SMILES
stringlengths
2
247
ID
int64
1
8.57k
Y
class label
2 classes
MW
float64
53
2.27k
CN=NO
1
11
60.03
OCCI
2
11
171.94
C/C=C/Cl
10
11
76.01
C=C(Cl)Cl
13
11
95.95
FC(F)Cl
14
11
85.97
ClC(Cl)Br
22
11
161.86
C/C=C\Cl
25
11
76.01
OCCBr
27
11
123.95
OCCCl
28
11
80
CCOO
29
11
62.04
C=CCCl
30
11
76.01
NCCN
31
11
60.07
C=CC=C
33
11
54.05
CN(C)N
34
11
60.07
CC(C)Br
35
11
121.97
CC(C)Cl
36
11
78.02
O=CCCl
37
11
77.99
BrCCBr
38
11
185.87
ClCCCl
40
11
97.97
C#CCO
42
11
56.03
NCCCl
43
11
79.02
C=CC=O
44
11
56.03
O=CC=O
46
11
58.01
ClCCBr
47
11
141.92
C[C@@H](O)CBr
48
11
137.97
O=C(O)CI
49
11
185.92
FC[C@H]1CO1
50
11
76.03
C[C@@H](O)CCl
51
11
94.02
C=C(Cl)C=O
54
11
89.99
NNCCO
55
11
76.06
N#C[C@@H](Cl)Br
56
11
152.9
OC[C@H]1CO1
57
11
74.04
BrC[C@H]1CO1
58
11
135.95
OCC(Cl)Cl
59
11
113.96
C[C@@H](O)CN
60
11
75.07
C[C@@H](Cl)CCl
61
11
111.98
CC[C@H]1CO1
63
11
72.06
C=C(Br)CCl
66
11
153.92
C[C@@H](Br)CBr
67
11
199.88
CN(C)N=O
68
11
74.05
CCC(C)Br
70
11
135.99
CC(C)C#N
71
11
69.06
CCC1CO1
72
11
72.06
ClCC1CO1
73
11
92
C/C=C/C=O
74
11
70.04
CC(O)CCl
75
11
94.02
OCC1CO1
76
11
74.04
O=C(Br)CBr
77
11
199.85
ClCOCCl
80
11
113.96
FCC1CO1
81
11
76.03
O=CCC=O
82
11
72.02
BrCC1CO1
86
11
135.95
CC(O)CBr
90
11
137.97
ClC[C@@H]1CO1
91
11
92
N#CC(Cl)Br
92
11
152.9
CC(Cl)=C=O
94
11
89.99
OC/C=C\Cl
95
11
92
OC/C=C/Cl
96
11
92
C=C(Br)C=O
103
11
133.94
OCCCCl
104
11
94.02
C=C(C)C=O
106
11
70.04
NC(=O)NO
108
11
76.03
CCCCBr
109
11
135.99
CC(=O)NN
110
11
74.05
C/C=C\C=O
112
11
70.04
O=[N+]([O-])CCl
113
11
94.98
N#CC(Cl)Cl
114
11
108.95
CC(=O)NO
115
11
75.03
O=CC(=O)O
116
11
74
C=C(Br)CBr
117
11
197.87
COCC=O
118
11
74.04
ClC[C@H]1CO1
119
11
92
O=C(O)CBr
120
11
137.93
OCCCBr
121
11
137.97
CCCOO
122
11
76.05
Cl/C=C\CCl
123
11
109.97
C=CC(C)=O
124
11
70.04
O=C1CCO1
125
11
72.02
ClCCCBr
126
11
155.93
CC(C)(C)Br
127
11
135.99
CC(Cl)CO
128
11
94.02
N#CC(Br)Br
129
11
196.85
CC(=O)C=O
130
11
72.02
OC[C@@H]1CO1
132
11
74.04
CNC(=O)ON
133
11
90.04
O=C(CO)CO
135
11
90.03
OC[C@H](Cl)CCl
137
11
127.98
C/C(Cl)=C\C=O
138
11
104
OCC(Cl)(Cl)Cl
140
11
147.92
BrCC(Br)(Br)Br
144
11
341.69
ClC[C@H](Br)CBr
149
11
233.84
N#CC(Cl)(Cl)Cl
151
11
142.91
BrCC(Br)CBr
152
11
277.79
COC[C@H]1CO1
155
11
88.05
ClCC(Br)CCl
156
11
189.9
O=C(O)[C@@H](Cl)Br
157
11
171.89
[N-]=[N+]=NCCO
158
11
87.04
CCN(C)N=O
160
11
88.06
ClC[C@H](Cl)CBr
163
11
189.9
COCCOC
165
11
90.07

Mutagenicity Optimization (MutagenLou2023)

In the original paper, they collected the Ames records from Hansen’s benchmark (6512 compounds) and the ISSSTY database (6052 compounds). After data preparation, a total of 8576 compounds with structural diversity were obtained, including 4643 Ames positives and 3933 Ames negatives. The comprehensive data set was then split into a training set including 7720 compounds and a test set containing 856 compounds. Overall, the numbers of negatives and positives in this data set were balanced with a ratio of 0.847 (Neg./Pos.). In addition, 805 approved drugs from DrugBank that were not involved in the training set, and 664 Ames strong positive samples from DGM/NIHS were built as an external validation set.

Data splits

Here we have used the Realistic Split method described in (Martin et al., 2018) to split the MutagenLou2023 dataset.

Quickstart Usage

Load a dataset in python

Each subset can be loaded into python using the Huggingface datasets library. First, from the command line install the datasets library

$ pip install datasets

then, from within python load the datasets library

>>> import datasets

and load one of the MutagenLou2023 datasets, e.g.,

>>> train_test = datasets.load_dataset("maomlab/MutagenLou2023", name = "train_test")
Downloading readme: 100%|██████████|  7.15k/7.15k [00:00<00:00, 182kB/s]
Downloading data: 100%|██████████| 306k/306k [00:00<00:00, 4.45MkB/s]
Downloading data: 100%|██████████| 115k/115k [00:00<00:00, 668kkB/s]
Generating train split: 100%|██████████| 6862/6862 [00:00<00:00, 70528.05examples/s]
Generating test split: 100%|██████████| 1714/1714 [00:00<00:00, 22632.33 examples/s]

and inspecting the loaded dataset

>>> train_test
DatasetDict({
train: Dataset({
    features: ['SMILES', 'ID', 'Y', 'MW'],
    num_rows: 6862
})
test: Dataset({
    features: ['SMILES', 'ID', 'Y', 'MW'],
    num_rows: 1714
})
})

Use a dataset to train a model

One way to use the dataset is through the MolFlux package developed by Exscientia. First, from the command line, install MolFlux library with catboost and rdkit support

pip install 'molflux[catboost,rdkit]'

then load, featurize, split, fit, and evaluate the a catboost model

import json
from datasets import load_dataset
from molflux.datasets import featurise_dataset
from molflux.features import load_from_dicts as load_representations_from_dicts
from molflux.splits import load_from_dict as load_split_from_dict
from molflux.modelzoo import load_from_dict as load_model_from_dict
from molflux.metrics import load_suite

split_dataset = load_dataset('maomlab/MutagenLou2023', name = 'train_test')

split_featurised_dataset = featurise_dataset(
  split_dataset,
  column = "SMILES",
  representations = load_representations_from_dicts([{"name": "morgan"}, {"name": "maccs_rdkit"}]))

model = load_model_from_dict({
    "name": "cat_boost_classifier",
    "config": {
        "x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'],
        "y_features": ['Y']}})

model.train(split_featurised_dataset["train"])

preds = model.predict(split_featurised_dataset["test"])

classification_suite = load_suite("classification")

scores = classification_suite.compute(
    references=split_featurised_dataset["test"]['Y'],
    predictions=preds["cat_boost_classifier::Y"])

Citation

TY  - JOUR AU  - Lou, Chaofeng AU  - Yang, Hongbin AU  - Deng, Hua AU  - Huang, Mengting AU  - Li, Weihua AU  - Liu, Guixia AU  - Lee, Philip W. AU  - Tang, Yun PY  - 2023 DA  - 2023/03/20 TI  - Chemical rules for optimization of chemical mutagenicity via matched molecular pairs analysis and machine learning methods JO  - Journal of Cheminformatics SP  - 35 VL  - 15 IS  - 1 AB  - Chemical mutagenicity is a serious issue that needs to be addressed in early drug discovery. Over a long period of time, medicinal chemists have manually summarized a series of empirical rules for the optimization of chemical mutagenicity. However, given the rising amount of data, it is getting more difficult for medicinal chemists to identify more comprehensive chemical rules behind the biochemical data. Herein, we integrated a large Ames mutagenicity data set with 8576 compounds to derive mutagenicity transformation rules for reversing Ames mutagenicity via matched molecular pairs analysis. A well-trained consensus model with a reasonable applicability domain was constructed, which showed favorable performance in the external validation set with an accuracy of 0.815. The model was used to assess the generalizability and validity of these mutagenicity transformation rules. The results demonstrated that these rules were of great value and could provide inspiration for the structural modifications of compounds with potential mutagenic effects. We also found that the local chemical environment of the attachment points of rules was critical for successful transformation. To facilitate the use of these mutagenicity transformation rules, we integrated them into ADMETopt2 (http://lmmd.ecust.edu.cn/admetsar2/admetopt2/), a free web server for optimization of chemical ADMET properties. The above-mentioned approach would be extended to the optimization of other toxicity endpoints. SN  - 1758-2946 UR  - https://doi.org/10.1186/s13321-023-00707-x DO  - 10.1186/s13321-023-00707-x ID  - Lou2023 ER  -


Downloads last month
100
Edit dataset card

Collection including maomlab/MutagenLou2023