def callback(impl): TRANSFORMMAP[transformer_option] = impl return callback def cal_pad_mode(tm_opr): out_shape = tm_opr.out_tensors[0].shape inp_shape = tm_opr.inp_tensors[0].shape if out_shape[2:] == inp_shape[2:]: return "SAME" else: return "VALID" @_register_tranformation_rule(TransformerRule.REMOVE_RESHAPE_INPUT) def _remove_reshape_input(net): for op in net.all_oprs: if not isinstance(op, ReshapeOpr): continue if len(op.inp_tensors) == 2: del op.inp_tensors[1] @_register_tranformation_rule(TransformerRule.TRANSPOSE_PATTERN_AS_INPUT) def _transpose_pattern_as_input(net): for op in net.all_oprs: if not isinstance(op, TransposeOpr): continue perm_tensor = IRTensor( name=op.inp_tensors[0].name + "_perm", shape=np.array(op.pattern).shape, dtype=np.int32, np_data=np.array(op.pattern, dtype=np.int32), owner_opr=op, q_type=np.int32, axis=None, ) op.add_inp_tensors(perm_tensor) @_register_tranformation_rule(TransformerRule.REDUCE_AXIS_AS_INPUT) def _reduce_axis_as_input(net): for op in net.all_oprs: if not isinstance(op, ReduceOpr): continue axis_tensor = IRTensor( name=op.inp_tensors[0].name + "_axis", shape=[1], dtype=np.int32, np_data=np.array(op.axis, dtype=np.int32), owner_opr=op, q_type=np.int32, axis=None, ) op.add_inp_tensors(axis_tensor) @_register_tranformation_rule(TransformerRule.PADDING_FOR_CONV_AND_POOLING) def _make_padding(net: IRGraph): def have_padding(opr): if isinstance(opr, Conv2dOpr): if cal_pad_mode(opr) == "SAME": return False if hasattr(opr, "padding") and (opr.padding[0] > 0 or opr.padding[1] > 0): return True return False insert_intended = OrderedDict() # type: OrderedDict for op in net.all_oprs: if not isinstance(op, (Conv2dOpr, _PoolOpr)): continue if have_padding(op): assert op.inp_tensors[0].ndim == 4, "ERROR: unsupported padding mode" np_data = np.array( [ 0, 0, op.padding[0], op.padding[0], op.padding[1], op.padding[1], 0, 0, ], dtype=np.int32, ) new_tensor_id = max(net._tensor_ids) + 1 pad_in_tensor = IRTensor( name=op.inp_tensors[0].name + "_paddings", shape=[4, 2], dtype=np.int32, owner_opr=None, np_data=np_data, q_type=np.int32, axis=None, ) net.add_tensor(new_tensor_id, pad_in_tensor) shape = list(op.inp_tensors[0].shape) new_tensor_id = max(net._tensor_ids) + 1 pad_out_tensor = IRTensor( name=op.inp_tensors[0].name + "_pad_out", shape=[ shape[0], shape[1], shape[2] + op.padding[0] * 2, shape[3] + op.padding[1] * 2, ], dtype=op.inp_tensors[0].dtype, ) if ( hasattr(op.inp_tensors[0], "scale") and op.inp_tensors[0].scale is not None ): pad_out_tensor.scale = op.inp_tensors[0].scale pad_out_tensor.q_dtype = op.inp_tensors[0].q_dtype if hasattr(op.inp_tensors[0], "zero_point"): pad_out_tensor.zero_point = op.inp_tensors[0].zero_point net.add_tensor(new_tensor_id, pad_out_tensor) pad_opr = PadOpr() pad_opr.inp_tensors = [op.inp_tensors[0], pad_in_tensor] index = op.inp_tensors[0].user_opr.index(op) op.inp_tensors[0].user_opr[index] = pad_opr pad_opr.out_tensors = [pad_out_tensor] pad_out_tensor.owner_opr = pad_opr op.inp_tensors = [pad_out_tensor] + op.inp_tensors[1:] pad_out_tensor.user_opr.append(op) index = net._opr_ids.index(id(op)) insert_intended[index] = (id(pad_opr), pad_opr) for index, generated_pair in list(insert_intended.items())[::-1]: net._opr_ids.insert(index, generated_pair[0]) net.all_oprs.insert(index, generated_pair[1]) @_register_tranformation_rule(TransformerRule.DECONV_SHAPE_AS_INPUT) def _deconv_shape_as_input(net: IRGraph): for op in net.all_oprs: if not isinstance(op, Deconv2dOpr): continue result_shape = op.out_tensors[0].shape np_data = np.array( [result_shape[0], result_shape[2], result_shape[3], result_shape[1],], dtype=np.int32, ) new_tensor_id = max(net._tensor_ids) + 1 shape_symvar = IRTensor( name=op.inp_tensors[0].name + "_deconv_out_shape", shape=[4], dtype=np.int32, owner_opr=op, np_data=np_data, q_type=np.int32, axis=None, ) shape_tensor = net.get_tensor(new_tensor_id, shape_symvar) if len(op.inp_tensors) == 2: op.inp_tensors = [ shape_tensor, op.inp_tensors[1], op.inp_tensors[0], ] else: op.inp_tensors = [ shape_tensor, op.inp_tensors[1], op.inp_tensors[0], op.inp_tensors[2], ] @_register_tranformation_rule(TransformerRule.RESIZE_PARAMS_AS_INPUT) def _resize_params_as_input(net): for op in net.all_oprs: if not isinstance(op, ResizeOpr): continue if len(op.inp_tensors) == 2: continue out_size_tensor = IRTensor( name=op.inp_tensors[0].name + "_out_size", shape=(2,), dtype=np.int32, np_data=np.array(op.out_size, dtype=np.int32), q_type=np.int32, axis=None, ) op.add_inp_tensors(out_size_tensor) @_register_tranformation_rule(TransformerRule.CONV_ADD_ZERO_BIAS) def _add_bias_for_conv(net: IRGraph): for op in net.all_oprs: if not isinstance(op, Conv2dOpr): continue if len(op.inp_tensors) == 3: continue weight_shape = op.inp_tensors[1].shape bias_shape = ( weight_shape[0] if len(weight_shape) == 4 else weight_shape[0] * weight_shape[1] ) bias_shape = (1, bias_shape, 1, 1) bias = np.zeros(bias_shape, dtype=np.float32) bias_tensor = IRTensor( name=op.inp_tensors[0].name + "_bias", shape=bias_shape, dtype=np.float32, np_data=bias, axis=AxisOrder.NCHW, ) if op.inp_tensors[0].scale and op.inp_tensors[1].scale: bias_tensor.set_qparams( op.inp_tensors[0].scale * op.inp_tensors[1].scale, 0 ) bias_tensor.q_dtype = "int32" op.inp_tensors.append(bias_tensor) @_register_tranformation_rule(TransformerRule.DECONV_ADD_ZERO_BIAS) def _add_bias_for_deconv(net: IRGraph): for op in net.all_oprs: if not isinstance(op, Deconv2dOpr): continue if len(op.inp_tensors) == 3: continue weight_shape = op.inp_tensors[1].shape bias_shape = ( weight_shape[1] if len(weight_shape) == 4 else weight_shape[0] * weight_shape[2] ) bias_shape = (1, bias_shape, 1, 1) bias = np.zeros(bias_shape, dtype=np.float32) bias_tensor = IRTensor( name=op.inp_tensors[0].name + "_bias", shape=bias_shape, dtype=np.float32, np_data=bias, axis=AxisOrder.NCHW, ) if op.inp_tensors[0].scale and op.inp_tensors[1].scale: bias_tensor.set_qparams( op.inp_tensors[0].scale * op.inp_tensors[1].scale, 0 ) bias_tensor.q_dtype = "int32" op.inp_tensors.append(bias_tensor) @_register_tranformation_rule(TransformerRule.RESHAPE_BIAS_TO_1DIM) def _reshape_bias_to_1dim(net: IRGraph): for op in net.all_oprs: if not isinstance(op, (Deconv2dOpr, Conv2dOpr)): continue if len(op.inp_tensors) == 2: continue bias = op.inp_tensors[2] if bias.ndim == 4: bias.shape = (bias.shape[1],) bias.np_data = bias.np_data.reshape(-1) @_register_tranformation_rule(TransformerRule.DEPTHWISE_CONV_RESHAPE_WEIGHT) def _depthwise_conv_reshape_weight(net: IRGraph): # general group conv is not supported for TFLite for op in net.all_oprs: if not isinstance(op, Conv2dOpr): continue if op.groups == 1: continue weight = op.inp_tensors[1] # G, oc/G, ic/G, kh, kw ic, cm = weight.shape[1] * op.groups, weight.shape[2] h, w = weight.shape[3:5] weight.shape = (ic, cm, h, w) # oc, ic/G, kh, kw weight.np_data = weight.np_data.reshape(ic, cm, h, w) @_register_tranformation_rule(TransformerRule.FUSE_ACTIVATION) def _fuse_activation(net): delete_intended = [] for op_id, op in zip(net._opr_ids, net.all_oprs): if isinstance(op, (ReluOpr, TanHOpr)): prev_ops = net.find_inp_oprs(op) if len(prev_ops) == 0: continue prev_op = prev_ops[0] if not isinstance(prev_op, OpBase): continue if prev_op.activation != "IDENTITY" or prev_op.name == "Deconv2d": continue activation = op.name.upper() prev_op.activation = activation prev_op.out_tensors = op.out_tensors for t in prev_op.out_tensors: t.owner_opr = prev_op delete_intended.append(net._opr_ids.index(op_id)) for delete_idx in delete_intended[::-1]: net.delete_ops(delete_idx) @_register_tranformation_rule(TransformerRule.SLICE_PARAMS_AS_INPUTS_AND_MAKE_SQUEEZE) def _make_slice_as_inputs(net: IRGraph): for op in net.all_oprs: if not isinstance(op, GetSubTensorOpr): continue ndim = op.inp_tensors[0].ndim def make_input(axis, param, init_value): # make inputs: begin, end and step. ret = [init_value] * ndim # pylint:disable=cell-var-from-loop for k, v in zip(axis, param): ret[k] = v ret = IRTensor( name=op.name + "_fake_input", # pylint:disable=cell-var-from-loop shape=[len(ret)], dtype=np.int32, np_data=np.array(ret, dtype=np.int32), owner_opr=op, # pylint:disable=cell-var-from-loop q_type=np.int32, ) return ret begins_tensor = make_input(op.axis, op.begin_params, 0) ends_tensor = make_input(op.axis, op.end_params, np.iinfo(np.int32).max) steps_tensor = make_input(op.axis, op.step_params, 1) op.inp_tensors = [op.inp_tensors[0], begins_tensor, ends_tensor, steps_tensor] # TFLite slice do not support squeeze axis, so insert a squeeze opr here. # infer actual output shape of tflite slice desired_out_shape = op.out_tensors[0].shape actual_out_shape = [1] * ndim idx = 0 for i in range(ndim): if i in op.squeeze_axis: continue actual_out_shape[i] = desired_out_shape[idx] idx += 1 slice_out_tensor = IRTensor( name=op.name + "fake_output", shape=actual_out_shape, dtype=op.out_tensors[0].dtype, q_type=op.out_tensors[0].q_dtype, owner_opr=op, ) old_out = op.out_tensors op.out_tensors = [slice_out_tensor] squeeze = SqueezeOpr(op.squeeze_axis) squeeze.inp_tensors = [slice_out_tensor] squeeze.out_tensors = old_out idx = net._opr_ids.index(id(op)) + 1 net.add_op(squeeze, idx) # caffe transormer rules class PatternNode: def __init__(self, type, is_output=False, const_value=None): self.op = None self.type = type self.inp_oprs = [] self.inp_const = [] self.inp_tensors = [] self.is_output = is_output self.const_value = const_value def check_const_value(self, op): inp_tensors = [v.np_data for v in op.inp_tensors] for const in self.const_value: idx = const[0] if idx == -1: find = False for index, v in enumerate(inp_tensors): if np.array_equal(const[1], v): find = True del inp_tensors[index] break if not find: return False elif not np.array_equal(const[1], inp_tensors[idx]): return False return True get_type = lambda op: type(op).__name__ def match(node, opr): node_queue = [node] opr_queue = [opr] matched_opr = set() matched_node = set() while len(node_queue) != 0: cur_node = node_queue.pop(0) cur_opr = opr_queue.pop(0) if cur_node.type != get_type(cur_opr) and cur_node.type != "*" or cur_opr.skip: return False if cur_node.op == None: cur_node.op = cur_opr if cur_node.const_value != None: if not cur_node.check_const_value(cur_opr): return False elif cur_node.op != cur_opr: return False matched_opr.add(cur_opr) matched_node.add(cur_node) for i, var in enumerate(cur_opr.inp_tensors): if var.np_data is not None: cur_node.inp_const.append([i, var.np_data]) else: cur_node.inp_tensors.append([i, var]) if len(cur_node.inp_oprs) == 0: continue if len(cur_node.inp_oprs) != len(cur_opr.inp_oprs): return False for i, j in zip(cur_node.inp_oprs, cur_opr.inp_oprs): node_queue.append(i) opr_queue.append(j) for n in matched_node: if n.is_output: continue for op in n.op.out_oprs: if op not in matched_opr: return False return True def get_softmax_axis(ndim: int) -> int: if ndim in (0, 1, 3): return 0 return 1 @_register_tranformation_rule(TransformerRule.FUSE_SOFTMAX) def _fuse_softmax(net: IRGraph): matches = OrderedDict() # type: OrderedDict for op in net.all_oprs: if not isinstance(op, TrueDivOpr): continue try: prev_op = net.find_inp_oprs(op)[1] cur_index = net._opr_ids.index(id(op)) if ( not isinstance(prev_op, ReduceOpr) or prev_op.mode != "SUM" or prev_op.axis != get_softmax_axis(prev_op.inp_tensors[0].ndim) or net._opr_ids.index(id(prev_op)) != cur_index - 1 ): continue prev_op = net.find_inp_oprs(op)[0] if ( not isinstance(prev_op, ExpOpr) or net._opr_ids.index(id(prev_op)) != cur_index - 2 ): continue prev_op = net.find_inp_oprs(prev_op)[0] if ( not isinstance(prev_op, SubOpr) or net._opr_ids.index(id(prev_op)) != cur_index - 3 ): continue prev_op = net.find_inp_oprs(prev_op)[1] if ( not isinstance(prev_op, ReduceOpr) or prev_op.mode != "MAX" or prev_op.axis != get_softmax_axis(prev_op.inp_tensors[0].ndim) or net._opr_ids.index(id(prev_op)) != cur_index - 4 ): continue except IndexError: # doesn't match continue softmax_opr = SoftmaxOpr(axis=get_softmax_axis(prev_op.inp_tensors[0].ndim)) softmax_opr.beta = 1 softmax_opr.inp_tensors = prev_op.inp_tensors[:1] for i in softmax_opr.inp_tensors: i.user_opr.append(softmax_opr) softmax_opr.out_tensors = op.out_tensors softmax_out_oprs = net.find_out_oprs(op) matches[id(prev_op)] = (id(prev_op), softmax_opr, softmax_out_oprs) for original_id, generated_pair in list(matches.items())[::-1]: index = net._opr_ids.index(original_id) for out_op in generated_pair[2]: generated_pair[1].out_tensors[0].user_opr.append(out_op) del net._opr_ids[index : index + 5] del net.all_oprs[index : index + 5] net._opr_ids.insert(index, generated_pair[0]) net.all_oprs.insert(index, generated_pair[1]) @_register_tranformation_rule(TransformerRule.FUSE_FOR_LEAKY_RELU) def _fuse_leaky_relu(net: IRGraph): """ Elemwise(ADD) + Elemwise(MUL) + Elemwise(MAX) + Elemwise(MIN) -> LeakyRelu """ for opr in net.all_oprs: if ( opr.name == "Add" and len(net.find_inp_oprs(opr)) == 2 and net.find_inp_oprs(opr)[0].name == "Max" and net.find_inp_oprs(opr)[1].name == "Mul" ): max_op = net.find_inp_oprs(opr)[0] mul_op = net.find_inp_oprs(opr)[1] if not mul_op.inp_tensors[1].shape == (1,): continue if not max_op.inp_tensors[1].shape == (1,): continue if ( len(net.find_inp_oprs(mul_op)) != 1 or net.find_inp_oprs(mul_op)[0].name != "Min" or net.find_inp_oprs(mul_op)[0].inp_tensors[1].shape != (1,) ): continue min_op = net.find_inp_oprs(mul_op)[0] if not min_op.inp_tensors[1].shape == (1,): continue if max_op.inp_tensors[0] != min_op.inp_tensors[0]: continue leaky_relu = LeakyReluOpr( negative_slope=float(mul_op.inp_tensors[1].np_data) ) leaky_relu.inp_tensors = [max_op.inp_tensors[0]] max_op.inp_tensors[0].user_opr.remove(max_op) max_op.inp_tensors[0].user_opr.remove(min_op) max_op.inp_tensors[0].user_opr.append(leaky_relu) leaky_relu.out_tensors = opr.out_tensors opr.out_tensors[0].owner_opr = leaky_relu index = net.all_oprs.index(max_op) del net.all_oprs[index : index + 4] del net._opr_ids[index : index + 4] net.add_op(leaky_relu, index) @_register_tranformation_rule(TransformerRule.FUSE_FOR_CONV_BIAS) def _fuse_for_conv_bias(net: IRGraph): """ ConvolutionForward + Elemwise(ADD) -> ConvForwardBias """ for opr in net.all_oprs: if ( opr.name == "Conv2d" and len(net.find_out_oprs(opr)) == 1 and net.find_out_oprs(opr)[0].name == "Add" ): bias_op = net.find_out_oprs(opr)[0] if not ( ( bias_op.inp_tensors[1].np_data is not None and len(bias_op.inp_tensors[1].np_data.reshape(-1)) == opr.inp_tensors[1].shape[0] ) or ( ( bias_op.inp_tensors[0].np_data is not None and len(bias_op.inp_tensors[0].np_data.reshape(-1)) == opr.inp_tensors[1].shape[0] ) ) ): continue bias_idx = 0 if bias_op.inp_tensors[0].np_data is not None else 1 if len(opr.inp_tensors) == 2: opr.inp_tensors.append(bias_op.inp_tensors[bias_idx]) else: bias_shape = opr.inp_tensors[2].np_data.shape add_tensor = bias_op.inp_tensors[bias_idx].np_data if add_tensor.shape != bias_shape: add_tensor = add_tensor.reshape(bias_shape) opr.inp_tensors[2].np_data += add_tensor if bias_op in opr.out_tensors[0].user_opr: opr.out_tensors[0].user_opr.remove(bias_op) bias_out_op = net.find_out_oprs(bias_op) if len(bias_out_op) > 0: for op in bias_out_op: op.inp_tensors[0] = opr.out_tensors[0] opr.out_tensors[0].user_opr.append(op) else: # last op of the graph assert bias_op.out_tensors[0] in net.graph_outputs index = net.graph_outputs.index(bias_op.out_tensors[0]) net.graph_outputs[index] = opr.out_tensors[0] opr.activation = bias_op.activation index = net.all_oprs.index(bias_op) del net.all_oprs[index] del net._opr_ids[index] @_register_tranformation_rule(TransformerRule.FUSE_FOR_DECONV_BIAS) def _fuse_for_deconv_bias(net: IRGraph): for opr in net.all_oprs: if ( opr.name == "Deconv2d" and len(net.find_out_oprs(opr)) == 1 and net.find_out_oprs(opr)[0].name == "Add" ): bias_op = net.find_out_oprs(opr)[0] if not ( ( bias_op.inp_tensors[1].np_data is not None and len(bias_op.inp_tensors[1].np_data.reshape(-1)) == opr.inp_tensors[1].shape[1] ) or ( ( bias_op.inp_tensors[0].np_data is not None and len(bias_op.inp_tensors[0].np_data.reshape(-1)) == opr.inp_tensors[1].shape[1] ) ) ): continue bias_idx = 0 if bias_op.inp_tensors[0].np_data is not None else 1 if len(opr.inp_tensors) == 3: # shape, weight, input, bias opr.inp_tensors.append(bias_op.inp_tensors[bias_idx]) else: bias_shape = opr.inp_tensors[3].np_data.shape add_tensor = bias_op.inp_tensors[bias_idx].np_data if add_tensor.shape != bias_shape: add_tensor = add_tensor.reshape(bias_shape) opr.inp_tensors[3].np_data += add_tensor if bias_op in opr.out_tensors[0].user_opr: opr.out_tensors[0].user_opr.remove(bias_op) bias_out_op = net.find_out_oprs(bias_op) if len(bias_out_op) > 0: for op in bias_out_op: op.inp_tensors[0] = opr.out_tensors[0] opr.out_tensors[0].user_opr.append(op) else: # last op of the graph assert bias_op.out_tensors[0] in net.graph_outputs index = net.graph_outputs.index(bias_op.out_tensors[0]) net.graph_outputs[index] = opr.out_tensors[0] opr.activation = bias_op.activation index = net.all_oprs.index(bias_op) del net.all_oprs[index] del net._opr_ids[index] @_register_tranformation_rule(TransformerRule.EXPAND_MUL_ADD3) def _expand_mul_add3(net: IRGraph): for op in net.all_oprs: if not isinstance(op, FuseMulAdd3Opr): continue last_op = net.find_inp_oprs(op) assert len(last_op) == 1 mul_out_tensor = IRTensor( name=op.inp_tensors[0].name + "_mul_out", shape=op.inp_tensors[0].shape, dtype=op.inp_tensors[0].dtype, ) new_tensor_id = max(net._tensor_ids) + 1 net.add_tensor(new_tensor_id, mul_out_tensor) mul_op = MulOpr() mul_out_tensor.owner_opr = mul_op mul_op.inp_tensors = op.inp_tensors[:2] for o in mul_op.inp_tensors: index = o.user_opr.index(op) o.user_opr[index] = mul_op mul_op.out_tensors = [mul_out_tensor] add_op = AddOpr() add_op.inp_tensors = [mul_out_tensor, op.inp_tensors[2]] mul_out_tensor.user_opr.append(add_op) add_op.out_tensors = op.out_tensors index = net._opr_ids.index(id(op)) net.delete_ops(index) net.add_op(mul_op, index) net.add_op(add_op, index + 1) @_register_tranformation_rule(TransformerRule.REPLACE_FLATTEN_TO_RESHAPE) def _replace_flatten_to_reshape(net: IRGraph): for opr in net.all_oprs: if isinstance(opr, FlattenOpr): out_shape = tuple(list(opr.inp_tensors[0].shape[: opr.start_axis]) + [-1]) reshape_op = ReshapeOpr(out_shape=out_shape) reshape_op.inp_tensors = opr.inp_tensors for t in reshape_op.inp_tensors: idx = t.user_opr.index(opr) t.user_opr[idx] = reshape_op reshape_op.out_tensors = opr.out_tensors for t in reshape_op.out_tensors: t.owner_opr = reshape_op net.replace_op(opr, reshape_op) @_register_tranformation_rule(TransformerRule.REMOVE_RESHAPE_REALTED_OP) def _remove_reshape_tensors(net: IRGraph): for opr in net.all_oprs: if isinstance(opr, ReshapeOpr) and len(opr.inp_tensors) > 1: opr.inp_tensors = opr.inp_tensors[:1] @_register_tranformation_rule(TransformerRule.REMOVE_DROPOUT) def _remove_dropout(net: IRGraph): for opr in net.all_oprs: for idx, inp in enumerate(opr.inp_tensors): owner_opr = inp.owner_opr if isinstance(owner_opr, DropoutOpr) and owner_opr.drop_prob == 0: opr.inp_tensors[idx] = owner_opr.inp_tensors[0] for idx, out in enumerate(net.graph_outputs): owner_opr = out.owner_opr if isinstance(owner_opr, DropoutOpr) and owner_opr.drop_prob == 0: net.graph_outputs[idx] = owner_opr.inp_tensors[0] @_register_tranformation_rule(TransformerRule.REMOVE_RELU) def _remove_relu(net: IRGraph): for opr in net.all_oprs: for idx, inp in enumerate(opr.inp_tensors): owner_opr = inp.owner_opr if isinstance(owner_opr, ReluOpr): opr.inp_tensors[idx] = owner_opr.inp_tensors[0] for idx, out in enumerate(net.graph_outputs): owner_opr = out.owner_opr if isinstance(owner_opr, ReluOpr): net.graph_outputs[idx] = owner_opr.inp_tensors[0] visited_tensor = set() # type: set def _dfs_recursive(op_set, tensor): owner_opr = tensor.owner_opr op_set.add(owner_opr) if tensor in visited_tensor: return visited_tensor.add(tensor) if isinstance(owner_opr, IRGraph) or owner_opr is None: return for tt in owner_opr.inp_tensors: _dfs_recursive(op_set, tt) @_register_tranformation_rule(TransformerRule.REMOVE_UNRELATED_IROP) def _remove_unrelated_op(net: IRGraph): match_sets = set() # type: Set[OpBase] for out_tensor in net.graph_outputs: _dfs_recursive(match_sets, out_tensor) remove_idx = [] for opr in net.all_oprs: if opr not in match_sets: index = net._opr_ids.index(id(opr)) remove_idx.append(index) for i in remove_idx[::-1]: net.delete_ops(i) @_register_tranformation_rule(TransformerRule.ADD_FAKE_HSIGMOID_OUT) def _add_fake_hsigmoid_tensor(net: IRGraph): for opr in net.all_oprs: if isinstance(opr, (HardSwishOpr, HardSigmoidOpr)): add_3_out_tensor = IRTensor( opr.out_tensors[0].name + "_fake_add3_out", opr.inp_tensors[0].shape, opr.inp_tensors[0].dtype, q_type=opr.inp_tensors[0].q_dtype, scale=opr.inp_tensors[0].scale, zero_point=opr.inp_tensors[0].zero_point, ) opr.add_inp_tensors(add_3_out_tensor) relu6_out_tensor = IRTensor( opr.out_tensors[0].name + "_relu6_out", opr.inp_tensors[0].shape, opr.inp_tensors[0].dtype, q_type=opr.inp_tensors[0].q_dtype, scale=opr.inp_tensors[0].scale, zero_point=opr.inp_tensors[0].zero_point, ) opr.add_inp_tensors(relu6_out_tensor) if isinstance(opr, HardSwishOpr): div6_out_tensor = IRTensor( opr.out_tensors[0].name + "_div_out", opr.inp_tensors[0].shape, opr.inp_tensors[0].dtype, q_type=opr.inp_tensors[0].q_dtype, scale=opr.inp_tensors[0].scale, zero_point=opr.inp_tensors[0].zero_point, ) opr.add_inp_tensors(div6_out_tensor) def fold_conv_bn( conv_weight, conv_bias, conv_groups, gamma, beta, bn_mean, bn_var, eps ): conv_bias = conv_bias.reshape(1, -1, 1, 1) gamma = gamma.reshape(1, -1, 1, 1) beta = beta.reshape(1, -1, 1, 1) bn_mean = bn_mean.reshape(1, -1, 1, 1) bn_var = bn_var.reshape(1, -1, 1, 1) # bn_istd = 1 / bn_std bn_istd = 1.0 / sqrt(bn_var + eps) # type: ignore[attr-defined] # w_fold = gamma / bn_std * W scale_factor = gamma * bn_istd if conv_groups == 1: w_fold = conv_weight * scale_factor.reshape(-1, 1, 1, 1) else: w_fold = conv_weight * scale_factor.reshape(conv_groups, -1, 1, 1, 1) # b_fold = gamma * (b - bn_mean) / bn_std + beta b_fold = beta + gamma * (conv_bias - bn_mean) * bn_istd return w_fold, b_fold @_register_tranformation_rule(TransformerRule.FUSE_CONV_BN) def _fuse_conv_bn(net: IRGraph): for opr in net.all_oprs: if ( opr.name == "BatchNormalization" and len(net.find_inp_oprs(opr)) == 1 and net.find_inp_oprs(opr)[0].name == "Conv2d" and len(net.find_out_oprs(net.find_inp_oprs(opr)[0])) == 1 and net.find_out_oprs(net.find_inp_oprs(opr)[0])[0] == opr ): gamma = ( Tensor(opr.weight) # type: ignore[attr-defined] if opr.weight is not None # type: ignore[attr-defined] else Tensor(opr.inp_tensors[1].np_data) ) beta = (
Tensor(opr.bias)
megengine.Tensor
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. from collections import OrderedDict from enum import Enum from functools import cmp_to_key from typing import Set # pylint: disable=unused-import from typing import Callable, Dict, Sequence import numpy as np from megengine import Tensor from megengine.functional import sqrt from ..converter_ir.ir_graph import IRGraph from .ir_op import ( AddOpr, Conv2dOpr, ConvRelu2dOpr, Deconv2dOpr, DropoutOpr, ExpOpr, FlattenOpr, FuseMulAdd3Opr, GetSubTensorOpr, HardSigmoidOpr, HardSwishOpr, IdentityOpr, LeakyReluOpr, MulOpr, OpBase, PadOpr, ReduceOpr, ReluOpr, ReshapeOpr, ResizeOpr, SoftmaxOpr, SqueezeOpr, SubOpr, TanHOpr, TransposeOpr, TrueDivOpr, _PoolOpr, ) from .ir_tensor import AxisOrder, IRTensor class TransformerRule(Enum): # general rules NOPE = 1 # for TFLite REDUCE_AXIS_AS_INPUT = 100 REMOVE_RESHAPE_INPUT = 101 # FUSE_FOR_RELU6 pass should happen before FUSE_ACTIVATION FUSE_FOR_RELU6 = 102 ## EXPAND_CONVRELU = 102.1 CONV_ADD_ZERO_BIAS = 103 FUSE_FOR_CONV_BIAS = 103.1 FUSE_CONV_BN = 104 DECONV_ADD_ZERO_BIAS = 105 # DEPTHWISE_CONV_RESHAPE_WEIGHT requirs RESHAPE_BIAS_TO_1DIM DEPTHWISE_CONV_RESHAPE_WEIGHT = 106 FUSE_SOFTMAX = 107 # RESHAPE_BIAS_TO_1DIM should happen before DECONV_SHAPE_AS_INPUT RESHAPE_BIAS_TO_1DIM = 108 DECONV_SHAPE_AS_INPUT = 109 FUSE_ASTYPE = 110 ## PADDING_FOR_CONV_AND_POOLING = 111 TRANSPOSE_PATTERN_AS_INPUT = 112 # FUSE_FOR_LEAKY_RELU should happen before EXPAND_MUL_ADD3 FUSE_FOR_LEAKY_RELU = 113 EXPAND_MUL_ADD3 = 114 EXPAND_ADD_SIGMOID = 115 ## FUSE_FOR_DECONV_BIAS = 117 FUSE_FOR_FULLY_CONNECTED = 118 ## # for TFLite Converter SLICE_PARAMS_AS_INPUTS_AND_MAKE_SQUEEZE = 119 RESIZE_PARAMS_AS_INPUT = 120 REPLACE_FLATTEN_TO_RESHAPE = 120.1 # remove reshape REMOVE_RESHAPE_REALTED_OP = 121 REMOVE_DROPOUT = 122 FUSE_ACTIVATION = 123 REMOVE_IDENTITY = 124 REMOVE_RELU = 125 REMOVE_UNRELATED_IROP = 130 ADD_FAKE_HSIGMOID_OUT = 131 RENAME_CAFFE_LAYER_TENSOR = 132 def cmp_rules(a, b): if a.value < b.value: return -1 if a.value > b.value: return 1 return 0 class IRTransform: def __init__(self, transformer_options): if not isinstance(transformer_options, Sequence): transformer_options = [ transformer_options, ] # bias of depthwise_conv must be 1 dim if TransformerRule.DEPTHWISE_CONV_RESHAPE_WEIGHT in transformer_options: if TransformerRule.RESHAPE_BIAS_TO_1DIM not in transformer_options: transformer_options.append(TransformerRule.RESHAPE_BIAS_TO_1DIM) self.trans_options = sorted(transformer_options, key=cmp_to_key(cmp_rules)) def transform(self, ir_graph): for option in self.trans_options: TRANSFORMMAP[option](ir_graph) return ir_graph TRANSFORMMAP: Dict[Enum, Callable] = {} def _register_tranformation_rule(transformer_option): def callback(impl): TRANSFORMMAP[transformer_option] = impl return callback def cal_pad_mode(tm_opr): out_shape = tm_opr.out_tensors[0].shape inp_shape = tm_opr.inp_tensors[0].shape if out_shape[2:] == inp_shape[2:]: return "SAME" else: return "VALID" @_register_tranformation_rule(TransformerRule.REMOVE_RESHAPE_INPUT) def _remove_reshape_input(net): for op in net.all_oprs: if not isinstance(op, ReshapeOpr): continue if len(op.inp_tensors) == 2: del op.inp_tensors[1] @_register_tranformation_rule(TransformerRule.TRANSPOSE_PATTERN_AS_INPUT) def _transpose_pattern_as_input(net): for op in net.all_oprs: if not isinstance(op, TransposeOpr): continue perm_tensor = IRTensor( name=op.inp_tensors[0].name + "_perm", shape=np.array(op.pattern).shape, dtype=np.int32, np_data=np.array(op.pattern, dtype=np.int32), owner_opr=op, q_type=np.int32, axis=None, ) op.add_inp_tensors(perm_tensor) @_register_tranformation_rule(TransformerRule.REDUCE_AXIS_AS_INPUT) def _reduce_axis_as_input(net): for op in net.all_oprs: if not isinstance(op, ReduceOpr): continue axis_tensor = IRTensor( name=op.inp_tensors[0].name + "_axis", shape=[1], dtype=np.int32, np_data=np.array(op.axis, dtype=np.int32), owner_opr=op, q_type=np.int32, axis=None, ) op.add_inp_tensors(axis_tensor) @_register_tranformation_rule(TransformerRule.PADDING_FOR_CONV_AND_POOLING) def _make_padding(net: IRGraph): def have_padding(opr): if isinstance(opr, Conv2dOpr): if cal_pad_mode(opr) == "SAME": return False if hasattr(opr, "padding") and (opr.padding[0] > 0 or opr.padding[1] > 0): return True return False insert_intended = OrderedDict() # type: OrderedDict for op in net.all_oprs: if not isinstance(op, (Conv2dOpr, _PoolOpr)): continue if have_padding(op): assert op.inp_tensors[0].ndim == 4, "ERROR: unsupported padding mode" np_data = np.array( [ 0, 0, op.padding[0], op.padding[0], op.padding[1], op.padding[1], 0, 0, ], dtype=np.int32, ) new_tensor_id = max(net._tensor_ids) + 1 pad_in_tensor = IRTensor( name=op.inp_tensors[0].name + "_paddings", shape=[4, 2], dtype=np.int32, owner_opr=None, np_data=np_data, q_type=np.int32, axis=None, ) net.add_tensor(new_tensor_id, pad_in_tensor) shape = list(op.inp_tensors[0].shape) new_tensor_id = max(net._tensor_ids) + 1 pad_out_tensor = IRTensor( name=op.inp_tensors[0].name + "_pad_out", shape=[ shape[0], shape[1], shape[2] + op.padding[0] * 2, shape[3] + op.padding[1] * 2, ], dtype=op.inp_tensors[0].dtype, ) if ( hasattr(op.inp_tensors[0], "scale") and op.inp_tensors[0].scale is not None ): pad_out_tensor.scale = op.inp_tensors[0].scale pad_out_tensor.q_dtype = op.inp_tensors[0].q_dtype if hasattr(op.inp_tensors[0], "zero_point"): pad_out_tensor.zero_point = op.inp_tensors[0].zero_point net.add_tensor(new_tensor_id, pad_out_tensor) pad_opr = PadOpr() pad_opr.inp_tensors = [op.inp_tensors[0], pad_in_tensor] index = op.inp_tensors[0].user_opr.index(op) op.inp_tensors[0].user_opr[index] = pad_opr pad_opr.out_tensors = [pad_out_tensor] pad_out_tensor.owner_opr = pad_opr op.inp_tensors = [pad_out_tensor] + op.inp_tensors[1:] pad_out_tensor.user_opr.append(op) index = net._opr_ids.index(id(op)) insert_intended[index] = (id(pad_opr), pad_opr) for index, generated_pair in list(insert_intended.items())[::-1]: net._opr_ids.insert(index, generated_pair[0]) net.all_oprs.insert(index, generated_pair[1]) @_register_tranformation_rule(TransformerRule.DECONV_SHAPE_AS_INPUT) def _deconv_shape_as_input(net: IRGraph): for op in net.all_oprs: if not isinstance(op, Deconv2dOpr): continue result_shape = op.out_tensors[0].shape np_data = np.array( [result_shape[0], result_shape[2], result_shape[3], result_shape[1],], dtype=np.int32, ) new_tensor_id = max(net._tensor_ids) + 1 shape_symvar = IRTensor( name=op.inp_tensors[0].name + "_deconv_out_shape", shape=[4], dtype=np.int32, owner_opr=op, np_data=np_data, q_type=np.int32, axis=None, ) shape_tensor = net.get_tensor(new_tensor_id, shape_symvar) if len(op.inp_tensors) == 2: op.inp_tensors = [ shape_tensor, op.inp_tensors[1], op.inp_tensors[0], ] else: op.inp_tensors = [ shape_tensor, op.inp_tensors[1], op.inp_tensors[0], op.inp_tensors[2], ] @_register_tranformation_rule(TransformerRule.RESIZE_PARAMS_AS_INPUT) def _resize_params_as_input(net): for op in net.all_oprs: if not isinstance(op, ResizeOpr): continue if len(op.inp_tensors) == 2: continue out_size_tensor = IRTensor( name=op.inp_tensors[0].name + "_out_size", shape=(2,), dtype=np.int32, np_data=np.array(op.out_size, dtype=np.int32), q_type=np.int32, axis=None, ) op.add_inp_tensors(out_size_tensor) @_register_tranformation_rule(TransformerRule.CONV_ADD_ZERO_BIAS) def _add_bias_for_conv(net: IRGraph): for op in net.all_oprs: if not isinstance(op, Conv2dOpr): continue if len(op.inp_tensors) == 3: continue weight_shape = op.inp_tensors[1].shape bias_shape = ( weight_shape[0] if len(weight_shape) == 4 else weight_shape[0] * weight_shape[1] ) bias_shape = (1, bias_shape, 1, 1) bias = np.zeros(bias_shape, dtype=np.float32) bias_tensor = IRTensor( name=op.inp_tensors[0].name + "_bias", shape=bias_shape, dtype=np.float32, np_data=bias, axis=AxisOrder.NCHW, ) if op.inp_tensors[0].scale and op.inp_tensors[1].scale: bias_tensor.set_qparams( op.inp_tensors[0].scale * op.inp_tensors[1].scale, 0 ) bias_tensor.q_dtype = "int32" op.inp_tensors.append(bias_tensor) @_register_tranformation_rule(TransformerRule.DECONV_ADD_ZERO_BIAS) def _add_bias_for_deconv(net: IRGraph): for op in net.all_oprs: if not isinstance(op, Deconv2dOpr): continue if len(op.inp_tensors) == 3: continue weight_shape = op.inp_tensors[1].shape bias_shape = ( weight_shape[1] if len(weight_shape) == 4 else weight_shape[0] * weight_shape[2] ) bias_shape = (1, bias_shape, 1, 1) bias = np.zeros(bias_shape, dtype=np.float32) bias_tensor = IRTensor( name=op.inp_tensors[0].name + "_bias", shape=bias_shape, dtype=np.float32, np_data=bias, axis=AxisOrder.NCHW, ) if op.inp_tensors[0].scale and op.inp_tensors[1].scale: bias_tensor.set_qparams( op.inp_tensors[0].scale * op.inp_tensors[1].scale, 0 ) bias_tensor.q_dtype = "int32" op.inp_tensors.append(bias_tensor) @_register_tranformation_rule(TransformerRule.RESHAPE_BIAS_TO_1DIM) def _reshape_bias_to_1dim(net: IRGraph): for op in net.all_oprs: if not isinstance(op, (Deconv2dOpr, Conv2dOpr)): continue if len(op.inp_tensors) == 2: continue bias = op.inp_tensors[2] if bias.ndim == 4: bias.shape = (bias.shape[1],) bias.np_data = bias.np_data.reshape(-1) @_register_tranformation_rule(TransformerRule.DEPTHWISE_CONV_RESHAPE_WEIGHT) def _depthwise_conv_reshape_weight(net: IRGraph): # general group conv is not supported for TFLite for op in net.all_oprs: if not isinstance(op, Conv2dOpr): continue if op.groups == 1: continue weight = op.inp_tensors[1] # G, oc/G, ic/G, kh, kw ic, cm = weight.shape[1] * op.groups, weight.shape[2] h, w = weight.shape[3:5] weight.shape = (ic, cm, h, w) # oc, ic/G, kh, kw weight.np_data = weight.np_data.reshape(ic, cm, h, w) @_register_tranformation_rule(TransformerRule.FUSE_ACTIVATION) def _fuse_activation(net): delete_intended = [] for op_id, op in zip(net._opr_ids, net.all_oprs): if isinstance(op, (ReluOpr, TanHOpr)): prev_ops = net.find_inp_oprs(op) if len(prev_ops) == 0: continue prev_op = prev_ops[0] if not isinstance(prev_op, OpBase): continue if prev_op.activation != "IDENTITY" or prev_op.name == "Deconv2d": continue activation = op.name.upper() prev_op.activation = activation prev_op.out_tensors = op.out_tensors for t in prev_op.out_tensors: t.owner_opr = prev_op delete_intended.append(net._opr_ids.index(op_id)) for delete_idx in delete_intended[::-1]: net.delete_ops(delete_idx) @_register_tranformation_rule(TransformerRule.SLICE_PARAMS_AS_INPUTS_AND_MAKE_SQUEEZE) def _make_slice_as_inputs(net: IRGraph): for op in net.all_oprs: if not isinstance(op, GetSubTensorOpr): continue ndim = op.inp_tensors[0].ndim def make_input(axis, param, init_value): # make inputs: begin, end and step. ret = [init_value] * ndim # pylint:disable=cell-var-from-loop for k, v in zip(axis, param): ret[k] = v ret = IRTensor( name=op.name + "_fake_input", # pylint:disable=cell-var-from-loop shape=[len(ret)], dtype=np.int32, np_data=np.array(ret, dtype=np.int32), owner_opr=op, # pylint:disable=cell-var-from-loop q_type=np.int32, ) return ret begins_tensor = make_input(op.axis, op.begin_params, 0) ends_tensor = make_input(op.axis, op.end_params, np.iinfo(np.int32).max) steps_tensor = make_input(op.axis, op.step_params, 1) op.inp_tensors = [op.inp_tensors[0], begins_tensor, ends_tensor, steps_tensor] # TFLite slice do not support squeeze axis, so insert a squeeze opr here. # infer actual output shape of tflite slice desired_out_shape = op.out_tensors[0].shape actual_out_shape = [1] * ndim idx = 0 for i in range(ndim): if i in op.squeeze_axis: continue actual_out_shape[i] = desired_out_shape[idx] idx += 1 slice_out_tensor = IRTensor( name=op.name + "fake_output", shape=actual_out_shape, dtype=op.out_tensors[0].dtype, q_type=op.out_tensors[0].q_dtype, owner_opr=op, ) old_out = op.out_tensors op.out_tensors = [slice_out_tensor] squeeze = SqueezeOpr(op.squeeze_axis) squeeze.inp_tensors = [slice_out_tensor] squeeze.out_tensors = old_out idx = net._opr_ids.index(id(op)) + 1 net.add_op(squeeze, idx) # caffe transormer rules class PatternNode: def __init__(self, type, is_output=False, const_value=None): self.op = None self.type = type self.inp_oprs = [] self.inp_const = [] self.inp_tensors = [] self.is_output = is_output self.const_value = const_value def check_const_value(self, op): inp_tensors = [v.np_data for v in op.inp_tensors] for const in self.const_value: idx = const[0] if idx == -1: find = False for index, v in enumerate(inp_tensors): if np.array_equal(const[1], v): find = True del inp_tensors[index] break if not find: return False elif not np.array_equal(const[1], inp_tensors[idx]): return False return True get_type = lambda op: type(op).__name__ def match(node, opr): node_queue = [node] opr_queue = [opr] matched_opr = set() matched_node = set() while len(node_queue) != 0: cur_node = node_queue.pop(0) cur_opr = opr_queue.pop(0) if cur_node.type != get_type(cur_opr) and cur_node.type != "*" or cur_opr.skip: return False if cur_node.op == None: cur_node.op = cur_opr if cur_node.const_value != None: if not cur_node.check_const_value(cur_opr): return False elif cur_node.op != cur_opr: return False matched_opr.add(cur_opr) matched_node.add(cur_node) for i, var in enumerate(cur_opr.inp_tensors): if var.np_data is not None: cur_node.inp_const.append([i, var.np_data]) else: cur_node.inp_tensors.append([i, var]) if len(cur_node.inp_oprs) == 0: continue if len(cur_node.inp_oprs) != len(cur_opr.inp_oprs): return False for i, j in zip(cur_node.inp_oprs, cur_opr.inp_oprs): node_queue.append(i) opr_queue.append(j) for n in matched_node: if n.is_output: continue for op in n.op.out_oprs: if op not in matched_opr: return False return True def get_softmax_axis(ndim: int) -> int: if ndim in (0, 1, 3): return 0 return 1 @_register_tranformation_rule(TransformerRule.FUSE_SOFTMAX) def _fuse_softmax(net: IRGraph): matches = OrderedDict() # type: OrderedDict for op in net.all_oprs: if not isinstance(op, TrueDivOpr): continue try: prev_op = net.find_inp_oprs(op)[1] cur_index = net._opr_ids.index(id(op)) if ( not isinstance(prev_op, ReduceOpr) or prev_op.mode != "SUM" or prev_op.axis != get_softmax_axis(prev_op.inp_tensors[0].ndim) or net._opr_ids.index(id(prev_op)) != cur_index - 1 ): continue prev_op = net.find_inp_oprs(op)[0] if ( not isinstance(prev_op, ExpOpr) or net._opr_ids.index(id(prev_op)) != cur_index - 2 ): continue prev_op = net.find_inp_oprs(prev_op)[0] if ( not isinstance(prev_op, SubOpr) or net._opr_ids.index(id(prev_op)) != cur_index - 3 ): continue prev_op = net.find_inp_oprs(prev_op)[1] if ( not isinstance(prev_op, ReduceOpr) or prev_op.mode != "MAX" or prev_op.axis != get_softmax_axis(prev_op.inp_tensors[0].ndim) or net._opr_ids.index(id(prev_op)) != cur_index - 4 ): continue except IndexError: # doesn't match continue softmax_opr = SoftmaxOpr(axis=get_softmax_axis(prev_op.inp_tensors[0].ndim)) softmax_opr.beta = 1 softmax_opr.inp_tensors = prev_op.inp_tensors[:1] for i in softmax_opr.inp_tensors: i.user_opr.append(softmax_opr) softmax_opr.out_tensors = op.out_tensors softmax_out_oprs = net.find_out_oprs(op) matches[id(prev_op)] = (id(prev_op), softmax_opr, softmax_out_oprs) for original_id, generated_pair in list(matches.items())[::-1]: index = net._opr_ids.index(original_id) for out_op in generated_pair[2]: generated_pair[1].out_tensors[0].user_opr.append(out_op) del net._opr_ids[index : index + 5] del net.all_oprs[index : index + 5] net._opr_ids.insert(index, generated_pair[0]) net.all_oprs.insert(index, generated_pair[1]) @_register_tranformation_rule(TransformerRule.FUSE_FOR_LEAKY_RELU) def _fuse_leaky_relu(net: IRGraph): """ Elemwise(ADD) + Elemwise(MUL) + Elemwise(MAX) + Elemwise(MIN) -> LeakyRelu """ for opr in net.all_oprs: if ( opr.name == "Add" and len(net.find_inp_oprs(opr)) == 2 and net.find_inp_oprs(opr)[0].name == "Max" and net.find_inp_oprs(opr)[1].name == "Mul" ): max_op = net.find_inp_oprs(opr)[0] mul_op = net.find_inp_oprs(opr)[1] if not mul_op.inp_tensors[1].shape == (1,): continue if not max_op.inp_tensors[1].shape == (1,): continue if ( len(net.find_inp_oprs(mul_op)) != 1 or net.find_inp_oprs(mul_op)[0].name != "Min" or net.find_inp_oprs(mul_op)[0].inp_tensors[1].shape != (1,) ): continue min_op = net.find_inp_oprs(mul_op)[0] if not min_op.inp_tensors[1].shape == (1,): continue if max_op.inp_tensors[0] != min_op.inp_tensors[0]: continue leaky_relu = LeakyReluOpr( negative_slope=float(mul_op.inp_tensors[1].np_data) ) leaky_relu.inp_tensors = [max_op.inp_tensors[0]] max_op.inp_tensors[0].user_opr.remove(max_op) max_op.inp_tensors[0].user_opr.remove(min_op) max_op.inp_tensors[0].user_opr.append(leaky_relu) leaky_relu.out_tensors = opr.out_tensors opr.out_tensors[0].owner_opr = leaky_relu index = net.all_oprs.index(max_op) del net.all_oprs[index : index + 4] del net._opr_ids[index : index + 4] net.add_op(leaky_relu, index) @_register_tranformation_rule(TransformerRule.FUSE_FOR_CONV_BIAS) def _fuse_for_conv_bias(net: IRGraph): """ ConvolutionForward + Elemwise(ADD) -> ConvForwardBias """ for opr in net.all_oprs: if ( opr.name == "Conv2d" and len(net.find_out_oprs(opr)) == 1 and net.find_out_oprs(opr)[0].name == "Add" ): bias_op = net.find_out_oprs(opr)[0] if not ( ( bias_op.inp_tensors[1].np_data is not None and len(bias_op.inp_tensors[1].np_data.reshape(-1)) == opr.inp_tensors[1].shape[0] ) or ( ( bias_op.inp_tensors[0].np_data is not None and len(bias_op.inp_tensors[0].np_data.reshape(-1)) == opr.inp_tensors[1].shape[0] ) ) ): continue bias_idx = 0 if bias_op.inp_tensors[0].np_data is not None else 1 if len(opr.inp_tensors) == 2: opr.inp_tensors.append(bias_op.inp_tensors[bias_idx]) else: bias_shape = opr.inp_tensors[2].np_data.shape add_tensor = bias_op.inp_tensors[bias_idx].np_data if add_tensor.shape != bias_shape: add_tensor = add_tensor.reshape(bias_shape) opr.inp_tensors[2].np_data += add_tensor if bias_op in opr.out_tensors[0].user_opr: opr.out_tensors[0].user_opr.remove(bias_op) bias_out_op = net.find_out_oprs(bias_op) if len(bias_out_op) > 0: for op in bias_out_op: op.inp_tensors[0] = opr.out_tensors[0] opr.out_tensors[0].user_opr.append(op) else: # last op of the graph assert bias_op.out_tensors[0] in net.graph_outputs index = net.graph_outputs.index(bias_op.out_tensors[0]) net.graph_outputs[index] = opr.out_tensors[0] opr.activation = bias_op.activation index = net.all_oprs.index(bias_op) del net.all_oprs[index] del net._opr_ids[index] @_register_tranformation_rule(TransformerRule.FUSE_FOR_DECONV_BIAS) def _fuse_for_deconv_bias(net: IRGraph): for opr in net.all_oprs: if ( opr.name == "Deconv2d" and len(net.find_out_oprs(opr)) == 1 and net.find_out_oprs(opr)[0].name == "Add" ): bias_op = net.find_out_oprs(opr)[0] if not ( ( bias_op.inp_tensors[1].np_data is not None and len(bias_op.inp_tensors[1].np_data.reshape(-1)) == opr.inp_tensors[1].shape[1] ) or ( ( bias_op.inp_tensors[0].np_data is not None and len(bias_op.inp_tensors[0].np_data.reshape(-1)) == opr.inp_tensors[1].shape[1] ) ) ): continue bias_idx = 0 if bias_op.inp_tensors[0].np_data is not None else 1 if len(opr.inp_tensors) == 3: # shape, weight, input, bias opr.inp_tensors.append(bias_op.inp_tensors[bias_idx]) else: bias_shape = opr.inp_tensors[3].np_data.shape add_tensor = bias_op.inp_tensors[bias_idx].np_data if add_tensor.shape != bias_shape: add_tensor = add_tensor.reshape(bias_shape) opr.inp_tensors[3].np_data += add_tensor if bias_op in opr.out_tensors[0].user_opr: opr.out_tensors[0].user_opr.remove(bias_op) bias_out_op = net.find_out_oprs(bias_op) if len(bias_out_op) > 0: for op in bias_out_op: op.inp_tensors[0] = opr.out_tensors[0] opr.out_tensors[0].user_opr.append(op) else: # last op of the graph assert bias_op.out_tensors[0] in net.graph_outputs index = net.graph_outputs.index(bias_op.out_tensors[0]) net.graph_outputs[index] = opr.out_tensors[0] opr.activation = bias_op.activation index = net.all_oprs.index(bias_op) del net.all_oprs[index] del net._opr_ids[index] @_register_tranformation_rule(TransformerRule.EXPAND_MUL_ADD3) def _expand_mul_add3(net: IRGraph): for op in net.all_oprs: if not isinstance(op, FuseMulAdd3Opr): continue last_op = net.find_inp_oprs(op) assert len(last_op) == 1 mul_out_tensor = IRTensor( name=op.inp_tensors[0].name + "_mul_out", shape=op.inp_tensors[0].shape, dtype=op.inp_tensors[0].dtype, ) new_tensor_id = max(net._tensor_ids) + 1 net.add_tensor(new_tensor_id, mul_out_tensor) mul_op = MulOpr() mul_out_tensor.owner_opr = mul_op mul_op.inp_tensors = op.inp_tensors[:2] for o in mul_op.inp_tensors: index = o.user_opr.index(op) o.user_opr[index] = mul_op mul_op.out_tensors = [mul_out_tensor] add_op = AddOpr() add_op.inp_tensors = [mul_out_tensor, op.inp_tensors[2]] mul_out_tensor.user_opr.append(add_op) add_op.out_tensors = op.out_tensors index = net._opr_ids.index(id(op)) net.delete_ops(index) net.add_op(mul_op, index) net.add_op(add_op, index + 1) @_register_tranformation_rule(TransformerRule.REPLACE_FLATTEN_TO_RESHAPE) def _replace_flatten_to_reshape(net: IRGraph): for opr in net.all_oprs: if isinstance(opr, FlattenOpr): out_shape = tuple(list(opr.inp_tensors[0].shape[: opr.start_axis]) + [-1]) reshape_op = ReshapeOpr(out_shape=out_shape) reshape_op.inp_tensors = opr.inp_tensors for t in reshape_op.inp_tensors: idx = t.user_opr.index(opr) t.user_opr[idx] = reshape_op reshape_op.out_tensors = opr.out_tensors for t in reshape_op.out_tensors: t.owner_opr = reshape_op net.replace_op(opr, reshape_op) @_register_tranformation_rule(TransformerRule.REMOVE_RESHAPE_REALTED_OP) def _remove_reshape_tensors(net: IRGraph): for opr in net.all_oprs: if isinstance(opr, ReshapeOpr) and len(opr.inp_tensors) > 1: opr.inp_tensors = opr.inp_tensors[:1] @_register_tranformation_rule(TransformerRule.REMOVE_DROPOUT) def _remove_dropout(net: IRGraph): for opr in net.all_oprs: for idx, inp in enumerate(opr.inp_tensors): owner_opr = inp.owner_opr if isinstance(owner_opr, DropoutOpr) and owner_opr.drop_prob == 0: opr.inp_tensors[idx] = owner_opr.inp_tensors[0] for idx, out in enumerate(net.graph_outputs): owner_opr = out.owner_opr if isinstance(owner_opr, DropoutOpr) and owner_opr.drop_prob == 0: net.graph_outputs[idx] = owner_opr.inp_tensors[0] @_register_tranformation_rule(TransformerRule.REMOVE_RELU) def _remove_relu(net: IRGraph): for opr in net.all_oprs: for idx, inp in enumerate(opr.inp_tensors): owner_opr = inp.owner_opr if isinstance(owner_opr, ReluOpr): opr.inp_tensors[idx] = owner_opr.inp_tensors[0] for idx, out in enumerate(net.graph_outputs): owner_opr = out.owner_opr if isinstance(owner_opr, ReluOpr): net.graph_outputs[idx] = owner_opr.inp_tensors[0] visited_tensor = set() # type: set def _dfs_recursive(op_set, tensor): owner_opr = tensor.owner_opr op_set.add(owner_opr) if tensor in visited_tensor: return visited_tensor.add(tensor) if isinstance(owner_opr, IRGraph) or owner_opr is None: return for tt in owner_opr.inp_tensors: _dfs_recursive(op_set, tt) @_register_tranformation_rule(TransformerRule.REMOVE_UNRELATED_IROP) def _remove_unrelated_op(net: IRGraph): match_sets = set() # type: Set[OpBase] for out_tensor in net.graph_outputs: _dfs_recursive(match_sets, out_tensor) remove_idx = [] for opr in net.all_oprs: if opr not in match_sets: index = net._opr_ids.index(id(opr)) remove_idx.append(index) for i in remove_idx[::-1]: net.delete_ops(i) @_register_tranformation_rule(TransformerRule.ADD_FAKE_HSIGMOID_OUT) def _add_fake_hsigmoid_tensor(net: IRGraph): for opr in net.all_oprs: if isinstance(opr, (HardSwishOpr, HardSigmoidOpr)): add_3_out_tensor = IRTensor( opr.out_tensors[0].name + "_fake_add3_out", opr.inp_tensors[0].shape, opr.inp_tensors[0].dtype, q_type=opr.inp_tensors[0].q_dtype, scale=opr.inp_tensors[0].scale, zero_point=opr.inp_tensors[0].zero_point, ) opr.add_inp_tensors(add_3_out_tensor) relu6_out_tensor = IRTensor( opr.out_tensors[0].name + "_relu6_out", opr.inp_tensors[0].shape, opr.inp_tensors[0].dtype, q_type=opr.inp_tensors[0].q_dtype, scale=opr.inp_tensors[0].scale, zero_point=opr.inp_tensors[0].zero_point, ) opr.add_inp_tensors(relu6_out_tensor) if isinstance(opr, HardSwishOpr): div6_out_tensor = IRTensor( opr.out_tensors[0].name + "_div_out", opr.inp_tensors[0].shape, opr.inp_tensors[0].dtype, q_type=opr.inp_tensors[0].q_dtype, scale=opr.inp_tensors[0].scale, zero_point=opr.inp_tensors[0].zero_point, ) opr.add_inp_tensors(div6_out_tensor) def fold_conv_bn( conv_weight, conv_bias, conv_groups, gamma, beta, bn_mean, bn_var, eps ): conv_bias = conv_bias.reshape(1, -1, 1, 1) gamma = gamma.reshape(1, -1, 1, 1) beta = beta.reshape(1, -1, 1, 1) bn_mean = bn_mean.reshape(1, -1, 1, 1) bn_var = bn_var.reshape(1, -1, 1, 1) # bn_istd = 1 / bn_std bn_istd = 1.0 / sqrt(bn_var + eps) # type: ignore[attr-defined] # w_fold = gamma / bn_std * W scale_factor = gamma * bn_istd if conv_groups == 1: w_fold = conv_weight * scale_factor.reshape(-1, 1, 1, 1) else: w_fold = conv_weight * scale_factor.reshape(conv_groups, -1, 1, 1, 1) # b_fold = gamma * (b - bn_mean) / bn_std + beta b_fold = beta + gamma * (conv_bias - bn_mean) * bn_istd return w_fold, b_fold @_register_tranformation_rule(TransformerRule.FUSE_CONV_BN) def _fuse_conv_bn(net: IRGraph): for opr in net.all_oprs: if ( opr.name == "BatchNormalization" and len(net.find_inp_oprs(opr)) == 1 and net.find_inp_oprs(opr)[0].name == "Conv2d" and len(net.find_out_oprs(net.find_inp_oprs(opr)[0])) == 1 and net.find_out_oprs(net.find_inp_oprs(opr)[0])[0] == opr ): gamma = ( Tensor(opr.weight) # type: ignore[attr-defined] if opr.weight is not None # type: ignore[attr-defined] else Tensor(opr.inp_tensors[1].np_data) ) beta = ( Tensor(opr.bias) # type: ignore[attr-defined] if opr.bias is not None # type: ignore[attr-defined] else
Tensor(opr.inp_tensors[2].np_data)
megengine.Tensor
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. from collections import OrderedDict from enum import Enum from functools import cmp_to_key from typing import Set # pylint: disable=unused-import from typing import Callable, Dict, Sequence import numpy as np from megengine import Tensor from megengine.functional import sqrt from ..converter_ir.ir_graph import IRGraph from .ir_op import ( AddOpr, Conv2dOpr, ConvRelu2dOpr, Deconv2dOpr, DropoutOpr, ExpOpr, FlattenOpr, FuseMulAdd3Opr, GetSubTensorOpr, HardSigmoidOpr, HardSwishOpr, IdentityOpr, LeakyReluOpr, MulOpr, OpBase, PadOpr, ReduceOpr, ReluOpr, ReshapeOpr, ResizeOpr, SoftmaxOpr, SqueezeOpr, SubOpr, TanHOpr, TransposeOpr, TrueDivOpr, _PoolOpr, ) from .ir_tensor import AxisOrder, IRTensor class TransformerRule(Enum): # general rules NOPE = 1 # for TFLite REDUCE_AXIS_AS_INPUT = 100 REMOVE_RESHAPE_INPUT = 101 # FUSE_FOR_RELU6 pass should happen before FUSE_ACTIVATION FUSE_FOR_RELU6 = 102 ## EXPAND_CONVRELU = 102.1 CONV_ADD_ZERO_BIAS = 103 FUSE_FOR_CONV_BIAS = 103.1 FUSE_CONV_BN = 104 DECONV_ADD_ZERO_BIAS = 105 # DEPTHWISE_CONV_RESHAPE_WEIGHT requirs RESHAPE_BIAS_TO_1DIM DEPTHWISE_CONV_RESHAPE_WEIGHT = 106 FUSE_SOFTMAX = 107 # RESHAPE_BIAS_TO_1DIM should happen before DECONV_SHAPE_AS_INPUT RESHAPE_BIAS_TO_1DIM = 108 DECONV_SHAPE_AS_INPUT = 109 FUSE_ASTYPE = 110 ## PADDING_FOR_CONV_AND_POOLING = 111 TRANSPOSE_PATTERN_AS_INPUT = 112 # FUSE_FOR_LEAKY_RELU should happen before EXPAND_MUL_ADD3 FUSE_FOR_LEAKY_RELU = 113 EXPAND_MUL_ADD3 = 114 EXPAND_ADD_SIGMOID = 115 ## FUSE_FOR_DECONV_BIAS = 117 FUSE_FOR_FULLY_CONNECTED = 118 ## # for TFLite Converter SLICE_PARAMS_AS_INPUTS_AND_MAKE_SQUEEZE = 119 RESIZE_PARAMS_AS_INPUT = 120 REPLACE_FLATTEN_TO_RESHAPE = 120.1 # remove reshape REMOVE_RESHAPE_REALTED_OP = 121 REMOVE_DROPOUT = 122 FUSE_ACTIVATION = 123 REMOVE_IDENTITY = 124 REMOVE_RELU = 125 REMOVE_UNRELATED_IROP = 130 ADD_FAKE_HSIGMOID_OUT = 131 RENAME_CAFFE_LAYER_TENSOR = 132 def cmp_rules(a, b): if a.value < b.value: return -1 if a.value > b.value: return 1 return 0 class IRTransform: def __init__(self, transformer_options): if not isinstance(transformer_options, Sequence): transformer_options = [ transformer_options, ] # bias of depthwise_conv must be 1 dim if TransformerRule.DEPTHWISE_CONV_RESHAPE_WEIGHT in transformer_options: if TransformerRule.RESHAPE_BIAS_TO_1DIM not in transformer_options: transformer_options.append(TransformerRule.RESHAPE_BIAS_TO_1DIM) self.trans_options = sorted(transformer_options, key=cmp_to_key(cmp_rules)) def transform(self, ir_graph): for option in self.trans_options: TRANSFORMMAP[option](ir_graph) return ir_graph TRANSFORMMAP: Dict[Enum, Callable] = {} def _register_tranformation_rule(transformer_option): def callback(impl): TRANSFORMMAP[transformer_option] = impl return callback def cal_pad_mode(tm_opr): out_shape = tm_opr.out_tensors[0].shape inp_shape = tm_opr.inp_tensors[0].shape if out_shape[2:] == inp_shape[2:]: return "SAME" else: return "VALID" @_register_tranformation_rule(TransformerRule.REMOVE_RESHAPE_INPUT) def _remove_reshape_input(net): for op in net.all_oprs: if not isinstance(op, ReshapeOpr): continue if len(op.inp_tensors) == 2: del op.inp_tensors[1] @_register_tranformation_rule(TransformerRule.TRANSPOSE_PATTERN_AS_INPUT) def _transpose_pattern_as_input(net): for op in net.all_oprs: if not isinstance(op, TransposeOpr): continue perm_tensor = IRTensor( name=op.inp_tensors[0].name + "_perm", shape=np.array(op.pattern).shape, dtype=np.int32, np_data=np.array(op.pattern, dtype=np.int32), owner_opr=op, q_type=np.int32, axis=None, ) op.add_inp_tensors(perm_tensor) @_register_tranformation_rule(TransformerRule.REDUCE_AXIS_AS_INPUT) def _reduce_axis_as_input(net): for op in net.all_oprs: if not isinstance(op, ReduceOpr): continue axis_tensor = IRTensor( name=op.inp_tensors[0].name + "_axis", shape=[1], dtype=np.int32, np_data=np.array(op.axis, dtype=np.int32), owner_opr=op, q_type=np.int32, axis=None, ) op.add_inp_tensors(axis_tensor) @_register_tranformation_rule(TransformerRule.PADDING_FOR_CONV_AND_POOLING) def _make_padding(net: IRGraph): def have_padding(opr): if isinstance(opr, Conv2dOpr): if cal_pad_mode(opr) == "SAME": return False if hasattr(opr, "padding") and (opr.padding[0] > 0 or opr.padding[1] > 0): return True return False insert_intended = OrderedDict() # type: OrderedDict for op in net.all_oprs: if not isinstance(op, (Conv2dOpr, _PoolOpr)): continue if have_padding(op): assert op.inp_tensors[0].ndim == 4, "ERROR: unsupported padding mode" np_data = np.array( [ 0, 0, op.padding[0], op.padding[0], op.padding[1], op.padding[1], 0, 0, ], dtype=np.int32, ) new_tensor_id = max(net._tensor_ids) + 1 pad_in_tensor = IRTensor( name=op.inp_tensors[0].name + "_paddings", shape=[4, 2], dtype=np.int32, owner_opr=None, np_data=np_data, q_type=np.int32, axis=None, ) net.add_tensor(new_tensor_id, pad_in_tensor) shape = list(op.inp_tensors[0].shape) new_tensor_id = max(net._tensor_ids) + 1 pad_out_tensor = IRTensor( name=op.inp_tensors[0].name + "_pad_out", shape=[ shape[0], shape[1], shape[2] + op.padding[0] * 2, shape[3] + op.padding[1] * 2, ], dtype=op.inp_tensors[0].dtype, ) if ( hasattr(op.inp_tensors[0], "scale") and op.inp_tensors[0].scale is not None ): pad_out_tensor.scale = op.inp_tensors[0].scale pad_out_tensor.q_dtype = op.inp_tensors[0].q_dtype if hasattr(op.inp_tensors[0], "zero_point"): pad_out_tensor.zero_point = op.inp_tensors[0].zero_point net.add_tensor(new_tensor_id, pad_out_tensor) pad_opr = PadOpr() pad_opr.inp_tensors = [op.inp_tensors[0], pad_in_tensor] index = op.inp_tensors[0].user_opr.index(op) op.inp_tensors[0].user_opr[index] = pad_opr pad_opr.out_tensors = [pad_out_tensor] pad_out_tensor.owner_opr = pad_opr op.inp_tensors = [pad_out_tensor] + op.inp_tensors[1:] pad_out_tensor.user_opr.append(op) index = net._opr_ids.index(id(op)) insert_intended[index] = (id(pad_opr), pad_opr) for index, generated_pair in list(insert_intended.items())[::-1]: net._opr_ids.insert(index, generated_pair[0]) net.all_oprs.insert(index, generated_pair[1]) @_register_tranformation_rule(TransformerRule.DECONV_SHAPE_AS_INPUT) def _deconv_shape_as_input(net: IRGraph): for op in net.all_oprs: if not isinstance(op, Deconv2dOpr): continue result_shape = op.out_tensors[0].shape np_data = np.array( [result_shape[0], result_shape[2], result_shape[3], result_shape[1],], dtype=np.int32, ) new_tensor_id = max(net._tensor_ids) + 1 shape_symvar = IRTensor( name=op.inp_tensors[0].name + "_deconv_out_shape", shape=[4], dtype=np.int32, owner_opr=op, np_data=np_data, q_type=np.int32, axis=None, ) shape_tensor = net.get_tensor(new_tensor_id, shape_symvar) if len(op.inp_tensors) == 2: op.inp_tensors = [ shape_tensor, op.inp_tensors[1], op.inp_tensors[0], ] else: op.inp_tensors = [ shape_tensor, op.inp_tensors[1], op.inp_tensors[0], op.inp_tensors[2], ] @_register_tranformation_rule(TransformerRule.RESIZE_PARAMS_AS_INPUT) def _resize_params_as_input(net): for op in net.all_oprs: if not isinstance(op, ResizeOpr): continue if len(op.inp_tensors) == 2: continue out_size_tensor = IRTensor( name=op.inp_tensors[0].name + "_out_size", shape=(2,), dtype=np.int32, np_data=np.array(op.out_size, dtype=np.int32), q_type=np.int32, axis=None, ) op.add_inp_tensors(out_size_tensor) @_register_tranformation_rule(TransformerRule.CONV_ADD_ZERO_BIAS) def _add_bias_for_conv(net: IRGraph): for op in net.all_oprs: if not isinstance(op, Conv2dOpr): continue if len(op.inp_tensors) == 3: continue weight_shape = op.inp_tensors[1].shape bias_shape = ( weight_shape[0] if len(weight_shape) == 4 else weight_shape[0] * weight_shape[1] ) bias_shape = (1, bias_shape, 1, 1) bias = np.zeros(bias_shape, dtype=np.float32) bias_tensor = IRTensor( name=op.inp_tensors[0].name + "_bias", shape=bias_shape, dtype=np.float32, np_data=bias, axis=AxisOrder.NCHW, ) if op.inp_tensors[0].scale and op.inp_tensors[1].scale: bias_tensor.set_qparams( op.inp_tensors[0].scale * op.inp_tensors[1].scale, 0 ) bias_tensor.q_dtype = "int32" op.inp_tensors.append(bias_tensor) @_register_tranformation_rule(TransformerRule.DECONV_ADD_ZERO_BIAS) def _add_bias_for_deconv(net: IRGraph): for op in net.all_oprs: if not isinstance(op, Deconv2dOpr): continue if len(op.inp_tensors) == 3: continue weight_shape = op.inp_tensors[1].shape bias_shape = ( weight_shape[1] if len(weight_shape) == 4 else weight_shape[0] * weight_shape[2] ) bias_shape = (1, bias_shape, 1, 1) bias = np.zeros(bias_shape, dtype=np.float32) bias_tensor = IRTensor( name=op.inp_tensors[0].name + "_bias", shape=bias_shape, dtype=np.float32, np_data=bias, axis=AxisOrder.NCHW, ) if op.inp_tensors[0].scale and op.inp_tensors[1].scale: bias_tensor.set_qparams( op.inp_tensors[0].scale * op.inp_tensors[1].scale, 0 ) bias_tensor.q_dtype = "int32" op.inp_tensors.append(bias_tensor) @_register_tranformation_rule(TransformerRule.RESHAPE_BIAS_TO_1DIM) def _reshape_bias_to_1dim(net: IRGraph): for op in net.all_oprs: if not isinstance(op, (Deconv2dOpr, Conv2dOpr)): continue if len(op.inp_tensors) == 2: continue bias = op.inp_tensors[2] if bias.ndim == 4: bias.shape = (bias.shape[1],) bias.np_data = bias.np_data.reshape(-1) @_register_tranformation_rule(TransformerRule.DEPTHWISE_CONV_RESHAPE_WEIGHT) def _depthwise_conv_reshape_weight(net: IRGraph): # general group conv is not supported for TFLite for op in net.all_oprs: if not isinstance(op, Conv2dOpr): continue if op.groups == 1: continue weight = op.inp_tensors[1] # G, oc/G, ic/G, kh, kw ic, cm = weight.shape[1] * op.groups, weight.shape[2] h, w = weight.shape[3:5] weight.shape = (ic, cm, h, w) # oc, ic/G, kh, kw weight.np_data = weight.np_data.reshape(ic, cm, h, w) @_register_tranformation_rule(TransformerRule.FUSE_ACTIVATION) def _fuse_activation(net): delete_intended = [] for op_id, op in zip(net._opr_ids, net.all_oprs): if isinstance(op, (ReluOpr, TanHOpr)): prev_ops = net.find_inp_oprs(op) if len(prev_ops) == 0: continue prev_op = prev_ops[0] if not isinstance(prev_op, OpBase): continue if prev_op.activation != "IDENTITY" or prev_op.name == "Deconv2d": continue activation = op.name.upper() prev_op.activation = activation prev_op.out_tensors = op.out_tensors for t in prev_op.out_tensors: t.owner_opr = prev_op delete_intended.append(net._opr_ids.index(op_id)) for delete_idx in delete_intended[::-1]: net.delete_ops(delete_idx) @_register_tranformation_rule(TransformerRule.SLICE_PARAMS_AS_INPUTS_AND_MAKE_SQUEEZE) def _make_slice_as_inputs(net: IRGraph): for op in net.all_oprs: if not isinstance(op, GetSubTensorOpr): continue ndim = op.inp_tensors[0].ndim def make_input(axis, param, init_value): # make inputs: begin, end and step. ret = [init_value] * ndim # pylint:disable=cell-var-from-loop for k, v in zip(axis, param): ret[k] = v ret = IRTensor( name=op.name + "_fake_input", # pylint:disable=cell-var-from-loop shape=[len(ret)], dtype=np.int32, np_data=np.array(ret, dtype=np.int32), owner_opr=op, # pylint:disable=cell-var-from-loop q_type=np.int32, ) return ret begins_tensor = make_input(op.axis, op.begin_params, 0) ends_tensor = make_input(op.axis, op.end_params, np.iinfo(np.int32).max) steps_tensor = make_input(op.axis, op.step_params, 1) op.inp_tensors = [op.inp_tensors[0], begins_tensor, ends_tensor, steps_tensor] # TFLite slice do not support squeeze axis, so insert a squeeze opr here. # infer actual output shape of tflite slice desired_out_shape = op.out_tensors[0].shape actual_out_shape = [1] * ndim idx = 0 for i in range(ndim): if i in op.squeeze_axis: continue actual_out_shape[i] = desired_out_shape[idx] idx += 1 slice_out_tensor = IRTensor( name=op.name + "fake_output", shape=actual_out_shape, dtype=op.out_tensors[0].dtype, q_type=op.out_tensors[0].q_dtype, owner_opr=op, ) old_out = op.out_tensors op.out_tensors = [slice_out_tensor] squeeze = SqueezeOpr(op.squeeze_axis) squeeze.inp_tensors = [slice_out_tensor] squeeze.out_tensors = old_out idx = net._opr_ids.index(id(op)) + 1 net.add_op(squeeze, idx) # caffe transormer rules class PatternNode: def __init__(self, type, is_output=False, const_value=None): self.op = None self.type = type self.inp_oprs = [] self.inp_const = [] self.inp_tensors = [] self.is_output = is_output self.const_value = const_value def check_const_value(self, op): inp_tensors = [v.np_data for v in op.inp_tensors] for const in self.const_value: idx = const[0] if idx == -1: find = False for index, v in enumerate(inp_tensors): if np.array_equal(const[1], v): find = True del inp_tensors[index] break if not find: return False elif not np.array_equal(const[1], inp_tensors[idx]): return False return True get_type = lambda op: type(op).__name__ def match(node, opr): node_queue = [node] opr_queue = [opr] matched_opr = set() matched_node = set() while len(node_queue) != 0: cur_node = node_queue.pop(0) cur_opr = opr_queue.pop(0) if cur_node.type != get_type(cur_opr) and cur_node.type != "*" or cur_opr.skip: return False if cur_node.op == None: cur_node.op = cur_opr if cur_node.const_value != None: if not cur_node.check_const_value(cur_opr): return False elif cur_node.op != cur_opr: return False matched_opr.add(cur_opr) matched_node.add(cur_node) for i, var in enumerate(cur_opr.inp_tensors): if var.np_data is not None: cur_node.inp_const.append([i, var.np_data]) else: cur_node.inp_tensors.append([i, var]) if len(cur_node.inp_oprs) == 0: continue if len(cur_node.inp_oprs) != len(cur_opr.inp_oprs): return False for i, j in zip(cur_node.inp_oprs, cur_opr.inp_oprs): node_queue.append(i) opr_queue.append(j) for n in matched_node: if n.is_output: continue for op in n.op.out_oprs: if op not in matched_opr: return False return True def get_softmax_axis(ndim: int) -> int: if ndim in (0, 1, 3): return 0 return 1 @_register_tranformation_rule(TransformerRule.FUSE_SOFTMAX) def _fuse_softmax(net: IRGraph): matches = OrderedDict() # type: OrderedDict for op in net.all_oprs: if not isinstance(op, TrueDivOpr): continue try: prev_op = net.find_inp_oprs(op)[1] cur_index = net._opr_ids.index(id(op)) if ( not isinstance(prev_op, ReduceOpr) or prev_op.mode != "SUM" or prev_op.axis != get_softmax_axis(prev_op.inp_tensors[0].ndim) or net._opr_ids.index(id(prev_op)) != cur_index - 1 ): continue prev_op = net.find_inp_oprs(op)[0] if ( not isinstance(prev_op, ExpOpr) or net._opr_ids.index(id(prev_op)) != cur_index - 2 ): continue prev_op = net.find_inp_oprs(prev_op)[0] if ( not isinstance(prev_op, SubOpr) or net._opr_ids.index(id(prev_op)) != cur_index - 3 ): continue prev_op = net.find_inp_oprs(prev_op)[1] if ( not isinstance(prev_op, ReduceOpr) or prev_op.mode != "MAX" or prev_op.axis != get_softmax_axis(prev_op.inp_tensors[0].ndim) or net._opr_ids.index(id(prev_op)) != cur_index - 4 ): continue except IndexError: # doesn't match continue softmax_opr = SoftmaxOpr(axis=get_softmax_axis(prev_op.inp_tensors[0].ndim)) softmax_opr.beta = 1 softmax_opr.inp_tensors = prev_op.inp_tensors[:1] for i in softmax_opr.inp_tensors: i.user_opr.append(softmax_opr) softmax_opr.out_tensors = op.out_tensors softmax_out_oprs = net.find_out_oprs(op) matches[id(prev_op)] = (id(prev_op), softmax_opr, softmax_out_oprs) for original_id, generated_pair in list(matches.items())[::-1]: index = net._opr_ids.index(original_id) for out_op in generated_pair[2]: generated_pair[1].out_tensors[0].user_opr.append(out_op) del net._opr_ids[index : index + 5] del net.all_oprs[index : index + 5] net._opr_ids.insert(index, generated_pair[0]) net.all_oprs.insert(index, generated_pair[1]) @_register_tranformation_rule(TransformerRule.FUSE_FOR_LEAKY_RELU) def _fuse_leaky_relu(net: IRGraph): """ Elemwise(ADD) + Elemwise(MUL) + Elemwise(MAX) + Elemwise(MIN) -> LeakyRelu """ for opr in net.all_oprs: if ( opr.name == "Add" and len(net.find_inp_oprs(opr)) == 2 and net.find_inp_oprs(opr)[0].name == "Max" and net.find_inp_oprs(opr)[1].name == "Mul" ): max_op = net.find_inp_oprs(opr)[0] mul_op = net.find_inp_oprs(opr)[1] if not mul_op.inp_tensors[1].shape == (1,): continue if not max_op.inp_tensors[1].shape == (1,): continue if ( len(net.find_inp_oprs(mul_op)) != 1 or net.find_inp_oprs(mul_op)[0].name != "Min" or net.find_inp_oprs(mul_op)[0].inp_tensors[1].shape != (1,) ): continue min_op = net.find_inp_oprs(mul_op)[0] if not min_op.inp_tensors[1].shape == (1,): continue if max_op.inp_tensors[0] != min_op.inp_tensors[0]: continue leaky_relu = LeakyReluOpr( negative_slope=float(mul_op.inp_tensors[1].np_data) ) leaky_relu.inp_tensors = [max_op.inp_tensors[0]] max_op.inp_tensors[0].user_opr.remove(max_op) max_op.inp_tensors[0].user_opr.remove(min_op) max_op.inp_tensors[0].user_opr.append(leaky_relu) leaky_relu.out_tensors = opr.out_tensors opr.out_tensors[0].owner_opr = leaky_relu index = net.all_oprs.index(max_op) del net.all_oprs[index : index + 4] del net._opr_ids[index : index + 4] net.add_op(leaky_relu, index) @_register_tranformation_rule(TransformerRule.FUSE_FOR_CONV_BIAS) def _fuse_for_conv_bias(net: IRGraph): """ ConvolutionForward + Elemwise(ADD) -> ConvForwardBias """ for opr in net.all_oprs: if ( opr.name == "Conv2d" and len(net.find_out_oprs(opr)) == 1 and net.find_out_oprs(opr)[0].name == "Add" ): bias_op = net.find_out_oprs(opr)[0] if not ( ( bias_op.inp_tensors[1].np_data is not None and len(bias_op.inp_tensors[1].np_data.reshape(-1)) == opr.inp_tensors[1].shape[0] ) or ( ( bias_op.inp_tensors[0].np_data is not None and len(bias_op.inp_tensors[0].np_data.reshape(-1)) == opr.inp_tensors[1].shape[0] ) ) ): continue bias_idx = 0 if bias_op.inp_tensors[0].np_data is not None else 1 if len(opr.inp_tensors) == 2: opr.inp_tensors.append(bias_op.inp_tensors[bias_idx]) else: bias_shape = opr.inp_tensors[2].np_data.shape add_tensor = bias_op.inp_tensors[bias_idx].np_data if add_tensor.shape != bias_shape: add_tensor = add_tensor.reshape(bias_shape) opr.inp_tensors[2].np_data += add_tensor if bias_op in opr.out_tensors[0].user_opr: opr.out_tensors[0].user_opr.remove(bias_op) bias_out_op = net.find_out_oprs(bias_op) if len(bias_out_op) > 0: for op in bias_out_op: op.inp_tensors[0] = opr.out_tensors[0] opr.out_tensors[0].user_opr.append(op) else: # last op of the graph assert bias_op.out_tensors[0] in net.graph_outputs index = net.graph_outputs.index(bias_op.out_tensors[0]) net.graph_outputs[index] = opr.out_tensors[0] opr.activation = bias_op.activation index = net.all_oprs.index(bias_op) del net.all_oprs[index] del net._opr_ids[index] @_register_tranformation_rule(TransformerRule.FUSE_FOR_DECONV_BIAS) def _fuse_for_deconv_bias(net: IRGraph): for opr in net.all_oprs: if ( opr.name == "Deconv2d" and len(net.find_out_oprs(opr)) == 1 and net.find_out_oprs(opr)[0].name == "Add" ): bias_op = net.find_out_oprs(opr)[0] if not ( ( bias_op.inp_tensors[1].np_data is not None and len(bias_op.inp_tensors[1].np_data.reshape(-1)) == opr.inp_tensors[1].shape[1] ) or ( ( bias_op.inp_tensors[0].np_data is not None and len(bias_op.inp_tensors[0].np_data.reshape(-1)) == opr.inp_tensors[1].shape[1] ) ) ): continue bias_idx = 0 if bias_op.inp_tensors[0].np_data is not None else 1 if len(opr.inp_tensors) == 3: # shape, weight, input, bias opr.inp_tensors.append(bias_op.inp_tensors[bias_idx]) else: bias_shape = opr.inp_tensors[3].np_data.shape add_tensor = bias_op.inp_tensors[bias_idx].np_data if add_tensor.shape != bias_shape: add_tensor = add_tensor.reshape(bias_shape) opr.inp_tensors[3].np_data += add_tensor if bias_op in opr.out_tensors[0].user_opr: opr.out_tensors[0].user_opr.remove(bias_op) bias_out_op = net.find_out_oprs(bias_op) if len(bias_out_op) > 0: for op in bias_out_op: op.inp_tensors[0] = opr.out_tensors[0] opr.out_tensors[0].user_opr.append(op) else: # last op of the graph assert bias_op.out_tensors[0] in net.graph_outputs index = net.graph_outputs.index(bias_op.out_tensors[0]) net.graph_outputs[index] = opr.out_tensors[0] opr.activation = bias_op.activation index = net.all_oprs.index(bias_op) del net.all_oprs[index] del net._opr_ids[index] @_register_tranformation_rule(TransformerRule.EXPAND_MUL_ADD3) def _expand_mul_add3(net: IRGraph): for op in net.all_oprs: if not isinstance(op, FuseMulAdd3Opr): continue last_op = net.find_inp_oprs(op) assert len(last_op) == 1 mul_out_tensor = IRTensor( name=op.inp_tensors[0].name + "_mul_out", shape=op.inp_tensors[0].shape, dtype=op.inp_tensors[0].dtype, ) new_tensor_id = max(net._tensor_ids) + 1 net.add_tensor(new_tensor_id, mul_out_tensor) mul_op = MulOpr() mul_out_tensor.owner_opr = mul_op mul_op.inp_tensors = op.inp_tensors[:2] for o in mul_op.inp_tensors: index = o.user_opr.index(op) o.user_opr[index] = mul_op mul_op.out_tensors = [mul_out_tensor] add_op = AddOpr() add_op.inp_tensors = [mul_out_tensor, op.inp_tensors[2]] mul_out_tensor.user_opr.append(add_op) add_op.out_tensors = op.out_tensors index = net._opr_ids.index(id(op)) net.delete_ops(index) net.add_op(mul_op, index) net.add_op(add_op, index + 1) @_register_tranformation_rule(TransformerRule.REPLACE_FLATTEN_TO_RESHAPE) def _replace_flatten_to_reshape(net: IRGraph): for opr in net.all_oprs: if isinstance(opr, FlattenOpr): out_shape = tuple(list(opr.inp_tensors[0].shape[: opr.start_axis]) + [-1]) reshape_op = ReshapeOpr(out_shape=out_shape) reshape_op.inp_tensors = opr.inp_tensors for t in reshape_op.inp_tensors: idx = t.user_opr.index(opr) t.user_opr[idx] = reshape_op reshape_op.out_tensors = opr.out_tensors for t in reshape_op.out_tensors: t.owner_opr = reshape_op net.replace_op(opr, reshape_op) @_register_tranformation_rule(TransformerRule.REMOVE_RESHAPE_REALTED_OP) def _remove_reshape_tensors(net: IRGraph): for opr in net.all_oprs: if isinstance(opr, ReshapeOpr) and len(opr.inp_tensors) > 1: opr.inp_tensors = opr.inp_tensors[:1] @_register_tranformation_rule(TransformerRule.REMOVE_DROPOUT) def _remove_dropout(net: IRGraph): for opr in net.all_oprs: for idx, inp in enumerate(opr.inp_tensors): owner_opr = inp.owner_opr if isinstance(owner_opr, DropoutOpr) and owner_opr.drop_prob == 0: opr.inp_tensors[idx] = owner_opr.inp_tensors[0] for idx, out in enumerate(net.graph_outputs): owner_opr = out.owner_opr if isinstance(owner_opr, DropoutOpr) and owner_opr.drop_prob == 0: net.graph_outputs[idx] = owner_opr.inp_tensors[0] @_register_tranformation_rule(TransformerRule.REMOVE_RELU) def _remove_relu(net: IRGraph): for opr in net.all_oprs: for idx, inp in enumerate(opr.inp_tensors): owner_opr = inp.owner_opr if isinstance(owner_opr, ReluOpr): opr.inp_tensors[idx] = owner_opr.inp_tensors[0] for idx, out in enumerate(net.graph_outputs): owner_opr = out.owner_opr if isinstance(owner_opr, ReluOpr): net.graph_outputs[idx] = owner_opr.inp_tensors[0] visited_tensor = set() # type: set def _dfs_recursive(op_set, tensor): owner_opr = tensor.owner_opr op_set.add(owner_opr) if tensor in visited_tensor: return visited_tensor.add(tensor) if isinstance(owner_opr, IRGraph) or owner_opr is None: return for tt in owner_opr.inp_tensors: _dfs_recursive(op_set, tt) @_register_tranformation_rule(TransformerRule.REMOVE_UNRELATED_IROP) def _remove_unrelated_op(net: IRGraph): match_sets = set() # type: Set[OpBase] for out_tensor in net.graph_outputs: _dfs_recursive(match_sets, out_tensor) remove_idx = [] for opr in net.all_oprs: if opr not in match_sets: index = net._opr_ids.index(id(opr)) remove_idx.append(index) for i in remove_idx[::-1]: net.delete_ops(i) @_register_tranformation_rule(TransformerRule.ADD_FAKE_HSIGMOID_OUT) def _add_fake_hsigmoid_tensor(net: IRGraph): for opr in net.all_oprs: if isinstance(opr, (HardSwishOpr, HardSigmoidOpr)): add_3_out_tensor = IRTensor( opr.out_tensors[0].name + "_fake_add3_out", opr.inp_tensors[0].shape, opr.inp_tensors[0].dtype, q_type=opr.inp_tensors[0].q_dtype, scale=opr.inp_tensors[0].scale, zero_point=opr.inp_tensors[0].zero_point, ) opr.add_inp_tensors(add_3_out_tensor) relu6_out_tensor = IRTensor( opr.out_tensors[0].name + "_relu6_out", opr.inp_tensors[0].shape, opr.inp_tensors[0].dtype, q_type=opr.inp_tensors[0].q_dtype, scale=opr.inp_tensors[0].scale, zero_point=opr.inp_tensors[0].zero_point, ) opr.add_inp_tensors(relu6_out_tensor) if isinstance(opr, HardSwishOpr): div6_out_tensor = IRTensor( opr.out_tensors[0].name + "_div_out", opr.inp_tensors[0].shape, opr.inp_tensors[0].dtype, q_type=opr.inp_tensors[0].q_dtype, scale=opr.inp_tensors[0].scale, zero_point=opr.inp_tensors[0].zero_point, ) opr.add_inp_tensors(div6_out_tensor) def fold_conv_bn( conv_weight, conv_bias, conv_groups, gamma, beta, bn_mean, bn_var, eps ): conv_bias = conv_bias.reshape(1, -1, 1, 1) gamma = gamma.reshape(1, -1, 1, 1) beta = beta.reshape(1, -1, 1, 1) bn_mean = bn_mean.reshape(1, -1, 1, 1) bn_var = bn_var.reshape(1, -1, 1, 1) # bn_istd = 1 / bn_std bn_istd = 1.0 / sqrt(bn_var + eps) # type: ignore[attr-defined] # w_fold = gamma / bn_std * W scale_factor = gamma * bn_istd if conv_groups == 1: w_fold = conv_weight * scale_factor.reshape(-1, 1, 1, 1) else: w_fold = conv_weight * scale_factor.reshape(conv_groups, -1, 1, 1, 1) # b_fold = gamma * (b - bn_mean) / bn_std + beta b_fold = beta + gamma * (conv_bias - bn_mean) * bn_istd return w_fold, b_fold @_register_tranformation_rule(TransformerRule.FUSE_CONV_BN) def _fuse_conv_bn(net: IRGraph): for opr in net.all_oprs: if ( opr.name == "BatchNormalization" and len(net.find_inp_oprs(opr)) == 1 and net.find_inp_oprs(opr)[0].name == "Conv2d" and len(net.find_out_oprs(net.find_inp_oprs(opr)[0])) == 1 and net.find_out_oprs(net.find_inp_oprs(opr)[0])[0] == opr ): gamma = ( Tensor(opr.weight) # type: ignore[attr-defined] if opr.weight is not None # type: ignore[attr-defined] else Tensor(opr.inp_tensors[1].np_data) ) beta = ( Tensor(opr.bias) # type: ignore[attr-defined] if opr.bias is not None # type: ignore[attr-defined] else Tensor(opr.inp_tensors[2].np_data) ) bn_mean = (
Tensor(opr.mean)
megengine.Tensor
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. from collections import OrderedDict from enum import Enum from functools import cmp_to_key from typing import Set # pylint: disable=unused-import from typing import Callable, Dict, Sequence import numpy as np from megengine import Tensor from megengine.functional import sqrt from ..converter_ir.ir_graph import IRGraph from .ir_op import ( AddOpr, Conv2dOpr, ConvRelu2dOpr, Deconv2dOpr, DropoutOpr, ExpOpr, FlattenOpr, FuseMulAdd3Opr, GetSubTensorOpr, HardSigmoidOpr, HardSwishOpr, IdentityOpr, LeakyReluOpr, MulOpr, OpBase, PadOpr, ReduceOpr, ReluOpr, ReshapeOpr, ResizeOpr, SoftmaxOpr, SqueezeOpr, SubOpr, TanHOpr, TransposeOpr, TrueDivOpr, _PoolOpr, ) from .ir_tensor import AxisOrder, IRTensor class TransformerRule(Enum): # general rules NOPE = 1 # for TFLite REDUCE_AXIS_AS_INPUT = 100 REMOVE_RESHAPE_INPUT = 101 # FUSE_FOR_RELU6 pass should happen before FUSE_ACTIVATION FUSE_FOR_RELU6 = 102 ## EXPAND_CONVRELU = 102.1 CONV_ADD_ZERO_BIAS = 103 FUSE_FOR_CONV_BIAS = 103.1 FUSE_CONV_BN = 104 DECONV_ADD_ZERO_BIAS = 105 # DEPTHWISE_CONV_RESHAPE_WEIGHT requirs RESHAPE_BIAS_TO_1DIM DEPTHWISE_CONV_RESHAPE_WEIGHT = 106 FUSE_SOFTMAX = 107 # RESHAPE_BIAS_TO_1DIM should happen before DECONV_SHAPE_AS_INPUT RESHAPE_BIAS_TO_1DIM = 108 DECONV_SHAPE_AS_INPUT = 109 FUSE_ASTYPE = 110 ## PADDING_FOR_CONV_AND_POOLING = 111 TRANSPOSE_PATTERN_AS_INPUT = 112 # FUSE_FOR_LEAKY_RELU should happen before EXPAND_MUL_ADD3 FUSE_FOR_LEAKY_RELU = 113 EXPAND_MUL_ADD3 = 114 EXPAND_ADD_SIGMOID = 115 ## FUSE_FOR_DECONV_BIAS = 117 FUSE_FOR_FULLY_CONNECTED = 118 ## # for TFLite Converter SLICE_PARAMS_AS_INPUTS_AND_MAKE_SQUEEZE = 119 RESIZE_PARAMS_AS_INPUT = 120 REPLACE_FLATTEN_TO_RESHAPE = 120.1 # remove reshape REMOVE_RESHAPE_REALTED_OP = 121 REMOVE_DROPOUT = 122 FUSE_ACTIVATION = 123 REMOVE_IDENTITY = 124 REMOVE_RELU = 125 REMOVE_UNRELATED_IROP = 130 ADD_FAKE_HSIGMOID_OUT = 131 RENAME_CAFFE_LAYER_TENSOR = 132 def cmp_rules(a, b): if a.value < b.value: return -1 if a.value > b.value: return 1 return 0 class IRTransform: def __init__(self, transformer_options): if not isinstance(transformer_options, Sequence): transformer_options = [ transformer_options, ] # bias of depthwise_conv must be 1 dim if TransformerRule.DEPTHWISE_CONV_RESHAPE_WEIGHT in transformer_options: if TransformerRule.RESHAPE_BIAS_TO_1DIM not in transformer_options: transformer_options.append(TransformerRule.RESHAPE_BIAS_TO_1DIM) self.trans_options = sorted(transformer_options, key=cmp_to_key(cmp_rules)) def transform(self, ir_graph): for option in self.trans_options: TRANSFORMMAP[option](ir_graph) return ir_graph TRANSFORMMAP: Dict[Enum, Callable] = {} def _register_tranformation_rule(transformer_option): def callback(impl): TRANSFORMMAP[transformer_option] = impl return callback def cal_pad_mode(tm_opr): out_shape = tm_opr.out_tensors[0].shape inp_shape = tm_opr.inp_tensors[0].shape if out_shape[2:] == inp_shape[2:]: return "SAME" else: return "VALID" @_register_tranformation_rule(TransformerRule.REMOVE_RESHAPE_INPUT) def _remove_reshape_input(net): for op in net.all_oprs: if not isinstance(op, ReshapeOpr): continue if len(op.inp_tensors) == 2: del op.inp_tensors[1] @_register_tranformation_rule(TransformerRule.TRANSPOSE_PATTERN_AS_INPUT) def _transpose_pattern_as_input(net): for op in net.all_oprs: if not isinstance(op, TransposeOpr): continue perm_tensor = IRTensor( name=op.inp_tensors[0].name + "_perm", shape=np.array(op.pattern).shape, dtype=np.int32, np_data=np.array(op.pattern, dtype=np.int32), owner_opr=op, q_type=np.int32, axis=None, ) op.add_inp_tensors(perm_tensor) @_register_tranformation_rule(TransformerRule.REDUCE_AXIS_AS_INPUT) def _reduce_axis_as_input(net): for op in net.all_oprs: if not isinstance(op, ReduceOpr): continue axis_tensor = IRTensor( name=op.inp_tensors[0].name + "_axis", shape=[1], dtype=np.int32, np_data=np.array(op.axis, dtype=np.int32), owner_opr=op, q_type=np.int32, axis=None, ) op.add_inp_tensors(axis_tensor) @_register_tranformation_rule(TransformerRule.PADDING_FOR_CONV_AND_POOLING) def _make_padding(net: IRGraph): def have_padding(opr): if isinstance(opr, Conv2dOpr): if cal_pad_mode(opr) == "SAME": return False if hasattr(opr, "padding") and (opr.padding[0] > 0 or opr.padding[1] > 0): return True return False insert_intended = OrderedDict() # type: OrderedDict for op in net.all_oprs: if not isinstance(op, (Conv2dOpr, _PoolOpr)): continue if have_padding(op): assert op.inp_tensors[0].ndim == 4, "ERROR: unsupported padding mode" np_data = np.array( [ 0, 0, op.padding[0], op.padding[0], op.padding[1], op.padding[1], 0, 0, ], dtype=np.int32, ) new_tensor_id = max(net._tensor_ids) + 1 pad_in_tensor = IRTensor( name=op.inp_tensors[0].name + "_paddings", shape=[4, 2], dtype=np.int32, owner_opr=None, np_data=np_data, q_type=np.int32, axis=None, ) net.add_tensor(new_tensor_id, pad_in_tensor) shape = list(op.inp_tensors[0].shape) new_tensor_id = max(net._tensor_ids) + 1 pad_out_tensor = IRTensor( name=op.inp_tensors[0].name + "_pad_out", shape=[ shape[0], shape[1], shape[2] + op.padding[0] * 2, shape[3] + op.padding[1] * 2, ], dtype=op.inp_tensors[0].dtype, ) if ( hasattr(op.inp_tensors[0], "scale") and op.inp_tensors[0].scale is not None ): pad_out_tensor.scale = op.inp_tensors[0].scale pad_out_tensor.q_dtype = op.inp_tensors[0].q_dtype if hasattr(op.inp_tensors[0], "zero_point"): pad_out_tensor.zero_point = op.inp_tensors[0].zero_point net.add_tensor(new_tensor_id, pad_out_tensor) pad_opr = PadOpr() pad_opr.inp_tensors = [op.inp_tensors[0], pad_in_tensor] index = op.inp_tensors[0].user_opr.index(op) op.inp_tensors[0].user_opr[index] = pad_opr pad_opr.out_tensors = [pad_out_tensor] pad_out_tensor.owner_opr = pad_opr op.inp_tensors = [pad_out_tensor] + op.inp_tensors[1:] pad_out_tensor.user_opr.append(op) index = net._opr_ids.index(id(op)) insert_intended[index] = (id(pad_opr), pad_opr) for index, generated_pair in list(insert_intended.items())[::-1]: net._opr_ids.insert(index, generated_pair[0]) net.all_oprs.insert(index, generated_pair[1]) @_register_tranformation_rule(TransformerRule.DECONV_SHAPE_AS_INPUT) def _deconv_shape_as_input(net: IRGraph): for op in net.all_oprs: if not isinstance(op, Deconv2dOpr): continue result_shape = op.out_tensors[0].shape np_data = np.array( [result_shape[0], result_shape[2], result_shape[3], result_shape[1],], dtype=np.int32, ) new_tensor_id = max(net._tensor_ids) + 1 shape_symvar = IRTensor( name=op.inp_tensors[0].name + "_deconv_out_shape", shape=[4], dtype=np.int32, owner_opr=op, np_data=np_data, q_type=np.int32, axis=None, ) shape_tensor = net.get_tensor(new_tensor_id, shape_symvar) if len(op.inp_tensors) == 2: op.inp_tensors = [ shape_tensor, op.inp_tensors[1], op.inp_tensors[0], ] else: op.inp_tensors = [ shape_tensor, op.inp_tensors[1], op.inp_tensors[0], op.inp_tensors[2], ] @_register_tranformation_rule(TransformerRule.RESIZE_PARAMS_AS_INPUT) def _resize_params_as_input(net): for op in net.all_oprs: if not isinstance(op, ResizeOpr): continue if len(op.inp_tensors) == 2: continue out_size_tensor = IRTensor( name=op.inp_tensors[0].name + "_out_size", shape=(2,), dtype=np.int32, np_data=np.array(op.out_size, dtype=np.int32), q_type=np.int32, axis=None, ) op.add_inp_tensors(out_size_tensor) @_register_tranformation_rule(TransformerRule.CONV_ADD_ZERO_BIAS) def _add_bias_for_conv(net: IRGraph): for op in net.all_oprs: if not isinstance(op, Conv2dOpr): continue if len(op.inp_tensors) == 3: continue weight_shape = op.inp_tensors[1].shape bias_shape = ( weight_shape[0] if len(weight_shape) == 4 else weight_shape[0] * weight_shape[1] ) bias_shape = (1, bias_shape, 1, 1) bias = np.zeros(bias_shape, dtype=np.float32) bias_tensor = IRTensor( name=op.inp_tensors[0].name + "_bias", shape=bias_shape, dtype=np.float32, np_data=bias, axis=AxisOrder.NCHW, ) if op.inp_tensors[0].scale and op.inp_tensors[1].scale: bias_tensor.set_qparams( op.inp_tensors[0].scale * op.inp_tensors[1].scale, 0 ) bias_tensor.q_dtype = "int32" op.inp_tensors.append(bias_tensor) @_register_tranformation_rule(TransformerRule.DECONV_ADD_ZERO_BIAS) def _add_bias_for_deconv(net: IRGraph): for op in net.all_oprs: if not isinstance(op, Deconv2dOpr): continue if len(op.inp_tensors) == 3: continue weight_shape = op.inp_tensors[1].shape bias_shape = ( weight_shape[1] if len(weight_shape) == 4 else weight_shape[0] * weight_shape[2] ) bias_shape = (1, bias_shape, 1, 1) bias = np.zeros(bias_shape, dtype=np.float32) bias_tensor = IRTensor( name=op.inp_tensors[0].name + "_bias", shape=bias_shape, dtype=np.float32, np_data=bias, axis=AxisOrder.NCHW, ) if op.inp_tensors[0].scale and op.inp_tensors[1].scale: bias_tensor.set_qparams( op.inp_tensors[0].scale * op.inp_tensors[1].scale, 0 ) bias_tensor.q_dtype = "int32" op.inp_tensors.append(bias_tensor) @_register_tranformation_rule(TransformerRule.RESHAPE_BIAS_TO_1DIM) def _reshape_bias_to_1dim(net: IRGraph): for op in net.all_oprs: if not isinstance(op, (Deconv2dOpr, Conv2dOpr)): continue if len(op.inp_tensors) == 2: continue bias = op.inp_tensors[2] if bias.ndim == 4: bias.shape = (bias.shape[1],) bias.np_data = bias.np_data.reshape(-1) @_register_tranformation_rule(TransformerRule.DEPTHWISE_CONV_RESHAPE_WEIGHT) def _depthwise_conv_reshape_weight(net: IRGraph): # general group conv is not supported for TFLite for op in net.all_oprs: if not isinstance(op, Conv2dOpr): continue if op.groups == 1: continue weight = op.inp_tensors[1] # G, oc/G, ic/G, kh, kw ic, cm = weight.shape[1] * op.groups, weight.shape[2] h, w = weight.shape[3:5] weight.shape = (ic, cm, h, w) # oc, ic/G, kh, kw weight.np_data = weight.np_data.reshape(ic, cm, h, w) @_register_tranformation_rule(TransformerRule.FUSE_ACTIVATION) def _fuse_activation(net): delete_intended = [] for op_id, op in zip(net._opr_ids, net.all_oprs): if isinstance(op, (ReluOpr, TanHOpr)): prev_ops = net.find_inp_oprs(op) if len(prev_ops) == 0: continue prev_op = prev_ops[0] if not isinstance(prev_op, OpBase): continue if prev_op.activation != "IDENTITY" or prev_op.name == "Deconv2d": continue activation = op.name.upper() prev_op.activation = activation prev_op.out_tensors = op.out_tensors for t in prev_op.out_tensors: t.owner_opr = prev_op delete_intended.append(net._opr_ids.index(op_id)) for delete_idx in delete_intended[::-1]: net.delete_ops(delete_idx) @_register_tranformation_rule(TransformerRule.SLICE_PARAMS_AS_INPUTS_AND_MAKE_SQUEEZE) def _make_slice_as_inputs(net: IRGraph): for op in net.all_oprs: if not isinstance(op, GetSubTensorOpr): continue ndim = op.inp_tensors[0].ndim def make_input(axis, param, init_value): # make inputs: begin, end and step. ret = [init_value] * ndim # pylint:disable=cell-var-from-loop for k, v in zip(axis, param): ret[k] = v ret = IRTensor( name=op.name + "_fake_input", # pylint:disable=cell-var-from-loop shape=[len(ret)], dtype=np.int32, np_data=np.array(ret, dtype=np.int32), owner_opr=op, # pylint:disable=cell-var-from-loop q_type=np.int32, ) return ret begins_tensor = make_input(op.axis, op.begin_params, 0) ends_tensor = make_input(op.axis, op.end_params, np.iinfo(np.int32).max) steps_tensor = make_input(op.axis, op.step_params, 1) op.inp_tensors = [op.inp_tensors[0], begins_tensor, ends_tensor, steps_tensor] # TFLite slice do not support squeeze axis, so insert a squeeze opr here. # infer actual output shape of tflite slice desired_out_shape = op.out_tensors[0].shape actual_out_shape = [1] * ndim idx = 0 for i in range(ndim): if i in op.squeeze_axis: continue actual_out_shape[i] = desired_out_shape[idx] idx += 1 slice_out_tensor = IRTensor( name=op.name + "fake_output", shape=actual_out_shape, dtype=op.out_tensors[0].dtype, q_type=op.out_tensors[0].q_dtype, owner_opr=op, ) old_out = op.out_tensors op.out_tensors = [slice_out_tensor] squeeze = SqueezeOpr(op.squeeze_axis) squeeze.inp_tensors = [slice_out_tensor] squeeze.out_tensors = old_out idx = net._opr_ids.index(id(op)) + 1 net.add_op(squeeze, idx) # caffe transormer rules class PatternNode: def __init__(self, type, is_output=False, const_value=None): self.op = None self.type = type self.inp_oprs = [] self.inp_const = [] self.inp_tensors = [] self.is_output = is_output self.const_value = const_value def check_const_value(self, op): inp_tensors = [v.np_data for v in op.inp_tensors] for const in self.const_value: idx = const[0] if idx == -1: find = False for index, v in enumerate(inp_tensors): if np.array_equal(const[1], v): find = True del inp_tensors[index] break if not find: return False elif not np.array_equal(const[1], inp_tensors[idx]): return False return True get_type = lambda op: type(op).__name__ def match(node, opr): node_queue = [node] opr_queue = [opr] matched_opr = set() matched_node = set() while len(node_queue) != 0: cur_node = node_queue.pop(0) cur_opr = opr_queue.pop(0) if cur_node.type != get_type(cur_opr) and cur_node.type != "*" or cur_opr.skip: return False if cur_node.op == None: cur_node.op = cur_opr if cur_node.const_value != None: if not cur_node.check_const_value(cur_opr): return False elif cur_node.op != cur_opr: return False matched_opr.add(cur_opr) matched_node.add(cur_node) for i, var in enumerate(cur_opr.inp_tensors): if var.np_data is not None: cur_node.inp_const.append([i, var.np_data]) else: cur_node.inp_tensors.append([i, var]) if len(cur_node.inp_oprs) == 0: continue if len(cur_node.inp_oprs) != len(cur_opr.inp_oprs): return False for i, j in zip(cur_node.inp_oprs, cur_opr.inp_oprs): node_queue.append(i) opr_queue.append(j) for n in matched_node: if n.is_output: continue for op in n.op.out_oprs: if op not in matched_opr: return False return True def get_softmax_axis(ndim: int) -> int: if ndim in (0, 1, 3): return 0 return 1 @_register_tranformation_rule(TransformerRule.FUSE_SOFTMAX) def _fuse_softmax(net: IRGraph): matches = OrderedDict() # type: OrderedDict for op in net.all_oprs: if not isinstance(op, TrueDivOpr): continue try: prev_op = net.find_inp_oprs(op)[1] cur_index = net._opr_ids.index(id(op)) if ( not isinstance(prev_op, ReduceOpr) or prev_op.mode != "SUM" or prev_op.axis != get_softmax_axis(prev_op.inp_tensors[0].ndim) or net._opr_ids.index(id(prev_op)) != cur_index - 1 ): continue prev_op = net.find_inp_oprs(op)[0] if ( not isinstance(prev_op, ExpOpr) or net._opr_ids.index(id(prev_op)) != cur_index - 2 ): continue prev_op = net.find_inp_oprs(prev_op)[0] if ( not isinstance(prev_op, SubOpr) or net._opr_ids.index(id(prev_op)) != cur_index - 3 ): continue prev_op = net.find_inp_oprs(prev_op)[1] if ( not isinstance(prev_op, ReduceOpr) or prev_op.mode != "MAX" or prev_op.axis != get_softmax_axis(prev_op.inp_tensors[0].ndim) or net._opr_ids.index(id(prev_op)) != cur_index - 4 ): continue except IndexError: # doesn't match continue softmax_opr = SoftmaxOpr(axis=get_softmax_axis(prev_op.inp_tensors[0].ndim)) softmax_opr.beta = 1 softmax_opr.inp_tensors = prev_op.inp_tensors[:1] for i in softmax_opr.inp_tensors: i.user_opr.append(softmax_opr) softmax_opr.out_tensors = op.out_tensors softmax_out_oprs = net.find_out_oprs(op) matches[id(prev_op)] = (id(prev_op), softmax_opr, softmax_out_oprs) for original_id, generated_pair in list(matches.items())[::-1]: index = net._opr_ids.index(original_id) for out_op in generated_pair[2]: generated_pair[1].out_tensors[0].user_opr.append(out_op) del net._opr_ids[index : index + 5] del net.all_oprs[index : index + 5] net._opr_ids.insert(index, generated_pair[0]) net.all_oprs.insert(index, generated_pair[1]) @_register_tranformation_rule(TransformerRule.FUSE_FOR_LEAKY_RELU) def _fuse_leaky_relu(net: IRGraph): """ Elemwise(ADD) + Elemwise(MUL) + Elemwise(MAX) + Elemwise(MIN) -> LeakyRelu """ for opr in net.all_oprs: if ( opr.name == "Add" and len(net.find_inp_oprs(opr)) == 2 and net.find_inp_oprs(opr)[0].name == "Max" and net.find_inp_oprs(opr)[1].name == "Mul" ): max_op = net.find_inp_oprs(opr)[0] mul_op = net.find_inp_oprs(opr)[1] if not mul_op.inp_tensors[1].shape == (1,): continue if not max_op.inp_tensors[1].shape == (1,): continue if ( len(net.find_inp_oprs(mul_op)) != 1 or net.find_inp_oprs(mul_op)[0].name != "Min" or net.find_inp_oprs(mul_op)[0].inp_tensors[1].shape != (1,) ): continue min_op = net.find_inp_oprs(mul_op)[0] if not min_op.inp_tensors[1].shape == (1,): continue if max_op.inp_tensors[0] != min_op.inp_tensors[0]: continue leaky_relu = LeakyReluOpr( negative_slope=float(mul_op.inp_tensors[1].np_data) ) leaky_relu.inp_tensors = [max_op.inp_tensors[0]] max_op.inp_tensors[0].user_opr.remove(max_op) max_op.inp_tensors[0].user_opr.remove(min_op) max_op.inp_tensors[0].user_opr.append(leaky_relu) leaky_relu.out_tensors = opr.out_tensors opr.out_tensors[0].owner_opr = leaky_relu index = net.all_oprs.index(max_op) del net.all_oprs[index : index + 4] del net._opr_ids[index : index + 4] net.add_op(leaky_relu, index) @_register_tranformation_rule(TransformerRule.FUSE_FOR_CONV_BIAS) def _fuse_for_conv_bias(net: IRGraph): """ ConvolutionForward + Elemwise(ADD) -> ConvForwardBias """ for opr in net.all_oprs: if ( opr.name == "Conv2d" and len(net.find_out_oprs(opr)) == 1 and net.find_out_oprs(opr)[0].name == "Add" ): bias_op = net.find_out_oprs(opr)[0] if not ( ( bias_op.inp_tensors[1].np_data is not None and len(bias_op.inp_tensors[1].np_data.reshape(-1)) == opr.inp_tensors[1].shape[0] ) or ( ( bias_op.inp_tensors[0].np_data is not None and len(bias_op.inp_tensors[0].np_data.reshape(-1)) == opr.inp_tensors[1].shape[0] ) ) ): continue bias_idx = 0 if bias_op.inp_tensors[0].np_data is not None else 1 if len(opr.inp_tensors) == 2: opr.inp_tensors.append(bias_op.inp_tensors[bias_idx]) else: bias_shape = opr.inp_tensors[2].np_data.shape add_tensor = bias_op.inp_tensors[bias_idx].np_data if add_tensor.shape != bias_shape: add_tensor = add_tensor.reshape(bias_shape) opr.inp_tensors[2].np_data += add_tensor if bias_op in opr.out_tensors[0].user_opr: opr.out_tensors[0].user_opr.remove(bias_op) bias_out_op = net.find_out_oprs(bias_op) if len(bias_out_op) > 0: for op in bias_out_op: op.inp_tensors[0] = opr.out_tensors[0] opr.out_tensors[0].user_opr.append(op) else: # last op of the graph assert bias_op.out_tensors[0] in net.graph_outputs index = net.graph_outputs.index(bias_op.out_tensors[0]) net.graph_outputs[index] = opr.out_tensors[0] opr.activation = bias_op.activation index = net.all_oprs.index(bias_op) del net.all_oprs[index] del net._opr_ids[index] @_register_tranformation_rule(TransformerRule.FUSE_FOR_DECONV_BIAS) def _fuse_for_deconv_bias(net: IRGraph): for opr in net.all_oprs: if ( opr.name == "Deconv2d" and len(net.find_out_oprs(opr)) == 1 and net.find_out_oprs(opr)[0].name == "Add" ): bias_op = net.find_out_oprs(opr)[0] if not ( ( bias_op.inp_tensors[1].np_data is not None and len(bias_op.inp_tensors[1].np_data.reshape(-1)) == opr.inp_tensors[1].shape[1] ) or ( ( bias_op.inp_tensors[0].np_data is not None and len(bias_op.inp_tensors[0].np_data.reshape(-1)) == opr.inp_tensors[1].shape[1] ) ) ): continue bias_idx = 0 if bias_op.inp_tensors[0].np_data is not None else 1 if len(opr.inp_tensors) == 3: # shape, weight, input, bias opr.inp_tensors.append(bias_op.inp_tensors[bias_idx]) else: bias_shape = opr.inp_tensors[3].np_data.shape add_tensor = bias_op.inp_tensors[bias_idx].np_data if add_tensor.shape != bias_shape: add_tensor = add_tensor.reshape(bias_shape) opr.inp_tensors[3].np_data += add_tensor if bias_op in opr.out_tensors[0].user_opr: opr.out_tensors[0].user_opr.remove(bias_op) bias_out_op = net.find_out_oprs(bias_op) if len(bias_out_op) > 0: for op in bias_out_op: op.inp_tensors[0] = opr.out_tensors[0] opr.out_tensors[0].user_opr.append(op) else: # last op of the graph assert bias_op.out_tensors[0] in net.graph_outputs index = net.graph_outputs.index(bias_op.out_tensors[0]) net.graph_outputs[index] = opr.out_tensors[0] opr.activation = bias_op.activation index = net.all_oprs.index(bias_op) del net.all_oprs[index] del net._opr_ids[index] @_register_tranformation_rule(TransformerRule.EXPAND_MUL_ADD3) def _expand_mul_add3(net: IRGraph): for op in net.all_oprs: if not isinstance(op, FuseMulAdd3Opr): continue last_op = net.find_inp_oprs(op) assert len(last_op) == 1 mul_out_tensor = IRTensor( name=op.inp_tensors[0].name + "_mul_out", shape=op.inp_tensors[0].shape, dtype=op.inp_tensors[0].dtype, ) new_tensor_id = max(net._tensor_ids) + 1 net.add_tensor(new_tensor_id, mul_out_tensor) mul_op = MulOpr() mul_out_tensor.owner_opr = mul_op mul_op.inp_tensors = op.inp_tensors[:2] for o in mul_op.inp_tensors: index = o.user_opr.index(op) o.user_opr[index] = mul_op mul_op.out_tensors = [mul_out_tensor] add_op = AddOpr() add_op.inp_tensors = [mul_out_tensor, op.inp_tensors[2]] mul_out_tensor.user_opr.append(add_op) add_op.out_tensors = op.out_tensors index = net._opr_ids.index(id(op)) net.delete_ops(index) net.add_op(mul_op, index) net.add_op(add_op, index + 1) @_register_tranformation_rule(TransformerRule.REPLACE_FLATTEN_TO_RESHAPE) def _replace_flatten_to_reshape(net: IRGraph): for opr in net.all_oprs: if isinstance(opr, FlattenOpr): out_shape = tuple(list(opr.inp_tensors[0].shape[: opr.start_axis]) + [-1]) reshape_op = ReshapeOpr(out_shape=out_shape) reshape_op.inp_tensors = opr.inp_tensors for t in reshape_op.inp_tensors: idx = t.user_opr.index(opr) t.user_opr[idx] = reshape_op reshape_op.out_tensors = opr.out_tensors for t in reshape_op.out_tensors: t.owner_opr = reshape_op net.replace_op(opr, reshape_op) @_register_tranformation_rule(TransformerRule.REMOVE_RESHAPE_REALTED_OP) def _remove_reshape_tensors(net: IRGraph): for opr in net.all_oprs: if isinstance(opr, ReshapeOpr) and len(opr.inp_tensors) > 1: opr.inp_tensors = opr.inp_tensors[:1] @_register_tranformation_rule(TransformerRule.REMOVE_DROPOUT) def _remove_dropout(net: IRGraph): for opr in net.all_oprs: for idx, inp in enumerate(opr.inp_tensors): owner_opr = inp.owner_opr if isinstance(owner_opr, DropoutOpr) and owner_opr.drop_prob == 0: opr.inp_tensors[idx] = owner_opr.inp_tensors[0] for idx, out in enumerate(net.graph_outputs): owner_opr = out.owner_opr if isinstance(owner_opr, DropoutOpr) and owner_opr.drop_prob == 0: net.graph_outputs[idx] = owner_opr.inp_tensors[0] @_register_tranformation_rule(TransformerRule.REMOVE_RELU) def _remove_relu(net: IRGraph): for opr in net.all_oprs: for idx, inp in enumerate(opr.inp_tensors): owner_opr = inp.owner_opr if isinstance(owner_opr, ReluOpr): opr.inp_tensors[idx] = owner_opr.inp_tensors[0] for idx, out in enumerate(net.graph_outputs): owner_opr = out.owner_opr if isinstance(owner_opr, ReluOpr): net.graph_outputs[idx] = owner_opr.inp_tensors[0] visited_tensor = set() # type: set def _dfs_recursive(op_set, tensor): owner_opr = tensor.owner_opr op_set.add(owner_opr) if tensor in visited_tensor: return visited_tensor.add(tensor) if isinstance(owner_opr, IRGraph) or owner_opr is None: return for tt in owner_opr.inp_tensors: _dfs_recursive(op_set, tt) @_register_tranformation_rule(TransformerRule.REMOVE_UNRELATED_IROP) def _remove_unrelated_op(net: IRGraph): match_sets = set() # type: Set[OpBase] for out_tensor in net.graph_outputs: _dfs_recursive(match_sets, out_tensor) remove_idx = [] for opr in net.all_oprs: if opr not in match_sets: index = net._opr_ids.index(id(opr)) remove_idx.append(index) for i in remove_idx[::-1]: net.delete_ops(i) @_register_tranformation_rule(TransformerRule.ADD_FAKE_HSIGMOID_OUT) def _add_fake_hsigmoid_tensor(net: IRGraph): for opr in net.all_oprs: if isinstance(opr, (HardSwishOpr, HardSigmoidOpr)): add_3_out_tensor = IRTensor( opr.out_tensors[0].name + "_fake_add3_out", opr.inp_tensors[0].shape, opr.inp_tensors[0].dtype, q_type=opr.inp_tensors[0].q_dtype, scale=opr.inp_tensors[0].scale, zero_point=opr.inp_tensors[0].zero_point, ) opr.add_inp_tensors(add_3_out_tensor) relu6_out_tensor = IRTensor( opr.out_tensors[0].name + "_relu6_out", opr.inp_tensors[0].shape, opr.inp_tensors[0].dtype, q_type=opr.inp_tensors[0].q_dtype, scale=opr.inp_tensors[0].scale, zero_point=opr.inp_tensors[0].zero_point, ) opr.add_inp_tensors(relu6_out_tensor) if isinstance(opr, HardSwishOpr): div6_out_tensor = IRTensor( opr.out_tensors[0].name + "_div_out", opr.inp_tensors[0].shape, opr.inp_tensors[0].dtype, q_type=opr.inp_tensors[0].q_dtype, scale=opr.inp_tensors[0].scale, zero_point=opr.inp_tensors[0].zero_point, ) opr.add_inp_tensors(div6_out_tensor) def fold_conv_bn( conv_weight, conv_bias, conv_groups, gamma, beta, bn_mean, bn_var, eps ): conv_bias = conv_bias.reshape(1, -1, 1, 1) gamma = gamma.reshape(1, -1, 1, 1) beta = beta.reshape(1, -1, 1, 1) bn_mean = bn_mean.reshape(1, -1, 1, 1) bn_var = bn_var.reshape(1, -1, 1, 1) # bn_istd = 1 / bn_std bn_istd = 1.0 / sqrt(bn_var + eps) # type: ignore[attr-defined] # w_fold = gamma / bn_std * W scale_factor = gamma * bn_istd if conv_groups == 1: w_fold = conv_weight * scale_factor.reshape(-1, 1, 1, 1) else: w_fold = conv_weight * scale_factor.reshape(conv_groups, -1, 1, 1, 1) # b_fold = gamma * (b - bn_mean) / bn_std + beta b_fold = beta + gamma * (conv_bias - bn_mean) * bn_istd return w_fold, b_fold @_register_tranformation_rule(TransformerRule.FUSE_CONV_BN) def _fuse_conv_bn(net: IRGraph): for opr in net.all_oprs: if ( opr.name == "BatchNormalization" and len(net.find_inp_oprs(opr)) == 1 and net.find_inp_oprs(opr)[0].name == "Conv2d" and len(net.find_out_oprs(net.find_inp_oprs(opr)[0])) == 1 and net.find_out_oprs(net.find_inp_oprs(opr)[0])[0] == opr ): gamma = ( Tensor(opr.weight) # type: ignore[attr-defined] if opr.weight is not None # type: ignore[attr-defined] else Tensor(opr.inp_tensors[1].np_data) ) beta = ( Tensor(opr.bias) # type: ignore[attr-defined] if opr.bias is not None # type: ignore[attr-defined] else Tensor(opr.inp_tensors[2].np_data) ) bn_mean = ( Tensor(opr.mean) # type: ignore[attr-defined] if opr.mean is not None # type: ignore[attr-defined] else
Tensor(opr.inp_tensors[3].np_data)
megengine.Tensor
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. from collections import OrderedDict from enum import Enum from functools import cmp_to_key from typing import Set # pylint: disable=unused-import from typing import Callable, Dict, Sequence import numpy as np from megengine import Tensor from megengine.functional import sqrt from ..converter_ir.ir_graph import IRGraph from .ir_op import ( AddOpr, Conv2dOpr, ConvRelu2dOpr, Deconv2dOpr, DropoutOpr, ExpOpr, FlattenOpr, FuseMulAdd3Opr, GetSubTensorOpr, HardSigmoidOpr, HardSwishOpr, IdentityOpr, LeakyReluOpr, MulOpr, OpBase, PadOpr, ReduceOpr, ReluOpr, ReshapeOpr, ResizeOpr, SoftmaxOpr, SqueezeOpr, SubOpr, TanHOpr, TransposeOpr, TrueDivOpr, _PoolOpr, ) from .ir_tensor import AxisOrder, IRTensor class TransformerRule(Enum): # general rules NOPE = 1 # for TFLite REDUCE_AXIS_AS_INPUT = 100 REMOVE_RESHAPE_INPUT = 101 # FUSE_FOR_RELU6 pass should happen before FUSE_ACTIVATION FUSE_FOR_RELU6 = 102 ## EXPAND_CONVRELU = 102.1 CONV_ADD_ZERO_BIAS = 103 FUSE_FOR_CONV_BIAS = 103.1 FUSE_CONV_BN = 104 DECONV_ADD_ZERO_BIAS = 105 # DEPTHWISE_CONV_RESHAPE_WEIGHT requirs RESHAPE_BIAS_TO_1DIM DEPTHWISE_CONV_RESHAPE_WEIGHT = 106 FUSE_SOFTMAX = 107 # RESHAPE_BIAS_TO_1DIM should happen before DECONV_SHAPE_AS_INPUT RESHAPE_BIAS_TO_1DIM = 108 DECONV_SHAPE_AS_INPUT = 109 FUSE_ASTYPE = 110 ## PADDING_FOR_CONV_AND_POOLING = 111 TRANSPOSE_PATTERN_AS_INPUT = 112 # FUSE_FOR_LEAKY_RELU should happen before EXPAND_MUL_ADD3 FUSE_FOR_LEAKY_RELU = 113 EXPAND_MUL_ADD3 = 114 EXPAND_ADD_SIGMOID = 115 ## FUSE_FOR_DECONV_BIAS = 117 FUSE_FOR_FULLY_CONNECTED = 118 ## # for TFLite Converter SLICE_PARAMS_AS_INPUTS_AND_MAKE_SQUEEZE = 119 RESIZE_PARAMS_AS_INPUT = 120 REPLACE_FLATTEN_TO_RESHAPE = 120.1 # remove reshape REMOVE_RESHAPE_REALTED_OP = 121 REMOVE_DROPOUT = 122 FUSE_ACTIVATION = 123 REMOVE_IDENTITY = 124 REMOVE_RELU = 125 REMOVE_UNRELATED_IROP = 130 ADD_FAKE_HSIGMOID_OUT = 131 RENAME_CAFFE_LAYER_TENSOR = 132 def cmp_rules(a, b): if a.value < b.value: return -1 if a.value > b.value: return 1 return 0 class IRTransform: def __init__(self, transformer_options): if not isinstance(transformer_options, Sequence): transformer_options = [ transformer_options, ] # bias of depthwise_conv must be 1 dim if TransformerRule.DEPTHWISE_CONV_RESHAPE_WEIGHT in transformer_options: if TransformerRule.RESHAPE_BIAS_TO_1DIM not in transformer_options: transformer_options.append(TransformerRule.RESHAPE_BIAS_TO_1DIM) self.trans_options = sorted(transformer_options, key=cmp_to_key(cmp_rules)) def transform(self, ir_graph): for option in self.trans_options: TRANSFORMMAP[option](ir_graph) return ir_graph TRANSFORMMAP: Dict[Enum, Callable] = {} def _register_tranformation_rule(transformer_option): def callback(impl): TRANSFORMMAP[transformer_option] = impl return callback def cal_pad_mode(tm_opr): out_shape = tm_opr.out_tensors[0].shape inp_shape = tm_opr.inp_tensors[0].shape if out_shape[2:] == inp_shape[2:]: return "SAME" else: return "VALID" @_register_tranformation_rule(TransformerRule.REMOVE_RESHAPE_INPUT) def _remove_reshape_input(net): for op in net.all_oprs: if not isinstance(op, ReshapeOpr): continue if len(op.inp_tensors) == 2: del op.inp_tensors[1] @_register_tranformation_rule(TransformerRule.TRANSPOSE_PATTERN_AS_INPUT) def _transpose_pattern_as_input(net): for op in net.all_oprs: if not isinstance(op, TransposeOpr): continue perm_tensor = IRTensor( name=op.inp_tensors[0].name + "_perm", shape=np.array(op.pattern).shape, dtype=np.int32, np_data=np.array(op.pattern, dtype=np.int32), owner_opr=op, q_type=np.int32, axis=None, ) op.add_inp_tensors(perm_tensor) @_register_tranformation_rule(TransformerRule.REDUCE_AXIS_AS_INPUT) def _reduce_axis_as_input(net): for op in net.all_oprs: if not isinstance(op, ReduceOpr): continue axis_tensor = IRTensor( name=op.inp_tensors[0].name + "_axis", shape=[1], dtype=np.int32, np_data=np.array(op.axis, dtype=np.int32), owner_opr=op, q_type=np.int32, axis=None, ) op.add_inp_tensors(axis_tensor) @_register_tranformation_rule(TransformerRule.PADDING_FOR_CONV_AND_POOLING) def _make_padding(net: IRGraph): def have_padding(opr): if isinstance(opr, Conv2dOpr): if cal_pad_mode(opr) == "SAME": return False if hasattr(opr, "padding") and (opr.padding[0] > 0 or opr.padding[1] > 0): return True return False insert_intended = OrderedDict() # type: OrderedDict for op in net.all_oprs: if not isinstance(op, (Conv2dOpr, _PoolOpr)): continue if have_padding(op): assert op.inp_tensors[0].ndim == 4, "ERROR: unsupported padding mode" np_data = np.array( [ 0, 0, op.padding[0], op.padding[0], op.padding[1], op.padding[1], 0, 0, ], dtype=np.int32, ) new_tensor_id = max(net._tensor_ids) + 1 pad_in_tensor = IRTensor( name=op.inp_tensors[0].name + "_paddings", shape=[4, 2], dtype=np.int32, owner_opr=None, np_data=np_data, q_type=np.int32, axis=None, ) net.add_tensor(new_tensor_id, pad_in_tensor) shape = list(op.inp_tensors[0].shape) new_tensor_id = max(net._tensor_ids) + 1 pad_out_tensor = IRTensor( name=op.inp_tensors[0].name + "_pad_out", shape=[ shape[0], shape[1], shape[2] + op.padding[0] * 2, shape[3] + op.padding[1] * 2, ], dtype=op.inp_tensors[0].dtype, ) if ( hasattr(op.inp_tensors[0], "scale") and op.inp_tensors[0].scale is not None ): pad_out_tensor.scale = op.inp_tensors[0].scale pad_out_tensor.q_dtype = op.inp_tensors[0].q_dtype if hasattr(op.inp_tensors[0], "zero_point"): pad_out_tensor.zero_point = op.inp_tensors[0].zero_point net.add_tensor(new_tensor_id, pad_out_tensor) pad_opr = PadOpr() pad_opr.inp_tensors = [op.inp_tensors[0], pad_in_tensor] index = op.inp_tensors[0].user_opr.index(op) op.inp_tensors[0].user_opr[index] = pad_opr pad_opr.out_tensors = [pad_out_tensor] pad_out_tensor.owner_opr = pad_opr op.inp_tensors = [pad_out_tensor] + op.inp_tensors[1:] pad_out_tensor.user_opr.append(op) index = net._opr_ids.index(id(op)) insert_intended[index] = (id(pad_opr), pad_opr) for index, generated_pair in list(insert_intended.items())[::-1]: net._opr_ids.insert(index, generated_pair[0]) net.all_oprs.insert(index, generated_pair[1]) @_register_tranformation_rule(TransformerRule.DECONV_SHAPE_AS_INPUT) def _deconv_shape_as_input(net: IRGraph): for op in net.all_oprs: if not isinstance(op, Deconv2dOpr): continue result_shape = op.out_tensors[0].shape np_data = np.array( [result_shape[0], result_shape[2], result_shape[3], result_shape[1],], dtype=np.int32, ) new_tensor_id = max(net._tensor_ids) + 1 shape_symvar = IRTensor( name=op.inp_tensors[0].name + "_deconv_out_shape", shape=[4], dtype=np.int32, owner_opr=op, np_data=np_data, q_type=np.int32, axis=None, ) shape_tensor = net.get_tensor(new_tensor_id, shape_symvar) if len(op.inp_tensors) == 2: op.inp_tensors = [ shape_tensor, op.inp_tensors[1], op.inp_tensors[0], ] else: op.inp_tensors = [ shape_tensor, op.inp_tensors[1], op.inp_tensors[0], op.inp_tensors[2], ] @_register_tranformation_rule(TransformerRule.RESIZE_PARAMS_AS_INPUT) def _resize_params_as_input(net): for op in net.all_oprs: if not isinstance(op, ResizeOpr): continue if len(op.inp_tensors) == 2: continue out_size_tensor = IRTensor( name=op.inp_tensors[0].name + "_out_size", shape=(2,), dtype=np.int32, np_data=np.array(op.out_size, dtype=np.int32), q_type=np.int32, axis=None, ) op.add_inp_tensors(out_size_tensor) @_register_tranformation_rule(TransformerRule.CONV_ADD_ZERO_BIAS) def _add_bias_for_conv(net: IRGraph): for op in net.all_oprs: if not isinstance(op, Conv2dOpr): continue if len(op.inp_tensors) == 3: continue weight_shape = op.inp_tensors[1].shape bias_shape = ( weight_shape[0] if len(weight_shape) == 4 else weight_shape[0] * weight_shape[1] ) bias_shape = (1, bias_shape, 1, 1) bias = np.zeros(bias_shape, dtype=np.float32) bias_tensor = IRTensor( name=op.inp_tensors[0].name + "_bias", shape=bias_shape, dtype=np.float32, np_data=bias, axis=AxisOrder.NCHW, ) if op.inp_tensors[0].scale and op.inp_tensors[1].scale: bias_tensor.set_qparams( op.inp_tensors[0].scale * op.inp_tensors[1].scale, 0 ) bias_tensor.q_dtype = "int32" op.inp_tensors.append(bias_tensor) @_register_tranformation_rule(TransformerRule.DECONV_ADD_ZERO_BIAS) def _add_bias_for_deconv(net: IRGraph): for op in net.all_oprs: if not isinstance(op, Deconv2dOpr): continue if len(op.inp_tensors) == 3: continue weight_shape = op.inp_tensors[1].shape bias_shape = ( weight_shape[1] if len(weight_shape) == 4 else weight_shape[0] * weight_shape[2] ) bias_shape = (1, bias_shape, 1, 1) bias = np.zeros(bias_shape, dtype=np.float32) bias_tensor = IRTensor( name=op.inp_tensors[0].name + "_bias", shape=bias_shape, dtype=np.float32, np_data=bias, axis=AxisOrder.NCHW, ) if op.inp_tensors[0].scale and op.inp_tensors[1].scale: bias_tensor.set_qparams( op.inp_tensors[0].scale * op.inp_tensors[1].scale, 0 ) bias_tensor.q_dtype = "int32" op.inp_tensors.append(bias_tensor) @_register_tranformation_rule(TransformerRule.RESHAPE_BIAS_TO_1DIM) def _reshape_bias_to_1dim(net: IRGraph): for op in net.all_oprs: if not isinstance(op, (Deconv2dOpr, Conv2dOpr)): continue if len(op.inp_tensors) == 2: continue bias = op.inp_tensors[2] if bias.ndim == 4: bias.shape = (bias.shape[1],) bias.np_data = bias.np_data.reshape(-1) @_register_tranformation_rule(TransformerRule.DEPTHWISE_CONV_RESHAPE_WEIGHT) def _depthwise_conv_reshape_weight(net: IRGraph): # general group conv is not supported for TFLite for op in net.all_oprs: if not isinstance(op, Conv2dOpr): continue if op.groups == 1: continue weight = op.inp_tensors[1] # G, oc/G, ic/G, kh, kw ic, cm = weight.shape[1] * op.groups, weight.shape[2] h, w = weight.shape[3:5] weight.shape = (ic, cm, h, w) # oc, ic/G, kh, kw weight.np_data = weight.np_data.reshape(ic, cm, h, w) @_register_tranformation_rule(TransformerRule.FUSE_ACTIVATION) def _fuse_activation(net): delete_intended = [] for op_id, op in zip(net._opr_ids, net.all_oprs): if isinstance(op, (ReluOpr, TanHOpr)): prev_ops = net.find_inp_oprs(op) if len(prev_ops) == 0: continue prev_op = prev_ops[0] if not isinstance(prev_op, OpBase): continue if prev_op.activation != "IDENTITY" or prev_op.name == "Deconv2d": continue activation = op.name.upper() prev_op.activation = activation prev_op.out_tensors = op.out_tensors for t in prev_op.out_tensors: t.owner_opr = prev_op delete_intended.append(net._opr_ids.index(op_id)) for delete_idx in delete_intended[::-1]: net.delete_ops(delete_idx) @_register_tranformation_rule(TransformerRule.SLICE_PARAMS_AS_INPUTS_AND_MAKE_SQUEEZE) def _make_slice_as_inputs(net: IRGraph): for op in net.all_oprs: if not isinstance(op, GetSubTensorOpr): continue ndim = op.inp_tensors[0].ndim def make_input(axis, param, init_value): # make inputs: begin, end and step. ret = [init_value] * ndim # pylint:disable=cell-var-from-loop for k, v in zip(axis, param): ret[k] = v ret = IRTensor( name=op.name + "_fake_input", # pylint:disable=cell-var-from-loop shape=[len(ret)], dtype=np.int32, np_data=np.array(ret, dtype=np.int32), owner_opr=op, # pylint:disable=cell-var-from-loop q_type=np.int32, ) return ret begins_tensor = make_input(op.axis, op.begin_params, 0) ends_tensor = make_input(op.axis, op.end_params, np.iinfo(np.int32).max) steps_tensor = make_input(op.axis, op.step_params, 1) op.inp_tensors = [op.inp_tensors[0], begins_tensor, ends_tensor, steps_tensor] # TFLite slice do not support squeeze axis, so insert a squeeze opr here. # infer actual output shape of tflite slice desired_out_shape = op.out_tensors[0].shape actual_out_shape = [1] * ndim idx = 0 for i in range(ndim): if i in op.squeeze_axis: continue actual_out_shape[i] = desired_out_shape[idx] idx += 1 slice_out_tensor = IRTensor( name=op.name + "fake_output", shape=actual_out_shape, dtype=op.out_tensors[0].dtype, q_type=op.out_tensors[0].q_dtype, owner_opr=op, ) old_out = op.out_tensors op.out_tensors = [slice_out_tensor] squeeze = SqueezeOpr(op.squeeze_axis) squeeze.inp_tensors = [slice_out_tensor] squeeze.out_tensors = old_out idx = net._opr_ids.index(id(op)) + 1 net.add_op(squeeze, idx) # caffe transormer rules class PatternNode: def __init__(self, type, is_output=False, const_value=None): self.op = None self.type = type self.inp_oprs = [] self.inp_const = [] self.inp_tensors = [] self.is_output = is_output self.const_value = const_value def check_const_value(self, op): inp_tensors = [v.np_data for v in op.inp_tensors] for const in self.const_value: idx = const[0] if idx == -1: find = False for index, v in enumerate(inp_tensors): if np.array_equal(const[1], v): find = True del inp_tensors[index] break if not find: return False elif not np.array_equal(const[1], inp_tensors[idx]): return False return True get_type = lambda op: type(op).__name__ def match(node, opr): node_queue = [node] opr_queue = [opr] matched_opr = set() matched_node = set() while len(node_queue) != 0: cur_node = node_queue.pop(0) cur_opr = opr_queue.pop(0) if cur_node.type != get_type(cur_opr) and cur_node.type != "*" or cur_opr.skip: return False if cur_node.op == None: cur_node.op = cur_opr if cur_node.const_value != None: if not cur_node.check_const_value(cur_opr): return False elif cur_node.op != cur_opr: return False matched_opr.add(cur_opr) matched_node.add(cur_node) for i, var in enumerate(cur_opr.inp_tensors): if var.np_data is not None: cur_node.inp_const.append([i, var.np_data]) else: cur_node.inp_tensors.append([i, var]) if len(cur_node.inp_oprs) == 0: continue if len(cur_node.inp_oprs) != len(cur_opr.inp_oprs): return False for i, j in zip(cur_node.inp_oprs, cur_opr.inp_oprs): node_queue.append(i) opr_queue.append(j) for n in matched_node: if n.is_output: continue for op in n.op.out_oprs: if op not in matched_opr: return False return True def get_softmax_axis(ndim: int) -> int: if ndim in (0, 1, 3): return 0 return 1 @_register_tranformation_rule(TransformerRule.FUSE_SOFTMAX) def _fuse_softmax(net: IRGraph): matches = OrderedDict() # type: OrderedDict for op in net.all_oprs: if not isinstance(op, TrueDivOpr): continue try: prev_op = net.find_inp_oprs(op)[1] cur_index = net._opr_ids.index(id(op)) if ( not isinstance(prev_op, ReduceOpr) or prev_op.mode != "SUM" or prev_op.axis != get_softmax_axis(prev_op.inp_tensors[0].ndim) or net._opr_ids.index(id(prev_op)) != cur_index - 1 ): continue prev_op = net.find_inp_oprs(op)[0] if ( not isinstance(prev_op, ExpOpr) or net._opr_ids.index(id(prev_op)) != cur_index - 2 ): continue prev_op = net.find_inp_oprs(prev_op)[0] if ( not isinstance(prev_op, SubOpr) or net._opr_ids.index(id(prev_op)) != cur_index - 3 ): continue prev_op = net.find_inp_oprs(prev_op)[1] if ( not isinstance(prev_op, ReduceOpr) or prev_op.mode != "MAX" or prev_op.axis != get_softmax_axis(prev_op.inp_tensors[0].ndim) or net._opr_ids.index(id(prev_op)) != cur_index - 4 ): continue except IndexError: # doesn't match continue softmax_opr = SoftmaxOpr(axis=get_softmax_axis(prev_op.inp_tensors[0].ndim)) softmax_opr.beta = 1 softmax_opr.inp_tensors = prev_op.inp_tensors[:1] for i in softmax_opr.inp_tensors: i.user_opr.append(softmax_opr) softmax_opr.out_tensors = op.out_tensors softmax_out_oprs = net.find_out_oprs(op) matches[id(prev_op)] = (id(prev_op), softmax_opr, softmax_out_oprs) for original_id, generated_pair in list(matches.items())[::-1]: index = net._opr_ids.index(original_id) for out_op in generated_pair[2]: generated_pair[1].out_tensors[0].user_opr.append(out_op) del net._opr_ids[index : index + 5] del net.all_oprs[index : index + 5] net._opr_ids.insert(index, generated_pair[0]) net.all_oprs.insert(index, generated_pair[1]) @_register_tranformation_rule(TransformerRule.FUSE_FOR_LEAKY_RELU) def _fuse_leaky_relu(net: IRGraph): """ Elemwise(ADD) + Elemwise(MUL) + Elemwise(MAX) + Elemwise(MIN) -> LeakyRelu """ for opr in net.all_oprs: if ( opr.name == "Add" and len(net.find_inp_oprs(opr)) == 2 and net.find_inp_oprs(opr)[0].name == "Max" and net.find_inp_oprs(opr)[1].name == "Mul" ): max_op = net.find_inp_oprs(opr)[0] mul_op = net.find_inp_oprs(opr)[1] if not mul_op.inp_tensors[1].shape == (1,): continue if not max_op.inp_tensors[1].shape == (1,): continue if ( len(net.find_inp_oprs(mul_op)) != 1 or net.find_inp_oprs(mul_op)[0].name != "Min" or net.find_inp_oprs(mul_op)[0].inp_tensors[1].shape != (1,) ): continue min_op = net.find_inp_oprs(mul_op)[0] if not min_op.inp_tensors[1].shape == (1,): continue if max_op.inp_tensors[0] != min_op.inp_tensors[0]: continue leaky_relu = LeakyReluOpr( negative_slope=float(mul_op.inp_tensors[1].np_data) ) leaky_relu.inp_tensors = [max_op.inp_tensors[0]] max_op.inp_tensors[0].user_opr.remove(max_op) max_op.inp_tensors[0].user_opr.remove(min_op) max_op.inp_tensors[0].user_opr.append(leaky_relu) leaky_relu.out_tensors = opr.out_tensors opr.out_tensors[0].owner_opr = leaky_relu index = net.all_oprs.index(max_op) del net.all_oprs[index : index + 4] del net._opr_ids[index : index + 4] net.add_op(leaky_relu, index) @_register_tranformation_rule(TransformerRule.FUSE_FOR_CONV_BIAS) def _fuse_for_conv_bias(net: IRGraph): """ ConvolutionForward + Elemwise(ADD) -> ConvForwardBias """ for opr in net.all_oprs: if ( opr.name == "Conv2d" and len(net.find_out_oprs(opr)) == 1 and net.find_out_oprs(opr)[0].name == "Add" ): bias_op = net.find_out_oprs(opr)[0] if not ( ( bias_op.inp_tensors[1].np_data is not None and len(bias_op.inp_tensors[1].np_data.reshape(-1)) == opr.inp_tensors[1].shape[0] ) or ( ( bias_op.inp_tensors[0].np_data is not None and len(bias_op.inp_tensors[0].np_data.reshape(-1)) == opr.inp_tensors[1].shape[0] ) ) ): continue bias_idx = 0 if bias_op.inp_tensors[0].np_data is not None else 1 if len(opr.inp_tensors) == 2: opr.inp_tensors.append(bias_op.inp_tensors[bias_idx]) else: bias_shape = opr.inp_tensors[2].np_data.shape add_tensor = bias_op.inp_tensors[bias_idx].np_data if add_tensor.shape != bias_shape: add_tensor = add_tensor.reshape(bias_shape) opr.inp_tensors[2].np_data += add_tensor if bias_op in opr.out_tensors[0].user_opr: opr.out_tensors[0].user_opr.remove(bias_op) bias_out_op = net.find_out_oprs(bias_op) if len(bias_out_op) > 0: for op in bias_out_op: op.inp_tensors[0] = opr.out_tensors[0] opr.out_tensors[0].user_opr.append(op) else: # last op of the graph assert bias_op.out_tensors[0] in net.graph_outputs index = net.graph_outputs.index(bias_op.out_tensors[0]) net.graph_outputs[index] = opr.out_tensors[0] opr.activation = bias_op.activation index = net.all_oprs.index(bias_op) del net.all_oprs[index] del net._opr_ids[index] @_register_tranformation_rule(TransformerRule.FUSE_FOR_DECONV_BIAS) def _fuse_for_deconv_bias(net: IRGraph): for opr in net.all_oprs: if ( opr.name == "Deconv2d" and len(net.find_out_oprs(opr)) == 1 and net.find_out_oprs(opr)[0].name == "Add" ): bias_op = net.find_out_oprs(opr)[0] if not ( ( bias_op.inp_tensors[1].np_data is not None and len(bias_op.inp_tensors[1].np_data.reshape(-1)) == opr.inp_tensors[1].shape[1] ) or ( ( bias_op.inp_tensors[0].np_data is not None and len(bias_op.inp_tensors[0].np_data.reshape(-1)) == opr.inp_tensors[1].shape[1] ) ) ): continue bias_idx = 0 if bias_op.inp_tensors[0].np_data is not None else 1 if len(opr.inp_tensors) == 3: # shape, weight, input, bias opr.inp_tensors.append(bias_op.inp_tensors[bias_idx]) else: bias_shape = opr.inp_tensors[3].np_data.shape add_tensor = bias_op.inp_tensors[bias_idx].np_data if add_tensor.shape != bias_shape: add_tensor = add_tensor.reshape(bias_shape) opr.inp_tensors[3].np_data += add_tensor if bias_op in opr.out_tensors[0].user_opr: opr.out_tensors[0].user_opr.remove(bias_op) bias_out_op = net.find_out_oprs(bias_op) if len(bias_out_op) > 0: for op in bias_out_op: op.inp_tensors[0] = opr.out_tensors[0] opr.out_tensors[0].user_opr.append(op) else: # last op of the graph assert bias_op.out_tensors[0] in net.graph_outputs index = net.graph_outputs.index(bias_op.out_tensors[0]) net.graph_outputs[index] = opr.out_tensors[0] opr.activation = bias_op.activation index = net.all_oprs.index(bias_op) del net.all_oprs[index] del net._opr_ids[index] @_register_tranformation_rule(TransformerRule.EXPAND_MUL_ADD3) def _expand_mul_add3(net: IRGraph): for op in net.all_oprs: if not isinstance(op, FuseMulAdd3Opr): continue last_op = net.find_inp_oprs(op) assert len(last_op) == 1 mul_out_tensor = IRTensor( name=op.inp_tensors[0].name + "_mul_out", shape=op.inp_tensors[0].shape, dtype=op.inp_tensors[0].dtype, ) new_tensor_id = max(net._tensor_ids) + 1 net.add_tensor(new_tensor_id, mul_out_tensor) mul_op = MulOpr() mul_out_tensor.owner_opr = mul_op mul_op.inp_tensors = op.inp_tensors[:2] for o in mul_op.inp_tensors: index = o.user_opr.index(op) o.user_opr[index] = mul_op mul_op.out_tensors = [mul_out_tensor] add_op = AddOpr() add_op.inp_tensors = [mul_out_tensor, op.inp_tensors[2]] mul_out_tensor.user_opr.append(add_op) add_op.out_tensors = op.out_tensors index = net._opr_ids.index(id(op)) net.delete_ops(index) net.add_op(mul_op, index) net.add_op(add_op, index + 1) @_register_tranformation_rule(TransformerRule.REPLACE_FLATTEN_TO_RESHAPE) def _replace_flatten_to_reshape(net: IRGraph): for opr in net.all_oprs: if isinstance(opr, FlattenOpr): out_shape = tuple(list(opr.inp_tensors[0].shape[: opr.start_axis]) + [-1]) reshape_op = ReshapeOpr(out_shape=out_shape) reshape_op.inp_tensors = opr.inp_tensors for t in reshape_op.inp_tensors: idx = t.user_opr.index(opr) t.user_opr[idx] = reshape_op reshape_op.out_tensors = opr.out_tensors for t in reshape_op.out_tensors: t.owner_opr = reshape_op net.replace_op(opr, reshape_op) @_register_tranformation_rule(TransformerRule.REMOVE_RESHAPE_REALTED_OP) def _remove_reshape_tensors(net: IRGraph): for opr in net.all_oprs: if isinstance(opr, ReshapeOpr) and len(opr.inp_tensors) > 1: opr.inp_tensors = opr.inp_tensors[:1] @_register_tranformation_rule(TransformerRule.REMOVE_DROPOUT) def _remove_dropout(net: IRGraph): for opr in net.all_oprs: for idx, inp in enumerate(opr.inp_tensors): owner_opr = inp.owner_opr if isinstance(owner_opr, DropoutOpr) and owner_opr.drop_prob == 0: opr.inp_tensors[idx] = owner_opr.inp_tensors[0] for idx, out in enumerate(net.graph_outputs): owner_opr = out.owner_opr if isinstance(owner_opr, DropoutOpr) and owner_opr.drop_prob == 0: net.graph_outputs[idx] = owner_opr.inp_tensors[0] @_register_tranformation_rule(TransformerRule.REMOVE_RELU) def _remove_relu(net: IRGraph): for opr in net.all_oprs: for idx, inp in enumerate(opr.inp_tensors): owner_opr = inp.owner_opr if isinstance(owner_opr, ReluOpr): opr.inp_tensors[idx] = owner_opr.inp_tensors[0] for idx, out in enumerate(net.graph_outputs): owner_opr = out.owner_opr if isinstance(owner_opr, ReluOpr): net.graph_outputs[idx] = owner_opr.inp_tensors[0] visited_tensor = set() # type: set def _dfs_recursive(op_set, tensor): owner_opr = tensor.owner_opr op_set.add(owner_opr) if tensor in visited_tensor: return visited_tensor.add(tensor) if isinstance(owner_opr, IRGraph) or owner_opr is None: return for tt in owner_opr.inp_tensors: _dfs_recursive(op_set, tt) @_register_tranformation_rule(TransformerRule.REMOVE_UNRELATED_IROP) def _remove_unrelated_op(net: IRGraph): match_sets = set() # type: Set[OpBase] for out_tensor in net.graph_outputs: _dfs_recursive(match_sets, out_tensor) remove_idx = [] for opr in net.all_oprs: if opr not in match_sets: index = net._opr_ids.index(id(opr)) remove_idx.append(index) for i in remove_idx[::-1]: net.delete_ops(i) @_register_tranformation_rule(TransformerRule.ADD_FAKE_HSIGMOID_OUT) def _add_fake_hsigmoid_tensor(net: IRGraph): for opr in net.all_oprs: if isinstance(opr, (HardSwishOpr, HardSigmoidOpr)): add_3_out_tensor = IRTensor( opr.out_tensors[0].name + "_fake_add3_out", opr.inp_tensors[0].shape, opr.inp_tensors[0].dtype, q_type=opr.inp_tensors[0].q_dtype, scale=opr.inp_tensors[0].scale, zero_point=opr.inp_tensors[0].zero_point, ) opr.add_inp_tensors(add_3_out_tensor) relu6_out_tensor = IRTensor( opr.out_tensors[0].name + "_relu6_out", opr.inp_tensors[0].shape, opr.inp_tensors[0].dtype, q_type=opr.inp_tensors[0].q_dtype, scale=opr.inp_tensors[0].scale, zero_point=opr.inp_tensors[0].zero_point, ) opr.add_inp_tensors(relu6_out_tensor) if isinstance(opr, HardSwishOpr): div6_out_tensor = IRTensor( opr.out_tensors[0].name + "_div_out", opr.inp_tensors[0].shape, opr.inp_tensors[0].dtype, q_type=opr.inp_tensors[0].q_dtype, scale=opr.inp_tensors[0].scale, zero_point=opr.inp_tensors[0].zero_point, ) opr.add_inp_tensors(div6_out_tensor) def fold_conv_bn( conv_weight, conv_bias, conv_groups, gamma, beta, bn_mean, bn_var, eps ): conv_bias = conv_bias.reshape(1, -1, 1, 1) gamma = gamma.reshape(1, -1, 1, 1) beta = beta.reshape(1, -1, 1, 1) bn_mean = bn_mean.reshape(1, -1, 1, 1) bn_var = bn_var.reshape(1, -1, 1, 1) # bn_istd = 1 / bn_std bn_istd = 1.0 / sqrt(bn_var + eps) # type: ignore[attr-defined] # w_fold = gamma / bn_std * W scale_factor = gamma * bn_istd if conv_groups == 1: w_fold = conv_weight * scale_factor.reshape(-1, 1, 1, 1) else: w_fold = conv_weight * scale_factor.reshape(conv_groups, -1, 1, 1, 1) # b_fold = gamma * (b - bn_mean) / bn_std + beta b_fold = beta + gamma * (conv_bias - bn_mean) * bn_istd return w_fold, b_fold @_register_tranformation_rule(TransformerRule.FUSE_CONV_BN) def _fuse_conv_bn(net: IRGraph): for opr in net.all_oprs: if ( opr.name == "BatchNormalization" and len(net.find_inp_oprs(opr)) == 1 and net.find_inp_oprs(opr)[0].name == "Conv2d" and len(net.find_out_oprs(net.find_inp_oprs(opr)[0])) == 1 and net.find_out_oprs(net.find_inp_oprs(opr)[0])[0] == opr ): gamma = ( Tensor(opr.weight) # type: ignore[attr-defined] if opr.weight is not None # type: ignore[attr-defined] else Tensor(opr.inp_tensors[1].np_data) ) beta = ( Tensor(opr.bias) # type: ignore[attr-defined] if opr.bias is not None # type: ignore[attr-defined] else Tensor(opr.inp_tensors[2].np_data) ) bn_mean = ( Tensor(opr.mean) # type: ignore[attr-defined] if opr.mean is not None # type: ignore[attr-defined] else Tensor(opr.inp_tensors[3].np_data) ) bn_var = (
Tensor(opr.var)
megengine.Tensor
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. from collections import OrderedDict from enum import Enum from functools import cmp_to_key from typing import Set # pylint: disable=unused-import from typing import Callable, Dict, Sequence import numpy as np from megengine import Tensor from megengine.functional import sqrt from ..converter_ir.ir_graph import IRGraph from .ir_op import ( AddOpr, Conv2dOpr, ConvRelu2dOpr, Deconv2dOpr, DropoutOpr, ExpOpr, FlattenOpr, FuseMulAdd3Opr, GetSubTensorOpr, HardSigmoidOpr, HardSwishOpr, IdentityOpr, LeakyReluOpr, MulOpr, OpBase, PadOpr, ReduceOpr, ReluOpr, ReshapeOpr, ResizeOpr, SoftmaxOpr, SqueezeOpr, SubOpr, TanHOpr, TransposeOpr, TrueDivOpr, _PoolOpr, ) from .ir_tensor import AxisOrder, IRTensor class TransformerRule(Enum): # general rules NOPE = 1 # for TFLite REDUCE_AXIS_AS_INPUT = 100 REMOVE_RESHAPE_INPUT = 101 # FUSE_FOR_RELU6 pass should happen before FUSE_ACTIVATION FUSE_FOR_RELU6 = 102 ## EXPAND_CONVRELU = 102.1 CONV_ADD_ZERO_BIAS = 103 FUSE_FOR_CONV_BIAS = 103.1 FUSE_CONV_BN = 104 DECONV_ADD_ZERO_BIAS = 105 # DEPTHWISE_CONV_RESHAPE_WEIGHT requirs RESHAPE_BIAS_TO_1DIM DEPTHWISE_CONV_RESHAPE_WEIGHT = 106 FUSE_SOFTMAX = 107 # RESHAPE_BIAS_TO_1DIM should happen before DECONV_SHAPE_AS_INPUT RESHAPE_BIAS_TO_1DIM = 108 DECONV_SHAPE_AS_INPUT = 109 FUSE_ASTYPE = 110 ## PADDING_FOR_CONV_AND_POOLING = 111 TRANSPOSE_PATTERN_AS_INPUT = 112 # FUSE_FOR_LEAKY_RELU should happen before EXPAND_MUL_ADD3 FUSE_FOR_LEAKY_RELU = 113 EXPAND_MUL_ADD3 = 114 EXPAND_ADD_SIGMOID = 115 ## FUSE_FOR_DECONV_BIAS = 117 FUSE_FOR_FULLY_CONNECTED = 118 ## # for TFLite Converter SLICE_PARAMS_AS_INPUTS_AND_MAKE_SQUEEZE = 119 RESIZE_PARAMS_AS_INPUT = 120 REPLACE_FLATTEN_TO_RESHAPE = 120.1 # remove reshape REMOVE_RESHAPE_REALTED_OP = 121 REMOVE_DROPOUT = 122 FUSE_ACTIVATION = 123 REMOVE_IDENTITY = 124 REMOVE_RELU = 125 REMOVE_UNRELATED_IROP = 130 ADD_FAKE_HSIGMOID_OUT = 131 RENAME_CAFFE_LAYER_TENSOR = 132 def cmp_rules(a, b): if a.value < b.value: return -1 if a.value > b.value: return 1 return 0 class IRTransform: def __init__(self, transformer_options): if not isinstance(transformer_options, Sequence): transformer_options = [ transformer_options, ] # bias of depthwise_conv must be 1 dim if TransformerRule.DEPTHWISE_CONV_RESHAPE_WEIGHT in transformer_options: if TransformerRule.RESHAPE_BIAS_TO_1DIM not in transformer_options: transformer_options.append(TransformerRule.RESHAPE_BIAS_TO_1DIM) self.trans_options = sorted(transformer_options, key=cmp_to_key(cmp_rules)) def transform(self, ir_graph): for option in self.trans_options: TRANSFORMMAP[option](ir_graph) return ir_graph TRANSFORMMAP: Dict[Enum, Callable] = {} def _register_tranformation_rule(transformer_option): def callback(impl): TRANSFORMMAP[transformer_option] = impl return callback def cal_pad_mode(tm_opr): out_shape = tm_opr.out_tensors[0].shape inp_shape = tm_opr.inp_tensors[0].shape if out_shape[2:] == inp_shape[2:]: return "SAME" else: return "VALID" @_register_tranformation_rule(TransformerRule.REMOVE_RESHAPE_INPUT) def _remove_reshape_input(net): for op in net.all_oprs: if not isinstance(op, ReshapeOpr): continue if len(op.inp_tensors) == 2: del op.inp_tensors[1] @_register_tranformation_rule(TransformerRule.TRANSPOSE_PATTERN_AS_INPUT) def _transpose_pattern_as_input(net): for op in net.all_oprs: if not isinstance(op, TransposeOpr): continue perm_tensor = IRTensor( name=op.inp_tensors[0].name + "_perm", shape=np.array(op.pattern).shape, dtype=np.int32, np_data=np.array(op.pattern, dtype=np.int32), owner_opr=op, q_type=np.int32, axis=None, ) op.add_inp_tensors(perm_tensor) @_register_tranformation_rule(TransformerRule.REDUCE_AXIS_AS_INPUT) def _reduce_axis_as_input(net): for op in net.all_oprs: if not isinstance(op, ReduceOpr): continue axis_tensor = IRTensor( name=op.inp_tensors[0].name + "_axis", shape=[1], dtype=np.int32, np_data=np.array(op.axis, dtype=np.int32), owner_opr=op, q_type=np.int32, axis=None, ) op.add_inp_tensors(axis_tensor) @_register_tranformation_rule(TransformerRule.PADDING_FOR_CONV_AND_POOLING) def _make_padding(net: IRGraph): def have_padding(opr): if isinstance(opr, Conv2dOpr): if cal_pad_mode(opr) == "SAME": return False if hasattr(opr, "padding") and (opr.padding[0] > 0 or opr.padding[1] > 0): return True return False insert_intended = OrderedDict() # type: OrderedDict for op in net.all_oprs: if not isinstance(op, (Conv2dOpr, _PoolOpr)): continue if have_padding(op): assert op.inp_tensors[0].ndim == 4, "ERROR: unsupported padding mode" np_data = np.array( [ 0, 0, op.padding[0], op.padding[0], op.padding[1], op.padding[1], 0, 0, ], dtype=np.int32, ) new_tensor_id = max(net._tensor_ids) + 1 pad_in_tensor = IRTensor( name=op.inp_tensors[0].name + "_paddings", shape=[4, 2], dtype=np.int32, owner_opr=None, np_data=np_data, q_type=np.int32, axis=None, ) net.add_tensor(new_tensor_id, pad_in_tensor) shape = list(op.inp_tensors[0].shape) new_tensor_id = max(net._tensor_ids) + 1 pad_out_tensor = IRTensor( name=op.inp_tensors[0].name + "_pad_out", shape=[ shape[0], shape[1], shape[2] + op.padding[0] * 2, shape[3] + op.padding[1] * 2, ], dtype=op.inp_tensors[0].dtype, ) if ( hasattr(op.inp_tensors[0], "scale") and op.inp_tensors[0].scale is not None ): pad_out_tensor.scale = op.inp_tensors[0].scale pad_out_tensor.q_dtype = op.inp_tensors[0].q_dtype if hasattr(op.inp_tensors[0], "zero_point"): pad_out_tensor.zero_point = op.inp_tensors[0].zero_point net.add_tensor(new_tensor_id, pad_out_tensor) pad_opr = PadOpr() pad_opr.inp_tensors = [op.inp_tensors[0], pad_in_tensor] index = op.inp_tensors[0].user_opr.index(op) op.inp_tensors[0].user_opr[index] = pad_opr pad_opr.out_tensors = [pad_out_tensor] pad_out_tensor.owner_opr = pad_opr op.inp_tensors = [pad_out_tensor] + op.inp_tensors[1:] pad_out_tensor.user_opr.append(op) index = net._opr_ids.index(id(op)) insert_intended[index] = (id(pad_opr), pad_opr) for index, generated_pair in list(insert_intended.items())[::-1]: net._opr_ids.insert(index, generated_pair[0]) net.all_oprs.insert(index, generated_pair[1]) @_register_tranformation_rule(TransformerRule.DECONV_SHAPE_AS_INPUT) def _deconv_shape_as_input(net: IRGraph): for op in net.all_oprs: if not isinstance(op, Deconv2dOpr): continue result_shape = op.out_tensors[0].shape np_data = np.array( [result_shape[0], result_shape[2], result_shape[3], result_shape[1],], dtype=np.int32, ) new_tensor_id = max(net._tensor_ids) + 1 shape_symvar = IRTensor( name=op.inp_tensors[0].name + "_deconv_out_shape", shape=[4], dtype=np.int32, owner_opr=op, np_data=np_data, q_type=np.int32, axis=None, ) shape_tensor = net.get_tensor(new_tensor_id, shape_symvar) if len(op.inp_tensors) == 2: op.inp_tensors = [ shape_tensor, op.inp_tensors[1], op.inp_tensors[0], ] else: op.inp_tensors = [ shape_tensor, op.inp_tensors[1], op.inp_tensors[0], op.inp_tensors[2], ] @_register_tranformation_rule(TransformerRule.RESIZE_PARAMS_AS_INPUT) def _resize_params_as_input(net): for op in net.all_oprs: if not isinstance(op, ResizeOpr): continue if len(op.inp_tensors) == 2: continue out_size_tensor = IRTensor( name=op.inp_tensors[0].name + "_out_size", shape=(2,), dtype=np.int32, np_data=np.array(op.out_size, dtype=np.int32), q_type=np.int32, axis=None, ) op.add_inp_tensors(out_size_tensor) @_register_tranformation_rule(TransformerRule.CONV_ADD_ZERO_BIAS) def _add_bias_for_conv(net: IRGraph): for op in net.all_oprs: if not isinstance(op, Conv2dOpr): continue if len(op.inp_tensors) == 3: continue weight_shape = op.inp_tensors[1].shape bias_shape = ( weight_shape[0] if len(weight_shape) == 4 else weight_shape[0] * weight_shape[1] ) bias_shape = (1, bias_shape, 1, 1) bias = np.zeros(bias_shape, dtype=np.float32) bias_tensor = IRTensor( name=op.inp_tensors[0].name + "_bias", shape=bias_shape, dtype=np.float32, np_data=bias, axis=AxisOrder.NCHW, ) if op.inp_tensors[0].scale and op.inp_tensors[1].scale: bias_tensor.set_qparams( op.inp_tensors[0].scale * op.inp_tensors[1].scale, 0 ) bias_tensor.q_dtype = "int32" op.inp_tensors.append(bias_tensor) @_register_tranformation_rule(TransformerRule.DECONV_ADD_ZERO_BIAS) def _add_bias_for_deconv(net: IRGraph): for op in net.all_oprs: if not isinstance(op, Deconv2dOpr): continue if len(op.inp_tensors) == 3: continue weight_shape = op.inp_tensors[1].shape bias_shape = ( weight_shape[1] if len(weight_shape) == 4 else weight_shape[0] * weight_shape[2] ) bias_shape = (1, bias_shape, 1, 1) bias = np.zeros(bias_shape, dtype=np.float32) bias_tensor = IRTensor( name=op.inp_tensors[0].name + "_bias", shape=bias_shape, dtype=np.float32, np_data=bias, axis=AxisOrder.NCHW, ) if op.inp_tensors[0].scale and op.inp_tensors[1].scale: bias_tensor.set_qparams( op.inp_tensors[0].scale * op.inp_tensors[1].scale, 0 ) bias_tensor.q_dtype = "int32" op.inp_tensors.append(bias_tensor) @_register_tranformation_rule(TransformerRule.RESHAPE_BIAS_TO_1DIM) def _reshape_bias_to_1dim(net: IRGraph): for op in net.all_oprs: if not isinstance(op, (Deconv2dOpr, Conv2dOpr)): continue if len(op.inp_tensors) == 2: continue bias = op.inp_tensors[2] if bias.ndim == 4: bias.shape = (bias.shape[1],) bias.np_data = bias.np_data.reshape(-1) @_register_tranformation_rule(TransformerRule.DEPTHWISE_CONV_RESHAPE_WEIGHT) def _depthwise_conv_reshape_weight(net: IRGraph): # general group conv is not supported for TFLite for op in net.all_oprs: if not isinstance(op, Conv2dOpr): continue if op.groups == 1: continue weight = op.inp_tensors[1] # G, oc/G, ic/G, kh, kw ic, cm = weight.shape[1] * op.groups, weight.shape[2] h, w = weight.shape[3:5] weight.shape = (ic, cm, h, w) # oc, ic/G, kh, kw weight.np_data = weight.np_data.reshape(ic, cm, h, w) @_register_tranformation_rule(TransformerRule.FUSE_ACTIVATION) def _fuse_activation(net): delete_intended = [] for op_id, op in zip(net._opr_ids, net.all_oprs): if isinstance(op, (ReluOpr, TanHOpr)): prev_ops = net.find_inp_oprs(op) if len(prev_ops) == 0: continue prev_op = prev_ops[0] if not isinstance(prev_op, OpBase): continue if prev_op.activation != "IDENTITY" or prev_op.name == "Deconv2d": continue activation = op.name.upper() prev_op.activation = activation prev_op.out_tensors = op.out_tensors for t in prev_op.out_tensors: t.owner_opr = prev_op delete_intended.append(net._opr_ids.index(op_id)) for delete_idx in delete_intended[::-1]: net.delete_ops(delete_idx) @_register_tranformation_rule(TransformerRule.SLICE_PARAMS_AS_INPUTS_AND_MAKE_SQUEEZE) def _make_slice_as_inputs(net: IRGraph): for op in net.all_oprs: if not isinstance(op, GetSubTensorOpr): continue ndim = op.inp_tensors[0].ndim def make_input(axis, param, init_value): # make inputs: begin, end and step. ret = [init_value] * ndim # pylint:disable=cell-var-from-loop for k, v in zip(axis, param): ret[k] = v ret = IRTensor( name=op.name + "_fake_input", # pylint:disable=cell-var-from-loop shape=[len(ret)], dtype=np.int32, np_data=np.array(ret, dtype=np.int32), owner_opr=op, # pylint:disable=cell-var-from-loop q_type=np.int32, ) return ret begins_tensor = make_input(op.axis, op.begin_params, 0) ends_tensor = make_input(op.axis, op.end_params, np.iinfo(np.int32).max) steps_tensor = make_input(op.axis, op.step_params, 1) op.inp_tensors = [op.inp_tensors[0], begins_tensor, ends_tensor, steps_tensor] # TFLite slice do not support squeeze axis, so insert a squeeze opr here. # infer actual output shape of tflite slice desired_out_shape = op.out_tensors[0].shape actual_out_shape = [1] * ndim idx = 0 for i in range(ndim): if i in op.squeeze_axis: continue actual_out_shape[i] = desired_out_shape[idx] idx += 1 slice_out_tensor = IRTensor( name=op.name + "fake_output", shape=actual_out_shape, dtype=op.out_tensors[0].dtype, q_type=op.out_tensors[0].q_dtype, owner_opr=op, ) old_out = op.out_tensors op.out_tensors = [slice_out_tensor] squeeze = SqueezeOpr(op.squeeze_axis) squeeze.inp_tensors = [slice_out_tensor] squeeze.out_tensors = old_out idx = net._opr_ids.index(id(op)) + 1 net.add_op(squeeze, idx) # caffe transormer rules class PatternNode: def __init__(self, type, is_output=False, const_value=None): self.op = None self.type = type self.inp_oprs = [] self.inp_const = [] self.inp_tensors = [] self.is_output = is_output self.const_value = const_value def check_const_value(self, op): inp_tensors = [v.np_data for v in op.inp_tensors] for const in self.const_value: idx = const[0] if idx == -1: find = False for index, v in enumerate(inp_tensors): if np.array_equal(const[1], v): find = True del inp_tensors[index] break if not find: return False elif not np.array_equal(const[1], inp_tensors[idx]): return False return True get_type = lambda op: type(op).__name__ def match(node, opr): node_queue = [node] opr_queue = [opr] matched_opr = set() matched_node = set() while len(node_queue) != 0: cur_node = node_queue.pop(0) cur_opr = opr_queue.pop(0) if cur_node.type != get_type(cur_opr) and cur_node.type != "*" or cur_opr.skip: return False if cur_node.op == None: cur_node.op = cur_opr if cur_node.const_value != None: if not cur_node.check_const_value(cur_opr): return False elif cur_node.op != cur_opr: return False matched_opr.add(cur_opr) matched_node.add(cur_node) for i, var in enumerate(cur_opr.inp_tensors): if var.np_data is not None: cur_node.inp_const.append([i, var.np_data]) else: cur_node.inp_tensors.append([i, var]) if len(cur_node.inp_oprs) == 0: continue if len(cur_node.inp_oprs) != len(cur_opr.inp_oprs): return False for i, j in zip(cur_node.inp_oprs, cur_opr.inp_oprs): node_queue.append(i) opr_queue.append(j) for n in matched_node: if n.is_output: continue for op in n.op.out_oprs: if op not in matched_opr: return False return True def get_softmax_axis(ndim: int) -> int: if ndim in (0, 1, 3): return 0 return 1 @_register_tranformation_rule(TransformerRule.FUSE_SOFTMAX) def _fuse_softmax(net: IRGraph): matches = OrderedDict() # type: OrderedDict for op in net.all_oprs: if not isinstance(op, TrueDivOpr): continue try: prev_op = net.find_inp_oprs(op)[1] cur_index = net._opr_ids.index(id(op)) if ( not isinstance(prev_op, ReduceOpr) or prev_op.mode != "SUM" or prev_op.axis != get_softmax_axis(prev_op.inp_tensors[0].ndim) or net._opr_ids.index(id(prev_op)) != cur_index - 1 ): continue prev_op = net.find_inp_oprs(op)[0] if ( not isinstance(prev_op, ExpOpr) or net._opr_ids.index(id(prev_op)) != cur_index - 2 ): continue prev_op = net.find_inp_oprs(prev_op)[0] if ( not isinstance(prev_op, SubOpr) or net._opr_ids.index(id(prev_op)) != cur_index - 3 ): continue prev_op = net.find_inp_oprs(prev_op)[1] if ( not isinstance(prev_op, ReduceOpr) or prev_op.mode != "MAX" or prev_op.axis != get_softmax_axis(prev_op.inp_tensors[0].ndim) or net._opr_ids.index(id(prev_op)) != cur_index - 4 ): continue except IndexError: # doesn't match continue softmax_opr = SoftmaxOpr(axis=get_softmax_axis(prev_op.inp_tensors[0].ndim)) softmax_opr.beta = 1 softmax_opr.inp_tensors = prev_op.inp_tensors[:1] for i in softmax_opr.inp_tensors: i.user_opr.append(softmax_opr) softmax_opr.out_tensors = op.out_tensors softmax_out_oprs = net.find_out_oprs(op) matches[id(prev_op)] = (id(prev_op), softmax_opr, softmax_out_oprs) for original_id, generated_pair in list(matches.items())[::-1]: index = net._opr_ids.index(original_id) for out_op in generated_pair[2]: generated_pair[1].out_tensors[0].user_opr.append(out_op) del net._opr_ids[index : index + 5] del net.all_oprs[index : index + 5] net._opr_ids.insert(index, generated_pair[0]) net.all_oprs.insert(index, generated_pair[1]) @_register_tranformation_rule(TransformerRule.FUSE_FOR_LEAKY_RELU) def _fuse_leaky_relu(net: IRGraph): """ Elemwise(ADD) + Elemwise(MUL) + Elemwise(MAX) + Elemwise(MIN) -> LeakyRelu """ for opr in net.all_oprs: if ( opr.name == "Add" and len(net.find_inp_oprs(opr)) == 2 and net.find_inp_oprs(opr)[0].name == "Max" and net.find_inp_oprs(opr)[1].name == "Mul" ): max_op = net.find_inp_oprs(opr)[0] mul_op = net.find_inp_oprs(opr)[1] if not mul_op.inp_tensors[1].shape == (1,): continue if not max_op.inp_tensors[1].shape == (1,): continue if ( len(net.find_inp_oprs(mul_op)) != 1 or net.find_inp_oprs(mul_op)[0].name != "Min" or net.find_inp_oprs(mul_op)[0].inp_tensors[1].shape != (1,) ): continue min_op = net.find_inp_oprs(mul_op)[0] if not min_op.inp_tensors[1].shape == (1,): continue if max_op.inp_tensors[0] != min_op.inp_tensors[0]: continue leaky_relu = LeakyReluOpr( negative_slope=float(mul_op.inp_tensors[1].np_data) ) leaky_relu.inp_tensors = [max_op.inp_tensors[0]] max_op.inp_tensors[0].user_opr.remove(max_op) max_op.inp_tensors[0].user_opr.remove(min_op) max_op.inp_tensors[0].user_opr.append(leaky_relu) leaky_relu.out_tensors = opr.out_tensors opr.out_tensors[0].owner_opr = leaky_relu index = net.all_oprs.index(max_op) del net.all_oprs[index : index + 4] del net._opr_ids[index : index + 4] net.add_op(leaky_relu, index) @_register_tranformation_rule(TransformerRule.FUSE_FOR_CONV_BIAS) def _fuse_for_conv_bias(net: IRGraph): """ ConvolutionForward + Elemwise(ADD) -> ConvForwardBias """ for opr in net.all_oprs: if ( opr.name == "Conv2d" and len(net.find_out_oprs(opr)) == 1 and net.find_out_oprs(opr)[0].name == "Add" ): bias_op = net.find_out_oprs(opr)[0] if not ( ( bias_op.inp_tensors[1].np_data is not None and len(bias_op.inp_tensors[1].np_data.reshape(-1)) == opr.inp_tensors[1].shape[0] ) or ( ( bias_op.inp_tensors[0].np_data is not None and len(bias_op.inp_tensors[0].np_data.reshape(-1)) == opr.inp_tensors[1].shape[0] ) ) ): continue bias_idx = 0 if bias_op.inp_tensors[0].np_data is not None else 1 if len(opr.inp_tensors) == 2: opr.inp_tensors.append(bias_op.inp_tensors[bias_idx]) else: bias_shape = opr.inp_tensors[2].np_data.shape add_tensor = bias_op.inp_tensors[bias_idx].np_data if add_tensor.shape != bias_shape: add_tensor = add_tensor.reshape(bias_shape) opr.inp_tensors[2].np_data += add_tensor if bias_op in opr.out_tensors[0].user_opr: opr.out_tensors[0].user_opr.remove(bias_op) bias_out_op = net.find_out_oprs(bias_op) if len(bias_out_op) > 0: for op in bias_out_op: op.inp_tensors[0] = opr.out_tensors[0] opr.out_tensors[0].user_opr.append(op) else: # last op of the graph assert bias_op.out_tensors[0] in net.graph_outputs index = net.graph_outputs.index(bias_op.out_tensors[0]) net.graph_outputs[index] = opr.out_tensors[0] opr.activation = bias_op.activation index = net.all_oprs.index(bias_op) del net.all_oprs[index] del net._opr_ids[index] @_register_tranformation_rule(TransformerRule.FUSE_FOR_DECONV_BIAS) def _fuse_for_deconv_bias(net: IRGraph): for opr in net.all_oprs: if ( opr.name == "Deconv2d" and len(net.find_out_oprs(opr)) == 1 and net.find_out_oprs(opr)[0].name == "Add" ): bias_op = net.find_out_oprs(opr)[0] if not ( ( bias_op.inp_tensors[1].np_data is not None and len(bias_op.inp_tensors[1].np_data.reshape(-1)) == opr.inp_tensors[1].shape[1] ) or ( ( bias_op.inp_tensors[0].np_data is not None and len(bias_op.inp_tensors[0].np_data.reshape(-1)) == opr.inp_tensors[1].shape[1] ) ) ): continue bias_idx = 0 if bias_op.inp_tensors[0].np_data is not None else 1 if len(opr.inp_tensors) == 3: # shape, weight, input, bias opr.inp_tensors.append(bias_op.inp_tensors[bias_idx]) else: bias_shape = opr.inp_tensors[3].np_data.shape add_tensor = bias_op.inp_tensors[bias_idx].np_data if add_tensor.shape != bias_shape: add_tensor = add_tensor.reshape(bias_shape) opr.inp_tensors[3].np_data += add_tensor if bias_op in opr.out_tensors[0].user_opr: opr.out_tensors[0].user_opr.remove(bias_op) bias_out_op = net.find_out_oprs(bias_op) if len(bias_out_op) > 0: for op in bias_out_op: op.inp_tensors[0] = opr.out_tensors[0] opr.out_tensors[0].user_opr.append(op) else: # last op of the graph assert bias_op.out_tensors[0] in net.graph_outputs index = net.graph_outputs.index(bias_op.out_tensors[0]) net.graph_outputs[index] = opr.out_tensors[0] opr.activation = bias_op.activation index = net.all_oprs.index(bias_op) del net.all_oprs[index] del net._opr_ids[index] @_register_tranformation_rule(TransformerRule.EXPAND_MUL_ADD3) def _expand_mul_add3(net: IRGraph): for op in net.all_oprs: if not isinstance(op, FuseMulAdd3Opr): continue last_op = net.find_inp_oprs(op) assert len(last_op) == 1 mul_out_tensor = IRTensor( name=op.inp_tensors[0].name + "_mul_out", shape=op.inp_tensors[0].shape, dtype=op.inp_tensors[0].dtype, ) new_tensor_id = max(net._tensor_ids) + 1 net.add_tensor(new_tensor_id, mul_out_tensor) mul_op = MulOpr() mul_out_tensor.owner_opr = mul_op mul_op.inp_tensors = op.inp_tensors[:2] for o in mul_op.inp_tensors: index = o.user_opr.index(op) o.user_opr[index] = mul_op mul_op.out_tensors = [mul_out_tensor] add_op = AddOpr() add_op.inp_tensors = [mul_out_tensor, op.inp_tensors[2]] mul_out_tensor.user_opr.append(add_op) add_op.out_tensors = op.out_tensors index = net._opr_ids.index(id(op)) net.delete_ops(index) net.add_op(mul_op, index) net.add_op(add_op, index + 1) @_register_tranformation_rule(TransformerRule.REPLACE_FLATTEN_TO_RESHAPE) def _replace_flatten_to_reshape(net: IRGraph): for opr in net.all_oprs: if isinstance(opr, FlattenOpr): out_shape = tuple(list(opr.inp_tensors[0].shape[: opr.start_axis]) + [-1]) reshape_op = ReshapeOpr(out_shape=out_shape) reshape_op.inp_tensors = opr.inp_tensors for t in reshape_op.inp_tensors: idx = t.user_opr.index(opr) t.user_opr[idx] = reshape_op reshape_op.out_tensors = opr.out_tensors for t in reshape_op.out_tensors: t.owner_opr = reshape_op net.replace_op(opr, reshape_op) @_register_tranformation_rule(TransformerRule.REMOVE_RESHAPE_REALTED_OP) def _remove_reshape_tensors(net: IRGraph): for opr in net.all_oprs: if isinstance(opr, ReshapeOpr) and len(opr.inp_tensors) > 1: opr.inp_tensors = opr.inp_tensors[:1] @_register_tranformation_rule(TransformerRule.REMOVE_DROPOUT) def _remove_dropout(net: IRGraph): for opr in net.all_oprs: for idx, inp in enumerate(opr.inp_tensors): owner_opr = inp.owner_opr if isinstance(owner_opr, DropoutOpr) and owner_opr.drop_prob == 0: opr.inp_tensors[idx] = owner_opr.inp_tensors[0] for idx, out in enumerate(net.graph_outputs): owner_opr = out.owner_opr if isinstance(owner_opr, DropoutOpr) and owner_opr.drop_prob == 0: net.graph_outputs[idx] = owner_opr.inp_tensors[0] @_register_tranformation_rule(TransformerRule.REMOVE_RELU) def _remove_relu(net: IRGraph): for opr in net.all_oprs: for idx, inp in enumerate(opr.inp_tensors): owner_opr = inp.owner_opr if isinstance(owner_opr, ReluOpr): opr.inp_tensors[idx] = owner_opr.inp_tensors[0] for idx, out in enumerate(net.graph_outputs): owner_opr = out.owner_opr if isinstance(owner_opr, ReluOpr): net.graph_outputs[idx] = owner_opr.inp_tensors[0] visited_tensor = set() # type: set def _dfs_recursive(op_set, tensor): owner_opr = tensor.owner_opr op_set.add(owner_opr) if tensor in visited_tensor: return visited_tensor.add(tensor) if isinstance(owner_opr, IRGraph) or owner_opr is None: return for tt in owner_opr.inp_tensors: _dfs_recursive(op_set, tt) @_register_tranformation_rule(TransformerRule.REMOVE_UNRELATED_IROP) def _remove_unrelated_op(net: IRGraph): match_sets = set() # type: Set[OpBase] for out_tensor in net.graph_outputs: _dfs_recursive(match_sets, out_tensor) remove_idx = [] for opr in net.all_oprs: if opr not in match_sets: index = net._opr_ids.index(id(opr)) remove_idx.append(index) for i in remove_idx[::-1]: net.delete_ops(i) @_register_tranformation_rule(TransformerRule.ADD_FAKE_HSIGMOID_OUT) def _add_fake_hsigmoid_tensor(net: IRGraph): for opr in net.all_oprs: if isinstance(opr, (HardSwishOpr, HardSigmoidOpr)): add_3_out_tensor = IRTensor( opr.out_tensors[0].name + "_fake_add3_out", opr.inp_tensors[0].shape, opr.inp_tensors[0].dtype, q_type=opr.inp_tensors[0].q_dtype, scale=opr.inp_tensors[0].scale, zero_point=opr.inp_tensors[0].zero_point, ) opr.add_inp_tensors(add_3_out_tensor) relu6_out_tensor = IRTensor( opr.out_tensors[0].name + "_relu6_out", opr.inp_tensors[0].shape, opr.inp_tensors[0].dtype, q_type=opr.inp_tensors[0].q_dtype, scale=opr.inp_tensors[0].scale, zero_point=opr.inp_tensors[0].zero_point, ) opr.add_inp_tensors(relu6_out_tensor) if isinstance(opr, HardSwishOpr): div6_out_tensor = IRTensor( opr.out_tensors[0].name + "_div_out", opr.inp_tensors[0].shape, opr.inp_tensors[0].dtype, q_type=opr.inp_tensors[0].q_dtype, scale=opr.inp_tensors[0].scale, zero_point=opr.inp_tensors[0].zero_point, ) opr.add_inp_tensors(div6_out_tensor) def fold_conv_bn( conv_weight, conv_bias, conv_groups, gamma, beta, bn_mean, bn_var, eps ): conv_bias = conv_bias.reshape(1, -1, 1, 1) gamma = gamma.reshape(1, -1, 1, 1) beta = beta.reshape(1, -1, 1, 1) bn_mean = bn_mean.reshape(1, -1, 1, 1) bn_var = bn_var.reshape(1, -1, 1, 1) # bn_istd = 1 / bn_std bn_istd = 1.0 / sqrt(bn_var + eps) # type: ignore[attr-defined] # w_fold = gamma / bn_std * W scale_factor = gamma * bn_istd if conv_groups == 1: w_fold = conv_weight * scale_factor.reshape(-1, 1, 1, 1) else: w_fold = conv_weight * scale_factor.reshape(conv_groups, -1, 1, 1, 1) # b_fold = gamma * (b - bn_mean) / bn_std + beta b_fold = beta + gamma * (conv_bias - bn_mean) * bn_istd return w_fold, b_fold @_register_tranformation_rule(TransformerRule.FUSE_CONV_BN) def _fuse_conv_bn(net: IRGraph): for opr in net.all_oprs: if ( opr.name == "BatchNormalization" and len(net.find_inp_oprs(opr)) == 1 and net.find_inp_oprs(opr)[0].name == "Conv2d" and len(net.find_out_oprs(net.find_inp_oprs(opr)[0])) == 1 and net.find_out_oprs(net.find_inp_oprs(opr)[0])[0] == opr ): gamma = ( Tensor(opr.weight) # type: ignore[attr-defined] if opr.weight is not None # type: ignore[attr-defined] else Tensor(opr.inp_tensors[1].np_data) ) beta = ( Tensor(opr.bias) # type: ignore[attr-defined] if opr.bias is not None # type: ignore[attr-defined] else Tensor(opr.inp_tensors[2].np_data) ) bn_mean = ( Tensor(opr.mean) # type: ignore[attr-defined] if opr.mean is not None # type: ignore[attr-defined] else Tensor(opr.inp_tensors[3].np_data) ) bn_var = ( Tensor(opr.var) # type: ignore[attr-defined] if opr.var is not None # type: ignore[attr-defined] else
Tensor(opr.inp_tensors[4].np_data)
megengine.Tensor
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import pickle from collections import defaultdict from itertools import chain import numpy as np import megengine.functional as F import megengine.module as M import megengine.module.qat as qat from megengine.module.identity import Identity from megengine.traced_module import trace_module from megengine.traced_module.expr import CallFunction, CallMethod, Expr, GetAttr, Input from megengine.traced_module.node import ModuleNode, Node, TensorNode class IdentityMod(M.Module): def forward(self, x): return x class MyBlock(M.Module): def __init__(self, in_channels=3, channels=3): super(MyBlock, self).__init__() self.conv1 = M.Conv2d(in_channels, channels, 3, 1, padding=1, bias=False) self.bn1 = M.BatchNorm2d(channels) self.nothing = IdentityMod() def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = F.relu(x) + 1 x = self.nothing(x) return x class MyModule(M.Module): def __init__(self): super(MyModule, self).__init__() self.block0 = MyBlock() self.block1 = MyBlock() self.nothing = IdentityMod() def forward(self, x): x = self.block0(x) x = self.block1(x) x = self.nothing(x) return x class MyBlock1(M.Module): def forward(self, a): y = F.concat([a, a]) return a, y class MyModule1(M.Module): def __init__(self): super().__init__() self.block0 = MyBlock1() self.block1 = MyBlock1() def forward(self, a): a, y1 = self.block0(a) a = a + 1 a, y2 = self.block1(a) return a, y1 + y2 class NewModule(M.Module): def __init__(self, traced_module): super(NewModule, self).__init__() self.module = traced_module def forward(self, x): x = x - 1 x = self.module(x) x = x + 1 return x def _check_expr_users(traced_module): node_user = defaultdict(list) for expr in traced_module.graph._exprs: for node in expr.inputs: node_user[node].append(expr) for node in traced_module.graph.nodes(): node.users.sort(key=lambda m: m._id) node_user[node].sort(key=lambda m: m._id) assert node.users == node_user[node] def _init_cls(cls): module = cls() x =
F.ones((1, 3, 3, 3))
megengine.functional.ones
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import pickle from collections import defaultdict from itertools import chain import numpy as np import megengine.functional as F import megengine.module as M import megengine.module.qat as qat from megengine.module.identity import Identity from megengine.traced_module import trace_module from megengine.traced_module.expr import CallFunction, CallMethod, Expr, GetAttr, Input from megengine.traced_module.node import ModuleNode, Node, TensorNode class IdentityMod(M.Module): def forward(self, x): return x class MyBlock(M.Module): def __init__(self, in_channels=3, channels=3): super(MyBlock, self).__init__() self.conv1 = M.Conv2d(in_channels, channels, 3, 1, padding=1, bias=False) self.bn1 = M.BatchNorm2d(channels) self.nothing = IdentityMod() def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = F.relu(x) + 1 x = self.nothing(x) return x class MyModule(M.Module): def __init__(self): super(MyModule, self).__init__() self.block0 = MyBlock() self.block1 = MyBlock() self.nothing = IdentityMod() def forward(self, x): x = self.block0(x) x = self.block1(x) x = self.nothing(x) return x class MyBlock1(M.Module): def forward(self, a): y = F.concat([a, a]) return a, y class MyModule1(M.Module): def __init__(self): super().__init__() self.block0 = MyBlock1() self.block1 = MyBlock1() def forward(self, a): a, y1 = self.block0(a) a = a + 1 a, y2 = self.block1(a) return a, y1 + y2 class NewModule(M.Module): def __init__(self, traced_module): super(NewModule, self).__init__() self.module = traced_module def forward(self, x): x = x - 1 x = self.module(x) x = x + 1 return x def _check_expr_users(traced_module): node_user = defaultdict(list) for expr in traced_module.graph._exprs: for node in expr.inputs: node_user[node].append(expr) for node in traced_module.graph.nodes(): node.users.sort(key=lambda m: m._id) node_user[node].sort(key=lambda m: m._id) assert node.users == node_user[node] def _init_cls(cls): module = cls() x = F.ones((1, 3, 3, 3)) y = module(x) traced_module =
trace_module(module, x)
megengine.traced_module.trace_module
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import pickle from collections import defaultdict from itertools import chain import numpy as np import megengine.functional as F import megengine.module as M import megengine.module.qat as qat from megengine.module.identity import Identity from megengine.traced_module import trace_module from megengine.traced_module.expr import CallFunction, CallMethod, Expr, GetAttr, Input from megengine.traced_module.node import ModuleNode, Node, TensorNode class IdentityMod(M.Module): def forward(self, x): return x class MyBlock(M.Module): def __init__(self, in_channels=3, channels=3): super(MyBlock, self).__init__() self.conv1 = M.Conv2d(in_channels, channels, 3, 1, padding=1, bias=False) self.bn1 = M.BatchNorm2d(channels) self.nothing = IdentityMod() def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = F.relu(x) + 1 x = self.nothing(x) return x class MyModule(M.Module): def __init__(self): super(MyModule, self).__init__() self.block0 = MyBlock() self.block1 = MyBlock() self.nothing = IdentityMod() def forward(self, x): x = self.block0(x) x = self.block1(x) x = self.nothing(x) return x class MyBlock1(M.Module): def forward(self, a): y = F.concat([a, a]) return a, y class MyModule1(M.Module): def __init__(self): super().__init__() self.block0 = MyBlock1() self.block1 = MyBlock1() def forward(self, a): a, y1 = self.block0(a) a = a + 1 a, y2 = self.block1(a) return a, y1 + y2 class NewModule(M.Module): def __init__(self, traced_module): super(NewModule, self).__init__() self.module = traced_module def forward(self, x): x = x - 1 x = self.module(x) x = x + 1 return x def _check_expr_users(traced_module): node_user = defaultdict(list) for expr in traced_module.graph._exprs: for node in expr.inputs: node_user[node].append(expr) for node in traced_module.graph.nodes(): node.users.sort(key=lambda m: m._id) node_user[node].sort(key=lambda m: m._id) assert node.users == node_user[node] def _init_cls(cls): module = cls() x = F.ones((1, 3, 3, 3)) y = module(x) traced_module = trace_module(module, x) return traced_module, x, y def _init_block(): return _init_cls(MyBlock) def _init_module(): return _init_cls(MyModule) def test_search(): traced_module, *_ = _init_block() graph = traced_module.graph relu_expr = graph.get_function_by_type(F.relu).as_unique() assert isinstance(relu_expr, CallFunction) and relu_expr.func == F.relu conv_node = graph.get_module_by_type(M.Conv2d).as_unique() assert isinstance(conv_node, ModuleNode) and conv_node.module_type == M.Conv2d add_expr = graph.get_method_by_type("__add__").as_unique() assert isinstance(add_expr, CallMethod) and add_expr.method == "__add__" conv_node = graph.get_node_by_name("MyBlock_conv1").as_unique() assert isinstance(conv_node, ModuleNode) and conv_node.module_type == M.Conv2d def test_producer_and_users(): traced_module, *_ = _init_module() def _check(exprs): for expr in exprs: for n in chain(expr.inputs, expr.outputs): if not isinstance(n.expr, Input): assert n.expr in exprs for e in n.users: assert e in exprs assert n in e.inputs for mod in traced_module.modules(): if not hasattr(mod, "argdef_graph_map"): continue for g in mod.argdef_graph_map.values(): _check(g._exprs) def test_insert(): traced_module, x, expect = _init_block() graph = traced_module.graph relu_out = graph.get_function_by_type(F.relu).as_unique().outputs[0] with graph.insert_exprs(): neg_out = F.neg(relu_out) graph.replace_node({relu_out: neg_out}) graph.compile() np.testing.assert_allclose(expect - 1, 1 - traced_module(x), atol=1e-6) def test_insert_module(): class Neg(M.Module): def __init__(self, name): super().__init__(name) self.identity = M.Identity() self.identity_list = [M.Identity(), M.Identity()] self.identity_dict = {"0": M.Identity(), "1": M.Identity()} self.param = F.zeros((1,)) def forward(self, x): x = self.identity(x) for m in self.identity_dict: x = self.identity_dict[m](x) for m in self.identity_list: x = m(x) return F.neg(x) + self.param traced_module, x, expect = _init_block() graph = traced_module.graph relu_out = graph.get_function_by_type(F.relu).as_unique().outputs[0] self = graph.inputs[0] setattr(traced_module, "neg", Neg(name="neg")) setattr(traced_module, "neg2", Neg(name="neg")) setattr(traced_module, "param", F.zeros((1,))) with graph.insert_exprs(): neg_out = self.neg(relu_out) neg_out = self.neg2(relu_out) neg_out = neg_out + self.param graph.replace_node({relu_out: neg_out}) graph.compile() np.testing.assert_allclose(expect - 1, 1 - traced_module(x), atol=1e-6) assert traced_module.neg.graph is not None assert traced_module.neg2.graph is not None assert traced_module.neg2.param is not None assert len(traced_module.neg.graph._exprs) == 13 for n in traced_module.graph.nodes(): if isinstance(n, TensorNode): assert n.value is None def test_insert_qat_module(): class concat(qat.Concat): pass traced_module, x, expect = _init_block() graph = traced_module.graph self = graph.inputs[0] out = graph.outputs[0] setattr(traced_module, "cat_0", qat.Concat()) setattr(traced_module, "cat_1", concat()) with graph.insert_exprs(): x_0 = self.cat_0([out, out]) x_1 = self.cat_1([out, x_0]) graph.replace_node({out: x_1}) graph.compile() x =
F.copy(x)
megengine.functional.copy
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import pickle from collections import defaultdict from itertools import chain import numpy as np import megengine.functional as F import megengine.module as M import megengine.module.qat as qat from megengine.module.identity import Identity from megengine.traced_module import trace_module from megengine.traced_module.expr import CallFunction, CallMethod, Expr, GetAttr, Input from megengine.traced_module.node import ModuleNode, Node, TensorNode class IdentityMod(M.Module): def forward(self, x): return x class MyBlock(M.Module): def __init__(self, in_channels=3, channels=3): super(MyBlock, self).__init__() self.conv1 = M.Conv2d(in_channels, channels, 3, 1, padding=1, bias=False) self.bn1 = M.BatchNorm2d(channels) self.nothing = IdentityMod() def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = F.relu(x) + 1 x = self.nothing(x) return x class MyModule(M.Module): def __init__(self): super(MyModule, self).__init__() self.block0 = MyBlock() self.block1 = MyBlock() self.nothing = IdentityMod() def forward(self, x): x = self.block0(x) x = self.block1(x) x = self.nothing(x) return x class MyBlock1(M.Module): def forward(self, a): y = F.concat([a, a]) return a, y class MyModule1(M.Module): def __init__(self): super().__init__() self.block0 = MyBlock1() self.block1 = MyBlock1() def forward(self, a): a, y1 = self.block0(a) a = a + 1 a, y2 = self.block1(a) return a, y1 + y2 class NewModule(M.Module): def __init__(self, traced_module): super(NewModule, self).__init__() self.module = traced_module def forward(self, x): x = x - 1 x = self.module(x) x = x + 1 return x def _check_expr_users(traced_module): node_user = defaultdict(list) for expr in traced_module.graph._exprs: for node in expr.inputs: node_user[node].append(expr) for node in traced_module.graph.nodes(): node.users.sort(key=lambda m: m._id) node_user[node].sort(key=lambda m: m._id) assert node.users == node_user[node] def _init_cls(cls): module = cls() x = F.ones((1, 3, 3, 3)) y = module(x) traced_module = trace_module(module, x) return traced_module, x, y def _init_block(): return _init_cls(MyBlock) def _init_module(): return _init_cls(MyModule) def test_search(): traced_module, *_ = _init_block() graph = traced_module.graph relu_expr = graph.get_function_by_type(F.relu).as_unique() assert isinstance(relu_expr, CallFunction) and relu_expr.func == F.relu conv_node = graph.get_module_by_type(M.Conv2d).as_unique() assert isinstance(conv_node, ModuleNode) and conv_node.module_type == M.Conv2d add_expr = graph.get_method_by_type("__add__").as_unique() assert isinstance(add_expr, CallMethod) and add_expr.method == "__add__" conv_node = graph.get_node_by_name("MyBlock_conv1").as_unique() assert isinstance(conv_node, ModuleNode) and conv_node.module_type == M.Conv2d def test_producer_and_users(): traced_module, *_ = _init_module() def _check(exprs): for expr in exprs: for n in chain(expr.inputs, expr.outputs): if not isinstance(n.expr, Input): assert n.expr in exprs for e in n.users: assert e in exprs assert n in e.inputs for mod in traced_module.modules(): if not hasattr(mod, "argdef_graph_map"): continue for g in mod.argdef_graph_map.values(): _check(g._exprs) def test_insert(): traced_module, x, expect = _init_block() graph = traced_module.graph relu_out = graph.get_function_by_type(F.relu).as_unique().outputs[0] with graph.insert_exprs(): neg_out = F.neg(relu_out) graph.replace_node({relu_out: neg_out}) graph.compile() np.testing.assert_allclose(expect - 1, 1 - traced_module(x), atol=1e-6) def test_insert_module(): class Neg(M.Module): def __init__(self, name): super().__init__(name) self.identity = M.Identity() self.identity_list = [M.Identity(), M.Identity()] self.identity_dict = {"0": M.Identity(), "1": M.Identity()} self.param = F.zeros((1,)) def forward(self, x): x = self.identity(x) for m in self.identity_dict: x = self.identity_dict[m](x) for m in self.identity_list: x = m(x) return F.neg(x) + self.param traced_module, x, expect = _init_block() graph = traced_module.graph relu_out = graph.get_function_by_type(F.relu).as_unique().outputs[0] self = graph.inputs[0] setattr(traced_module, "neg", Neg(name="neg")) setattr(traced_module, "neg2", Neg(name="neg")) setattr(traced_module, "param", F.zeros((1,))) with graph.insert_exprs(): neg_out = self.neg(relu_out) neg_out = self.neg2(relu_out) neg_out = neg_out + self.param graph.replace_node({relu_out: neg_out}) graph.compile() np.testing.assert_allclose(expect - 1, 1 - traced_module(x), atol=1e-6) assert traced_module.neg.graph is not None assert traced_module.neg2.graph is not None assert traced_module.neg2.param is not None assert len(traced_module.neg.graph._exprs) == 13 for n in traced_module.graph.nodes(): if isinstance(n, TensorNode): assert n.value is None def test_insert_qat_module(): class concat(qat.Concat): pass traced_module, x, expect = _init_block() graph = traced_module.graph self = graph.inputs[0] out = graph.outputs[0] setattr(traced_module, "cat_0", qat.Concat()) setattr(traced_module, "cat_1", concat()) with graph.insert_exprs(): x_0 = self.cat_0([out, out]) x_1 = self.cat_1([out, x_0]) graph.replace_node({out: x_1}) graph.compile() x = F.copy(x) np.testing.assert_allclose( F.concat([expect, expect, expect]), traced_module(x), atol=1e-6 ) assert not hasattr(traced_module.cat_0, "graph") assert traced_module.cat_1.graph is not None def test_add_input_and_output(): traced_module, x, y = _init_module() data_node = traced_module.graph.add_input_node(shape=(1, 3, 224, 224), name="data") traced_module.graph.add_output_node(data_node) assert data_node.name == "data" assert traced_module.graph.inputs[-1] == data_node assert len(traced_module.graph.inputs) == 3 assert len(traced_module.graph.outputs) == 2 y1, y2 = traced_module(x, x) np.testing.assert_equal(y1.numpy(), y.numpy()) np.testing.assert_equal(y2.numpy(), x.numpy()) y1, y2 = traced_module(x, y) np.testing.assert_equal(y2.numpy(), y.numpy()) traced_module.graph.reset_outputs( ({"orig_out": traced_module.graph.outputs[0]}, traced_module.graph.outputs[1]) ) out = traced_module(x, x) assert isinstance(out, tuple) assert isinstance(out[0], dict) np.testing.assert_equal(out[0]["orig_out"].numpy(), y.numpy()) np.testing.assert_equal(out[1].numpy(), x.numpy()) def test_delete(): traced_module, x, expect = _init_block() graph = traced_module.graph relu_expr = graph.get_function_by_type(F.relu).as_unique() node = relu_expr.outputs repl_node = relu_expr.inputs graph.replace_node({node[0]: repl_node[0]}) graph.compile() np.testing.assert_allclose(expect - 1, F.relu(traced_module(x) - 1), atol=1e-6) # clear graph graph.replace_node({graph.outputs[0]: graph.inputs[1]}) graph.compile() np.testing.assert_equal(len(list(graph._exprs)), 0) np.testing.assert_equal(traced_module(x).numpy(), x.numpy()) def test_flatten(): traced_module, x, expect = _init_module() traced_module = traced_module.flatten() assert len(traced_module.graph._exprs) == 12 np.testing.assert_equal(expect.numpy(), traced_module(x).numpy()) traced_module = traced_module.flatten() assert len(traced_module.graph._exprs) == 12 np.testing.assert_equal(expect.numpy(), traced_module(x).numpy()) traced_module, x, expect = _init_cls(MyModule1) traced_module = traced_module.flatten() _check_expr_users(traced_module) def test_id_and_name(): def _check_id(traced_module): _total_ids = traced_module.graph._total_ids node_ids = [n._id for n in traced_module.graph.nodes().as_list()] assert len(set(node_ids)) == len(node_ids) assert max(node_ids) + 1 == _total_ids[0] expr_ids = [n._id for n in traced_module.graph.exprs().as_list()] assert len(set(expr_ids)) == len(expr_ids) assert max(expr_ids) + 1 == _total_ids[1] def _check_name(flatened_module): node_names = [n._name for n in flatened_module.graph.nodes().as_list()] assert len(set(node_names)) == len(node_names) traced_module, x, expect = _init_module() _check_id(traced_module) flattened_module = traced_module.flatten() _check_id(flattened_module) _check_name(flattened_module) # pickle check obj = pickle.dumps(traced_module) traced_module = pickle.loads(obj)
Node._set_next_id(159)
megengine.traced_module.node.Node._set_next_id
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import pickle from collections import defaultdict from itertools import chain import numpy as np import megengine.functional as F import megengine.module as M import megengine.module.qat as qat from megengine.module.identity import Identity from megengine.traced_module import trace_module from megengine.traced_module.expr import CallFunction, CallMethod, Expr, GetAttr, Input from megengine.traced_module.node import ModuleNode, Node, TensorNode class IdentityMod(M.Module): def forward(self, x): return x class MyBlock(M.Module): def __init__(self, in_channels=3, channels=3): super(MyBlock, self).__init__() self.conv1 = M.Conv2d(in_channels, channels, 3, 1, padding=1, bias=False) self.bn1 = M.BatchNorm2d(channels) self.nothing = IdentityMod() def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = F.relu(x) + 1 x = self.nothing(x) return x class MyModule(M.Module): def __init__(self): super(MyModule, self).__init__() self.block0 = MyBlock() self.block1 = MyBlock() self.nothing = IdentityMod() def forward(self, x): x = self.block0(x) x = self.block1(x) x = self.nothing(x) return x class MyBlock1(M.Module): def forward(self, a): y = F.concat([a, a]) return a, y class MyModule1(M.Module): def __init__(self): super().__init__() self.block0 = MyBlock1() self.block1 = MyBlock1() def forward(self, a): a, y1 = self.block0(a) a = a + 1 a, y2 = self.block1(a) return a, y1 + y2 class NewModule(M.Module): def __init__(self, traced_module): super(NewModule, self).__init__() self.module = traced_module def forward(self, x): x = x - 1 x = self.module(x) x = x + 1 return x def _check_expr_users(traced_module): node_user = defaultdict(list) for expr in traced_module.graph._exprs: for node in expr.inputs: node_user[node].append(expr) for node in traced_module.graph.nodes(): node.users.sort(key=lambda m: m._id) node_user[node].sort(key=lambda m: m._id) assert node.users == node_user[node] def _init_cls(cls): module = cls() x = F.ones((1, 3, 3, 3)) y = module(x) traced_module = trace_module(module, x) return traced_module, x, y def _init_block(): return _init_cls(MyBlock) def _init_module(): return _init_cls(MyModule) def test_search(): traced_module, *_ = _init_block() graph = traced_module.graph relu_expr = graph.get_function_by_type(F.relu).as_unique() assert isinstance(relu_expr, CallFunction) and relu_expr.func == F.relu conv_node = graph.get_module_by_type(M.Conv2d).as_unique() assert isinstance(conv_node, ModuleNode) and conv_node.module_type == M.Conv2d add_expr = graph.get_method_by_type("__add__").as_unique() assert isinstance(add_expr, CallMethod) and add_expr.method == "__add__" conv_node = graph.get_node_by_name("MyBlock_conv1").as_unique() assert isinstance(conv_node, ModuleNode) and conv_node.module_type == M.Conv2d def test_producer_and_users(): traced_module, *_ = _init_module() def _check(exprs): for expr in exprs: for n in chain(expr.inputs, expr.outputs): if not isinstance(n.expr, Input): assert n.expr in exprs for e in n.users: assert e in exprs assert n in e.inputs for mod in traced_module.modules(): if not hasattr(mod, "argdef_graph_map"): continue for g in mod.argdef_graph_map.values(): _check(g._exprs) def test_insert(): traced_module, x, expect = _init_block() graph = traced_module.graph relu_out = graph.get_function_by_type(F.relu).as_unique().outputs[0] with graph.insert_exprs(): neg_out = F.neg(relu_out) graph.replace_node({relu_out: neg_out}) graph.compile() np.testing.assert_allclose(expect - 1, 1 - traced_module(x), atol=1e-6) def test_insert_module(): class Neg(M.Module): def __init__(self, name): super().__init__(name) self.identity = M.Identity() self.identity_list = [M.Identity(), M.Identity()] self.identity_dict = {"0": M.Identity(), "1": M.Identity()} self.param = F.zeros((1,)) def forward(self, x): x = self.identity(x) for m in self.identity_dict: x = self.identity_dict[m](x) for m in self.identity_list: x = m(x) return F.neg(x) + self.param traced_module, x, expect = _init_block() graph = traced_module.graph relu_out = graph.get_function_by_type(F.relu).as_unique().outputs[0] self = graph.inputs[0] setattr(traced_module, "neg", Neg(name="neg")) setattr(traced_module, "neg2", Neg(name="neg")) setattr(traced_module, "param", F.zeros((1,))) with graph.insert_exprs(): neg_out = self.neg(relu_out) neg_out = self.neg2(relu_out) neg_out = neg_out + self.param graph.replace_node({relu_out: neg_out}) graph.compile() np.testing.assert_allclose(expect - 1, 1 - traced_module(x), atol=1e-6) assert traced_module.neg.graph is not None assert traced_module.neg2.graph is not None assert traced_module.neg2.param is not None assert len(traced_module.neg.graph._exprs) == 13 for n in traced_module.graph.nodes(): if isinstance(n, TensorNode): assert n.value is None def test_insert_qat_module(): class concat(qat.Concat): pass traced_module, x, expect = _init_block() graph = traced_module.graph self = graph.inputs[0] out = graph.outputs[0] setattr(traced_module, "cat_0", qat.Concat()) setattr(traced_module, "cat_1", concat()) with graph.insert_exprs(): x_0 = self.cat_0([out, out]) x_1 = self.cat_1([out, x_0]) graph.replace_node({out: x_1}) graph.compile() x = F.copy(x) np.testing.assert_allclose( F.concat([expect, expect, expect]), traced_module(x), atol=1e-6 ) assert not hasattr(traced_module.cat_0, "graph") assert traced_module.cat_1.graph is not None def test_add_input_and_output(): traced_module, x, y = _init_module() data_node = traced_module.graph.add_input_node(shape=(1, 3, 224, 224), name="data") traced_module.graph.add_output_node(data_node) assert data_node.name == "data" assert traced_module.graph.inputs[-1] == data_node assert len(traced_module.graph.inputs) == 3 assert len(traced_module.graph.outputs) == 2 y1, y2 = traced_module(x, x) np.testing.assert_equal(y1.numpy(), y.numpy()) np.testing.assert_equal(y2.numpy(), x.numpy()) y1, y2 = traced_module(x, y) np.testing.assert_equal(y2.numpy(), y.numpy()) traced_module.graph.reset_outputs( ({"orig_out": traced_module.graph.outputs[0]}, traced_module.graph.outputs[1]) ) out = traced_module(x, x) assert isinstance(out, tuple) assert isinstance(out[0], dict) np.testing.assert_equal(out[0]["orig_out"].numpy(), y.numpy()) np.testing.assert_equal(out[1].numpy(), x.numpy()) def test_delete(): traced_module, x, expect = _init_block() graph = traced_module.graph relu_expr = graph.get_function_by_type(F.relu).as_unique() node = relu_expr.outputs repl_node = relu_expr.inputs graph.replace_node({node[0]: repl_node[0]}) graph.compile() np.testing.assert_allclose(expect - 1, F.relu(traced_module(x) - 1), atol=1e-6) # clear graph graph.replace_node({graph.outputs[0]: graph.inputs[1]}) graph.compile() np.testing.assert_equal(len(list(graph._exprs)), 0) np.testing.assert_equal(traced_module(x).numpy(), x.numpy()) def test_flatten(): traced_module, x, expect = _init_module() traced_module = traced_module.flatten() assert len(traced_module.graph._exprs) == 12 np.testing.assert_equal(expect.numpy(), traced_module(x).numpy()) traced_module = traced_module.flatten() assert len(traced_module.graph._exprs) == 12 np.testing.assert_equal(expect.numpy(), traced_module(x).numpy()) traced_module, x, expect = _init_cls(MyModule1) traced_module = traced_module.flatten() _check_expr_users(traced_module) def test_id_and_name(): def _check_id(traced_module): _total_ids = traced_module.graph._total_ids node_ids = [n._id for n in traced_module.graph.nodes().as_list()] assert len(set(node_ids)) == len(node_ids) assert max(node_ids) + 1 == _total_ids[0] expr_ids = [n._id for n in traced_module.graph.exprs().as_list()] assert len(set(expr_ids)) == len(expr_ids) assert max(expr_ids) + 1 == _total_ids[1] def _check_name(flatened_module): node_names = [n._name for n in flatened_module.graph.nodes().as_list()] assert len(set(node_names)) == len(node_names) traced_module, x, expect = _init_module() _check_id(traced_module) flattened_module = traced_module.flatten() _check_id(flattened_module) _check_name(flattened_module) # pickle check obj = pickle.dumps(traced_module) traced_module = pickle.loads(obj) Node._set_next_id(159)
Expr._set_next_id(1024)
megengine.traced_module.expr.Expr._set_next_id
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import pickle from collections import defaultdict from itertools import chain import numpy as np import megengine.functional as F import megengine.module as M import megengine.module.qat as qat from megengine.module.identity import Identity from megengine.traced_module import trace_module from megengine.traced_module.expr import CallFunction, CallMethod, Expr, GetAttr, Input from megengine.traced_module.node import ModuleNode, Node, TensorNode class IdentityMod(M.Module): def forward(self, x): return x class MyBlock(M.Module): def __init__(self, in_channels=3, channels=3): super(MyBlock, self).__init__() self.conv1 = M.Conv2d(in_channels, channels, 3, 1, padding=1, bias=False) self.bn1 = M.BatchNorm2d(channels) self.nothing = IdentityMod() def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = F.relu(x) + 1 x = self.nothing(x) return x class MyModule(M.Module): def __init__(self): super(MyModule, self).__init__() self.block0 = MyBlock() self.block1 = MyBlock() self.nothing = IdentityMod() def forward(self, x): x = self.block0(x) x = self.block1(x) x = self.nothing(x) return x class MyBlock1(M.Module): def forward(self, a): y = F.concat([a, a]) return a, y class MyModule1(M.Module): def __init__(self): super().__init__() self.block0 = MyBlock1() self.block1 = MyBlock1() def forward(self, a): a, y1 = self.block0(a) a = a + 1 a, y2 = self.block1(a) return a, y1 + y2 class NewModule(M.Module): def __init__(self, traced_module): super(NewModule, self).__init__() self.module = traced_module def forward(self, x): x = x - 1 x = self.module(x) x = x + 1 return x def _check_expr_users(traced_module): node_user = defaultdict(list) for expr in traced_module.graph._exprs: for node in expr.inputs: node_user[node].append(expr) for node in traced_module.graph.nodes(): node.users.sort(key=lambda m: m._id) node_user[node].sort(key=lambda m: m._id) assert node.users == node_user[node] def _init_cls(cls): module = cls() x = F.ones((1, 3, 3, 3)) y = module(x) traced_module = trace_module(module, x) return traced_module, x, y def _init_block(): return _init_cls(MyBlock) def _init_module(): return _init_cls(MyModule) def test_search(): traced_module, *_ = _init_block() graph = traced_module.graph relu_expr = graph.get_function_by_type(F.relu).as_unique() assert isinstance(relu_expr, CallFunction) and relu_expr.func == F.relu conv_node = graph.get_module_by_type(M.Conv2d).as_unique() assert isinstance(conv_node, ModuleNode) and conv_node.module_type == M.Conv2d add_expr = graph.get_method_by_type("__add__").as_unique() assert isinstance(add_expr, CallMethod) and add_expr.method == "__add__" conv_node = graph.get_node_by_name("MyBlock_conv1").as_unique() assert isinstance(conv_node, ModuleNode) and conv_node.module_type == M.Conv2d def test_producer_and_users(): traced_module, *_ = _init_module() def _check(exprs): for expr in exprs: for n in chain(expr.inputs, expr.outputs): if not isinstance(n.expr, Input): assert n.expr in exprs for e in n.users: assert e in exprs assert n in e.inputs for mod in traced_module.modules(): if not hasattr(mod, "argdef_graph_map"): continue for g in mod.argdef_graph_map.values(): _check(g._exprs) def test_insert(): traced_module, x, expect = _init_block() graph = traced_module.graph relu_out = graph.get_function_by_type(F.relu).as_unique().outputs[0] with graph.insert_exprs(): neg_out = F.neg(relu_out) graph.replace_node({relu_out: neg_out}) graph.compile() np.testing.assert_allclose(expect - 1, 1 - traced_module(x), atol=1e-6) def test_insert_module(): class Neg(M.Module): def __init__(self, name): super().__init__(name) self.identity = M.Identity() self.identity_list = [M.Identity(), M.Identity()] self.identity_dict = {"0": M.Identity(), "1": M.Identity()} self.param = F.zeros((1,)) def forward(self, x): x = self.identity(x) for m in self.identity_dict: x = self.identity_dict[m](x) for m in self.identity_list: x = m(x) return F.neg(x) + self.param traced_module, x, expect = _init_block() graph = traced_module.graph relu_out = graph.get_function_by_type(F.relu).as_unique().outputs[0] self = graph.inputs[0] setattr(traced_module, "neg", Neg(name="neg")) setattr(traced_module, "neg2", Neg(name="neg")) setattr(traced_module, "param", F.zeros((1,))) with graph.insert_exprs(): neg_out = self.neg(relu_out) neg_out = self.neg2(relu_out) neg_out = neg_out + self.param graph.replace_node({relu_out: neg_out}) graph.compile() np.testing.assert_allclose(expect - 1, 1 - traced_module(x), atol=1e-6) assert traced_module.neg.graph is not None assert traced_module.neg2.graph is not None assert traced_module.neg2.param is not None assert len(traced_module.neg.graph._exprs) == 13 for n in traced_module.graph.nodes(): if isinstance(n, TensorNode): assert n.value is None def test_insert_qat_module(): class concat(qat.Concat): pass traced_module, x, expect = _init_block() graph = traced_module.graph self = graph.inputs[0] out = graph.outputs[0] setattr(traced_module, "cat_0", qat.Concat()) setattr(traced_module, "cat_1", concat()) with graph.insert_exprs(): x_0 = self.cat_0([out, out]) x_1 = self.cat_1([out, x_0]) graph.replace_node({out: x_1}) graph.compile() x = F.copy(x) np.testing.assert_allclose( F.concat([expect, expect, expect]), traced_module(x), atol=1e-6 ) assert not hasattr(traced_module.cat_0, "graph") assert traced_module.cat_1.graph is not None def test_add_input_and_output(): traced_module, x, y = _init_module() data_node = traced_module.graph.add_input_node(shape=(1, 3, 224, 224), name="data") traced_module.graph.add_output_node(data_node) assert data_node.name == "data" assert traced_module.graph.inputs[-1] == data_node assert len(traced_module.graph.inputs) == 3 assert len(traced_module.graph.outputs) == 2 y1, y2 = traced_module(x, x) np.testing.assert_equal(y1.numpy(), y.numpy()) np.testing.assert_equal(y2.numpy(), x.numpy()) y1, y2 = traced_module(x, y) np.testing.assert_equal(y2.numpy(), y.numpy()) traced_module.graph.reset_outputs( ({"orig_out": traced_module.graph.outputs[0]}, traced_module.graph.outputs[1]) ) out = traced_module(x, x) assert isinstance(out, tuple) assert isinstance(out[0], dict) np.testing.assert_equal(out[0]["orig_out"].numpy(), y.numpy()) np.testing.assert_equal(out[1].numpy(), x.numpy()) def test_delete(): traced_module, x, expect = _init_block() graph = traced_module.graph relu_expr = graph.get_function_by_type(F.relu).as_unique() node = relu_expr.outputs repl_node = relu_expr.inputs graph.replace_node({node[0]: repl_node[0]}) graph.compile() np.testing.assert_allclose(expect - 1, F.relu(traced_module(x) - 1), atol=1e-6) # clear graph graph.replace_node({graph.outputs[0]: graph.inputs[1]}) graph.compile() np.testing.assert_equal(len(list(graph._exprs)), 0) np.testing.assert_equal(traced_module(x).numpy(), x.numpy()) def test_flatten(): traced_module, x, expect = _init_module() traced_module = traced_module.flatten() assert len(traced_module.graph._exprs) == 12 np.testing.assert_equal(expect.numpy(), traced_module(x).numpy()) traced_module = traced_module.flatten() assert len(traced_module.graph._exprs) == 12 np.testing.assert_equal(expect.numpy(), traced_module(x).numpy()) traced_module, x, expect = _init_cls(MyModule1) traced_module = traced_module.flatten() _check_expr_users(traced_module) def test_id_and_name(): def _check_id(traced_module): _total_ids = traced_module.graph._total_ids node_ids = [n._id for n in traced_module.graph.nodes().as_list()] assert len(set(node_ids)) == len(node_ids) assert max(node_ids) + 1 == _total_ids[0] expr_ids = [n._id for n in traced_module.graph.exprs().as_list()] assert len(set(expr_ids)) == len(expr_ids) assert max(expr_ids) + 1 == _total_ids[1] def _check_name(flatened_module): node_names = [n._name for n in flatened_module.graph.nodes().as_list()] assert len(set(node_names)) == len(node_names) traced_module, x, expect = _init_module() _check_id(traced_module) flattened_module = traced_module.flatten() _check_id(flattened_module) _check_name(flattened_module) # pickle check obj = pickle.dumps(traced_module) traced_module = pickle.loads(obj) Node._set_next_id(159) Expr._set_next_id(1024) graph = traced_module.graph for expr in graph.get_function_by_type(F.relu).as_list(): relu_out = expr.outputs[0] cur_graph = expr.top_graph with cur_graph.insert_exprs(): neg_out = F.neg(relu_out) cur_graph.replace_node({relu_out: neg_out}) cur_graph.compile() _check_id(traced_module) flattened_module = traced_module.flatten() _check_id(flattened_module) _check_name(flattened_module) # check trace TracedModule obj = pickle.dumps(traced_module) traced_module = pickle.loads(obj) module = NewModule(traced_module) traced_module =
trace_module(module, x)
megengine.traced_module.trace_module
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import pickle from collections import defaultdict from itertools import chain import numpy as np import megengine.functional as F import megengine.module as M import megengine.module.qat as qat from megengine.module.identity import Identity from megengine.traced_module import trace_module from megengine.traced_module.expr import CallFunction, CallMethod, Expr, GetAttr, Input from megengine.traced_module.node import ModuleNode, Node, TensorNode class IdentityMod(M.Module): def forward(self, x): return x class MyBlock(M.Module): def __init__(self, in_channels=3, channels=3): super(MyBlock, self).__init__() self.conv1 = M.Conv2d(in_channels, channels, 3, 1, padding=1, bias=False) self.bn1 = M.BatchNorm2d(channels) self.nothing = IdentityMod() def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = F.relu(x) + 1 x = self.nothing(x) return x class MyModule(M.Module): def __init__(self): super(MyModule, self).__init__() self.block0 = MyBlock() self.block1 = MyBlock() self.nothing = IdentityMod() def forward(self, x): x = self.block0(x) x = self.block1(x) x = self.nothing(x) return x class MyBlock1(M.Module): def forward(self, a): y = F.concat([a, a]) return a, y class MyModule1(M.Module): def __init__(self): super().__init__() self.block0 = MyBlock1() self.block1 = MyBlock1() def forward(self, a): a, y1 = self.block0(a) a = a + 1 a, y2 = self.block1(a) return a, y1 + y2 class NewModule(M.Module): def __init__(self, traced_module): super(NewModule, self).__init__() self.module = traced_module def forward(self, x): x = x - 1 x = self.module(x) x = x + 1 return x def _check_expr_users(traced_module): node_user = defaultdict(list) for expr in traced_module.graph._exprs: for node in expr.inputs: node_user[node].append(expr) for node in traced_module.graph.nodes(): node.users.sort(key=lambda m: m._id) node_user[node].sort(key=lambda m: m._id) assert node.users == node_user[node] def _init_cls(cls): module = cls() x = F.ones((1, 3, 3, 3)) y = module(x) traced_module = trace_module(module, x) return traced_module, x, y def _init_block(): return _init_cls(MyBlock) def _init_module(): return _init_cls(MyModule) def test_search(): traced_module, *_ = _init_block() graph = traced_module.graph relu_expr = graph.get_function_by_type(F.relu).as_unique() assert isinstance(relu_expr, CallFunction) and relu_expr.func == F.relu conv_node = graph.get_module_by_type(M.Conv2d).as_unique() assert isinstance(conv_node, ModuleNode) and conv_node.module_type == M.Conv2d add_expr = graph.get_method_by_type("__add__").as_unique() assert isinstance(add_expr, CallMethod) and add_expr.method == "__add__" conv_node = graph.get_node_by_name("MyBlock_conv1").as_unique() assert isinstance(conv_node, ModuleNode) and conv_node.module_type == M.Conv2d def test_producer_and_users(): traced_module, *_ = _init_module() def _check(exprs): for expr in exprs: for n in chain(expr.inputs, expr.outputs): if not isinstance(n.expr, Input): assert n.expr in exprs for e in n.users: assert e in exprs assert n in e.inputs for mod in traced_module.modules(): if not hasattr(mod, "argdef_graph_map"): continue for g in mod.argdef_graph_map.values(): _check(g._exprs) def test_insert(): traced_module, x, expect = _init_block() graph = traced_module.graph relu_out = graph.get_function_by_type(F.relu).as_unique().outputs[0] with graph.insert_exprs(): neg_out = F.neg(relu_out) graph.replace_node({relu_out: neg_out}) graph.compile() np.testing.assert_allclose(expect - 1, 1 - traced_module(x), atol=1e-6) def test_insert_module(): class Neg(M.Module): def __init__(self, name): super().__init__(name) self.identity = M.Identity() self.identity_list = [M.Identity(), M.Identity()] self.identity_dict = {"0": M.Identity(), "1": M.Identity()} self.param = F.zeros((1,)) def forward(self, x): x = self.identity(x) for m in self.identity_dict: x = self.identity_dict[m](x) for m in self.identity_list: x = m(x) return F.neg(x) + self.param traced_module, x, expect = _init_block() graph = traced_module.graph relu_out = graph.get_function_by_type(F.relu).as_unique().outputs[0] self = graph.inputs[0] setattr(traced_module, "neg", Neg(name="neg")) setattr(traced_module, "neg2", Neg(name="neg")) setattr(traced_module, "param", F.zeros((1,))) with graph.insert_exprs(): neg_out = self.neg(relu_out) neg_out = self.neg2(relu_out) neg_out = neg_out + self.param graph.replace_node({relu_out: neg_out}) graph.compile() np.testing.assert_allclose(expect - 1, 1 - traced_module(x), atol=1e-6) assert traced_module.neg.graph is not None assert traced_module.neg2.graph is not None assert traced_module.neg2.param is not None assert len(traced_module.neg.graph._exprs) == 13 for n in traced_module.graph.nodes(): if isinstance(n, TensorNode): assert n.value is None def test_insert_qat_module(): class concat(qat.Concat): pass traced_module, x, expect = _init_block() graph = traced_module.graph self = graph.inputs[0] out = graph.outputs[0] setattr(traced_module, "cat_0", qat.Concat()) setattr(traced_module, "cat_1", concat()) with graph.insert_exprs(): x_0 = self.cat_0([out, out]) x_1 = self.cat_1([out, x_0]) graph.replace_node({out: x_1}) graph.compile() x = F.copy(x) np.testing.assert_allclose( F.concat([expect, expect, expect]), traced_module(x), atol=1e-6 ) assert not hasattr(traced_module.cat_0, "graph") assert traced_module.cat_1.graph is not None def test_add_input_and_output(): traced_module, x, y = _init_module() data_node = traced_module.graph.add_input_node(shape=(1, 3, 224, 224), name="data") traced_module.graph.add_output_node(data_node) assert data_node.name == "data" assert traced_module.graph.inputs[-1] == data_node assert len(traced_module.graph.inputs) == 3 assert len(traced_module.graph.outputs) == 2 y1, y2 = traced_module(x, x) np.testing.assert_equal(y1.numpy(), y.numpy()) np.testing.assert_equal(y2.numpy(), x.numpy()) y1, y2 = traced_module(x, y) np.testing.assert_equal(y2.numpy(), y.numpy()) traced_module.graph.reset_outputs( ({"orig_out": traced_module.graph.outputs[0]}, traced_module.graph.outputs[1]) ) out = traced_module(x, x) assert isinstance(out, tuple) assert isinstance(out[0], dict) np.testing.assert_equal(out[0]["orig_out"].numpy(), y.numpy()) np.testing.assert_equal(out[1].numpy(), x.numpy()) def test_delete(): traced_module, x, expect = _init_block() graph = traced_module.graph relu_expr = graph.get_function_by_type(F.relu).as_unique() node = relu_expr.outputs repl_node = relu_expr.inputs graph.replace_node({node[0]: repl_node[0]}) graph.compile() np.testing.assert_allclose(expect - 1, F.relu(traced_module(x) - 1), atol=1e-6) # clear graph graph.replace_node({graph.outputs[0]: graph.inputs[1]}) graph.compile() np.testing.assert_equal(len(list(graph._exprs)), 0) np.testing.assert_equal(traced_module(x).numpy(), x.numpy()) def test_flatten(): traced_module, x, expect = _init_module() traced_module = traced_module.flatten() assert len(traced_module.graph._exprs) == 12 np.testing.assert_equal(expect.numpy(), traced_module(x).numpy()) traced_module = traced_module.flatten() assert len(traced_module.graph._exprs) == 12 np.testing.assert_equal(expect.numpy(), traced_module(x).numpy()) traced_module, x, expect = _init_cls(MyModule1) traced_module = traced_module.flatten() _check_expr_users(traced_module) def test_id_and_name(): def _check_id(traced_module): _total_ids = traced_module.graph._total_ids node_ids = [n._id for n in traced_module.graph.nodes().as_list()] assert len(set(node_ids)) == len(node_ids) assert max(node_ids) + 1 == _total_ids[0] expr_ids = [n._id for n in traced_module.graph.exprs().as_list()] assert len(set(expr_ids)) == len(expr_ids) assert max(expr_ids) + 1 == _total_ids[1] def _check_name(flatened_module): node_names = [n._name for n in flatened_module.graph.nodes().as_list()] assert len(set(node_names)) == len(node_names) traced_module, x, expect = _init_module() _check_id(traced_module) flattened_module = traced_module.flatten() _check_id(flattened_module) _check_name(flattened_module) # pickle check obj = pickle.dumps(traced_module) traced_module = pickle.loads(obj) Node._set_next_id(159) Expr._set_next_id(1024) graph = traced_module.graph for expr in graph.get_function_by_type(F.relu).as_list(): relu_out = expr.outputs[0] cur_graph = expr.top_graph with cur_graph.insert_exprs(): neg_out = F.neg(relu_out) cur_graph.replace_node({relu_out: neg_out}) cur_graph.compile() _check_id(traced_module) flattened_module = traced_module.flatten() _check_id(flattened_module) _check_name(flattened_module) # check trace TracedModule obj = pickle.dumps(traced_module) traced_module = pickle.loads(obj) module = NewModule(traced_module) traced_module = trace_module(module, x) _check_id(traced_module) flattened_module = traced_module.flatten() _check_id(flattened_module) _check_name(flattened_module) def test_set_node_name(): traced_module, x, expect = _init_module() graph = traced_module.graph output_node = graph.outputs[0] def rename(name): output_node.name = name np.testing.assert_raises(AssertionError, rename, "block1_out") rename("output") np.testing.assert_equal(str(graph.outputs[0]), "output") def test_set_graph_name(): traced_module, x, expect = _init_module() graph = traced_module.graph output_node = graph.outputs[0] node_name = output_node.name graph.name = "Top" node = graph.get_node_by_name("{}_{}".format("Top", node_name)).as_unique() assert node is output_node def test_extra_block(): class PostProcess(M.Module): def forward(self, x): return x * 2 class Net(M.Module): def __init__(self, traced_module): super().__init__() self.post_process = PostProcess() self.traced_module = traced_module def forward(self, x): x = self.traced_module(x) x = self.post_process(x) return x traced_module, x, expect = _init_block() module = Net(traced_module) np.testing.assert_allclose(2 * expect, module(x), atol=1e-6) traced_module =
trace_module(module, x)
megengine.traced_module.trace_module
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import pickle from collections import defaultdict from itertools import chain import numpy as np import megengine.functional as F import megengine.module as M import megengine.module.qat as qat from megengine.module.identity import Identity from megengine.traced_module import trace_module from megengine.traced_module.expr import CallFunction, CallMethod, Expr, GetAttr, Input from megengine.traced_module.node import ModuleNode, Node, TensorNode class IdentityMod(M.Module): def forward(self, x): return x class MyBlock(M.Module): def __init__(self, in_channels=3, channels=3): super(MyBlock, self).__init__() self.conv1 =
M.Conv2d(in_channels, channels, 3, 1, padding=1, bias=False)
megengine.module.Conv2d
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import pickle from collections import defaultdict from itertools import chain import numpy as np import megengine.functional as F import megengine.module as M import megengine.module.qat as qat from megengine.module.identity import Identity from megengine.traced_module import trace_module from megengine.traced_module.expr import CallFunction, CallMethod, Expr, GetAttr, Input from megengine.traced_module.node import ModuleNode, Node, TensorNode class IdentityMod(M.Module): def forward(self, x): return x class MyBlock(M.Module): def __init__(self, in_channels=3, channels=3): super(MyBlock, self).__init__() self.conv1 = M.Conv2d(in_channels, channels, 3, 1, padding=1, bias=False) self.bn1 =
M.BatchNorm2d(channels)
megengine.module.BatchNorm2d
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import pickle from collections import defaultdict from itertools import chain import numpy as np import megengine.functional as F import megengine.module as M import megengine.module.qat as qat from megengine.module.identity import Identity from megengine.traced_module import trace_module from megengine.traced_module.expr import CallFunction, CallMethod, Expr, GetAttr, Input from megengine.traced_module.node import ModuleNode, Node, TensorNode class IdentityMod(M.Module): def forward(self, x): return x class MyBlock(M.Module): def __init__(self, in_channels=3, channels=3): super(MyBlock, self).__init__() self.conv1 = M.Conv2d(in_channels, channels, 3, 1, padding=1, bias=False) self.bn1 = M.BatchNorm2d(channels) self.nothing = IdentityMod() def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = F.relu(x) + 1 x = self.nothing(x) return x class MyModule(M.Module): def __init__(self): super(MyModule, self).__init__() self.block0 = MyBlock() self.block1 = MyBlock() self.nothing = IdentityMod() def forward(self, x): x = self.block0(x) x = self.block1(x) x = self.nothing(x) return x class MyBlock1(M.Module): def forward(self, a): y =
F.concat([a, a])
megengine.functional.concat
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import pickle from collections import defaultdict from itertools import chain import numpy as np import megengine.functional as F import megengine.module as M import megengine.module.qat as qat from megengine.module.identity import Identity from megengine.traced_module import trace_module from megengine.traced_module.expr import CallFunction, CallMethod, Expr, GetAttr, Input from megengine.traced_module.node import ModuleNode, Node, TensorNode class IdentityMod(M.Module): def forward(self, x): return x class MyBlock(M.Module): def __init__(self, in_channels=3, channels=3): super(MyBlock, self).__init__() self.conv1 = M.Conv2d(in_channels, channels, 3, 1, padding=1, bias=False) self.bn1 = M.BatchNorm2d(channels) self.nothing = IdentityMod() def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = F.relu(x) + 1 x = self.nothing(x) return x class MyModule(M.Module): def __init__(self): super(MyModule, self).__init__() self.block0 = MyBlock() self.block1 = MyBlock() self.nothing = IdentityMod() def forward(self, x): x = self.block0(x) x = self.block1(x) x = self.nothing(x) return x class MyBlock1(M.Module): def forward(self, a): y = F.concat([a, a]) return a, y class MyModule1(M.Module): def __init__(self): super().__init__() self.block0 = MyBlock1() self.block1 = MyBlock1() def forward(self, a): a, y1 = self.block0(a) a = a + 1 a, y2 = self.block1(a) return a, y1 + y2 class NewModule(M.Module): def __init__(self, traced_module): super(NewModule, self).__init__() self.module = traced_module def forward(self, x): x = x - 1 x = self.module(x) x = x + 1 return x def _check_expr_users(traced_module): node_user = defaultdict(list) for expr in traced_module.graph._exprs: for node in expr.inputs: node_user[node].append(expr) for node in traced_module.graph.nodes(): node.users.sort(key=lambda m: m._id) node_user[node].sort(key=lambda m: m._id) assert node.users == node_user[node] def _init_cls(cls): module = cls() x = F.ones((1, 3, 3, 3)) y = module(x) traced_module = trace_module(module, x) return traced_module, x, y def _init_block(): return _init_cls(MyBlock) def _init_module(): return _init_cls(MyModule) def test_search(): traced_module, *_ = _init_block() graph = traced_module.graph relu_expr = graph.get_function_by_type(F.relu).as_unique() assert isinstance(relu_expr, CallFunction) and relu_expr.func == F.relu conv_node = graph.get_module_by_type(M.Conv2d).as_unique() assert isinstance(conv_node, ModuleNode) and conv_node.module_type == M.Conv2d add_expr = graph.get_method_by_type("__add__").as_unique() assert isinstance(add_expr, CallMethod) and add_expr.method == "__add__" conv_node = graph.get_node_by_name("MyBlock_conv1").as_unique() assert isinstance(conv_node, ModuleNode) and conv_node.module_type == M.Conv2d def test_producer_and_users(): traced_module, *_ = _init_module() def _check(exprs): for expr in exprs: for n in chain(expr.inputs, expr.outputs): if not isinstance(n.expr, Input): assert n.expr in exprs for e in n.users: assert e in exprs assert n in e.inputs for mod in traced_module.modules(): if not hasattr(mod, "argdef_graph_map"): continue for g in mod.argdef_graph_map.values(): _check(g._exprs) def test_insert(): traced_module, x, expect = _init_block() graph = traced_module.graph relu_out = graph.get_function_by_type(F.relu).as_unique().outputs[0] with graph.insert_exprs(): neg_out =
F.neg(relu_out)
megengine.functional.neg
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import pickle from collections import defaultdict from itertools import chain import numpy as np import megengine.functional as F import megengine.module as M import megengine.module.qat as qat from megengine.module.identity import Identity from megengine.traced_module import trace_module from megengine.traced_module.expr import CallFunction, CallMethod, Expr, GetAttr, Input from megengine.traced_module.node import ModuleNode, Node, TensorNode class IdentityMod(M.Module): def forward(self, x): return x class MyBlock(M.Module): def __init__(self, in_channels=3, channels=3): super(MyBlock, self).__init__() self.conv1 = M.Conv2d(in_channels, channels, 3, 1, padding=1, bias=False) self.bn1 = M.BatchNorm2d(channels) self.nothing = IdentityMod() def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = F.relu(x) + 1 x = self.nothing(x) return x class MyModule(M.Module): def __init__(self): super(MyModule, self).__init__() self.block0 = MyBlock() self.block1 = MyBlock() self.nothing = IdentityMod() def forward(self, x): x = self.block0(x) x = self.block1(x) x = self.nothing(x) return x class MyBlock1(M.Module): def forward(self, a): y = F.concat([a, a]) return a, y class MyModule1(M.Module): def __init__(self): super().__init__() self.block0 = MyBlock1() self.block1 = MyBlock1() def forward(self, a): a, y1 = self.block0(a) a = a + 1 a, y2 = self.block1(a) return a, y1 + y2 class NewModule(M.Module): def __init__(self, traced_module): super(NewModule, self).__init__() self.module = traced_module def forward(self, x): x = x - 1 x = self.module(x) x = x + 1 return x def _check_expr_users(traced_module): node_user = defaultdict(list) for expr in traced_module.graph._exprs: for node in expr.inputs: node_user[node].append(expr) for node in traced_module.graph.nodes(): node.users.sort(key=lambda m: m._id) node_user[node].sort(key=lambda m: m._id) assert node.users == node_user[node] def _init_cls(cls): module = cls() x = F.ones((1, 3, 3, 3)) y = module(x) traced_module = trace_module(module, x) return traced_module, x, y def _init_block(): return _init_cls(MyBlock) def _init_module(): return _init_cls(MyModule) def test_search(): traced_module, *_ = _init_block() graph = traced_module.graph relu_expr = graph.get_function_by_type(F.relu).as_unique() assert isinstance(relu_expr, CallFunction) and relu_expr.func == F.relu conv_node = graph.get_module_by_type(M.Conv2d).as_unique() assert isinstance(conv_node, ModuleNode) and conv_node.module_type == M.Conv2d add_expr = graph.get_method_by_type("__add__").as_unique() assert isinstance(add_expr, CallMethod) and add_expr.method == "__add__" conv_node = graph.get_node_by_name("MyBlock_conv1").as_unique() assert isinstance(conv_node, ModuleNode) and conv_node.module_type == M.Conv2d def test_producer_and_users(): traced_module, *_ = _init_module() def _check(exprs): for expr in exprs: for n in chain(expr.inputs, expr.outputs): if not isinstance(n.expr, Input): assert n.expr in exprs for e in n.users: assert e in exprs assert n in e.inputs for mod in traced_module.modules(): if not hasattr(mod, "argdef_graph_map"): continue for g in mod.argdef_graph_map.values(): _check(g._exprs) def test_insert(): traced_module, x, expect = _init_block() graph = traced_module.graph relu_out = graph.get_function_by_type(F.relu).as_unique().outputs[0] with graph.insert_exprs(): neg_out = F.neg(relu_out) graph.replace_node({relu_out: neg_out}) graph.compile() np.testing.assert_allclose(expect - 1, 1 - traced_module(x), atol=1e-6) def test_insert_module(): class Neg(M.Module): def __init__(self, name): super().__init__(name) self.identity = M.Identity() self.identity_list = [M.Identity(), M.Identity()] self.identity_dict = {"0": M.Identity(), "1": M.Identity()} self.param = F.zeros((1,)) def forward(self, x): x = self.identity(x) for m in self.identity_dict: x = self.identity_dict[m](x) for m in self.identity_list: x = m(x) return F.neg(x) + self.param traced_module, x, expect = _init_block() graph = traced_module.graph relu_out = graph.get_function_by_type(F.relu).as_unique().outputs[0] self = graph.inputs[0] setattr(traced_module, "neg", Neg(name="neg")) setattr(traced_module, "neg2", Neg(name="neg")) setattr(traced_module, "param",
F.zeros((1,))
megengine.functional.zeros
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import pickle from collections import defaultdict from itertools import chain import numpy as np import megengine.functional as F import megengine.module as M import megengine.module.qat as qat from megengine.module.identity import Identity from megengine.traced_module import trace_module from megengine.traced_module.expr import CallFunction, CallMethod, Expr, GetAttr, Input from megengine.traced_module.node import ModuleNode, Node, TensorNode class IdentityMod(M.Module): def forward(self, x): return x class MyBlock(M.Module): def __init__(self, in_channels=3, channels=3): super(MyBlock, self).__init__() self.conv1 = M.Conv2d(in_channels, channels, 3, 1, padding=1, bias=False) self.bn1 = M.BatchNorm2d(channels) self.nothing = IdentityMod() def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = F.relu(x) + 1 x = self.nothing(x) return x class MyModule(M.Module): def __init__(self): super(MyModule, self).__init__() self.block0 = MyBlock() self.block1 = MyBlock() self.nothing = IdentityMod() def forward(self, x): x = self.block0(x) x = self.block1(x) x = self.nothing(x) return x class MyBlock1(M.Module): def forward(self, a): y = F.concat([a, a]) return a, y class MyModule1(M.Module): def __init__(self): super().__init__() self.block0 = MyBlock1() self.block1 = MyBlock1() def forward(self, a): a, y1 = self.block0(a) a = a + 1 a, y2 = self.block1(a) return a, y1 + y2 class NewModule(M.Module): def __init__(self, traced_module): super(NewModule, self).__init__() self.module = traced_module def forward(self, x): x = x - 1 x = self.module(x) x = x + 1 return x def _check_expr_users(traced_module): node_user = defaultdict(list) for expr in traced_module.graph._exprs: for node in expr.inputs: node_user[node].append(expr) for node in traced_module.graph.nodes(): node.users.sort(key=lambda m: m._id) node_user[node].sort(key=lambda m: m._id) assert node.users == node_user[node] def _init_cls(cls): module = cls() x = F.ones((1, 3, 3, 3)) y = module(x) traced_module = trace_module(module, x) return traced_module, x, y def _init_block(): return _init_cls(MyBlock) def _init_module(): return _init_cls(MyModule) def test_search(): traced_module, *_ = _init_block() graph = traced_module.graph relu_expr = graph.get_function_by_type(F.relu).as_unique() assert isinstance(relu_expr, CallFunction) and relu_expr.func == F.relu conv_node = graph.get_module_by_type(M.Conv2d).as_unique() assert isinstance(conv_node, ModuleNode) and conv_node.module_type == M.Conv2d add_expr = graph.get_method_by_type("__add__").as_unique() assert isinstance(add_expr, CallMethod) and add_expr.method == "__add__" conv_node = graph.get_node_by_name("MyBlock_conv1").as_unique() assert isinstance(conv_node, ModuleNode) and conv_node.module_type == M.Conv2d def test_producer_and_users(): traced_module, *_ = _init_module() def _check(exprs): for expr in exprs: for n in chain(expr.inputs, expr.outputs): if not isinstance(n.expr, Input): assert n.expr in exprs for e in n.users: assert e in exprs assert n in e.inputs for mod in traced_module.modules(): if not hasattr(mod, "argdef_graph_map"): continue for g in mod.argdef_graph_map.values(): _check(g._exprs) def test_insert(): traced_module, x, expect = _init_block() graph = traced_module.graph relu_out = graph.get_function_by_type(F.relu).as_unique().outputs[0] with graph.insert_exprs(): neg_out = F.neg(relu_out) graph.replace_node({relu_out: neg_out}) graph.compile() np.testing.assert_allclose(expect - 1, 1 - traced_module(x), atol=1e-6) def test_insert_module(): class Neg(M.Module): def __init__(self, name): super().__init__(name) self.identity = M.Identity() self.identity_list = [M.Identity(), M.Identity()] self.identity_dict = {"0": M.Identity(), "1": M.Identity()} self.param = F.zeros((1,)) def forward(self, x): x = self.identity(x) for m in self.identity_dict: x = self.identity_dict[m](x) for m in self.identity_list: x = m(x) return F.neg(x) + self.param traced_module, x, expect = _init_block() graph = traced_module.graph relu_out = graph.get_function_by_type(F.relu).as_unique().outputs[0] self = graph.inputs[0] setattr(traced_module, "neg", Neg(name="neg")) setattr(traced_module, "neg2", Neg(name="neg")) setattr(traced_module, "param", F.zeros((1,))) with graph.insert_exprs(): neg_out = self.neg(relu_out) neg_out = self.neg2(relu_out) neg_out = neg_out + self.param graph.replace_node({relu_out: neg_out}) graph.compile() np.testing.assert_allclose(expect - 1, 1 - traced_module(x), atol=1e-6) assert traced_module.neg.graph is not None assert traced_module.neg2.graph is not None assert traced_module.neg2.param is not None assert len(traced_module.neg.graph._exprs) == 13 for n in traced_module.graph.nodes(): if isinstance(n, TensorNode): assert n.value is None def test_insert_qat_module(): class concat(qat.Concat): pass traced_module, x, expect = _init_block() graph = traced_module.graph self = graph.inputs[0] out = graph.outputs[0] setattr(traced_module, "cat_0",
qat.Concat()
megengine.module.qat.Concat
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import pickle from collections import defaultdict from itertools import chain import numpy as np import megengine.functional as F import megengine.module as M import megengine.module.qat as qat from megengine.module.identity import Identity from megengine.traced_module import trace_module from megengine.traced_module.expr import CallFunction, CallMethod, Expr, GetAttr, Input from megengine.traced_module.node import ModuleNode, Node, TensorNode class IdentityMod(M.Module): def forward(self, x): return x class MyBlock(M.Module): def __init__(self, in_channels=3, channels=3): super(MyBlock, self).__init__() self.conv1 = M.Conv2d(in_channels, channels, 3, 1, padding=1, bias=False) self.bn1 = M.BatchNorm2d(channels) self.nothing = IdentityMod() def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = F.relu(x) + 1 x = self.nothing(x) return x class MyModule(M.Module): def __init__(self): super(MyModule, self).__init__() self.block0 = MyBlock() self.block1 = MyBlock() self.nothing = IdentityMod() def forward(self, x): x = self.block0(x) x = self.block1(x) x = self.nothing(x) return x class MyBlock1(M.Module): def forward(self, a): y = F.concat([a, a]) return a, y class MyModule1(M.Module): def __init__(self): super().__init__() self.block0 = MyBlock1() self.block1 = MyBlock1() def forward(self, a): a, y1 = self.block0(a) a = a + 1 a, y2 = self.block1(a) return a, y1 + y2 class NewModule(M.Module): def __init__(self, traced_module): super(NewModule, self).__init__() self.module = traced_module def forward(self, x): x = x - 1 x = self.module(x) x = x + 1 return x def _check_expr_users(traced_module): node_user = defaultdict(list) for expr in traced_module.graph._exprs: for node in expr.inputs: node_user[node].append(expr) for node in traced_module.graph.nodes(): node.users.sort(key=lambda m: m._id) node_user[node].sort(key=lambda m: m._id) assert node.users == node_user[node] def _init_cls(cls): module = cls() x = F.ones((1, 3, 3, 3)) y = module(x) traced_module = trace_module(module, x) return traced_module, x, y def _init_block(): return _init_cls(MyBlock) def _init_module(): return _init_cls(MyModule) def test_search(): traced_module, *_ = _init_block() graph = traced_module.graph relu_expr = graph.get_function_by_type(F.relu).as_unique() assert isinstance(relu_expr, CallFunction) and relu_expr.func == F.relu conv_node = graph.get_module_by_type(M.Conv2d).as_unique() assert isinstance(conv_node, ModuleNode) and conv_node.module_type == M.Conv2d add_expr = graph.get_method_by_type("__add__").as_unique() assert isinstance(add_expr, CallMethod) and add_expr.method == "__add__" conv_node = graph.get_node_by_name("MyBlock_conv1").as_unique() assert isinstance(conv_node, ModuleNode) and conv_node.module_type == M.Conv2d def test_producer_and_users(): traced_module, *_ = _init_module() def _check(exprs): for expr in exprs: for n in chain(expr.inputs, expr.outputs): if not isinstance(n.expr, Input): assert n.expr in exprs for e in n.users: assert e in exprs assert n in e.inputs for mod in traced_module.modules(): if not hasattr(mod, "argdef_graph_map"): continue for g in mod.argdef_graph_map.values(): _check(g._exprs) def test_insert(): traced_module, x, expect = _init_block() graph = traced_module.graph relu_out = graph.get_function_by_type(F.relu).as_unique().outputs[0] with graph.insert_exprs(): neg_out = F.neg(relu_out) graph.replace_node({relu_out: neg_out}) graph.compile() np.testing.assert_allclose(expect - 1, 1 - traced_module(x), atol=1e-6) def test_insert_module(): class Neg(M.Module): def __init__(self, name): super().__init__(name) self.identity = M.Identity() self.identity_list = [M.Identity(), M.Identity()] self.identity_dict = {"0": M.Identity(), "1": M.Identity()} self.param = F.zeros((1,)) def forward(self, x): x = self.identity(x) for m in self.identity_dict: x = self.identity_dict[m](x) for m in self.identity_list: x = m(x) return F.neg(x) + self.param traced_module, x, expect = _init_block() graph = traced_module.graph relu_out = graph.get_function_by_type(F.relu).as_unique().outputs[0] self = graph.inputs[0] setattr(traced_module, "neg", Neg(name="neg")) setattr(traced_module, "neg2", Neg(name="neg")) setattr(traced_module, "param", F.zeros((1,))) with graph.insert_exprs(): neg_out = self.neg(relu_out) neg_out = self.neg2(relu_out) neg_out = neg_out + self.param graph.replace_node({relu_out: neg_out}) graph.compile() np.testing.assert_allclose(expect - 1, 1 - traced_module(x), atol=1e-6) assert traced_module.neg.graph is not None assert traced_module.neg2.graph is not None assert traced_module.neg2.param is not None assert len(traced_module.neg.graph._exprs) == 13 for n in traced_module.graph.nodes(): if isinstance(n, TensorNode): assert n.value is None def test_insert_qat_module(): class concat(qat.Concat): pass traced_module, x, expect = _init_block() graph = traced_module.graph self = graph.inputs[0] out = graph.outputs[0] setattr(traced_module, "cat_0", qat.Concat()) setattr(traced_module, "cat_1", concat()) with graph.insert_exprs(): x_0 = self.cat_0([out, out]) x_1 = self.cat_1([out, x_0]) graph.replace_node({out: x_1}) graph.compile() x = F.copy(x) np.testing.assert_allclose(
F.concat([expect, expect, expect])
megengine.functional.concat
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import pickle from collections import defaultdict from itertools import chain import numpy as np import megengine.functional as F import megengine.module as M import megengine.module.qat as qat from megengine.module.identity import Identity from megengine.traced_module import trace_module from megengine.traced_module.expr import CallFunction, CallMethod, Expr, GetAttr, Input from megengine.traced_module.node import ModuleNode, Node, TensorNode class IdentityMod(M.Module): def forward(self, x): return x class MyBlock(M.Module): def __init__(self, in_channels=3, channels=3): super(MyBlock, self).__init__() self.conv1 = M.Conv2d(in_channels, channels, 3, 1, padding=1, bias=False) self.bn1 = M.BatchNorm2d(channels) self.nothing = IdentityMod() def forward(self, x): x = self.conv1(x) x = self.bn1(x) x =
F.relu(x)
megengine.functional.relu
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import pickle from collections import defaultdict from itertools import chain import numpy as np import megengine.functional as F import megengine.module as M import megengine.module.qat as qat from megengine.module.identity import Identity from megengine.traced_module import trace_module from megengine.traced_module.expr import CallFunction, CallMethod, Expr, GetAttr, Input from megengine.traced_module.node import ModuleNode, Node, TensorNode class IdentityMod(M.Module): def forward(self, x): return x class MyBlock(M.Module): def __init__(self, in_channels=3, channels=3): super(MyBlock, self).__init__() self.conv1 = M.Conv2d(in_channels, channels, 3, 1, padding=1, bias=False) self.bn1 = M.BatchNorm2d(channels) self.nothing = IdentityMod() def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = F.relu(x) + 1 x = self.nothing(x) return x class MyModule(M.Module): def __init__(self): super(MyModule, self).__init__() self.block0 = MyBlock() self.block1 = MyBlock() self.nothing = IdentityMod() def forward(self, x): x = self.block0(x) x = self.block1(x) x = self.nothing(x) return x class MyBlock1(M.Module): def forward(self, a): y = F.concat([a, a]) return a, y class MyModule1(M.Module): def __init__(self): super().__init__() self.block0 = MyBlock1() self.block1 = MyBlock1() def forward(self, a): a, y1 = self.block0(a) a = a + 1 a, y2 = self.block1(a) return a, y1 + y2 class NewModule(M.Module): def __init__(self, traced_module): super(NewModule, self).__init__() self.module = traced_module def forward(self, x): x = x - 1 x = self.module(x) x = x + 1 return x def _check_expr_users(traced_module): node_user = defaultdict(list) for expr in traced_module.graph._exprs: for node in expr.inputs: node_user[node].append(expr) for node in traced_module.graph.nodes(): node.users.sort(key=lambda m: m._id) node_user[node].sort(key=lambda m: m._id) assert node.users == node_user[node] def _init_cls(cls): module = cls() x = F.ones((1, 3, 3, 3)) y = module(x) traced_module = trace_module(module, x) return traced_module, x, y def _init_block(): return _init_cls(MyBlock) def _init_module(): return _init_cls(MyModule) def test_search(): traced_module, *_ = _init_block() graph = traced_module.graph relu_expr = graph.get_function_by_type(F.relu).as_unique() assert isinstance(relu_expr, CallFunction) and relu_expr.func == F.relu conv_node = graph.get_module_by_type(M.Conv2d).as_unique() assert isinstance(conv_node, ModuleNode) and conv_node.module_type == M.Conv2d add_expr = graph.get_method_by_type("__add__").as_unique() assert isinstance(add_expr, CallMethod) and add_expr.method == "__add__" conv_node = graph.get_node_by_name("MyBlock_conv1").as_unique() assert isinstance(conv_node, ModuleNode) and conv_node.module_type == M.Conv2d def test_producer_and_users(): traced_module, *_ = _init_module() def _check(exprs): for expr in exprs: for n in chain(expr.inputs, expr.outputs): if not isinstance(n.expr, Input): assert n.expr in exprs for e in n.users: assert e in exprs assert n in e.inputs for mod in traced_module.modules(): if not hasattr(mod, "argdef_graph_map"): continue for g in mod.argdef_graph_map.values(): _check(g._exprs) def test_insert(): traced_module, x, expect = _init_block() graph = traced_module.graph relu_out = graph.get_function_by_type(F.relu).as_unique().outputs[0] with graph.insert_exprs(): neg_out = F.neg(relu_out) graph.replace_node({relu_out: neg_out}) graph.compile() np.testing.assert_allclose(expect - 1, 1 - traced_module(x), atol=1e-6) def test_insert_module(): class Neg(M.Module): def __init__(self, name): super().__init__(name) self.identity =
M.Identity()
megengine.module.Identity
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import pickle from collections import defaultdict from itertools import chain import numpy as np import megengine.functional as F import megengine.module as M import megengine.module.qat as qat from megengine.module.identity import Identity from megengine.traced_module import trace_module from megengine.traced_module.expr import CallFunction, CallMethod, Expr, GetAttr, Input from megengine.traced_module.node import ModuleNode, Node, TensorNode class IdentityMod(M.Module): def forward(self, x): return x class MyBlock(M.Module): def __init__(self, in_channels=3, channels=3): super(MyBlock, self).__init__() self.conv1 = M.Conv2d(in_channels, channels, 3, 1, padding=1, bias=False) self.bn1 = M.BatchNorm2d(channels) self.nothing = IdentityMod() def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = F.relu(x) + 1 x = self.nothing(x) return x class MyModule(M.Module): def __init__(self): super(MyModule, self).__init__() self.block0 = MyBlock() self.block1 = MyBlock() self.nothing = IdentityMod() def forward(self, x): x = self.block0(x) x = self.block1(x) x = self.nothing(x) return x class MyBlock1(M.Module): def forward(self, a): y = F.concat([a, a]) return a, y class MyModule1(M.Module): def __init__(self): super().__init__() self.block0 = MyBlock1() self.block1 = MyBlock1() def forward(self, a): a, y1 = self.block0(a) a = a + 1 a, y2 = self.block1(a) return a, y1 + y2 class NewModule(M.Module): def __init__(self, traced_module): super(NewModule, self).__init__() self.module = traced_module def forward(self, x): x = x - 1 x = self.module(x) x = x + 1 return x def _check_expr_users(traced_module): node_user = defaultdict(list) for expr in traced_module.graph._exprs: for node in expr.inputs: node_user[node].append(expr) for node in traced_module.graph.nodes(): node.users.sort(key=lambda m: m._id) node_user[node].sort(key=lambda m: m._id) assert node.users == node_user[node] def _init_cls(cls): module = cls() x = F.ones((1, 3, 3, 3)) y = module(x) traced_module = trace_module(module, x) return traced_module, x, y def _init_block(): return _init_cls(MyBlock) def _init_module(): return _init_cls(MyModule) def test_search(): traced_module, *_ = _init_block() graph = traced_module.graph relu_expr = graph.get_function_by_type(F.relu).as_unique() assert isinstance(relu_expr, CallFunction) and relu_expr.func == F.relu conv_node = graph.get_module_by_type(M.Conv2d).as_unique() assert isinstance(conv_node, ModuleNode) and conv_node.module_type == M.Conv2d add_expr = graph.get_method_by_type("__add__").as_unique() assert isinstance(add_expr, CallMethod) and add_expr.method == "__add__" conv_node = graph.get_node_by_name("MyBlock_conv1").as_unique() assert isinstance(conv_node, ModuleNode) and conv_node.module_type == M.Conv2d def test_producer_and_users(): traced_module, *_ = _init_module() def _check(exprs): for expr in exprs: for n in chain(expr.inputs, expr.outputs): if not isinstance(n.expr, Input): assert n.expr in exprs for e in n.users: assert e in exprs assert n in e.inputs for mod in traced_module.modules(): if not hasattr(mod, "argdef_graph_map"): continue for g in mod.argdef_graph_map.values(): _check(g._exprs) def test_insert(): traced_module, x, expect = _init_block() graph = traced_module.graph relu_out = graph.get_function_by_type(F.relu).as_unique().outputs[0] with graph.insert_exprs(): neg_out = F.neg(relu_out) graph.replace_node({relu_out: neg_out}) graph.compile() np.testing.assert_allclose(expect - 1, 1 - traced_module(x), atol=1e-6) def test_insert_module(): class Neg(M.Module): def __init__(self, name): super().__init__(name) self.identity = M.Identity() self.identity_list = [M.Identity(), M.Identity()] self.identity_dict = {"0": M.Identity(), "1": M.Identity()} self.param =
F.zeros((1,))
megengine.functional.zeros
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import pickle from collections import defaultdict from itertools import chain import numpy as np import megengine.functional as F import megengine.module as M import megengine.module.qat as qat from megengine.module.identity import Identity from megengine.traced_module import trace_module from megengine.traced_module.expr import CallFunction, CallMethod, Expr, GetAttr, Input from megengine.traced_module.node import ModuleNode, Node, TensorNode class IdentityMod(M.Module): def forward(self, x): return x class MyBlock(M.Module): def __init__(self, in_channels=3, channels=3): super(MyBlock, self).__init__() self.conv1 = M.Conv2d(in_channels, channels, 3, 1, padding=1, bias=False) self.bn1 = M.BatchNorm2d(channels) self.nothing = IdentityMod() def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = F.relu(x) + 1 x = self.nothing(x) return x class MyModule(M.Module): def __init__(self): super(MyModule, self).__init__() self.block0 = MyBlock() self.block1 = MyBlock() self.nothing = IdentityMod() def forward(self, x): x = self.block0(x) x = self.block1(x) x = self.nothing(x) return x class MyBlock1(M.Module): def forward(self, a): y = F.concat([a, a]) return a, y class MyModule1(M.Module): def __init__(self): super().__init__() self.block0 = MyBlock1() self.block1 = MyBlock1() def forward(self, a): a, y1 = self.block0(a) a = a + 1 a, y2 = self.block1(a) return a, y1 + y2 class NewModule(M.Module): def __init__(self, traced_module): super(NewModule, self).__init__() self.module = traced_module def forward(self, x): x = x - 1 x = self.module(x) x = x + 1 return x def _check_expr_users(traced_module): node_user = defaultdict(list) for expr in traced_module.graph._exprs: for node in expr.inputs: node_user[node].append(expr) for node in traced_module.graph.nodes(): node.users.sort(key=lambda m: m._id) node_user[node].sort(key=lambda m: m._id) assert node.users == node_user[node] def _init_cls(cls): module = cls() x = F.ones((1, 3, 3, 3)) y = module(x) traced_module = trace_module(module, x) return traced_module, x, y def _init_block(): return _init_cls(MyBlock) def _init_module(): return _init_cls(MyModule) def test_search(): traced_module, *_ = _init_block() graph = traced_module.graph relu_expr = graph.get_function_by_type(F.relu).as_unique() assert isinstance(relu_expr, CallFunction) and relu_expr.func == F.relu conv_node = graph.get_module_by_type(M.Conv2d).as_unique() assert isinstance(conv_node, ModuleNode) and conv_node.module_type == M.Conv2d add_expr = graph.get_method_by_type("__add__").as_unique() assert isinstance(add_expr, CallMethod) and add_expr.method == "__add__" conv_node = graph.get_node_by_name("MyBlock_conv1").as_unique() assert isinstance(conv_node, ModuleNode) and conv_node.module_type == M.Conv2d def test_producer_and_users(): traced_module, *_ = _init_module() def _check(exprs): for expr in exprs: for n in chain(expr.inputs, expr.outputs): if not isinstance(n.expr, Input): assert n.expr in exprs for e in n.users: assert e in exprs assert n in e.inputs for mod in traced_module.modules(): if not hasattr(mod, "argdef_graph_map"): continue for g in mod.argdef_graph_map.values(): _check(g._exprs) def test_insert(): traced_module, x, expect = _init_block() graph = traced_module.graph relu_out = graph.get_function_by_type(F.relu).as_unique().outputs[0] with graph.insert_exprs(): neg_out = F.neg(relu_out) graph.replace_node({relu_out: neg_out}) graph.compile() np.testing.assert_allclose(expect - 1, 1 - traced_module(x), atol=1e-6) def test_insert_module(): class Neg(M.Module): def __init__(self, name): super().__init__(name) self.identity = M.Identity() self.identity_list = [M.Identity(), M.Identity()] self.identity_dict = {"0": M.Identity(), "1": M.Identity()} self.param = F.zeros((1,)) def forward(self, x): x = self.identity(x) for m in self.identity_dict: x = self.identity_dict[m](x) for m in self.identity_list: x = m(x) return F.neg(x) + self.param traced_module, x, expect = _init_block() graph = traced_module.graph relu_out = graph.get_function_by_type(F.relu).as_unique().outputs[0] self = graph.inputs[0] setattr(traced_module, "neg", Neg(name="neg")) setattr(traced_module, "neg2", Neg(name="neg")) setattr(traced_module, "param", F.zeros((1,))) with graph.insert_exprs(): neg_out = self.neg(relu_out) neg_out = self.neg2(relu_out) neg_out = neg_out + self.param graph.replace_node({relu_out: neg_out}) graph.compile() np.testing.assert_allclose(expect - 1, 1 - traced_module(x), atol=1e-6) assert traced_module.neg.graph is not None assert traced_module.neg2.graph is not None assert traced_module.neg2.param is not None assert len(traced_module.neg.graph._exprs) == 13 for n in traced_module.graph.nodes(): if isinstance(n, TensorNode): assert n.value is None def test_insert_qat_module(): class concat(qat.Concat): pass traced_module, x, expect = _init_block() graph = traced_module.graph self = graph.inputs[0] out = graph.outputs[0] setattr(traced_module, "cat_0", qat.Concat()) setattr(traced_module, "cat_1", concat()) with graph.insert_exprs(): x_0 = self.cat_0([out, out]) x_1 = self.cat_1([out, x_0]) graph.replace_node({out: x_1}) graph.compile() x = F.copy(x) np.testing.assert_allclose( F.concat([expect, expect, expect]), traced_module(x), atol=1e-6 ) assert not hasattr(traced_module.cat_0, "graph") assert traced_module.cat_1.graph is not None def test_add_input_and_output(): traced_module, x, y = _init_module() data_node = traced_module.graph.add_input_node(shape=(1, 3, 224, 224), name="data") traced_module.graph.add_output_node(data_node) assert data_node.name == "data" assert traced_module.graph.inputs[-1] == data_node assert len(traced_module.graph.inputs) == 3 assert len(traced_module.graph.outputs) == 2 y1, y2 = traced_module(x, x) np.testing.assert_equal(y1.numpy(), y.numpy()) np.testing.assert_equal(y2.numpy(), x.numpy()) y1, y2 = traced_module(x, y) np.testing.assert_equal(y2.numpy(), y.numpy()) traced_module.graph.reset_outputs( ({"orig_out": traced_module.graph.outputs[0]}, traced_module.graph.outputs[1]) ) out = traced_module(x, x) assert isinstance(out, tuple) assert isinstance(out[0], dict) np.testing.assert_equal(out[0]["orig_out"].numpy(), y.numpy()) np.testing.assert_equal(out[1].numpy(), x.numpy()) def test_delete(): traced_module, x, expect = _init_block() graph = traced_module.graph relu_expr = graph.get_function_by_type(F.relu).as_unique() node = relu_expr.outputs repl_node = relu_expr.inputs graph.replace_node({node[0]: repl_node[0]}) graph.compile() np.testing.assert_allclose(expect - 1, F.relu(traced_module(x) - 1), atol=1e-6) # clear graph graph.replace_node({graph.outputs[0]: graph.inputs[1]}) graph.compile() np.testing.assert_equal(len(list(graph._exprs)), 0) np.testing.assert_equal(traced_module(x).numpy(), x.numpy()) def test_flatten(): traced_module, x, expect = _init_module() traced_module = traced_module.flatten() assert len(traced_module.graph._exprs) == 12 np.testing.assert_equal(expect.numpy(), traced_module(x).numpy()) traced_module = traced_module.flatten() assert len(traced_module.graph._exprs) == 12 np.testing.assert_equal(expect.numpy(), traced_module(x).numpy()) traced_module, x, expect = _init_cls(MyModule1) traced_module = traced_module.flatten() _check_expr_users(traced_module) def test_id_and_name(): def _check_id(traced_module): _total_ids = traced_module.graph._total_ids node_ids = [n._id for n in traced_module.graph.nodes().as_list()] assert len(set(node_ids)) == len(node_ids) assert max(node_ids) + 1 == _total_ids[0] expr_ids = [n._id for n in traced_module.graph.exprs().as_list()] assert len(set(expr_ids)) == len(expr_ids) assert max(expr_ids) + 1 == _total_ids[1] def _check_name(flatened_module): node_names = [n._name for n in flatened_module.graph.nodes().as_list()] assert len(set(node_names)) == len(node_names) traced_module, x, expect = _init_module() _check_id(traced_module) flattened_module = traced_module.flatten() _check_id(flattened_module) _check_name(flattened_module) # pickle check obj = pickle.dumps(traced_module) traced_module = pickle.loads(obj) Node._set_next_id(159) Expr._set_next_id(1024) graph = traced_module.graph for expr in graph.get_function_by_type(F.relu).as_list(): relu_out = expr.outputs[0] cur_graph = expr.top_graph with cur_graph.insert_exprs(): neg_out =
F.neg(relu_out)
megengine.functional.neg
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import pickle from collections import defaultdict from itertools import chain import numpy as np import megengine.functional as F import megengine.module as M import megengine.module.qat as qat from megengine.module.identity import Identity from megengine.traced_module import trace_module from megengine.traced_module.expr import CallFunction, CallMethod, Expr, GetAttr, Input from megengine.traced_module.node import ModuleNode, Node, TensorNode class IdentityMod(M.Module): def forward(self, x): return x class MyBlock(M.Module): def __init__(self, in_channels=3, channels=3): super(MyBlock, self).__init__() self.conv1 = M.Conv2d(in_channels, channels, 3, 1, padding=1, bias=False) self.bn1 = M.BatchNorm2d(channels) self.nothing = IdentityMod() def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = F.relu(x) + 1 x = self.nothing(x) return x class MyModule(M.Module): def __init__(self): super(MyModule, self).__init__() self.block0 = MyBlock() self.block1 = MyBlock() self.nothing = IdentityMod() def forward(self, x): x = self.block0(x) x = self.block1(x) x = self.nothing(x) return x class MyBlock1(M.Module): def forward(self, a): y = F.concat([a, a]) return a, y class MyModule1(M.Module): def __init__(self): super().__init__() self.block0 = MyBlock1() self.block1 = MyBlock1() def forward(self, a): a, y1 = self.block0(a) a = a + 1 a, y2 = self.block1(a) return a, y1 + y2 class NewModule(M.Module): def __init__(self, traced_module): super(NewModule, self).__init__() self.module = traced_module def forward(self, x): x = x - 1 x = self.module(x) x = x + 1 return x def _check_expr_users(traced_module): node_user = defaultdict(list) for expr in traced_module.graph._exprs: for node in expr.inputs: node_user[node].append(expr) for node in traced_module.graph.nodes(): node.users.sort(key=lambda m: m._id) node_user[node].sort(key=lambda m: m._id) assert node.users == node_user[node] def _init_cls(cls): module = cls() x = F.ones((1, 3, 3, 3)) y = module(x) traced_module = trace_module(module, x) return traced_module, x, y def _init_block(): return _init_cls(MyBlock) def _init_module(): return _init_cls(MyModule) def test_search(): traced_module, *_ = _init_block() graph = traced_module.graph relu_expr = graph.get_function_by_type(F.relu).as_unique() assert isinstance(relu_expr, CallFunction) and relu_expr.func == F.relu conv_node = graph.get_module_by_type(M.Conv2d).as_unique() assert isinstance(conv_node, ModuleNode) and conv_node.module_type == M.Conv2d add_expr = graph.get_method_by_type("__add__").as_unique() assert isinstance(add_expr, CallMethod) and add_expr.method == "__add__" conv_node = graph.get_node_by_name("MyBlock_conv1").as_unique() assert isinstance(conv_node, ModuleNode) and conv_node.module_type == M.Conv2d def test_producer_and_users(): traced_module, *_ = _init_module() def _check(exprs): for expr in exprs: for n in chain(expr.inputs, expr.outputs): if not isinstance(n.expr, Input): assert n.expr in exprs for e in n.users: assert e in exprs assert n in e.inputs for mod in traced_module.modules(): if not hasattr(mod, "argdef_graph_map"): continue for g in mod.argdef_graph_map.values(): _check(g._exprs) def test_insert(): traced_module, x, expect = _init_block() graph = traced_module.graph relu_out = graph.get_function_by_type(F.relu).as_unique().outputs[0] with graph.insert_exprs(): neg_out = F.neg(relu_out) graph.replace_node({relu_out: neg_out}) graph.compile() np.testing.assert_allclose(expect - 1, 1 - traced_module(x), atol=1e-6) def test_insert_module(): class Neg(M.Module): def __init__(self, name): super().__init__(name) self.identity = M.Identity() self.identity_list = [
M.Identity()
megengine.module.Identity
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import pickle from collections import defaultdict from itertools import chain import numpy as np import megengine.functional as F import megengine.module as M import megengine.module.qat as qat from megengine.module.identity import Identity from megengine.traced_module import trace_module from megengine.traced_module.expr import CallFunction, CallMethod, Expr, GetAttr, Input from megengine.traced_module.node import ModuleNode, Node, TensorNode class IdentityMod(M.Module): def forward(self, x): return x class MyBlock(M.Module): def __init__(self, in_channels=3, channels=3): super(MyBlock, self).__init__() self.conv1 = M.Conv2d(in_channels, channels, 3, 1, padding=1, bias=False) self.bn1 = M.BatchNorm2d(channels) self.nothing = IdentityMod() def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = F.relu(x) + 1 x = self.nothing(x) return x class MyModule(M.Module): def __init__(self): super(MyModule, self).__init__() self.block0 = MyBlock() self.block1 = MyBlock() self.nothing = IdentityMod() def forward(self, x): x = self.block0(x) x = self.block1(x) x = self.nothing(x) return x class MyBlock1(M.Module): def forward(self, a): y = F.concat([a, a]) return a, y class MyModule1(M.Module): def __init__(self): super().__init__() self.block0 = MyBlock1() self.block1 = MyBlock1() def forward(self, a): a, y1 = self.block0(a) a = a + 1 a, y2 = self.block1(a) return a, y1 + y2 class NewModule(M.Module): def __init__(self, traced_module): super(NewModule, self).__init__() self.module = traced_module def forward(self, x): x = x - 1 x = self.module(x) x = x + 1 return x def _check_expr_users(traced_module): node_user = defaultdict(list) for expr in traced_module.graph._exprs: for node in expr.inputs: node_user[node].append(expr) for node in traced_module.graph.nodes(): node.users.sort(key=lambda m: m._id) node_user[node].sort(key=lambda m: m._id) assert node.users == node_user[node] def _init_cls(cls): module = cls() x = F.ones((1, 3, 3, 3)) y = module(x) traced_module = trace_module(module, x) return traced_module, x, y def _init_block(): return _init_cls(MyBlock) def _init_module(): return _init_cls(MyModule) def test_search(): traced_module, *_ = _init_block() graph = traced_module.graph relu_expr = graph.get_function_by_type(F.relu).as_unique() assert isinstance(relu_expr, CallFunction) and relu_expr.func == F.relu conv_node = graph.get_module_by_type(M.Conv2d).as_unique() assert isinstance(conv_node, ModuleNode) and conv_node.module_type == M.Conv2d add_expr = graph.get_method_by_type("__add__").as_unique() assert isinstance(add_expr, CallMethod) and add_expr.method == "__add__" conv_node = graph.get_node_by_name("MyBlock_conv1").as_unique() assert isinstance(conv_node, ModuleNode) and conv_node.module_type == M.Conv2d def test_producer_and_users(): traced_module, *_ = _init_module() def _check(exprs): for expr in exprs: for n in chain(expr.inputs, expr.outputs): if not isinstance(n.expr, Input): assert n.expr in exprs for e in n.users: assert e in exprs assert n in e.inputs for mod in traced_module.modules(): if not hasattr(mod, "argdef_graph_map"): continue for g in mod.argdef_graph_map.values(): _check(g._exprs) def test_insert(): traced_module, x, expect = _init_block() graph = traced_module.graph relu_out = graph.get_function_by_type(F.relu).as_unique().outputs[0] with graph.insert_exprs(): neg_out = F.neg(relu_out) graph.replace_node({relu_out: neg_out}) graph.compile() np.testing.assert_allclose(expect - 1, 1 - traced_module(x), atol=1e-6) def test_insert_module(): class Neg(M.Module): def __init__(self, name): super().__init__(name) self.identity = M.Identity() self.identity_list = [M.Identity(),
M.Identity()
megengine.module.Identity
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import pickle from collections import defaultdict from itertools import chain import numpy as np import megengine.functional as F import megengine.module as M import megengine.module.qat as qat from megengine.module.identity import Identity from megengine.traced_module import trace_module from megengine.traced_module.expr import CallFunction, CallMethod, Expr, GetAttr, Input from megengine.traced_module.node import ModuleNode, Node, TensorNode class IdentityMod(M.Module): def forward(self, x): return x class MyBlock(M.Module): def __init__(self, in_channels=3, channels=3): super(MyBlock, self).__init__() self.conv1 = M.Conv2d(in_channels, channels, 3, 1, padding=1, bias=False) self.bn1 = M.BatchNorm2d(channels) self.nothing = IdentityMod() def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = F.relu(x) + 1 x = self.nothing(x) return x class MyModule(M.Module): def __init__(self): super(MyModule, self).__init__() self.block0 = MyBlock() self.block1 = MyBlock() self.nothing = IdentityMod() def forward(self, x): x = self.block0(x) x = self.block1(x) x = self.nothing(x) return x class MyBlock1(M.Module): def forward(self, a): y = F.concat([a, a]) return a, y class MyModule1(M.Module): def __init__(self): super().__init__() self.block0 = MyBlock1() self.block1 = MyBlock1() def forward(self, a): a, y1 = self.block0(a) a = a + 1 a, y2 = self.block1(a) return a, y1 + y2 class NewModule(M.Module): def __init__(self, traced_module): super(NewModule, self).__init__() self.module = traced_module def forward(self, x): x = x - 1 x = self.module(x) x = x + 1 return x def _check_expr_users(traced_module): node_user = defaultdict(list) for expr in traced_module.graph._exprs: for node in expr.inputs: node_user[node].append(expr) for node in traced_module.graph.nodes(): node.users.sort(key=lambda m: m._id) node_user[node].sort(key=lambda m: m._id) assert node.users == node_user[node] def _init_cls(cls): module = cls() x = F.ones((1, 3, 3, 3)) y = module(x) traced_module = trace_module(module, x) return traced_module, x, y def _init_block(): return _init_cls(MyBlock) def _init_module(): return _init_cls(MyModule) def test_search(): traced_module, *_ = _init_block() graph = traced_module.graph relu_expr = graph.get_function_by_type(F.relu).as_unique() assert isinstance(relu_expr, CallFunction) and relu_expr.func == F.relu conv_node = graph.get_module_by_type(M.Conv2d).as_unique() assert isinstance(conv_node, ModuleNode) and conv_node.module_type == M.Conv2d add_expr = graph.get_method_by_type("__add__").as_unique() assert isinstance(add_expr, CallMethod) and add_expr.method == "__add__" conv_node = graph.get_node_by_name("MyBlock_conv1").as_unique() assert isinstance(conv_node, ModuleNode) and conv_node.module_type == M.Conv2d def test_producer_and_users(): traced_module, *_ = _init_module() def _check(exprs): for expr in exprs: for n in chain(expr.inputs, expr.outputs): if not isinstance(n.expr, Input): assert n.expr in exprs for e in n.users: assert e in exprs assert n in e.inputs for mod in traced_module.modules(): if not hasattr(mod, "argdef_graph_map"): continue for g in mod.argdef_graph_map.values(): _check(g._exprs) def test_insert(): traced_module, x, expect = _init_block() graph = traced_module.graph relu_out = graph.get_function_by_type(F.relu).as_unique().outputs[0] with graph.insert_exprs(): neg_out = F.neg(relu_out) graph.replace_node({relu_out: neg_out}) graph.compile() np.testing.assert_allclose(expect - 1, 1 - traced_module(x), atol=1e-6) def test_insert_module(): class Neg(M.Module): def __init__(self, name): super().__init__(name) self.identity = M.Identity() self.identity_list = [M.Identity(), M.Identity()] self.identity_dict = {"0":
M.Identity()
megengine.module.Identity
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import pickle from collections import defaultdict from itertools import chain import numpy as np import megengine.functional as F import megengine.module as M import megengine.module.qat as qat from megengine.module.identity import Identity from megengine.traced_module import trace_module from megengine.traced_module.expr import CallFunction, CallMethod, Expr, GetAttr, Input from megengine.traced_module.node import ModuleNode, Node, TensorNode class IdentityMod(M.Module): def forward(self, x): return x class MyBlock(M.Module): def __init__(self, in_channels=3, channels=3): super(MyBlock, self).__init__() self.conv1 = M.Conv2d(in_channels, channels, 3, 1, padding=1, bias=False) self.bn1 = M.BatchNorm2d(channels) self.nothing = IdentityMod() def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = F.relu(x) + 1 x = self.nothing(x) return x class MyModule(M.Module): def __init__(self): super(MyModule, self).__init__() self.block0 = MyBlock() self.block1 = MyBlock() self.nothing = IdentityMod() def forward(self, x): x = self.block0(x) x = self.block1(x) x = self.nothing(x) return x class MyBlock1(M.Module): def forward(self, a): y = F.concat([a, a]) return a, y class MyModule1(M.Module): def __init__(self): super().__init__() self.block0 = MyBlock1() self.block1 = MyBlock1() def forward(self, a): a, y1 = self.block0(a) a = a + 1 a, y2 = self.block1(a) return a, y1 + y2 class NewModule(M.Module): def __init__(self, traced_module): super(NewModule, self).__init__() self.module = traced_module def forward(self, x): x = x - 1 x = self.module(x) x = x + 1 return x def _check_expr_users(traced_module): node_user = defaultdict(list) for expr in traced_module.graph._exprs: for node in expr.inputs: node_user[node].append(expr) for node in traced_module.graph.nodes(): node.users.sort(key=lambda m: m._id) node_user[node].sort(key=lambda m: m._id) assert node.users == node_user[node] def _init_cls(cls): module = cls() x = F.ones((1, 3, 3, 3)) y = module(x) traced_module = trace_module(module, x) return traced_module, x, y def _init_block(): return _init_cls(MyBlock) def _init_module(): return _init_cls(MyModule) def test_search(): traced_module, *_ = _init_block() graph = traced_module.graph relu_expr = graph.get_function_by_type(F.relu).as_unique() assert isinstance(relu_expr, CallFunction) and relu_expr.func == F.relu conv_node = graph.get_module_by_type(M.Conv2d).as_unique() assert isinstance(conv_node, ModuleNode) and conv_node.module_type == M.Conv2d add_expr = graph.get_method_by_type("__add__").as_unique() assert isinstance(add_expr, CallMethod) and add_expr.method == "__add__" conv_node = graph.get_node_by_name("MyBlock_conv1").as_unique() assert isinstance(conv_node, ModuleNode) and conv_node.module_type == M.Conv2d def test_producer_and_users(): traced_module, *_ = _init_module() def _check(exprs): for expr in exprs: for n in chain(expr.inputs, expr.outputs): if not isinstance(n.expr, Input): assert n.expr in exprs for e in n.users: assert e in exprs assert n in e.inputs for mod in traced_module.modules(): if not hasattr(mod, "argdef_graph_map"): continue for g in mod.argdef_graph_map.values(): _check(g._exprs) def test_insert(): traced_module, x, expect = _init_block() graph = traced_module.graph relu_out = graph.get_function_by_type(F.relu).as_unique().outputs[0] with graph.insert_exprs(): neg_out = F.neg(relu_out) graph.replace_node({relu_out: neg_out}) graph.compile() np.testing.assert_allclose(expect - 1, 1 - traced_module(x), atol=1e-6) def test_insert_module(): class Neg(M.Module): def __init__(self, name): super().__init__(name) self.identity = M.Identity() self.identity_list = [M.Identity(), M.Identity()] self.identity_dict = {"0": M.Identity(), "1":
M.Identity()
megengine.module.Identity
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import pickle from collections import defaultdict from itertools import chain import numpy as np import megengine.functional as F import megengine.module as M import megengine.module.qat as qat from megengine.module.identity import Identity from megengine.traced_module import trace_module from megengine.traced_module.expr import CallFunction, CallMethod, Expr, GetAttr, Input from megengine.traced_module.node import ModuleNode, Node, TensorNode class IdentityMod(M.Module): def forward(self, x): return x class MyBlock(M.Module): def __init__(self, in_channels=3, channels=3): super(MyBlock, self).__init__() self.conv1 = M.Conv2d(in_channels, channels, 3, 1, padding=1, bias=False) self.bn1 = M.BatchNorm2d(channels) self.nothing = IdentityMod() def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = F.relu(x) + 1 x = self.nothing(x) return x class MyModule(M.Module): def __init__(self): super(MyModule, self).__init__() self.block0 = MyBlock() self.block1 = MyBlock() self.nothing = IdentityMod() def forward(self, x): x = self.block0(x) x = self.block1(x) x = self.nothing(x) return x class MyBlock1(M.Module): def forward(self, a): y = F.concat([a, a]) return a, y class MyModule1(M.Module): def __init__(self): super().__init__() self.block0 = MyBlock1() self.block1 = MyBlock1() def forward(self, a): a, y1 = self.block0(a) a = a + 1 a, y2 = self.block1(a) return a, y1 + y2 class NewModule(M.Module): def __init__(self, traced_module): super(NewModule, self).__init__() self.module = traced_module def forward(self, x): x = x - 1 x = self.module(x) x = x + 1 return x def _check_expr_users(traced_module): node_user = defaultdict(list) for expr in traced_module.graph._exprs: for node in expr.inputs: node_user[node].append(expr) for node in traced_module.graph.nodes(): node.users.sort(key=lambda m: m._id) node_user[node].sort(key=lambda m: m._id) assert node.users == node_user[node] def _init_cls(cls): module = cls() x = F.ones((1, 3, 3, 3)) y = module(x) traced_module = trace_module(module, x) return traced_module, x, y def _init_block(): return _init_cls(MyBlock) def _init_module(): return _init_cls(MyModule) def test_search(): traced_module, *_ = _init_block() graph = traced_module.graph relu_expr = graph.get_function_by_type(F.relu).as_unique() assert isinstance(relu_expr, CallFunction) and relu_expr.func == F.relu conv_node = graph.get_module_by_type(M.Conv2d).as_unique() assert isinstance(conv_node, ModuleNode) and conv_node.module_type == M.Conv2d add_expr = graph.get_method_by_type("__add__").as_unique() assert isinstance(add_expr, CallMethod) and add_expr.method == "__add__" conv_node = graph.get_node_by_name("MyBlock_conv1").as_unique() assert isinstance(conv_node, ModuleNode) and conv_node.module_type == M.Conv2d def test_producer_and_users(): traced_module, *_ = _init_module() def _check(exprs): for expr in exprs: for n in chain(expr.inputs, expr.outputs): if not isinstance(n.expr, Input): assert n.expr in exprs for e in n.users: assert e in exprs assert n in e.inputs for mod in traced_module.modules(): if not hasattr(mod, "argdef_graph_map"): continue for g in mod.argdef_graph_map.values(): _check(g._exprs) def test_insert(): traced_module, x, expect = _init_block() graph = traced_module.graph relu_out = graph.get_function_by_type(F.relu).as_unique().outputs[0] with graph.insert_exprs(): neg_out = F.neg(relu_out) graph.replace_node({relu_out: neg_out}) graph.compile() np.testing.assert_allclose(expect - 1, 1 - traced_module(x), atol=1e-6) def test_insert_module(): class Neg(M.Module): def __init__(self, name): super().__init__(name) self.identity = M.Identity() self.identity_list = [M.Identity(), M.Identity()] self.identity_dict = {"0": M.Identity(), "1": M.Identity()} self.param = F.zeros((1,)) def forward(self, x): x = self.identity(x) for m in self.identity_dict: x = self.identity_dict[m](x) for m in self.identity_list: x = m(x) return
F.neg(x)
megengine.functional.neg
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import gc import platform import weakref import numpy as np import pytest import megengine as mge import megengine.distributed as dist import megengine.functional as F from megengine.core._imperative_rt import TensorAttr, imperative from megengine.core._imperative_rt.imperative import sync from megengine.core.autodiff.grad import Grad from megengine.core.ops.builtin import Elemwise from megengine.core.tensor.raw_tensor import as_raw_tensor from megengine.core.tensor.tensor import Tensor, apply from megengine.core.tensor.tensor_wrapper import TensorWrapper from megengine.functional.distributed import remote_recv, remote_send def _elwise(mode): op =
Elemwise(mode)
megengine.core.ops.builtin.Elemwise
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import gc import platform import weakref import numpy as np import pytest import megengine as mge import megengine.distributed as dist import megengine.functional as F from megengine.core._imperative_rt import TensorAttr, imperative from megengine.core._imperative_rt.imperative import sync from megengine.core.autodiff.grad import Grad from megengine.core.ops.builtin import Elemwise from megengine.core.tensor.raw_tensor import as_raw_tensor from megengine.core.tensor.tensor import Tensor, apply from megengine.core.tensor.tensor_wrapper import TensorWrapper from megengine.functional.distributed import remote_recv, remote_send def _elwise(mode): op = Elemwise(mode) def f(*args): (result,) = apply(op, *args) return result return f add = _elwise(Elemwise.Mode.ADD) mul = _elwise(Elemwise.Mode.MUL) cos = _elwise(Elemwise.Mode.COS) relu = _elwise(Elemwise.Mode.RELU) def as_tensor(x): return Tensor(as_raw_tensor(x, device=mge.device.get_default_device())) def save_to(self, name="grad"): def callback(tensor, grad): setattr(self, name, grad) return callback @pytest.mark.isolated_distributed @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) def test_dist_grad(): world_size = 2 x_np = np.random.rand(10).astype("float32") port = dist.get_free_ports(1)[0] server =
dist.Server(port)
megengine.distributed.Server
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import gc import platform import weakref import numpy as np import pytest import megengine as mge import megengine.distributed as dist import megengine.functional as F from megengine.core._imperative_rt import TensorAttr, imperative from megengine.core._imperative_rt.imperative import sync from megengine.core.autodiff.grad import Grad from megengine.core.ops.builtin import Elemwise from megengine.core.tensor.raw_tensor import as_raw_tensor from megengine.core.tensor.tensor import Tensor, apply from megengine.core.tensor.tensor_wrapper import TensorWrapper from megengine.functional.distributed import remote_recv, remote_send def _elwise(mode): op = Elemwise(mode) def f(*args): (result,) = apply(op, *args) return result return f add = _elwise(Elemwise.Mode.ADD) mul = _elwise(Elemwise.Mode.MUL) cos = _elwise(Elemwise.Mode.COS) relu = _elwise(Elemwise.Mode.RELU) def as_tensor(x): return Tensor(as_raw_tensor(x, device=mge.device.get_default_device())) def save_to(self, name="grad"): def callback(tensor, grad): setattr(self, name, grad) return callback @pytest.mark.isolated_distributed @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) def test_dist_grad(): world_size = 2 x_np = np.random.rand(10).astype("float32") port = dist.get_free_ports(1)[0] server = dist.Server(port) def worker0(): dist.init_process_group("localhost", port, world_size, 0, 0) mge.device.set_default_device("gpu0") grad = Grad() x = as_tensor(x_np) grad.wrt(x, callback=save_to(x)) # need a placeholder to trace operator send_x = remote_send(x, 1) recv_x = remote_recv(1, x_np.shape, x_np.dtype, "gpu0") y = recv_x * recv_x grad([y], [as_tensor(np.ones_like(x_np))]) np.testing.assert_almost_equal(x.grad.numpy(), x.numpy() * 2) def worker1(): dist.init_process_group("localhost", port, world_size, 1, 1) mge.device.set_default_device("gpu1") grad = Grad() recv_x = remote_recv(0, x_np.shape, x_np.dtype, "gpu1") send_x = remote_send(recv_x, 0) grad([], []) # sync because grad has a send operator sync() send_x.device._cn._sync_all() import multiprocessing as mp p0 = mp.Process(target=worker0) p1 = mp.Process(target=worker1) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 def test_grad(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = cos(x) grad(y, as_tensor(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), -np.sin(x_np)) def test_grad_2(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y = mul(y, y) grad(y, as_tensor(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) @pytest.mark.skip(reason="high order gradient was not implemented yet") def test_2nd_grad(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) ones = as_tensor(np.ones_like(x_np)) grad = Grad().wrt(x, callback=save_to(x)) grad2 = Grad().wrt(x, callback=save_to(x)) y = cos(x) grad(y, ones) np.testing.assert_almost_equal(x.grad.numpy(), -np.sin(x_np), decimal=5) grad2(x.grad, ones) np.testing.assert_almost_equal(x.grad.numpy(), -np.cos(x_np)) def test_grad_with_tensor_wrapper(): x_np = np.random.rand(10).astype("float32") x =
TensorWrapper(x_np)
megengine.core.tensor.tensor_wrapper.TensorWrapper
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import gc import platform import weakref import numpy as np import pytest import megengine as mge import megengine.distributed as dist import megengine.functional as F from megengine.core._imperative_rt import TensorAttr, imperative from megengine.core._imperative_rt.imperative import sync from megengine.core.autodiff.grad import Grad from megengine.core.ops.builtin import Elemwise from megengine.core.tensor.raw_tensor import as_raw_tensor from megengine.core.tensor.tensor import Tensor, apply from megengine.core.tensor.tensor_wrapper import TensorWrapper from megengine.functional.distributed import remote_recv, remote_send def _elwise(mode): op = Elemwise(mode) def f(*args): (result,) = apply(op, *args) return result return f add = _elwise(Elemwise.Mode.ADD) mul = _elwise(Elemwise.Mode.MUL) cos = _elwise(Elemwise.Mode.COS) relu = _elwise(Elemwise.Mode.RELU) def as_tensor(x): return Tensor(as_raw_tensor(x, device=mge.device.get_default_device())) def save_to(self, name="grad"): def callback(tensor, grad): setattr(self, name, grad) return callback @pytest.mark.isolated_distributed @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) def test_dist_grad(): world_size = 2 x_np = np.random.rand(10).astype("float32") port = dist.get_free_ports(1)[0] server = dist.Server(port) def worker0(): dist.init_process_group("localhost", port, world_size, 0, 0) mge.device.set_default_device("gpu0") grad = Grad() x = as_tensor(x_np) grad.wrt(x, callback=save_to(x)) # need a placeholder to trace operator send_x = remote_send(x, 1) recv_x = remote_recv(1, x_np.shape, x_np.dtype, "gpu0") y = recv_x * recv_x grad([y], [as_tensor(np.ones_like(x_np))]) np.testing.assert_almost_equal(x.grad.numpy(), x.numpy() * 2) def worker1(): dist.init_process_group("localhost", port, world_size, 1, 1) mge.device.set_default_device("gpu1") grad = Grad() recv_x = remote_recv(0, x_np.shape, x_np.dtype, "gpu1") send_x = remote_send(recv_x, 0) grad([], []) # sync because grad has a send operator sync() send_x.device._cn._sync_all() import multiprocessing as mp p0 = mp.Process(target=worker0) p1 = mp.Process(target=worker1) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 def test_grad(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = cos(x) grad(y, as_tensor(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), -np.sin(x_np)) def test_grad_2(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y = mul(y, y) grad(y, as_tensor(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) @pytest.mark.skip(reason="high order gradient was not implemented yet") def test_2nd_grad(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) ones = as_tensor(np.ones_like(x_np)) grad = Grad().wrt(x, callback=save_to(x)) grad2 = Grad().wrt(x, callback=save_to(x)) y = cos(x) grad(y, ones) np.testing.assert_almost_equal(x.grad.numpy(), -np.sin(x_np), decimal=5) grad2(x.grad, ones) np.testing.assert_almost_equal(x.grad.numpy(), -np.cos(x_np)) def test_grad_with_tensor_wrapper(): x_np = np.random.rand(10).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y = mul(y, y) grad(y, TensorWrapper(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) def test_release(): def check(f): n = 0 d = None gc.disable() try: for i in range(3): f() m = len(gc.get_objects()) d = m - n n = m assert d == 0 finally: gc.enable() x =
TensorWrapper([0.0])
megengine.core.tensor.tensor_wrapper.TensorWrapper
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import gc import platform import weakref import numpy as np import pytest import megengine as mge import megengine.distributed as dist import megengine.functional as F from megengine.core._imperative_rt import TensorAttr, imperative from megengine.core._imperative_rt.imperative import sync from megengine.core.autodiff.grad import Grad from megengine.core.ops.builtin import Elemwise from megengine.core.tensor.raw_tensor import as_raw_tensor from megengine.core.tensor.tensor import Tensor, apply from megengine.core.tensor.tensor_wrapper import TensorWrapper from megengine.functional.distributed import remote_recv, remote_send def _elwise(mode): op = Elemwise(mode) def f(*args): (result,) = apply(op, *args) return result return f add = _elwise(Elemwise.Mode.ADD) mul = _elwise(Elemwise.Mode.MUL) cos = _elwise(Elemwise.Mode.COS) relu = _elwise(Elemwise.Mode.RELU) def as_tensor(x): return Tensor(as_raw_tensor(x, device=mge.device.get_default_device())) def save_to(self, name="grad"): def callback(tensor, grad): setattr(self, name, grad) return callback @pytest.mark.isolated_distributed @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) def test_dist_grad(): world_size = 2 x_np = np.random.rand(10).astype("float32") port = dist.get_free_ports(1)[0] server = dist.Server(port) def worker0(): dist.init_process_group("localhost", port, world_size, 0, 0) mge.device.set_default_device("gpu0") grad = Grad() x = as_tensor(x_np) grad.wrt(x, callback=save_to(x)) # need a placeholder to trace operator send_x = remote_send(x, 1) recv_x = remote_recv(1, x_np.shape, x_np.dtype, "gpu0") y = recv_x * recv_x grad([y], [as_tensor(np.ones_like(x_np))]) np.testing.assert_almost_equal(x.grad.numpy(), x.numpy() * 2) def worker1(): dist.init_process_group("localhost", port, world_size, 1, 1) mge.device.set_default_device("gpu1") grad = Grad() recv_x = remote_recv(0, x_np.shape, x_np.dtype, "gpu1") send_x = remote_send(recv_x, 0) grad([], []) # sync because grad has a send operator sync() send_x.device._cn._sync_all() import multiprocessing as mp p0 = mp.Process(target=worker0) p1 = mp.Process(target=worker1) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 def test_grad(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = cos(x) grad(y, as_tensor(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), -np.sin(x_np)) def test_grad_2(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y = mul(y, y) grad(y, as_tensor(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) @pytest.mark.skip(reason="high order gradient was not implemented yet") def test_2nd_grad(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) ones = as_tensor(np.ones_like(x_np)) grad = Grad().wrt(x, callback=save_to(x)) grad2 = Grad().wrt(x, callback=save_to(x)) y = cos(x) grad(y, ones) np.testing.assert_almost_equal(x.grad.numpy(), -np.sin(x_np), decimal=5) grad2(x.grad, ones) np.testing.assert_almost_equal(x.grad.numpy(), -np.cos(x_np)) def test_grad_with_tensor_wrapper(): x_np = np.random.rand(10).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y = mul(y, y) grad(y, TensorWrapper(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) def test_release(): def check(f): n = 0 d = None gc.disable() try: for i in range(3): f() m = len(gc.get_objects()) d = m - n n = m assert d == 0 finally: gc.enable() x = TensorWrapper([0.0]) dy = TensorWrapper(np.ones_like(x.numpy())) @check def _(): g = Grad().wrt(x) y = x * x g(y, dy) @check def _(): with Grad().wrt(x) as g: pass @check def _(): with Grad().wrt(x) as g: y = x * x def test_grad_inplace(): x_np = np.random.rand(10).astype("float32") x =
TensorWrapper(x_np)
megengine.core.tensor.tensor_wrapper.TensorWrapper
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import gc import platform import weakref import numpy as np import pytest import megengine as mge import megengine.distributed as dist import megengine.functional as F from megengine.core._imperative_rt import TensorAttr, imperative from megengine.core._imperative_rt.imperative import sync from megengine.core.autodiff.grad import Grad from megengine.core.ops.builtin import Elemwise from megengine.core.tensor.raw_tensor import as_raw_tensor from megengine.core.tensor.tensor import Tensor, apply from megengine.core.tensor.tensor_wrapper import TensorWrapper from megengine.functional.distributed import remote_recv, remote_send def _elwise(mode): op = Elemwise(mode) def f(*args): (result,) = apply(op, *args) return result return f add = _elwise(Elemwise.Mode.ADD) mul = _elwise(Elemwise.Mode.MUL) cos = _elwise(Elemwise.Mode.COS) relu = _elwise(Elemwise.Mode.RELU) def as_tensor(x): return Tensor(as_raw_tensor(x, device=mge.device.get_default_device())) def save_to(self, name="grad"): def callback(tensor, grad): setattr(self, name, grad) return callback @pytest.mark.isolated_distributed @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) def test_dist_grad(): world_size = 2 x_np = np.random.rand(10).astype("float32") port = dist.get_free_ports(1)[0] server = dist.Server(port) def worker0(): dist.init_process_group("localhost", port, world_size, 0, 0) mge.device.set_default_device("gpu0") grad = Grad() x = as_tensor(x_np) grad.wrt(x, callback=save_to(x)) # need a placeholder to trace operator send_x = remote_send(x, 1) recv_x = remote_recv(1, x_np.shape, x_np.dtype, "gpu0") y = recv_x * recv_x grad([y], [as_tensor(np.ones_like(x_np))]) np.testing.assert_almost_equal(x.grad.numpy(), x.numpy() * 2) def worker1(): dist.init_process_group("localhost", port, world_size, 1, 1) mge.device.set_default_device("gpu1") grad = Grad() recv_x = remote_recv(0, x_np.shape, x_np.dtype, "gpu1") send_x = remote_send(recv_x, 0) grad([], []) # sync because grad has a send operator sync() send_x.device._cn._sync_all() import multiprocessing as mp p0 = mp.Process(target=worker0) p1 = mp.Process(target=worker1) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 def test_grad(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = cos(x) grad(y, as_tensor(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), -np.sin(x_np)) def test_grad_2(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y = mul(y, y) grad(y, as_tensor(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) @pytest.mark.skip(reason="high order gradient was not implemented yet") def test_2nd_grad(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) ones = as_tensor(np.ones_like(x_np)) grad = Grad().wrt(x, callback=save_to(x)) grad2 = Grad().wrt(x, callback=save_to(x)) y = cos(x) grad(y, ones) np.testing.assert_almost_equal(x.grad.numpy(), -np.sin(x_np), decimal=5) grad2(x.grad, ones) np.testing.assert_almost_equal(x.grad.numpy(), -np.cos(x_np)) def test_grad_with_tensor_wrapper(): x_np = np.random.rand(10).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y = mul(y, y) grad(y, TensorWrapper(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) def test_release(): def check(f): n = 0 d = None gc.disable() try: for i in range(3): f() m = len(gc.get_objects()) d = m - n n = m assert d == 0 finally: gc.enable() x = TensorWrapper([0.0]) dy = TensorWrapper(np.ones_like(x.numpy())) @check def _(): g = Grad().wrt(x) y = x * x g(y, dy) @check def _(): with Grad().wrt(x) as g: pass @check def _(): with Grad().wrt(x) as g: y = x * x def test_grad_inplace(): x_np = np.random.rand(10).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y *= y grad(y, TensorWrapper(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) def test_elemwise_add(): x_np = np.random.rand(10).astype("float32") y_np = np.random.rand(10, 10).astype("float32") dz_np = np.random.rand(10, 10).astype("float32") x =
TensorWrapper(x_np)
megengine.core.tensor.tensor_wrapper.TensorWrapper
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import gc import platform import weakref import numpy as np import pytest import megengine as mge import megengine.distributed as dist import megengine.functional as F from megengine.core._imperative_rt import TensorAttr, imperative from megengine.core._imperative_rt.imperative import sync from megengine.core.autodiff.grad import Grad from megengine.core.ops.builtin import Elemwise from megengine.core.tensor.raw_tensor import as_raw_tensor from megengine.core.tensor.tensor import Tensor, apply from megengine.core.tensor.tensor_wrapper import TensorWrapper from megengine.functional.distributed import remote_recv, remote_send def _elwise(mode): op = Elemwise(mode) def f(*args): (result,) = apply(op, *args) return result return f add = _elwise(Elemwise.Mode.ADD) mul = _elwise(Elemwise.Mode.MUL) cos = _elwise(Elemwise.Mode.COS) relu = _elwise(Elemwise.Mode.RELU) def as_tensor(x): return Tensor(as_raw_tensor(x, device=mge.device.get_default_device())) def save_to(self, name="grad"): def callback(tensor, grad): setattr(self, name, grad) return callback @pytest.mark.isolated_distributed @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) def test_dist_grad(): world_size = 2 x_np = np.random.rand(10).astype("float32") port = dist.get_free_ports(1)[0] server = dist.Server(port) def worker0(): dist.init_process_group("localhost", port, world_size, 0, 0) mge.device.set_default_device("gpu0") grad = Grad() x = as_tensor(x_np) grad.wrt(x, callback=save_to(x)) # need a placeholder to trace operator send_x = remote_send(x, 1) recv_x = remote_recv(1, x_np.shape, x_np.dtype, "gpu0") y = recv_x * recv_x grad([y], [as_tensor(np.ones_like(x_np))]) np.testing.assert_almost_equal(x.grad.numpy(), x.numpy() * 2) def worker1(): dist.init_process_group("localhost", port, world_size, 1, 1) mge.device.set_default_device("gpu1") grad = Grad() recv_x = remote_recv(0, x_np.shape, x_np.dtype, "gpu1") send_x = remote_send(recv_x, 0) grad([], []) # sync because grad has a send operator sync() send_x.device._cn._sync_all() import multiprocessing as mp p0 = mp.Process(target=worker0) p1 = mp.Process(target=worker1) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 def test_grad(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = cos(x) grad(y, as_tensor(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), -np.sin(x_np)) def test_grad_2(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y = mul(y, y) grad(y, as_tensor(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) @pytest.mark.skip(reason="high order gradient was not implemented yet") def test_2nd_grad(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) ones = as_tensor(np.ones_like(x_np)) grad = Grad().wrt(x, callback=save_to(x)) grad2 = Grad().wrt(x, callback=save_to(x)) y = cos(x) grad(y, ones) np.testing.assert_almost_equal(x.grad.numpy(), -np.sin(x_np), decimal=5) grad2(x.grad, ones) np.testing.assert_almost_equal(x.grad.numpy(), -np.cos(x_np)) def test_grad_with_tensor_wrapper(): x_np = np.random.rand(10).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y = mul(y, y) grad(y, TensorWrapper(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) def test_release(): def check(f): n = 0 d = None gc.disable() try: for i in range(3): f() m = len(gc.get_objects()) d = m - n n = m assert d == 0 finally: gc.enable() x = TensorWrapper([0.0]) dy = TensorWrapper(np.ones_like(x.numpy())) @check def _(): g = Grad().wrt(x) y = x * x g(y, dy) @check def _(): with Grad().wrt(x) as g: pass @check def _(): with Grad().wrt(x) as g: y = x * x def test_grad_inplace(): x_np = np.random.rand(10).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y *= y grad(y, TensorWrapper(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) def test_elemwise_add(): x_np = np.random.rand(10).astype("float32") y_np = np.random.rand(10, 10).astype("float32") dz_np = np.random.rand(10, 10).astype("float32") x = TensorWrapper(x_np) y =
TensorWrapper(y_np)
megengine.core.tensor.tensor_wrapper.TensorWrapper
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import gc import platform import weakref import numpy as np import pytest import megengine as mge import megengine.distributed as dist import megengine.functional as F from megengine.core._imperative_rt import TensorAttr, imperative from megengine.core._imperative_rt.imperative import sync from megengine.core.autodiff.grad import Grad from megengine.core.ops.builtin import Elemwise from megengine.core.tensor.raw_tensor import as_raw_tensor from megengine.core.tensor.tensor import Tensor, apply from megengine.core.tensor.tensor_wrapper import TensorWrapper from megengine.functional.distributed import remote_recv, remote_send def _elwise(mode): op = Elemwise(mode) def f(*args): (result,) = apply(op, *args) return result return f add = _elwise(Elemwise.Mode.ADD) mul = _elwise(Elemwise.Mode.MUL) cos = _elwise(Elemwise.Mode.COS) relu = _elwise(Elemwise.Mode.RELU) def as_tensor(x): return Tensor(as_raw_tensor(x, device=mge.device.get_default_device())) def save_to(self, name="grad"): def callback(tensor, grad): setattr(self, name, grad) return callback @pytest.mark.isolated_distributed @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) def test_dist_grad(): world_size = 2 x_np = np.random.rand(10).astype("float32") port = dist.get_free_ports(1)[0] server = dist.Server(port) def worker0(): dist.init_process_group("localhost", port, world_size, 0, 0) mge.device.set_default_device("gpu0") grad = Grad() x = as_tensor(x_np) grad.wrt(x, callback=save_to(x)) # need a placeholder to trace operator send_x = remote_send(x, 1) recv_x = remote_recv(1, x_np.shape, x_np.dtype, "gpu0") y = recv_x * recv_x grad([y], [as_tensor(np.ones_like(x_np))]) np.testing.assert_almost_equal(x.grad.numpy(), x.numpy() * 2) def worker1(): dist.init_process_group("localhost", port, world_size, 1, 1) mge.device.set_default_device("gpu1") grad = Grad() recv_x = remote_recv(0, x_np.shape, x_np.dtype, "gpu1") send_x = remote_send(recv_x, 0) grad([], []) # sync because grad has a send operator sync() send_x.device._cn._sync_all() import multiprocessing as mp p0 = mp.Process(target=worker0) p1 = mp.Process(target=worker1) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 def test_grad(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = cos(x) grad(y, as_tensor(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), -np.sin(x_np)) def test_grad_2(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y = mul(y, y) grad(y, as_tensor(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) @pytest.mark.skip(reason="high order gradient was not implemented yet") def test_2nd_grad(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) ones = as_tensor(np.ones_like(x_np)) grad = Grad().wrt(x, callback=save_to(x)) grad2 = Grad().wrt(x, callback=save_to(x)) y = cos(x) grad(y, ones) np.testing.assert_almost_equal(x.grad.numpy(), -np.sin(x_np), decimal=5) grad2(x.grad, ones) np.testing.assert_almost_equal(x.grad.numpy(), -np.cos(x_np)) def test_grad_with_tensor_wrapper(): x_np = np.random.rand(10).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y = mul(y, y) grad(y, TensorWrapper(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) def test_release(): def check(f): n = 0 d = None gc.disable() try: for i in range(3): f() m = len(gc.get_objects()) d = m - n n = m assert d == 0 finally: gc.enable() x = TensorWrapper([0.0]) dy = TensorWrapper(np.ones_like(x.numpy())) @check def _(): g = Grad().wrt(x) y = x * x g(y, dy) @check def _(): with Grad().wrt(x) as g: pass @check def _(): with Grad().wrt(x) as g: y = x * x def test_grad_inplace(): x_np = np.random.rand(10).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y *= y grad(y, TensorWrapper(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) def test_elemwise_add(): x_np = np.random.rand(10).astype("float32") y_np = np.random.rand(10, 10).astype("float32") dz_np = np.random.rand(10, 10).astype("float32") x = TensorWrapper(x_np) y = TensorWrapper(y_np) dz =
TensorWrapper(dz_np)
megengine.core.tensor.tensor_wrapper.TensorWrapper
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import gc import platform import weakref import numpy as np import pytest import megengine as mge import megengine.distributed as dist import megengine.functional as F from megengine.core._imperative_rt import TensorAttr, imperative from megengine.core._imperative_rt.imperative import sync from megengine.core.autodiff.grad import Grad from megengine.core.ops.builtin import Elemwise from megengine.core.tensor.raw_tensor import as_raw_tensor from megengine.core.tensor.tensor import Tensor, apply from megengine.core.tensor.tensor_wrapper import TensorWrapper from megengine.functional.distributed import remote_recv, remote_send def _elwise(mode): op = Elemwise(mode) def f(*args): (result,) = apply(op, *args) return result return f add = _elwise(Elemwise.Mode.ADD) mul = _elwise(Elemwise.Mode.MUL) cos = _elwise(Elemwise.Mode.COS) relu = _elwise(Elemwise.Mode.RELU) def as_tensor(x): return Tensor(as_raw_tensor(x, device=mge.device.get_default_device())) def save_to(self, name="grad"): def callback(tensor, grad): setattr(self, name, grad) return callback @pytest.mark.isolated_distributed @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) def test_dist_grad(): world_size = 2 x_np = np.random.rand(10).astype("float32") port = dist.get_free_ports(1)[0] server = dist.Server(port) def worker0(): dist.init_process_group("localhost", port, world_size, 0, 0) mge.device.set_default_device("gpu0") grad = Grad() x = as_tensor(x_np) grad.wrt(x, callback=save_to(x)) # need a placeholder to trace operator send_x = remote_send(x, 1) recv_x = remote_recv(1, x_np.shape, x_np.dtype, "gpu0") y = recv_x * recv_x grad([y], [as_tensor(np.ones_like(x_np))]) np.testing.assert_almost_equal(x.grad.numpy(), x.numpy() * 2) def worker1(): dist.init_process_group("localhost", port, world_size, 1, 1) mge.device.set_default_device("gpu1") grad = Grad() recv_x = remote_recv(0, x_np.shape, x_np.dtype, "gpu1") send_x = remote_send(recv_x, 0) grad([], []) # sync because grad has a send operator sync() send_x.device._cn._sync_all() import multiprocessing as mp p0 = mp.Process(target=worker0) p1 = mp.Process(target=worker1) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 def test_grad(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = cos(x) grad(y, as_tensor(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), -np.sin(x_np)) def test_grad_2(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y = mul(y, y) grad(y, as_tensor(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) @pytest.mark.skip(reason="high order gradient was not implemented yet") def test_2nd_grad(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) ones = as_tensor(np.ones_like(x_np)) grad = Grad().wrt(x, callback=save_to(x)) grad2 = Grad().wrt(x, callback=save_to(x)) y = cos(x) grad(y, ones) np.testing.assert_almost_equal(x.grad.numpy(), -np.sin(x_np), decimal=5) grad2(x.grad, ones) np.testing.assert_almost_equal(x.grad.numpy(), -np.cos(x_np)) def test_grad_with_tensor_wrapper(): x_np = np.random.rand(10).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y = mul(y, y) grad(y, TensorWrapper(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) def test_release(): def check(f): n = 0 d = None gc.disable() try: for i in range(3): f() m = len(gc.get_objects()) d = m - n n = m assert d == 0 finally: gc.enable() x = TensorWrapper([0.0]) dy = TensorWrapper(np.ones_like(x.numpy())) @check def _(): g = Grad().wrt(x) y = x * x g(y, dy) @check def _(): with Grad().wrt(x) as g: pass @check def _(): with Grad().wrt(x) as g: y = x * x def test_grad_inplace(): x_np = np.random.rand(10).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y *= y grad(y, TensorWrapper(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) def test_elemwise_add(): x_np = np.random.rand(10).astype("float32") y_np = np.random.rand(10, 10).astype("float32") dz_np = np.random.rand(10, 10).astype("float32") x = TensorWrapper(x_np) y = TensorWrapper(y_np) dz = TensorWrapper(dz_np) refs = {} def f(x, y): x = x * 2 refs["x"] = weakref.ref(x.__wrapped__) refs["y"] = weakref.ref(y.__wrapped__) return x + y grad = Grad().wrt(x, callback=save_to(x)) z = f(x, y) del y for k, r in refs.items(): assert r() is None grad(z, dz) np.testing.assert_almost_equal(x.grad.numpy(), dz_np.sum(0) * 2, decimal=5) def test_elemwise_relu(): x_np = [1.0, -1.0] dz_np = [1.0] x =
TensorWrapper(x_np)
megengine.core.tensor.tensor_wrapper.TensorWrapper
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import gc import platform import weakref import numpy as np import pytest import megengine as mge import megengine.distributed as dist import megengine.functional as F from megengine.core._imperative_rt import TensorAttr, imperative from megengine.core._imperative_rt.imperative import sync from megengine.core.autodiff.grad import Grad from megengine.core.ops.builtin import Elemwise from megengine.core.tensor.raw_tensor import as_raw_tensor from megengine.core.tensor.tensor import Tensor, apply from megengine.core.tensor.tensor_wrapper import TensorWrapper from megengine.functional.distributed import remote_recv, remote_send def _elwise(mode): op = Elemwise(mode) def f(*args): (result,) = apply(op, *args) return result return f add = _elwise(Elemwise.Mode.ADD) mul = _elwise(Elemwise.Mode.MUL) cos = _elwise(Elemwise.Mode.COS) relu = _elwise(Elemwise.Mode.RELU) def as_tensor(x): return Tensor(as_raw_tensor(x, device=mge.device.get_default_device())) def save_to(self, name="grad"): def callback(tensor, grad): setattr(self, name, grad) return callback @pytest.mark.isolated_distributed @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) def test_dist_grad(): world_size = 2 x_np = np.random.rand(10).astype("float32") port = dist.get_free_ports(1)[0] server = dist.Server(port) def worker0(): dist.init_process_group("localhost", port, world_size, 0, 0) mge.device.set_default_device("gpu0") grad = Grad() x = as_tensor(x_np) grad.wrt(x, callback=save_to(x)) # need a placeholder to trace operator send_x = remote_send(x, 1) recv_x = remote_recv(1, x_np.shape, x_np.dtype, "gpu0") y = recv_x * recv_x grad([y], [as_tensor(np.ones_like(x_np))]) np.testing.assert_almost_equal(x.grad.numpy(), x.numpy() * 2) def worker1(): dist.init_process_group("localhost", port, world_size, 1, 1) mge.device.set_default_device("gpu1") grad = Grad() recv_x = remote_recv(0, x_np.shape, x_np.dtype, "gpu1") send_x = remote_send(recv_x, 0) grad([], []) # sync because grad has a send operator sync() send_x.device._cn._sync_all() import multiprocessing as mp p0 = mp.Process(target=worker0) p1 = mp.Process(target=worker1) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 def test_grad(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = cos(x) grad(y, as_tensor(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), -np.sin(x_np)) def test_grad_2(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y = mul(y, y) grad(y, as_tensor(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) @pytest.mark.skip(reason="high order gradient was not implemented yet") def test_2nd_grad(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) ones = as_tensor(np.ones_like(x_np)) grad = Grad().wrt(x, callback=save_to(x)) grad2 = Grad().wrt(x, callback=save_to(x)) y = cos(x) grad(y, ones) np.testing.assert_almost_equal(x.grad.numpy(), -np.sin(x_np), decimal=5) grad2(x.grad, ones) np.testing.assert_almost_equal(x.grad.numpy(), -np.cos(x_np)) def test_grad_with_tensor_wrapper(): x_np = np.random.rand(10).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y = mul(y, y) grad(y, TensorWrapper(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) def test_release(): def check(f): n = 0 d = None gc.disable() try: for i in range(3): f() m = len(gc.get_objects()) d = m - n n = m assert d == 0 finally: gc.enable() x = TensorWrapper([0.0]) dy = TensorWrapper(np.ones_like(x.numpy())) @check def _(): g = Grad().wrt(x) y = x * x g(y, dy) @check def _(): with Grad().wrt(x) as g: pass @check def _(): with Grad().wrt(x) as g: y = x * x def test_grad_inplace(): x_np = np.random.rand(10).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y *= y grad(y, TensorWrapper(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) def test_elemwise_add(): x_np = np.random.rand(10).astype("float32") y_np = np.random.rand(10, 10).astype("float32") dz_np = np.random.rand(10, 10).astype("float32") x = TensorWrapper(x_np) y = TensorWrapper(y_np) dz = TensorWrapper(dz_np) refs = {} def f(x, y): x = x * 2 refs["x"] = weakref.ref(x.__wrapped__) refs["y"] = weakref.ref(y.__wrapped__) return x + y grad = Grad().wrt(x, callback=save_to(x)) z = f(x, y) del y for k, r in refs.items(): assert r() is None grad(z, dz) np.testing.assert_almost_equal(x.grad.numpy(), dz_np.sum(0) * 2, decimal=5) def test_elemwise_relu(): x_np = [1.0, -1.0] dz_np = [1.0] x = TensorWrapper(x_np) dz =
TensorWrapper(dz_np)
megengine.core.tensor.tensor_wrapper.TensorWrapper
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import gc import platform import weakref import numpy as np import pytest import megengine as mge import megengine.distributed as dist import megengine.functional as F from megengine.core._imperative_rt import TensorAttr, imperative from megengine.core._imperative_rt.imperative import sync from megengine.core.autodiff.grad import Grad from megengine.core.ops.builtin import Elemwise from megengine.core.tensor.raw_tensor import as_raw_tensor from megengine.core.tensor.tensor import Tensor, apply from megengine.core.tensor.tensor_wrapper import TensorWrapper from megengine.functional.distributed import remote_recv, remote_send def _elwise(mode): op = Elemwise(mode) def f(*args): (result,) = apply(op, *args) return result return f add = _elwise(Elemwise.Mode.ADD) mul = _elwise(Elemwise.Mode.MUL) cos = _elwise(Elemwise.Mode.COS) relu = _elwise(Elemwise.Mode.RELU) def as_tensor(x): return Tensor(as_raw_tensor(x, device=mge.device.get_default_device())) def save_to(self, name="grad"): def callback(tensor, grad): setattr(self, name, grad) return callback @pytest.mark.isolated_distributed @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) def test_dist_grad(): world_size = 2 x_np = np.random.rand(10).astype("float32") port = dist.get_free_ports(1)[0] server = dist.Server(port) def worker0(): dist.init_process_group("localhost", port, world_size, 0, 0) mge.device.set_default_device("gpu0") grad = Grad() x = as_tensor(x_np) grad.wrt(x, callback=save_to(x)) # need a placeholder to trace operator send_x = remote_send(x, 1) recv_x = remote_recv(1, x_np.shape, x_np.dtype, "gpu0") y = recv_x * recv_x grad([y], [as_tensor(np.ones_like(x_np))]) np.testing.assert_almost_equal(x.grad.numpy(), x.numpy() * 2) def worker1(): dist.init_process_group("localhost", port, world_size, 1, 1) mge.device.set_default_device("gpu1") grad = Grad() recv_x = remote_recv(0, x_np.shape, x_np.dtype, "gpu1") send_x = remote_send(recv_x, 0) grad([], []) # sync because grad has a send operator sync() send_x.device._cn._sync_all() import multiprocessing as mp p0 = mp.Process(target=worker0) p1 = mp.Process(target=worker1) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 def test_grad(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = cos(x) grad(y, as_tensor(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), -np.sin(x_np)) def test_grad_2(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y = mul(y, y) grad(y, as_tensor(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) @pytest.mark.skip(reason="high order gradient was not implemented yet") def test_2nd_grad(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) ones = as_tensor(np.ones_like(x_np)) grad = Grad().wrt(x, callback=save_to(x)) grad2 = Grad().wrt(x, callback=save_to(x)) y = cos(x) grad(y, ones) np.testing.assert_almost_equal(x.grad.numpy(), -np.sin(x_np), decimal=5) grad2(x.grad, ones) np.testing.assert_almost_equal(x.grad.numpy(), -np.cos(x_np)) def test_grad_with_tensor_wrapper(): x_np = np.random.rand(10).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y = mul(y, y) grad(y, TensorWrapper(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) def test_release(): def check(f): n = 0 d = None gc.disable() try: for i in range(3): f() m = len(gc.get_objects()) d = m - n n = m assert d == 0 finally: gc.enable() x = TensorWrapper([0.0]) dy = TensorWrapper(np.ones_like(x.numpy())) @check def _(): g = Grad().wrt(x) y = x * x g(y, dy) @check def _(): with Grad().wrt(x) as g: pass @check def _(): with Grad().wrt(x) as g: y = x * x def test_grad_inplace(): x_np = np.random.rand(10).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y *= y grad(y, TensorWrapper(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) def test_elemwise_add(): x_np = np.random.rand(10).astype("float32") y_np = np.random.rand(10, 10).astype("float32") dz_np = np.random.rand(10, 10).astype("float32") x = TensorWrapper(x_np) y = TensorWrapper(y_np) dz = TensorWrapper(dz_np) refs = {} def f(x, y): x = x * 2 refs["x"] = weakref.ref(x.__wrapped__) refs["y"] = weakref.ref(y.__wrapped__) return x + y grad = Grad().wrt(x, callback=save_to(x)) z = f(x, y) del y for k, r in refs.items(): assert r() is None grad(z, dz) np.testing.assert_almost_equal(x.grad.numpy(), dz_np.sum(0) * 2, decimal=5) def test_elemwise_relu(): x_np = [1.0, -1.0] dz_np = [1.0] x = TensorWrapper(x_np) dz = TensorWrapper(dz_np) refs = {} def f(x): x = x * 2 refs["x"] = weakref.ref(x.__wrapped__) return relu(x) grad = Grad().wrt(x, callback=save_to(x)) z = f(x) assert refs["x"]() is None grad(z, dz) np.testing.assert_almost_equal(x.grad.numpy(), [2.0, 0]) def test_elemwise_relu_backward_fn(): op =
Elemwise(Elemwise.Mode.RELU)
megengine.core.ops.builtin.Elemwise
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import gc import platform import weakref import numpy as np import pytest import megengine as mge import megengine.distributed as dist import megengine.functional as F from megengine.core._imperative_rt import TensorAttr, imperative from megengine.core._imperative_rt.imperative import sync from megengine.core.autodiff.grad import Grad from megengine.core.ops.builtin import Elemwise from megengine.core.tensor.raw_tensor import as_raw_tensor from megengine.core.tensor.tensor import Tensor, apply from megengine.core.tensor.tensor_wrapper import TensorWrapper from megengine.functional.distributed import remote_recv, remote_send def _elwise(mode): op = Elemwise(mode) def f(*args): (result,) = apply(op, *args) return result return f add = _elwise(Elemwise.Mode.ADD) mul = _elwise(Elemwise.Mode.MUL) cos = _elwise(Elemwise.Mode.COS) relu = _elwise(Elemwise.Mode.RELU) def as_tensor(x): return Tensor(as_raw_tensor(x, device=mge.device.get_default_device())) def save_to(self, name="grad"): def callback(tensor, grad): setattr(self, name, grad) return callback @pytest.mark.isolated_distributed @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) def test_dist_grad(): world_size = 2 x_np = np.random.rand(10).astype("float32") port = dist.get_free_ports(1)[0] server = dist.Server(port) def worker0(): dist.init_process_group("localhost", port, world_size, 0, 0) mge.device.set_default_device("gpu0") grad = Grad() x = as_tensor(x_np) grad.wrt(x, callback=save_to(x)) # need a placeholder to trace operator send_x = remote_send(x, 1) recv_x = remote_recv(1, x_np.shape, x_np.dtype, "gpu0") y = recv_x * recv_x grad([y], [as_tensor(np.ones_like(x_np))]) np.testing.assert_almost_equal(x.grad.numpy(), x.numpy() * 2) def worker1(): dist.init_process_group("localhost", port, world_size, 1, 1) mge.device.set_default_device("gpu1") grad = Grad() recv_x = remote_recv(0, x_np.shape, x_np.dtype, "gpu1") send_x = remote_send(recv_x, 0) grad([], []) # sync because grad has a send operator sync() send_x.device._cn._sync_all() import multiprocessing as mp p0 = mp.Process(target=worker0) p1 = mp.Process(target=worker1) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 def test_grad(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = cos(x) grad(y, as_tensor(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), -np.sin(x_np)) def test_grad_2(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y = mul(y, y) grad(y, as_tensor(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) @pytest.mark.skip(reason="high order gradient was not implemented yet") def test_2nd_grad(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) ones = as_tensor(np.ones_like(x_np)) grad = Grad().wrt(x, callback=save_to(x)) grad2 = Grad().wrt(x, callback=save_to(x)) y = cos(x) grad(y, ones) np.testing.assert_almost_equal(x.grad.numpy(), -np.sin(x_np), decimal=5) grad2(x.grad, ones) np.testing.assert_almost_equal(x.grad.numpy(), -np.cos(x_np)) def test_grad_with_tensor_wrapper(): x_np = np.random.rand(10).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y = mul(y, y) grad(y, TensorWrapper(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) def test_release(): def check(f): n = 0 d = None gc.disable() try: for i in range(3): f() m = len(gc.get_objects()) d = m - n n = m assert d == 0 finally: gc.enable() x = TensorWrapper([0.0]) dy = TensorWrapper(np.ones_like(x.numpy())) @check def _(): g = Grad().wrt(x) y = x * x g(y, dy) @check def _(): with Grad().wrt(x) as g: pass @check def _(): with Grad().wrt(x) as g: y = x * x def test_grad_inplace(): x_np = np.random.rand(10).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y *= y grad(y, TensorWrapper(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) def test_elemwise_add(): x_np = np.random.rand(10).astype("float32") y_np = np.random.rand(10, 10).astype("float32") dz_np = np.random.rand(10, 10).astype("float32") x = TensorWrapper(x_np) y = TensorWrapper(y_np) dz = TensorWrapper(dz_np) refs = {} def f(x, y): x = x * 2 refs["x"] = weakref.ref(x.__wrapped__) refs["y"] = weakref.ref(y.__wrapped__) return x + y grad = Grad().wrt(x, callback=save_to(x)) z = f(x, y) del y for k, r in refs.items(): assert r() is None grad(z, dz) np.testing.assert_almost_equal(x.grad.numpy(), dz_np.sum(0) * 2, decimal=5) def test_elemwise_relu(): x_np = [1.0, -1.0] dz_np = [1.0] x = TensorWrapper(x_np) dz = TensorWrapper(dz_np) refs = {} def f(x): x = x * 2 refs["x"] = weakref.ref(x.__wrapped__) return relu(x) grad = Grad().wrt(x, callback=save_to(x)) z = f(x) assert refs["x"]() is None grad(z, dz) np.testing.assert_almost_equal(x.grad.numpy(), [2.0, 0]) def test_elemwise_relu_backward_fn(): op = Elemwise(Elemwise.Mode.RELU) attr =
TensorAttr()
megengine.core._imperative_rt.TensorAttr
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import gc import platform import weakref import numpy as np import pytest import megengine as mge import megengine.distributed as dist import megengine.functional as F from megengine.core._imperative_rt import TensorAttr, imperative from megengine.core._imperative_rt.imperative import sync from megengine.core.autodiff.grad import Grad from megengine.core.ops.builtin import Elemwise from megengine.core.tensor.raw_tensor import as_raw_tensor from megengine.core.tensor.tensor import Tensor, apply from megengine.core.tensor.tensor_wrapper import TensorWrapper from megengine.functional.distributed import remote_recv, remote_send def _elwise(mode): op = Elemwise(mode) def f(*args): (result,) = apply(op, *args) return result return f add = _elwise(Elemwise.Mode.ADD) mul = _elwise(Elemwise.Mode.MUL) cos = _elwise(Elemwise.Mode.COS) relu = _elwise(Elemwise.Mode.RELU) def as_tensor(x): return Tensor(as_raw_tensor(x, device=mge.device.get_default_device())) def save_to(self, name="grad"): def callback(tensor, grad): setattr(self, name, grad) return callback @pytest.mark.isolated_distributed @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) def test_dist_grad(): world_size = 2 x_np = np.random.rand(10).astype("float32") port = dist.get_free_ports(1)[0] server = dist.Server(port) def worker0(): dist.init_process_group("localhost", port, world_size, 0, 0) mge.device.set_default_device("gpu0") grad = Grad() x = as_tensor(x_np) grad.wrt(x, callback=save_to(x)) # need a placeholder to trace operator send_x = remote_send(x, 1) recv_x = remote_recv(1, x_np.shape, x_np.dtype, "gpu0") y = recv_x * recv_x grad([y], [as_tensor(np.ones_like(x_np))]) np.testing.assert_almost_equal(x.grad.numpy(), x.numpy() * 2) def worker1(): dist.init_process_group("localhost", port, world_size, 1, 1) mge.device.set_default_device("gpu1") grad = Grad() recv_x = remote_recv(0, x_np.shape, x_np.dtype, "gpu1") send_x = remote_send(recv_x, 0) grad([], []) # sync because grad has a send operator sync() send_x.device._cn._sync_all() import multiprocessing as mp p0 = mp.Process(target=worker0) p1 = mp.Process(target=worker1) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 def test_grad(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = cos(x) grad(y, as_tensor(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), -np.sin(x_np)) def test_grad_2(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y = mul(y, y) grad(y, as_tensor(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) @pytest.mark.skip(reason="high order gradient was not implemented yet") def test_2nd_grad(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) ones = as_tensor(np.ones_like(x_np)) grad = Grad().wrt(x, callback=save_to(x)) grad2 = Grad().wrt(x, callback=save_to(x)) y = cos(x) grad(y, ones) np.testing.assert_almost_equal(x.grad.numpy(), -np.sin(x_np), decimal=5) grad2(x.grad, ones) np.testing.assert_almost_equal(x.grad.numpy(), -np.cos(x_np)) def test_grad_with_tensor_wrapper(): x_np = np.random.rand(10).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y = mul(y, y) grad(y, TensorWrapper(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) def test_release(): def check(f): n = 0 d = None gc.disable() try: for i in range(3): f() m = len(gc.get_objects()) d = m - n n = m assert d == 0 finally: gc.enable() x = TensorWrapper([0.0]) dy = TensorWrapper(np.ones_like(x.numpy())) @check def _(): g = Grad().wrt(x) y = x * x g(y, dy) @check def _(): with Grad().wrt(x) as g: pass @check def _(): with Grad().wrt(x) as g: y = x * x def test_grad_inplace(): x_np = np.random.rand(10).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y *= y grad(y, TensorWrapper(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) def test_elemwise_add(): x_np = np.random.rand(10).astype("float32") y_np = np.random.rand(10, 10).astype("float32") dz_np = np.random.rand(10, 10).astype("float32") x = TensorWrapper(x_np) y = TensorWrapper(y_np) dz = TensorWrapper(dz_np) refs = {} def f(x, y): x = x * 2 refs["x"] = weakref.ref(x.__wrapped__) refs["y"] = weakref.ref(y.__wrapped__) return x + y grad = Grad().wrt(x, callback=save_to(x)) z = f(x, y) del y for k, r in refs.items(): assert r() is None grad(z, dz) np.testing.assert_almost_equal(x.grad.numpy(), dz_np.sum(0) * 2, decimal=5) def test_elemwise_relu(): x_np = [1.0, -1.0] dz_np = [1.0] x = TensorWrapper(x_np) dz = TensorWrapper(dz_np) refs = {} def f(x): x = x * 2 refs["x"] = weakref.ref(x.__wrapped__) return relu(x) grad = Grad().wrt(x, callback=save_to(x)) z = f(x) assert refs["x"]() is None grad(z, dz) np.testing.assert_almost_equal(x.grad.numpy(), [2.0, 0]) def test_elemwise_relu_backward_fn(): op = Elemwise(Elemwise.Mode.RELU) attr = TensorAttr() attr.dtype = "float32" attr.comp_node = "xpux" result =
imperative.make_backward_graph(op, [attr], [True], [True])
megengine.core._imperative_rt.imperative.make_backward_graph
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import gc import platform import weakref import numpy as np import pytest import megengine as mge import megengine.distributed as dist import megengine.functional as F from megengine.core._imperative_rt import TensorAttr, imperative from megengine.core._imperative_rt.imperative import sync from megengine.core.autodiff.grad import Grad from megengine.core.ops.builtin import Elemwise from megengine.core.tensor.raw_tensor import as_raw_tensor from megengine.core.tensor.tensor import Tensor, apply from megengine.core.tensor.tensor_wrapper import TensorWrapper from megengine.functional.distributed import remote_recv, remote_send def _elwise(mode): op = Elemwise(mode) def f(*args): (result,) = apply(op, *args) return result return f add = _elwise(Elemwise.Mode.ADD) mul = _elwise(Elemwise.Mode.MUL) cos = _elwise(Elemwise.Mode.COS) relu = _elwise(Elemwise.Mode.RELU) def as_tensor(x): return Tensor(as_raw_tensor(x, device=mge.device.get_default_device())) def save_to(self, name="grad"): def callback(tensor, grad): setattr(self, name, grad) return callback @pytest.mark.isolated_distributed @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) def test_dist_grad(): world_size = 2 x_np = np.random.rand(10).astype("float32") port = dist.get_free_ports(1)[0] server = dist.Server(port) def worker0(): dist.init_process_group("localhost", port, world_size, 0, 0) mge.device.set_default_device("gpu0") grad = Grad() x = as_tensor(x_np) grad.wrt(x, callback=save_to(x)) # need a placeholder to trace operator send_x = remote_send(x, 1) recv_x = remote_recv(1, x_np.shape, x_np.dtype, "gpu0") y = recv_x * recv_x grad([y], [as_tensor(np.ones_like(x_np))]) np.testing.assert_almost_equal(x.grad.numpy(), x.numpy() * 2) def worker1(): dist.init_process_group("localhost", port, world_size, 1, 1) mge.device.set_default_device("gpu1") grad = Grad() recv_x = remote_recv(0, x_np.shape, x_np.dtype, "gpu1") send_x = remote_send(recv_x, 0) grad([], []) # sync because grad has a send operator sync() send_x.device._cn._sync_all() import multiprocessing as mp p0 = mp.Process(target=worker0) p1 = mp.Process(target=worker1) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 def test_grad(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = cos(x) grad(y, as_tensor(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), -np.sin(x_np)) def test_grad_2(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y = mul(y, y) grad(y, as_tensor(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) @pytest.mark.skip(reason="high order gradient was not implemented yet") def test_2nd_grad(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) ones = as_tensor(np.ones_like(x_np)) grad = Grad().wrt(x, callback=save_to(x)) grad2 = Grad().wrt(x, callback=save_to(x)) y = cos(x) grad(y, ones) np.testing.assert_almost_equal(x.grad.numpy(), -np.sin(x_np), decimal=5) grad2(x.grad, ones) np.testing.assert_almost_equal(x.grad.numpy(), -np.cos(x_np)) def test_grad_with_tensor_wrapper(): x_np = np.random.rand(10).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y = mul(y, y) grad(y, TensorWrapper(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) def test_release(): def check(f): n = 0 d = None gc.disable() try: for i in range(3): f() m = len(gc.get_objects()) d = m - n n = m assert d == 0 finally: gc.enable() x = TensorWrapper([0.0]) dy = TensorWrapper(np.ones_like(x.numpy())) @check def _(): g = Grad().wrt(x) y = x * x g(y, dy) @check def _(): with Grad().wrt(x) as g: pass @check def _(): with Grad().wrt(x) as g: y = x * x def test_grad_inplace(): x_np = np.random.rand(10).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y *= y grad(y, TensorWrapper(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) def test_elemwise_add(): x_np = np.random.rand(10).astype("float32") y_np = np.random.rand(10, 10).astype("float32") dz_np = np.random.rand(10, 10).astype("float32") x = TensorWrapper(x_np) y = TensorWrapper(y_np) dz = TensorWrapper(dz_np) refs = {} def f(x, y): x = x * 2 refs["x"] = weakref.ref(x.__wrapped__) refs["y"] = weakref.ref(y.__wrapped__) return x + y grad = Grad().wrt(x, callback=save_to(x)) z = f(x, y) del y for k, r in refs.items(): assert r() is None grad(z, dz) np.testing.assert_almost_equal(x.grad.numpy(), dz_np.sum(0) * 2, decimal=5) def test_elemwise_relu(): x_np = [1.0, -1.0] dz_np = [1.0] x = TensorWrapper(x_np) dz = TensorWrapper(dz_np) refs = {} def f(x): x = x * 2 refs["x"] = weakref.ref(x.__wrapped__) return relu(x) grad = Grad().wrt(x, callback=save_to(x)) z = f(x) assert refs["x"]() is None grad(z, dz) np.testing.assert_almost_equal(x.grad.numpy(), [2.0, 0]) def test_elemwise_relu_backward_fn(): op = Elemwise(Elemwise.Mode.RELU) attr = TensorAttr() attr.dtype = "float32" attr.comp_node = "xpux" result = imperative.make_backward_graph(op, [attr], [True], [True]) backward_graph, save_for_backward_mask, input_has_grad = result assert save_for_backward_mask == [False, True, True], save_for_backward_mask def test_reshape(): x_np = np.random.rand(2, 5).astype("float32") x =
TensorWrapper(x_np)
megengine.core.tensor.tensor_wrapper.TensorWrapper
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import gc import platform import weakref import numpy as np import pytest import megengine as mge import megengine.distributed as dist import megengine.functional as F from megengine.core._imperative_rt import TensorAttr, imperative from megengine.core._imperative_rt.imperative import sync from megengine.core.autodiff.grad import Grad from megengine.core.ops.builtin import Elemwise from megengine.core.tensor.raw_tensor import as_raw_tensor from megengine.core.tensor.tensor import Tensor, apply from megengine.core.tensor.tensor_wrapper import TensorWrapper from megengine.functional.distributed import remote_recv, remote_send def _elwise(mode): op = Elemwise(mode) def f(*args): (result,) = apply(op, *args) return result return f add = _elwise(Elemwise.Mode.ADD) mul = _elwise(Elemwise.Mode.MUL) cos = _elwise(Elemwise.Mode.COS) relu = _elwise(Elemwise.Mode.RELU) def as_tensor(x): return Tensor(as_raw_tensor(x, device=mge.device.get_default_device())) def save_to(self, name="grad"): def callback(tensor, grad): setattr(self, name, grad) return callback @pytest.mark.isolated_distributed @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) def test_dist_grad(): world_size = 2 x_np = np.random.rand(10).astype("float32") port = dist.get_free_ports(1)[0] server = dist.Server(port) def worker0(): dist.init_process_group("localhost", port, world_size, 0, 0) mge.device.set_default_device("gpu0") grad = Grad() x = as_tensor(x_np) grad.wrt(x, callback=save_to(x)) # need a placeholder to trace operator send_x = remote_send(x, 1) recv_x = remote_recv(1, x_np.shape, x_np.dtype, "gpu0") y = recv_x * recv_x grad([y], [as_tensor(np.ones_like(x_np))]) np.testing.assert_almost_equal(x.grad.numpy(), x.numpy() * 2) def worker1(): dist.init_process_group("localhost", port, world_size, 1, 1) mge.device.set_default_device("gpu1") grad = Grad() recv_x = remote_recv(0, x_np.shape, x_np.dtype, "gpu1") send_x = remote_send(recv_x, 0) grad([], []) # sync because grad has a send operator sync() send_x.device._cn._sync_all() import multiprocessing as mp p0 = mp.Process(target=worker0) p1 = mp.Process(target=worker1) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 def test_grad(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = cos(x) grad(y, as_tensor(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), -np.sin(x_np)) def test_grad_2(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y = mul(y, y) grad(y, as_tensor(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) @pytest.mark.skip(reason="high order gradient was not implemented yet") def test_2nd_grad(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) ones = as_tensor(np.ones_like(x_np)) grad = Grad().wrt(x, callback=save_to(x)) grad2 = Grad().wrt(x, callback=save_to(x)) y = cos(x) grad(y, ones) np.testing.assert_almost_equal(x.grad.numpy(), -np.sin(x_np), decimal=5) grad2(x.grad, ones) np.testing.assert_almost_equal(x.grad.numpy(), -np.cos(x_np)) def test_grad_with_tensor_wrapper(): x_np = np.random.rand(10).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y = mul(y, y) grad(y, TensorWrapper(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) def test_release(): def check(f): n = 0 d = None gc.disable() try: for i in range(3): f() m = len(gc.get_objects()) d = m - n n = m assert d == 0 finally: gc.enable() x = TensorWrapper([0.0]) dy = TensorWrapper(np.ones_like(x.numpy())) @check def _(): g = Grad().wrt(x) y = x * x g(y, dy) @check def _(): with Grad().wrt(x) as g: pass @check def _(): with Grad().wrt(x) as g: y = x * x def test_grad_inplace(): x_np = np.random.rand(10).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y *= y grad(y, TensorWrapper(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) def test_elemwise_add(): x_np = np.random.rand(10).astype("float32") y_np = np.random.rand(10, 10).astype("float32") dz_np = np.random.rand(10, 10).astype("float32") x = TensorWrapper(x_np) y = TensorWrapper(y_np) dz = TensorWrapper(dz_np) refs = {} def f(x, y): x = x * 2 refs["x"] = weakref.ref(x.__wrapped__) refs["y"] = weakref.ref(y.__wrapped__) return x + y grad = Grad().wrt(x, callback=save_to(x)) z = f(x, y) del y for k, r in refs.items(): assert r() is None grad(z, dz) np.testing.assert_almost_equal(x.grad.numpy(), dz_np.sum(0) * 2, decimal=5) def test_elemwise_relu(): x_np = [1.0, -1.0] dz_np = [1.0] x = TensorWrapper(x_np) dz = TensorWrapper(dz_np) refs = {} def f(x): x = x * 2 refs["x"] = weakref.ref(x.__wrapped__) return relu(x) grad = Grad().wrt(x, callback=save_to(x)) z = f(x) assert refs["x"]() is None grad(z, dz) np.testing.assert_almost_equal(x.grad.numpy(), [2.0, 0]) def test_elemwise_relu_backward_fn(): op = Elemwise(Elemwise.Mode.RELU) attr = TensorAttr() attr.dtype = "float32" attr.comp_node = "xpux" result = imperative.make_backward_graph(op, [attr], [True], [True]) backward_graph, save_for_backward_mask, input_has_grad = result assert save_for_backward_mask == [False, True, True], save_for_backward_mask def test_reshape(): x_np = np.random.rand(2, 5).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = x.reshape(5, 2) grad(y, F.ones_like(y)) np.testing.assert_equal(np.ones((2, 5), dtype=np.float32), x.grad.numpy()) def test_subtensor(): x_np = np.random.rand(3, 3).astype("float32") x =
TensorWrapper(x_np)
megengine.core.tensor.tensor_wrapper.TensorWrapper
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import gc import platform import weakref import numpy as np import pytest import megengine as mge import megengine.distributed as dist import megengine.functional as F from megengine.core._imperative_rt import TensorAttr, imperative from megengine.core._imperative_rt.imperative import sync from megengine.core.autodiff.grad import Grad from megengine.core.ops.builtin import Elemwise from megengine.core.tensor.raw_tensor import as_raw_tensor from megengine.core.tensor.tensor import Tensor, apply from megengine.core.tensor.tensor_wrapper import TensorWrapper from megengine.functional.distributed import remote_recv, remote_send def _elwise(mode): op = Elemwise(mode) def f(*args): (result,) = apply(op, *args) return result return f add = _elwise(Elemwise.Mode.ADD) mul = _elwise(Elemwise.Mode.MUL) cos = _elwise(Elemwise.Mode.COS) relu = _elwise(Elemwise.Mode.RELU) def as_tensor(x): return Tensor(as_raw_tensor(x, device=mge.device.get_default_device())) def save_to(self, name="grad"): def callback(tensor, grad): setattr(self, name, grad) return callback @pytest.mark.isolated_distributed @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) def test_dist_grad(): world_size = 2 x_np = np.random.rand(10).astype("float32") port = dist.get_free_ports(1)[0] server = dist.Server(port) def worker0(): dist.init_process_group("localhost", port, world_size, 0, 0) mge.device.set_default_device("gpu0") grad = Grad() x = as_tensor(x_np) grad.wrt(x, callback=save_to(x)) # need a placeholder to trace operator send_x = remote_send(x, 1) recv_x = remote_recv(1, x_np.shape, x_np.dtype, "gpu0") y = recv_x * recv_x grad([y], [as_tensor(np.ones_like(x_np))]) np.testing.assert_almost_equal(x.grad.numpy(), x.numpy() * 2) def worker1(): dist.init_process_group("localhost", port, world_size, 1, 1) mge.device.set_default_device("gpu1") grad = Grad() recv_x = remote_recv(0, x_np.shape, x_np.dtype, "gpu1") send_x = remote_send(recv_x, 0) grad([], []) # sync because grad has a send operator sync() send_x.device._cn._sync_all() import multiprocessing as mp p0 = mp.Process(target=worker0) p1 = mp.Process(target=worker1) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 def test_grad(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = cos(x) grad(y, as_tensor(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), -np.sin(x_np)) def test_grad_2(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y = mul(y, y) grad(y, as_tensor(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) @pytest.mark.skip(reason="high order gradient was not implemented yet") def test_2nd_grad(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) ones = as_tensor(np.ones_like(x_np)) grad = Grad().wrt(x, callback=save_to(x)) grad2 = Grad().wrt(x, callback=save_to(x)) y = cos(x) grad(y, ones) np.testing.assert_almost_equal(x.grad.numpy(), -np.sin(x_np), decimal=5) grad2(x.grad, ones) np.testing.assert_almost_equal(x.grad.numpy(), -np.cos(x_np)) def test_grad_with_tensor_wrapper(): x_np = np.random.rand(10).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y = mul(y, y) grad(y, TensorWrapper(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) def test_release(): def check(f): n = 0 d = None gc.disable() try: for i in range(3): f() m = len(gc.get_objects()) d = m - n n = m assert d == 0 finally: gc.enable() x = TensorWrapper([0.0]) dy = TensorWrapper(np.ones_like(x.numpy())) @check def _(): g = Grad().wrt(x) y = x * x g(y, dy) @check def _(): with Grad().wrt(x) as g: pass @check def _(): with Grad().wrt(x) as g: y = x * x def test_grad_inplace(): x_np = np.random.rand(10).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y *= y grad(y, TensorWrapper(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) def test_elemwise_add(): x_np = np.random.rand(10).astype("float32") y_np = np.random.rand(10, 10).astype("float32") dz_np = np.random.rand(10, 10).astype("float32") x = TensorWrapper(x_np) y = TensorWrapper(y_np) dz = TensorWrapper(dz_np) refs = {} def f(x, y): x = x * 2 refs["x"] = weakref.ref(x.__wrapped__) refs["y"] = weakref.ref(y.__wrapped__) return x + y grad = Grad().wrt(x, callback=save_to(x)) z = f(x, y) del y for k, r in refs.items(): assert r() is None grad(z, dz) np.testing.assert_almost_equal(x.grad.numpy(), dz_np.sum(0) * 2, decimal=5) def test_elemwise_relu(): x_np = [1.0, -1.0] dz_np = [1.0] x = TensorWrapper(x_np) dz = TensorWrapper(dz_np) refs = {} def f(x): x = x * 2 refs["x"] = weakref.ref(x.__wrapped__) return relu(x) grad = Grad().wrt(x, callback=save_to(x)) z = f(x) assert refs["x"]() is None grad(z, dz) np.testing.assert_almost_equal(x.grad.numpy(), [2.0, 0]) def test_elemwise_relu_backward_fn(): op = Elemwise(Elemwise.Mode.RELU) attr = TensorAttr() attr.dtype = "float32" attr.comp_node = "xpux" result = imperative.make_backward_graph(op, [attr], [True], [True]) backward_graph, save_for_backward_mask, input_has_grad = result assert save_for_backward_mask == [False, True, True], save_for_backward_mask def test_reshape(): x_np = np.random.rand(2, 5).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = x.reshape(5, 2) grad(y, F.ones_like(y)) np.testing.assert_equal(np.ones((2, 5), dtype=np.float32), x.grad.numpy()) def test_subtensor(): x_np = np.random.rand(3, 3).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = x[1:-1, :2] grad(y, F.ones_like(y)) np.testing.assert_equal( np.array([[0, 0, 0], [1, 1, 0], [0, 0, 0]], dtype=np.float32), x.grad.numpy() ) def test_IndexingMultiAxisVec(): x_np = np.random.rand(3, 3).astype("float32") x =
TensorWrapper(x_np)
megengine.core.tensor.tensor_wrapper.TensorWrapper
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import gc import platform import weakref import numpy as np import pytest import megengine as mge import megengine.distributed as dist import megengine.functional as F from megengine.core._imperative_rt import TensorAttr, imperative from megengine.core._imperative_rt.imperative import sync from megengine.core.autodiff.grad import Grad from megengine.core.ops.builtin import Elemwise from megengine.core.tensor.raw_tensor import as_raw_tensor from megengine.core.tensor.tensor import Tensor, apply from megengine.core.tensor.tensor_wrapper import TensorWrapper from megengine.functional.distributed import remote_recv, remote_send def _elwise(mode): op = Elemwise(mode) def f(*args): (result,) = apply(op, *args) return result return f add = _elwise(Elemwise.Mode.ADD) mul = _elwise(Elemwise.Mode.MUL) cos = _elwise(Elemwise.Mode.COS) relu = _elwise(Elemwise.Mode.RELU) def as_tensor(x): return Tensor(as_raw_tensor(x, device=mge.device.get_default_device())) def save_to(self, name="grad"): def callback(tensor, grad): setattr(self, name, grad) return callback @pytest.mark.isolated_distributed @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) def test_dist_grad(): world_size = 2 x_np = np.random.rand(10).astype("float32") port = dist.get_free_ports(1)[0] server = dist.Server(port) def worker0(): dist.init_process_group("localhost", port, world_size, 0, 0) mge.device.set_default_device("gpu0") grad = Grad() x = as_tensor(x_np) grad.wrt(x, callback=save_to(x)) # need a placeholder to trace operator send_x = remote_send(x, 1) recv_x = remote_recv(1, x_np.shape, x_np.dtype, "gpu0") y = recv_x * recv_x grad([y], [as_tensor(np.ones_like(x_np))]) np.testing.assert_almost_equal(x.grad.numpy(), x.numpy() * 2) def worker1(): dist.init_process_group("localhost", port, world_size, 1, 1) mge.device.set_default_device("gpu1") grad = Grad() recv_x = remote_recv(0, x_np.shape, x_np.dtype, "gpu1") send_x = remote_send(recv_x, 0) grad([], []) # sync because grad has a send operator sync() send_x.device._cn._sync_all() import multiprocessing as mp p0 = mp.Process(target=worker0) p1 = mp.Process(target=worker1) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 def test_grad(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = cos(x) grad(y, as_tensor(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), -np.sin(x_np)) def test_grad_2(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y = mul(y, y) grad(y, as_tensor(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) @pytest.mark.skip(reason="high order gradient was not implemented yet") def test_2nd_grad(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) ones = as_tensor(np.ones_like(x_np)) grad = Grad().wrt(x, callback=save_to(x)) grad2 = Grad().wrt(x, callback=save_to(x)) y = cos(x) grad(y, ones) np.testing.assert_almost_equal(x.grad.numpy(), -np.sin(x_np), decimal=5) grad2(x.grad, ones) np.testing.assert_almost_equal(x.grad.numpy(), -np.cos(x_np)) def test_grad_with_tensor_wrapper(): x_np = np.random.rand(10).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y = mul(y, y) grad(y, TensorWrapper(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) def test_release(): def check(f): n = 0 d = None gc.disable() try: for i in range(3): f() m = len(gc.get_objects()) d = m - n n = m assert d == 0 finally: gc.enable() x = TensorWrapper([0.0]) dy = TensorWrapper(np.ones_like(x.numpy())) @check def _(): g = Grad().wrt(x) y = x * x g(y, dy) @check def _(): with Grad().wrt(x) as g: pass @check def _(): with Grad().wrt(x) as g: y = x * x def test_grad_inplace(): x_np = np.random.rand(10).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y *= y grad(y, TensorWrapper(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) def test_elemwise_add(): x_np = np.random.rand(10).astype("float32") y_np = np.random.rand(10, 10).astype("float32") dz_np = np.random.rand(10, 10).astype("float32") x = TensorWrapper(x_np) y = TensorWrapper(y_np) dz = TensorWrapper(dz_np) refs = {} def f(x, y): x = x * 2 refs["x"] = weakref.ref(x.__wrapped__) refs["y"] = weakref.ref(y.__wrapped__) return x + y grad = Grad().wrt(x, callback=save_to(x)) z = f(x, y) del y for k, r in refs.items(): assert r() is None grad(z, dz) np.testing.assert_almost_equal(x.grad.numpy(), dz_np.sum(0) * 2, decimal=5) def test_elemwise_relu(): x_np = [1.0, -1.0] dz_np = [1.0] x = TensorWrapper(x_np) dz = TensorWrapper(dz_np) refs = {} def f(x): x = x * 2 refs["x"] = weakref.ref(x.__wrapped__) return relu(x) grad = Grad().wrt(x, callback=save_to(x)) z = f(x) assert refs["x"]() is None grad(z, dz) np.testing.assert_almost_equal(x.grad.numpy(), [2.0, 0]) def test_elemwise_relu_backward_fn(): op = Elemwise(Elemwise.Mode.RELU) attr = TensorAttr() attr.dtype = "float32" attr.comp_node = "xpux" result = imperative.make_backward_graph(op, [attr], [True], [True]) backward_graph, save_for_backward_mask, input_has_grad = result assert save_for_backward_mask == [False, True, True], save_for_backward_mask def test_reshape(): x_np = np.random.rand(2, 5).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = x.reshape(5, 2) grad(y, F.ones_like(y)) np.testing.assert_equal(np.ones((2, 5), dtype=np.float32), x.grad.numpy()) def test_subtensor(): x_np = np.random.rand(3, 3).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = x[1:-1, :2] grad(y, F.ones_like(y)) np.testing.assert_equal( np.array([[0, 0, 0], [1, 1, 0], [0, 0, 0]], dtype=np.float32), x.grad.numpy() ) def test_IndexingMultiAxisVec(): x_np = np.random.rand(3, 3).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = x[[0, 2], [0, 2]] grad(y, F.ones_like(y)) np.testing.assert_equal( np.array([[1, 0, 0], [0, 0, 0], [0, 0, 1]], dtype=np.float32), x.grad.numpy() ) def test_AxisAddRemove(): x_np = np.random.rand(1, 5).astype("float32") x =
TensorWrapper(x_np)
megengine.core.tensor.tensor_wrapper.TensorWrapper
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import gc import platform import weakref import numpy as np import pytest import megengine as mge import megengine.distributed as dist import megengine.functional as F from megengine.core._imperative_rt import TensorAttr, imperative from megengine.core._imperative_rt.imperative import sync from megengine.core.autodiff.grad import Grad from megengine.core.ops.builtin import Elemwise from megengine.core.tensor.raw_tensor import as_raw_tensor from megengine.core.tensor.tensor import Tensor, apply from megengine.core.tensor.tensor_wrapper import TensorWrapper from megengine.functional.distributed import remote_recv, remote_send def _elwise(mode): op = Elemwise(mode) def f(*args): (result,) = apply(op, *args) return result return f add = _elwise(Elemwise.Mode.ADD) mul = _elwise(Elemwise.Mode.MUL) cos = _elwise(Elemwise.Mode.COS) relu = _elwise(Elemwise.Mode.RELU) def as_tensor(x): return Tensor(as_raw_tensor(x, device=mge.device.get_default_device())) def save_to(self, name="grad"): def callback(tensor, grad): setattr(self, name, grad) return callback @pytest.mark.isolated_distributed @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) def test_dist_grad(): world_size = 2 x_np = np.random.rand(10).astype("float32") port = dist.get_free_ports(1)[0] server = dist.Server(port) def worker0(): dist.init_process_group("localhost", port, world_size, 0, 0) mge.device.set_default_device("gpu0") grad = Grad() x = as_tensor(x_np) grad.wrt(x, callback=save_to(x)) # need a placeholder to trace operator send_x = remote_send(x, 1) recv_x = remote_recv(1, x_np.shape, x_np.dtype, "gpu0") y = recv_x * recv_x grad([y], [as_tensor(np.ones_like(x_np))]) np.testing.assert_almost_equal(x.grad.numpy(), x.numpy() * 2) def worker1(): dist.init_process_group("localhost", port, world_size, 1, 1) mge.device.set_default_device("gpu1") grad = Grad() recv_x = remote_recv(0, x_np.shape, x_np.dtype, "gpu1") send_x = remote_send(recv_x, 0) grad([], []) # sync because grad has a send operator sync() send_x.device._cn._sync_all() import multiprocessing as mp p0 = mp.Process(target=worker0) p1 = mp.Process(target=worker1) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 def test_grad(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = cos(x) grad(y, as_tensor(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), -np.sin(x_np)) def test_grad_2(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y = mul(y, y) grad(y, as_tensor(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) @pytest.mark.skip(reason="high order gradient was not implemented yet") def test_2nd_grad(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) ones = as_tensor(np.ones_like(x_np)) grad = Grad().wrt(x, callback=save_to(x)) grad2 = Grad().wrt(x, callback=save_to(x)) y = cos(x) grad(y, ones) np.testing.assert_almost_equal(x.grad.numpy(), -np.sin(x_np), decimal=5) grad2(x.grad, ones) np.testing.assert_almost_equal(x.grad.numpy(), -np.cos(x_np)) def test_grad_with_tensor_wrapper(): x_np = np.random.rand(10).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y = mul(y, y) grad(y, TensorWrapper(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) def test_release(): def check(f): n = 0 d = None gc.disable() try: for i in range(3): f() m = len(gc.get_objects()) d = m - n n = m assert d == 0 finally: gc.enable() x = TensorWrapper([0.0]) dy = TensorWrapper(np.ones_like(x.numpy())) @check def _(): g = Grad().wrt(x) y = x * x g(y, dy) @check def _(): with Grad().wrt(x) as g: pass @check def _(): with Grad().wrt(x) as g: y = x * x def test_grad_inplace(): x_np = np.random.rand(10).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y *= y grad(y, TensorWrapper(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) def test_elemwise_add(): x_np = np.random.rand(10).astype("float32") y_np = np.random.rand(10, 10).astype("float32") dz_np = np.random.rand(10, 10).astype("float32") x = TensorWrapper(x_np) y = TensorWrapper(y_np) dz = TensorWrapper(dz_np) refs = {} def f(x, y): x = x * 2 refs["x"] = weakref.ref(x.__wrapped__) refs["y"] = weakref.ref(y.__wrapped__) return x + y grad = Grad().wrt(x, callback=save_to(x)) z = f(x, y) del y for k, r in refs.items(): assert r() is None grad(z, dz) np.testing.assert_almost_equal(x.grad.numpy(), dz_np.sum(0) * 2, decimal=5) def test_elemwise_relu(): x_np = [1.0, -1.0] dz_np = [1.0] x = TensorWrapper(x_np) dz = TensorWrapper(dz_np) refs = {} def f(x): x = x * 2 refs["x"] = weakref.ref(x.__wrapped__) return relu(x) grad = Grad().wrt(x, callback=save_to(x)) z = f(x) assert refs["x"]() is None grad(z, dz) np.testing.assert_almost_equal(x.grad.numpy(), [2.0, 0]) def test_elemwise_relu_backward_fn(): op = Elemwise(Elemwise.Mode.RELU) attr = TensorAttr() attr.dtype = "float32" attr.comp_node = "xpux" result = imperative.make_backward_graph(op, [attr], [True], [True]) backward_graph, save_for_backward_mask, input_has_grad = result assert save_for_backward_mask == [False, True, True], save_for_backward_mask def test_reshape(): x_np = np.random.rand(2, 5).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = x.reshape(5, 2) grad(y, F.ones_like(y)) np.testing.assert_equal(np.ones((2, 5), dtype=np.float32), x.grad.numpy()) def test_subtensor(): x_np = np.random.rand(3, 3).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = x[1:-1, :2] grad(y, F.ones_like(y)) np.testing.assert_equal( np.array([[0, 0, 0], [1, 1, 0], [0, 0, 0]], dtype=np.float32), x.grad.numpy() ) def test_IndexingMultiAxisVec(): x_np = np.random.rand(3, 3).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = x[[0, 2], [0, 2]] grad(y, F.ones_like(y)) np.testing.assert_equal( np.array([[1, 0, 0], [0, 0, 0], [0, 0, 1]], dtype=np.float32), x.grad.numpy() ) def test_AxisAddRemove(): x_np = np.random.rand(1, 5).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = F.squeeze(F.expand_dims(x, 2), 0) grad(y, F.ones_like(y)) np.testing.assert_equal( np.array([[1, 1, 1, 1, 1]], dtype=np.float32), x.grad.numpy() ) def test_Broadcast(): x_np = np.random.rand(3, 3, 1).astype("float32") x =
TensorWrapper(x_np)
megengine.core.tensor.tensor_wrapper.TensorWrapper
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import gc import platform import weakref import numpy as np import pytest import megengine as mge import megengine.distributed as dist import megengine.functional as F from megengine.core._imperative_rt import TensorAttr, imperative from megengine.core._imperative_rt.imperative import sync from megengine.core.autodiff.grad import Grad from megengine.core.ops.builtin import Elemwise from megengine.core.tensor.raw_tensor import as_raw_tensor from megengine.core.tensor.tensor import Tensor, apply from megengine.core.tensor.tensor_wrapper import TensorWrapper from megengine.functional.distributed import remote_recv, remote_send def _elwise(mode): op = Elemwise(mode) def f(*args): (result,) = apply(op, *args) return result return f add = _elwise(Elemwise.Mode.ADD) mul = _elwise(Elemwise.Mode.MUL) cos = _elwise(Elemwise.Mode.COS) relu = _elwise(Elemwise.Mode.RELU) def as_tensor(x): return Tensor(as_raw_tensor(x, device=mge.device.get_default_device())) def save_to(self, name="grad"): def callback(tensor, grad): setattr(self, name, grad) return callback @pytest.mark.isolated_distributed @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) def test_dist_grad(): world_size = 2 x_np = np.random.rand(10).astype("float32") port = dist.get_free_ports(1)[0] server = dist.Server(port) def worker0(): dist.init_process_group("localhost", port, world_size, 0, 0) mge.device.set_default_device("gpu0") grad = Grad() x = as_tensor(x_np) grad.wrt(x, callback=save_to(x)) # need a placeholder to trace operator send_x = remote_send(x, 1) recv_x = remote_recv(1, x_np.shape, x_np.dtype, "gpu0") y = recv_x * recv_x grad([y], [as_tensor(np.ones_like(x_np))]) np.testing.assert_almost_equal(x.grad.numpy(), x.numpy() * 2) def worker1(): dist.init_process_group("localhost", port, world_size, 1, 1) mge.device.set_default_device("gpu1") grad = Grad() recv_x = remote_recv(0, x_np.shape, x_np.dtype, "gpu1") send_x = remote_send(recv_x, 0) grad([], []) # sync because grad has a send operator sync() send_x.device._cn._sync_all() import multiprocessing as mp p0 = mp.Process(target=worker0) p1 = mp.Process(target=worker1) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 def test_grad(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = cos(x) grad(y, as_tensor(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), -np.sin(x_np)) def test_grad_2(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y = mul(y, y) grad(y, as_tensor(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) @pytest.mark.skip(reason="high order gradient was not implemented yet") def test_2nd_grad(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) ones = as_tensor(np.ones_like(x_np)) grad = Grad().wrt(x, callback=save_to(x)) grad2 = Grad().wrt(x, callback=save_to(x)) y = cos(x) grad(y, ones) np.testing.assert_almost_equal(x.grad.numpy(), -np.sin(x_np), decimal=5) grad2(x.grad, ones) np.testing.assert_almost_equal(x.grad.numpy(), -np.cos(x_np)) def test_grad_with_tensor_wrapper(): x_np = np.random.rand(10).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y = mul(y, y) grad(y, TensorWrapper(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) def test_release(): def check(f): n = 0 d = None gc.disable() try: for i in range(3): f() m = len(gc.get_objects()) d = m - n n = m assert d == 0 finally: gc.enable() x = TensorWrapper([0.0]) dy = TensorWrapper(np.ones_like(x.numpy())) @check def _(): g = Grad().wrt(x) y = x * x g(y, dy) @check def _(): with Grad().wrt(x) as g: pass @check def _(): with Grad().wrt(x) as g: y = x * x def test_grad_inplace(): x_np = np.random.rand(10).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y *= y grad(y, TensorWrapper(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) def test_elemwise_add(): x_np = np.random.rand(10).astype("float32") y_np = np.random.rand(10, 10).astype("float32") dz_np = np.random.rand(10, 10).astype("float32") x = TensorWrapper(x_np) y = TensorWrapper(y_np) dz = TensorWrapper(dz_np) refs = {} def f(x, y): x = x * 2 refs["x"] = weakref.ref(x.__wrapped__) refs["y"] = weakref.ref(y.__wrapped__) return x + y grad = Grad().wrt(x, callback=save_to(x)) z = f(x, y) del y for k, r in refs.items(): assert r() is None grad(z, dz) np.testing.assert_almost_equal(x.grad.numpy(), dz_np.sum(0) * 2, decimal=5) def test_elemwise_relu(): x_np = [1.0, -1.0] dz_np = [1.0] x = TensorWrapper(x_np) dz = TensorWrapper(dz_np) refs = {} def f(x): x = x * 2 refs["x"] = weakref.ref(x.__wrapped__) return relu(x) grad = Grad().wrt(x, callback=save_to(x)) z = f(x) assert refs["x"]() is None grad(z, dz) np.testing.assert_almost_equal(x.grad.numpy(), [2.0, 0]) def test_elemwise_relu_backward_fn(): op = Elemwise(Elemwise.Mode.RELU) attr = TensorAttr() attr.dtype = "float32" attr.comp_node = "xpux" result = imperative.make_backward_graph(op, [attr], [True], [True]) backward_graph, save_for_backward_mask, input_has_grad = result assert save_for_backward_mask == [False, True, True], save_for_backward_mask def test_reshape(): x_np = np.random.rand(2, 5).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = x.reshape(5, 2) grad(y, F.ones_like(y)) np.testing.assert_equal(np.ones((2, 5), dtype=np.float32), x.grad.numpy()) def test_subtensor(): x_np = np.random.rand(3, 3).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = x[1:-1, :2] grad(y, F.ones_like(y)) np.testing.assert_equal( np.array([[0, 0, 0], [1, 1, 0], [0, 0, 0]], dtype=np.float32), x.grad.numpy() ) def test_IndexingMultiAxisVec(): x_np = np.random.rand(3, 3).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = x[[0, 2], [0, 2]] grad(y, F.ones_like(y)) np.testing.assert_equal( np.array([[1, 0, 0], [0, 0, 0], [0, 0, 1]], dtype=np.float32), x.grad.numpy() ) def test_AxisAddRemove(): x_np = np.random.rand(1, 5).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = F.squeeze(F.expand_dims(x, 2), 0) grad(y, F.ones_like(y)) np.testing.assert_equal( np.array([[1, 1, 1, 1, 1]], dtype=np.float32), x.grad.numpy() ) def test_Broadcast(): x_np = np.random.rand(3, 3, 1).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y =
F.broadcast_to(x, (3, 3, 10))
megengine.functional.broadcast_to
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import gc import platform import weakref import numpy as np import pytest import megengine as mge import megengine.distributed as dist import megengine.functional as F from megengine.core._imperative_rt import TensorAttr, imperative from megengine.core._imperative_rt.imperative import sync from megengine.core.autodiff.grad import Grad from megengine.core.ops.builtin import Elemwise from megengine.core.tensor.raw_tensor import as_raw_tensor from megengine.core.tensor.tensor import Tensor, apply from megengine.core.tensor.tensor_wrapper import TensorWrapper from megengine.functional.distributed import remote_recv, remote_send def _elwise(mode): op = Elemwise(mode) def f(*args): (result,) = apply(op, *args) return result return f add = _elwise(Elemwise.Mode.ADD) mul = _elwise(Elemwise.Mode.MUL) cos = _elwise(Elemwise.Mode.COS) relu = _elwise(Elemwise.Mode.RELU) def as_tensor(x): return Tensor(as_raw_tensor(x, device=mge.device.get_default_device())) def save_to(self, name="grad"): def callback(tensor, grad): setattr(self, name, grad) return callback @pytest.mark.isolated_distributed @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) def test_dist_grad(): world_size = 2 x_np = np.random.rand(10).astype("float32") port = dist.get_free_ports(1)[0] server = dist.Server(port) def worker0(): dist.init_process_group("localhost", port, world_size, 0, 0) mge.device.set_default_device("gpu0") grad = Grad() x = as_tensor(x_np) grad.wrt(x, callback=save_to(x)) # need a placeholder to trace operator send_x = remote_send(x, 1) recv_x = remote_recv(1, x_np.shape, x_np.dtype, "gpu0") y = recv_x * recv_x grad([y], [as_tensor(np.ones_like(x_np))]) np.testing.assert_almost_equal(x.grad.numpy(), x.numpy() * 2) def worker1(): dist.init_process_group("localhost", port, world_size, 1, 1) mge.device.set_default_device("gpu1") grad = Grad() recv_x = remote_recv(0, x_np.shape, x_np.dtype, "gpu1") send_x = remote_send(recv_x, 0) grad([], []) # sync because grad has a send operator sync() send_x.device._cn._sync_all() import multiprocessing as mp p0 = mp.Process(target=worker0) p1 = mp.Process(target=worker1) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 def test_grad(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = cos(x) grad(y, as_tensor(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), -np.sin(x_np)) def test_grad_2(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y = mul(y, y) grad(y, as_tensor(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) @pytest.mark.skip(reason="high order gradient was not implemented yet") def test_2nd_grad(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) ones = as_tensor(np.ones_like(x_np)) grad = Grad().wrt(x, callback=save_to(x)) grad2 = Grad().wrt(x, callback=save_to(x)) y = cos(x) grad(y, ones) np.testing.assert_almost_equal(x.grad.numpy(), -np.sin(x_np), decimal=5) grad2(x.grad, ones) np.testing.assert_almost_equal(x.grad.numpy(), -np.cos(x_np)) def test_grad_with_tensor_wrapper(): x_np = np.random.rand(10).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y = mul(y, y) grad(y, TensorWrapper(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) def test_release(): def check(f): n = 0 d = None gc.disable() try: for i in range(3): f() m = len(gc.get_objects()) d = m - n n = m assert d == 0 finally: gc.enable() x = TensorWrapper([0.0]) dy = TensorWrapper(np.ones_like(x.numpy())) @check def _(): g = Grad().wrt(x) y = x * x g(y, dy) @check def _(): with Grad().wrt(x) as g: pass @check def _(): with Grad().wrt(x) as g: y = x * x def test_grad_inplace(): x_np = np.random.rand(10).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y *= y grad(y, TensorWrapper(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) def test_elemwise_add(): x_np = np.random.rand(10).astype("float32") y_np = np.random.rand(10, 10).astype("float32") dz_np = np.random.rand(10, 10).astype("float32") x = TensorWrapper(x_np) y = TensorWrapper(y_np) dz = TensorWrapper(dz_np) refs = {} def f(x, y): x = x * 2 refs["x"] = weakref.ref(x.__wrapped__) refs["y"] = weakref.ref(y.__wrapped__) return x + y grad = Grad().wrt(x, callback=save_to(x)) z = f(x, y) del y for k, r in refs.items(): assert r() is None grad(z, dz) np.testing.assert_almost_equal(x.grad.numpy(), dz_np.sum(0) * 2, decimal=5) def test_elemwise_relu(): x_np = [1.0, -1.0] dz_np = [1.0] x = TensorWrapper(x_np) dz = TensorWrapper(dz_np) refs = {} def f(x): x = x * 2 refs["x"] = weakref.ref(x.__wrapped__) return relu(x) grad = Grad().wrt(x, callback=save_to(x)) z = f(x) assert refs["x"]() is None grad(z, dz) np.testing.assert_almost_equal(x.grad.numpy(), [2.0, 0]) def test_elemwise_relu_backward_fn(): op = Elemwise(Elemwise.Mode.RELU) attr = TensorAttr() attr.dtype = "float32" attr.comp_node = "xpux" result = imperative.make_backward_graph(op, [attr], [True], [True]) backward_graph, save_for_backward_mask, input_has_grad = result assert save_for_backward_mask == [False, True, True], save_for_backward_mask def test_reshape(): x_np = np.random.rand(2, 5).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = x.reshape(5, 2) grad(y, F.ones_like(y)) np.testing.assert_equal(np.ones((2, 5), dtype=np.float32), x.grad.numpy()) def test_subtensor(): x_np = np.random.rand(3, 3).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = x[1:-1, :2] grad(y, F.ones_like(y)) np.testing.assert_equal( np.array([[0, 0, 0], [1, 1, 0], [0, 0, 0]], dtype=np.float32), x.grad.numpy() ) def test_IndexingMultiAxisVec(): x_np = np.random.rand(3, 3).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = x[[0, 2], [0, 2]] grad(y, F.ones_like(y)) np.testing.assert_equal( np.array([[1, 0, 0], [0, 0, 0], [0, 0, 1]], dtype=np.float32), x.grad.numpy() ) def test_AxisAddRemove(): x_np = np.random.rand(1, 5).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = F.squeeze(F.expand_dims(x, 2), 0) grad(y, F.ones_like(y)) np.testing.assert_equal( np.array([[1, 1, 1, 1, 1]], dtype=np.float32), x.grad.numpy() ) def test_Broadcast(): x_np = np.random.rand(3, 3, 1).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = F.broadcast_to(x, (3, 3, 10)) grad(y, F.ones_like(y)) np.testing.assert_equal(np.ones((3, 3, 1), dtype=np.float32) * 10, x.grad.numpy()) def test_Reduce_sum(): x_np = np.random.rand(3, 3).astype("float32") x =
TensorWrapper(x_np)
megengine.core.tensor.tensor_wrapper.TensorWrapper
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import gc import platform import weakref import numpy as np import pytest import megengine as mge import megengine.distributed as dist import megengine.functional as F from megengine.core._imperative_rt import TensorAttr, imperative from megengine.core._imperative_rt.imperative import sync from megengine.core.autodiff.grad import Grad from megengine.core.ops.builtin import Elemwise from megengine.core.tensor.raw_tensor import as_raw_tensor from megengine.core.tensor.tensor import Tensor, apply from megengine.core.tensor.tensor_wrapper import TensorWrapper from megengine.functional.distributed import remote_recv, remote_send def _elwise(mode): op = Elemwise(mode) def f(*args): (result,) = apply(op, *args) return result return f add = _elwise(Elemwise.Mode.ADD) mul = _elwise(Elemwise.Mode.MUL) cos = _elwise(Elemwise.Mode.COS) relu = _elwise(Elemwise.Mode.RELU) def as_tensor(x): return Tensor(as_raw_tensor(x, device=mge.device.get_default_device())) def save_to(self, name="grad"): def callback(tensor, grad): setattr(self, name, grad) return callback @pytest.mark.isolated_distributed @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) def test_dist_grad(): world_size = 2 x_np = np.random.rand(10).astype("float32") port = dist.get_free_ports(1)[0] server = dist.Server(port) def worker0(): dist.init_process_group("localhost", port, world_size, 0, 0) mge.device.set_default_device("gpu0") grad = Grad() x = as_tensor(x_np) grad.wrt(x, callback=save_to(x)) # need a placeholder to trace operator send_x = remote_send(x, 1) recv_x = remote_recv(1, x_np.shape, x_np.dtype, "gpu0") y = recv_x * recv_x grad([y], [as_tensor(np.ones_like(x_np))]) np.testing.assert_almost_equal(x.grad.numpy(), x.numpy() * 2) def worker1(): dist.init_process_group("localhost", port, world_size, 1, 1) mge.device.set_default_device("gpu1") grad = Grad() recv_x = remote_recv(0, x_np.shape, x_np.dtype, "gpu1") send_x = remote_send(recv_x, 0) grad([], []) # sync because grad has a send operator sync() send_x.device._cn._sync_all() import multiprocessing as mp p0 = mp.Process(target=worker0) p1 = mp.Process(target=worker1) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 def test_grad(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = cos(x) grad(y, as_tensor(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), -np.sin(x_np)) def test_grad_2(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y = mul(y, y) grad(y, as_tensor(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) @pytest.mark.skip(reason="high order gradient was not implemented yet") def test_2nd_grad(): x_np = np.random.rand(10).astype("float32") x = as_tensor(x_np) ones = as_tensor(np.ones_like(x_np)) grad = Grad().wrt(x, callback=save_to(x)) grad2 = Grad().wrt(x, callback=save_to(x)) y = cos(x) grad(y, ones) np.testing.assert_almost_equal(x.grad.numpy(), -np.sin(x_np), decimal=5) grad2(x.grad, ones) np.testing.assert_almost_equal(x.grad.numpy(), -np.cos(x_np)) def test_grad_with_tensor_wrapper(): x_np = np.random.rand(10).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y = mul(y, y) grad(y, TensorWrapper(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) def test_release(): def check(f): n = 0 d = None gc.disable() try: for i in range(3): f() m = len(gc.get_objects()) d = m - n n = m assert d == 0 finally: gc.enable() x = TensorWrapper([0.0]) dy = TensorWrapper(np.ones_like(x.numpy())) @check def _(): g = Grad().wrt(x) y = x * x g(y, dy) @check def _(): with Grad().wrt(x) as g: pass @check def _(): with Grad().wrt(x) as g: y = x * x def test_grad_inplace(): x_np = np.random.rand(10).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = mul(x, x) y *= y grad(y, TensorWrapper(np.ones_like(x_np))) np.testing.assert_almost_equal(x.grad.numpy(), 4 * x_np ** 3, decimal=6) def test_elemwise_add(): x_np = np.random.rand(10).astype("float32") y_np = np.random.rand(10, 10).astype("float32") dz_np = np.random.rand(10, 10).astype("float32") x = TensorWrapper(x_np) y = TensorWrapper(y_np) dz = TensorWrapper(dz_np) refs = {} def f(x, y): x = x * 2 refs["x"] = weakref.ref(x.__wrapped__) refs["y"] = weakref.ref(y.__wrapped__) return x + y grad = Grad().wrt(x, callback=save_to(x)) z = f(x, y) del y for k, r in refs.items(): assert r() is None grad(z, dz) np.testing.assert_almost_equal(x.grad.numpy(), dz_np.sum(0) * 2, decimal=5) def test_elemwise_relu(): x_np = [1.0, -1.0] dz_np = [1.0] x = TensorWrapper(x_np) dz = TensorWrapper(dz_np) refs = {} def f(x): x = x * 2 refs["x"] = weakref.ref(x.__wrapped__) return relu(x) grad = Grad().wrt(x, callback=save_to(x)) z = f(x) assert refs["x"]() is None grad(z, dz) np.testing.assert_almost_equal(x.grad.numpy(), [2.0, 0]) def test_elemwise_relu_backward_fn(): op = Elemwise(Elemwise.Mode.RELU) attr = TensorAttr() attr.dtype = "float32" attr.comp_node = "xpux" result = imperative.make_backward_graph(op, [attr], [True], [True]) backward_graph, save_for_backward_mask, input_has_grad = result assert save_for_backward_mask == [False, True, True], save_for_backward_mask def test_reshape(): x_np = np.random.rand(2, 5).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = x.reshape(5, 2) grad(y, F.ones_like(y)) np.testing.assert_equal(np.ones((2, 5), dtype=np.float32), x.grad.numpy()) def test_subtensor(): x_np = np.random.rand(3, 3).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = x[1:-1, :2] grad(y, F.ones_like(y)) np.testing.assert_equal( np.array([[0, 0, 0], [1, 1, 0], [0, 0, 0]], dtype=np.float32), x.grad.numpy() ) def test_IndexingMultiAxisVec(): x_np = np.random.rand(3, 3).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = x[[0, 2], [0, 2]] grad(y, F.ones_like(y)) np.testing.assert_equal( np.array([[1, 0, 0], [0, 0, 0], [0, 0, 1]], dtype=np.float32), x.grad.numpy() ) def test_AxisAddRemove(): x_np = np.random.rand(1, 5).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = F.squeeze(F.expand_dims(x, 2), 0) grad(y, F.ones_like(y)) np.testing.assert_equal( np.array([[1, 1, 1, 1, 1]], dtype=np.float32), x.grad.numpy() ) def test_Broadcast(): x_np = np.random.rand(3, 3, 1).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = F.broadcast_to(x, (3, 3, 10)) grad(y, F.ones_like(y)) np.testing.assert_equal(np.ones((3, 3, 1), dtype=np.float32) * 10, x.grad.numpy()) def test_Reduce_sum(): x_np = np.random.rand(3, 3).astype("float32") x = TensorWrapper(x_np) grad = Grad().wrt(x, callback=save_to(x)) y = x.sum(axis=0) grad(y, F.ones_like(y)) np.testing.assert_equal(np.ones((3, 3), dtype=np.float32), x.grad.numpy()) def test_Reduce_mean(): x_np = np.random.rand(3, 3).astype("float32") x =
TensorWrapper(x_np)
megengine.core.tensor.tensor_wrapper.TensorWrapper
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import gc import platform import weakref import numpy as np import pytest import megengine as mge import megengine.distributed as dist import megengine.functional as F from megengine.core._imperative_rt import TensorAttr, imperative from megengine.core._imperative_rt.imperative import sync from megengine.core.autodiff.grad import Grad from megengine.core.ops.builtin import Elemwise from megengine.core.tensor.raw_tensor import as_raw_tensor from megengine.core.tensor.tensor import Tensor, apply from megengine.core.tensor.tensor_wrapper import TensorWrapper from megengine.functional.distributed import remote_recv, remote_send def _elwise(mode): op = Elemwise(mode) def f(*args): (result,) =
apply(op, *args)
megengine.core.tensor.tensor.apply
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import gc import platform import weakref import numpy as np import pytest import megengine as mge import megengine.distributed as dist import megengine.functional as F from megengine.core._imperative_rt import TensorAttr, imperative from megengine.core._imperative_rt.imperative import sync from megengine.core.autodiff.grad import Grad from megengine.core.ops.builtin import Elemwise from megengine.core.tensor.raw_tensor import as_raw_tensor from megengine.core.tensor.tensor import Tensor, apply from megengine.core.tensor.tensor_wrapper import TensorWrapper from megengine.functional.distributed import remote_recv, remote_send def _elwise(mode): op = Elemwise(mode) def f(*args): (result,) = apply(op, *args) return result return f add = _elwise(Elemwise.Mode.ADD) mul = _elwise(Elemwise.Mode.MUL) cos = _elwise(Elemwise.Mode.COS) relu = _elwise(Elemwise.Mode.RELU) def as_tensor(x): return Tensor(as_raw_tensor(x, device=mge.device.get_default_device())) def save_to(self, name="grad"): def callback(tensor, grad): setattr(self, name, grad) return callback @pytest.mark.isolated_distributed @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) def test_dist_grad(): world_size = 2 x_np = np.random.rand(10).astype("float32") port =
dist.get_free_ports(1)
megengine.distributed.get_free_ports
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import gc import platform import weakref import numpy as np import pytest import megengine as mge import megengine.distributed as dist import megengine.functional as F from megengine.core._imperative_rt import TensorAttr, imperative from megengine.core._imperative_rt.imperative import sync from megengine.core.autodiff.grad import Grad from megengine.core.ops.builtin import Elemwise from megengine.core.tensor.raw_tensor import as_raw_tensor from megengine.core.tensor.tensor import Tensor, apply from megengine.core.tensor.tensor_wrapper import TensorWrapper from megengine.functional.distributed import remote_recv, remote_send def _elwise(mode): op = Elemwise(mode) def f(*args): (result,) = apply(op, *args) return result return f add = _elwise(Elemwise.Mode.ADD) mul = _elwise(Elemwise.Mode.MUL) cos = _elwise(Elemwise.Mode.COS) relu = _elwise(Elemwise.Mode.RELU) def as_tensor(x): return Tensor(as_raw_tensor(x, device=mge.device.get_default_device())) def save_to(self, name="grad"): def callback(tensor, grad): setattr(self, name, grad) return callback @pytest.mark.isolated_distributed @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) def test_dist_grad(): world_size = 2 x_np = np.random.rand(10).astype("float32") port = dist.get_free_ports(1)[0] server = dist.Server(port) def worker0():
dist.init_process_group("localhost", port, world_size, 0, 0)
megengine.distributed.init_process_group
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import gc import platform import weakref import numpy as np import pytest import megengine as mge import megengine.distributed as dist import megengine.functional as F from megengine.core._imperative_rt import TensorAttr, imperative from megengine.core._imperative_rt.imperative import sync from megengine.core.autodiff.grad import Grad from megengine.core.ops.builtin import Elemwise from megengine.core.tensor.raw_tensor import as_raw_tensor from megengine.core.tensor.tensor import Tensor, apply from megengine.core.tensor.tensor_wrapper import TensorWrapper from megengine.functional.distributed import remote_recv, remote_send def _elwise(mode): op = Elemwise(mode) def f(*args): (result,) = apply(op, *args) return result return f add = _elwise(Elemwise.Mode.ADD) mul = _elwise(Elemwise.Mode.MUL) cos = _elwise(Elemwise.Mode.COS) relu = _elwise(Elemwise.Mode.RELU) def as_tensor(x): return Tensor(as_raw_tensor(x, device=mge.device.get_default_device())) def save_to(self, name="grad"): def callback(tensor, grad): setattr(self, name, grad) return callback @pytest.mark.isolated_distributed @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) def test_dist_grad(): world_size = 2 x_np = np.random.rand(10).astype("float32") port = dist.get_free_ports(1)[0] server = dist.Server(port) def worker0(): dist.init_process_group("localhost", port, world_size, 0, 0)
mge.device.set_default_device("gpu0")
megengine.device.set_default_device
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import gc import platform import weakref import numpy as np import pytest import megengine as mge import megengine.distributed as dist import megengine.functional as F from megengine.core._imperative_rt import TensorAttr, imperative from megengine.core._imperative_rt.imperative import sync from megengine.core.autodiff.grad import Grad from megengine.core.ops.builtin import Elemwise from megengine.core.tensor.raw_tensor import as_raw_tensor from megengine.core.tensor.tensor import Tensor, apply from megengine.core.tensor.tensor_wrapper import TensorWrapper from megengine.functional.distributed import remote_recv, remote_send def _elwise(mode): op = Elemwise(mode) def f(*args): (result,) = apply(op, *args) return result return f add = _elwise(Elemwise.Mode.ADD) mul = _elwise(Elemwise.Mode.MUL) cos = _elwise(Elemwise.Mode.COS) relu = _elwise(Elemwise.Mode.RELU) def as_tensor(x): return Tensor(as_raw_tensor(x, device=mge.device.get_default_device())) def save_to(self, name="grad"): def callback(tensor, grad): setattr(self, name, grad) return callback @pytest.mark.isolated_distributed @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) def test_dist_grad(): world_size = 2 x_np = np.random.rand(10).astype("float32") port = dist.get_free_ports(1)[0] server = dist.Server(port) def worker0(): dist.init_process_group("localhost", port, world_size, 0, 0) mge.device.set_default_device("gpu0") grad =
Grad()
megengine.core.autodiff.grad.Grad
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import gc import platform import weakref import numpy as np import pytest import megengine as mge import megengine.distributed as dist import megengine.functional as F from megengine.core._imperative_rt import TensorAttr, imperative from megengine.core._imperative_rt.imperative import sync from megengine.core.autodiff.grad import Grad from megengine.core.ops.builtin import Elemwise from megengine.core.tensor.raw_tensor import as_raw_tensor from megengine.core.tensor.tensor import Tensor, apply from megengine.core.tensor.tensor_wrapper import TensorWrapper from megengine.functional.distributed import remote_recv, remote_send def _elwise(mode): op = Elemwise(mode) def f(*args): (result,) = apply(op, *args) return result return f add = _elwise(Elemwise.Mode.ADD) mul = _elwise(Elemwise.Mode.MUL) cos = _elwise(Elemwise.Mode.COS) relu = _elwise(Elemwise.Mode.RELU) def as_tensor(x): return Tensor(as_raw_tensor(x, device=mge.device.get_default_device())) def save_to(self, name="grad"): def callback(tensor, grad): setattr(self, name, grad) return callback @pytest.mark.isolated_distributed @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) def test_dist_grad(): world_size = 2 x_np = np.random.rand(10).astype("float32") port = dist.get_free_ports(1)[0] server = dist.Server(port) def worker0(): dist.init_process_group("localhost", port, world_size, 0, 0) mge.device.set_default_device("gpu0") grad = Grad() x = as_tensor(x_np) grad.wrt(x, callback=save_to(x)) # need a placeholder to trace operator send_x =
remote_send(x, 1)
megengine.functional.distributed.remote_send
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import gc import platform import weakref import numpy as np import pytest import megengine as mge import megengine.distributed as dist import megengine.functional as F from megengine.core._imperative_rt import TensorAttr, imperative from megengine.core._imperative_rt.imperative import sync from megengine.core.autodiff.grad import Grad from megengine.core.ops.builtin import Elemwise from megengine.core.tensor.raw_tensor import as_raw_tensor from megengine.core.tensor.tensor import Tensor, apply from megengine.core.tensor.tensor_wrapper import TensorWrapper from megengine.functional.distributed import remote_recv, remote_send def _elwise(mode): op = Elemwise(mode) def f(*args): (result,) = apply(op, *args) return result return f add = _elwise(Elemwise.Mode.ADD) mul = _elwise(Elemwise.Mode.MUL) cos = _elwise(Elemwise.Mode.COS) relu = _elwise(Elemwise.Mode.RELU) def as_tensor(x): return Tensor(as_raw_tensor(x, device=mge.device.get_default_device())) def save_to(self, name="grad"): def callback(tensor, grad): setattr(self, name, grad) return callback @pytest.mark.isolated_distributed @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) def test_dist_grad(): world_size = 2 x_np = np.random.rand(10).astype("float32") port = dist.get_free_ports(1)[0] server = dist.Server(port) def worker0(): dist.init_process_group("localhost", port, world_size, 0, 0) mge.device.set_default_device("gpu0") grad = Grad() x = as_tensor(x_np) grad.wrt(x, callback=save_to(x)) # need a placeholder to trace operator send_x = remote_send(x, 1) recv_x =
remote_recv(1, x_np.shape, x_np.dtype, "gpu0")
megengine.functional.distributed.remote_recv
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import gc import platform import weakref import numpy as np import pytest import megengine as mge import megengine.distributed as dist import megengine.functional as F from megengine.core._imperative_rt import TensorAttr, imperative from megengine.core._imperative_rt.imperative import sync from megengine.core.autodiff.grad import Grad from megengine.core.ops.builtin import Elemwise from megengine.core.tensor.raw_tensor import as_raw_tensor from megengine.core.tensor.tensor import Tensor, apply from megengine.core.tensor.tensor_wrapper import TensorWrapper from megengine.functional.distributed import remote_recv, remote_send def _elwise(mode): op = Elemwise(mode) def f(*args): (result,) = apply(op, *args) return result return f add = _elwise(Elemwise.Mode.ADD) mul = _elwise(Elemwise.Mode.MUL) cos = _elwise(Elemwise.Mode.COS) relu = _elwise(Elemwise.Mode.RELU) def as_tensor(x): return Tensor(as_raw_tensor(x, device=mge.device.get_default_device())) def save_to(self, name="grad"): def callback(tensor, grad): setattr(self, name, grad) return callback @pytest.mark.isolated_distributed @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) def test_dist_grad(): world_size = 2 x_np = np.random.rand(10).astype("float32") port = dist.get_free_ports(1)[0] server = dist.Server(port) def worker0(): dist.init_process_group("localhost", port, world_size, 0, 0) mge.device.set_default_device("gpu0") grad = Grad() x = as_tensor(x_np) grad.wrt(x, callback=save_to(x)) # need a placeholder to trace operator send_x = remote_send(x, 1) recv_x = remote_recv(1, x_np.shape, x_np.dtype, "gpu0") y = recv_x * recv_x grad([y], [as_tensor(np.ones_like(x_np))]) np.testing.assert_almost_equal(x.grad.numpy(), x.numpy() * 2) def worker1():
dist.init_process_group("localhost", port, world_size, 1, 1)
megengine.distributed.init_process_group
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import gc import platform import weakref import numpy as np import pytest import megengine as mge import megengine.distributed as dist import megengine.functional as F from megengine.core._imperative_rt import TensorAttr, imperative from megengine.core._imperative_rt.imperative import sync from megengine.core.autodiff.grad import Grad from megengine.core.ops.builtin import Elemwise from megengine.core.tensor.raw_tensor import as_raw_tensor from megengine.core.tensor.tensor import Tensor, apply from megengine.core.tensor.tensor_wrapper import TensorWrapper from megengine.functional.distributed import remote_recv, remote_send def _elwise(mode): op = Elemwise(mode) def f(*args): (result,) = apply(op, *args) return result return f add = _elwise(Elemwise.Mode.ADD) mul = _elwise(Elemwise.Mode.MUL) cos = _elwise(Elemwise.Mode.COS) relu = _elwise(Elemwise.Mode.RELU) def as_tensor(x): return Tensor(as_raw_tensor(x, device=mge.device.get_default_device())) def save_to(self, name="grad"): def callback(tensor, grad): setattr(self, name, grad) return callback @pytest.mark.isolated_distributed @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) def test_dist_grad(): world_size = 2 x_np = np.random.rand(10).astype("float32") port = dist.get_free_ports(1)[0] server = dist.Server(port) def worker0(): dist.init_process_group("localhost", port, world_size, 0, 0) mge.device.set_default_device("gpu0") grad = Grad() x = as_tensor(x_np) grad.wrt(x, callback=save_to(x)) # need a placeholder to trace operator send_x = remote_send(x, 1) recv_x = remote_recv(1, x_np.shape, x_np.dtype, "gpu0") y = recv_x * recv_x grad([y], [as_tensor(np.ones_like(x_np))]) np.testing.assert_almost_equal(x.grad.numpy(), x.numpy() * 2) def worker1(): dist.init_process_group("localhost", port, world_size, 1, 1)
mge.device.set_default_device("gpu1")
megengine.device.set_default_device
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import gc import platform import weakref import numpy as np import pytest import megengine as mge import megengine.distributed as dist import megengine.functional as F from megengine.core._imperative_rt import TensorAttr, imperative from megengine.core._imperative_rt.imperative import sync from megengine.core.autodiff.grad import Grad from megengine.core.ops.builtin import Elemwise from megengine.core.tensor.raw_tensor import as_raw_tensor from megengine.core.tensor.tensor import Tensor, apply from megengine.core.tensor.tensor_wrapper import TensorWrapper from megengine.functional.distributed import remote_recv, remote_send def _elwise(mode): op = Elemwise(mode) def f(*args): (result,) = apply(op, *args) return result return f add = _elwise(Elemwise.Mode.ADD) mul = _elwise(Elemwise.Mode.MUL) cos = _elwise(Elemwise.Mode.COS) relu = _elwise(Elemwise.Mode.RELU) def as_tensor(x): return Tensor(as_raw_tensor(x, device=mge.device.get_default_device())) def save_to(self, name="grad"): def callback(tensor, grad): setattr(self, name, grad) return callback @pytest.mark.isolated_distributed @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) def test_dist_grad(): world_size = 2 x_np = np.random.rand(10).astype("float32") port = dist.get_free_ports(1)[0] server = dist.Server(port) def worker0(): dist.init_process_group("localhost", port, world_size, 0, 0) mge.device.set_default_device("gpu0") grad = Grad() x = as_tensor(x_np) grad.wrt(x, callback=save_to(x)) # need a placeholder to trace operator send_x = remote_send(x, 1) recv_x = remote_recv(1, x_np.shape, x_np.dtype, "gpu0") y = recv_x * recv_x grad([y], [as_tensor(np.ones_like(x_np))]) np.testing.assert_almost_equal(x.grad.numpy(), x.numpy() * 2) def worker1(): dist.init_process_group("localhost", port, world_size, 1, 1) mge.device.set_default_device("gpu1") grad =
Grad()
megengine.core.autodiff.grad.Grad
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import gc import platform import weakref import numpy as np import pytest import megengine as mge import megengine.distributed as dist import megengine.functional as F from megengine.core._imperative_rt import TensorAttr, imperative from megengine.core._imperative_rt.imperative import sync from megengine.core.autodiff.grad import Grad from megengine.core.ops.builtin import Elemwise from megengine.core.tensor.raw_tensor import as_raw_tensor from megengine.core.tensor.tensor import Tensor, apply from megengine.core.tensor.tensor_wrapper import TensorWrapper from megengine.functional.distributed import remote_recv, remote_send def _elwise(mode): op = Elemwise(mode) def f(*args): (result,) = apply(op, *args) return result return f add = _elwise(Elemwise.Mode.ADD) mul = _elwise(Elemwise.Mode.MUL) cos = _elwise(Elemwise.Mode.COS) relu = _elwise(Elemwise.Mode.RELU) def as_tensor(x): return Tensor(as_raw_tensor(x, device=mge.device.get_default_device())) def save_to(self, name="grad"): def callback(tensor, grad): setattr(self, name, grad) return callback @pytest.mark.isolated_distributed @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) def test_dist_grad(): world_size = 2 x_np = np.random.rand(10).astype("float32") port = dist.get_free_ports(1)[0] server = dist.Server(port) def worker0(): dist.init_process_group("localhost", port, world_size, 0, 0) mge.device.set_default_device("gpu0") grad = Grad() x = as_tensor(x_np) grad.wrt(x, callback=save_to(x)) # need a placeholder to trace operator send_x = remote_send(x, 1) recv_x = remote_recv(1, x_np.shape, x_np.dtype, "gpu0") y = recv_x * recv_x grad([y], [as_tensor(np.ones_like(x_np))]) np.testing.assert_almost_equal(x.grad.numpy(), x.numpy() * 2) def worker1(): dist.init_process_group("localhost", port, world_size, 1, 1) mge.device.set_default_device("gpu1") grad = Grad() recv_x =
remote_recv(0, x_np.shape, x_np.dtype, "gpu1")
megengine.functional.distributed.remote_recv
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import gc import platform import weakref import numpy as np import pytest import megengine as mge import megengine.distributed as dist import megengine.functional as F from megengine.core._imperative_rt import TensorAttr, imperative from megengine.core._imperative_rt.imperative import sync from megengine.core.autodiff.grad import Grad from megengine.core.ops.builtin import Elemwise from megengine.core.tensor.raw_tensor import as_raw_tensor from megengine.core.tensor.tensor import Tensor, apply from megengine.core.tensor.tensor_wrapper import TensorWrapper from megengine.functional.distributed import remote_recv, remote_send def _elwise(mode): op = Elemwise(mode) def f(*args): (result,) = apply(op, *args) return result return f add = _elwise(Elemwise.Mode.ADD) mul = _elwise(Elemwise.Mode.MUL) cos = _elwise(Elemwise.Mode.COS) relu = _elwise(Elemwise.Mode.RELU) def as_tensor(x): return Tensor(as_raw_tensor(x, device=mge.device.get_default_device())) def save_to(self, name="grad"): def callback(tensor, grad): setattr(self, name, grad) return callback @pytest.mark.isolated_distributed @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) def test_dist_grad(): world_size = 2 x_np = np.random.rand(10).astype("float32") port = dist.get_free_ports(1)[0] server = dist.Server(port) def worker0(): dist.init_process_group("localhost", port, world_size, 0, 0) mge.device.set_default_device("gpu0") grad = Grad() x = as_tensor(x_np) grad.wrt(x, callback=save_to(x)) # need a placeholder to trace operator send_x = remote_send(x, 1) recv_x = remote_recv(1, x_np.shape, x_np.dtype, "gpu0") y = recv_x * recv_x grad([y], [as_tensor(np.ones_like(x_np))]) np.testing.assert_almost_equal(x.grad.numpy(), x.numpy() * 2) def worker1(): dist.init_process_group("localhost", port, world_size, 1, 1) mge.device.set_default_device("gpu1") grad = Grad() recv_x = remote_recv(0, x_np.shape, x_np.dtype, "gpu1") send_x =
remote_send(recv_x, 0)
megengine.functional.distributed.remote_send